

Petition for the Determination of Nonregulated Status for Dicamba and Glufosinate-Tolerant Cotton MON 88701

RELEASE OF INFORMATION

Monsanto is submitting the information in this petition for review by the USDA as part of the regulatory process. By submitting this information, Monsanto does not authorize its release to any third party. In the event the USDA receives a Freedom of Information Act request, pursuant to 5 U.S.C., § 552, and 7 CFR Part 1, covering all or some of this information, Monsanto expects that, in advance of the release of the document(s), USDA will provide Monsanto with a copy of the material proposed to be released and the opportunity to object to the release of any information based on appropriate legal grounds, e.g., responsiveness, confidentiality, and/or competitive concerns. Monsanto understands that a copy of this information may be made available to the public in a reading room and upon individual request as part of a public comment period. Except in accordance with the foregoing, Monsanto does not authorize the release, publication or other distribution of this information (including website posting) without Monsanto's

...norize the telease, pr ...norize the release, pr ...norize the release th regulatory authority to which it has been submitted by Monsanto Company and only in support of actions requested by Monsanto Company. Any other use of this without prior written consent of Monsant document, Monsanto does not grant any party or entity any right to use or license the information or intellectual property described in this document.

CERTIFICATION

The undersigned certifies that, to the best knowledge and belief of the undersigned, this petition includes all information and views on which to base a determination, and that it includes all relevant data and information known to the petitioner that are unfavorable to the petition.

		ime.d
	Ciectin Billion	•
	Regulatory Affairs Manager	P1
	Regulatory Affairs Manager Address: Monsanto Company 800 North Lindbergh Blvd, C3SD St. Louis, MO 63167 St. Louis, MO 63167 Address: Monsanto Company 800 North Lindbergh Blvd, C3SD St. Louis, MO 63167 Address: Monsanto Company 800 North Lindbergh Blvd, C3SD St. Louis, MO 63167 Address: Address: Monsanto Company 800 North Lindbergh Blvd, C3SD St. Louis, MO 63167 Address: Address: Address: Monsanto Company 800 North Lindbergh Blvd, C3SD St. Louis, MO 63167 Address: Address: Address: Address: Address: Monsanto Company 800 North Lindbergh Blvd, C3SD St. Louis, MO 63167 Address: A	
	St. Louis, MO 63167	
	800 North Lindbergh Blyd, C3SD St. Louis, MO 63167, \bigcirc St. Louis, MO	
	tis the prizes so diffical districe of this own	
docur	Content is the product of the and the particular of this document. Intent is the product of the and the particular of this owner. Intent is a finate of the and the particular of this owner. Intent is a finate of the and the particular of the of this owner. Intent is a finate of the and the product of the owner of this owner. Intent is a finate of the and the product of the owner of the owner. Intent is a finate of the owner of the owner of the owner. Intent is a finate of the owner of the owner of the owner. Intent of the owner owner owner owner of the owner of the owner. Intent of the owner owner owner owner of the owner of the owner. Intent of the owner owner. Intent of the owner	
This dot	av rights ore the arriver winds wind a stranger to a stranger the stranger to a strang	
	FUTTICE CONTRES OCT 200	
	any though the	

EXECUTIVE SUMMARY

The Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) has responsibility under the Plant Protection Act (Title IV Pub. L. 106-224, 114 Stat. 438, 7 U.S.C. § 7701-7772) to prevent the introduction and dissemination of plant pests into the U.S. APHIS regulation 7 CFR § 340.6 provides that an applicant may petition APHIS to evaluate submitted data to determine that a particular regulated article does not present a plant pest risk and no longer should be regulated. If APHIS determines that the regulated article does not present a plant pest risk, the petition is granted, thereby allowing unrestricted introduction of the article.

Monsanto Company is submitting this request to APHIS for a determination of nonregulated status for the new biotechnology-derived cotton product, MON 88701, any progeny derived from crosses between MON 88701 and conventional cotton, and any progeny derived from crosses of MON 88701 with biotechnology-derived cotton that have previously been granted nonregulated status under 7 CFR Part 340. jon an'

Product Description

ator Monsanto Company has developed dicamba and glufosinate-tolerant cotton, MON 88701, which will allow in-crop applications of dicamba herbicide for the control of broadleaf weeds from preemergence to seven days preharvest and glufosinate herbicide for broad spectrum weed control from emergence through early bloom growth stage. MON 88701 provides a wider dicamba window of application beyond the current preplant cotton uses and glufosinate application rates and timings that are equivalent to current commercial glufosinate-tolerant cotton. The combination of these two unique herbicide modes-of-action provides an effective weed management system for cotton Glufosinate, a broad-spectrum contact herbicide, provides nonselective control of approximately 120 broadleaf and grass weeds. Additionally, dicamba and all for provide control of herbicide-resistant woodragweed (Ambrosia artemisiifolia), giant ragweed (Ambrosia trifida) and waterhemp (Amaranthus tuberculatus).

MON 88701 contains a demethylase gene from Stenotrophomonas maltophilia that expresses a dicamba mono-oxygenase (DMO) protein to confer tolerance to dicamba herbicide. DMO protein rapidly demethylates dicamba to the herbicidally inactive metabolite 3,6-dichlorosalicylic acid (DCSA). DCSA has been previously identified as a metabolite of dicamba in cotton, soybean, livestock, and soil. Monsanto will request a registration from U.S. EPA for the expanded use of dicamba on MON 88701, an increase in the dicamba residue tolerance for cottonseed, the establishment of a tolerance for cotton gin by-products, and the inclusion of DCSA in the residue definitions for both cottonseed and gin by-products. No other revisions to the dicamba pesticide residue tolerances are necessary including animal products such as meat, eggs, and milk.

Furthermore, the use of dicamba on MON 88701 does not present any new environmental exposure scenarios not previously evaluated and deemed acceptable by U.S. EPA.

MON 88701 also contains a bialaphos resistance (bar) gene from *Streptomyces hygroscopicus* that expresses the phosphinothricin N-acetyltransferase (PAT) protein to confer tolerance to glufosinate herbicide. PAT $(bar)^1$ protein acetylates the free amino group of glufosinate to produce non-herbicidal N-acetyl glufosinate, a well known metabolite in glufosinate-tolerant plants. The use pattern and rate of glufosinate on MON 88701 will follow the existing glufosinate-tolerant cotton uses outlined on the glufosinate herbicide label. The glufosinate residues in MON 88701 treated with commercial glufosinate rates are below the established pesticide residue tolerances for both cottonseed and gin by-products. Therefore, Monsanto will not seek any changes in the glufosinate label or the established tolerances for its use on MON 88701 cotton.

MON 88701 will be combined, through traditional breeding methods, with other deregulated herbicide-tolerant (e.g., glyphosate-tolerant) events. The in-crop use of dicamba and glufosinate herbicides, in addition to glyphosate herbicide, provides improved weed management options in cotton to control a broad spectrum of grass and broadleaf weed species and effective control of weeds resistant to several herbicide families. Successful integration of MON 88701 into glyphosate-tolerant cotton systems will provide: 1) an opportunity for an efficient, effective weed management system for hard-to-control and herbicide-resistant weeds; 2) a flexible system for two additional herbicide modes-of-action for in-crop application in current cotton production systems as recommended by weed science experts to manage future weed resistance development; 3) an option to delay or prevent further resistance to glyphosate and other critically important cotton herbicides; in particular, herbicides in the acetolactate synthase inhibitor (ALS) and protoporphyrinogen oxidase inhibitor (PPO) class of chemistry; 4) crop safety to dicamba, glufosinate, and glyphosate, and 5), additional weed management tools to enhance weed management systems necessary to maintain yield and quality to meet the growing needs of the food, feed, and industrial markets. 00

Data and Information Presented Confirms the Lack of Plant Pest Potential and the Food and Feed Safety of MON 88701 Compared to Conventional Cotton The data and information propert

The data and information presented in this petition demonstrate MON 88701 is agronomically, phenotypically, and compositionally comparable to commercially cultivated cotton, with the exception of its tolerances to both dicamba and glufosinate. Moreover, the data presented demonstrate MON 88701 is unlikely to pose an increased plant pest risk, including weediness, or adverse environmental impact, compared to commercially cultivated cotton. The food, feed, and environmental safety of MON 88701 was confirmed based on multiple, well-established lines of evidence:

¹ PAT (*bar*) indicates the PAT protein encoded by the *bar* gene isolated from *S. hygroscopicus*. The *pat* gene from *S. viridochromogenes* also encodes a PAT protein that confers glufosinate tolerance.

- Cotton is a familiar crop that does not possess any of the attributes commonly • associated with weeds, and has a history of safe usage and consumption.
- A detailed molecular characterization of the inserted DNA demonstrated a single, • intact copy of the T-DNA insert in a single locus within the cotton genome.
- Extensive evaluation of the proteins expressed in MON 88701, dicamba monooxygenase (MON 88701 DMO) and phosphinothricin acetyltransferase [PAT (bar)], confirmed they are unlikely to be toxins or allergens. In addition, PAT proteins are in several other commercially-available crops that have been reviewed and previously deregulated by USDA, including those in cotton, corn, soy, canola, sugarbeet, and rice.
- A compositional assessment of cottonseed confirmed that MON 88701 is compositionally equivalent to commercially cultivated cotton.
- An extensive evaluation of phenotypic, agronomic, and plant mapping • characteristics, as well as environmental interactions of MON 88701. demonstrated no increased plant pest potential compared to commercially cultivated cotton.
- An assessment of potential impact on non-target organisms (NTOs) indicated that, • under anticipated agricultural conditions, MON 88701 is unlikely to have adverse effects on these organisms compared to commercially cultivated cotton.
- Evaluation of MON 88701 using current agronomic management practices for cotton concluded that deregulation of MON 88701 is not likely to impact cotton agronomic practices of land use, with the exception of the expanded window of

Cotton, as a commodity cron beaution including Cotton, as a commodity crop, has a longstanding history of cultivation; its by-products. including processed fractions, also have a history of safe use and consumption. Cotton is grown in 17 states across the southern U.S. and in over 80 countries world-wide. In 2011, U.S. growers planted approximately 14.7 million acres of cotton.

> The commercial cotton species in the U.S. (Gossypium hirsutum and Gossypium barbadense L. Merry do not exhibit weedy characteristics as defined by USDA, and neither invade established ecosystems, nor outcross to weedy relatives. Cotton is not listed as a weed in major weed references, nor is it present on the lists of noxious weed species distributed by the federal government (7 CFR Part 360). Cotton does not possess any of the attributes commonly associated with weeds, such as long persistence of the seed in the soil, ability to disperse, invade, or become a dominant species in new or diverse landscapes, or the ability to compete well with native vegetation. It is recognized that in some agricultural systems, cotton can volunteer in a subsequent rotational crop. However, volunteers are easily controlled through tillage or the use of appropriate

herbicides with diverse modes-of-action (*e.g.*, ALS inhibitor, chloroacetamide, EPSPS, PPO inhibitor, PSI disruption, PSII inhibitor, synthetic auxin, and tubulin inhibitor classes). Specificity studies using the aforementioned herbicides as potential substrates for MON 88701 DMO showed similar injury levels for MON 88701 compared to the conventional control, indicating that these herbicides do not serve as a substrate for MON 88701 DMO at commercial application rates. Additionally, the specificity of PAT (*bar*) has been established in the published scientific literature. Therefore, herbicides effective for control of volunteer conventional cotton can still be used to control MON 88701 volunteers.

In the continental U.S., wild populations of *Gossypium* species and some feral populations of cultivated variants of *G. hirsutum* exist, but these species able to cross with cultivated cotton are not known to exist in cotton growing areas. Importantly, MON 88701 would not be expected to confer a selective advantage to, or enhance the pest potential of, progeny resulting from such a cross if it were to occur, and could easily be controlled through current agronomic practices used to control conventional cotton. Thus, with environmental and biological limitations and varying chemical and agronomic practices available in the areas with wild and/or feral populations, there is limited probability for MON 88701 or any *Gossypium* species to outcross with wild or feral plants.

Conventional Cotton Coker 130 is an Appropriate Comparator to MON 88701

Cotton variety Coker 130 is the near isogenic line to MON 88701 and was used as the conventional cotton comparator to support the safety assessment of MON 88701. MON 88701 and the near isogenic conventional cotton control Coker 130 have similar genetic backgrounds with the exception of the *dmo* and *bar* expression cassettes; thus, the effect of the *dmo* and *bar* expression cassettes and the expressed MON 88701 DMO and PAT (*bar*) proteins could be evaluated.

Molecular Characterization Verified the Integrity and Stability of the Inserted DNA in MON 88701

MON 88701 was developed through *Agrobacterium*-mediated transformation of hypocotyls from cotton variety Coker 130 utilizing vector PV-GHHT6997. PV-GHHT6997 contains one T-DNA that is delineated by Left and Right Border regions. The T-DNA contains the *dmo* and *bar* expression cassettes. The *dmo* expression cassette is regulated by the *PC1SV* promoter, the *TEV* 5' leader sequence, and the *E6* 3' untranslated region. The chloroplast transit peptide CTP2 directs transport of the MON 88701 DMO protein to the chloroplast and is derived from *CTP2* target sequence of the *Arabidopsis thaliana shkG* gene. The *bar* expression cassette is regulated by the *e35S* promoter, the *Hsp70* leader, and the *nos* 3' untranslated region. After transformation, self pollination and segregation were used to select those plants containing a single homozygous copy of the T-DNA, including both the *dmo* and *bar* expression cassettes, resulting in the selection of MON 88701.

Molecular characterization determined that MON 88701 contains one copy of the T-DNA at a single integration locus and all genetic elements are present. These data also demonstrated that MON 88701 does not contain detectable backbone sequences from the plasmid vector. The complete DNA sequence of the insert and adjacent genomic DNA sequences in MON 88701 confirmed the integrity of the inserted *dmo* and *bar* expression cassettes and identified the 5' and 3' insert to flank DNA junctions. Molecular characterization analysis also demonstrated that the insert in MON 88701 has been maintained over five consecutive generations of breeding, thereby confirming the stability of the insert. Furthermore, results from segregation analyses show inheritance and stability of the insert were as expected across multiple generations, which corroborates the molecular insert stability analysis determination that the MON 88701 T DNA resides at a single chromosomal locus within the cotton genome.

Data Confirms MON 88701 DMO and PAT (bar) Protein Safety A multistep approach was used to characterize and assess the safety of the MON 88701 DMO and PAT (bar) proteins DMO and PAT (bar) proteins expressed in MON 88701 resulting from the genetic modification. The expression levels of the MON 88701 DMO and PAT (bar) proteins in selected tissues of MON 88701 were determined. An assessment of the allergenic potential of the MON 88701 DMO and PAT (bar) proteins supports the conclusion that neither protein poses a significant allergenic risk to humans or animals. In addition, the donor organisms for the MON 88701 DMO and PAT (bar) protein coding sequences, Stenotrophomonas maltophilia and Streptomyces hygroscopicus, respectively, are ubiquitous in the environment and are not commonly known for human or animal pathogenicity of allergenicity. Bioinformatics analysis determined that the MON 88701 DMO and PAT (bar) proteins lack structural similarity to known allergens, gliadins, glutenins, or protein toxins. The MON 88701 DMO and PAT (bar) proteins are rapidly معنی معنی ontestinal fluids and PAT (bar) proteins from MON 88701 of environment or human and animal health. <u>MON 88701 is Compositionallor</u> Detailed digested in simulated gastrointestinal fluids and neither protein demonstrates acute oral toxicity in mice at the levels tested. Hence, the consumption of the MON 88701 DMO and PAT (bar) proteins from MON 88701 or its progeny poses no meaningful risk to the

MON 88701 is Compositionally Equivalent to Conventional Commercial Cotton

Detailed compositional analyses were conducted in accordance with OECD guidelines to assess whether levels of key nutrients and anti-nutrients in MONTAN comparable to levels in the conventional control, Coker 130, and several commercial reference cotton varieties. These compositional comparisons were made by analyzing cottonseed harvested from eight U.S. field sites in which MON 88701 was treated with dicamba and glufosinate, with the conventional control, and a range of commercial reference varieties that were grown concurrently in the same field trial. Compositional comparisons of MON 88701 not treated with dicamba or glufosinate herbicides were also conducted to further support the assessment of MON 88701 traits. The commercial reference varieties used to establish a range of natural variability for key nutrients and anti-nutrients have a history of safe consumption. Nutrients assessed in this analysis included proximates (ash, carbohydrates, and calories by calculation, moisture, protein, and fat), fibers (ADF, crude fiber, NDF, and TDF), amino acids (18 components), fatty

acids (C8-C22), minerals (calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium, and zinc) and vitamin E. The anti-nutrients assessed in this analysis included gossypol and the cyclopropenoid fatty acids dihydrosterculic, malvalic, and sterculic.

Combined-site analyses were conducted to determine if there were any statisticallysignificant differences (5% level of significance) between MON 88701 and the conventional control cottonseed samples. Significant differences noted from the combined-site statistical comparison were assessed using considerations relevant to the safety and nutritional quality of MON 88701 when compared to the conventional control. Considerations used to assess the relevance of each combined-site statistically significant difference included: 1) the relative magnitude of the difference in the mean values of nutrient and anti-nutrient components between MON 88701 and the conventional control; 2) whether the MON 88701 component mean value is within the range of natural variability of that component as represented by the 99% tolerance interval of the commercial reference varieties grown concurrently in the same trial (3) evaluation of the reproducibility of the statistical (p < 0.05) combined-site component differences at individual sites; and 4) an assessment of the differences within the context of natural variability of commercial cotton composition published in the scientific literature and in the International Life Sciences Institute (ILSI) Crop Composition Database.

Based on these criteria, the observed differences were not meaningful to food and feed safety or nutritional value, and led to the conclusion that MON 88701 is compositionally equivalent to commercially cultivated cotton that has a history of safe consumption. These results support the overall food and feed safety of MON 88701.

Does Not Change Cotton Plant Pest Potential or Environmental MON 88701 JS Interactions

familiarity that the USDA recognizes as an important underlying concept in risk assessment. The concept of familiarity is based on the fact that the biotecher derived plant is developed from a conventional althe plant, the introduced trait(s), the receiving environment, and the interactions among these factors. This may idea to be a factor of the interaction of the inter these factors. This provides a basis for comparative risk assessment between a biotechnology-derived plant and the conventional control. Thus, the phenotypic, agronomic, plant mapping, and environmental interaction assessment of MON 88701 included the parental conventional control as a comparator. This evaluation used a weight-of-evidence approach and considered statistical differences between MON 88701 and the conventional control with respect to reproducibility, magnitude, and directionality. The observations were taken on plants not treated with dicamba or glufosinate, in order to evaluate the impact of the introduced traits in MON 88701. To further support the trait assessment, similar supplemental observations were also conducted on the agronomic system that includes MON 88701 treated with dicamba and Comparison to a range of commercial reference varieties glufosinate herbicides. established the range of natural variability for cotton, and provided a context from which

to further evaluate any statistical differences. Characteristics assessed included: seed dormancy and germination, pollen morphology, plant phenotypic observations, plant mapping, and environmental interaction evaluations conducted in the field. The phenotypic, agronomic, and environmental interaction assessment demonstrated that MON 88701 is comparable to conventional cotton. Thus, MON 88701 is unlikely to have increased weediness or plant pest potential compared to commercially cultivated cotton.

Seed dormancy and germination characterization demonstrated that MON 88701 cottonseed had germination characteristics similar to cottonseed of the conventional control. In particular, the lack of hard seed, a well-accepted characteristic of weediness affecting seed germination, supports a conclusion of no increased weediness of MON 88701 when compared to the conventional control. Additionally, there were no statistically significant (5% level of significance) differences observed between MON 88701 and the conventional control for pollen viability and diameter, and no visual differences in general pollen morphology were observed. Collectively, these results support the conclusion that MON 88701 is not likely to exhibit increased plant pest potential compared to commercially cultivated cotton.

