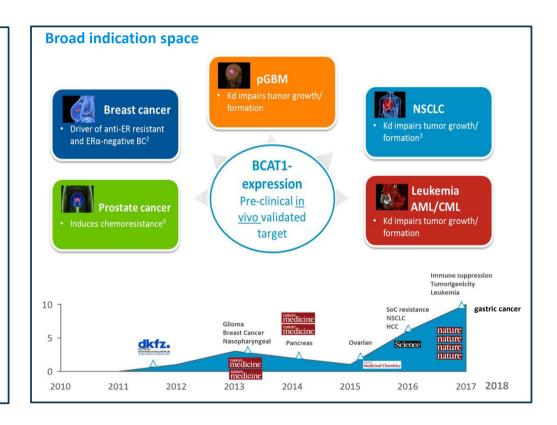


Donated Chemical Probe

Dual BCAT1/2 chemical probe Probe BAY-069

June, 2th 2020

Presenters: BCAT team


introduction

Dual BCAT1/2 Probe BAY-069

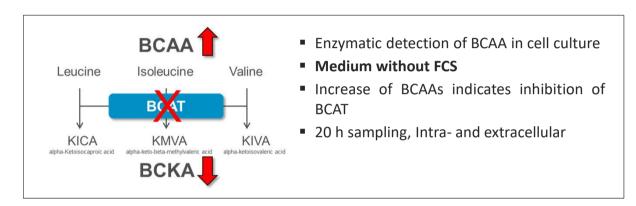
Scientific rationale

- BCAAs are essential amino acids that animals cannot synthesize de novo
- Highly tumor specific:
 - BCAT1 is c-Myc driven
 - De novo expression in tumors (besides brain*, testis and uterus)
 - (*) Overexpressed in IDH1 wt brain tumors (e.g pGBM)
 - Correlated with worse survival prognosis
- BCAA release in skeletal muscle → cancer cachexia?
- BCAT1 expression is **tumorigenic** by inhibiting α -KG dependent enzymes by substrate depletion.
- BCKA excretion inhibits local macrophage immune function

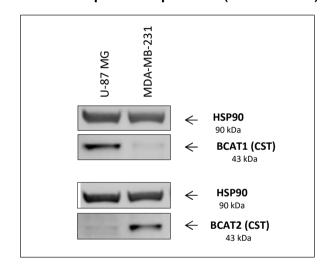
BCAT1 (Branched Chain Amino Acid Transaminase 1) is a validated target for the targeted treatment of different major cancers entities

literature known compounds

	CAS: 1800024-45-6 compound 61 (GSK)	Pfizer	ERG240 Ergon
	N H F CI		ОН
BACT1 / BCAT2	92 nM / 26 nM	$0.8~\mu M$ / $4.3~\mu M$	50 μM / 50 μΜ
BCAT1 IC ₅₀ ^{cell-MDA MB231}	452 nM	>30 μM	> 30 μM
BCAT1 IC ₅₀ ^{cell-U87MG}	4.9 μΜ	-	-
Caco2 (Papp (A-B)/ Papp (B-A) / efflux	116 / 131 / 1.1	207 / 69 / 0.33	-
Solubility [mg/L]	151	-	-
indication	obesity	neurodegenerative disorder	
Literature	J. Med. Chem. 2015 , <i>58</i> , 18, 7140-7163	Bioorg. Med: Chem. Lett., 2006 , 16, 2337-2340	US 2016/0368862 A1


- > Other BACT1/2 inhibitors are known in the literature; the most potent one is the GSK inhibitor
- > GSK inhibitor is from a different chemical class

Cellular activity

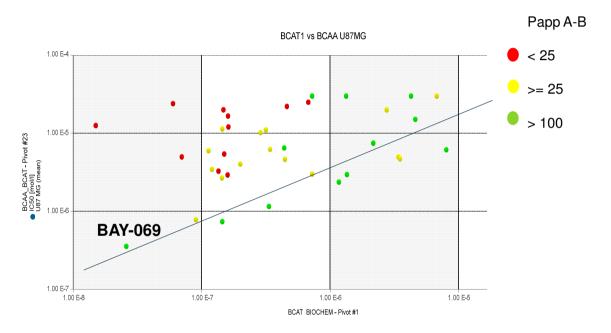

Dual BCAT1/2 Probe BAY-069

Cellular mechanistic assay – BCAA measurement

	MDA-MB-231	U-87-MG
BCAT protein expression	Highly BCAT2	Highly BACT1
BAY-069	874 nM	358 nM

BCAT1 and **BCAT2** protein expression (Western Blot)


- Cellular mechanistic assay validated with BAY-069 in 2 cell lines
- BAY-069 leads to increased BCAA levels in U-87-MG (high BCAT1 expressing) cells and MDA-MB-231 (high BCAT2 expressing) cells
- These results confirm on-target (BCAT1 and BCAT2) cellular activity


Cellular activity

Dual BCAT1/2 Probe BAY-069

Cellular mechanistic assay – BCAA measurement

- BAY-069 leads to increased BCAA levels in U-87-MG (high BCAT1 expressing) cells
- These results confirm on-target cellular activity
- Correlation between biochemical BCAT1 IC₅₀ and cellular activity (BCAA in U-87-MG)
- Outliers (red) show low Caco-2 permeability (Papp A-B)

