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Disclaimer 

This material may contain “forward-looking statements” based on current assumptions and forecasts 
made by Bayer management. Various known and unknown risks, uncertainties and other factors could 
lead to material differences between the actual future results, financial situation, development or 
performance of the company and the estimates given here. These factors include those discussed in 
Bayer’s public reports which are available on the Bayer website at http://www.bayer.com. The company 
assumes no liability whatsoever to update these forward-looking statements or to conform them to 
future events or developments.  

http://www.bayer.com/
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1. Context and Objectives 

1.1. Context 

Bayer is a Life Science company with a more than 160-year history and core competencies in the areas 

of health care and agriculture. Contributing to sustainable development has become a core element of 

Bayer’s corporate strategy. For the Crop Science division of Bayer, sustainability focus areas and goals 

were developed to fulfill the target to shape the future of sustainable agriculture. The Crop Science 

division of Bayer sustainability focus areas were developed to address the field-to-field-gate1 impact of 

agriculture. These targets complement Bayer’s sustainability objective for its own operations, such as 

the target to become climate neutral by 2030 (scope 1 & 2 emissions) and reach net zero including its 

entire value chain by 2050 or earlier (Scope 1, 2 & 3). The field-to-field-gate scope focuses on the 

sustainability impacts at the farmer-level (i.e., the product use stage). The Crop Science division of 

Bayer also has the target to enable farmers to reduce field GHG-emissions by 30%, reduce the 

environmental impact of crop protection2 (see below the scope of environmental impact in the context 

of this report) by 30%, improve water use per kg of crop by 25% and strives to improve the livelihoods 

of 100 million smallholder farmers through access to education and tailored solutions. This report 

focuses exclusively on one of Crop Science division of Bayer sustainability focus areas: a 

transformational target on the environmental impact reduction (EIR) of crop protection (CP) by 30% by 

2030. 

In the last few decades, the environmental impact of crop protection has decreased while ensuring 

yield and helping growers produce more with less (McDougall, 2018). However, with new tools and 

innovations, the Crop Science division of Bayer has the opportunity, and responsibility, to continue 

reducing this impact. The Crop Science division of Bayer targets reducing the treated-area-

weighted environmental impact per hectare of Bayer’s global crop protection portfolio by 30% 

by 2030 against a 2014–2018 average baseline. Bayer is currently using a combined model based 

on PestLCI and USEtox®, that can calculate Bayer’s global potential environmental impact of crop 

protection.  

In this report, the term ‘potential environmental impact of crop protection uses’ is defined in accordance 

with the current scope of PestLCI and USEtox®. More specifically, Bayer relies on the midpoint USEtox® 

impact unit that expresses freshwater ecosystem toxicity as “potentially affected fraction (PAF)” of 

freshwater species exposed to a chemical in a freshwater environment. More details on the 

interpretation and calculation of this unit follow in later sections. In this report, the combination of 

emissions according to PestLCI and potentially affected fraction of exposed species according 

to USEtox® is called crop protection environmental impact (EI). Bayer decided to use the term EI 

for internal and external communication to facilitate general understanding among customers (farmers) 

and other internal and external stakeholders who might lack the understanding of strict LCA 

terminology and the differences between environmental impact categories. Therefore, this report will 

also mainly use the term ‘EI’. By using this impact unit, Bayer ultimately aims to reduce the impact 

of crop protection uses on environmental non-target species. Bayer aims to integrate additional 

 

1 Field-to-field-gate refers to impact measured based on product use activities within the farm field, excluding impact from crop 
protection products manufacturing and use outside the farm field. 

2 The designation “environmental impact of crop protection” has been adopted for the purpose of Bayer corporate communication. 
Any external communication will disclose the limitation of this designation to freshwater ecotoxicity or any other scope according 
to further methodological developments in the context of the present study. 
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environmental impact categories, such as soil organisms and pollinators, once the USEtox® consortium 

integrates these categories in the scientific consensus model. 

The Crop Science division of Bayer has partnered with the Technical University of Denmark (DTU) on 

this CP environmental impact assessment project.  

The main objective of this report is to document how Bayer is utilizing the combined model based on 

PestLCI and USEtox®, that can calculate Bayer’s global EI of crop protection. To illustrate how Bayer 

and DTU have calculate the global CP environmental impact, mapped the different data sets, describe 

the required input data, limitations and the boundaries of the calculation, this report is based only on 

2018 CP application data. However, all steps outlined in this report are applicable to their entire data 

set used to track the progress of Bayer against its target. Bayer emphasizes that it only considers the 

EI of crop protection during its use phase on the field in this report while excluding further upstream 

and downstream impacts. Other impact categories relevant for crop protection such as potential human 

health impacts resulting from the ingestion of CPP residues in crops, or greenhouse gas emissions, 

and climate change impacts are not in the scope of this specific report but are considered by other 

sustainability targets Bayer has made.  

Besides the CP EIR target, Bayer has established various separate internal sustainability initiatives 

and taskforces to set up measurement approaches and improvement levers for other targets such as 

reducing greenhouse gases (GHG) for Bayer’s own operation, value chain, and at the field level, water 

conservation and improving smallholder livelihood. In addition, initiatives have also been established 

towards biodiversity and soil health, and product responsibility (e.g. empty container management, 

safe use trainings) towards achieving globally harmonized safety standards for our crop protection 

products focused on operator safety. We are aware of potential unintended trade-offs from such 

ambitious sustainability targets therefore moving forward, we are striving to take a full systems-based 

perspective on our approach with regenerative agriculture and to treat a farm as an ecosystem in itself 

– with its unique soil and environmental conditions. 

In the context of this report, Bayer does not conduct a full-fledged LCA according to ISO 14040/44 but 

intends to use the standard as a framework to document the project in the present report. With a critical 

review of this report by external experts, Bayer aims to verify that it uses the PestLCI and USEtox® 

models in a reasonable approach and that the baselining and performance tracking methodology is 

adequate. 

1.2. Reducing the environmental impact of crop protection 
uses requires a holistic approach at crop system level.    
A review of main drivers and impact reduction levers 

Bayer aims to reduce the global environmental impact from the use of its crop protection products. A 

starting point will be to understand the main drivers of this impact and identify our main impact reduction 

levers. An EI driver refers to the factors that significantly influence impact on the environment from the 

use of CPP. Levers are methodologies or activities that can be deployed towards the reduction of 

environmental impact. Based on our preliminary results, we have identified the following main drivers 

of environmental impact from CPP uses: 

• the amount of all crop protection substances applied per hectare (ha) per growing seasons in 

a given crop and country, 

• the environmental impact of the crop protection applied on the field itself driven by the intrinsic 

substance properties, and  

https://www.bayer.com/en/sustainability/targets
https://www.bayer.com/en/sustainability/targets
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• factors contributing to emissions of crop protection applied on the field into the environment. 

For example, the type of CPP application equipment used. 

Thus, the main impact reduction ‘levers’ can be categorized as follows: 

• Optimize crop protection amounts required per hectare through tools like: 

▪ Precision application: data-driven tools that ensure that the right amount of crop 

protection is applied in the right place and at the right time. 

▪ Seed treatment: seed-applied crop protection tools can dramatically reduce the 

volume of chemicals used and potential exposure to wildlife and the environment. 

▪ Seeds and traits: crops bred and designed to better fight the pests and diseases that 

attack them, ensuring that less chemical crop protection is needed. 

▪ Biologics: complement chemical crop protection with biologics to enhance integrated 

management practices and reduce pest resistance. 

▪ Integrated crop management practices such as crop rotations, cover crops, integrated 

pest management strategies which help to control weeds, pests, and diseases and 

therefore reduce the need for crop protection products. 

• Reduce the environmental impact of the crop protection product itself: 

▪ Better environmental profile of the active ingredient (lower effect on non-target plants 

and species) 

• Reduce the emissions into the environment: 

▪ Mitigation measures such as drift reduction and buffer strips 

▪ Digitally enabled precision application 

Bayer analysis of the major levers starts with the drivers of the environmental impact of crop protection 

uses in a given crop and country in terms of specific crop protection products relative against the 

baseline (see section 4.1). Bayer then assesses its existing portfolio, the innovation pipeline, and 

alternatives in the market to understand how CP EI hotspots can be mitigated. In this analysis, it 

became apparent that levers can be categorized further into overarching levers, which are relevant for 

all indications (i.e., herbicides, fungicides, and insecticides) and levers which are mainly relevant for a 

specific indication as outlined in Figure 1 below. 

 

Figure 1: Bayer's crop protection environmental impact reduction framework 



 

 

11 

 

 

1.3. International frameworks considered to define Bayer goal 
of 30% EIR of CP by 2030  

We are at a tipping point where both consumers and our planet demand a fundamental change in the 

agricultural system. With the world population expected to meet the 10 billion mark by 2050, the 

demand for food and biomass production is steadily increasing (Ray et al., 2013). However, crop 

cultivation is becoming increasingly challenging for farmers due to changing environmental conditions, 

raising regulatory requirements, and other challenges. Furthermore, the amount of available 

agricultural land is declining due to increasing urbanization, higher salinity levels and soil erosion. For 

Bayer, all of these factors culminate into a so-called 'agricultural paradox': on the one hand, farmers 

are challenged with the need to produce more food and biomass to meet global demand while, on the 

other hand, this need must be met while preserving resources and the environment. Agriculture must 

strike a balance between the need for tools like crop protection, which enable farmers to keep meeting 

the world’s growing agricultural demands while using less land and resources, and potential trade-offs 

posed by increasing the use of such tools. With new products and technologies, we aim to ensure that 

our solutions serve farmers’ needs and wellbeing, while also protecting the environment and 

contributing to food security. Overall, the 'agricultural paradox' is based on the following premises (see 

also (UNEP, United Nations Environmental Programme, 2021)): 

• Development of dietary choices in agricultural system: The world population is growing, 

and dietary habits are changing. The world population is expected to grow from about 7.8 billion 

in 2020 to 9.8 billion by 2050. Global income is increasing, and the global middle class is 

expanding. In spite of the emerging trend towards plant-based meat and other alternative 

sources of protein, the per capita consumption of meat, refined fats, refined sugars, alcohols, 

and oils is expected to rise with the increasing wealth along with demand for consumer 

products that also depend on agriculture. CPPs are an essential tool in securing higher yields 

to help limit the amount of land being converted to arable land. 

• Development of output demand in agricultural system: Demand for food, feed, fibers, fuels, 

and feedstocks is growing. By 2050 demand for food is projected to grow by 60 percent, meat 

production by nearly 70 percent, aquaculture production by 90 percent, and production of dairy 

products by 55 percent. Furthermore, cropland is increasingly used for purposes such as 

production of livestock feed, fibers, biofuels, and feedstocks for the chemical industry. 

• Development of agricultural system's vulnerability to climate change: Crop cultivation is 

becoming increasingly challenging for farmers due to climate change affecting growing 

conditions. For example, climate change will intensify global water scarcity and change the 

distributions of pests, which could lead to increased and more widespread use of CPPs. 

• Development of agricultural system's vulnerability to land degradation: The amount of 

available agricultural land is declining due to increasing urbanization, higher salinity levels, and 

soil erosion. 

To overcome the 'agricultural paradox', Bayer decided to set an ambitious goal that orients towards the 

UN Sustainable Development Goals (SDGs), specifically SDG indicator 2.4.1. In addition, this goal also 

relates to the planetary boundary concept (especially, the planetary boundary of “novel entities”; 

(Rockström, et al., 2009)). As a result, Bayer made the public target of reducing the environmental 

impact of Bayer's crop protection portfolio by 30% by 2030. Overall, Bayer defined this 30% in light of 

established conceptual frameworks and based on internal expert judgement by critically reflecting our 

technological capability to live up to this target. After defining this ambitious goal, Bayer decided to use 

PestLCI and USEtox® as consensus models to assess and verify its progress towards the 30% goal. 

https://www.fao.org/publications/card/en/c/CA5157EN/
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1.4. Bayer’s goal in light of the UN Sustainable Development 
Goals and Planetary Boundaries  

Bayer’s CP EIR goal aims at contributing to attain the United Nations’ Sustainable Development 

Goals. The United Nations agreed on 17 SDGs to build a better world for people and our planet by 

2030. The 2030 Sustainable Development Agenda emphasizes that development should be 

compatible with all three dimensions of sustainability: economic, social, and environmental. 

Implementing the 2030 agenda presents an opportunity for collaborative action by many diverse actors 

at all levels to minimize the adverse environmental impact of CPP uses. Therefore, Bayer's CP EIR 

target is at the interface with several goals of the 2030 Agenda to contribute to a sustainable 

management of CPPs (see also UNEP (2021)). 

• SDG 1 - No poverty: Increased need for efficient, profitable and sustainable use of CPPs. 

• SDG 2 - Zero hunger: Increased need for effective pest management; Need to increase quality 

and sustainable use of CPPs in certain parts of the world; Wider adoption of sustainable 

agricultural production practices. 

• SDG 3 - Good health and well-being: Ensure access to sufficient, safe and nutritious food. 

• SDG 6 - Clean sanitation and water: Minimization of water pollution from CPPs. 

• SDG 9 – Industry, innovation, and infrastructure: Development of innovative and sustainable 

pest management approaches and technologies. 

• SDG 12 - Responsible consumption and production: Wider adoption of sustainable pest 

management practices; Minimization of impacts of CPPs on natural resources; Further 

strengthening of sound management of the entire life cycle of CPPs; Further support for and 

implementation of sustainable pest management technologies by the CPP industry; 

Improvement of information provision about the risks of CPPs and ways to minimize these 

risks. 

• SDG 13 - Climate action: Wider adoption of integrated practices in agriculture that enhance 

farmers’ sustainable productivity as well as climate resilience. 

• SDG 15 - Life on land: Minimization of environmental impacts of CPP uses; Ensuring 

sustainable control of invasive pest species; Mainstreaming ecosystem and biodiversity values 

in national and regional pest management policies. 

• SDG 17 - Partnerships for the goals: Improvement on sharing of CPP management knowledge 

among relevant stakeholders; Enhancing partnering among UN organizations active in the 

sound management of chemicals. 

As indicated earlier, Bayer's CP EIR goal also takes into account the planetary boundary concept. 

According to Steffen et al., (2015), "the planetary boundaries framework defines a safe operating space 

for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth 

system”. Bayer aims at staying within planetary boundaries, especially, within the planetary boundary 

of novel entities' (Rockström J. W., 2009; Steffen, et al., 2015). The planetary boundary of chemical 

pollution has been expanded and renamed as novel entities which are defined as “new substances, 

new forms of existing substances, and modified lifeforms that have the potential for unwanted geo-

physical and/or biological effects” (Steffen, et al., 2015). The introduction of novel entities to the 

environment by human is of concern at the global level when these entities exhibit persistence, mobility 

across scales with consequent widespread distribution, accumulation in organisms and the 

environment, and potential impacts on vital Earth system processes or subsystems (Steffen, et al., 

2015; Persson, et al., 2022). Novel entities can adversely affect human and ecosystem health, which 
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has most clearly been observed at local and regional scales but is now evident at the global scale. 

Novel entities qualify as a planetary boundary because they can influence Earth system functioning: 

(1) through a global, ubiquitous impact on the physiological development and demography of humans 

and other organisms with ultimate impacts on ecosystem functioning and structure and (2) by acting 

as a slow variable that affects other planetary boundaries. For example, novel entities may influence 

the biodiversity boundary by reducing the abundance of species and potentially increasing organisms’ 

vulnerability to other stresses such as climate change (Jenssen, 2006; Noyes, et al., 2009). Novel 

entities can also interact with the climate-change boundary through the fact that most industrial 

chemicals are currently produced from petroleum, releasing CO2 when they are degraded or 

incinerated as waste.  