The field evaluation of phenotypic, agronomic, plant mapping, and environmental interaction characteristics of MON 88701 also support the conclusion that MON 88701 is not likely to have an increased plant pest potential compared to commercially cultivated cotton. The evaluations were conducted at 26 replicated field sites across the U.S. cotton producing region. These assessments included plant growth and development characteristics, including cotton plant mapping evaluations at harvest, as well as observations for plant responses to abiotic stressors and plant-disease and plant-arthropod interactions. The observed phenotypic characteristics were similar between MON 88701 and the conventional control.

In a combined-site analysis of plant growth and development characteristics, data showed no statistically significant differences (5% level of significance) between MON 88701 and the conventional control for stand count at 14 and 30 days after planting (DAP), final stand count, number of nodes above white flower at one of three observations, seed cotton yield, immature seed per boll, weight per boll, micronaire, fiber elongation, fiber uniformity, and fiber length. The mean values for MON 88701 were statistically different from the conventional control for eight parameters in the combined-site analysis. MON 88701 had shorter plants at 30 DAP and harvest, an increased number of nodes above white flower at two observations, a lower seed index, increased seed per boll, increased mature seeds per boll, and increased fiber strength. However, the mean values of MON 88701 were within the range of values observed for the commercial reference varieties for each of the characteristics listed above. Therefore, none of these differences were considered biologically meaningful in terms of increased plant pest potential of MON 88701 compared to commercially cultivated cotton.

Plant mapping is a process commonly used by cotton agronomists and breeders to quantify growth and development parameters of a cotton plant, including boll retention. Plant mapping parameters, which include delineation of boll position and spatial retention

of bolls, are used to measure crop productivity and are influenced by abiotic and biotic stressors. In the combined-site analysis of plant mapping parameters, no statistically significant differences were detected between MON 88701 and the conventional control for number of mainstem nodes, number of nodes to first fruiting branch, total number of bolls per plant, number of vegetative bolls per plant, percent retention of first-position bolls, and percent first-position bolls. One statistically significant difference was detected between MON 88701 and the conventional control in the combined-site analysis. The mean value for first-position bolls per plant was higher for MON 88701 than the conventional control. However, the mean value of the number of first-position MON 88701 bolls was within the range of the commercial reference varieties. Thus, MON 88701 is similar to commercially cultivated cotton varieties and unlikely to have increased plant pest potential, increased weediness, or an adverse environmental impact compared to commercially cultivated cotton.

In an individual site assessment of abiotic stress response and disease damage, no differences were observed between MON 88701 and the conventional control for any of the 296 comparisons for the assessed abiotic stressors or for any of the 299 comparisons for the assessed diseases among all observations at the 26 sites. In an assessment of arthropod-related damage, no differences were detected between MON 88701 and the conventional control for any of the 288 comparisons for the assessed arthropods. The lack of significant biological differences in plant responses to abiotic stress, disease damage, and arthropod-related damage for MON 88701 support the conclusion that the introduction of the dicamba and glufosinate tolerance traits are unlikely to result in increased plant pest potential or an altered environmental impact from MON 88701 compared to commercially cultivated cotton.

In an assessment of pest- and beneficial-arthropod abundance, no statistically significant differences (5% level of significance) were detected between MON 88701 and the conventional control for 173 out of 178 comparisons (including 89 arthropod-pest and 89 beneficial-arthropod comparisons) among the multiple collections conducted during the season at five geographically diverse sites. For the five detected differences in arthropod abundance, two were arthropod pests (stink bugs and tarnished plant bugs) and three were beneficial arthropods (*Nabis* spp. and *Orius* spp.). The differences detected in pest- and beneficial-arthropod abundance were small in magnitude and were not consistent with other collections at the individual sites or across the sites. Consequently, it is concluded that the differences in pest- and beneficial-arthropod abundance are not indicative of a consistent plant response associated with MON 88701 and are not biologically meaningful in terms of increased plant pest potential or an altered environmental impact from MON 88701 compared to commercially cultivated cotton.

Field evaluations of phenotypic, agronomic, and plant mapping characteristics of MON 88701 treated with dicamba and glufosinate herbicides were also conducted to further support the assessment of MON 88701 traits. Data were collected from field trials conducted at eleven sites within the U.S. cotton-producing region. These assessments included plant growth and development characteristics, as well as plant mapping evaluations at harvest. The phenotypic, agronomic, and plant mapping assessments demonstrated that herbicide-treated MON 88701 is not different than the

conventional control, which further supports that MON 88701, whether treated or not with dicamba and glufosinate, is unlikely to have an altered plant pest potential compared to commercially cultivated cotton.

In summary, the phenotypic, agronomic, plant mapping and environmental interaction data were evaluated to characterize MON 88701, and to assess whether the introduction of the traits in MON 88701 alters the plant pest potential compared to conventional The evaluation, using a weight-of-evidence approach, considered the cotton. reproducibility, magnitude, and direction of detected differences between MON 88701 and the conventional control, and comparison to the range of the commercial reference varieties. Results from the phenotypic, agronomic, plant mapping, and environmental interactions assessment indicated that MON 88701 does not possess weedy characteristics, increased susceptibility or tolerance to specific abiotic stress, diseases, or arthropods, or characteristics that would confer a plant pest risk or a significant environmental impact compared to commercially cultivated cotton

environmental impact compared to commercially cultivated cotton <u>MON 88701 Will Not Adversely Affect NTOs</u> Evaluation of the impacts of a biotechnology-derived crop on non-target organisms (NTOs) is a component of the plant pest risk assessment. Since MON 88701 does not possess pesticidal activity, all organisms that interact with MON 88701 are considered to be NTOs. The environmental assessment demonstrated that the presence of the dicamba and glufosinate-tolerance traits in MON 88701 did not alter plant-arthropod interactions, including beneficial arthropods, or alter disease susceptibility compared to the conventional control. In addition, plant mapping data, which is utilized to determine crop productivity in relation to abiotic and biotic stresses affecting yield, demonstrated that both MON 88701 plots treated and not treated with dicamba and glufosinate herbicides each had only a single significant difference from the conventional control, an increased The biochemical information and experimental to stressors in a similar manner. number of first-position bolls that was within the range of the commercial reference From these data it can be concluded that both MON 88701 plants treated and

The biochemical information and experimental data for evaluation of MON 88701 included molecular characterization, MON 88701 DMO and PAT (bar) safety assessments, the history of environmental exposure to mono-oxygenases (the class of enzymes to which MON 88701 DMO helener) commercial glutosinate-tolerant events, information from the environmental interaction assessment, demonstration of compositional equivalence to conventional cotton, and demonstration of agronomic and phenotypic equivalence to conventional cotton. Overall, these data support the conclusion that MON 88701 has no reasonable mechanism for harm to NTOs and does not pose any additional risk to NTOs compared to commercially cultivated cotton.

The potential for outcrossing and gene introgression from MON 88701 to sexually compatible species in the U.S. is unlikely, since the only known wild *Gossypium* species related to cultivated cotton do not grow in areas where cotton is cultivated, cotton pollen movement by wind is limited due to it is large and sticky nature, and several studies have demonstrated that cross-pollination, even in the presence of high pollinator activity is limited by distance. Furthermore, should cross-pollination occur, MON 88701 and its progeny are not expected to exhibit a significant environmental impact because, as described above, evaluations have shown that the presence of the dicamba and glufosinate-tolerance traits are not likely to enhance weediness or plant-pest potential. Therefore, the environmental consequence of pollen transfer from MON 88701 to other Gossypium species is considered negligible.

Deregulation of MON 88701 is Not Likely to Impact Cotton Agronomic Practices or Land Use

Cotton fields are typically highly managed agricultural areas that are dedicated to crop production for many years. Cultivation of MON 88701 would not be expected to differ from typical cotton cultivation, with the sole exception of an expanded window of dicamba application, due to the presence of the dicamba-tolerance trait in MON 88701. As glufosinate is already utilized within the U.S. cotton-growing areas, no change in agronomic practices or land use would occur with the cultivation of MON 88701 and the presence of the glufosinate-tolerance trait. MON 88701 likely would be used in common rotations on land currently used for agricultural purposes. As demonstrated, MON 88701 is similar to commercially cultivated cotton in its agronomic, phenotypic, ecological, and compositional characteristics, and has comparable levels of resistance to insects, diseases, and abiotic stresses as compared to commercial cotton. Therefore, the introduction of MON 88701 into the existing cotton system is not expected to have a significant impact on current cultivation and pest management practices for cotton. The adoption of MON 88701 into glyphosate-tolerant cotton systems will provide growers with two additional herbicide modes-of-action and the means to control broadleaf weeds, including hard-to-control and herbicide-resistant broadleaf weeds, and will help preserve conservation tillage practices by providing growers with an additional weed management tool. Based on these considerations, MON 88701 is not likely to impact agronomic practices or land use, with the exception of the expanded application window of dicamba. 90ci tation

Conclusion ~

Based on the data and information presented in this petition, it is concluded that MON 88701 is not likely to be a plant pest. Therefore, Monsanto Company requests a determination from USDA-APHIS that MON 88701 and any progeny derived from crosses between MON 88701 and conventional Gossypium cotton species or deregulated biotechnology-derived cotton be granted nonregulated status under 7 CFR Part 340.

TABLE OF CONTENTS

CERTIFICATION	3
EXECUTIVE SUMMARY	4
TABLE OF CONTENTS	14
LIST OF TABLES	19
LIST OF FIGURES	27
ABBREVIATIONS AND DEFINITIONS	29
I. RATIONALE FOR THE DEVELOPMENT OF MON 88701	<u>.</u>
7 CFR § 340.6	
 I.B. Rationale for the Development of Dicamba and Glufosinate-Tolerant Cotton – MON 88701 I.C. Submissions to Other Regulatory Agencies	33
I.C. Submissions to Other Regulatory Agencies	
I.C.1. Submission to FDA	
I.C.2. Submission to EPA	36
I.C.3. Submissions to Foreign Government Agencies	
II. THE BIOLOGY OF COTTON	
II.A. Cotton as a Crop	38
II.B. Characteristics of the Recipient Plant	39
II.C. Cotton as a Test System in Product Safety Assessment	39
III. DESCRIPTION OF THE GENEPIC MODIFICATION	40
MILAS PV-GHHT6997	40
III.B. Description of the Transformation System	40
III.C. The dnto Coding Sequence and the MON 88701 DMO Protein	44
III D The bar Coding Sector and PAT (bar) Protein	44
III.E. Regulatory Sequences	44
Y A HAF. TODA Borders.	44
III.6. Genetic Elements Outside of the T-DNA Borders	45
IV. CHARACTERIZATION OF THE GENETIC MODIFICATION	50
IV.A. Insert and Copy Number of T-DNA in MON 88701	57
IV.A.I. T-DNA Probes 1 and 5	57
IV.A.2. T-DNA Probes 2 and 4	58
IV.A.3. T-DNA Probe 3	58
IV.B. Southern Blot Analysis to Determine the Presence or Absence of PV-GHHT6997 Backbone Sequences in MON 88701	63

IV.B.1. Backbone Probes 6, 7, and 8	63
IV.C. Organization and Sequence of the Insert and Adjacent Genomic DNA in MON 88701	65
IV.D. PCR and DNA Sequence Analyses to Examine the MON 88701 Insertion Site	67
IV.E. Southern Blot Analysis to Examine Insert Stability in Multiple Generations of MON 88701	69
IV.E.1. T-DNA Probe 2 and 4	69
IV.F. Inheritance of the Genetic Insert in MON 88701	72
 IV.F. Inheritance of the Genetic Insert in MON 88701 IV.G. Genetic Modification Characterization Conclusion V. CHARACTERIZATION AND SAFETY ASSESSMENT OF THE 	76
V. CHARACTERIZATION AND SAFETY ASSESSMENT OF THE MON 88701 DMO AND PAT (<i>bar</i>) PROTEINS PRODUCED IN MON 88701	77
V.A. Identity and Function of the MON 88701 DMO and PAT (<i>bar</i>) Proteins from MON 88701	77
V.A.1. Mode-of-Action of DMO and MON 88701 DMO	77
V.A.2. Mode-of-Action of PAT Proteins	81
 V.A. Identity and Function of the MON 88701 DMO and FAT (<i>bar</i>) Froteins from MON 88701. V.A.1. Mode-of-Action of DMO and MON 88701 DMO V.A.2. Mode-of-Action of PAT Proteins V.B. Characterization and Equivalence of MON 88701 DMO and PAT (<i>bar</i>) Proteins from MON 88701. V.C. Expression Levels of MON 88701 DMO and PAT (<i>bar</i>) Proteins in MON 88701. 	82
	83
V.C.1. Expression Levels of MON 88701 DMO Protein	
V.C.2 Expression Levels of PAT (bar) Protein	86
V.D. Assessment of Potential Allergenicity of the MON 88701 DMO and PAT (<i>bar</i>) Proteins	88
V.D.1, Assessment of Potential Allergenicity of the MON 88701 DMO Protein	88
V.D.2. Assessment of Potential Allergenicity of the PAT (bar) Protein	88
V.D.2: Assessment of Potential Allergenicity of the PAT (<i>bar</i>) Protein V.E. Safety Assessment Summary of MON 88701 DMO and PAT (<i>bar</i>) Proteins in MON 88701	89
Specificity	89
VE.2. PAT (bar) Donor Organism, History of Safe Use, and Specificity	92
V E.3. MON 88701 DMO and PAT (<i>bar</i>) Proteins in MON 88701 are Not Homologous to Known Allergens or Toxins	
V.E.4. MON 88701 DMO and PAT (<i>bar</i>) Proteins in MON 88701 are Labile in <i>in vitro</i> Digestion Assays	94
V.E.5. MON 88701 DMO and PAT (<i>bar</i>) Proteins in MON 88701 are Not Acutely Toxic	95

V.E.6. Human and Animal Exposure to the MON 88701 DMO and PAT (<i>bar</i>) Proteins	95
V.F. MON 88701 DMO and PAT (<i>bar</i>) Protein Characterization and Safety Conclusion	
VI. COMPOSITIONAL ASSESSMENT OF MON 88701	98
VI.A. Compositional Equivalence of MON 88701 Cottonseed to Conventional Cotton	
VI.A.1 Nutrient Levels in Cottonseed	100
VI.A.2. Anti-Nutrient Levels in Cottonseed	105
VI.B. Compositional Assessment of MON 88701 Conclusion	134
 VI.A.1 Nutrient Levels in Cottonseed VI.A.2. Anti-Nutrient Levels in Cottonseed VI.B. Compositional Assessment of MON 88701 Conclusion VII. PHENOTYPIC, AGRONOMIC, AND ENVIRONMENTAL INTERACTIONS ASSESSMENT VII.A. Characteristics Measured for Assessment VII.B. Interpretation of Phenotypic and Environmental Interaction Data 	136
VII.A. Characteristics Measured for Assessment	136
	142
VII.B.1. Interpretation of Detected Differences Criteria	142
VII.C. Comparative Assessments of the Phenotypic, Agronomic, Plant Mapping, and Environmental Interaction Characteristics of MON 88701	145
VII.C.1. Seed Dormancy and Germination Characteristics	
VII C 2 Field Phenotypic Agronomic Plant Manning and	
VII.C.2. Field Flenotypic, Agronomic, Fland Wapping, and Environmental Interactions Characteristics	
VII.C.3. Pollen Characteristics	164
VII.D. Conclusions for Phenotypic, Agronomic, Plant Mapping, and Environmental Interactions Evaluation	166
WILLES & CONOMIC BRACELCES	167
VIII.A. Introduction VIII.B. Overview of U.S. Cotton Production VIII.B.1. Cotton Production VIII.B.2. Cotton Seed Production VIII.C. Production Management Considerations	
VIII.B. Overview of U.S. Cotton Production	
VIII.B. Overview of U.S. Cotton Production VIII.B.1. Cotton Production VIII.B.2. Cotton Seed Production VIII.C. Production Management Considerations	
VIII.B.1. Cotton Production VIII.B.2. Cotton Seed Production VIII.C. Production Management Considerations VIII.C.1. Pre-Season	175
WIII.C. Production Management Considerations	176
VIII.C.1. Pre-Season	176
VIII 6.2. Planting and Early Season	
VIII.C.3 Mid- to Late-Season	
VIIIC.4. Preharvest and Harvest	
VIII.D. Management of Insect and Other Pests	
VIII.E. Management of Diseases	
VIII.F. Weed Management	183

VIII.F.1. Methods of Weed Control in Cotton	187
VIII.F.2. Herbicide Resistant Weeds in Cotton	204
VIII.G. Introduction of Dicamba and Glufosinate-Tolerant Cotton -	
MON 88701	
VIII.G.1. MON 88701 Product Concept	
VIII.G.2. Dicamba and Glufosinate Usage in MON 88701	206
VIII.G.3. MON 88701 in Combination with Glyphosate-Tolerant Cotton Systems	209
VIII.G.4. MON 88701 as a Weed Resistance Management Tool	
VIII.G.5. Introduction of Dicamba and Glufosinate-Tolerant Cotton - MON 88701 - Conclusion	212
VIII.H. Crop Rotation Practices in Cotton	215
VIII.H.1. Cotton Volunteer Management	228
MON 88701 - Conclusion VIII.H. Crop Rotation Practices in Cotton VIII.H.1. Cotton Volunteer Management VIII.I. Stewardship of MON 88701 VIII.J. Impact of the Introduction of MON 88701 on Agricultural Practices	231
VIII I Impact of the infroduction of MUNN 88701 on Agricultural Practices	232
IX.A. Introduction	233
IX.A. Introduction	
IX.B. Plant Pest Assessment of MON 88701 Insert and Expressed Proteins	233
IX.B.1. Characteristics of the Genetic Insert and Expressed Protein	234
IX.B.2. Compositional Characteristics	235
IX:B 3. Phenotypic, Agronomic, Plant Mapping, and Environmental Interaction Characteristics	235
DX.C. Weed Potential of MON 88701	
IX.D. Potential for Pollen Mediated Gene Flow and Introgression	239
X.D.1. Hybridization with Cultivated Cotton	239
IX.D.2. Hybridization with Wild and Feral <i>Gossypium</i> species	241
 IX.D. Potential for Pollen Mediated Gene Flow and Introgression IX.D.1. Hybridization with Cultivated Cotton IX.D.2. Hybridization with Wild and Feral <i>Gossypium</i> species IX.D.3. Transfer of Genetic Information to Species with which Cotton Cannot Interbreed (Horizontal Gene Flow)	242
IX.E. Potential Impact on Cotton Agronomic Practices	242
IX.F. Conventional Breeding with Other Biotechnology-derived or	
Conventional Cotton	
IX.G. Summary of Plant Pest Assessments	
X. ADVERSE CONSEQUENCES OF INTRODUCTION	
REFERENCES	
APPENDICES	
Appendix A: Notifications	263

	Appendix B: Materials, Methods, and Results for Molecular Analyses of MON 88701	.266
	Appendix C: Protein Reaction Products, Materials, Methods, and Results for Characterization of MON 88701 DMO and PAT (<i>bar</i>) Proteins Produced in MON 88701, and Substrate Specificity	.273
	Appendix D: Materials and Methods Used for the Analysis of the Levels of MON 88701 DMO and PAT (<i>bar</i>) Proteins in MON 88701	.332
	Appendix E: Materials, Methods, and Individual Site Results for Compositional Analysis of MON 88701 Cottonseed	.337
	Appendix F: Materials, Methods, and Individual Site Results for Seed	.526
	Appendix G: Materials, Methods, Dicamba and Glufosinate Treated Results, and Individual Site Results from the Phenotypic, Agronomic, Plant Mapping, and Environmental Interaction Assessment of MON 88701 under Field Conditions	.532
	Appendix H: Materials and Methods for Pollen Morphology and Viability Assessment	.595
	Appendix I: Herbicide Resistance	.599
This doct	Appendix C: Protein Reaction Products, Materials, Methods, and Results for Characterization of MON 88701 DMO and PAT (<i>bar</i>) Proteins Produced in MON 88701, and Substrate Specificity	