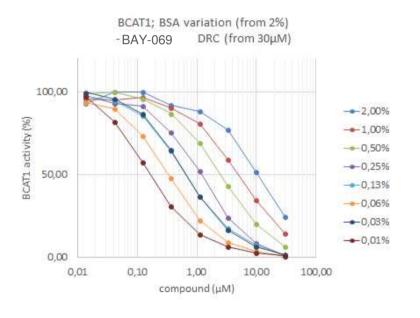
Cellular activity

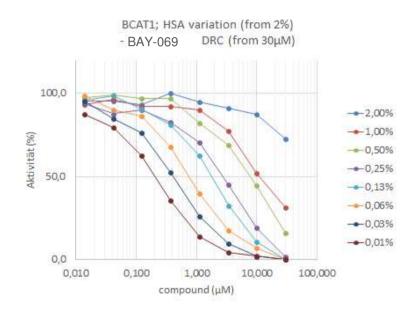
Dual BCAT1/2 Probe BAY-069

Cellular functional assay - 2D cell proliferation experiments*

	MDA-N	1B-231	U-87	7-MG	SE	М	CAL	51	HCS	33	NCI-ł	H2110
	IC ₅₀	IC ₉₀										
F N O CI BAY-069	>50 μM	47.7 μΜ	50 μΜ	50 μΜ	50 μΜ	50 μΜ	50 μM					

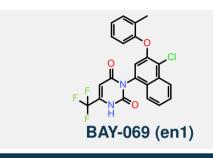
*proliferation experiments done in cell culture medium with 10% FBS


- BAY-069 shows no anti-proliferative activity in different cell lines after 72 h
- > The cellular mechanistic assay does not translate in a proliferative activity.


Biochemical activity

Dual BCAT1/2 Probe BAY-069

Biochemical assay – effect of protein binding



- Strong loss of potency in the presence of serum albumin for BAY-069
- Might explain lack of effect in in-vitro assays with FCS, e.g. proliferation assays

Technical profile

POTENCY (IC ₅₀ [nM])				
BACT1 IC ₅₀	27 nM			
BACT2 IC ₅₀	130 nM			
LLE / BEI	4.8 / 19.4			
Mechan. IC ₅₀ MDA-MB-231	874 nM			
Mechan. IC ₅₀ U-87-MG	358 nM			

Properties & Physchem	
LogD @ pH 7.5 / pka	2.4 / 5.7
fu [%] Williams_E / brain / Mouse	0.81 / 0.47 / 0.14
Sw powder @ pH 6.5 [mg/L]	140
MW / TPSA [g*mol / Ų]	389 / 59
Stability (r /h plasma, 4h) [%]	Stable in r and h

in vitro DMPK Properties						
Caco2	P _{app} (A-B) [nm/s]		P _{app} (B-A) [nm/s]		efflux ratio	
Permeability	252		122		0.48	
			CL [L/h/	/kg]	F _{max} [%]	
metabolic stability	Human liver mics		0.11		92	
	rat hepatocytes		1.8		56	
In vivo rat PK	Low CLb, moderate Vss, intermediate half-life, high oral bioavailability					al bioavailability
CYP inhibition	1A2	2C8	2C9	2D6	3A4	3A4 preinc.
IC ₅₀ [μM]	>20	0.87	0.64	>20	4.1	3.2
PXR	red					

Selectivity	
In-house kinase panel (#21)	clean
Eurofins safety panel	clean
SAFETY	

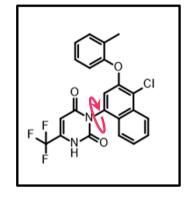
n.d.

>10 µM

Cytotox

hERG IC₅₀ [μM]

- BAY-069 is a dual BCAT1/2 inh.
- BAY-069 shows high Caco-2 permeability and high solubility
- Stock availability: 250 mg are available


Probe profile

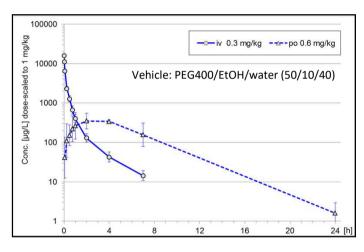
Dual BCAT1/2 Probe BAY-069

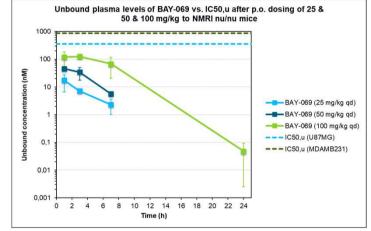
Atropisomerism

- // Annulated phenyl induces axial chirality
 - # H-bond to Gln244 in X-ray allows unequivocal assignment of stereochemistry in active isomer
 - Atropisomers has been separated via column chromatography

Atropisomers show different biochemical profiles:

	BAY-069 (atrop 1)	BAY-252 (atrop 2)	BAY-5000 (rac)
IC ₅₀ BACT1	26 nM	2 μΜ	333 nM
IC ₅₀ BACT2	130 nM	2 μΜ	22 nM
IC ₅₀ BCAT1 cell-MDA MB231	874 nM	2 μΜ	564 nM
IC ₅₀ BCAT1 cell-U87-MG	358 nM	-	5 μΜ
Caco2 (Papp (A-B)/ Papp (B-A) / efflux	252 / 122 / 0.48	260 / 152 / 0.58	137 / 146 / 1.1