The main aim of this report is to assess the potential environmental impact of crop protection when 

applied on a field, rather than to directly quantify impacts on biodiversity. Bayer acknowledges that a 

quantification towards the planetary boundary of novel entities (including chemical pollution) is currently 

not possible mainly due to methodological constraints (Rockström J. W., 2009; Jenssen, 2006; Noyes, 

et al., 2009; Steffen, et al., 2015). However, this Bayer target further helps to stay within this planetary 

boundary by assessing as a first step the environmental impacts of chemical stressors for the 

environment. 

1.5. Objectives of the report 

In order to achieve the sustainability target of reducing the CP EI by 30%, Bayer has set the foundations 

of its EI measurement and performance tracking method using input dataset sourced via the Agrowin 

database and models based on PestLCI and USEtox®. This report objective is to document a method 

to quantify Bayer’s global CP EI, based on application scenarios from 2018. The data from 2018 serves 

as a reference. For tracking progress against its target,. 

Bayer has calculated a five-year average baseline CP EI (from 2014 to 2018), in order to track 

performance against the 30 % reduction target of the EI by 2030. A baseline on a 5-year-average (2014 

– 2018) is established to account for the specificities of agriculture such as inter-annual variability, 

seasonality, or dependence on climatic conditions.  

1.6. Critical review 

This report is structured in line with the Life Cycle Assessment (LCA) methodology (according to the 

ISO 14040 and ISO 14044) as a template for documentation of methodological choices, results, and 

interpretations as well as limitations. However, Bayer acknowledges that this report only focuses on 

the field-to-field gate life cycle stage and on CPP emissions’ impacts due to CPP uses. Consequently, 

Bayer does not claim that this report complies with ISO 14040/44. As Bayer intends to communicate 

to the public its sustainability targets and achievements, a critical review has been performed through 

a series of repeated consultation with external experts and external auditors in order to demonstrate 

that the quantification methodology, baselining and performance tracking approach is adequate. This 

report provides an overview of the external review-panel composition (see Table 1). The report reflects 

the panel’s feedback. 
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Table 1: Critical external review-panel composition 

Members Country Area of expertise 

Thomas 
Nemecek 

Switzerland 
Deputy Lead Life Cycle Assessment Research Group Agroscope. 
Worldwide known researcher on Life Cycle Assessment, specifically 
in its applications on agriculture. 

Jeffrey 
Jenkins 

U.S.A. 

Professor at Oregon State University. Expertise in environmental 
analytical chemistry, ecological risk assessment, and 
agronomically based ecohydrologic modeling to characterize 
watershed scale pesticide use and the potential impact on water 
quality. 

Valery 
Forbes 

U.S.A. 
Dean and Professor at Florida Atlantic University. Broad expertise 
in mechanistic effect modeling and ecological risk assessment of 
pesticides and other chemicals. 

Assumpció 
Anton 

Spain 
Researcher at Food and Agricultural Research Institute, IRTA. 
Expertise in the development and application of LCA methodology 
in agriculture. 

Tiago Rocha Brazil 
Consultant|Partner at ACV Brasil and PhD in Environmental 
Technology. Extensive experience in life cycle assessment, 
specifically in the area of carbon footprint. 

Lorie 
Hamelin 

France 
Researcher at the Federal University of Toulouse (France), studying 
the environmental impacts related to large-scale transitions towards 
low fossil carbon use 

Anne-Marie 
Boulay 

Canada 

Associate Professor in Chemical Engineering at Polytechnique 
Montreal and co-Director of CIRAIG. Expertise on water footprint 
methodologies and impact assessment associated with plastic litter 
in LCA. 

Jessica 
Hanafi 

Indonesia 

PhD in Life Cycle Engineering. Established the Indonesian 
Association of Life Cycle Assessment and Sustainability 
Professional. ISO Technical Committee on Life Cycle Assessment 
(TC 207/SC5), environmental labelling (SC3), Greenhouse Gas 
(SC7) and project leader for ISO/TS 14074 LCA normalization and 
weighting. Applied LCA based on ISO 14040/44 to various industrial 
sectors, including agriculture. 

Laura 
Golsteijn 

(Chair of the 
panel) 

Netherlands 

Senior LCA Consultant at PRé. PhD in Toxic Impact Modelling. 
Supporting clients to understand, develop and embed 
environmental metrics to improve the sustainability of supply chains 
and products. 
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1.7. Organization of the study 

The study is based on data from 2018 which serves as a reference to describe the methodology. The 

CP EIR target is based on a data set covering multiple years. The methodology outlined in this report 

applies to all years in scope of the CP EIR target. 

 the overall impact assessment calculation process can be summarized as follows (see also Table 2 

below):  

- For the compilation of inventory data, Bayer provided the underlying crop protection application 

data sourced from Agrowin to DTU.  

- For the subsequent impact assessment, DTU used the crop protection application data to 

calculate primary distribution fractions of CPP emissions in PestLCI and calculated the 

characterization factors for the active ingredients in USEtox®.  

- Finally, DTU combined the primary distribution fractions from PestLCI with the characterization 

factors from USEtox® to calculate the CP EI scores. The CP EI calculation methodology 

established by the DTU serves as the basis for subsequent EI scores calculation (more details 

on the compilation of inventory data, impact assessment, and interpretation follow in later 

sections of this report). 

Table 2: Contact information for all parties 

Organization Contact Role Tasks 

Bayer Crop 
Science 

Daniel Glas, 
daniel.glas@bayer.com 

Project lead 
Bayer 

• Develop roadmap to deliver against 
Bayer’s target.  

• Assess how to integrate learnings 
into CPP development (R&D 
governance).  

• Create IT tools to enable Bayer 
organization to work with EI data. 

Technical 
University of 
Denmark 

Olivier J. Jolliet, 
ojoll@dtu.dk 

Project lead 
DTU 

• Apply PestLCI and USEtox® model 
to generate global CP EI baseline. 

• Advance models further (both on the 
emissions and impact side). 

 

1.8. Use of the study and target audience 

The results of this study are intended to transparently and publicly describe the CP EI calculation 

method, baseline and performance tracking. The main target audience are investors, press, academic 

partners, and the general public. Potentially, this report might also be used in the future for auditing 

processes, and as background-information material for peer-reviewed publications in scientific 

journals. 

This report is not Bayer's main vehicle for informing external stakeholders. Bayer is continuously 

developing other internal and external training and communication materials and channels that will be 

specifically tailored to the information-needs of the respective stakeholder group. 
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2. Scope of the study 

2.1. System studied 

The system of this study includes Bayer’s entire CP portfolio applied on its customers’ fields globally 

which can be characterized in the models PestLCI and USEtox®, as reported in the Agrowin system. 

For example, in the analyzed inventory data, from 2018 , this covers 270 active ingredients which are 

used in 2,056 CPPs in 82 countries and 54 crops (at crop group level, see Table 3 below). 

Table 3: Crops categories and sub-categories covered in the data set (at crop main group and crop group level) 

Crop Main Group Crop Group 

BEETS BEETS 

CEREALS BARLEY 

CEREALS-OTHER 

OATS 

RYE 

WHEAT 

CORN/MAIZE CORN-TRADITIONAL 

CORN-TRANSGENIC 

COTTON COTTON TRADITIONAL 

COTTON TRANSGENIC 

ENVIRONMENTAL MARKETS  
(only covering farm level) 

TREES 

TURF+GROUND-MANAGEMENT 

FRUITS & NUTS BANANAS 

BERRIES & SMALL-FRUITS 

CITRUS 

FRUITS: OTHER 

FRUITS: TROPICAL&SUBTROPICAL 

POME-FRUITS 

STONE-FRUITS 

TREE NUTS 

GRAPES/VINES GRAPES/VINES 

OILSEED-RAPE/CANOLA OILSEED RAPE TRADIT. 

OTHER CROPS FALLOW-LAND/SET-ASID 

FIBER CROPS: OTHER 

FORAGE CROPS 
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GROUNDNUTS/PEANUTS 

OILSEEDS: OTHER 

OTHER-CROPS UNSPEC. 

SORGHUM & MILLET 

SPICES 

SUNFLOWER 

PLANTATION CACAO 

COFFEE 

OIL PLANTATIONS 

RUBBER 

TEA 

TOBACCO 

POTATOES POTATOES 

RICE RICE 

SOYBEANS SOYBEANS TRADITIONAL 

SOYBEANS TRANSGENIC 

SUGAR CANE SUGAR CANE 

VEGETABLES & FLOWERS FLOWERS+ORNAMENTALS 

VEG: BRASSICAS 

VEG: BULB 

VEG: FRUIT-CUCURBITS 

VEG: FRUIT-OTHERS 

VEG: FRUIT-SOLANACEAE 

VEG: LEAFY&FRESH-HERBS 

VEG: LEGUMES 

VEG: ROOT&TUBER 

VEG: STALK&STEM 

VEGETABLES-OTHER 

2.2. Key metric of the system 

The key metric of the studied system in this report is the potential environmental impact of all Bayer 

CPPs such as fungicides, insecticides, herbicides, and seed treatments applied per ha (EI/ha). Using 

a land based key metric helps in minimizing the environmental impacts per area, and it is measured 

per hectare and year. Therefore, Bayer defines the key metric as- 

• treated-area-weighted EI/ha  
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Bayer has decided to use a land based key metric i.e. per ha as opposed to considering the yield (per 

kg crop produced) to reflect societal, political, and shareholder expectations, to reduce the 

environmental impact of the Bayer crop protection portfolio without compromising yield.  

Bayer aims to reduce the environmental impact of crop protection products without compromising 

their benefits to the farmer which is helping to secure and increase yield. 

2.3. Scenario elements 

A scenario refers to a unique combination of the following variables: country, crop, crop growth stage, 

application method, product, indication, distributor, active ingredient, and dose. This section describes 

those elements along with additional information that is leveraged to understand the environmental 

impact. The information can be grouped into four categories, namely: Agrowin data input, PestLCI 

output values, USEtox® compartment distribution and output values, and EI score. Further details on 

these are described below:  

 

1. Agrowin3 data input: 

General scenario information: 

• Scenario ID: running number 

• Year: 2018 

• Country: Spain 

• Region: Europe 

• Crop: e.g., Apple 

• Crop group: e.g., Pome fruits 

• Crop main group: e.g., Fruits & nuts 

• Crop growth stage: according to BBCH classification4 

 

Market/product information: 

• Name of Distributor Group and specific (sub) distributor: e.g., Bayer 

• Indication: e.g., Fungicide 

• Product Name: e.g., Flint 500WG  

• Active ready mix: names of active ingredients if multiple active ingredients are contained in a 

product 

 

3 Agrowin is a database-software by Lexagri which generates a complete view of the entire crop protection market by harmonizing 
multiple data sources (for further details c.f. section 3.2). 

4 BBCH - Biologische Bundesanstalt, Bundessortenamt and Chemical Industry. The BBCH scale provides a framework to 
develop scales for individual crops wherein similar growth stages of each plant species are allocated within the same BBCH 
code. 
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• Active ingredient name: e.g., Trifloxystrobin. Note: The term ‘active ingredient’ (or active 

substance) refers to the chemically active part of a manufactured CPP which is majorly 

responsible for the targeted action; i.e., defeating pest and suppressing weed. 

• CAS registration number of active ingredient: e.g., 141517-21-7 

 

Application data: 

• Treated area (ha per year): ‘Treated area’ refers to the hectares or size of farmland on which 

CP was applied during the cultivation of a crop. 

• Applied mass (kg of active ingredient applied per year) 

• Applied dose (kg of active ingredient applied per ha) 

• Application Method (translated into application methods included in PestLCI): e.g., Boom-

sprayer-conventional-nozzle 

 

2. PestLCI output values (PestLCI input parameters not listed here. See section 

3.3.2): 

 

Primary distribution fractions [kg emitted/kg applied] for environmental compartments: 

• Air 

• Field Soil 

• Field Crop 

• Off-field surface 

 

3. USEtox® compartment distribution and output value per active ingredient 

(USEtox® input parameters not listed here. See section 3.3.5): 

 

Compartment distribution: Area fraction for off-field surfaces per country [m² compartment/m² 

total]: 

• Off-field agricultural soil 

• Off-field natural soil (Note: Natural soil means non-agricultural soil) 

• Off-field water 

 

Freshwater characterization factors (CF) [PAF m³ d/kg emitted] for the environmental 

compartments: 

• Air emission 

• Agricultural soil emission 

• Natural soil emission 

• Freshwater emission 
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4. EI output score combining PestLCI primary distribution fractions, USEtox® CFs 

and Agrowin information: 

 

Final freshwater impact scores per environmental compartments and in total (CP EI score): 

• PAF m³ d/kg applied (Bayer label = EI / quantity) 

• PAF m³ d/ha (Bayer label = EI / ha) 

• PAF m³ d/country/year (Bayer label = EI)* 

*The final EI used per scenario is the sum of the EI from the four compartments i.e (Air, Agricultural 

soil, Natural Soil and Freshwater). 

2.4. System boundaries 

The system boundaries comprise the off-field surface area. The assessment builds upon currently 

available consensus models, combining PestLCI Consensus as the emission assessment model and 

USEtox® as the impact assessment model. Consensus models are defined as models that were 

developed not only on state-of-the-art science, but additionally on broad agreement among scientific 

and user communities regarding aspects that cannot be entirely addressed through science alone, but 

that require choices, such as the delineation of the technological and environmental system under 

study (see e.g. Hauschild et al., (2008) and Rosenbaum et al., (2015)). PestLCI is a model that was 

developed to simulate initial CPP distribution directly after field application until different CPP fractions 

reach the environment, i.e. PestLCI is a life cycle emission inventory model. USEtox® is a model that 

simulates the environmental distribution after emission, subsequent exposure to humans, and 

ecosystem with its toxicity-related effects. Both models reflect state-of-the-science in environmental 

impact assessment of CPPs. 

Figure 2 below illustrates how emissions of pesticide active ingredients applied to agricultural field 

crops as crop protection products reach the environment. The environment is further divided into 

different emission compartments namely, air, field soil surface, field crop surfaces, and off-field 

surfaces that include agricultural and natural soil as well as water surfaces. The active ingredient mass 

reaching the environment as emissions within minutes after application, following primary partitioning 

are defined by the PestLCI consensus model as primary emission distribution fractions. These are then 

linked to USEtox® for impact assessment. See Section 3.3 for more information. 

 



 

 

21 

 

 

 

Figure 2: Primary emissions based on PestLCI and their emission vectors to off-field surfaces  

3. Method 

For the CP EI reduction target baseline and continuous progress tracking, a process and database has 

been established to accommodate the overall impact assessment calculation. The process can be 

described as follows: (See Figure 3 below) 

1. Bayer receives the global crop protection application data from Lexagri Agrowin currently on an 

annual basis. 

2. Bayer receives Primary Distribution Fractions based on PestLCI, characterization factors and off-

field fractions based on USEtox® 2.14 from DTU whenever the model parameters or the input data 

are updated by the scientific consortium. Some CPPs that are used in the current approach were 

not originally available in USEtox®. In these cases, DTU supplemented the missing substances or 

substance data based on available public databases. Bayer applies the data as received by the 

DTU. 

3. The crop protection inventory data from Agrowin are then combined with PestLCI and USEtox® 

results to conduct the global crop protection impact assessment based on method outlined by the 

DTU using the first analyzed 2018 inventory data. 
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Figure 3: An overview of the methodology used for the calculation of Impact Score 

 

In the next chapters, we provide more details on the compilation of inventory data, emission modelling, 

impact assessment, and interpretation. 

3.1. Compilation of inventory data  

The data inventory includes relevant input data from each application scenario (e.g. amount applied 

per ha as reference flow) as well as data from widely used state-of-the-art consensus models for 

environmental evaluation (using LCA) of agricultural CPPs as well as for quantifying freshwater 

ecotoxicity from chemical emissions. 