LIST OF TABLES

Table III-1. Summary of Genetic Elements in PV-GHHT699746
Table IV-1. Summary Chart of the Expected DNA Segments Based onHybridizing Probes and Restriction Enzymes Used in MON 88701 Analysis
Table IV-2. Summary of Genetic Elements in MON 88701
Table IV-3. Segregation of the T-DNA During the Development ofMON 88701: 1:1 Segregation
Table IV-4. Segregation of the T-DNA During the Development of MON 88701: 1:2:1 Segregation
Table V-1. Herbicides Applied to MON 88701 and Conventional Control
Table V-2. Summary of MON 88701 DMO Protein Levels in Tissues from MON 88701 Grown in 2010 U.S. Field Trials 85
MON 88701 Grown in 2010 U.S. Field Trials
Table VI-1. Summary of Différences (p<0.05) for the Comparison of Cottonseed Component Levels for MON 88701 vs. Conventional Control107
Table VI-2. Statistical Summary of Combined- Site Cottonseed Nutrients for MON 88701 vs. Conventional Control
Table VI-3. Statistical Summary of Combined-Site Cottonseed Anti- nutrients for MON 88701 vs. Conventional Control 131
Table VI-4. Literature and ILSI Ranges for Components in Cottonseed
Table VII-1. Phenotypic, Agronomic, and Environmental Interaction Characteristics Evaluated in United States Field Trials and Laboratory Studies
Table VH9 Combined Site Comparison of MON 88701 to Conventional
Control for Germination Characteristics
Table VIP-3. Study I and Study 2 Data Location Summary
Table VII-3. Study I and Study 2 Data Location Summary
A abit of 11-39 Stady 1 Comparison of 141014 00701 to
Conventional Control during 2010 for Phenotypic and Agronomic Characteristics
Table VII-6, Study 2 Combined-Site Comparison of MON 88701 to
Conventional Control during 2010 for Phenotypic and Agronomic
Characteristics155
Table VII-7. Study 2 Combined-Site Comparison of MON 88701 to Conventional Control during 2010 for Plant Mapping Characteristics 157

	Table VII-8. Study 1 Summary of Qualitative Environmental InteractionsAssessments Including MON 88701 Response to Abiotic Stress, Disease, andArthropod Damage during 2010
	Table VII-9. Study 1 Combined-Site Comparison of MON 88701 toConventional Control during 2010 for Assessment of Thrips Damage
	Table VII-10. Study 1 Combined-Site Comparison of MON 88701 toConventional Control during 2010 for Quantitative Assessment of HeliothineDamage
	Table VII-11. Study 2 Summary of Qualitative Environmental InteractionsAssessments Including MON 88701 Response to Abiotic Stress and Diseaseand Arthropod-related Damage during 2010
	Table VII-12. MON 88701 Compared to the Conventional Control during2010 for Pollen Characteristics166
	Table VIII-1. Cotton Production in the U.S., 2000-2010 ¹ 173 Table VIII 2. U.S. Cotton Production by Degree and States in 2010 ¹⁶ 174
	Table VIII-2. U.S. Cotton Production by Region and State in 2010 174
	Table VIII-3. Insect Losses in Cotton in U.S. in 2010 ¹ ,
	Table VIII-4. Common and Scientific Names of Weeds Referred to in this Petition 184
	Table VIII-5. Common Weeds in Cotton Production in the Southeast Region of the U.S. ^{1,2}
	Table VIII-6. Common Weeds in Cotton Production in the Midsouth Region of the U.S. ^{1,2}
	Table VIII-7. Common Weeds in Cotton Production in the Southwest Region of the U.S. ^{1,2}
	Table VIII-8. Common Weeds in Cotton Production in the West Region of the U.S. ^{1,2} 187
20CC	Table VIII-9. Herbicide Applications Registered for Use in Cotton in 2010 ¹ 192
Thisdlor	Table VIII-9. Herbicide Applications Registered for Use in Cotton in 2010 ¹ 192 Table VIII-10. Grass Weed Species Control Ratings to Preplant Burndown Herbicides in Cotton
SI ME	Preemergence and Postemergence Herbicides in Cotton
0	Table VIII-12. Broadleaf Weed Species Control Ratings to PreplantBurndown Herbicides in Cotton
	Table VIII-13. Broadleaf Weed Species Control Ratings to Preplant,Preemergence and Postemergence Herbicides in Cotton - Part I
	Table VIII-14. Broadleaf Weed Species Control Ratings to Preplant,Preemergence and Postemergence Herbicides in Cotton – Part II
	Table VIII-15. Common Weeds in Cotton and Weed Resistance to Herbicide Modes of Action in the U.S. ¹

Table VIII-16. Anticipated Weed Management Recommendations for MON 88701 Combined with Glyphosate-Tolerant Cotton Systems for MO, AR, TN, AL, FL, GA, NC, SC, VA, LA, MS and eastern TX ¹
Table VIII-17. Anticipated Weed Management Recommendations forMON 88701 Combined with Glyphosate-Tolerant Cotton Systems forwestern TX, NM, KS, OK, CA, and AZ ¹
Table VIII-18. Responses of Common Broadleaf Weeds to Dicamba and Glufosinate Compared to Labeled Postemergence Herbicides in Cotton Production – Part I
Table VIII-19. Responses of Common Broadleaf Weeds to Dicamba and Glufosinate Compared to Labeled Postemergence Herbicides in Cotton Production – Part II
Table VIII-20. Rotational Practices in the U.S. Following Cotton Production217
Table VIII-21. Rotational Practices Following Cotton Production in the Southeast Region 218
Southeast Region
Midsouth Region
Table VIII-24. Rotational Practices Following Cotton Production in the West Region 226
Table VIII-25. Herbicides and Application Timing for Control of Volunteer Cotton in Labeled Rotational Crops ¹
Table 1X-1. Summary of Published Literature on Cotton Cross Pollination241
Table A-1. USDA Notifications and Permits Approved for MON 88701 and Status of Trials Conducted under These Notifications
Table B-1. Hybridization Conditions of Utilized Probes
Table C-1 Summary of MON 88701 DMO Protein Identity and Equivalence280
Table C-1. Summary of MON 88701 DMO Protein Identity and Equivalence280 Table C-2. Summary of the Tryptic Masses ¹ Identified for the MON 88701 DMO Protein Using MALDI-FOF MS
Table C-3. Comparison of Immunoreactive Signals Between MON 88701 DMO and E. coli-produced MON 88701 DMO Proteins
Table C-4. Molecular Weight Comparison Between the MON 88701 DMO and <i>E. coli</i> -produced MON 88701 DMO Proteins Based on SDS-PAGE291
Table C-5. MON 88701 DMO Functional Activity Assay 297
Table C-6. Herbicides Tested in Exogenous Specificity Herbicide Tolerance Greenhouse Trials
Table C-7. Herbicide Tolerance Trials Injury Ratings
Table C-8. Compounds Used in Specificity In Vitro Experiments 300

Table C-9. Summary of MON 88701-produced PAT (bar) Protein Identity and Equivalence	309
Table C-10. N-Terminal Sequence of the MON 88701-produced PAT (bar) Protein	311
Table C-11. Summary of the Tryptic Masses ¹ Identified for the MON 88701- produced PAT (<i>bar</i>) Protein Using MALDI-TOF MS	314
Table C-12. Comparison of Immunoreactive Signals Between MON 88701- and E. coli-produced PAT (bar) Proteins	
Table C-13. Molecular Weight Comparison Between the MON 88701- andE. coli-produced PAT (bar) Proteins Based on SDS-PAGE	321
Table C-14. PAT (bar) Functional Activity	327
Table C-14. PAT (bar) Functional Activity Table D-1. MON 88701 DMO Protein Extraction Methods for Tissue Samples	333
Table D-2. PAT (<i>bar</i>) Protein Extraction Methods for Tissue Samples	333
Table E-1. Commercial Reference Varieties	337
Table E-2. Re-expression Formulas for Statistical Analysis of Composition	346
Data Table E-3. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Controk	348
Table E-4. Statistical Summary of Site ARTI Cottonseed Anti- nutrients for MON 88701 (Treated) vs. Conventional Control	356
Table E-5. Statistical Summary of Site GACH Cottonseed Nutrients for MON 88701 (Freated) vs. Conventional Control	357
Table E-6. Statistical Summary of Site GACH Cottonseed Anti- nutrients for MON 88701 (Treated) vs. Conventional Control	365
Table E-7. Statistical Summary of Site KSLA Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control	366
Table E-8. Statistical Summary of Site KSLA Cottonseed Anti- nutrients for MON 88701 (Treated) vs. Conventional Control Table E-9. Statistical Summary of Site LACH Cottonseed Nutrients for	374
MON 88701 (Treated) vs. Conventional Control	375
Table E-10. Statistical Summary of Site LACH Cottonseed Anti- nutrients for MON 88701 (Treated) vs. Conventional Control	383
Table E-11. Statistical Summary of Site NCBD Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control	384
Table E-12. Statistical Summary of Site NCBD Cottonseed Anti- nutrients for MON 88701 (Treated) vs. Conventional Control	392
Table E-13. Statistical Summary of Site NMLC Cottonseed Nutrients forMON 88701 (Treated) vs. Conventional Control	393

Table E-14. Statistical Summary of Site NMLC Cottonseed Anti-nutrients for MON 88701 (Treated) vs. Conventional Control
Table E-15. Statistical Summary of Site SCEK Cottonseed Nutrients forMON 88701 (Treated) vs. Conventional Control402
Table E-16. Statistical Summary of Site SCEK Cottonseed Anti- nutrients for MON 88701 (Treated) vs. Conventional Control
Table E-17. Statistical Summary of Site TXPL Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control411
Table E-18. Statistical Summary of Site TXPL Cottonseed Anti- nutrients for MON 88701 (Treated) vs. Conventional Control
Table E-18. Statistical Summary of Site TXPL Cottonseed Anti- nutrients for MON 88701 (Treated) vs. Conventional Control
Table E-20. Statistical Summary of Combined-Site Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table E-21. Statistical Summary of Combined-Site Cottonseed Anti- nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table E-22 Literature and ILSI Ranges for Components in Cottonseed
Table E-23. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table E-24. Statistical Summary of Site ARTI Cottonseed Anti- nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table E-25. Statistical Summary of Site GACH Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table E-26. Statistical Summary of Site GACH Cottonseed Anti- nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table E-27. Statistical Summary of Site KSLA Cottonseed Nutrients for
MON 88701 (Not Treated) vs. Conventional Control
Table E-29. Statistical Summary of Site LACH Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table E-30. Statistical Summary of Site LACH Cottonseed Anti- nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table E-31. Statistical Summary of Site NCBD Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table E-32. Statistical Summary of Site NCBD Cottonseed Anti- nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table E-33. Statistical Summary of Site NMLC Cottonseed Nutrients for
MON 88701 (Not Treated) vs. Conventional Control

Table E-34. Statistical Summary of Site NMLC Cottonseed Anti-nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table E-35. Statistical Summary of Site SCEK Cottonseed Nutrients forMON 88701 (Not Treated) vs. Conventional Control
Table E-36. Statistical Summary of Site SCEK Cottonseed Anti-nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table E-37. Statistical Summary of Site TXPL Cottonseed Nutrients forMON 88701 (Not Treated) vs. Conventional Control
Table E-38. Statistical Summary of Site TXPL Cottonseed Anti- nutrients for MON 88701 (Not Treated) vs. Conventional Control
Table F-1. Starting Seed of MON 88701, Conventional Control and Commercial Cotton Reference Varieties Used in Dormancy Assessment
Dormancy and Germination Characteristics of Cottonseed Produced at Each
Table G-1. Starting Seed for Study 1
Table G-2. Starting Seed for Study 2
of Three Sites
Table G-4. Study 2 Field and Planting Information
Table G-5. Study 1 Data Missing or Excluded from Analysis
Table G-6. Study 2 Data Missing or Excluded from Analysis
Table G-7. Study 1 - Individual Site Phenotypic Comparison – Growth and Development Characteristics - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control556
Table G-8. Study 1 - Individual Site Phenotypic Comparison – SeedCharacteristics - of MON 88701 Not Treated with Dicamba or GlufosinateHerbicides Compared to the Conventional Control
Table G-9. Study 1 - Individual Site Phenotypic Comparison – Boll and Fiber Characteristics - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control
Table G-10. Study 2 - Individual Site Phenotypic Comparison – Growth andDevelopment Characteristics - of MON 88701 Not Treated with Dicamba orGlufosinate Herbicides Compared to the Conventional Control
Table G-11. Study 2 - Individual Site Phenotypic Comparison – Seed Characteristics - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control
Table G-12. Study 2 - Individual Site Phenotypic Comparison – Boll and Fiber Characteristics - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control565

Table G-13. Study 2 - Combined-Site Phenotypic Comparison - Growth and Development Characteristics - of MON 88701 Treated with Dicamba and Glufosinate Herbicides Compared to the Conventional Control567
Table G-14. Study 2 - Individual Site Phenotypic Comparison – Growth and Development Characteristics - of MON 88701 Treated with Dicamba and Glufosinate Herbicides Compared to the Conventional Control
Table G-15. Study 2 - Individual Site Phenotypic Comparison – SeedCharacteristics - of MON 88701 Treated with Dicamba and GlufosinateHerbicides Compared to the Conventional Control
Herbicides Compared to the Conventional Control
Table G-17. Study 2 - Individual Site Phenotypic Comparison - Plant Mapping - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control 574
Table G-18. Study 2 – Combined-Site Phenotypic Comparison – Plant Mapping - of MON 88701 Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control
Table G-19. Study 2 - Individual Site Phenotypic Comparison – Plant Mapping - of MON 88701 Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control
Table G-20 Study 1 – Qualitative Assessment of Plant Response to Abiotic Stressors - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control
Table G-21. Study 1 – Qualitative Assessment of Disease Damage - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control
Table G-22. Study 1 – Qualitative Assessment of Arthropod-related Damage MON 88701 Not Treated with Dicamba or Glufosinate Herbicides
Compared to the Conventional Control
Table G-24. Study 1 - Individual Site Analysis: Quantitative Assessment ofHeliothine Damage - MON 88701 Not Treated with Dicamba or GlufosinateHerbicides Compared to the Conventional Control
Table G-25. Study 1 - Abundance of Pest Arthropods - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control
Table G-26. Study 1 - Abundance of Beneficial Arthropods - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

	Table G-27 Study 2 – Qualitative Assessment of Plant Response to AbioticStressors - MON 88701 Not Treated with Dicamba or Glufosinate HerbicidesCompared to the Conventional Control
	Table G-28. Study 2 – Qualitative Assessment of Disease Damage ofMON 88701 Not Treated with Dicamba or Glufosinate Herbicides Comparedto the Conventional Control
	Table G-29. Study 2 – Qualitative Assessment of Arthropod-related Damage -MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control
	Table H-1. Starting Seed for Pollen Morphology and Viability Assessment
	Table I-1. Management Recommendations for Control of Dicamba-, Glufosinate- and Other Selected Synthetic Auxin-Resistant Weeds
This doci	Table G-29. Study 2 – Qualitative Assessment of Arthropod-related Damage -MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

LIST OF FIGURES

Figure III-1. Circular Map of PV-GHHT6997 Showing Probes 1-84	1 2
Figure III-2. Schematic of the Development of MON 887014	43
Figure III-3. Deduced Amino Acid Sequence of the MON 88701 DMO	
Protein4	
Figure III-4. Deduced Amino Acid Sequence of the PAT (<i>bar</i>) Protein4	19
Figure IV-1. Schematic Representation of the Insert and Flanking DNA in MON 887015	53
Figure IV-2. Southern Blot Analysis to Determine Insert and Copy Number of T-DNA in MON 88701: Probes 1 and 56	60
	61
	62
Figure IV-5. Southern Blot Analysis to Determine the Presence or Absence of PV-GHHT6997 Backbone Sequences in MON 88701: Probes 6, 7, and 86	54
Figure IV-6. Overlapping PCR Analysis across the Insert in MON 887016	56
Figure IV-7. PCR Amplification of the MON 88701 Insertion Site in Conventional Control	68
Figure IV-8. Breeding History of MON 88701	70
Figure IV-9. Southern Blot Analysis to Examine Insert Stability in Multiple Generations of MON 88701: Probes 2 and 4	
Figure IV-10. Breeding Path for Generating Segregation Data for MON 88701	
Figure V.1. Three Components of the DMO Oxygenase System	78
Figure V 2 Diremby and Potential Production Substrates Tested through	
Figure V-2. Dicampa and Fotential Endogenous Substrates Tested through In Vitro Experiments with DMO	
Figure VIII-1. Planted Upland Cotton Acres by County in the U.S. in 201017	71
Figure VIII-2, Planted Pima Cotton Acres by County in the U.S. in 201017	72
Figure C-1. Forms of DMO Protein and Their Relation to the Wild-Type DMO Protein	
Figure C-2. MALDI-TOF MS Coverage Map of the MON 88701 DMO Protein	
Figure C-3. Western Blot Analysis of MON 88701 DMO and <i>E. coli-</i> produced MON 88701 DMO Proteins28	38

Figure C-4. Molecular Weight and Purity Analysis of the MON 88701 DMO Protein	2
Figure C-5. Glycosylation Analysis of the MON 88701 DMO Protein29	5
Figure C-6. UPLC Separation of Dicamba (DCB) and DCSA in Five Substrate Analysis	3
Figure C-7. <i>E. coli</i> -produced DMO Conversion of Endogenous Substrates	4
Figure C-8. UPLC Separation of Dicamba (DCB) and DCSA in Bridging Analysis	5
Figure C-9. <i>E. coli</i> -produced MON 88701 DMO Conversion of <i>o</i> -Anisic Acid30	6
Figure C-10. MALDI-TOF MS Coverage Map of the MON 88701-produced PAT (<i>bar</i>) Protein31	5
Figure C-11. Western Blot Analysis of the MON 88701- and <i>E. coli</i> - produced PAT (<i>bar</i>) Proteins318	8
Figure C-12. Molecular Weight and Purity Analysis of the MON 88701- produced PAT (<i>bar</i>) Protein	2
Figure C-13. Glycosylation Analysis of the MON 88701-produced PAT (<i>bar</i>) Protein	5
Figure C-6. UPLC Separation of Dicamba (DCB) and DCSA in Five 30. Substrate Analysis 30. Figure C-7. E. coli-produced DMO Conversion of Endogenous Substrates 30. Figure C-8. UPLC Separation of Dicamba (DCB) and DCSA in Bridging 30. Analysis 30. Substrate Analysis 30. Figure C-8. UPLC Separation of Dicamba (DCB) and DCSA in Bridging 30. Figure C-9. E. coli-produced MON 88701 DMO Conversion of o-Anisic Acid 30. Figure C-10. MALDI-TOF MS Coverage Map of the MON 88701-produced PAT (bar) Protein PAT (bar) Protein 311 Figure C-11. Western Blot Analysis of the MON 88701- and E. coli 312 produced PAT (bar) Protein 321 Figure C-12. Molecular Weight and Purity Analysis of the MON 88701-produced PAT (bar) 322 Figure C-13. Glycosylation Analysis of the MON 88701-produced PAT (bar) 323 Figure I-1. Weed Resistance to Various Herbicide Families ¹ 60 Modern Herbicide Families ¹	T

ABBREVIATIONS AND DEFINITIONS²

Symbol or Abbrev.	Definition
~	Approximately
α-Cyano	α-Cyano-4-hydroxycinnamic acid
2,4-D	2,4-Dichlorophenoxyacetic acid
2,4-DB	2,4-DB = 4-(2,4-dichlorophenoxy)butyric acid
AA	Amino Acid
AAbA	α-aminobutyric acid
a.e.	Acid Detergent Fiber acid equivalent active ingredient acetolactate synthase inhibitor Animal and Plant Health Inspection Service of the United States
ai	active ingredient
ALS	acetolactate synthase inhibitor
APHIS	Animal and Plant Health Inspection Service of the United States
7 H 1115	Department of A griculture
bar	Bialanhos Resistance Gene from Strentomyces hyprosconicus
BIO	Biotechnology Industry Organization
BLOCKS	A database of amino acid motifs found in protein families
BLOCKS	Blocks Substitution Matrix, used to score similarities between
BLOSOW	<u>Diocks</u> <u>Bu</u> ostitution <u>Matrix</u> , used to score similarities between
	Parina Sorum Albumin
CER	Code of Federal Regulations
CHT	Coramic hydroxyapatite
CoA	Coenzyme
COA	Acid Detergent Fiber acid equivalent active ingredient acetolactate synthase inhibitor Animal and Plant Health Inspection Service of the United States Department of Agriculture Bialaphos Resistance Gene from <i>Streptomyces hygroscopicus</i> Biotechnology Industry Organization A database of amino acid motifs found in protein families <u>Blocks Sub</u> stitution <u>Matrix</u> , used to score similarities between pairs of distantly related protein or nucleotide sequences Bovine Serum Albumin Code of Federal Regulations Ceramic hydroxyapatite Coenzyme A Certificate of Analysis Hexadecylfrimethylammotium bromide Days After Planting Dalton Deoxycytidine triphosphate Diethylaminoethyl- 2,5-dihydroxybenzoic acid 3,6-dichlorosalicylic acid Daily Dietary Intake Diglycolamine 3,6-dichloro-2-methoxybenzoic acid Mono-oxygenase gene from <i>Stenotrophomonas maltophilia</i> Dicamba mono-oxygenase
CTAB	Hevedecyltrimethylenmonium bromide
	Dave After Planting
	Dalton
de TP	Deavyoutiding triphosphate
DEALE TO MICE	Diethylaminoethyl
DEB CONTRACT	2 dibydrovybenzoic acid
DISA	2,5- <u>dialy</u> dioxy <u>b</u> eizoic acid
Del	Daily Distary Intake
ANI DOM DOM	Diabroolamine
DAP Da dCTP DEAE- DDHB DCSA DDI DGA dicamba dmo DMO DMO DMO DNA DSMA	3 6 dichloro 2 methovybenzoic acid
urcampa	Mono-ovygenase gene from Stanotronhomonas maltonhilia
	Dicamba mono-oxygenase
DNA	Deovyribonucleic acid
DSMA	Disodium mathanearsonate
DTMR	5.5' dithia his (2 nitrohenzoic acid)
DTT WILLOW	Dithiothreitol
dw 0	Dry weight
dw V DWCF	Diethylamino <u>e</u> thyl- 2,5- <u>dih</u> ydroxy <u>b</u> enzoic acid 3,6- <u>dichloros</u> alicylic acid Daily Dietary Intake Diglycolamine 3,6-dichloro-2-methoxybenzoic acid Mono-oxygenase gene from <i>Stenotrophomonas maltophilia</i> Dicamba mono-oxygenase Deoxyribo <u>n</u> ucleic acid Disodium methanearsonate 5,5'- <u>dit</u> hio-bis (2- <u>n</u> itro <u>b</u> enzoic acid) Dithiothreitol Dry weight Dry weight Dry weight conversion factor
DwCr	

² Alred, G.J., C.T. Brusaw, and W.E. Oliu. 2003. Handbook of Technical Writing, 7th edn., pp. 2-7. Bedford/St. Martin's, Boston, MA.