- ➤ Both atropisomers show different activity profiles -> BAY-069 displays the best profile
- > Currently studies ongoing in order to determine the energy barrier

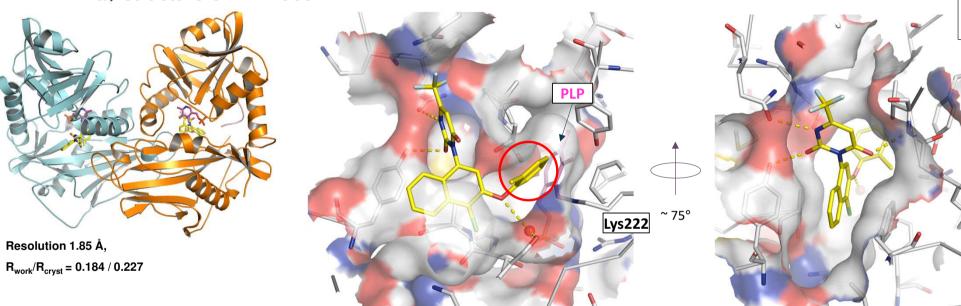

Probe profile

Dual BCAT1/2 Probe BAY-069

Low dose In vivo rat PK and High dose In vivo mouse PK

BAY Number	BAY-069	BAY-069	BAY-069
Dose	25 mg/kg	50 mg/kg	100 mg/kg
AUC _{0-tlast}	16 h*mg/L	53 h*mg/L	270 h*mg/L
AUC _{0-tlast,norm}	0,63 h*kg/L	1,1 h*kg/L	2,7 h*kg/L
AUC _{0-tlast,u}	0,022 h*mg/L	0,074 h*mg/L	0,38 h*mg/L
C _{max,u}	17 nM	46 nM	130 nM
IC ₅₀ Assay	U87MG	U87MG	U87MG
IC ₅₀	358 nM	358 nM	358 nM
IC _{50,u}	358 nM	358 nM	358 nM
C _{max,u} / IC _{50,u}	0,047	0,13	0,36

Admin Route		iv bolus	ро
Dose Admin	[mg/kg]	0.30	0.60
AUC _{norm}	[kg·h/L]	2.9	2.5
C _{max,norm}	[kg/L]	16	0.48
CL _{blood}	[L/h/kg]	0.64	
t _{max}	[h]		2.0
V _{ss}	[L/kg]	0.25	
t _{1/2}	[h]	1.6	2.2
F	[%]		89


- Low CL_b, moderate Vss, intermediate half-life, high oral bioavailability
- High dose PK study with oral dosing in mouse (female NMRI nude) up to 100 mg/kg showed exposure which did reach the levels of the determined cellular IC₅₀
- BAY-069 may be suitable for in vivo studies at higher concentrations

Target engagement

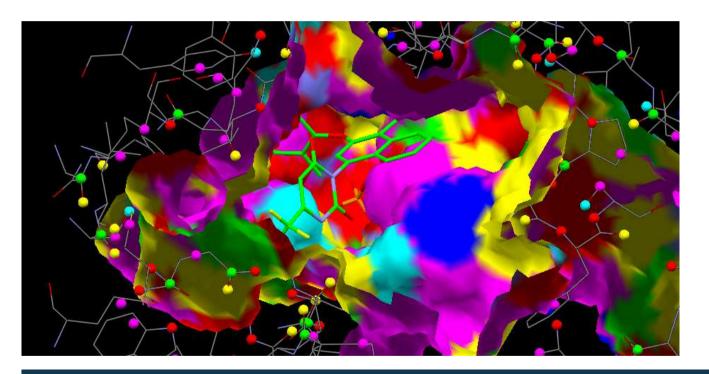
Dual BCAT1/2 Probe BAY-069

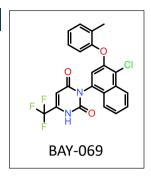
X-ray structure of BAY-069

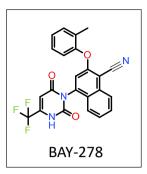
BAY-069 bound to BCAT1, chain A

BAY-069 soaked into BCAT1 crystals grown with co-factor PLP (covalently linked to Lys222) & substrate mimic (3-phenylpropionic acid).

BAY-069


- BAY-069 bound in substrate site in front of co-factor PLP (magenta), in both active sites of the BCAT1 homodimer.
- Methyl-phenoxy-moiety occupies hydrophobic binding site for BCAA side chains (red circle) & replaces substrate mimic 3PP
- Chloro-naphthyl moiety fills canyon in outer part of substrate binding site; pyrimidine-dion occupies orthogonal subpocket
- Multiple H bonds to BCAT1, formed by phenoxy-oxygen and by all polar atoms of the pyrimidine-dion ring.


Selectivity



Dual BCAT1/2 Probe BAY-069

Cavbase with close congener BAY-278

- Searching across the X-ray characterized proteome (pocketome) with closely related variant BAY-278
 - Using in-house co-crystal structure with BAY-278 (identical binding mode)
 - // pick all pseudocenters (donor/acceptor/pi/aromatic/alipha tic) within a 4 Å radius of cocrystallized ligand BAY-278

- Little is known about overall selectivity of this target family, therefore we looked at selectivity profile in more detail using CavBase search for possible co/anti-targets (cavity search) for BAY-278.
- No hints for any cross reactivity of probe BAY-069 (based on X-ray of close analogue BAY-278) were found.