Substance characteristics like environmental degradation half-lives, solubility, and ecotoxicological 

data are necessary for product registration and can be pulled from public databases such as the 

Pesticides Properties DataBase (PPDB), the Bio-Pesticides Database and FooDB. Climate, field and 

soil data inputs are based on pre-defined regional data sets of the PestLCI and USEtox® models. The 

climate, field and soil data are set for default (sub)continental and global systems in the USEtox® model 

(incl. land area with the fraction of freshwater, natural and agricultural soil, sea area, the temperature, 

wind speed, rain rate, freshwater depth, fraction of freshwater discharge from the continental to the 

global system, fractions of the rain rate that run off and respectively infiltrate the soil, soil erosion and 

irrigation). USEtox® also includes urban landscape data containing the urban area and the fractions of 

non-paved and paved area, and in addition for 8 continental landscapes and 16 sub-continental 

landscapes. Amongst others, the windspeed has been calculated based on GEOSChem wind speeds 

from IMPACT World and rain rates are based on GIS computation from IMPACT World. Further 

information of the model climate, soil and field data can be found in Rosenbaum et al. (2008) and 

Kounina et al. (2014).  A consistent set made up respectively of emission fraction and mass balance 

equations are at the core of the two models and were applied by DTU as further described in Gentil-

Sergent et al. (2020) (for PestLCI) and Rosenbaum et al. (2008) (for USEtox®).  

http://sitem.herts.ac.uk/aeru/ppdb/
http://sitem.herts.ac.uk/aeru/bpdb/
https://foodb.ca/
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3.2. Compilation of inventory data on global crop protection 
product consumption based the ‘Agrowin’ database 

Bayer complements the aforementioned inventory data parameters with the Agrowin database and 

software, which delivers application data for crop protection products. Agrowin is a database-software 

by Lexagri (2021) which generates a complete view of the entire crop protection market by harmonizing 

multiple data sources. This software is used within Bayer to access a detailed historic consumption 

market data overview (starting 1996) and reflects how farmers use products/seeds in the field. Overall, 

the database covers 90% of global crop protection products market value. Focusing on Bayer, the 

database covered about 85-95% of the Bayer market value in the past, depending on the year. The 

data in Agrowin represents so-called consumption data, in other words: what have farmers planted and 

applied on their fields as opposed to sales data (what has been sold by crop protection manufacturers 

into the market).  

The gap between consumption data and reported data from crop protection manufacturers can be 

attributed to several factors such as intercompany sales, channel inventories, royalties and crop year 

gap. Figure 4 below illustrates the different factors that cause an unquantifiable gap between reported 

data and consumption data. Bayer relies on Agrowin for consumption data. 

 

Figure 4: Gap between reported data and consumption data in global data sets on crop protection use5 

The Agrowin database is built on two sets of data: farmer-panel data and non-farmer-panel data. 

Farmer-panel data are first-hand information from farmers through interviews after crop seasons. 

Collecting such information is based on interviewing global panels of farmers on how farmers use 

products in the field. These farmer-panel data are externally sourced from agricultural market research 

companies (e.g., Kynetec, SPARK, Kleffman Group etc.) which conduct global interview-based farmer-

panel studies for monitoring market trends. At the end of a crop cultivation season, farmers are 

interviewed and asked about which crop protection products and practices they applied. For example, 

farmers are asked: 

• Which crop protection products they used? 

 

5 The figure is only illustrative and does not specifically represent the result of an analysis or data collection. It is shown to bring 
clarity to the reader on the differences in the consumption data and companies reported sales data and why these differences 
could arise. 
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• How many hectares they treated (treated area)?  

• How many kilograms of a product they used (volume applied)? 

• At which crop growth stage they applied a product? 

• Which application methods they applied? 

• What was the reason for application? (Pest, Disease, etc.) 

Farmer-panel data are freely available to purchase, and the data are typically licensed to the purchaser 

for a specific use case. In each crop cultivation season, the purchasers of farmer-panel data decide if 

and to which extent interview farmer-panel data need to be collected depending on the commercial 

relevance of a market. This means that the comprehensiveness and frequency of data collection is 

higher in relatively big and commercially relevant markets such as the US-corn market (typically farmer-

panel data are collected once per year). In other markets with a lower commercial relevance, the 

frequency of farmer-panel data collection can be lower and irregular (e.g. only every 2-3 years in the 

Belgium-potato market). Once market research companies such as Kynetec have collected the farmer 

interview panel data, these data are automatically moved to the company Lexagri which compiles and 

harmonizes these farmer-panel data about the use of crop protection products and seeds in their 

Agrowin database. That means Lexagri does not conduct interviews with farmer-panels itself, but only 

compiles and harmonizes the data and moves the data from the original sources (e.g., Kynetec panel 

data) to Agrowin. 

Farmer-panels are not conducted in every country for many reasons such as low commercial relevance 

in the market. Bayer does not buy all available farmer-panel data for cost reasons. Countries where 

farmer-panel data are used in Agrowin are shown in Figure 5. Non farmer-panel data are based on 

different sources such as industry sales statistics published by governments, sales statistics made 

available from market research companies, or in some countries, Bayer´s own assumptions. Non 

farmer-panel data are typically made available as sales data which are then translated to consumption 

data. Overall, the hierarchy of data is based on 1) using farmer-panel data, 2) using industry statistics, 

and 3) using expert market knowledge of dedicated market analysis and business intelligence 

colleagues (internal estimates). .  

 

Figure 5: Agrowin country-specific data sources overview (2016 status) 
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3.2.1 Data quality  

Farmer-panel data are Bayer preferred option to use in the Agrowin database, however, farmer-panels 

use different methodologies (e.g. for sampling) and approaches (e.g. mathematical approaches to 

project sample data to overall market). Therefore, the quality of the farmer-panel data still needs to be 

continuously verified for each data set as Bayer strives for quality accuracy of 95%.  

The quality accuracy of 95% relates to the stratification of the interview sampling. The number of 

interviews and the distribution throughout the country is very important for the quality of the study. 

When defining the stratification method, different criteria such as soil, climate, farmer age, farmer 

education, etc. need to be considered. In general, stratified sampling is a method of sampling from a 

population which can be partitioned into subpopulations. In statistical surveys when subpopulations 

within an overall population vary, it could be advantageous to sample each subpopulation (stratum) 

independently. Stratification is the process of dividing members of the population into homogeneous 

subgroups before sampling. The strata should define a partition of the population. That means, it should 

be collectively exhaustive and mutually exclusive. Every element in the population must be assigned 

to only one stratum. The objective is to improve the accuracy of the sample by reducing sampling error. 

Stratification gives a smaller error in estimation and greater accuracy than the simple random sampling 

method.  

Farmer-panel data quality is assured by selecting representative farmers as interview participants. A 

representative selection and distribution of farmers in a farmer-panel is mainly based on the following 

criteria: Age of the farmer, educational level of the farmer, and spatial distribution of soil types cultivated 

within a country. For example: a panel on the German-Wheat market is based on approximately 3000 

interviews. Data quality also depends on the education, training, and experience of the interviewers. 

For example, interviewers need to adequately utilize showcards in interviews to ensure that farmers 

with a low education level understand interview questions. See section 4.4 for information on data 

limitations and how they are addressed. 

 

Bayer has defined quality standards for farmer-panel providers with more than 30 criteria to ensure the 

farmer-panel data quality (see Appendix 7.3). For example, criteria like age and educational level of 

the farmer, climate, and spatial distribution of soil type within a country are used to ensure a 

representative selection and distribution of farmers in the sample of interview participants. Bayer 

acknowledges that data quality also depends on the education, training, and experience of the 

interviewers.  

Once data are collected, incorporated, and harmonized in Agrowin through excel files which include 

multiple cross-checks, data are confirmed by country planners with the help of a check file to review. 

This is an important step as the system reflects the countries’ official view on their respective market. 

Farmer panel data may be completed by non-farmer-panel data. Its quality depends strongly on internal 

education level and expertise of the country planner and business intelligence manager as they decide 

on method for data collection. Data then often needs to be transferred from sales information to 

consumption data. Bayer is also aware that inputs from excel files have potential for human errors. 

However, internal data checks and corrections are mainly related to prices or product allocation to 

reflect the correct distributor to a given product. The product usage itself (including dose rates and 

other usage attributes) is usually not changed from the original source. 
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3.3. Impact assessment based on active ingredients 
emissions and freshwater ecotoxicity impact calculation 

3.3.1 Emission modelling with PestLCI 

To estimate emission fractions for CPPs applied to agricultural fields for each application scenario, 

PestLCI Consensus version 1.0 was used as implemented in the web-based tool6. This tool builds on 

a mass-balance model developed initially by Birkved and Hauschild (2006) and further advanced by 

Dijkman et al. (2012) and by Gentil (2020) and Gentil et al. (2021). 

PestLCI Consensus provides ‘primary emission distribution fractions’ (i.e., active ingredient mass 

reaching the environment as emissions within minutes after application following primary partitioning) 

for the compartments air, field crop surface, field soil surface, and off-field surfaces. Primary emission 

fractions are mainly influenced by growth stage and morphology of treated field crops defining the 

fraction of applied mass that is intercepted by crop surfaces, and by the drift deposition function for a 

given crop protection product application method defining the fraction reaching off-field surfaces. 

Primary emission fractions have been applied for each application scenario and can then be transferred 

into the USEtox® model. The primary distribution processes considered in PestLCI Consensus are 

presented in Figure 6 below, and are further detailed in Dijkman et al. (2012), Gentil (2020),Gentil et 

al. (2021) and (Nemecek, et al., 2022). 

PestLCI Consensus furthermore provides ‘secondary emission fractions’ (i.e. CPP mass reaching the 

environment within a given timeframe, typically 1 day) for the compartments air, field crop surface, field 

crop leaf uptake, field soil, groundwater below field, and off-field surfaces, also considering degradation 

in field crop and soil. Secondary emission fractions are likewise a function of crop characteristics and 

application method, but depend on additional aspects, such as climate and field characteristics, 

application month, and active ingredient physicochemical properties. Secondary distribution was 

excluded from the environmental impact assessment because the level of detail required to model 

secondary distribution processes are not readily available in the present screening-level assessment, 

which would introduce large additional uncertainties related to collecting and defining e.g., field-level 

characteristics at the global scale. 

 

6 Available at https://pestlciweb.man.dtu.dk 

 

https://pestlciweb.man.dtu.dk/
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Figure 6: PestLCI Consensus primary emission distribution processes and compartments for the example of 
aerial application of CPPs, which first enter the “air” compartment and from there further distribute to other 
compartments. Figure taken from (Nemecek, et al., 2022). 

When using the PestLCI model, the following main assumptions were established: Only primary 

emission distribution was calculated for the present study as all long-term processes (such as leaching, 

degradation) are covered in USEtox® and because currently, the uncertainty related to some of the 

processes included in the secondary distributions are higher than the rather small additional accuracy 

gained for screening-level assessments. Initial distributions cover initial processes within a few minutes 

after crop protection product application. Four relevant compartments for initial primary distribution are 

described below:  

• Air: Initial primary distribution to air consists of the fraction remaining airborne (𝑓air) during crop 

protection product application. This fraction is a fixed value, depending on the primary drift of 

the application method and the drift reduction.  

• Off-field surfaces: Initial fraction to off-field surfaces (𝑓dep) are emissions to off-field agricultural 

soil, natural soil or surface water that arise as a consequence of wind drift deposition during 

crop protection product application. 

• Field crop leaf surfaces: Initial fraction to field crop leaf surface (𝑓field→crop) is the fraction of crop 

protection product deposited on crop leaves when applying the crop protection product.   

• Field soil surface: initial primary distribution on soil (𝑓field→soil) is the fraction of crop protection 

product deposited on soil when applying the crop protection product. The fraction deposited 

on soil is calculated as the remainder of all CPP involved in the initial (primary) distribution: i.e. 

it is the remaining fraction of crop protection product that is (a) not volatilized during application, 

(b) not deposited off-field due to wind drift, and (c) not intercepted by the leaves in the selected 

growth stage of the crop.  

Primary emission fractions are derived based on distributing applied CPP mass according to mass 

balance principles. As a starting point, within few minutes after CPP application, a mass fraction of 

CPP is deposited to off-field surfaces (𝑓dep). It is derived from drift deposition functions specific to each 

application method. Drift deposition functions were collected for various crop-application method 
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combinations and implemented into PestLCI (see Gentil-Sergent et al. (2021)). Another mass fraction 

goes to the air by wind drift (𝑓air) as a default fraction per application method and crop, and the 

remaining mass fraction reaches the field surface via direct deposition (𝑓field), which is typically the 

intended target area for applied CPPs. With that, the governing emission equations reads according to 

Gentil-Sergent et al. (2021): 

1 = 𝑓air + 𝑓dep + 𝑓field 

Equation 1 

The fraction reaching the field surface area (𝑓field) is partially deposited on crop leaves (𝑓field→crop) 

according to crop intercepted mass fraction 𝑓intercept,crop and calculated as: 

𝑓field→crop = 𝑓field × 𝑓intercept,crop 

Equation 2 

Then, the fraction left on the field after crop interception (𝑓field→soil) will reach field soil surfaces and is 

calculated as: 

𝑓field→soil = 𝑓field × (1 – 𝑓intercept,crop) 

Equation 3 

3.3.2 PestLCI input data 

To run the PestLCI Consensus model, some input data are mandatory, and some are optional. For the 

primary emissions, the mandatory data are crop type, applied CPP fraction intercepted by field crop 

surfaces, and application method. The optional input data are drift reduction methods during 

application, presence (or absence) of a buffer zone, width of the buffer zone and field width 

perpendicular to the wind direction. The following model inputs have been used in this study relevant 

for primary emissions:  

• Crop type derived from associating reported crop to PestLCI crop type (indirect influence; in 

particular, it influences the available options for the next two parameters)  

• Fraction of applied CPP intercepted by field crop surface area, derived from reported BBCH 

range 

• Application methods  

Due to the lack of data, the following model inputs relevant for primary emissions have not been used 

in this study: 

• Buffer zone (in the present screening-level assessment, buffer zones were not considered) 

• Drift reduction methods have only been used in a limited number of application scenarios 

where information on the applied drift reduction method has been available. If no such 

information was available in the Agrowin data set, drift reduction is not included. 

Other model inputs, such as crop protection product characteristics relevant for secondary emissions, 

climate, month of applications and soil, have no influence in the calculation of primary emissions, and 

are hence not relevant for application scenarios. The listed main model inputs influencing primary 

emissions are described in the below sub-sections. 

3.3.2.1 Crop types in PestLCI 

There are 16 representative crop classes available in the PestLCI Consensus model that were selected 

from more than 172 crops based on the FAO and Central Product Classification (CPC) Version 2.1. 

The crop type Agrowin data that Bayer provided to DTU were assigned by DTU to one of these 16 
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available crop classes, which are listed in Table 4 below. For example, the Pooideae crop class are 

subfamily of the grass family Poaceae which in turn includes cereals such as wheat, barley, oat, rye, 

and pasture grasses. Panicoideae is also a subfamily of the grasses, and it comprises agricultural 

crops such as sugarcane, maize (or corn), and sorghum. The selected crop type in PestLCI will define 

the range of available application methods and with that will influence the selection of the available off-

field drift deposition functions that are relevant. 

Table 4: Crop classes implemented in the PestLCI Consensus model 

ID Crop class  ID Crop class 

1 Pooideae  9 Fruits tropical 

2 Panicoideae  10 Fruits temperate 

3 Paddy rice  11 Citrus fruits 

4 Pulses  12 Grapes/vines 

5 Roots, tubers and bulbs  13 Berries 

6 Oil-bearing crops  14 Nuts 

7 Vegetables leafy  15 Oil-bearing trees 

8 Vegetables fruit  16 Other permanent crops 

 

3.3.2.2 Fractions of applied CPP intercepted by crop surface area in PestLCI 

In the following section, different underlying cases for deriving fractions intercepted by crop surfaces 

from crop growth stages are described along with the various challenges for the different cases, 

including difficulties to allocate specific crops to crop classes for which interception fractions are 

available. 