ECL <i>E. coli</i>	Enhanced Chemi <u>l</u> uminescence Escherichia coli
<i>E.coli</i> -produced MON 88701 DMO	DMO protein produced from <i>E. coli</i> with the same sequence as MON 88701 DMO
ELISA EPA	Enzyme-linked Immuno <u>s</u> orbent Assay Environmental Protection Agency
<i>E</i> -Score	Expectation score
ETS	Excellence Through Stewardship SM
FA	Fatty Acid
FARRP	Food Allergy Research and Resource Program
FASTA	Algorithm used to find local high scoring alignments between a pair of protein or nucleotide sequences Food and Drug Administration (U.S.) Federal Food, Drug and Cosmetic Act (U.S.) Flow through Fresh weight
FDA	Food and Drug Administration (U.S.)
FFDCA	Federal Food, Drug and Cosmetic Act (U.S.)
FT fw	Flow through
glufosinate	hutanoic acid 2-amine 4-(hydroxymethylphosphinyl)
GLP	Good Laboratory Practice
ha	hectare
HPLC	High Performance Liquid Chromatography
HRP	Horse <u>r</u> adish Peroxidase
HU	Hemagglutinating Unit
ILSI (S)	Federal Food, Drug and Cosmetic Act (U.S.) Flow through Fresh weight butanoic acid, 2-amino-4-(hydroxymethylphosphinyl) Good Laboratory Practice hectare High Performance Liquid Chromatography Horse <u>r</u> adish Peroxidase Hemagglutinating Unit International Life Sciences Institute International Organization for Standardization Kilo <u>b</u> ase Kilo <u>d</u> alton Kilogram Laemmli buffer Limit of Detection Limit of Quantitation Matrix Assisted Laser Desorption Ionization - Time of Flight Mass Spectrometry Microgram Microliter Milligram micronaire Margin of Exposure Dicamba-tolerant soybean developed by Monsanto Company DMO protein produced in MON 88701
ISO	International Organization for Standardization
KD	Kilodation
kg kg	Kilogram
LB	Laemmi buffer
LODS I TO MAN	Limit of Detection
LOQ COLOCION	Limit of Quantitation
MATOLTOFMS	Matrix Assisted Laser Desorption Ionization - Time of Flight
	Mass Spectrometry
LOQ MAEDI-TOF-MS µg µl mg MOE MOE MON 87708 MON 88701 DMO MRL	Microgram
and the full of the second	Milligram
mine	micronaire
(MOE) ON WO	Margin of Exposure
MON 87708	Dicamba-tolerant soybean developed by Monsanto Company
MON 88701 DMO MRL	DMO protein produced in MON 88701
MRL N Q	
MSMA V	Mono <u>s</u> odium methane <u>a</u> rsonate
MW	Molecular Weight
MWCO	Molecular Weight Cutoff 2 aastamide 4 methylphoenbinies butancie said
N-acetyl glufosinate NADH	2-acetamido-4-methylphosphinico-butanoic acid Nicotinamide adenine dinucleotide
INADII	

NCBI NDF NFDM NOAEL	National Center for Biotechnology Information at the National Institutes of Health, Bethesda, MD, USA Neutral Detergent Fiber Non-fat Dried Milk No Observable Adverse Effect Level
OECD	Organisation for Economic Co-operation and Development
ORF	Open Reading Frame
OSL	Over <u>s</u> eason Leaf
р	Probability from PRESS
PAT (bar)	PAT protein produced by the <i>bar</i> gene
PBS	Phosphate Buffered Saline
PBST	Phosphate Buffered Saline containing Tween-20
PCR	Polymerase Chain Reaction
PI	Prediction Interval
PPA	Plant Protection Act (7 U.S.C. § 7701-7772)
ppm	parts per million
PPO	protoporphyrinogen exidase inhibitor
PPT	Phosphinothricin
PRESS	Predicted Residual Sum of Squares
PRT_2011	Phosphinothricin N- <u>a</u> cetyl <u>t</u> ransferase PAT protein produced by the <i>bar</i> gene Phosphate Buffered Saline Phosphate Buffered Saline containing Tween-20 Polymerase Chain Reaction Prediction Interval Plant Protection Act (7 U.S.C. § 7701-7772) parts per million protoporphyrinogen oxidase inhibitor Phosphino <u>t</u> hricin Predicted Residual Sum of Squares GenBank protein database, 181.0 (Released December 18, 2010) Phenyl <u>thiohydantoin</u>
PTH	Phenylthiohydantoin
PVDF O	Poly <u>v</u> inylidene di <u>f</u> luoride
PVP	Polyzinylpyrrolidone
RBD	Refined, Bleached, and Deodorized
RED C C	Polymerase Chain Reaction Prediction Interval Plant Protection Act (7 U.S.C. § 7701-7772) parts per million protoporphyrinogen oxidase inhibitor Phosphinothricin Predicted Residual Sum of Squares GenBank protein database, 181.0 (Released December 18, 2010) Phenylthionydantoin Polyvinylidene difluoride Polyvinyl pyrrolidone Refined, Bleached, and Deodorized Reregistration Eligibility Decision Room temperature Society of Commercial Seed Technologists Sodium Dodecyl Sulfate Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis Standard Error Simulated Gastric Fluid <i>Streptomyces hygroscopicus</i>
RT	Room temperature
SCS4	Society of Commercial Seed Technologists
SDS PACE	Society of Commercial Seed Technologists Sodium Dodecyl Sulfate Sodium Dodecyl Sulfate-Poly <u>a</u> crylamide Gel Electrophoresis Standard Error Simulated Gastric Fluid
SDS-PAGE	Southern Dodecyr Sunate-Poly <u>a</u> crylamide Gel Electrophoresis
	Standard Enfor
Schurgeneric	Stimulated Gastric Fluid
SGE Shygroscopicus SIF Sinapinic Acid	3,5-dimethoxy-4-hydroxycinnamic acid
SIF Sinapinic Acid S. maltophilia SOP TBA TBS TCEP T-DNA TDF	Stenotrophomonas maltophilia
SOP	Standard Operating Procedure
TBAN	Tris-borate buffer with L-ascorbic acid
TBS of all sign	Tris Buffered Saline
TCEP	Tris(2- <u>c</u> arboxy <u>e</u> thyl) <u>p</u> hosphine
T-DNA ^N Q	Transfer DNA
TDF 🛇	Total Dietary Fiber
tex	Grams of 1000 meters of fiber
TFA	Tri <u>f</u> luoroacetic Acid
TFE	2,2,2,-tri <u>f</u> luoro <u>e</u> thanol
TIU	Trypsin Inhibitor Unit

Tm	Melting temperature
TNB	5-thio-nitro <u>b</u> enzoate
TOX_2011	Toxin protein sequence database (Release date February 18,
V	2011)
v/v	volts
w/v	volume to volume ratio
w/v	weight to volume ratio
	weight to volume ratio

Monsanto Company

and or any of its affiliates, such as intellectual property and parties.

This document is the property of Bayer AC

without the permission of the owner of this documer.

I. RATIONALE FOR THE DEVELOPMENT OF MON 88701

I.A. Basis for the Request for a Determination of Nonregulated Status under 7 CFR § 340.6

The Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) has responsibility, under the Plant Protection Act (Title IV Pub. L. 106-224, 114 Stat. 438, 7 U.S.C. § 7701-7772), to prevent the introduction and dissemination of plant pests into the U.S. APHIS regulation 7 CFR § 340.6 provides that an applicant may petition APHIS to evaluate submitted data to determine that a particular regulated article does not present a plant pest risk and no longer should be regulated. If APHIS determines that the regulated article does not present a plant pest risk, the petition is granted, thereby allowing unrestricted introduction of the article.

Monsanto Company is submitting this request to APHIS for a determination of nonregulated status for the new biotechnology-derived cotton product, MON 88701, any progeny derived from crosses between MON 88701 and conventional cotton, and any progeny derived from crosses of MON 88701 with biotechnology-derived cotton that have previously been granted nonregulated status under 7 CFR Part 340.

I.B. Rationale for the Development of Dicamba and Glufosinate-Tolerant Cotton -,09'

MON 88701 Biotechnology derived cotton and the introduction of glyphosate-tolerant cotton systems permit in-crop application of agricultural herbicides containing the active ingredient glyphosate for effective weed control. The value of glyphosate-tolerant cotton systems glyphosate-tolerant systems deliver effective broad spectrum weed control, provides flexibility of application timing, increased adoption of reduced tillage practices and the Additionally of the systems deliver effective adoption of the systems deliver and the systems d has been demonstrated by the significant growth in the number of glyphosate-tolerant Additionally, the glyphosate-tolerant systems provide incremental environmental benefits, including reduced overall herbicide usage (Brookes and Barfoot, 2012; Carpenter and Gianessi, 2001). Furthermore, glyphosate, as concluded by the U.S. EPA (1993), has a favorable safety profile. Continued use of glyphosate-tolerant cotton systems will maintain effective and familiar weed control management practices that are fully compatible with all current tillage and land management practices, including conservation tillage practices. Growth of conservation tillage in the U.S. was greatly accelerated with the introduction of glyphosate-tolerant crops in large part because of the broad spectrum postemergence control offered by glyphosate (Price et al., 2011). The benefits associated with conservation tillage, include reduced soil erosion, reduced fuel and labor costs, and conservation of soil moisture (CTIC, 2011).

> As with all herbicides used in agriculture, there is potential for weeds to develop resistance to frequent and continual use of the same herbicide over an extended time

period (Powles, 2008). Plant populations can develop resistance to a herbicide due to the selection of individuals that carry altered genetic codes producing alleles that can render those individuals tolerant to the lethal effects of a herbicide. Weed populations with confirmed herbicide-resistance are listed on the International Survey of Resistant Weeds Without effective weed management practices in website (www.weedscience.org). agricultural systems, herbicide resistance in weeds can become a limiting factor in crop production. As with many agricultural use herbicides, glyphosate has documented cases of weed resistance. While there have been thirteen confirmed glyphosate-resistant weeds in the U.S. (Heap, 2012a), glyphosate still effectively controls more than 160 weed species (Roundup WeatherMax[®] herbicide label, EPA Reg. No.524-537) and remains an extremely valuable tool for U.S. cotton crop production. Studies have shown that resistance can be postponed, contained, and managed through good management One of the management practices most often recommended by practices. University/Cooperative Extension Service and industry is the use of multiple herbicide Simultaneously using multiple herbicides with different modesmodes-of-action. of-action significantly reduces the probability of weeds developing resistance to any or all of the applied herbicides (Beckie and Reboud, 2009; Powles et al., 1996). Other weed management recommendations include the use of multiple herbicide modes-of-action in sequence and the inclusion of mechanical or cultural weed management practices, in addition to the use of a herbicide.

addition to the use of a herbicide. Monsanto Company has developed dicamba and glufosinate-tolerant cotton, MON 88701, which will allow in-crop applications of dicamba (3,6-dichloro-2methoxybenzoic acid) herbicide for the control of broadleaf weeds from preemergence to seven days preharvest and glufosinate herbicide for broad spectrum weed control from emergence through early bloom growth stage. MON 88701 provides dicamba tolerance that allows for the in-crop application of dicamba beyond the current preplant uses in cotton and also provides glufosinate tolerance equivalent to current commercial glufosinate-tolerant cotton events. The combination of the two herbicides' distinct modes of action provides an effective weed management system. Dicamba provides effective control of over 95 annual and biennial weed species, and suppression of over 100 perennial broadleaf and woody plant species (BASF, 2008) (EPA Reg. No. 7969-137) and glutosinate is a broad-spectrum contact herbicide that provides nonselective control of about 120 broadleaf and grass weeds (Bayer CropScience, 2011) (EPA Reg. No 264-829) Additionally, dicamba and glufosinate each provide control of many herbicide-resistant weeds, including glyphosate-resistant biotypes of Palmer amaranth (Amaranthus palmeri), marestail (Conyza Canadensis), common ragweed (Ambrosia artemistifolia), giant ragweed (Ambrosia trifida) and waterhemp [Amaranthus tuberculatus). Weeds that are hard-to-control using glyphosate (See Roundup WeatherMax[®] label (U.S. EPA Reg. No. 524-537) for a listing], generally require a higher rate and/or application at a smaller growth stage in order to consistently achieve commercially acceptable control. To date, only four species with known dicambaresistant biotypes (*i.e.*, common hempnettle, Galeopsis tetrahit; kochia, Kochia scoparia; prickly lettuce, *Lactuca serriola*; and wild mustard, *Sinapis arvensis*) and one species

[®]Roundup and WeatherMax are registered trademarks of Monsanto Technology, LLC.

with a known glufosinate-resistant biotype (*i.e.*, Italian ryegress, *Lolium multiflorum*) have been identified in North America (Heap, 2012b; 2012c). Known resistant weed populations to dicamba and glufosinate are primarily found in the western U.S. and, thus, are not present in the major cotton geographies. See Appendix I for additional details.

MON 88701 will be combined, through traditional breeding methods, with other approved herbicide-tolerant (*e.g.*, glyphosate-tolerant) events. The opportunity for incrop use of dicamba and glufosinate herbicides, in addition to glyphosate herbicide, provides new weed management options in cotton to control a broad spectrum of grass and broadleaf weed species and effective control of weeds resistant to several herbicide families. Successful integration of MON 88701 into glyphosate-tolerant cotton systems will provide: 1) an opportunity for an efficient, effective weed management system for hard-to-control and herbicide-resistant weeds; 2) a flexible system for two additional incrop herbicide modes-of-action in current cotton production practices as recommended by weed science experts to manage future weed resistance development; 3) an option to delay or prevent further resistance to glyphosate and other critically important cotton herbicides, in particular herbicides in the ALS and PPO class of chemistry; 4) crop safety to dicamba, glufosinate and glyphosate; and 5) additional weed management tools to enhance weed management systems necessary to maintain yield and quality to meet the growing needs of fiber, food, and feed.

MON 88701 contains a demethylase gene from *Stenotrophomonas maltophilia* that expresses a dicamba mono-oxygenase (DMO) protein to confer tolerance to dicamba herbicide and a bialaphos resistance (*bar*) gene from *Streptomyces hygroscopicus* that expresses the phosphinothricin N-acetyltransferase (PAT) protein to confer tolerance to glufosinate herbicide. DMO protein rapidly demethylates dicamba to the herbicidally inactive metabolite 3,6-dichlorosalicylic acid (DCSA), a well known metabolite of dicamba in conventional cotton, soybean, livestock, and soil (FAO-WHO, 2011a; 2011b; U.S. EPA, 2009). Monsanto will request a registration from U.S. EPA for the expanded use of dicamba on MON 88701 cotton, an increase in the dicamba residue tolerance for cottonseed, the establishment of a tolerance for cotton gin by-products, and the inclusion of DCSA in the residue definitions for cottonseed and gin by-products. No other revisions to the dicamba pesticide residue tolerances are necessary, including those for animal products such as meat, eggs, and milk. Furthermore, the use of dicamba on MON 88701 does not present any new environmental exposure scenarios not previously evaluated and deemed acceptable by EPA.

PAT (*bar*) protein acetylates the free amino group of glufosinate to produce nonherbicidal N-acetyl glufosinate, a well known metabolite in glufosinate-tolerant plants (OECD, 2002a). The use pattern and rate of glufosinate on MON 88701 will follow the existing glufosinate-tolerant cotton uses outlined on the glufosinate herbicide labels and the glufosinate residues in MON 88701 treated with commercial glufosinate rates are below the established pesticide residue tolerances established by U.S. EPA for both cottonseed and gin by-products (40 CFR § 180.473). Therefore, Monsanto will not pursue any changes in the glufosinate labels or the established tolerances for its use on MON 88701 cotton.

I.C. Submissions to Other Regulatory Agencies

Under the Coordinated Framework for Regulation of Biotechnology (CFR) (USDA-APHIS, 1986), the responsibility for regulatory oversight of biotechnology-derived crops falls primarily on three U.S. agencies: U.S. Food and Drug Administration (FDA), the United States Department of Agriculture (USDA), and in the case of herbicide-tolerant products, the Environmental Protection Agency (EPA). A request for deregulation of MON 88701 made to USDA constitutes only one component of the overall regulatory oversight and review of this product. As a practical matter, MON 88701 cannot be released and marketed until FDA and USDA have completed their reviews and assessments under their respective jurisdictions. Additionally, EPA must complete its otectionshing review and assessments prior to approving the use and allowable residues of dicamba on MON 88701.