Selectivity Profile in more detail: broader panels

// Other Transaminases

// Aspartate transaminase: GOT1/2: $IC_{50} > 50 \mu M$

In-house protease panel (# 30 proteases)

// All IC₅₀ > 10 μ M; one hit at 6 μ M

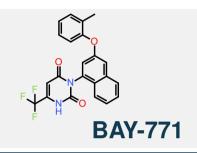
In-house kinase panel (# 30 kinases)

// All IC₅₀ > 7 μ M; one hit at 2 μ M

Safety screen (Eurofins, # 77 targets)

// Clean (no relevant activity >50%)

// Hits:


// Thromboxane synthase: 45%

GABA transporter: 46%

BAY-069 shows an overall clean profile (for more information, see backup)

In vitro technical profile of Negative Control BAY-771

6.5 μM
10.8 μΜ
n.d.
6.2 μM (17fold)

Properties & Physchem	
LogD @ pH 7.5	2.2
fu [%] Williams_E / rat / Mouse	-
Sw @ pH 6.5 [mg/L]	>412
MW / TPSA [g*mol / Ų]	412 / 59
Stability (r /h plasma, 4h) [%]	-

in vitro DMPK Properties							
Caco2	P _{app} (A-B) [nm/s]	P _{app} (B-A)	[nm/s]	efflux ratio		
Permeability	275		171		0.62		
			CL [L/h/	/kg]	F _{max} [%]		
metabolic stability	Human live	r mics	0.79		40		
	rat hepato	cytes	2.5		40		
	human hepatocytes						
CYP inhibition	1A2	2C8	2C9	2D6	3A4	3A4 preinc.	
IC ₅₀ [μM]							
PXR							

Selectivity	
In-house kinase panel (#21)	Clean (> 7 μM) FLT3: 5 μM
SAFETY	
Cytotox	Not available
hERG IC ₅₀ [µM]	Not available

- BAY-771 was suggested as negative control
- Further profiling could be undertaken after probe acceptance
- Stock availability: only DMSO solution, resynthesis necessary

Summary / Conclusion

Probe criteria	
Inhibitor potency: goal is < 100 nM (IC_{50} , Kd)	meets criteria for BACT1; slightly above for BCAT2
Selectivity within target family: goal is > 30-fold	meets criteria; selective to aspartate transaminase
Selectivity outside target family: describe the off-targets (which may include both binding and functional data)	Surpasses criteria
On target cell activity for cell-based targets: goal is < 1 μM IC_{50}/EC_{50}	Surpasses criteria
Additional structural information	X-ray available
Neg ctrl: in vitro potency – > 100-fold less; Cell activity – >100-fold less potent than the probe	Neg control available; 17-fold less in cellular assay

We ask for acceptance of BAY-069 as chemical probe, accompanied by BAY-771 as negative control

Project Team / Acknowledgement

Martje Tönies Irene Helbig Bernhard Radlwimmer

Matthew Habgood

Léa Bouché
Stefan Kaulfuss
Katja Zimmermann
Hartmut Rehwinkel
Wolfgang Schwede
Duy Nguyen
Luisella Toschi
Heike Petrul
Roman Hillig
Clara Lemos
Judith Guenther
Roland Neuhaus
Christian Lechner
Roland Neuhaus

Thank You

Synthesis of BAY-069

$$O_2N + O_2N +$$

BAY-5000 (racemate)

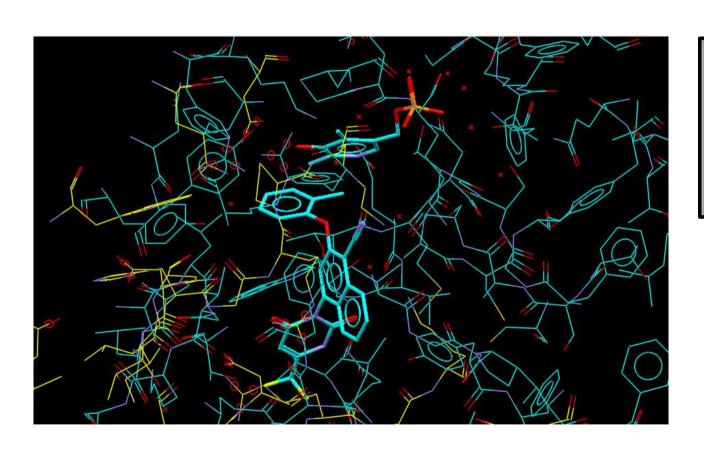
Synthesis of negative Control BAY-771

BAY-771 (racemate)

Selectivity Profile in more detail: use of Cavbase search for possible co/anti-targets for BAY-278