For application scenario calculations, foliar interception fractions were assigned to the different crop 

growth stage (i.e. “BBCH”) ranges and then applied to each related scenario. For that, Bayer crops 

were mapped to crops from Linders et al. (2000), where crop and growth phase-specific (BBCH) 

interception fractions have been proposed for different crops/crop classes using the growth stages with 

BBCH-scale (Meier, 2018). Where a direct match was possible, Bayer crops were mapped to their 

respective crop or crop family (e.g. Apple was directly linked to ‘Pomme Fruit’ or Apricots to ‘Stone 

fruit’).  

When this was not possible, the crop with the closest looking leaves and maximum soil coverage from 

Linders et al. (2000) was chosen as a proxy. For instance, Amaranth was approximated with cereals 

and burdock root with sugar beets. If neither a direct link nor an approximation was possible, assigning 

an interception fraction was done based on the BBCH alone. Here, for each BBCH indicated, the 

smallest interception fraction of all crops/crop classes in Linders et al. (2000) that corresponds to this 

BBCH was assumed. For example, the Bayer crop ‘Agave’ remained unclassified into any given crop 

class and was associated with a crop growth stage (BBCH) of 10 at the time of crop protection product 

application. There is a total of 27 crops in Linders et al. (2000) (e.g. Bulbs, Beans, Carrots) which have 

a BBCH code of 10. The smallest related interception fraction is 0.1 for Onions, indicating a very early 

crop stage for these crops that leads to only a small fraction intercepted by the crops. This interception 

fraction was used for Agave at a BBCH of 10 and any other Bayer crop that remained unclassified and 

had an entry (application scenario) associated with a BBCH of 10. The main BBCH codes (not a linear 
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numerical scale but numeric codes between ‘00’ and ‘99’ assigned to different crop life cycle stages) 

are described in Meier (2018). Crop interception fractions, instead, range from 0 (no crop interception) 

to 1 (100% crop interception) as described in Linders et al. (2000).  

After Bayer crops had been mapped to the respective crop/crop class, the reported BBCH at time of 

crop protection product application was compared with the BBCH ranges for a given crop/crop class 

from Linders et al. (2000) to extract the related interception fraction. For example, the Bayer crop 

‘Barley-spring’ had one application scenario associated with a BBCH of 70 (A7090H-POST-

FLOWERING-AUT-CER). For the crop class ‘Cereals’ a BBCH of 70 means booting/senescence 

(BBCH range 40-99) and corresponds to an interception fraction of 0.9 (Linders, Mensink, Stephenson, 

Wauchope, & Racke, 2000). If Bayer’s (or the farmer’s) reported BBCH for any given crop exceeded 

the largest BBCH value available for the corresponding crop/crop class, the maximum available 

interception fraction for that crop/ crop class was taken.  

Finally, if the reported BBCH did not fall into any of the BCCH ranges indicated for a given crop/crop 

class, the closest lower BBCH range was taken as reference point. For example, Broccoli is sprayed 

at a BBCH of 21 (crop growth stage: S2129-SIDE-SHOTS-SPR-LEG). The related crop ‘Cabbage’ has 

interception fraction values indicated for the BBCH ranges 10-19 and 40-49. The closest lower BBCH 

range to 21 is thus 10-19 with an interception fraction of 0.25. 

Two additional assumptions were made in the derivation of the fraction intercepted for different crops 

and application scenarios. Any Bayer crop allocated to “bare-soil” (e.g. NON-CROP-LAND) was 

assigned an interception fraction value of zero as no crop coverage is assumed in these scenarios. 

There are some entries for crop (e.g., “Warehouses”, “Grain: stored”, “Glass-house/Greenhouse”, etc.) 

and application method (“Stored-Goods-Treatment”) that are considered out of scope, because the 

treatments do not occur on the field. In this case, no BBCH or interception fraction was assigned to the 

respective crop and application scenario. Hence, these scenarios have been excluded from the 

analysis that is restricted to scenarios implying emissions from CPP applications to agricultural fields. 

3.3.2.3 Application methods in PestLCI 

From the 31 application methods available in the PestLCI Consensus, 12 representative application 

methods were selected and manually associated with the data provided by Bayer. These 

representative application methods are listed in Table 5 below. For each application method, DTU used 

a fixed value for primary emission fractions to air7.  

Table 5: Crop protection product application methods and primary emission fraction to air as available in PestLCI 

ID  Application method  Primary emission to air (%)  

5 Boom sprayer - conventional nozzle – other 
crops 

10 

6 Boom sprayer - conventional nozzle - 
roots/tubers 

10 

13 Air blast sprayer - early stages (leafless) 20 

14 Air blast sprayer - late stages (in leaf) 8 

17 Air blast sprayer - grapes/vines 12.5 

 

7 An overview is also given at https://pestlciweb.man.dtu.dk/images/Application_Method_CropV3.png. 

https://pestlciweb.man.dtu.dk/images/Application_Method_CropV3.png.
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18 Air blast sprayer - other crops 10 

19 Hand operated sprayer - crops that are < 50 cm 6 

20 Hand operated sprayer - crops that are > 50 cm 10 

22 Aerial application (N/A, EPPO) 25 

23 Soil incorporation (N/A, N/A) 0 

24 Recycling tunnel - air induction flat spray nozzles 1.25* 

28 Air-assisted sprayer side by side - flat fan nozzles 7.5* 

*Emission reduction included 

 

3.3.2.4 Drift reduction in PestLCI 

Additional drift reduction was not included in application scenario calculations. This means that drift 

reduction was only taken into account if already included in the application method (indicated with ‘*’ 

in Table 5) as reported by Agrowin data. 

3.3.2.5 Consideration of buffer zone in PestLCI 

No buffer zone was assumed for the current calculations of primary emissions due to lack of data in 

Agrowin. A buffer zone is the distance between the point of direct CPP application and the nearest 

downwind boundary of a sensitive habitat. In CPP application, it is required to maintain a distance 

between the site of spray application and environmentally sensitive areas. The current calculations with 

regard to the effect of possible mitigation measures on emissions into different environmental 

compartments therefore represent a worst case. 

 

3.3.3 Linking PestLCI with USEtox®: Emission compartment allocation 

Emission results from PestLCI Consensus are associated with specific environmental compartments. 

These compartments do not match the emission compartments in the impact assessment model, 

USEtox®. Hence, the different compartments in both models were assigned in a way to allow combining 

both emission results and ecotoxicity impact results. Figure 7 below illustrates how application scenario 

emission compartments from the primary emission distribution in PestLCI Consensus are matched to 

the emission compartments of USEtox® (boxes relevant to the application scenarios are the initial 

distribution fractions within PestLCI Consensus (upper left) and USEtox® (right). 
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Figure 7: Coupling of different state-of-the-art models for assessing emissions and toxicity related impacts in LCIA 

 

When doing the compartment allocation from PestLCI to USEtox®, the below main assumptions were 

established: 

3.3.3.1 Segmentation/mapping of related emissions 

Air emissions were assigned to continental rural air in USEtox®, field soil emissions were assigned to 

continental agricultural soil in USEtox®, and field crop surface emissions were not assigned to any 

emission compartment in USEtox®. The latter introduces the assumption that these emissions do not 

contribute to ecotoxicity impacts, which will, however, be negligible, since only marginal parts of what 

reaches field crops might in some cases volatilize back into air, while another part could reach the soil 

via e.g. wash-off or flow through the crop compartments. However, the largest fraction by far either 

ends up inside the crop as residues or degrades. Introducing these aspects presents an additional 

complexity which are not meaningful considering the scope of ecotoxicity (Fantke, Charles, de 

Alencastro, Friedrich , & Jolliet, 2011).  

3.3.3.2 Off-field surface emission fractions 

Finally, emission fractions reaching off-field surface areas were distributed according to the 

percentages of surface areas represented by freshwater, agricultural soil, and natural soil for the 

different country parameterizations in USEtox® (Following USEtox version 2.13 update from the 

previous continental level parametrization to country level parameterization). The off-field surface area 

fractions (percentages) used for the different country parameterizations are based on FAO (2020) data 

and are shown in Appendix 7.1. 

3.3.4 Ecotoxicity impact modelling with USEtox® 

The overall scope of the assessment is currently limited to freshwater ecotoxicity impacts, which was 

considered the only scientifically mature indicator at the time of USEtox® release in 2008 (Rosenbaum, 

Bachmann, Gold, & Huijbregts, 2008)8. In a current global guidance effort under UN Environment, this 

 

8 Further developments of those models are in progress, in order to extend to other environmental compartments, but are not 
yet finished nor have reached any consensus at the date of production of the present report. 
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recommendation has been revisited, and additional indicators (i.e., soil terrestrial ecotoxicity) are 

currently being evaluated for possible inclusion into a future update of USEtox® (Fantke, et al., 2018a). 

Since its release, USEtox® has been widely used by LCA practitioners. The European Commission 

recommends it as a reference model to characterize human toxicity and freshwater aquatic ecotoxicity 

impacts from life cycle chemical emissions for the International Reference Life Cycle Data System 

Handbook and the Product Environmental Footprint context (Saouter, et al., 2020). Despite the 

consensus on USEtox®, stakeholders still debate appropriate methods for characterizing ecotoxicity in 

life cycle impact assessment (LCIA). Since the release of USEtox® in 2008, practitioners and 

stakeholders have requested an extension of ecotoxicity characterization beyond freshwater 

environments. Several efforts have explored the possibility of including other compartments and have 

resulted in emerging models supporting the assessment of fate, exposure, and ecotoxicological effects 

for marine, terrestrial, pollinators, and birds’ toxicity. Despite the clear recommendations to continue 

with efforts of integrating these topics (and other topics such as adding characterization factors for 

metal/inorganic/biological/natural active substances; adding groundwater, sediment and plant 

compartments) into LCIA, the respective models and their underlying data are yet to become mature 

enough for inclusion into LCIA (Crenna, Sala, Polce, & Collina, 2017; Fantke, et al., 2018a; Gentil, 

Fantke, Mottes, & Basset-Mens, 2019). 

Therefore, for this report, only freshwater ecotoxicity impacts have been considered since this is the 

best understood biosphere and a major share of emissions will end up in freshwater (Henderson, et 

al., 2011). A full description of the environmental mechanism for freshwater ecotoxicity impacts is 

provided in Henderson et al. (2011). Bayer plans to enlarge the scope by integrating the impacts on 

terrestrial organisms like earthworms or pollinators in the near future, when the models are integrated 

into the scientific consensus versions. 

To estimate ecotoxicity impacts per unit emission into a given environmental compartment for CPPs 

applied to agricultural fields, the USEtox® model version 2.13 was used as available at 

https://usetox.org/. This tool is a global scientific consensus model (Hauschild, et al., 2008; 

Rosenbaum, Bachmann, Gold, & Huijbregts, 2008) developed under the auspices of and formally 

endorsed by the UNEP-SETAC Life Cycle Initiative (Westh, et al., 2015). USEtox® calculates 

characterization factors for freshwater ecotoxicity by combining a multimedia box model and an impact 

assessment model.  Further explanation are as follows:  

“Assessing ecotoxicological effects of a chemical emitted into the environment implies the analysis of 

a cause-effect chain that links chemical emissions to impacts on freshwater ecosystems through four 

assessment steps: environmental fate, (freshwater ecosystem) exposure, (freshwater ecotoxicological) 

effects, and damages on freshwater ecosystem quality” (Fantke, et al., 2017a). 

“USEtox® follows the whole impact pathway from a chemical emission to the final impact on humans 

and ecosystems. This includes modelling the environmental distribution and fate, human and 

ecosystem population exposure, and toxicity-related effects associated with the exposure.” (Fantke, et 

al., 2017a). For ecotoxicity impacts, USEtox® currently only includes freshwater ecosystems, since 

data and processes are available and best understood for freshwater ecosystems as compared to e.g. 

marine and terrestrial soil ecosystems in an LCIA context, of which the latter are currently difficult to 

characterize (see Hendersen et al. (2011)). 

Combining fate, exposure and effects yields characterization factors (CFs) for ecotoxicity. These 

freshwater ecotoxicity characterization factors are expressed in “Potentially Affected Fraction” (PAF) 

of freshwater species, integrated over exposure water volume and chemical residence time in water 

per unit mass emitted. These characterization factors provide information on the sensitivity of different 

tested species to different concentration levels of the dissolved substance in freshwater (ecotoxicity 

effect). For example, most species start being affected within a specific range of the concentration 

level, whereas the most sensitive species are affected at lower level of concentration. These combined 

https://usetox.org/
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effect concentrations are used to express the potential impact on species for which toxicity data are 

available.  

These CFs serve as characterization results at the midpoint global level in LCA. They can be combined 

with a damage factor translating ecotoxicity impacts into damages on freshwater species , to arrive at 

a damage (endpoint) level in LCA. However, damage factors are not applied in the present study, which 

only provides results at midpoint level in line with the goal and scope of the present assessment. This 

report only focuses on the characterization factor for aquatic ecotoxicity impacts at midpoint level 

providing an estimate of the potentially affected fraction of species (PAF). This report does not cover 

the CF at endpoint level which would be associated with the potentially disappeared fraction of species 

(PDF) integrated over time and volume per unit mass of a chemical emitted. Further details about the 

general LCA midpoint-damage characterization framework are given in Hauschild and Huijbregts 

(2015). Uncertainty in all steps is explicitly taken into account in USEtox®, allowing for a comparative 

assessment of the potential environmental impacts of chemicals to provide insights on “best in class” 

products in product comparisons regarding the environmental performance of products in terms of 

ecotoxicity related to chemical emissions.  

The main steps in characterizing the impact pathway for freshwater ecotoxicity in USEtox® 2.14 are 

illustrated in Figure 8, with further details provided elsewhere (Rosenbaum, Bachmann, Gold, & 

Huijbregts, 2008; Henderson, et al., 2011; Fantke, et al., 2018b). 

 

Figure 8: Impact pathway for freshwater ecotoxicity impacts in USEtox® 2.14 (Fantke, et al., 2018b) 

 

The freshwater ecotoxicity characterization factor, 𝐶𝐹 [PAF m³ d/kg emitted], representing the 

potentially affected fraction (PAF) of species integrated over the considered freshwater compartment 

volume and time per kg of chemical emitted to an environmental compartment, is derived as follows:  

𝐶𝐹 = 𝐹𝐹 × 𝑋𝐹 × 𝐸𝐹 

Equation 4 

where 𝐹𝐹 [kg in freshwater/(kg emitted/d)] is the fate factor relating the chemical mass in the freshwater 

compartment to the chemical mass emitted per day into the same or another environmental 

compartment. However, since CPPs are not emitted continuously but in pulses, the fate factors are 

interpreted as [kg in compartment integrated over time/kg emitted], i.e. the time-component in the fate 
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factor is the integral over time for a given pulse input. 𝑋𝐹 [kg bioavailable/kg in freshwater] is the 

ecosystem exposure factor representing the bioavailability of chemicals to organisms in the freshwater 

compartments considered for ecotoxicity, 𝐸𝐹 [PAF m³ freshwater/kg bioavailable] is the ecotoxicity 

effect factor relating the potential of the bioavailable fraction of a chemical to cause toxic effects to an 

exposed ecosystem expressed as potentially affected fraction of species in the exposed ecosystem 

integrated over the considered freshwater volume to the bioavailable chemical mass in freshwater. 

When the emission compartment is different from the compartment of the exposed ecosystem, the fate 

factor is interpreted as product of the residence time of a chemical in the receiving exposure 

compartment, 𝐹𝐹𝑖2 [day], and the overall time-integrated chemical mass fraction transferred from the 

emission compartment 𝑖1 to the exposure compartment 𝑖2, 𝑓𝑖2←𝑖1 [kg in compartment integrated over 

time/kg emitted], i.e. 𝐹𝐹 = 𝑓 𝑖2←𝑖1 × 𝐹𝐹𝑖2. For better interpretation, the CF for aquatic ecotoxicity impacts 

at midpoint level (potential ecotoxicity) provides an estimate of the potentially affected fraction of 

species (PAF) integrated over time and volume per unit mass of a chemical emitted. Describing the full 

units of all factors is important to understand these factors. More specifically, fate factor units can only 

be reduced to “day” where emission and receiving compartment are the same, whereas for cases 

where emission and receiving compartment are not the same, fate factors denote mass received for a 

given emission rate in the source compartment. Exposure factors are dimensionless but refer 

effectively to a chemical mass fraction. Finally, effect factors are interpreted as inverse of a chemical 

water concentration leading to a certain fraction of species that shows a potential effect.  Further details 

are found elsewhere (Rosenbaum, Bachmann, Gold, & Huijbregts, 2008; Henderson, et al., 2011; 

Fantke, et al., 2017a).  