I.C.1. Submission to FDA

MON 88701 falls within the scope of the 1992 FDA policy statement concerning regulation of products derived from new plant varieties, including those developed through biotechnology (U.S. FDA, 1992). In compliance with this policy, Monsanto has initiated a consultation with the FDA (BNF No. 135) on the food and feed safety and compositional assessment of MON 88701. Monsanto submitted a safety and nutritional assessment summary document to the FDA in April 2012. docur 100

I.C.2. Submission to EPA The safety of dicamba use on many crops, including cotton, was reviewed by the Environmental Protection Agency (EPA) as part of the food, feed, and environmental safety reassessment in 2006 (U.S. EPA, 2009). Dicamba can currently be applied to cotton in the U.S. as a pre-plant application, at least 21 days prior to planting. The tolerance of MON 88701 to dicamba facilitates a wider window of application on cotton, allowing pre-emergence application of the herbicide up to the day of crop emergence and post-emergence in-crop applications through seven days pre-harvest. Monsanto will request a registration from U.S. EPA for the expanded use of dicamba on MON 88701. an increase in the dicamba residue tolerance from 0.2 ppm to 3 ppm for cottonseed. the establishment of a tolerance of 70 ppm for cotton gin by-products, and the inclusion of DCSA in the residue definitions for cottonseed and gin by-products. No other revisions to dicamba pesticide residue tolerances are needed including animal products such as meat, eggs, or milk.

The existing 0.2 ppm pesticide residue tolerance for cottonseed supporting the current registered uses of dicamba on cotton (40 CFR § 180.227) is for the combined residues of parent dicamba and its metabolite 5-hydroxy dicamba. Cotton gin by-products, a ruminant feed supplement, have no established dicamba tolerance. Studies have shown that the proposed use of dicamba on MON 88701 cotton results in total residue concentrations of parent dicamba and its metabolites, including DCSA and 5-hydroxy dicamba, are less than 3 ppm for cottonseed and less than 70 ppm for gin by-products.

The safety of glufosinate use on many crops, including cotton, was reviewed by the Environmental Protection Agency (EPA) as part of the food, feed, and environmental safety reassessment in 2000 (U.S. EPA, 2003). In addition, glufosinate has been used over-the-top of glufosinate-tolerant crops since 1995 with no significant adverse effects reported. Glufosinate is currently labeled for in-crop application on glufosinate-tolerant cotton from emergence through early bloom growth stage (Bayer CropScience, 2011). The use pattern and rate of glufosinate on MON 88701 will follow the existing glufosinate-tolerant cotton uses outlined on the glufosinate herbicide label. Furthermore, glufosinate residues in MON 88701 treated with glufosinate are below the EPAestablished residue tolerances of 4.0 ppm and 15.0 ppm for cottonseed and gin byproducts, respectively (U.S. EPA, 2003) (40 CFR § 180.473). Both of these tolerances include the combined residues of parent glufosinate and its metabolites N-acetyl glufosinate and 3-methylphosphinico-propionic acid. Currently glufosinate is undergoing reregistration at EPA with the Reregistration Eligibility Decision (RED) expected by the end of 2013 (U.S. EPA, 2008). It is likely that EPA will affirm the safety and efficacy of glufosinate and approve its continued use in the marketplace upon completion of the Therefore, Monsanto will not pursue any changes in the reregistration process. glufosinate label, use pattern, or the established tolerances for its use on MON 88701

I.C.3. Submissions to Foreign Government Agencies To support commercial introduction of MQN 88701 in the U.S., regulatory submissions will be made to countries that import significant quantities of cotton or its processed fractions from the U.S. These will include submissions to a number of foreign government regulatory authorities, including: Japan's Ministry of Agriculture, Forestry, and Fisheries and the Ministry of Health, Labour, and Welfare; the Canadian Food Inspection Agency, Health Canada; the Intersectoral Commission for Biosafety of Genetically Modified Organisms, Mexico; the Korea Food and Drug Administration; and the Rural Development Administration of Korea, as well as to regulatory authorities in other cotton importing countries with functioning regulatory systems. As appropriate, notifications will be made to countries that import significant quantities of cotton and notifications will be made to countries that import significant quantities of cotton and cotton products that do not have a formal regulatory review process for biotechnology-derived crops.

II. THE BIOLOGY OF COTTON

The Organisation for Economic Co-operation and Development Consensus Document (OECD, 2008) on the biology of cotton (Gossypium spp.) provides key information on:

- general description of cotton biology, including taxonomy and morphology and use of cotton as a crop plant
- agronomic practices in cotton cultivation
- geographic centers of origin
- reproductive biology
- inter-species/genus introgression into relatives and interactions with other organisms
- summary of the ecology of cotton

Additional information on the biology and growth and development of cotton is available in the literature (Kohel and Lewis, 1984; OGTR, 2008; Smith and Cothren, 1999).

To support the evaluation of the plant pest potential of MON 88701 relative to conventional cotton, additional information regarding several aspects of cotton biology can be found elsewhere in this petition. This includes: agronomic practices for cotton in Section V.III; volunteer management of cotton in Sections VIII H and IX.C; and inter-Jocume Jocume species/genus introgression potential in Section IX.D.

II.A. Cotton as a Crop

Cotton belongs to the genus Gossypium that currently has approximately 50 species which are widely cultivated in tropical and subtropical regions around the world (OECD, 2008; Percival et al., 1999). There are four cultivated species that were domesticated independently, two of which account for greater than 95% of world cotton production. Gossyptum hirsutum (often called upland, American, Mexican, or Acala cotton) accounts for 90% and Gossypium barbadense (often called extra long-staple, Pima, and Egyptian cotton) accounts for 5% of world cotton production. Due to the utility of the fibers for the production of textiles, human selection pressure on cotton has altered the plant from compact annual row crop, yielding large, easily germinating seeds with white, thick, long, and strong fibers (Brubaker et al. 1000)

The four cultivated species, which are widely cultivated across the entire globe, are comprised of two diploid species G. arboretum and G. herbaceum, which evolved from Africa and the Middle East, and two allotetraploid species G. barbadense and G. hirsutum, which evolved in the Americas (Brubaker et al., 1999).

Improved modern varieties of G. hirsutum and G. barbadense are currently cultivated in the southern U.S., with G. barbadense grown primarily in the western states of Arizona, California, New Mexico, and Texas; and G. hirsutum produced throughout the 17 states comprising the U.S. cotton growing region, commonly referred to as the cotton belt. G. hirsutum comprises the vast majority of U.S. cotton production with nearly 11 million

acres planted and 18 million bales harvested, whereas G. barbadense varieties accounted for approximately 200,000 acres and half a million bales in 2010 (USDA-NASS, 2011e). Commercial cotton, including G. hirsutum and G. barbadense, has a long history of agricultural production (Lee, 1984; USDA-AMS, 2001; USDA-NASS, 2012c). Extralong staple lint from G. barbadense is segregated and classed separately from G. hirsutum and is sold at a premium (USDA-AMS, 2001). However, cottonseed and cottonseed by-products (e.g., oil and meal) are not generally distinguished by species (OECD, 2008; USDA-FAS, 2005).

II.B. Characteristics of the Recipient Plant

The G. hirsutum cotton variety used as the recipient for the DNA insertion to create MON 88701 was Coker 130, a non-transgenic, conventional, upland inbred variety developed by Coker Pedigreed Seed Co., commercialized in 1990 in the U.S. (Bowman II.C. Cotton as a Test System in Product Safety Assessment

et al., 2006). **II.C. Cotton as a Test System in Product Safety Assessment** Coker 130 was used as the near isogenic, conventional parental cotton comparator (referred to in this petition as the conventional control) in the safety assessment of MON 88701 and the conventional control have similar genetic MON 88701. backgrounds with the exception of the T-DNA, thus, the effect of the T-DNA and the expressed MON 88701 DMO and PAT (bar) proteins could be assessed. In addition, commercial cotton varieties (referred to in this consultation document as commercial reference varieties) were used as reference materials to establish ranges of natural variability representative of commercial cotton varieties. The commercial reference varieties used at each field trial location were selected based on their availability and agronomic fit for the respective geographic region.

.ric , repre .es used at unomic fit for ta document is affiliation the subject to much uithermore the and publication and the second of the contraction of th UPUTION CONTRACTION without the permission of the owner ston, the permission of the pe any commercial exploration and uner interior Enter the owner of the owner own

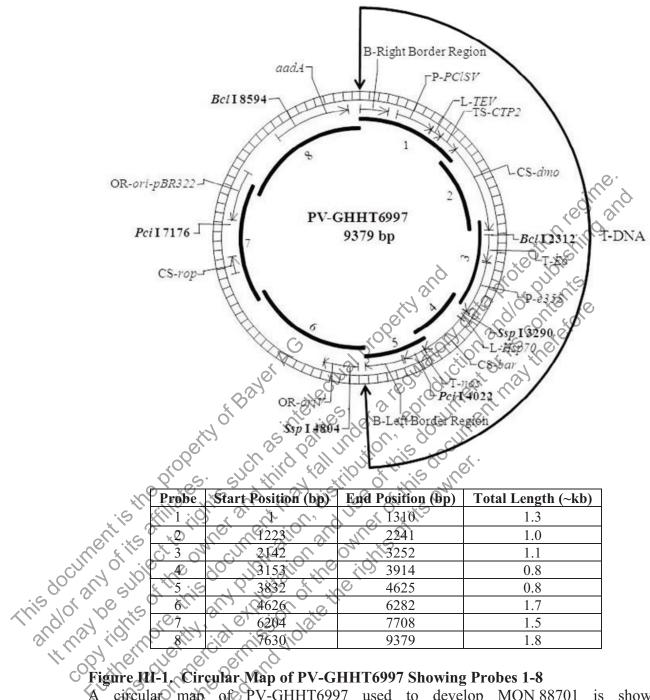
III. DESCRIPTION OF THE GENETIC MODIFICATION

MON 88701 was developed through Agrobacterium tumefaciens-mediated transformation of cotton tissues from Coker 130 variety utilizing plasmid vector PV-GHHT6997. This section describes the plasmid vector, the donor gene, and the regulatory elements used in the development of MON 88701, as well as the deduced amino acid sequence of the MON 88701 DMO protein and PAT (bar) protein produced in MON 88701. In this section, transfer DNA (T-DNA) refers to DNA that is transferred to the plant during transformation. An expression cassette is comprised of sequences to be transcribed and the regulatory elements necessary for the expression of those ion regimend sequences.

III.A. PV-GHHT6997

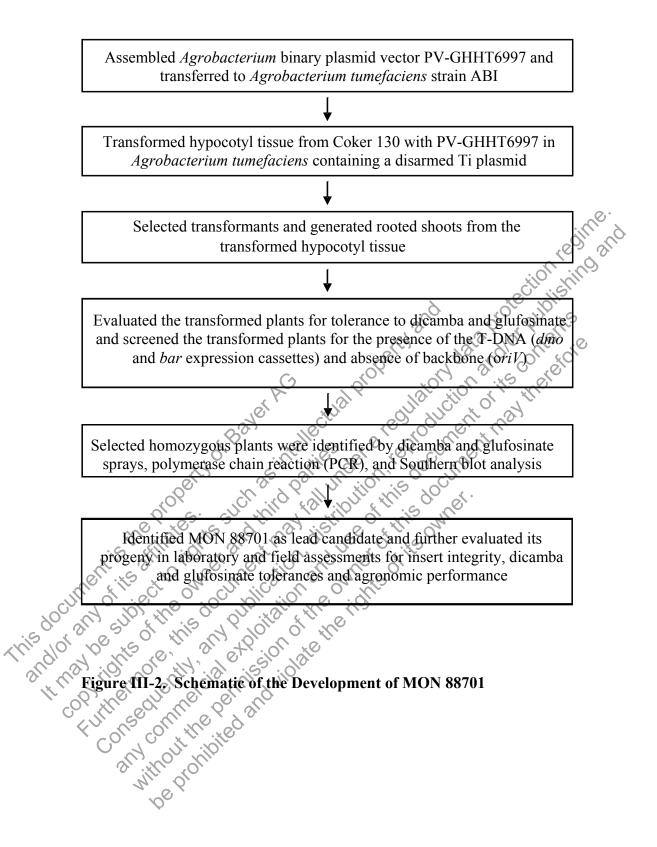
PV-GHHT6997 was used in the transformation of cotton to produce MON 88701 and its plasmid map is shown in Figure III-1. The elements included in this plasmid vector are described in Table III-1. PV- GHHT6997 is approximately 9.4kb and contains one T-DNA that is delineated by Left Border and Right Border regions. The T-DNA contains the *dmo* and *bar* expression cassettes. The *dmo* expression cassette is regulated by the peanut chlorotic streak caulimovirus (PCISV) promoter, the tobacco etch virus (TEV) 5' leader sequence, and the 3' untranslated sequence of the E6 gene from Gossypium barbadense. The chloroplast transit peptide CTP2 directs transport of the DMO protein to the chloroplast in MON 8870P and is derived from the CTP2 target sequence of the Arabidopsis thaliana shkG gene (Herrmann, 1995; Klee et al., 1987). The bar expression cassette is regulated by the e35S promoter from the 35S RNA of cauliflower mosaic virus (CaMV), the heat shock protein 70 (Hsp70) leader, and the nopaline synthase (nos) 3' untranslated region. ŝ 6

The backbone region of PV-GHHT6997, located outside of the T-DNA, contains two origins of replication for maintenance of plasmid vector in bacteria (oriV and *ori-pBR322*), a bacterial selectable market gene (*aadA*), and a coding sequence for repressor of primer (rop) protein for maintenance of plasmid vector copy number in Escherichia coli (E, coli) A description of the genetic elements and their prefixes (e.g., B, P-, E-, TS-, CS-, T-, and OR-) in PV-GHHT6997 is provided in Table III-1.


III.B. Description of the Transformation System

MON 88701 was developed through Agrobacterium-mediated transformation of PV-GHHT6997 (Figure III-1) into cotton hypocotyls, based on published methods 2010 and , 2011). In summary, hypocotyl segments were excised from dark grown seedlings of germinated Coker 130 seed. After co-culturing with the Agrobacterium³ carrying the vector, the hypocotyl segments were placed on a sequence of media for callus growth containing carbenicillin and cefotaxime to inhibit the growth of excess Agrobacterium and glufosinate to inhibit growth of untransformed cells. The

³ Agrobacterium strain used contained a disarmed Ti plasmid.


Lice of the transformation of the transforma Jved in Jved in Jved in Used in the officient of this document man distinution distingtion of this document man document and use of this document in the document of this document in the office of this document in the publication and use of this document in the office of this document in the permission of the owner of this document in the owner of the owner any commercial exploitation and use of this document, may there are on the source of this document, may there is the other of this owner.

without the permission of the owner of this documer.

Figure HI-1. Circular Map of PV-GHHT6997 Showing Probes 1-8

circulat map of PV-GHHT6997 used to develop MON 88701 is shown. A PV-GHHT6997 contains a single T-DNA. Genetic elements and restriction sites (in bold) used in Southern analyses (with positions relative to the first base pair of the plasmid vector are shown on the exterior of the map. The probes used in the Southern analyses are shown on the interior of the map and listed in the table.

III.C. The *dmo* Coding Sequence and the MON 88701 DMO Protein

The *dmo* expression cassette encodes a ~39 kDa MON 88701 DMO precursor protein consisting of a single polypeptide of 416 amino acids (Figure III-3). The *dmo* coding sequence is the codon optimized coding sequence from *Stenotrophomonas maltophilia* that encodes the DMO protein (Herman et al., 2005; Wang et al., 1997). The presence of MON 88701 DMO protein confers dicamba tolerance.

III.D. The bar Coding Sequence and PAT (bar) Protein

The bar expression cassette encodes a ~21 kDa PAT (bar) protein consisting of a single polypeptide of 183 amino acids (et al., 1987) (Figure III-4). The bar coding sequence is from Streptomyces hygroscopicus and encodes the phosphinothricin et al., 1987). The presence of PAT (bar) N-acetyltransferase (PAT) protein (Ata protec protein confers glufosinate tolerance. ote pupili

III.E. Regulatory Sequences The *dmo* coding sequence in MON 88701 is under the regulation of the *PCISV* promoter, the TEV 5' leader, and the E6 3' untranslated region. The PCISV promoter is the promoter for the Full-Length Transcript (FLt) of peanut chlorotic streak caulimovirus (Maiti and Shepherd, 1998) that directs transcription in plant cells. The TEV leader is the 5' untranslated region from the tobacco etch virus (Niepel and Gallie, 1999) and is involved in regulating gene expression. The chloroplast transit peptide CTP2 directs transport of the DMO protein to the chloroplast in MON 88701 and is derived from the CTP2 target sequence of the Arabidopsis thaliana shkG gene (Herrmann, 1995; Klee et al., 1987). The E6 3' non-translated region is the 3' untranslated region from the E6 gene of Gossypium barbadense encoding a fiber protein, which functions to direct polyadenylation of the mRNA (John, 1996).

the *Hsp70* leader, and the *nos* 3 untranslated region. The *e35S* promoter is the promoter for the 35S RNA of callflower mosaic virus (CaMV) (Odell et al. 1085) and uplicated enhancer region (V_{cal} Hsp70 leader is the 5[°] untranslated region from the DnaK gene from Petunia hybrida (Rensing and Maier, 1994; Winter et al., 1988) and is involved in regulating gene expression The nos 3' untranslated region is the 3' untranslated region from the nopaline synthase (nos) gene of Agrobacterium tumefaciens encoding NOS and directs polyadenylation of the mRNA (Bevan et al., 1983; Fraley et al., 1983).

III.F. T-DNA Borders

PV-GHHT6997 contains Right Border and Left Border regions (Figure III-1 and Table III-1), which were derived from Agrobacterium tumefaciens plasmids. The border regions each contain a 24-25 bp nick site that is the site of DNA exchange during transformation (Barker et al., 1983; Depicker et al., 1982; Zambryski et al., 1982). The border regions separate the T-DNA from the plasmid backbone region and are involved in the efficient transfer of T-DNA into the cotton genome.

III.G. Genetic Elements Outside of the T-DNA Borders

Genetic elements that exist outside of the T-DNA border regions are those that are essential for the maintenance or selection of PV-GHHT6997 in bacteria. The origin of replication, *oriV*, is required for the maintenance of the plasmid in *Agrobacterium* and is derived from the broad host plasmid RK2 (Stalker et al., 1981). The origin of replication, ori-pBR322, is required for the maintenance of the plasmid in E. coli and is derived from the plasmid vector pBR322 (Sutcliffe, 1979). Coding sequence rop encodes the repressor of primer (ROP) protein which is necessary for the maintenance of plasmid copy number in E. coli (Giza and Huang, 1989). The selectable marker aadA is a bacterial promoter and coding sequence for an enzyme from transposon Tn7 that confers spectinomycin and streptomycin resistance (Fling et al., 1985) in E. coli and Agrobacterium during molecular cloning. Because these elements are outside the border regions, they are not Tuthermore. this document index and use of the analyses, and use of the analyses, and use of this document of its content of the document of t expected to be transferred into the cotton genome. The absence of detectable backbone any connectation and use of this document, may there for any connectation and use of this owner. sequence in MON 88701 has been confirmed by Southern blot analyses (See Section IV-

without the permission of the owner of this documer.