Search Results 1-15 of 100

Select	<u>Cavity</u>	<u>Score</u>	Normalised Score	Matched Centres	<u>RMS</u>	<u>Protein</u> <u>Homology</u>	<u>Cavity</u> <u>Homology</u>	<u>Header</u>	<u>Title</u>
\	pdb1gyp.5	7.0	17.9	9	1.188	22.6	unknown	OXIDOREDUCTASE (ALDEHYDE(D)-NAD+(A))	CRYSTAL STRUCTURE OF GLYCOSOMAL GLYCERALDEHYDE-3-PHOSPHATE DEHYDROGENASE FROM LEISHMANIA MEXICANA: IMPLICATIONS FOR STRUCTURE-BASED DRUG DESIGN AND A NEW POSITION FOR THE INORGANIC PHOSPHATE BINDING SITE
	pdb2jkv.34	6.6	16.9	8	1.317	29.2	unknown	OXIDOREDUCTASE	STRUCTURE OF HUMAN PHOSPHOGLUCONATE DEHYDROGENASE IN COMPLEX WITH NADPH AT 2.53A
	pdb2gah.11	6.6	16.8	8	1.311	29.7	unknown	OXIDOREDUCTASE	HETEROTETRAMERIC SARCOSINE: STRUCTURE OF A DIFLAVIN METALOENZYME AT 1.85 A RESOLUTION
	pdb1xah.5	6.5	16.6	8	1.129	21.3	unknown	LYASE	CRYSTAL STRUCTURE OF STAPHLYOCOCCUS AUREUS 3-DEHYDROQUINATE SYNTHASE (DHQS) IN COMPLEX WITH ZN2+ AND NAD
	pdb2zea.10	6.1	15.7	8	1.552	42.9	1.4	OXIDOREDUCTASE	CRYSTAL STRUCTURE OF ALCALIGENES FAECALIS D-3 HYDROXYBUTYRATE DEHYDROGENASE IN COMPLEX WITH NAD+ AND ACETATE
	pdb2vuu.18	6.1	15.7	7	0.898	21.4	unknown	TRANSCRIPTION	CRYSTAL STRUCTURE OF NADP-BOUND NMRA-AREA ZINC FINGER COMPLEX
	pdb3ru7.2	6.1	15.6	7	1.161	39.1	2.7	ISOMERASE	SPECIFIC RECOGNITION OF N-ACETYLATED SUBSTRATES AND DOMAIN

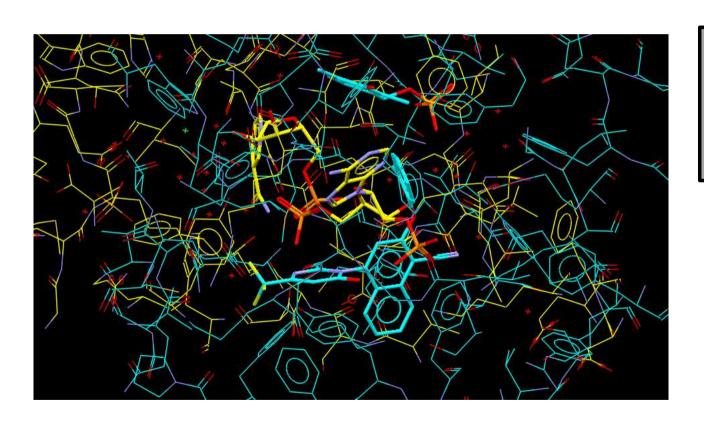

Results:

- # All hits identified have very low scores for pocket match to query
- // (see backup for more detail)

- No hints for any cross reactivity of probe BAY-069 (based on X-ray of close analogue BAY-278) found
- Search space is restricted to X-ray characterized part of proteome
- Outside this space, no conclusions on possible other targets can be drawn based on the query setup.

Selectivity Profile in more detail: use of Cavbase search for possible co/anti-targets for BAY-078

Top Scorer:


BCAT1 (X647) ↔
PDB1GYP Glycosomal
Glyceraldehyde-3-Phosphate
Dehydrogenase from
LEISHMANIA MEXICANA

// Results:

// Visual inspection confirms irrelevance to match

Selectivity Profile in more detail: use of Cavbase search for possible co/anti-targets for BAY-078

Top **human** Scorer:

BCAT1 (X647) ↔
PDB2JKV Human
Phosphogluconate
Dehydrogenase

// Results:

// Visual inspection confirms irrelevance to match

Selectivity Profile in more detail: safety screen (Eurofins, # 77 targets)