One of the main assumptions in USEtox® is that solutions are provided for steady-state conditions for 

environmental fate processes, which assumes constant, continuous emission inputs into the different 

environmental compartments. However, this assumption is mostly relevant for industrial chemicals 

emitted continuously over time, where emission pattern might vary e.g. with season. For CPPs, this 

assumption is not relevant as fate factors in this case are interpreted as time-integrated mass due to a 

given CPP amount applied at a given point in time (see Rosenbaum et al. (2007)). With that, this 

assumption does not influence the accuracy of results for CPPs applied to agricultural fields. Another 

assumption is that all environmental compartments are homogeneously mixed, assuming that 

regardless of where within the same continent an emission occurs, it will yield the same ecotoxicity 

impact magnitude and compartmental distribution. Emissions to different continental regions will 

however be different as a function of differences in compartment properties (e.g. volume). This 

assumption is in line with box model principles that are commonly applied in screening level 

assessment within and outside LCA (MacLeod, Scheringer, McKone, & Hungerbuhler, 2010). With that, 

the nested compartment model USEtox® is most applicable to situations where emission locations are 

unknown, to estimate the relative magnitude of toxicity potency across various chemicals and emission 

scenarios, as compared to estimating local and absolute risks, for which more sophisticated and 

localized models have to be applied. In the context of Bayer’s application scenarios, it is mainly 

applicable to screen many scenarios for dominating combinations of crop, country and active 

ingredient, as well as of active ingredient within a given crop-country combination.  

 

3.3.5 USEtox® input data 

The most important inputs that drive ecotoxicity characterization results are physicochemical 

substance data. An overview of required inputs in USEtox® are provided in Table 6 below. 
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Table 6: Chemical input data in USEtox® for organic substances or metal ions that are relevant for application 
scenario calculations. 

Parameter Unit Substances 

Organics Metals 

Chemical abstract service registry number 
CAS RN 

 X X 

Chemical common name  X X 

Molar weight MW g/mol X X 

pKa chemical class  X  

pKa base reaction pKa.gain  X  

pKa acid reaction pKa.loss  X  

Partitioning coefficient between n-octanol and 
water Kow 

l/l X  

Partitioning coefficient between organic 
carbon and water Koc 

l/kg X  

Henry’s law constant (at 25°C) KH Pa·m3/mol X  

Vapor pressure (at 25°C) Pvap Pa X X 

Solubility (at 25°C) Sol mg/l X  

Partitioning coefficient between dissolved 
organic carbon and water Kdoc 

l/kg  X 

Partitioning coefficient between suspended 
solids and water KpSS 

l/kg  X 

Partitioning coefficient between sediment 
particles and water KpSd 

l/kg  X 

Partitioning coefficient between soil particles 
and water KpSl 

l/kg  X 

Degradation half-life in air to derive 
degradation rate constant HLair 

d X  

Degradation half-life in water to derive 
degradation rate constant HLwater 

d X  

Degradation half-life in sediment to derive 
degradation rate constant HLsediment 

d X  

Degradation half-life in soil to derive 
degradation rate constant HLsoil 

d X  
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Dissipation half-life in above-ground plant 
tissues to derive dissipation rate constant 
HLplant 

d X  

Bioaccumulation factor in plant roots BAFroot kgveg/kgsoil X X 

Bioaccumulation factor in plant leaves 
BAFleaf 

kgveg/kgsoil X X 

Bioaccumulation factor in fish BAFfish l/kgfish X X 

Species-specific EC50 (effect concentrations 
at which 50% of individuals for a single 
species show an effect) combined to derive 
hazard concentration HC50 as the 
concentration at which 50% of the exposed 
species exceed their EC50. HC50 itself is 
never reported in underlying databases, but 
instead calculated from the various available 
EC50 data across species per chemical. 

Mg/l X X 

 

The substance data describe the physical-chemical characteristics, degradation rates, toxicity, 

ecotoxicity, bioaccumulation factors, and biotransfer factors of a substance. The bioaccumulation, 

biotransfer and ecotoxicity are three different substance data that are used to understand the behavior 

of a chemical in relation to biological organisms. Biotransfer is the process by which a chemical 

substance is absorbed from one organism by another mostly through ingestion. The biotransfer factors 

from USEtox® into meat and milk are not relevant for freshwater ecotoxicity impact pathway of USEtox® 

and have thus not been considered. Bioaccumulation is the overtime accumulation of a chemical in an 

organism (e.g., Fish) while ecotoxicity is the potential adverse effects that a chemical substance causes 

to an aquatic organism.  

The degradation rate constants are used to determine the environmental fate of the substance or active 

ingredient. Majorly this consists of the substance transformation processes which includes substance 

degradation in air, water, sediments, and soil. The Partition coefficient is used to describe how a 

chemical solute is distributed between two immiscible solvents. They are used as a measure of a 

solute's hydrophobicity and a proxy for its membrane permeability. Hydrophobicity is the physical 

property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobic). 

Partition coefficients (sometimes referred to as partition ratios) are widely used in environmental 

science to relate the concentration of a chemical solute in one phase to that in a second phase between 

which equilibrium applies or is approached. The solutes include organic and inorganic substances and 

the phases of interest include air, water, soils, sediments, and aerosols. 

Ecotoxicity test results are reported as Effect Concentrations ECx, where the effect may be mortality, 

immobilization, reproduction or other endpoints and ‘x’ refers to the fraction of the tested organisms or 

organism groups showing the effect. EC50 results are determined from statistical evaluation of the 

concentration-effect values in experiments. The middle of the derived concentration effect curve is 

considered to be more robust than lower ends. Therefore, EC50 values are used for determining the 

ecotoxicological effect factor to minimize uncertainties in the effect factor. 

After the EC50 test results from different species are collated, the distribution of the test results for the 

chemical (or active ingredient) across different test organisms is shown in the Species Sensitivity 

Distribution (SSD) curve (Postshuma, Suter II, & Traas, 2002). SSDs represent the potentially affected 
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fraction of species for which toxicity data are available, which can differ across assessed chemicals. A 

SSD of chronic EC50s depicts the fraction of species with available toxicity data that are affected above 

their chronic EC50 value as a function of the bioavailable concentration (X) of the chemical. The SSD-

midpoint has been named the HC50, which is the Hazardous Concentration for 50% of the species. 

This USEtox® HC50-value of the chemical indicates the concentration corresponding to 50% of the 

species being exposed above their EC50 value. In a series of chemicals, it holds that the lower the 

HC50-value of a chemical, the higher the relative ecotoxicity of a compound. This principle is the basis 

for quantifying expected aquatic ecosystem impacts in USEtox®. The SSD-based approach is to date 

the most reliable way to assess toxicity of chemicals across species. However, it is currently difficult to 

use SSDs to directly reflect damages on ecosystem quality, for which further research is required to 

e.g. consider the influence of chemical stressors on interactions among species within the same 

ecosystem. 

A selection is made from the available ecotoxicity data, which may represent acute or chronic 

exposures. To reveal the possible chronic effects of a substance on freshwater species, preference is 

given to results from chronic or sub-chronic tests at the EC50-level in the LCIA step (Jolliet, et al., 2006; 

Larsen & Hauschild, 2007). The motives for this are, amongst others, the statistical robustness of 

deriving the 50%-response level, and – not the least – the ecological interpretation of the EC50-

endpoint in terms of impacts that are meaningful and can be observed in field-exposed ecosystems. 

Chronic EC50 exposure data were given priority. However, when chronic data is not available, acute 

EC50-data are used to derive the chronic-equivalent EC50 per species using a generic acute-to-

chronic ratio (ACR) of 2 (Rosenbaum, Bachmann, Gold, & Huijbregts, 2008). 

Among the listed substance parameters in Table 6, degradation rate constants, ecotoxicity effect data, 

and partitioning coefficients (mainly Kaw, and Kow via its influence on Koc) are the factors that are 

most influential on variability of characterization results across substances. Based on the available 

information for each parameter, different sources have been used to derive a value for each parameter 

per substance in order to calculate characterization results. 

The different sources have been used in the following hierarchy:  

• First priority – USEtox®: Whenever data were available for a given substance in the official 

USEtox® substances databases (Rosenbaum, Bachmann, Gold, & Huijbregts, 2008) this 

source was used. 

• Second priority – Solutions: For ecotoxicity effect information only, results from the Solutions 

project (Posthuma, van Gils, van de Meent, & de Zwart, 2019) were applied whenever USEtox® 

data were not available. 

• Third priority – PPDB: Whenever USEtox® data were not available for any given substance 

parameter nor data from the Solutions project for effect information, data from the Pesticide 

Property Database (Footprint, 2020) have been applied.  

• Fourth priority – CompTox: Whenever no other source provided data for a given parameter, 

substance data from the U.S. Environmental Protection Agency’s CompTox Chemistry 

Dashboard database (Williams, et al., 2017) were applied, based on the OPERA prediction 

models suite (Mansouri, Williams, Grulke, & Judson, 2018). 

Based on the available substance property data and the general applicability of USEtox® to 

characterize organic substances and metal ions, a total of 892 substances could be characterized. 

Among these, there are 801 organic substances, 47 additional organic compounds that contain a metal 

ion, but are treated as organic substances, and 39 metal-based compounds that were treated based 

on their containing metal ions and 5 organometals that were treated based on their containing metal 

ions. 65 organic compounds and 3 organic compounds containing a metal ion could not be 

characterized due to missing relevant substance data. All other substances that were not characterized 

in USEtox® belong to chemical groups for which USEtox® is not applicable, including biological agents, 
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complex mixtures, inorganic compounds (other than metal ions), and metal-based compounds for 

which the relevant metal ion is not included in USEtox®. Since results of both organic and metal-based 

substances are expressed in the same metrics, they can be aggregated and discussed together. 

However, results from both substance groups should first be discussed separately to understand major 

contributors within each group. Aggregating both groups can additionally help to understand how much 

each substance group contributes to overall results. 

An overview of the substances included and excluded from USEtox® calculations for application 

scenarios are provided in Figure 9 below. 

 

Figure 9: Distribution of substances included and excluded from USEtox® calculations 

The ‘not characterized’ compounds are substances for which minimum input data requirements could 

not be fulfilled after considering all the four substance property data input sources (i.e. USEtox®, 

Solutions, PPDB, and CompTox database) or substances which currently cannot be characterized by 

USEtox® 

3.4 From application scenarios to global EI 

When PestLCI and USEtox® are combined into one model, the output is a CP EI score per application 

scenario. Figure 10 below shows the overall approach followed to assess the environmental score of 

each application scenario. Results of both models have been evaluated in various other studies, with 

uncertainty ranges provided that are dominated by effect factors in USEtox®, and overall ranging from 

1 to 3 orders of magnitude for ecotoxicity impacts (see e.g. Dijkman et al. (2012), Rosenbaum et al., 

(2008)). 

As described above, the PestLCI Consensus model was used for evaluating emissions of agricultural 

CPPs. Output of the PestLCI Consensus model are emission fractions (i.e. emitted mass into a given 

environmental compartment per mass applied for a given scenario). For application scenario 

calculations, emission fractions considering initial partitioning and drift within minutes after crop 

protection product application have been adopted, are referred to as primary distribution fractions. 

For quantifying ecotoxicity impacts from chemical emissions, the USEtox® model, version 2.13, was 

then used. These results have been adopted for application scenario calculations, following the 

recommended procedure for deriving characterization factors in USEtox® as described in the official 

USEtox® documentation (Fantke, et al., 2017a). USEtox® is based on models that have for each 
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process and parameter been extensively evaluated, peer-reviewed and widely applied in scientific and 

practical application studies. USEtox® itself is the most widely applied, evaluated and accepted LCIA 

toxicity characterization model in LCA (see e.g. the >1000 peer-reviewed articles, reports, and books 

referencing Rosenbaum et al., (2008). 

 

Figure 10: Overall approach followed to assess the EI of each application scenario9. Emission and potential impact 
results are compartment specific as shown in Figure 7. 

As outlined in section 1, Bayer considers the combined modelling output of emissions according to 

PestLCI and characterization factor according to USEtox® as crop protection potential environmental 

impact (EI). 

 

3.4.1 Agrowin CP application scenario data processed in PestLCI / USEtox® 

modelling approach 

Information for 500,873 crop protection product application scenarios (for the whole CP market) for the 

year 2018 have been provided to DTU by Bayer as a starting point for calculating related potential 

environmental impact. As described earlier in section 2.3, a scenario refers to a unique combination of 

the following variables: country, crop, crop growth stage, application method, product, indication, 

distributor, active ingredient, and dose. Each scenario represents an active ingredient contained in a 

crop protection product applied in a given crop and country, with a given treated area per active 

ingredient, and a given volume per active ingredient.  

As products are repeatedly used on crops and in different countries, scenarios cover 96 distinct 

countries, 55 crop groups, 1082 active ingredients, and 108 distinct application methods. The data set 

covers both active ingredients and crop protection products sold by Bayer and the rest of the crop 

protection market. For Bayer (without the rest of the CP market competitors), the study using 2018 data 

relies on a data set covering 54,204 crop protection application scenarios, 82 countries, 55 crop groups, 

86 distinct application methods, 340 active ingredients and 2,291 crop protection products. Certain 

scenarios had to be excluded from the study. The reasons are outlined below in section 3.4.2. 

 

 

9 Note: the reference unit can vary depending on the objective; here it refers to one hectare. 
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Table 7: CP 2018 Inventory data description prior to exclusion 

 

3.4.2 Exclusions of CP application scenarios 

Out of the assessed crop protection product application scenarios in the 2018 dataset, 54,185 

scenarios (10.8% of all scenarios) have been excluded from the analysis. The main reasons for 

excluding scenarios or not providing impact results are as follows:  

• ~1000 data points excluded due to negative or null reported area treated and/or mass applied. 

In Agrowin, this can happen when the data on treated area or mass applied are either not 

available or when farmers have given back a certain amount of product before using it. 

• ~2000 data points excluded due to application method or crop stage not valid/not in PestLCI 

Consensus  

• >50,000 data points excluded due to missing Chemical Abstracts Service (CAS) number10, not 

characterizable in USEtox® or missing chemical/ecotoxicity data to derive characterization 

factors or ecotoxicity. 

The excluded scenarios refer to the entire 2018 data set covering the whole CP market. For Bayer 

specific product related application scenarios only 2,813 application scenarios (5.2% of the Bayer 

application scenarios) had to be excluded. 2,273 out of 2,813 application scenarios (80%) were 

excluded due to USEtox® limitations. The remaining 20% were mainly due to limitations of PestLCI and 

to a minor degree due to data issues from Agrowin. Therefore, most application scenarios exclusions 

were due to current limitations of the USEtox® model. See Figure 9 for the overview of the substances 

included and excluded from USEtox® calculations for application scenarios. 

For the reasons outlined above, the application scenario exclusions for Bayer can be translated into 

excluded active ingredients and crop protection products as follows: 

• Regarding the entire data set covering Bayer and other manufacturers: From 1082 active 

ingredients, 892 active ingredients could be characterized in USEtox® and are therefore part 

of the study. 

 

10 The CAS number is a unique identifier assigned to every chemical substance described in open scientific literature (link: CAS 
registry description Archived 25 July 2008 at the Wayback Machine, by Chemical Abstracts Service) 

CPP 2018 Inventory data description Whole CP Market Bayer Market Only 

Total number of scenarios 500,873 54,204 

Distinct number of Countries 96 82 

Distinct number of Crop groups 55 55 

Distinct number of application methods 
(including assumptions) 

108 86 

Distinct number of crop protection 
products 

34,258 2,291 

Distinct number of active ingredients 1082 340 
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• Regarding Bayer: 54 crop groups are part of the Bayer assessment. The crop group 

“environmental markets” was excluded. “Environmental markets” contains crop protection uses 

on e.g. turf or forest. BCS’s EIR target refers only to field applications. 