	Genetic Element	Location in Plasmid Vector (bp)	Function (Reference)				
	T-DNA						
	B ¹ -Right Border Region	1-331	DNA region from <i>Agrobacterium tumefaciens</i> containing the Right Border sequence used for transfer of the T-DNA (Depicker et al., 1982; Zambryski et al., 1982)				
	Intervening Sequence	332-433	Sequence used in DNA cloning				
	P ² -PC1SV	434-866	Promoter from the Full-Length Transcript (FLt) of peanut chlorotic streak caulimovirus (<i>PC1SV</i>) that directs transcription in plant cells (Maiti and Shepherd, 1998)				
	Intervening Sequence	867-872	Sequence used in DNA cloning				
	L ³ -TEV	873-1004	5' UTR leader sequence from the RNA of tobacco etch virus (TEV) (Niepel and Gallie, 1999) that is involved in regulating gene expression				
	Intervening Sequence	1005	Sequence used in DNA cloning				
	TS ⁴ -CTP2	1006-1233	Targeting sequence of the <i>ShkG</i> gene from <i>Arabidopsis</i> <i>thaliana</i> encoding the EPSPS transit peptide region that directs transport of the protein to the chloroplast (Herrmann, 1995; Klee et al., 1987)				
	CS ⁵ -amo	1234-2256	Codon optimized coding sequence for the dicamba mono-oxygenase (DMO) protein of <i>Stenotrophomonas</i> <i>maltophilia</i> that confers dicamba tolerance (Herman et al., 2005; Wang et al., 1997)				
cul	Intervening Sequence	2257-2310	Sequence used in DNA cloning				
This doc 2	T ⁶ £6	2311-2625	3' UTR sequence of the <i>E6</i> gene from <i>Gossypium</i> <i>barbadense</i> (cotton) encoding a fiber protein involved in early fiber development (John, 1996) that directs polyadenylation of mRNA				
	Intervening Sequence	2626-2637	Sequence used in DNA cloning				
	P-e355	2638-3249	Promoter from the 35S RNA of cauliflower mosaic virus (CaMV) (Odell et al., 1985) containing the duplicated enhancer region (Kay et al., 1987) that directs transcription in plant cells				
	Intervening Sequence	3250-3252	Sequence used in DNA cloning				

Table III-1. Summary of Genetic Elements in PV-GHHT6997

	Genetic Element	Location in Plasmid Vector (bp)	Function (Reference)			
	L-Hsp70	3253-3348	5' UTR leader sequence of the <i>DnaK</i> gene from <i>Petunia</i> <i>hybrida</i> that encodes heat shock protein 70 (HSP70) (Rensing and Maier, 1994; Winter et al., 1988) that is involved in regulating gene expression			
	Intervening Sequence	3349-3354	Sequence used in DNA cloning			
	CS-bar	3355-3906	Coding sequence for the phosphinothricin N-acetyltransferase (PAT) protein of <i>Streptomyces</i> <i>hygroscopicus</i> that confers glufosinate tolerance (et al., 1987)			
	Intervening Sequence	3907-3911	Sequence used in DNA cloning			
	T-nos	3912-4164	3' UTR sequence of the nopaline synthase (<i>nos</i>) gene from <i>Agrobacterium tumefaciens</i> pTi encoding NOS that directs polyadenylation (Bevan et al., 1983; Fraley et al., 1983)			
	Intervening Sequence	4165-4183	Sequence used in DNA cloning			
	B-Left Border Region	A184-4625	DNA region from <i>Agrobacterium tumefaciens</i> containing the Left Border sequence used for transfer of the T-DNA (Barker et al., 1983)			
	Plasmid Vector Backbone					
	Intervening Sequence	4626-4711	Sequence used in DNA cloning			
This docur		4712-5108	Origin of replication from the broad host range plasmid RK2 for maintenance of plasmid in <i>Agrobacterium</i> (Stalker et al., 1981)			
Khis 101	Intervening Sequence	5109-6616	Sequence used in DNA cloning			
This dor	CStrop	6617-6808	Coding sequence for repressor of primer protein from the ColE1 plasmid for maintenance of plasmid copy number in <i>E. coli</i> (Giza and Huang, 1989)			
	Intervening Sequence	6809-7235	Sequence used in DNA cloning			
	OR ori- pBR322	7236-7824	Origin of replication from plasmid pBR322 for maintenance of plasmid in <i>E. coli</i> (Sutcliffe, 1979)			
	"VO					

 Table III-1.
 Summary of Genetic Elements in PV-GHHT6997 (continued)

Table III-1. Summary of Genetic Elements in PV-GHHT6997 (continued)

	Genetic Element	Location in Plasmid Vector (bp)	Function (Reference)
	Intervening Sequence	7825-8354	Sequence used in DNA cloning
	aadA	8355-9243	Bacterial promoter, coding sequence, and 3' UTR for an aminoglycoside-modifying enzyme, 3'(9)- <i>O</i> -nucleotidyltransferase from the transposon <i>Tn7</i> (Fling et al., 1985) that confers spectinomycin and streptomycin resistance
	Intervening Sequence	9244-9379	Sequence used in DNA cloning
This docur this docur this docur this docur	B, Border P, Promoter L, Leader TS, Targeting Sec CS, Coding Sequ T, Transcription OR, Origin of Re OR, Origin of Re CONCENTRATION	equence Jermination Se eplication period ioner and ioner and	Bacterial promoter, coding sequence, and 3' UTR for an aminoglycoside-modifying enzyme, 3'(9)-O-nucleotidyltransferase from the transposon <i>Tn7</i> (Fling et al., 1985) that confers spectinomycin and streptomycin resistance Sequence used in DNA eloning

1	MAQVSRICNG	VQNPSLISNL	SKSSQRKSPL	SVSLKTQQHP	RAYPISSSWG
51	LKKSGMTLIG	SELRPLK <u>VMS</u>	SVSTACMLTF	VRNAWYVAAL	PEELSEKPLG
101	RTILDTPLAL	YRQPDGVVAA	LLDICPHRFA	PLSDGILVNG	HLQCPYHGLE
151	FDGGGQCVHN	PHGNGARPAS	LNVRSFPVVE	RDALIWIWPG	DPALADPGAI
201	PDFGCRVDPA	YRTVGGYGHV	DCNYKLLVDN	LMDLGHAQYV	HRANAQTDAF
251	DRLEREVIVG	DGEIQALMKI	PGGTPSVLMA	KFLRGANTPV	DAWNDIRWNK
301	VSAMLNFIAV	APEGTPKEQS	IHSRGTHILT	PETEASCHYF	FGSSRNFGID
351	DPEMDGVLRS	WQAQALVKED	KVVVEAIERR	RAYVEANGIR	PAMLSCDEAA
401	VRVSREIEKL	EQLEAA			

Figure III-3. Deduced Amino Acid Sequence of the MON 88701 DMO Protein The amino acid sequence of the MON 88701 DMO precursor protein was deduced from the full-length coding nucleotide sequence present in PV-GHHT6997 (See Table III-1 for more detail). The chloroplast transit peptide (CTP2) and the first 76 amino acids of the precursor protein are underlined. CTP2 targets MON 88700 DMO protein to the chloroplast. The CTP2 is cleaved in the chloroplast producing the mature 349 amino acid MON 88701 DMO protein that begins with the value at position 68 (See Appendix C.1). The double underline shows the nine amino acids from CTP2 that are at the N-terminus of the mature MON 88701 protein.

- MSPERRPADI RRATEADMPA VCTIVNHYDE TSTVNFRTEP OEPOEWTDDL 1
- VRLRERYPWL VAEVDGEVAG IAYAGPWKAR NAYDWTAEST VYVSPRHQRT 51
- GLGSTLYTHL LKSLEAQGFK SVVAVIGLPN DPSVRMHEAL GYAPRGMLRA 101
- AGFKHGNWHD VGFWQLDFSL PVPPRPVLPV TEI 151

Figure III-4. Deduced Amino Acid Sequence of the PAT (bar) Protein

The amino acid sequence of the MON 88701-produced PAT (bar) protein was deduced

C

The amino acid sequence of the MON 88701-produced PAT (*bar*) protein was deduced from the full-length coding nucleotide sequence present in PV-GHHT6997 (See Table III-1 for more detail).

IV. CHARACTERIZATION OF THE GENETIC MODIFICATION

Characterization of the DNA insert in MON 88701 was conducted by Southern blot, PCR, and DNA sequence analyses. The results of this characterization demonstrate that MON 88701 contains a single copy of the *dmo* and *bar* expression cassettes and lacks plasmid backbone; the T-DNA is stably integrated at a single locus and is inherited according to Mendelian principles over multiple generations. These conclusions were based on several lines of evidence: 1) Southern blot analyses assayed the entire cotton genome for the presence of the T-DNA and absence of the plasmid backbone sequences derived from PV-GHHT6997, and demonstrated that only a single copy of the T-DNA was inserted at a single genomic site and that the insert is stably inherited. 2) DNA sequence analyses to determine the exact sequence of the inserted DNA and the DNA sequences flanking the 5' and 3' ends of the insert, allowing a comparison to the T-DNA sequence in the plasmid vector to confirm that only the expected sequences were integrated; 3) DNA sequences flanking the 5' and 3' ends of the insert were compared to the sequence of the insertion site in conventional cotton to identify any rearrangements that occurred at the insertion site during transformation. Taken together, the characterization of the genetic modification demonstrates that a single copy of the T-DNA was stably integrated at a single locus of the cotton genome and that no plasmid backbone sequences are present in MON 88701.

backbone sequences are present in MON 88701. Southern blot analyses were used to determine the copy number and insertion sites of the integrated DNA as well as the presence or absence of plasmid vector backbone The Southern blot strategy was designed to ensure that all potential sequences. transgenic segments would be identified. The entire cotton genome was assayed with probes that spanned the complete plasmid vector to detect the presence of the insert as well as confirm the absence of any plasmid vector backbone sequences. This was accomplished by using probes that were not more than 2.5 kb in length to ensure a high restriction enzymes were specifically chosen to fully characterize the T-DNA and detect any potential fragments of the T-DNA and backbone sequences. The restriction sets were chosen such that each enzyme at least once within the known DNA flanking the 5' or 3' end of the insert. As a consequence, at least one segment containing a portion of the insert with the adjacent 5' flanking DNA generated by one set of the enzyme(s) is of a predictable size and overlaps with another predictable size segment containing a portion of the insert with the adjacent 3' flanking DNA generated by another set of the enzyme(s). This two-set enzyme design ensures that the entire insert is identified in a predictable hybridization pattern. This strategy also maximizes the possibility of detecting an insertion elsewhere in the genome that could be overlooked if that band co-migrated on the gel with an expected band.

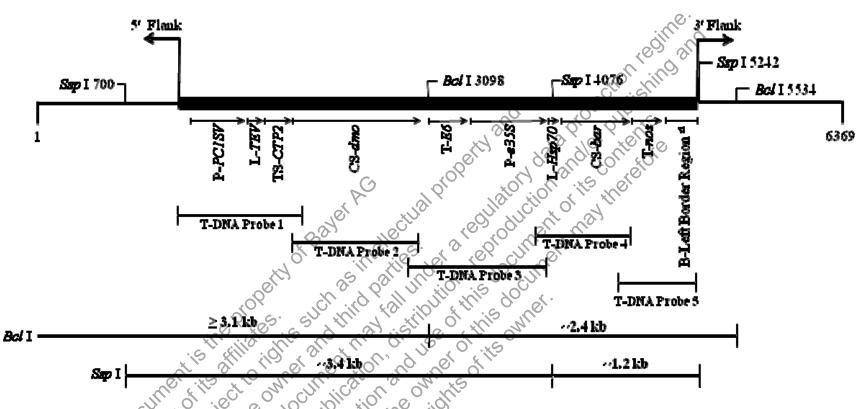
To determine the number of copies and insertion sites of the T-DNA, and the presence or absence of the plasmid vector backbone sequences, duplicated samples that consisted of equal amounts of digested DNA were run on the agarose gel. One set of samples was run for a longer period of time (long run) than the second set (short run). The long run allows for greater resolution of large molecular weight DNA, whereas the short run allows for

retaining the small molecular weight DNA on the gel. The molecular weight markers on the left of the figures were used to estimate the sizes of the bands present in the long run lanes of the Southern blots, and the molecular weight markers on the right of the figures were used to estimate the sizes of bands present in the short run lanes of the Southern blots (Figure IV-2 through Figure IV-5). Any minor discrepancies between the molecular weight marker and the genomic DNA samples are likely due to differences in the migration rate of DNA during agarose gel electrophoresis caused by differences in salt concentration, base composition, or sequences of DNA (Elder and Southern, 1983; Sambrook and Russell, 2001). Southern blot analyses determined that a single copy of the T-DNA was inserted at a single locus of the cotton genome, and no additional genetic elements, including backbone sequences, from PV-GHHT6997 were detected in MON 88701.

The PCR and DNA sequence analyses complement the Southern analyses. PCR and DNA sequence analyses performed on MON 88701 determined the complete DNA sequence of the insert and flanking genomic DNA sequences in MON 88701, confirmed the predicted organization of the genetic elements within the insert, and determined the sequences flanking the insert. In addition, DNA sequence analyses confirmed that each genetic element (except for the border regions) in the insert is intact and the sequence of the insert is identical to the corresponding sequence in PV-GHHT6997 (Figures IV-6 and IV-7). Furthermore, genomic organization at the MON 88701 insertion site was determined by comparing the sequence flanking the 5' and 3' ends of the insert to the sequence of the insertion site in conventional cotton.

The stability of the T-DNA present in MON 88701 across multiple generations was demonstrated by Southern blot fingerprint analysis (Figure IV-9). Genomic DNA from five generations of MON 88701 (Figure IV-8) was digested with one of the enzyme sets used for the insert and copy number analyses and was hybridized with two probes that detect restriction segments that encompass the entire insert. This fingerprint strategy consists of two insert segments each containing its adjacent genomic DNA that assesses not only the stability of the insert, but also the stability of the DNA directly adjacent to the insert.

Segregation analysis was conducted to determine the inheritance and stability of the T-DNA insert in MON 88701. Results from this analysis demonstrated that the inheritance and stability of the insert was as expected across multiple generations (Figure IV-8, Table IV-3, and Table IV-4), which corroborates the molecular insert stability analysis and establishes the genetic behavior of the T-DNA at a single chromosomal locus.


The Southern blot analyses confirmed that the T-DNA reported in Figure IV-1 represents the only detectable insert in MON 88701. A circular map of PV-GHHT6997 annotated with the probes used in the Southern blot analysis is presented in Figure III-1 and the genetic elements within the MON 88701 insert are summarized in Table IV-2. A linear map depicting restriction sites within the insert as well as within the DNA immediately flanking the insert in MON 88701 is shown in Figure IV-1. Based on the plasmid map and the linear map of the insert, a table summarizing the expected DNA segments for

Southern analyses is presented in Table IV-1. The results from the Southern blot analyses are presented in Figure IV-2 through Figure IV-5. PCR amplification of the MON 88701 insert and the insertion site in the conventional control for DNA sequence analysis are shown in Figure IV-6 and Figure IV-7, respectively. The generations used in the generational stability analysis are depicted in the breeding history shown in Figure IV-8 and the results from the generational stability analysis are presented in The breeding path for generating the segregation data is shown in JN8. Figure IV-10 and the results for the segregation analysis are presented in Table IV-3 and IV-4. Materials and methods used for the characterization of the insert in MON 88701

Consequently and publication of the owner of this document may therefore owner of this document may there owner owner of this document may there owner owner

without the permission of the owner of this documer.

any connected and violate the rights of this document, may there is the owner.

Figure IV-1. Schematic Representation of the Insert and Flanking DNA in MON 88701

A linear map of the insert and DNA flanking the insert in MON 88701 is shown. Angled arrows indicate the ends of the integrated T-DNA and the beginning of the flanking DNA. Identified on the linear map are genetic elements within the insert, as well as the sites of the restriction enzymes used in the Southern analyses with positions relative to the first base pair of the DNA sequence represented in this map. The relative sizes and locations of the T-DNA probes and the expected sizes of restriction fragments are indicated in the lower portion of the scheme. This schematic diagram is not drawn to scale. Locations of genetic elements and T-DNA probes are approximate. Probes are also shown in Figure IIP1. ^{r1}Superscript in Left Border Region indicates that the sequence in MON 88701 was truncated compared to the sequences in PV-GHHT6997.

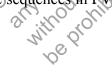


Table IV-1. Summary Chart of the Expected DNA Segments Based on Hybridizing Probes and Restriction Enzymes Used in **MON 88701 Analysis** edin and

				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Southern Blot Analysis			T-DNA	tection is	Backbone
Figur	·e	IV-2	IV-3	VIV-4	P IV-5
Probe(s)	Used	1,5	2,4	x 19 x .	Ø 6, 7, 8
			20 20	ALC COLO	)*
Probing Target	Digestion enzyme	AC	Expected Band Siz	es on each Southe	ern Blot
PV-GHHT6997	Pci I	~6.2 kb ~3.2 kb	~6.29kb	6.2 kb	~6.2 kb ~3.2 kb
Probe Templates ¹	N/A	~1.3 kb ~0.8 kb	7.0 kb 7.0 kb 7.0 kb	~~2	~1.5 kb ~1.7 kb ~1.8 kb
	AC AC		all where the concerne		
MON 88701	Bcl	≥3.1 kb ~2,4 kb	3.1 k0 m 5 ~2.4 kb s	≥3.1 kb ~2.4 kb	None
	Ssp I	~3.4 kb ~1.2 kb	3.4 kb ~1.2 kb	~3.4 kb	None

¹Probe template spikes were used as positive hybridization controls in Southern blot analyses when multiple probes were hybridized to the blot simultaneously. ²' ~~' indicates that probe template was not used.

		Location in	
	Genetic Element	Sequence (bp)	Function (Reference)
	5' Flank	1-1126	Cotton genomic DNA
	Intervening	1127-1219	Sequence used in DNA cloning
	Sequence	112/121/	sequence used in Drur cloning
	P ¹ -PCISV	1220-1652	Promoter from the Full-Length Transcript
	1 1 015 /	1220 1032	(FLt) of peanut chlorotic streak caulimovirus
			( <i>PC1SV</i> ) that directs transcription in plant $@^{\circ}$
			cells (Maiti and Shepherd, 1998)
	Intervening	1653-1658	Sequence used in DNA cloning
		1055-1058	Sequence used in DIVA cloning
	Sequence L ² -TEV	1659-1790	5/ LITD load on as guenos from the DNA of
		1639-1790	5' UTR leader sequence from the RNA of
			tobacco etch virus (TEV) (Niepel and Gallie,
			1999) that is involved in regulating gene
	<b>T</b> / <b>·</b>	1701	expression (1)
	Intervening	1791	Sequence used in DNA cloning
	Sequence	G	
	TS ³ -CTP2	1792-2019	Targeting sequence of the <i>ShkG</i> gene from
			Arabidopsis thaliana encoding the EPSPS
			transit peptide region that directs transport of
		O' inter	the protein to the chloroplast (Herrmann,
		s'a	1995; Klee et al., 1987)
	CS4-dmo per contraction contra	2020-3042	Codon optimized coding sequence for the
	ples.	SUL WIN 1	dicamba mono-oxygenase (DMO) protein of
		S. S. Co	Stenotrophomonas maltophilia that confers
	is i fill id		dicamba tolerance ( et al., 2005;
		O' O' HO'	et al. (1997)
	Intervening	2020-3042 2020-3042 5 10 10 10 10 10 10 10 10 10 10	Sequence used in DNA cloning
_0			
This do	Sequences T ⁵ -E6	3097-3411	3' UTR sequence of the <i>E6</i> gene from
inis or		(1) 10 m	Gossypium barbadense (cotton) encoding a
11. dl	y mi rois	01 30 30	fiber protein involved in early fiber
N. 10	or certainer and	al missil violat	development (John, 1996) that directs
SI'I	ay induination		polyadenylation of mRNA
C	Intervening	3412-3423	Sequence used in DNA cloning
	Sequence	.x0	
	Contraction		
	P-e35S	3424-4035	Promoter from the 35S RNA of cauliflower
	Mrs. Pl	5.2. 1050	mosaic virus (CaMV) (Odell et al., 1985)
	10°		containing the duplicated enhancer region
			(Kay et al., 1987) that directs transcription in
			plant cells
			plant cells

# Table IV-2. Summary of Genetic Elements in MON 88701

	Genetic Element	Location in Sequence (bp)	Function (Reference)
	Intervening Sequence	4036-4038	Sequence used in DNA cloning
	L-Hsp70	4039-4134	5' UTR leader sequence of the <i>DnaK</i> gene from <i>Petunia hybrida</i> that encodes heat shock protein 70 (HSP70) (Rensing and Maier, 1994; Winter et al., 1988) that is involved in regulating gene expression
	Intervening Sequence	4135-4140	Sequence used in DNA cloning
	CS-bar	4141-4692	Coding sequence for the phosphinothricin N-acetyltransferase (PAT) protein of <i>Streptomyces hygroscopicus</i> that confers glufosinate tolerance ( <b>1999</b> ) et al., 1987)
	Intervening	4693-4697	Sequence used in DNA cloning
	Sequence T-nos	4698-4950	3 UTR sequence of the nopaline synthase (nos) gene from Agrobacterium tumefaciens
	Intervening	64698-4950 5-11-11-10-11 4051-4060	pTi encoding NOS that directs polyadenylation (Bevan et al., 1983; Fraley et al., 1983)
	Intervening Sequence	4951-4969	Sequence used in DNA cloning
This doci	B ⁶ -Left Border Region ^{r1}	4951-4969 4970-5231 5232-6369	DNA region from <i>Agrobacterium</i> <i>tumefaciens</i> containing the Left Border sequence used for transfer of the T-DNA (Barker et al., 1983)
LI. SUH U	¹ P, Promoter ² L, Leader ³ TS, Targeting Seque ⁴ CS, Coding Sequenc ⁵ T, Transcription Ter ⁶ B, Border	nce mination Sequence Border Region in	

Table IV-2. Summary of Genetic Elements in MON 88701 (continued)

^{r1}Superscript in beft Border Region indicates that the sequence in MON 88701 was truncated compared to the sequences in PV-GHHT6997.