Cat#	Assay Name	Batch*	Spec.	Rep.	Conc.	% Inh.
Compo	ound: CHH026-2019, PT #: 1224239					
107000	Aldose Reductase	433410	rat	2	10 µM	-1
107710	ATPase, Na+/K+, Heart, Pig	433438	pig	2	10 µM	-13
112020	Carbonic Anhydrase II	433411	hum	2	10 µM	1
104010	Cholinesterase, Acetyl, ACES	433409	hum	2	10 μM	8
116020	Cyclooxygenase COX-1	433651	hum	2	10 µM	-10
118010	Cyclooxygenase COX-2	433652	hum	2	10 µM	7
124010	HMG-CoA Reductase	433419	hum	2	10 µM	0
132000	Leukotriene LTC ₄ Synthase	433418	gp	2	10 µM	29
199017	Lipoxygenase 15-LO	433427	hum	2	10 µM	15
140010	Monoamine Oxidase MAO-A	433440	hum	2	10 µM	8
140120	Monoamine Oxidase MAO-B	433441	hum	2	10 µM	8
142000	Nitric Oxide Synthase, Neuronal (nNOS)	433420	rat	2	10 µM	-4
199010	Nitric Oxide Synthetase, Inducible (iNOS)	433425	mouse	2	10 µM	14
107300	Peptidase, Angiotensin Converting Enzyme	433437	rabbit	2	10 µM	1
152000	Phosphodiesterase PDE3	433452	hum	2	10 µM	-8
154420	Phosphodiesterase PDE4D2	433454	hum	2	10 µM	2
156000	Phosphodiesterase PDE5	433453	hum	2	10 µM	-19
194020	Thromboxane Synthase	433426	hum	2	10 µM	45
200510	Adenosine A ₁	433503	hum	2	10 µM	27
200610	Adenosine A _{2A}	433505	hum	2	10 µM	-6
200720	Adenosine A ₃	433689	hum	2	10 µM	-2
203100	Adrenergic α _{1A}	433443	rat	2	10 µM	5
203630	Adrenergic α _{2A}	433428	hum	2	10 µM	2
203710	Adrenergic α ₂₈	433429	hum	2	10 µM	-2
203810	Adrenergic α _{2C}	433430	hum	2	10 µM	6
204010	Adrenergic β ₁	433456	hum	2	10 µM	3
204110	Adrenergic β_2	433457	hum	2	10 µM	-11

204200	Adrenergic β ₃	433459	hum	2	10 μM	15
206000	Androgen (Testosterone)	433476	hum	2	10 µM	9
210030	Angiotensin AT ₁	433527	hum	2	10 µM	7
210120	Angiotensin AT ₂	433528	hum	2	10 µM	6
212520	Bradykinin B ₁	433509	hum	2	10 µM	-8
212620	Bradykinin B ₂	433464	hum	2	10 µM	1
217030	Cannabinoid CB ₁	433671	hum	2	10 µM	16

No significant results noted.

Selectivity Profile in more detail: safety screen (Eurofins, # 77 targets)

Cat#	Assay Name	Batch*	Spec.	Rep.	Conc.	% Inh.	252610	Muscarinic M ₁	433435	5 hum	2	10 µM	8
217100	Cannabinoid CB ₂	433530	hum	2	10 µM	-5	252710	Muscarinic M ₂	43343	5 hum	2	10 µM	4
219500		433525	hum	2	10 μM		252810	Muscarinic M ₃	433436	6 hum	2	10 µM	-7
219600	Dopamine D _{2L}	433523	hum	2	10 µM	-5	252910	Muscarinic M ₄	433442	2 hum	2	10 µM	-5
219700	Dopamine D _{2S}	433524	hum	2	10 µM	-5	258730	Nicotinic Acetylcholine α3β4	433470) hum	2	10 µM	-8
219800	Dopamine D ₃	433525	hum	2	10 µM	14	260130	Opiate δ ₁ (OP1, DOP)	43346	1 hum	2	10 µM	-3
224010	Endothelin ET _A	433548	hum	2	10 µM	-2	260210	Opiate κ (OP2, KOP)	433462	2 hum	2	10 µM	-7
224110	Endothelin ET _B	433549	hum	2	10 µM	-9	260410	Opiate µ (OP3, MOP)	433463	3 hum	2	10 µM	0
226010	Estrogen ERa	433601	hum	2	10 µM	6	299005	Progesterone PR-B	433474	4 hum	2	10 µM	-4
226810	GABAA, Chloride Channel, TBOB	433540	rat	2	10 µM	15	299036	Purinergic P2X	43345	1 rat	2	10 µM	11
226600	GABAA, Flunitrazepam, Central	433465	rat	2	10 µM	4	268810	Purinergic P2Y	433697	7 rat	2	10 µM	-4
228510	GABAs, Non-Selective	433506	rat	2	10 µM	-15	271110	Serotonin (5-Hydroxytryptamine) 5-HT _{1A}	43354	5 hum	2	10 µM	9
232030	Glucocorticoid	433479	hum	2	10 µM	13	271650	Serotonin (5-Hydroxytryptamine) 5-HT _{2A}	433484	4 hum	2	10 µM	1
232600	Glutamate, AMPA	433538	rat	2	10 µM	11							
232710	Glutamate, Kainate	433539	rat	2	10 µM	-4		ms meeting criteria for significance (≥50% s			_	lighted.	
232810	Glutamate, NMDA, Agonism	433532	rat	2	10 µM	11		Represents compounds tested concurrently ea pig; hum=Human	in the sam	ie assay(s).			
232910	Glutamate, NMDA, Glycine	433536	rat	2	10 µM	-2		A N	B-4-64		_	0/ 1- 1	
239300	Growth Hormone Secretagogue (GHS,	433558	hum	2	10 µM	1	Cat #	Assay Name	Batch*	Spec. Re	р. С	onc. % Inh.	-