• Regarding Bayer: From 340 active ingredients, 270 active ingredients could be characterized 

in USEtox®. Most of the excluded active ingredients relate to BCS’s biological portfolio. 

• Regarding Bayer: From 2,291 crop protection products, 2,056 are part of the study. 

For Bayer, most of the excluded active ingredients are Bayer biological portfolio. Therefore, BCS’s CP 

EI based on the current study might be conservative11. 

Despite these exclusions, Bayer and DTU argue that this is the largest high-quality CP application data 

set ever used to our knowledge. If there is no data in certain cases (mostly CP application methods 

and application timing), Bayer fills the gaps (transparently) based on reasonable market intelligence 

assumptions because official statistics such as FAO do not offer such comprehensive, harmonized, 

and high-quality application data sets (See Figure 15 for a list of available data sources). 

The majority of the excluded scenarios relate to 139 (out of 1082) substances not commonly included 

in assessment models or chemical and ecotoxicity databases (e.g. microorganisms). With that, these 

chemicals are likely not leading to a relevant contribution to overall global impacts at a screening-level, 

whereas they might become relevant in refined, more local assessments.  

The system of exclusion including reasons for exclusion detailed here and applied on the 2018 data 

set have been applied across the received Agrowin dataset used in setting the baseline and continuous 

performance tracking. The exclusions for Bayer stated above refer to all Bayer CPP contained in 

Agrowin. As stated in section 3.2 and 4.4 Agrowin covers 85-95% of Bayer CPP sales depending on 

the year. 

 

3.4.3 Combining application scenarios with the models to derive EI scores 

The following general approach has been applied to assess the potential environmental impact of each 

application scenario.  

The results from the combination of emission and ecotoxicity impact characterization factor (impact 

score - PAF m3 d / Kg applied) have been combined with applied dose (kg applied) and hectare treated 

(ha) to arrive at the potential Environmental Impact.  

• Mass applied of crop protection product has been combined with area treated to derive an 

applied dose [kg applied/ha treated] for each scenario.  

• An area split for the emission fraction reaching off-field surfaces has been assigned to each 

combination based on mapping of the reported country available in USEtox® 2.14. Namely,  a 

certain fraction of the off-field area is assigned to USEtox’® freshwater, agricultural soil and 

natural soil compartments. The off-field surface area fractions (percentages) used for the 

different country parameterizations are based on FAO (2020) data. See Appendix 7.1 for the 

different countries’ percentages. 

• For each emission compartment defined in the PestLCI Consensus model, application-

scenario-specific emission results from the PestLCI Consensus model have been derived 

based on mapping reported crops to crop types, reported crop stages to crop surface 

 

11 Conservative because a worst-case assumption is always made when necessary data were not available (For example, in the 
case of application method or crop growth stage). Also, because biologicals as "improvement levers" are not reflected yet and 
we do not consider mitigation measures. Both, biologicals and mitigation measures, would likely decrease Bayer CP EI. 
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interception area fractions for field crops, and reported application methods to drift functions 

for a pre-defined set of application methods available in PestLCI Consensus. Details on the 

mapping and assumptions made to derive emission results are presented in sections 3.3.1. 

• For each emission compartment defined in the USEtox® model, active-ingredient-specific 

ecotoxicity impact results from the USEtox® model have been derived for a global average 

model setup (default model settings), based on implementing all reported active ingredients 

into the substance databases of USEtox® that can be characterized and that have all required 

physicochemical property data available and accessible. Details on the substance input data 

collection and assumptions made to derive ecotoxicity impact results are presented in section 

3.3.4.  

• Emission results (kg emitted into a given emission compartment defined in the PestLCI 

Consensus model per kg applied for a given application scenario) have been combined with 

ecotoxicity impact characterization results (PAF m³ d/kg emitted into an emission compartment 

defined in the USEtox® model), based on matching emission compartments between both 

models following the approach described in Fantke (2019) and in Gentil et al. (2020), as well 

as based on assigning the area split for off-field surfaces to respective emission compartments 

in the USEtox® model, as shown in Figure 7.  

• The results from the combination of emission and ecotoxicity impact characterization factor 
(impact score - PAF m3 d / Kg applied) have further been combined with applied dose (kg 
applied) and hectare treated (ha) to arrive at the potential Environmental Impact. See Table 8 
below for the detailed mathematical calculation and Figure 12 below for further description of 
the results.  

The descriptions above are shown in a simplified version in Figure 11 

Table 8,  and Figure 12 below.  

 

Figure 11: Framework representation considering both PestLCI and USEtox® inputs 
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Table 8: Stepwise calculation of EI scores for an individual application scenario 

EI / Quantity 

= Mass of emission x Characterization 
factor 

= 
𝐾𝑔 𝑒𝑚𝑖𝑡𝑡𝑒𝑑

𝐾𝑔 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 
 x 

𝑃𝐴𝐹  𝑚3 𝑑

𝐾𝑔 𝑒𝑚𝑖𝑡𝑡𝑒𝑑 
 

= PAF m3 d / Kg applied 

The combination of emissions from 
PestLCI and characterization factors from 
USEtox® yields potential ecotoxicity 
impacts per kg applied in a given 
application scenario (PAF m³ d/kg 
applied). Bayer calls this value 
EI/quantity. 

EI / ha 

= (EI/ Quantity) x (Applied dose) 

= 
𝑃𝐴𝐹  𝑚3 𝑑

𝐾𝑔 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 
 x 

𝐾𝑔 𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝑡𝑟𝑒𝑎𝑡𝑒𝑑 ℎ𝑒𝑐𝑡𝑎𝑟𝑒𝑠
 

= PAF m3 d / hectare 

Further, the EI/quantity score in a given 
application scenario is multiplied with the 
applied dose (kg applied/ha treated) to 
arrive at ‘impact per ha treated’ [PAF m³ 
d/ha treated]. Bayer calls this value EI/ha]. 

EI / Scenario 

 

[labelled as 
‘EI’ by Bayer] 

= (EI / ha) x (Treated hectares/ Country) 

= 
𝑃𝐴𝐹  𝑚3 𝑑

𝑡𝑟𝑒𝑎𝑡𝑒𝑑 ℎ𝑒𝑐𝑡𝑎𝑟𝑒𝑠 
 x 

 𝑡𝑟𝑒𝑎𝑡𝑒𝑑 ℎ𝑒𝑐𝑡𝑎𝑟𝑒𝑠

𝐶𝑜𝑢𝑛𝑡𝑟𝑦 
 

= PAF m3 d / Country 

Finally, the EI/ha score is multiplied with 
treated area [ha/country] to arrive at a 
‘cumulative impact per scenario’ in a given 
country [PAF m³ d/country. Bayer calls this 
value EI]. 

Note. The crossed-out elements show how the different parameters cancel out each other in the stepwise calculation of EI scores 

for each individual application scenario. 

 

 

Figure 12: Definition of key measurement factors within the CP EI derivation methodology 

 

3.4.4 Aggregating EI scores 

Aggregation of EI across application scenarios will enable calculation of cumulative impacts at different 

aggregation levels. In general, the aggregation can be described as follows. For each application 

scenario (see again section 2.3. for all elements of an individual scenario), the potential environmental 
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impact scores are computed. The following equation shows that the aggregation is based on the sum 

of the total EI scores across the scenarios of interest (e.g., at the level of a crop, country, indication, 

application method etc. or even combinations of these). 

𝐸𝐼 = ∑(𝐸𝐼/𝑘𝑔)𝑖 ∙ 𝑑𝑜𝑠𝑒𝑖 ∙ ℎ𝑎𝑖 

Equation 5 

Where (i) indexes the scenarios for the CP application (consisting of the scenario elements described 

in section 2.3). Thus, in a scenario, (EI/kg)i is the potential environmental impact per quantity of applied 

active ingredient, with a specific dosei, on a certain number of treated hectares (hai). For example, we 

can sum the EI for: 

• all active ingredients used to treat cabbage crops (i.e., at the aggregation level of a single 

crop). 

• all vegetables cultivated in Vietnam (i.e., at the aggregation level of a crop-country-

combination). 

• all active ingredients used in all crop classes cultivated in Vietnam (i.e., at the aggregation level 

of a country). 

• various other potential aggregation levels, such as crop, country, active ingredient, indication, 

crop growth stage, application method, etc. (and any combinations of these). 

 

4 Interpretation 

4.1 CP EIR baseline and performance tracking 

AgrowinAs described above, each application scenario has its own potential environmental impact 

score, which is dependent on, inter alia, substance characteristics of the active ingredients contained 

in the crop protection products applied on field, dose rates of active ingredient per ha, application 

method, application timing, the crop and country where the product has been applied. There are many 

aggregation methods of the different metrics available. Bayer is currently working with a ‘treated-area-

weighted EI/ha’ as the measure of potential environmental impact. The treated-area-weighted EI/ha 

represents how efficiently, from an environmental impact perspective, the crop protection portfolio is 

meeting the needs of the growers. i.e. the focus is to help growers achieve the desired goal of protecting 

crops with lower environmental impact even in a situation of increased pest or disease pressure which 

can lead to increasing growers treated area. The lower the treated-area EI/ha, the better, while still 

meeting the growers need.  It is calculated as the ratio of the cumulative potential environmental impact 

and the total treated area: 

                                    Equation 6 

If the treated area is not used to scale the cumulative potential environmental impact, some increases 

in the metric could be encountered due to a greater need for crop protection by growers even if the 

′𝑻𝒓𝒆𝒂𝒕𝒆𝒅 𝒂𝒓𝒆𝒂 𝒘𝒆𝒊𝒈𝒉𝒕𝒆𝒅 𝑬𝑰/𝒉𝒂′ =
𝐸𝐼

ℎ𝑎
=

∑(𝐸𝐼/𝑘𝑔)𝑖 ∙ 𝑑𝑜𝑠𝑒𝑖 ∙ ℎ𝑎𝑖

∑ ℎ𝑎𝑖
=

∑ 𝐸𝐼𝑖

∑ ℎ𝑎𝑖
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leveraged products show a lower individual potential environmental impact. In addition, weighing for 

treated area across the entire Bayer CP portfolio ensures that both CP intensive crops, such as fruits, 

with relatively small treated areas and CP extensive crops, such as soybeans, with large treated areas, 

are adequately reflected in the Bayer impact assessment. 

Towards achieving a 30% reduction of CP EI by 2030, Bayer established a baseline using a 5-year-

average (2014 - 2018). A 5-year-average (2014 – 2018) baseline is used to account for the specificities 

of agriculture, such as inter-annual variability, seasonality or dependence on climatic conditions. Bayer 

has calculated the final baseline based on the 5-year-average (2014 – 2018) using the formulae below. 

Baseline calculation Formulae =  
𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝐵𝑎𝑦𝑒𝑟 𝐸𝐼 𝑓𝑟𝑜𝑚 2014 𝑡𝑜 2018

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝐵𝑎𝑦𝑒𝑟 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 𝐴𝑟𝑒𝑎 (ℎ𝑎)𝑓𝑟𝑜𝑚 2014 𝑡𝑜 2018
 

Equation 7 

The baseline consists of all global Bayer crop protection applications in the open field as reported in 

Agrowin which can be characterized by PestLCI and USEtox®.  

Bayer will regularly track progress against the baseline towards the 30% reduction in environmental 

impact by 2030 (see Figure 13 below). 

 

 

Figure 13: Overview of available Bayer potential CPP levers and their role within the EI scope12. 

Future scenarios will be calculated by using the same calculation approach as for the baseline. The 

underlying market research input data will be provided annually by the data provider 'Lexagri' via the 

'Agrowin' database which covers 90% of the global crop protection market. Therefore, the envisioned 

scope of the data will be the same as for the baseline data. That encompasses data on: CP applications 

per crop and country; CP applications differentiated per trait system (for some countries where data 

 

12 ICM – Integrated Crop Management, ULV – Ultra-low volume 
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are available); application method; dose; total ha treated per product; and application timing (crop 

growth stage).  

Based on these annual input data updates, the EI calculation will be done automatically in an 

established database (see Figure 14 for the structure of the database) based on the same PestLCI and 

USEtox® modelling framework that are used for the 2018 data set described in this report.. Bayer 

utilizes the PestLCI and USEtox® models and its associated input data as received by DTU. Finally, 

the calculated impact scores of the future scenarios will be compared against the baseline impact to 

track progress against the 30% objective.  

The performance tracking will be done using a 5-year rolling treated-area-weighted global 

environmental impact per ha. For example, in the performance tracking period 2017 to 2021, the 

Environmental Impact (EI) score is calculated using the below formulae after which it is compared with 

the baseline result. 

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝐵𝑎𝑦𝑒𝑟 𝐸𝐼 𝑓𝑟𝑜𝑚 2017 𝑡𝑜 2021

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝐵𝑎𝑦𝑒𝑟 𝑇𝑟𝑒𝑎𝑡𝑒𝑑 𝐴𝑟𝑒𝑎 (ℎ𝑎)𝑓𝑟𝑜𝑚 2017 𝑡𝑜 2021
 

Equation 8 

Bayer will report its global relative progress against the baseline. Illustrative example: “Based on the 

data collected between 2017-2021, we have reduced the treated-area-weighted environmental impact 

per hectare of our global crop protection portfolio by X% against the 2014-2018 baseline.” 
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Figure 14: The interconnectivity between different input data embedded in the database for the derivation of EI 
score. 

 

If additional input data become available in the future, Bayer will evaluate with the Technical University 

of Denmark how to best integrate these data. Such potential data might encompass: Environmental 

mitigation measures as practically applied on field; Seeds & Traits specific collected CP application 

data in additional countries; Field information (if we choose to measure at field-level) such as field size, 

slope, off-field surfaces, drainage depth, etc.; Agronomic practices relevant to CP program/doses such 

as tillage, cover crops, crop rotation (see Figure 15)... 
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Figure 15: Outline of the Bayer EIR baseline and the performance tracking concept. 

 

4.2 Sensitivity analysis: USEtox® 

A full sensitivity analysis, starting from the environmental impact scores, covering both PestLCI, 

USEtox® and the respective data input parameters, is not yet available from the scientific consortium. 

Also, if there are updates to the underlying data requirements for PestLCI and USEtox®, e.g., the 

inclusion of climate data where relevant, an updated sensitivity analysis would be assessed once 

available from the consortium. As the most dominant factor in environmental impact scores is often the 

substance specific characterization factor from USEtox®, a sensitivity analysis for USEtox® is provided 

in this study. 

An additional sensitivity study was also done for understanding how varying input parameters in 

USEtox® influence ecotoxicity impact characterization results. In this sensitivity approach, Bayer used 

the existing USEtox® ecotoxicity characterization model, except that data inputs are specified as 

probability distributions as opposed to point estimates. Input data distributions are sampled 

independently 10,000 times, and the values were used as input to USEtox® to calculate fate, eco-

exposure, and ecotoxicity effect factors, and resulting stochastic characterization factors plotted as 

frequency distributions along with descriptive statistics based on Monte Carlo simulations for all sample 

distribution combinations. To evaluate the relative influence of input parameter variability on calculated 

characterization factors, we compare Spearman’s rank correlation indices for all inputs. This approach 

has been applied and is further detailed in a previous study on a pharmaceutical tested in USEtox® 

(Wender, Prado, Fantke, Ravikumar, & Seager, 2018). Input data for fate, eco-exposure and ecotoxicity 

effect modelling that have been varied are presented in Table 9 below. As an initial default, Bayer 

assumed uncertainty ranges having independent uniform distributions for all input parameters, 

spanning one order of magnitude (a factor of 10) above and below the point estimate. Deviations from 

these assumptions would change some aspects of the simulated distributions of characterization 

factors, but the overall grouping of more influential input parameters may not change.  
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Table 9: Fate, eco-exposure and ecotoxicity effect relevant input data for USEtox® and their modelled variance for 
the neutral test substance methamidophos (CAS RN: 10265-92-6)13. 