## IV.A. Insert and Copy Number of T-DNA in MON 88701

The numbers of copies and insertion sites of the T-DNA sequences in the cotton genome were evaluated by digesting MON 88701 and conventional control genomic DNA samples with the restriction enzyme *Bcl* I or the restriction enzyme *Ssp* I and hybridizing Southern blots with probes that span the T-DNA (Figure III-1). Each restriction digest is expected to produce a specific banding pattern on the Southern blots (Table IV-1). Any additional copies and/or integration sites would be detected as additional bands on the blots.

The restriction enzyme *Bcl* I cleaves once within the inserted T-DNA and within the known genomic DNA flanking the 3' end of the insert (Figure IV-1). Therefore, if T-DNA sequences were present as a single copy at a single integration site in MON 88701, the digestion with *Bcl* I was expected to generate two border segments with expected sizes of  $\geq 3.1$  kb and  $\sim 2.4$  kb (Figure IV-1 and Table IV-1). The restriction enzyme *Ssp* I cleaves once within the inserted T-DNA and within the known genomic DNA flanking the 5' and 3' ends of the insert (Figure IV-1). If T-DNA sequences were present as a single copy at a single integration site in MON 88701, the digestion with ssp I was expected to generate two border segments with expected sizes of  $\sim 3.4$  kb and  $\sim 1.2$  kb (Figure IV-1 and Table IV-1).

The Southern blots were hybridized with T-DNA probes that collectively span the entire inserted DNA sequence (Figures III-1 and IV-1, Probe 1, Probe 2, Probe 3, Probe 4, and Probe 5). Conventional control genomic DNA digested with the restriction enzyme *Bcl* I and spiked with either probe templates and/or digested PV-GHHT6997 DNA served as positive hybridization controls. The positive hybridization control was spiked at approximately 0.1 and 1.0 copies of genome equivalents to demonstrate sufficient sensitivity of the Southern blot. Conventional control genomic DNA digested with the restriction enzymes was used as a negative control. The results of these analyses are shown in Figure IV-2 through Figure IV-4.

# IV.A.1. T-DNA Probes P and 5

Conventional control genomic DNA digested with *Bcl* I (Figure IV-2, Lane 1 and Lane 8) or with *Ssp* 1 (Figure IV-2, Lane 3 and Lane 10) and simultaneously hybridized with Probe 1 and Probe 5 (Figures III-1 and IV-1) produced no detectable hybridization bands as expected for the negative control in the reported exposure shown in Figure IV-2. In a longer exposure of the blot, faint endogenous hybridization bands were present in both the *Bcl* I digest and the *Ssp* I digest in the conventional control genomic DNA (data not shown). Conventional control genomic DNA digested with *Bcl* I and spiked with probe 5 (Figure III-1) produced the expected bands at ~1.3 kb and ~0.8 kb (Figure IV-2, Lane 5 and Lane 6). Conventional control genomic DNA digested with *Bcl* I and spiked with the PV-GHHT6997 DNA, previously digested with the restriction enzyme *Pci* I (Figure III-1), produced two bands at ~6.2 kb and ~3.2 kb (Figure IV-2, Lane 7), as expected. Detection of the positive controls indicates that the probes hybridized to their target sequences.

MON 88701 DNA digested with Bcl I and simultaneously hybridized with Probe 1 and Probe 5 (Figures III-1 and IV-1) produced the expected bands at ~3.5 kb and ~2.4 kb (Figure IV-2, Lane 2 and Lane 9) which is consistent with the expected  $\geq 3.1$  kb and ~2.4 kb bands (Figure IV-1 and Table IV-1), respectively. MON 88701 DNA digested with the restriction enzyme Ssp I and hybridized with Probe 1 and Probe 5 (Figures III-1 and IV-1) produced two bands at ~3.4 kb and ~1.2 kb (Figure IV-2, Lane 4 and Lane 11), as expected.

The results presented in Figure IV-2 indicate that the sequences covered by Probe 1 and Probe 5 reside at a single detectable locus of integration in MON 88701.

# IV.A.2. T-DNA Probes 2 and 4

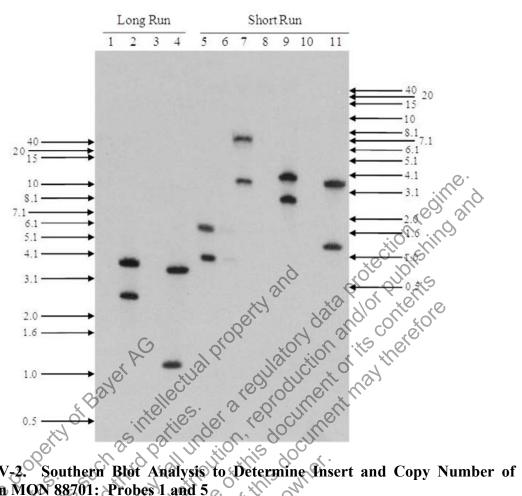
Conventional control genomic DNA digested with Bcl I (Figure IV-3, Lane 1 and Lane 8) or with Ssp I (Figure IV-3, Lane 3 and Lane 10) and simultaneously hybridized with Probe 2 and Probe 4 (Figures III-1 and IV-1) produced no detectable hybridization bands as expected for the negative control. Conventional control genomic DNA digested with Bcl I and spiked with probe templates of Probe 2 and Probe 4 (Figure III-1) produced the expected bands at ~1.0 kb and ~0.8 kb (Figure IV-3, Lane 5 and Lane 6). Conventional control genomic DNA digested with Bcl? and spiked with the PV-GHHT6997 DNA, previously digested with the restriction enzyme Pci I (Figure III-1), produced one band at ~6.2 kb (Figure IV-3, Lane 7), as expected. Detection of the positive controls indicates that the probes hybridized to their target sequences.

MON 88701 DNA digested with Bcl I and simultaneously hybridized with Probe 2 and Probe 4 (Figures III-1 and IV-1) produced the expected bands at ~3.5 kb and ~2.4 kb (Figure IV-3, Lane 2 and Lane 9), which is consistent with the expected  $\geq 3.1$  kb and ~2.4 kb bands (Figure IV-1 and Table IV-1), respectively. MON 88701 DNA digested und IV-1) pra und IV-1) pra as expected with the restriction enzyme Ssp I and hybridized with Probe 2 and Probe 4 (Figures III-1 and IV-1) produced two bands at  $\sim$ 3.4 kb and  $\sim$  1.2 kb (Figure IV-3, Lane 4 and Lane 11), 0

The results presented in Figure IV-3 indicate that the sequences covered by Probe 2 and Probe 4 reside at a single detectable locus of integration in MON 88701.

# IV.A.3. T-DNA Probe 3

Conventional control DNA digested with Bcl I (Figure IV-4, Lane 1 and Lane 7) or with Ssp I (Figure IV-4, Lane 3 and Lane 9) and hybridized with Probe 3 (Figures III-1 and IV-1) produced endogenous hybridization signals that were present in all lanes (Figure IV-4, Lane 1 through Lane 10). The same hybridization band was produced in conventional control and MON 88701 DNA lanes when digested with the same enzyme.


When digested with *Bcl* I and hybridized with Probe 3 hybridization bands of  $\sim 1.9$  kb and ~1.7 kb were produced with conventional control genomic DNA and MON 88701 DNA (Figure IV-4, Lane 1, Lane 2, and Lane 5 through Lane 8). When digested with Ssp I and hybridized with Probe 3, a hybridization band of  $\sim 2.5$  kb was produced with conventional control genomic DNA and MON 88701 DNA (Figure IV-4, Lane 3, Lane 4, Lane 9, and Lane 10). Since these bands are present in both control and test substances, these signals are considered to be weak hybridization of probes to endogenous *E6* sequences and are not specific to the inserted DNA in MON 88701.

Conventional control genomic DNA digested with Bcl I and spiked with the PV-GHHT6997 DNA, previously digested with the restriction enzyme Pci I (Figure III-1), produced one band at ~6.2 kb (Figure IV-4, Lane 5 and Lane 6), as expected. Detection of the spiked controls indicates that the probe hybridized to its target sequence.

MON 88701 DNA digested with Bcl I and hybridized with Probe 3 (Figures 41-1 and IV-1) produced two expected bands at  $\sim$ 3.5 kb and  $\sim$ 2.4 kb, which is consistent with the expected  $\geq 3.1$  kb and  $\sim 2.4$  kb bands (Figure IV-1 and Table IV-1), and is in addition to the endogenous hybridization bands discussed above (Figure IV-4, Lane 2 and Lane 8). The  $\sim$ 3.5 kb band is less intense than the  $\sim$ 2.4 kb band. The difference in band intensity is likely due to hybridization of a smaller portion of Probe 3 to the  $\sim$ 3.5 kb fragment. The ~3.5 kb band represents the 5' end of the inserted DNA and the adjacent DNA flanking the 5' end of the insert; this correlates with the expected border fragment size of  $\geq 3.1$  kb. The ~2.4 kb band represents the 3' end of the inserted DNA and the adjacent DNA flanking the 3' end of the insert. MON 88701 DNA digested with Ssp I (Figure IV-4, Lane 4 and Lane 10, Figure IV-1, and Table IV-1) and hybridized with Probe 3 produced one expected band at ~3.4 kb in addition to the endogenous hybridization bands discussed above. The -3.4 kb band represents the 5' end of the inserted DNA and the 400 adjacent DNA flanking the 5' end of the insert.

The results presented in Figure IV-4 indicate that the sequence covered by Probe 3 resides at a single detectable locus of integration in MON 88701.

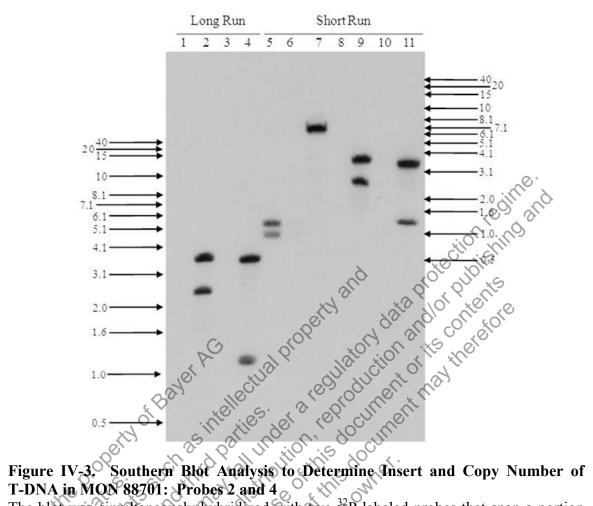
any commercial end in the industry in that is that is that is the industry in the industry is on in MO. uthernorentine commerciation and user thay pestiple the owner where the owner owner where the owner



# Figure IV-2. T-DNA in MON 88701: Probes 1 and 5

The blot was simultaneously hybridized with two  32 P-labeled probes that span a portion Reproduitately 10 µg of digested genomic DNA. Arrows denote the size of the DNA, in kilobase pairs, obtained from 1Kb DNA Extension Ladder on the ethidium bromide stained gel. Lane designations are as follows: andlor

# Lane Description


14 112

coô

Conventional Control (Bcl 1)

0

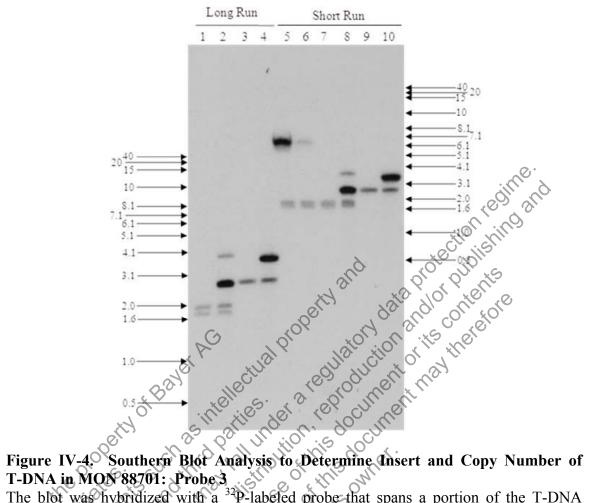
- MON 88701 (Bel I)
- Conventional Control (Ssp I)
- MON 88701 (Ssp.I)
- Conventional Control (Bcl I) spiked with Probe 1 and Probe 5 template [ $\sim$ 1.0 genome equivalent
- Conventional Control (Bcl I) spiked with Probe 1 and Probe 5 template [~0.1 genome equivalent]
- Conventional Control (Bcl I) spiked with PV-GHHT6997 (Pci I) [~1.0 genome equivalent] 7
- 8 Conventional Control (Bcl I)
- 9 MON 88701 (Bcl I)
- Conventional Control (Ssp I) 10
- 11 MON 88701 (Ssp I)



T-DNA in MQN 88701: Probes 2 and 4

The blot was simultaneously hybridized with two ³²P-labeled probes that span a portion kilobase pairs, obtained from LKb DNA Extension Ladder on the ethidium bromide stained gel. Lane designations are as follows: andlor

# Lane Description


It ma

coô

Conventional Control (Bcl I) Ð.

0

- MON 88701 (Bcl J)
- Conventional Control (Ssp I)
- 4 MON 88701 (Ssp.I)
- S Conventional Control (Bcl I) spiked with Probe 2 and Probe 4 template [ $\sim 1.0$  genome equivalent1
- 60 Conventional Control (Bcl I) spiked with Probe 2 and Probe 4 template [ $\sim 0.1$  genome equivalent]
- Conventional Control (Bcl I) spiked with PV-GHHT6997 (Pci I) [~1.0 genome equivalent] 7
- 8 Conventional Control (Bcl I)
- 9 MON 88701 (Bcl I)
- 10 Conventional Control (Ssp I)
- 11 MON 88701 (Ssp I)



# T-DNA in MON 88701: Probe 3

The blot was hybridized with a ³²P-labeled probe that spans a portion of the T-DNA sequence (Figure III-1, Probe 3) Each lane contains approximately 10 µg of digested genomic DNA. Arrows denote the size of the DNA, in kilobase pairs, obtained from 1 Kb DNA Extension Ladder on the ethidium bromide stained gel. Lane designations are

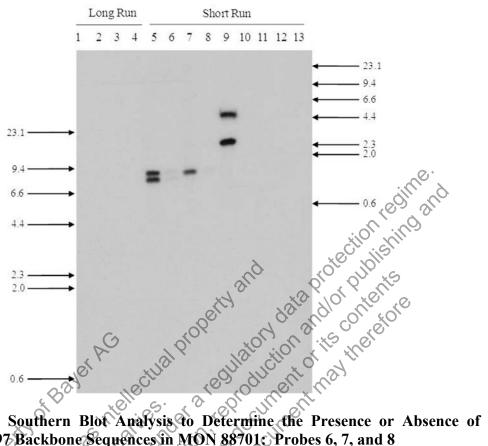
as follows: andlor

It ma

c09)

- Tane S
- Conventional Control (Bcl D) MON 88701 (Bcl D) Convention
  - MON 88701 (Ssp I)
  - -5 Conventional Control (Bcl I) spiked with PV-GHHT6997 (Pci I) [~1.0 genome equivalent] 6 Conventional Control (*Bcl* I) spiked with PV–GHHT6997 (*Pci* I) [~0.1 genome equivalent]
  - Conventional Control (Bcl I) 7
  - MON 88701 (Bcl I) 8
  - 9 Conventional Control (Ssp I)
  - MON 88701 (Ssp I) 10

### Southern Blot Analysis to Determine the Presence or Absence of IV.B. **PV-GHHT6997 Backbone Sequences in MON 88701**


To determine the presence or absence of the PV-GHHT6997 backbone sequences, MON 88701 and conventional control genomic DNA were digested with the restriction enzyme Bcl I or restriction enzyme Ssp I, and hybridized with the three backbone probes that collectively span the entire backbone sequences (Figure III-1, Probe 6, Probe 7, and Probe 8). If backbone sequences are present in MON 88701, then probing with backbone probes should result in hybridizing bands. Conventional control genomic DNA digested with the restriction enzyme Bcl I and spiked with probe templates or with digested PV-GHHT6997 DNA served as positive hybridization controls. The positive hybridization control was spiked at approximately 0.1 and 1.0 copies of genome equivalents to demonstrate sufficient sensitivity of the Southern blot. Conventional control genomic DNA digested with the appropriate restriction enzymes was used as a negative control. The results of these analyses are shown in Figure IV-5.

**IV.B.1. Backbone Probes 6, 7, and 8** Conventional control DNA digested with *Bcl* I (Figure IV-5, Lane 1 and Lane 10) or the restriction enzyme Ssp I (Figure IV-5, Lane 3 and Lane 12) and hybridized with Probe 6, Probe 7, and Probe 8 (Figure III-1) produced no detectable hybridization bands as expected for the negative control.

Conventional control genomic DNA digested with Bell and spiked with probe templates of Probe 7 and Probe 8 (Figure III-1) produced the expected bands at ~1.5 kb and ~1.8 kb (Figure IV-5, Dane 5 and Lane 6). Conventional control genomic DNA digested with Bcl I and spiked with probe template of Probe 6 (Figure III-1) produced the one expected band at 1.7 kb (Figure IV-5, Lane 7 and Lane 8). Conventional control DNA digested with Bcl I and spiked with the PV-GHHT6997 DNA, previously digested with the restriction enzyme *Pci* I (Figure III-1), produced two bands at ~6.2 kb and ~3.2 kb (Figure IV-5, Lane 9), as expected. Detection of the positive controls indicates that the probe hybridized to its target sequence.

MON 88701 DNA digested with Bcl I (Figure IV-5, Lane 2 and Lane 11) or the restriction enzyme Ssp I (Figure IV-5, Lane 4 and Lane 13) and hybridized with Probes 6, 7, and 8 produced no detectable bands.

The results presented in Figure IV-5 indicate that MON 88701 contains no detectable backbone sequences covered by Probes 6, 7, and 8.