10 µM

10 µM

10 µM

10 µM

10 µM

-2

-2

3

15

2

2

hum

hum

hum

rat

hum

433467

433541

433654

433555

433504

Cat#	Assay Name	Batch*	Spec.	Rep.	Conc.	% Inh.
271700	Serotonin (5-Hydroxytryptamine) 5-HT _{2B}	433519	hum	2	10 µM	1
271800	Serotonin (5-Hydroxytryptamine) 5-HT _{2C}	433544	hum	2	10 µM	3
202020	Transporter, Adenosine	433553	hum	2	10 µM	28
220320	Transporter, Dopamine (DAT)	433478	hum	2	10 µM	33
226400	Transporter, GABA	433531	rat	2	10 µM	46
204410	Transporter, Norepinephrine (NET)	433477	hum	2	10 µM	22
274030	Transporter, Serotonin (5- Hydroxytryptamine) (SERT)	433471	hum	2	10 µM	3
287530	Vasopressin V _{1A}	433516	hum	2	10 µM	7

Ghrelin) 239610 Histamine H₁

Histamine H₃

239710 Histamine H₂

Insulin

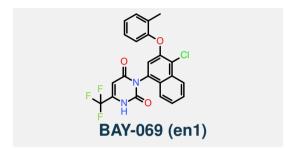
Motilin

239820

243000

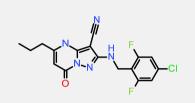
252200

Selectivity Profile in more detail: in-house protease panel


Protease	#
Metallo protease	8
Serine protease	15
Cysteine protease	4
Aminopeptidase	3

Probe profile

Dual BCAT1/2 Probe BAY-069


Solubility

Properties & Physchem	
Sw @ pH 6.5 [mg/L]	<0.10
Sw @ pH 6.5 PBS [mg/L]	93
Sw @ pH 4 citrate buffer [mg/L]	4.4
Sw in PEG400/EtOH/H2O 60/10/30 [mg/L]	>830
Sw in PEG400/H2O 60/40 [mg/L]	>790

Technical profile

Compound 61	Com	pound	61
-------------	-----	-------	----

POTENCY (IC ₅₀ [nM])	
BACT1 IC ₅₀	92 nM
BACT2 IC ₅₀	26 nM
Mechan. IC ₅₀ MDA-MB-231	564 nM
Mechan. IC ₅₀ U-87-MG	5.3 μM

Properties & Physchem	
LogD @ pH 7.5 / pka	1.93 / 6.3
fu [%] Williams_E	6.2 / 6.2 / 0.47
Sw powder @ pH 6.5 [mg/L]	151
MW / TPSA [g*mol / Ų]	377.8 /
Stability (r /h plasma, 24h) [%]	Stable

in vitro DMPK Properties									
Caco2	P _{app} (A-B) [nm/s]	P _{app} (B-A)	[nm/s]	efflux ratio				
Permeability	115.9	8	130.9	9	1.13				
			CL [L/h/	/kg]	F _{max} [%]				
metabolic stability	Human live	r mics	0.05		96				
, , , , , , , , , , , , , , , , , , ,	rat hepato	cytes	0.1		98				
In vivo rat PK	Low CLb, m	Low CLb, moderate Vss, intermediate half-life, high oral							
CYP inhibition	1A2	2C8	2C9	2D6	3A4	3A4 preinc.			
IC ₅₀ [μM]									
PXR									

Selectivity					
In-house kinase panel (#37)	>10 μM				
Eurofins safety panel	Aldone reductase 72% Available (see next slide)				
SAFETY					
Cytotox					
hERG IC ₅₀ [μM]	>10 µM				

- Compound 61 is a dual BCAT1/2 inh.
- BAY-069 shows high Caco-2 permeability and high solubility
- Stock availability: 250 mg are available

Literature

GSK data (Bertrand et al., 2015) J. Med. Chem. 2015, 58, 7140-7163

Enzyme inhibition (BCAT2) activity comparable to in-house data (50 nM vs 26 nM)

Cl_b 0.3 mL/min/kg; T_{1/2} 9 h; F% 100

> Cellular data slightly better (160 nM vs 452 nM) but measured in different cell type (primary adipocyte)

Selectivity Profile in more detail: safety screen (Eurofins, # 77 targets)