Parameter Description Units Point 
value(s) 

Uncertainty 
range 

 

Reference 

MW Molecular 
weight 

g/mol 141.1  

141.1 

Chemical 
formula 

Kow Octanol-water 
partitioning 
coefficient 

l/l 0.16 
 

0.016—1.6 

EPISuite, 
experimental 

value 

Koc Soil organic 
carbon-water 
partitioning 
coefficient 

l/kg 5.01 
 

0.501—50.1 

EPISuite, 
experimental 

value 

Kh Henry’s law 
constant 

Pa 
m3/mol 

8.8×10-5 
 

8.8×10-6—8.8×10-

4 

EPISuite, 
HenryWin 

Pvap Vapour 
pressure 

Pa 4.7×10-3 
 

4.7x10-4—0.047 

EPISuite, 
experimental 

value 

Solubility Solubility in 
water 

mg/l 1×106 
 

1×105—1×107 

EPISuite, 
experimental 

value 

kdeg, air Degradation 
rate constant 

in air 

1/s 2.5×10-5 
 

2.5×10-6—2.5×10-

4 

EPISuite, 
AopWin 

kdeg, water Degradation 
rate constant 

in water 

1/s 5.3×10-7 
 

5.3×10-8—5.3×10-

6 

EPISuite, BioWin 

kdeg, soil Degradation 
rate constant 

in soil 

1/s 2×10-6 
 

2×10-7—2×10-5 

PPDB, field 
DT50 based 

kdeg, 
sediment 

Degradation 
rate constant 
in sediment 

1/s 5.9×10-8 
 

5.9×10-9—5.9×10-

7 

EPISuite, BioWin 

BAF fish Bioaccumulati
on factor in 

fish 

l/kg 0.9 
 

0.09—9 

EPISuite, 
BCFBAF upper 

trophic 

HC50 Freshwater 
aquatic 
hazard 

concentration 

mg/l 0.94 
 

0.094—9.4 

USEtox®, 
precalculated 

 

Results of the sensitivity analysis of USEtox® input parameter variations are shown in Figure 16 below 

for different emission compartments relevant for CPP emissions, with related Spearman Rank 

 

13 The sensitivity analysis results shown for a single substance are purely illustrative. Sensitivity has been tested in various 

publications across a variety of substances, yielding a typical ranking of input parameters influencing model output (see e.g. 
Fantke et al. 2012, https://doi.org/10.1021/es301509u). The presented results are in line with this general ranking of parameters. 

https://doi.org/10.1021/es301509u
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Correlation results shown for the most influential input parameters per emission scenario given in 

Figure 17. 

 

Solid lines on the graph denote frequency distributions from 10,000 Monte Carlo runs while dashed lines represent 

normal distributions that were fitted to the underlying log-transformed data. 

Figure 16: Stochastic freshwater aquatic ecotoxicity characterization factors (PAF m³ d/kg emitted) for 
methamidophos (CAS RN: 10265-92-6) emitted to continental rural air, freshwater, agricultural and natural soil.  
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Figure 17: Spearman Rank Correlation for model input variables with the largest magnitude of influence on 
characterization factor variability across four emission scenarios in USEtox®. 

Spearman Rank Correlation identified that USEtox® ecotoxicity characterization factor results for 

methamidophos (CAS RN: 10265-92-6) are mainly influenced by degradation half-lives across 

compartments, followed by ecotoxicity effect information, and partitioning coefficients (mainly Kaw and 

Koc for this moderately volatile and rather polar (i.e. not very lipophilic) chemical). Kow would typically 

become more relevant for more lipophilic chemicals (i.e. log Kow > 3). From this sensitivity analysis, 

we identified degradation and ecotoxicity information as main aspects that require careful consideration 

in refined scenarios, and where data quality for these aspects should be improved across substances. 

Moreover, as different input parameters affect both fate and exposure factor, while only the ecotoxicity 

information affects the effect factor, the ecotoxicity information gains additional importance in terms of 

influencing variability of characterization factors, which consist of the simple product of fate, exposure 

and effect factors (i.e. characterization factors are equally sensitive towards these three intermediate 

factors). Moreso, on the influence of input parameter dependency on the results interpretation of the 

sensitivity analysis, the most influential parameters in Figure 17 above are truly independent of other 

parameters in the input dataset, and with that the interpretation of the applied statistical approach is 

not biased. While some parameters are really co-dependent (e.g. mostly Koc and BAF with Kow, and 

KH25C with Sol25 and Pvap25), they are not driving sensitivity of model results for most scenarios. 

4.3 Qualitative discussion of uncertainty  

Dubus et al. (2003) have extensively discussed numerous sources of uncertainty in CPP emission 

modeling including uncertainty in primary data (from the spatial and temporal variability of 

environmental variables, from sampling procedures and measurement errors in the field, and from 

analysis in the laboratory), uncertainty in the derivation of model input parameters (when a 

modeler might decide to (a) leave the parameters at their default values, (b) make an educated guess 

using expert judgement, (c) extract values from existing databases or (d) derive the values from 

empirical functions presented in the literature; each procedure may introduce uncertainty into the 

modelling, depending on the sensitivity of the model), and other factors (such as multiplicity of 

physical, chemical and biological factors affecting the fate of CPPs; the inability of a model to represent 

reality accurately even when adequate model inputs are being used; subjectivity introduced by the 

modeler; linguistic imprecision; inappropriate use of concepts implemented in the models; human error 

through unstable or biased experimental procedures, interpretation, typing error or the simple variation 

between people; upscaling of models to a scale larger than that for which they were developed) might 

affect the representativeness of the results. 

“Various sensitivity studies have demonstrated that the combined use of the PestLCI and USEtox® 

models lead to a reasonable impact assessment. Nevertheless, users are advised to exercise caution 

when interpreting the results, since, despite their detailed simulation, both methods still exhibit 

uncertainties” (Gentil, et al., 2020). Also, the applied models are calibrated using past environmental 

data, which might need to be adapted considering possibly relevant changes in environmental 

conditions, such as changes in average air temperature. 

The results of both models have been evaluated in various other studies, with uncertainty ranges 

provided that are dominated by effect factors in USEtox®, and overall ranging from 1 to 3 orders of 

magnitude for ecotoxicity impacts (see e.g. Dijkman et al. (2012), Rosenbaum et al. (2008)).” However, 

due to its aggregated and relative nature, the CP EIR target percent reduction will be less uncertain. 

In addition, in terms of the inventory data on global crop protection product consumption taken from 

the ‘Agrowin’ dataset, we argue that Agrowin provides the most extensive and rigorously collected data 

set currently available that covers agricultural CP consumption data (i.e., consumption data on what 
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has been truly applied on the field). Other existing databases on CPPs use statistics which are not 

consumption data but mostly sales data. For example, the FAOSTAT CPP use database by the Food 

and Agriculture Organization (FAO) of the United Nations covers CPPs sales in most countries. In 

some countries FAO data includes non-agricultural uses such as home and garden use. Furthermore, 

the FAO CPP definition varies in some countries. Thus, by using the Agrowin dataset which is based 

on actual CPP consumption data (not sales data), we worked to ensure the representativeness of the 

primary data as much as possible. 

A full uncertainty assessment might be needed, and this will be added once available from the scientific 

consortium. Based on analysis we argue that there are no significant factors that would limit the 

interpretation of the findings of this study.  

4.4 Main limitations and how they are addressed 

The main limitations in this assessment are associated with the Agrowin inventory data, emission 

modeling with PestLCI, and impact assessment using USEtox®.  

Regarding limitations of the Agrowin inventory data on agricultural CP consumption data, the frequency 

and comprehensiveness of the available farmer-panel interview data varies, because it depends on 

the commercial relevance of a market, the accessibility to farmers for farmer-panel interviews and other 

factors. In big and commercially relevant markets, farmer-panel data is typically available on a yearly 

basis. In other markets with a lower commercial relevance, the frequency of farmer-panel data 

collection can be lower and irregular (e.g. only every 2-3 years in the Belgium-potato market). Even if 

farmer-panel data is available in a given crop and country, Bayer might decide to not purchase a farmer-

panel study on a certain market at all because the commercial relevance of that market is too low. In 

those cases, Bayer intends to fill the data from other sources. For such countries and markets where 

no farmer-panel data are available, data gaps are filled by using national statistics (e.g., import and 

export data). If there are no national statistics, dedicated Bayer market analysis and business 

intelligence colleagues fill the data gaps based on their expert knowledge of the respective markets 

(e.g., based on sales information). Even taking those limitations into account, the current Agrowin data 

set covers about 85-95% of the Bayer specific crop protection market value and ~90% of all crop 

protection applied globally (coverage varies from year to year). For the target delivery, Bayer relies as 

well on its crop protection sales planning which covers all CP Bayer sales (as opposed to application 

data in Agrowin). Bayer therefore does not exclude any known CP sales from the analysis of mitigation 

measures and target delivery. In addition, all substances which can be characterized by USEtox® are 

part of Bayer analysis.  

Regarding limitations in the emission modeling via PestLCI, no buffer zone was assumed in the 

calculation of primary emissions as a result of lack of data in the Agrowin inventory data set. Also, 

secondary distribution was excluded from the environmental impact assessment, because the level of 

detail required to model secondary distribution processes are not readily available in the present 

screening-level assessment14, which would introduce large additional uncertainties related to collecting 

and defining e.g. field-level characteristics at the global scale. Another limitation related to PestLCI is 

that for rice, no distinction was made between paddy and upland rice as we assume only emissions to 

compartments available in PestLCI. PestLCI currently does not consider paddy water as a separate 

compartment. A complex dynamic between dry and wet surfaces for paddy rice and similar crops will 

require further improvements of field emission distributions in PestLCI.  

 

14  low-resolution assessments as applied via the combination of PestLCI and USEtox to allow for a global coverage 

http://fenixservices.fao.org/faostat/static/documents/RP/RP_e_Country_Notes.pdf
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Regarding limitations of the impact assessment via USEtox®, for this report, only freshwater ecotoxicity 

impacts have been considered, since it represents the current scope of USEtox®. To address this issue, 

Bayer is collaborating with DTU, Technical University of Munich and The Ohio State University to 

integrate the impacts on pollinators in the near future into the assessment. The academic consortium 

under the auspices of UNEP-SETAC GLAM working group is working on other impact categories such 

as soil organisms. This will ideally follow similar consensus-building principles as they are underlying 

USEtox® (Hauschild, et al., 2008). Once the additional impact categories are available in the scientific 

consensus version of the models, Bayer is planning to incorporate the updated versions.  

In addition, USEtox® is a lumped systems course-dimension-scale model. This means that it includes 

compartments to represent various components of the environment, but that there are limited explicit 

vertical or horizontal dimensions in these compartments. The model has embedded urban, regional, 

and global environments but does not have detailed spatial resolution. Regarding the use of SSDs in 

deriving the effect factor, SSDs in all assessments are built from species for which toxicity effect test 

information is available. These species do not necessarily reflect any actual real-world ecosystems as 

most test data are derived from standard laboratory tests. With that, SSDs have a limited ability to 

reflect actual ecosystem effects but are suitable to highlight differences in toxicity pressure of different 

chemicals across species. Nonetheless, previous studies report an observed association between 

SSD-predicted and observed biodiversity impacts (Posthuma & De Zwart, 2012). 

Overall, both underlying models of the present analysis, namely PestLCI Consensus and USEtox®, 

have undergone model evaluations via previous studies. PestLCI results have been compared to 

results from more sophisticated risk assessment models (Dijkman, Birkved, & Hauschild, 2012), 

showing overall consistency between the compared models and explaining main differences along 

considered or omitted processes in each model. USEtox®, in contrast, was originally built based on a 

systematic model comparison of models that had been evaluated individually before USEtox® was 

developed. The overall model comparison leading to USEtox® is described in Hauschild et al. (2008), 

while an example model that was included in the model comparison leading to USEtox®, SimpleBox, 

was for instance evaluated for specific chemicals against other models as well as against 

measurements (Hollander, et al., 2007). Hence, no additional model evaluation was included in the 

present study. All methodological aspects that are not yet described elsewhere in this report will be 

published in separate scientific articles, subject to international scientific peer review. 

5. Future updates to this report 

This report is limited to describing the methodology and overall impact assessment calculation process. 

The methodological report will be further updated if there are changes of model boundaries and scope, 

changes of the metric, changes in calculation methodology of the models and if there are model 

advancement such as the inclusion of pollinators and soil organisms.  

Further information related to the performance tracking, quantitative progress reporting and how the 

Crop Science division of Bayer is delivering against its target will be continuously reported in the Crop 

Protection Environmental Impact Reduction (CP EIR) section of the Bayer sustainability report and 

Crop Science division of Bayer sustainability progress report which are released annually.   

https://www.bayer.com/en/sustainability/sustainability-reports
https://www.bayer.com/en/sustainability-progress-report
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7. Appendix  

7.1 Percentages of surface areas represented by 
freshwater, agricultural soil, and natural soil for 
continental level parameterizations in USEtox® based 
on FAO (2020) data* 

* These fractions are only relevant for the marginal emission fraction that reaches off-field areas. 

Country Agricultural Soil Natural Soil Freshwater 

Afghanistan 59% 41% 0% 

Albania 43% 56% 1% 

Algeria 17% 83% 0% 

American Samoa 20% 80% 0% 

Andorra 40% 60% 0% 

Angola 46% 54% 0% 

Anguilla 0% 100% 0% 

Antigua & Barbuda 20% 80% 0% 

Argentina 40% 59% 2% 

Armenia 59% 37% 4% 

Aruba 11% 89% 0% 

Australia 46% 53% 1% 

Austria 32% 66% 2% 

Azerbaijan 58% 37% 5% 

The Bahamas 1% 60% 39% 

Bahrain 11% 89% 0% 

Bangladesh 76% 11% 13% 

Barbados 23% 77% 0% 

Belarus 41% 57% 2% 

Belgium 45% 54% 1% 

Belize 8% 92% 1% 

Benin 35% 63% 2% 

Bermuda 6% 94% 0% 

Bhutan 13% 86% 1% 
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Bolivia 35% 64% 1% 

Bonaire, Sint Eustatius and 
Saba 0% 100% 0% 

Bosnia & Herzegovina 43% 57% 0% 

Botswana 46% 52% 3% 

Brazil 28% 70% 2% 

British Virgin Is. 47% 53% 0% 

Brunei 3% 88% 9% 

Bulgaria 46% 51% 2% 

Burkina Faso 44% 55% 0% 

Burundi 79% 12% 8% 

Cape Verde 20% 80% 0% 

Cambodia 33% 65% 3% 

Cameroon 21% 79% 1% 

Canada 6% 83% 10% 

Cayman Is. 11% 79% 10% 

Central African Republic 8% 92% 0% 

Chad 40% 58% 2% 

Channel Islands 43% 57% 0% 

Chile 21% 77% 2% 

China, Hong Kong SAR 4% 90% 6% 

China, Macao SAR 0% 100% 0% 

China, mainland 56% 42% 2% 

China, Taiwan Province of 22% 76% 2% 

Colombia 43% 54% 3% 

Comoros 70% 30% 0% 

Congo 31% 69% 0% 

Cook Islands 6% 94% 0% 

Costa Rica 34% 65% 0% 

Cote d'Ivoire 67% 32% 1% 

Croatia 27% 72% 1% 

Cuba 62% 32% 6% 

Curaçao 0% 100% 0% 

Cyprus 15% 85% 0% 

Czech Republic 46% 52% 2% 

North Korea 22% 78% 0% 
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Congo, DRC 15% 82% 3% 