Cat #	Assay Name	Batch*	Spec.	Rep.	Conc.	% Inh.	IC ₅₀ *	Ki	n _H	R	20600	O Androgen (Testosterone	e)		419252	2 hum	2		10 μM	7	
Compo	ound: CHH036-2018, PT #: 1217295										21003	O Angiotensin AT ₁			419057	7 hum	2		10 µM	3	
107000	Aldose Reductase	419005	rat	2	10 µM	72					21012	O Angiotensin AT ₂			419058	3 hum	2		10 µM	8	
107710		419157	pig	2	10 μM						21252	n Bradykinin B₁			419081	1 hum	2		10 µM	-2	
112020		419006	hum	2	10 µM						21262) Bradykinin B ₂			419189	9 hum	2		10 µM	-1	
104010	ŕ	419032	hum	2	10 µM	•					21703				419208		2		10 μM	-7	
116020		419236	hum	2	10 μM																
118010		419237	hum	2	10 µM	_					Cat #	Assay Name	Bat	ch* Spe	c. Rep.	Conc.	% Inh.				
124010		419158	hum	2	10 µM						217100	Cannabinoid CB ₂	419	131 hum	2	10 µM	9				
132000		419009		2	10 μM							Dopamine D ₁	419		2	10 μM	-7				
	Lipoxygenase 15-LO		gp	_		_						Dopamine D _{2L} Dopamine D _{2s}	419		2	10 μM 10 μM	0 -14				
199017		419128	hum	2	10 μM							Dopamine D ₃	419 419		2	10 μM	-14				
140010		419125	hum	2	10 µM							Endothelin ET _A	419		2	10 μM	-8				
140120	Monoamine Oxidase MAO-B	419126	hum	2	10 µM	10					224110	Endothelin ET _B	419	239 hum	2	10 µM	12				
142000	Nitric Oxide Synthase, Neuronal (nNOS)	419159	rat	2	10 µM	-10					226010	Estrogen ERa	419	055 hum	2	10 µM	-18				
199010	Nitric Oxide Synthetase, Inducible (iNOS)	419011	mouse	2	10 µM	16						GABA, Chloride Channel, TBOB	419		2	10 μM	8				
107300	Peptidase, Angiotensin Converting Enzyme	419156	rabbit	2	10 µM	-4						GABA _B , Flunitrazepam, Central GABA _B , Non-Selective	419 419		2	10 μM 10 μM	-2 -1				
152000	Phosphodiesterase PDE3	419198	hum	2	10 µM	11						Glucocorticoid	419		2	10 μM	14				
154000	Phosphodiesterase PDE4	419197	hum	2	10 μM	20					232600	Glutamate, AMPA	419		2	10 µM	7				
156000	Phosphodiesterase PDE5	419199	hum	2	10 μM						LUL: IU	Glutamate, Kainate	419		2	10 μM	-9				
194020	·			2	10 µM							Glutamate, NMDA, Agonism	419		2	10 μM	16				
	•	419127	hum									Glutamate, NMDA, Glycine Growth Hormone Secretagogue (GH	419 HS, 419		2	10 μM 10 μM	2 12				
	Adenosine A	419204	hum	2	10 μM							Ghrelin)	,		-						
200610		419205	hum	2	10 μM							Histamine H ₁	419			10 μM 10 μM	3 -1				
200720	Adenosine A ₃	419054	hum	2	10 µM	39						Histamine H ₃	419 419		2	10 μM	-1 -6				
203100	Adrenergic α _{1A}	419069	rat	2	10 µM	-7					243000	Insulin	440	nen rot	2	10 uM	2				
203630	Adrenergic α _{2A}	419028	hum	2	10 µM	-11					252200	MOUIIII	260130 C					419294	hum	2	10 µM
203710	Adrenergic α _{2B}	419072	hum	2	10 µM	3					252610		260210 C					419215	hum	2	10 µM
203810		419073	hum	2	10 μM								260410 C					419101	hum	2	10 µM
	-				•	_							299005 P					419061	hum	2	10 µM
	Adrenergic β ₁	419207	hum	2	10 μM							Muscarinic M ₄ Nicotinic Acetylcholine	268700 P	urinergic P	2X			419217	rabbit	2	10 µM
	Adrenergic β ₂	419132	hum	2	10 µM						258590	Nicounic Acetylcholille	268810 P					419211	rat	2	10 µM
204200	Adrenergic β₃	419104	hum	2	10 µM	-1							271110 S	erotonin (5	-Hydroxytry	yptamine) 5	-HT _{1A}	419196	hum	2	10 µM
/// D	Jonated Chemical Probe BAY-069 /// 2020												271650 S	erotonin (5	-Hydroxytry	yptamine) 5	-HT _{2A}	419052	hum	2	10 µM

Selectivity Profile in more detail: safety screen (Eurofins, # 77 targets)

Cat#	Assay Name	Batch*	Spec.	Rep.	Conc.	% Inh.
271700	Serotonin (5-Hydroxytryptamine) 5-HT _{2B}	433519	hum	2	10 µM	1
271800	Serotonin (5-Hydroxytryptamine) 5-HT _{2C}	433544	hum	2	10 µM	3
202020	Transporter, Adenosine	433553	hum	2	10 µM	28
220320	Transporter, Dopamine (DAT)	433478	hum	2	10 µM	33
226400	Transporter, GABA	433531	rat	2	10 µM	46
204410	Transporter, Norepinephrine (NET)	433477	hum	2	10 µM	22
274030	Transporter, Serotonin (5- Hydroxytryptamine) (SERT)	433471	hum	2	10 µM	3
287530	Vasopressin V _{1A}	433516	hum	2	10 µM	7

Cat #	Assay Name	Batch*	Spec. I	Rep.	Conc.	% Inh.
271700	Serotonin (5-Hydroxytryptamine) 5-HT _{2B}	419203	hum	2	10 µM	1
271800	Serotonin (5-Hydroxytryptamine) 5-HT _{2C}	419123	hum	2	10 µM	11
202000	Transporter, Adenosine	419206	gp	2	10 µM	-9
220320	Transporter, Dopamine (DAT)	419027	hum	2	10 µM	20
226400	Transporter, GABA	419138	rat	2	10 µM	15
204410	Transporter, Norepinephrine (NET)	419027	hum	2	10 µM	46
274030	Transporter, Serotonin (5- Hydroxytryptamine) (SERT)	419075	hum	2	10 μM	-4
287530	Vasonressin V ₁₄	/10066	hum	2	10 uM	3

Cat #	Assay Name	Species	Conc. % Inh.
107000	Aldose Reductase	rat	10 μM 72