Denmark 66% 27% 7% 

Djibouti 73% 26% 0% 

Dominica 33% 67% 0% 

Dominican Republic 50% 49% 1% 

Ecuador 22% 75% 3% 

Egypt 4% 95% 1% 

El Salvador 58% 41% 2% 

Equatorial Guinea 7% 93% 0% 

Eritrea 63% 37% 0% 

Estonia 23% 71% 6% 

Swaziland 71% 28% 1% 

Ethiopia 34% 65% 1% 

Falkland Is. 93% 7% 0% 

Faroe Is. 70% 27% 2% 

Fiji 17% 83% 0% 

Finland 7% 81% 11% 

France 52% 48% 0% 

French Guiana 0% 99% 1% 

French Polynesia 14% 86% 0% 

Gabon 9% 88% 4% 

The Gambia 60% 29% 12% 

Georgia 34% 65% 0% 

Germany 47% 50% 2% 

Ghana 55% 40% 5% 

Gibraltar 0% 100% 0% 

Greece 46% 52% 2% 

Greenland 1% 99% 0% 

Grenada 24% 76% 0% 

Guadeloupe 31% 69% 1% 

Guam 30% 70% 0% 

Guatemala 36% 62% 2% 

Guinea 59% 41% 0% 

Guinea-Bissau 29% 43% 28% 

Guyana 6% 84% 9% 
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Haiti 67% 33% 1% 

Holy See 0% 100% 0% 

Honduras 31% 68% 1% 

Hungary 54% 44% 2% 

Iceland 19% 79% 2% 

India 60% 29% 11% 

Indonesia 33% 65% 2% 

Iran 29% 64% 7% 

Iraq 21% 78% 0% 

Ireland 65% 32% 2% 

Isle of Man 70% 30% 0% 

Israel 30% 68% 2% 

Italy 44% 54% 2% 

Jamaica 41% 58% 1% 

Japan 12% 84% 4% 

Jordan 12% 88% 1% 

Kazakhstan 79% 20% 1% 

Kenya 49% 49% 2% 

Kiribati 42% 58% 0% 

Kuwait 8% 92% 0% 

Kyrgyzstan 54% 42% 4% 

Laos 9% 89% 3% 

Latvia 32% 65% 4% 

Lebanon 65% 32% 2% 

Lesotho 86% 14% 0% 

Liberia 20% 64% 16% 

Libya 9% 91% 0% 

Liechtenstein 33% 67% 0% 

Lithuania 47% 49% 4% 

Luxembourg 51% 48% 1% 

Madagascar 70% 29% 1% 

Malawi 60% 14% 26% 

Malaysia 26% 73% 1% 

Maldives 21% 79% 0% 

Mali 34% 65% 2% 
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Malta 32% 68% 0% 

Marshall Is. 48% 52% 0% 

Martinique 30% 64% 7% 

Mauritania 38% 62% 0% 

Mauritius 42% 57% 0% 

Mayotte 53% 47% 0% 

Mexico 50% 49% 1% 

Micronesia 31% 69% 0% 

Monaco 0% 100% 0% 

Mongolia 72% 27% 0% 

Montenegro 19% 78% 3% 

Montserrat 30% 70% 0% 

Morocco 68% 32% 0% 

Mozambique 53% 46% 2% 

Myanmar 20% 76% 4% 

Namibia 47% 53% 0% 

Nauru 20% 80% 0% 

Nepal 29% 69% 3% 

Netherlands 54% 35% 11% 

New Caledonia 10% 88% 2% 

New Zealand 39% 60% 2% 

Nicaragua 42% 50% 8% 

Niger 37% 63% 0% 

Nigeria 76% 22% 1% 

Niue 19% 81% 0% 

Norfolk I. 25% 75% 0% 

Macedonia 50% 48% 2% 

Northern Mariana Is. 1% 99% 0% 

Norway 3% 92% 6% 

Oman 5% 95% 0% 

Pakistan 48% 49% 3% 

Palau 9% 91% 0% 

Gaza Strip 74% 26% 0% 

West Bank 74% 26% 0% 

Panama 29% 69% 2% 
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Papua New Guinea 3% 95% 2% 

Paraguay 42% 55% 2% 

Peru 19% 80% 0% 

Philippines 43% 57% 1% 

Pitcairn 0% 100% 0% 

Poland 47% 51% 2% 

Portugal 42% 57% 1% 

Puerto Rico 19% 81% 0% 

Qatar 6% 94% 0% 

South Korea 17% 81% 3% 

Moldova 69% 28% 3% 

Reunion 19% 81% 0% 

Romania 59% 37% 4% 

Russia 13% 82% 4% 

Rwanda 73% 20% 7% 

Saint Barthélemy 0% 100% 0% 

Saint Helena, Ascension and 
Tristan da Cunha 31% 69% 0% 

St. Kitts & Nevis 23% 77% 0% 

St. Lucia 16% 82% 2% 

St. Pierre & Miquelon 9% 87% 4% 

St. Vincent & the Grenadines 18% 82% 0% 

Saint-Martin (French part) 0% 100% 0% 

Samoa 18% 82% 0% 

San Marino 38% 62% 0% 

Sao Tome & Principe 46% 54% 0% 

Saudi Arabia 81% 19% 0% 

Senegal 46% 52% 2% 

Serbia 40% 59% 1% 

Seychelles 3% 97% 0% 

Sierra Leone 55% 45% 0% 

Singapore 1% 98% 1% 

Sint Maarten (Dutch part) 0% 100% 0% 

Slovakia 39% 59% 2% 

Slovenia 30% 69% 1% 

Solomon Is. 4% 93% 3% 
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Somalia 70% 28% 2% 

South Africa 79% 20% 0% 

South Sudan 45% 55% 0% 

Spain 52% 46% 1% 

Sri Lanka 45% 48% 6% 

Sudan 37% 62% 1% 

Suriname 1% 94% 5% 

Sweden 7% 83% 10% 

Switzerland 38% 57% 4% 

Syria 76% 23% 1% 

Tajikistan 35% 63% 2% 

Thailand 45% 55% 0% 

Timor-Leste 23% 77% 0% 

Togo 70% 25% 4% 

Tokelau 60% 40% 0% 

Tonga 49% 47% 4% 

Trinidad & Tobago 11% 89% 0% 

Tunisia 63% 32% 5% 

Turkey 49% 49% 2% 

Turkmenistan 72% 24% 4% 

Turks & Caicos Is. 1% 99% 0% 

Tuvalu 60% 40% 0% 

Uganda 72% 8% 20% 

Ukraine 71% 25% 4% 

United Arab Emirates 5% 94% 0% 

United Kingdom 71% 28% 1% 

Tanzania 45% 48% 7% 

United States 44% 48% 7% 

Virgin Is. 9% 91% 0% 

Uruguay 80% 19% 1% 

Uzbekistan 58% 40% 2% 

Vanuatu 15% 85% 0% 

Venezuela 24% 72% 3% 

Vietnam 39% 55% 6% 

Wallis and Futuna Islands 43% 57% 0% 
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Western Sahara 19% 81% 0% 

Yemen 44% 56% 0% 

Zambia 32% 67% 1% 

Zimbabwe 42% 57% 1% 

Central America Caribbean 21% 74% 5% 

Global 38% 59% 3% 

7.2 External sources in Agrowin 2019 (all other crop-
country combinations are based on non farmer-panel 
data) 

Market Country Source Crop Main Group Data purchased 

CP Argentina Kleffmann Corn/Maize X 

CP Argentina Kleffmann Soybeans X 

CP Argentina Kleffmann Cereals X 

CP Belgium Kynetec Cereals X 

CP Belgium Kynetec Corn/Maize X 

CP Belgium Kynetec Potatoes X 

CP Belgium Kynetec Fruits X 

CP Belgium Kynetec Leeks X 

CP Brazil Spark Corn/Maize X 

CP Brazil Spark Cotton X 

CP Brazil Spark Coffee X 

CP Brazil Spark Soybeans X 

CP Brazil Kleffmann Cotton X 

CP Brazil Kleffmann Corn/Maize X 

CP Brazil Kleffmann Soybeans X 

CP Bulgaria Kleffmann Cereals X 

CP Bulgaria Kleffmann Corn/Maize X 

CP Bulgaria Kleffmann Oilseed-Rape/Canola X 

CP Canada Agdata  X 

CP China Kleffmann Corn/Maize X 

CP China Kleffmann Rice X 

CP China Arn/Shanghai All Available Crops X 
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CP Czech Rep. Kleffmann Cereals X 

CP Czech Rep. Kleffmann Corn/Maize X 

CP Czech Rep. Kleffmann Oilseed-Rape/Canola X 

CP Czech Rep. Kleffmann Potatoes X 

CP Czech Rep. Kleffmann Beets X 

CP Czech Rep. Kleffmann Grapes X 

CP Denmark Kleffmann Cereals X 

CP Finland Kleffmann Cereals X 

CP France Adquation-France Beets X 

CP France Adquation-France Cereals X 

CP France Adquation-France Corn/Maize X 

CP France Adquation-France Oilseed-Rape/Canola X 

CP France Adquation-France Forage Crops X 

CP France Adquation-France Sorghum & Millet X 

CP France Adquation-France Sunflower X 

CP France Adquation-France Soybeans X 

CP France Adquation-France Potatoes X 

CP France Adquation-France Top Fruits X 

CP Germany Kleffmann Beets X 

CP Germany Kleffmann Cereals X 

CP Germany Kleffmann Corn/Maize X 

CP Germany Kleffmann Oilseed-Rape/Canola X 

CP Germany Kleffmann Forage Crops X 

CP Germany Kleffmann Oilseeds: Other X 

CP Germany Kleffmann Potatoes X 

CP Germany Kleffmann Fruits X 

CP Germany Kleffmann Asparagus X 

CP Germany Kleffmann Grapes X 

CP Germany Kleffmann Strawberry X 

CP Hungary Kleffmann Beets X 

CP Hungary Kleffmann Cereals X 

CP Hungary Kleffmann Corn/Maize X 

CP Hungary Kleffmann Oilseed-Rape/Canola X 

CP Hungary Kleffmann Sunflower X 

CP Hungary Kleffmann Vegetables & Flowers X 
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CP Hungary Kleffmann Fruits X 

CP Hungary Kleffmann Grapes X 

CP Indonesia Kleffmann Corn/Maize X 

CP Kazakhstan Kleffmann Cereals X 

CP Kazakhstan Kleffmann Cotton X 

CP Kazakhstan Kleffmann Flax/Linseed X 

CP Kazakhstan Kleffmann Sunflower X 

CP Kazakhstan Kleffmann Rice X 

CP Kazakhstan Kleffmann Vegetables & Flowers X 

CP Kazakhstan Kleffmann Fruits X 

CP Kazakhstan Kleffmann Lentil X 

CP Kazakhstan Kleffmann Potatoes X 

CP Latvia Kleffmann Cereals X 

CP Latvia Kleffmann Oilseed-Rape/Canola X 

CP Lithuania Kleffmann Cereals X 

CP Lithuania Kleffmann Oilseed-Rape/Canola X 

CP Mexico Kleffmann Corn/Maize X 

CP Mexico Kleffmann Potatoes X 

CP Mexico Kleffmann Tomatoes X 

CP Netherlands Branches&Trends Arable Crops X 

CP Netherlands Branches&Trends Flower Bulbs X 

CP Netherlands Branches&Trends Cauliflower X 

CP Netherlands Branches&Trends Broccoli X 

CP Netherlands Branches&Trends Fruits X 

CP Paraguay Kleffmann Cereals X 

CP Philippines Kleffmann Corn/Maize X 

CP Philippines Kleffmann Rice X 

CP Poland Kleffmann Beets X 

CP Poland Kleffmann Cereals X 

CP Poland Kleffmann Corn/Maize X 

CP Poland Kleffmann Oilseed-Rape/Canola X 

CP Poland Kleffmann Potatoes X 

CP Poland Kleffmann Fruits X 

CP Poland Kleffmann Berries X 

CP Poland Kleffmann Vegetables & Flowers X 
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CP Romania Kleffmann Cereals X 

CP Romania Kleffmann Corn/Maize X 

CP Romania Kleffmann Oilseed-Rape/Canola X 

CP Romania Kleffmann Sunflower X 

CP Romania Kleffmann Potatoes X 

CP Romania Kleffmann Soybeans X 

CP Romania Kleffmann Fruits X 

CP Romania Kleffmann Vegetables & Flowers X 

CP Romania Kleffmann Grapes X 

CP Russian Fed. Kleffmann Cereals X 

CP Russian Fed. Kleffmann Corn/Maize X 

CP Russian Fed. Kleffmann Oilseed-Rape/Canola X 

CP Russian Fed. Kleffmann Sorghum & Millet X 

CP Russian Fed. Kleffmann Sunflower X 

CP Russian Fed. Kleffmann Soybeans X 

CP Russian Fed. Kleffmann Fruits X 

CP Russian Fed. Kleffmann Potatoes X 

CP Russian Fed. Kleffmann Beets X 

CP Russian Fed. Kleffmann Vegetables & Flowers X 

CP Russian Fed. Kleffmann Grapes X 

CP Slovakia Kleffmann Cereals X 

CP Slovakia Kleffmann Corn/Maize X 

CP Slovakia Kleffmann Sunflower X 

CP Slovakia Kleffmann Oilseed-Rape/Canola X 

CP Slovakia Kleffmann Potatoes X 

CP Slovakia Kleffmann Beets X 

CP Slovakia Kleffmann Grapes X 

CP Sweden Kleffmann Cereals X 

CP Thailand Kleffmann Corn/Maize X 

CP Turkey Kleffmann Cereals X 

CP U.Kingdom(Uk) Kynetec-Seed-
Dressing 

Beets X 

CP U.Kingdom(Uk) Kynetec-Seed-
Dressing 

Cereals X 

CP U.Kingdom(Uk) Kynetec-Seed-
Dressing 

Corn/Maize X 
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CP U.Kingdom(Uk) Kynetec-Seed-
Dressing 

Oilseed-Rape/Canola X 

CP U.Kingdom(Uk) Kynetec-Seed-
Dressing 

Flax/Linseed X 

CP U.Kingdom(Uk) Kynetec-Seed-
Dressing 

Forage Crops X 

CP U.Kingdom(Uk) Kynetec-Seed-
Dressing 

Oilseeds: Other X 

CP U.Kingdom(Uk) Kynetec-Seed-
Dressing 

Potatoes X 

CP U.Kingdom(Uk) Kynetec Beets X 

CP U.Kingdom(Uk) Kynetec Cereals X 

CP U.Kingdom(Uk) Kynetec Corn/Maize X 

CP U.Kingdom(Uk) Kynetec Oilseed-Rape/Canola X 

CP U.Kingdom(Uk) Kynetec Fallow-Land/Set-Asid X 

CP U.Kingdom(Uk) Kynetec Flax/Linseed X 

CP U.Kingdom(Uk) Kynetec Forage Crops X 

CP U.Kingdom(Uk) Kynetec Oilseeds: Other X 

CP U.Kingdom(Uk) Kynetec Potatoes X 

CP Ukraine Kleffmann Beets X 

CP Ukraine Kleffmann Cereals X 

CP Ukraine Kleffmann Corn/Maize X 

CP Ukraine Kleffmann Oilseed-Rape/Canola X 

CP Ukraine Kleffmann Sorghum & Millet X 

CP Ukraine Kleffmann Sunflower X 

CP Ukraine Kleffmann Fruits X 

CP Ukraine Kleffmann Grapes X 

CP Ukraine Kleffmann Vegetables & Flowers X 

CP Ukraine Kleffmann Potatoes X 

CP Ukraine Kleffmann Soybeans X 

CP Uruguay Kleffmann Soybeans X 

CP Usa Kynetec Corn/Maize X 

CP Usa Kynetec Soybeans X 

CP Usa Kynetec Cotton X 

CP Usa Kynetec Specialty Crops X 

CP Usa Kynetec Other Row Crops X 

CP Vietnam Kleffmann Corn/Maize X 
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CP Vietnam Kleffmann Rice X 

 

7.3 Checklist quality standards for farmer-Panel Providers   
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