The blot was hybridized with three ³²P-labeled probes that span the plasmid vector backbone sequences (Figure III-1, Probes 6, 7, and 8). Each lane contains approximately 10 µg of digested genomic DNA. Arrows denote the size of the DNA, in kilobase pairs, are Description
Conventional Control (Bel I)
MON 88701 (Bel I)
MON 88701 (Ssp I)
MON 88701 (Ssp I)
Conventional Control (Conventional Control (Conventional Control (Conventional Control (Conventional Conventional Conventiona obtained from ADNA/Hind III fragments on the ethidium bromide stained gel. Lane designations are as follows:

Lane Description

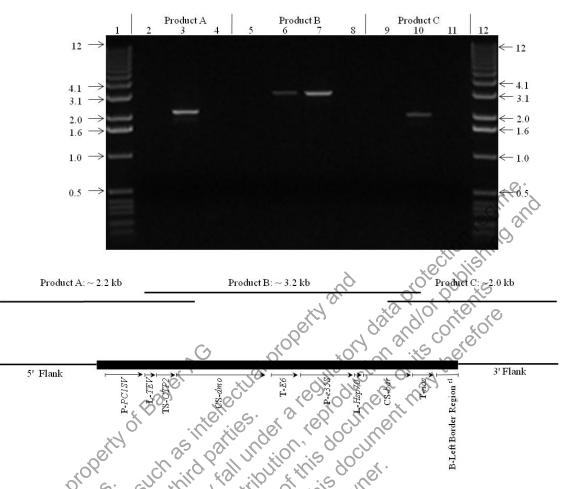
coô

Conventional Control (Bcl I) spiked with Probe 7 and Probe 8 template [~1.0 genome Conventional Control (Bcl I) spiked with Probe 7 and Probe 8 template  $[\sim 0.1]$  genome

- CP) Conventional Control (Bcl I) spiked with Probe 6 template [~1.0 genome equivalent]
  - 8 Conventional Control (Bcl I) spiked with Probe 6 template [~0.1 genome equivalent]
  - 9 Conventional Control (*Bcl* I) spiked with PV-GHHT6997 (*Pci* I) [~1.0 genome equivalent]
- 10 Conventional Control (Bcl I)
- MON 88701 (Bcl I) 11
- 12 Conventional Control (Ssp I)
- MON 88701 (Ssp I) 13

## IV.C. Organization and Sequence of the Insert and Adjacent Genomic DNA in MON 88701

The organization and sequence of the elements within the MON 88701 insert was confirmed by DNA sequence analysis. PCR primers were designed with the intent to amplify three overlapping DNA amplicons that span the entire length of the insert and the navies bioche and publication and publication and the and publication and the associated DNA flanking the 5' and 3' ends of the insert (Figure IV-6). The amplified PCR products were subjected to DNA sequence analyses. This analysis determined that the DNA sequence of the MON 88701 insert is 4105 bp long (Table IV-2) and is identical


Consequently and publication of the owner of this document may there for any publication of the owner of this document may there for the owner of this document may there for the owner of this document may there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any the owner of this document in any there for the owner of this document in any the owner of the owner of this document in any the owner of the owner any commercial empirision and use of this document, may there of the owner.

without the permission of the owner of this documer.

his document is the property of Bayer AG and or any subjective owner and third parties. his document is the privates and third parties. his document is affinates in the owner and third parties.

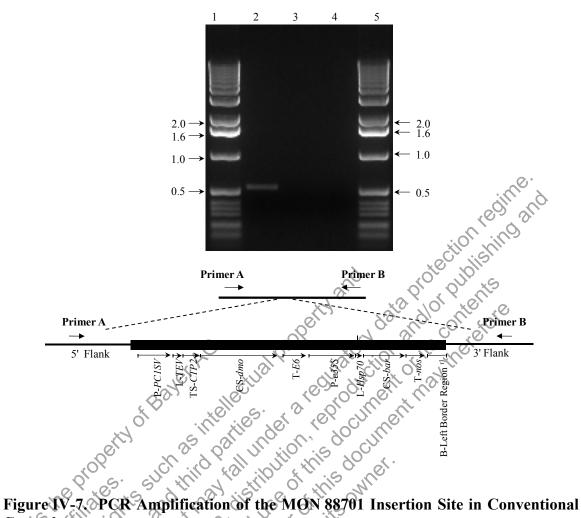
t may be subject to rights such as intellectual parties. In the real parties of the owner inner in a partie of the owner inner inner in a partie of the owner inner inner in a partie of the owner inner inner

This document is the property of Bayer AG



# Figure IV-6. Overlapping PCR Analysis across the Insert in MON 88701

PCR was performed on both conventional control genomic DNA and MON 88701 genomic DNA using three pairs of primers to generate overlapping PCR fragments from MON 88701 for sequence analysis. Approximately five microliters of each of the PCR reactions was loaded on the gel. The expected product size for each amplicon and an illustration of the insert in MON 88701 is provided at the bottom of the figure. Arrows on the agarose gel photograph andlor denote the size of the DNA, in kilobase pairs, obtained from 1 Kb DNA ladder on the ethidium bromide stained gel. Lane designations are as follows: It ma


### Description Lane

- 1 Kb DNA Ladder Conventional Control MON 88701
- MON 88701
- No template DNA control
- Conventional Control
- MON 88701 6
- PV-GHHT6997 7
- No template DNA control 8
- 9 **Conventional Control**
- MON 88701 10
- No template DNA control 11
- 12 1 Kb DNA Ladder

### IV.D. PCR and DNA Sequence Analyses to Examine the MON 88701 Insertion Site

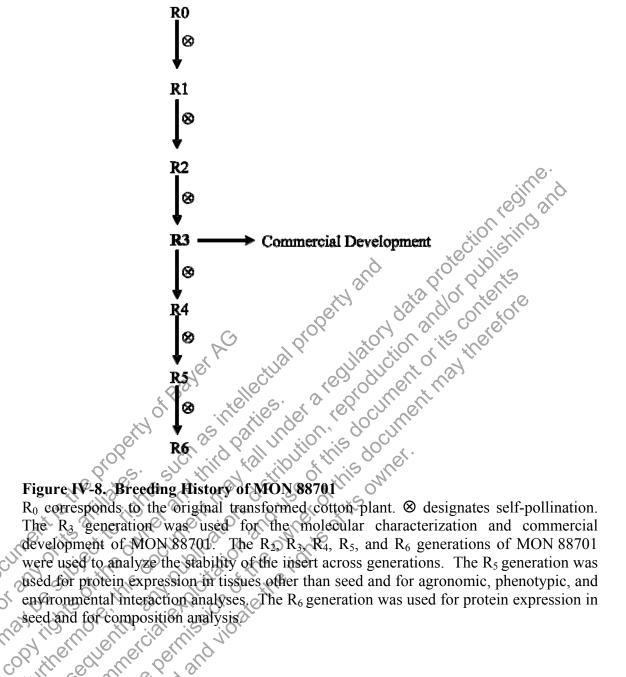
PCR and sequence analyses were performed on genomic DNA extracted from MON 88701 and the conventional control to examine the MON 88701 insertion site. The PCR was performed with a forward primer specific to the genomic DNA sequence flanking the 5' end of the insert paired with a reverse primer specific to the genomic DNA sequence flanking the 3' end of the insert (Figure IV-7). The amplified PCR product Ni .ed fro. . the MOI genomic orgat. . indicated a 123 a upon T-DNA insert . due to double-strand brea .ediated transformation proc from the conventional control was subjected to DNA sequence analysis. Alignments between the conventional control sequence obtained from this analysis and the sequences immediately flanking the 5' and 3' end of the MON 88701 insert were separately performed to determine the integrity and genomic organization of the insertion site in The alignment analyses indicated a 123 base pair deletion from the conventional genomic DNA occurred upon T-DNA insertion in MON & 701. Minor deletions and/or insertions of DNA due to double-strand break repair mechanisms in the plant during *Agrobacterium*-mediated transformation process are not uncommon (Salomon and Puchta, 1998). conventional genomic DNA occurred upon T-DNA insertion in MON 88701. Minor -onsequently and publication of the owner of this document in any publication of the owner of this document in any there or this document in any there or the owner of this document in any there or the owner of this document in any there or the owner of this document in any there or the owner of the owner of this document. any connectation and use of this document in a there is the is the optimized and where of this document in a there is the deletions and/or insertions of DNA due to double-strand break repair mechanisms in the

without the permission of the owner of this documer.

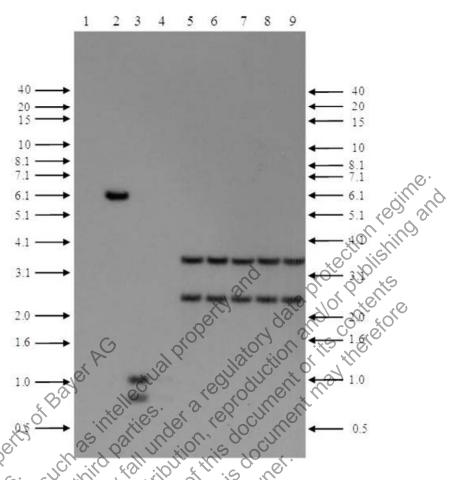


was performed on both conventional control genomic DNA and MON 88701 genomic DNA, using Primer A specific to the 5' flanking sequence and Primer B specific to the 3' flanking sequence of the insert in MON 88701, to generate DNA fragments is sequence analysis. The insertion site in the convertion each of the PCR reactions were loaded on the gel. Arrows on the agarose gel photograph denote the size of the DNA, in kilobase pairs obtained from 1 1/1 Date ethidium bromide stained gel. Lane designations are as follows:

> Lane Description Kb DNA Ladder 1 **Conventional Control**


- MON 88701
- 40 No template DNA control
- 1 Kb DNA Ladder 5

# **IV.E.** Southern Blot Analysis to Examine Insert Stability in Multiple Generations of MON 88701


In order to demonstrate the stability of the insert in MON 88701, Southern blot analysis was performed using genomic DNA extracted from leaf tissues from five breeding generations of MON 88701. For reference, the breeding history of MON 88701 is presented in Figure IV-8. The specific generations tested are indicated in the legend of Figure IV-8. The R₃ generation was used for the molecular characterization analyses shown in Figure IV-2 through Figure IV-5. To analyze insert stability, four samples from four additional generations of MON 88701 were evaluated by Southern blot analysis and compared to the R₃ generation. Genomic DNA, isolated from each of the selected generations of MON 88701, was digested with the restriction enzyme Bell and simultaneously hybridized with Probe 2 and Probe 4 (Figures III-1 and IV-1), which was designed to detect both fragments generated by the *Bcl* I digest. Any instability associated with the insert would be detected as extra bands within the fingerprint on the Southern blot. The Southern blot has the same controls as described in Section IV.A.2.

IV.E.1. T-DNA Probe 2 and 4 Conventional control genomic DNA digested with restriction enzyme *Bcl* I and simultaneously hybridized with Probe 2 and Probe 4 (Figures III-1 and IV-1) produced no hybridization signals (Figure IV-9, Lane 1) as expected for the negative control. Conventional control genomic DNA digested with Bell and spiked with the PV-GHHT6997 DNA, previously digested with the restriction enzyme Pci I (Figure III-1 and Table IV-1), produced one expected band at ~6.2 kb (Figure IV-9, Lane 2). Conventional control genomic DNA digested with Bel I and spiked with probe templates of Probe 2 and Probe 4 produced the expected bands at ~1.0 kb and ~0.8 kb (Figure IV-9,

MON 88701 genomic DNA digested with *Bcl* I and hybridized with Probe 2 and Probe 4 (Figures III-1 and IV-1) is expected to produce a Southern fingerprint with two here's with probe 1 with probe 2 and 72.4 kb (Figure IV-6 and Table IV-1). the one produced from the fully characterized generation R₃ (Figure IV-3, Lane 2 and Lane 9, and Figure IV-9, Lane 6). indicating that MON 22701 T-DNA insert that is stable across multiple generations.



were used to analyze the stability of the insert across generations. The  $R_5$  generation was used for protein expression in tissues other than seed and for agronomic phenotenic environmental interaction analyzes. The  $R_5$ seed and for composition analysis.



# Figure LY-9. Southern Blot Analysis to Examine Insert Stability in Multiple Generations of MON 88701: Probes 2 and 40

Generations of MON 88701: Probes 2 and 40 The blot was simultaneously hybridized with two ³²P-labeled probes that span a portion of the T-DNA sequence (Figure III-1) Probe 2 and Probe 4). Each lane contains approximately 10 µg of digested genomic DNA. Arrows denote the size of the DNA, in kilobase pairs, obtained from 1Kb DNA Extension Ladder on the ethidium bromide andlor stained gel. Lane designations are as follows:

Dane FUITHBIT Conventional control (Bcl I)

- 2. Conventional control (*Bcl* I) spiked with PV-GHHT6997 (*Pci* I) [~1.0 genome equivalent]
  - Conventional control (Bcl I) spiked with Probe 2 and Probe 4 template [~1.0 genome equivalent]
- 212 Conventional control (Bcl I) spiked with Probe 3 and Probe 4 template [~0.1 genome equivalent]
  - MON 88701 (R₂) (Bcl I)
  - 6 MON 88701 (R₃) (*Bcl* I)
  - 7 MON 88701 (R₄) (Bcl I)
  - 8 MON 88701 (R₅) (Bcl I))
  - MON 88701 (R₆) (Bcl I) 9

It ma

c094

Con

### **IV.F.** Inheritance of the Genetic Insert in MON 88701

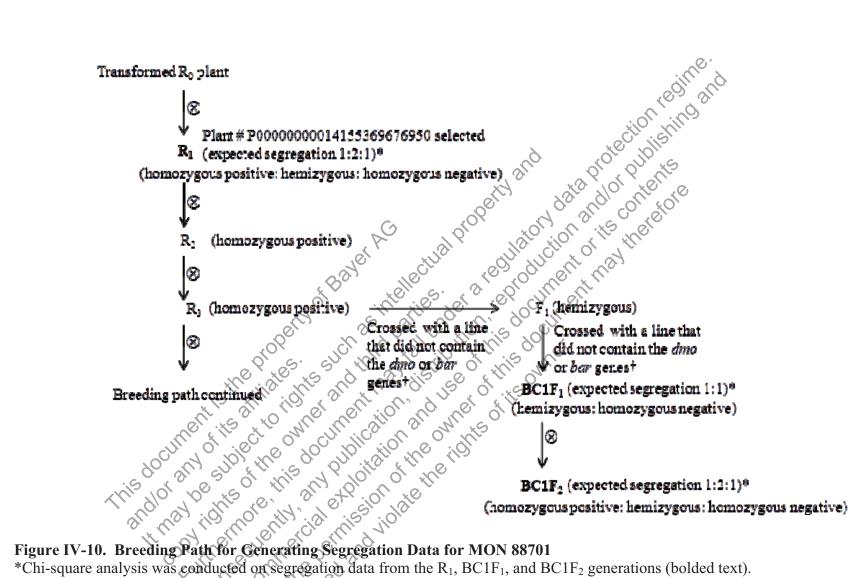
The MON 88701 T-DNA resides at a single locus within the cotton genome and is inherited according to Mendelian principles of inheritance. During development of MON 88701, phenotypic and genotypic segregation data were recorded to assess the inheritance and stability of the MON 88701 T-DNA using Chi-square ( $\chi^2$ ) analysis over several generations. The  $\chi^2$  analysis is based on comparing the observed segregation ratio to the expected segregation ratio according to Mendelian principles.

The MON 88701 breeding path for generating pollinated segregation data is described in Figure IV-10. The transformed  $R_0$  plant was self-pollinated to generate  $R_1$  seed. The segregating  $R_1$  generation was assessed using Real-Time TaqMan analysis for the *dmo* coding region. A single homozygous positive  $R_1$  plant was selected and self-pollinated to give rise to  $R_2$  plants that were self-pollinated to produce  $R_3$  seed. Phenotypic and genotypic assays confirmed the lack of insert segregation in these self-pollinated generations.

Homozygous positive  $R_3$  plants were crossed to a Monsanto proprietary cotton inbred, which does not contain the *dmo* or *bar* coding sequence, via traditional breeding techniques to produce hemizygous  $F_1$  seed. The  $F_1$  plants, hemizygous for the dicamba and glufosinate tolerant trait, were crossed with a Monsanto proprietary cotton inbred, which does not contain the *dmo* or *bar* coding sequence to produce BC1F₁ seed. The BC1F₁ generation was assessed using a glufosinate herbicide application to select for plants containing the MON 88701 T-DNA. The plants that survived the herbicide application were confirmed to be hemizygous for the MON 88701 T-DNA using an event-specific End-Point TaqMan analysis. The hemizygous BC1F₁ plants were assessed using a glufosinate herbicide application, the plants were assessed using a glufosinate herbicide application and the surviving plants were assessed using an event-specific End-Point TaqMan analysis for the MON 88701 T-DNA.

The inheritance of the MON 88701 T-DNA was assessed in the R₁, BC1F₁, and BC1F₂ generations. At the BC1F₁ generation, the MON 88701 T-DNA was predicted to segregate at a 1.1 ratio (hemizygous homozygous negative) according to Mendelian inheritance principles. At the R₁ and BC1F₂ generations, the MON 88701 T-DNA was predicted to segregate at a 1.2.1 ratio (homozygous positive: hemizygous: homozygous negative) according to Mendelian inheritance principles.

A Chi-square  $(\chi^2)$  analysis was used to compare the observed segregation ratios of the MON 88701 T-DNA to the expected ratios. The Chi-square  $(\chi^2)$  analysis used the statistical program R Version 2.12.0 (2010-10-15).


The Chi-square was calculated as:

$$\chi^{2} = \sum [(|o - e|)^{2} / e]$$

where o = observed frequency of the genotype or phenotype and e = expected frequency of the genotype or phenotype. The level of statistical significance was predetermined to be 5% ( $\alpha = 0.05$ ).

The results of the  $\chi^2$  analysis of the MON 88701 segregating progeny are presented in Table IV-3 and Table IV-4. The  $\chi^2$  value in the BC1F₁ generation indicated no is and is 88701 ally signific. 1:21 s is out regardly of the MON 88701 F.DR. is inherited according to Me. consistent with the molecular is in single intact copy of the *dra* of is in the cotton genome. In the cotton ge statistically significant difference between the observed and expected 1:1 segregation ratio (hemizygous: homozygous negative) of the MON 88701 T-DNA. The  $\chi^2$  value for the  $R_1$  and BC1F₂ generations indicated no statistically significant difference between the ⊘, · ratio segregation (homozygous positive: hemizygous: homozygous negative) of MON 88701 T-DNA. These results support the conclusion that the MON 88701 T-DNA resides at a single an aracte o and bu to and bu o and o one of this document may therefore and comment and use of this document may therefore and comment and use of this document may therefore and comment and use of this document may therefore and comment and use of this document and there of the and comment and use of this document and the owner of the owner own locus within the cotton genome and is inherited according to Mendelian principles of inheritance. These results are also consistent with the molecular characterization data any contract and violate the ions of this owner. indicating that MON 88701 contains a single intact copy of the *drno* and *bar* expression

without the permission of the owner of this documer.



*Chi-square analysis was conducted on segregation data from the R₁, BC1F₁, and BC1F₂ generations (bolded text). [†]The cotton line used in the cross that did not contain the *dmo* or *bar* genes is a Monsanto proprietary cotton inbred. withou and beprohil  $\otimes$ =Self- Pollinated

Table IV-3. Segregation of the T-DNA During the Development of MON 88701: 1:1 Segregation								
					1:1 Seg	regation		
Generation	Total Plants	Observed # Plants Hemizygous	Observed # Plants Homozygous Negative	Expected # Plants Hemizygous	Expected # Plants Homozygous Negative	data protection ishing		
$BC1F_1^{-1}$	261	123	138	3130.5	130.5	0.862 0.3532		
				K A				

¹ Segregation was evaluated using a glufosinate herbicide application followed by End-Point TaqMan analysis for the MON 88701 insert. ² Chi-square analysis was performed to analyze the segregation ratios ( $p \le 0.05$ ). Table IV-4 Segregation of the T DNA Devices the D

² Chi-square and	alysis was p	performed to analyz	ze the segregation r	atios (p≤0.05).	all all all					
	A A A A A A A A A A A A A A A A A A A									
Table IV-4.	Table IV-4. Segregation of the T-DNA During the Development of MON 88701; 1:2:1 Segregation									
			<i>7</i> 5, <i>9</i> 5,	(d ( ))		1:2:1	Segregation			
				<u>() 1 x()</u>	O' VIS NIC		Segregation			
		Observed #	x 20 0	Observed #	Expected #		Expected #			
		Plants X	Observed#	Plants V	<b>Plants</b>	Expected #	Plants			
	Total	Homozygous	Plants Ø	Homozygous	Homozygous	Plants	Homozygous			
Generation	Plants	Positive	Hemizygous	Negative	S Positive	Hemizygous	Negative	$\chi^2$	Probability ³	
$R_1^1$	173	33	990	41	43.25	86.50	43.25	4.353	0.1135	
$BC1F_2^2$	118	36 00 3	C C N	26	29.50	59.00	29.50	2.000	0.3679	

¹ Segregation was evaluated using Real-Time TaqMan analysis for the *dmo* coding region. ² Segregation was evaluated using a glutosinate herbicide application followed by End-Point TaqMan analysis for the MON 88701 insert. ³ Chi-square analysis was performed to analyze the segregation ratios ( $p \le 0.05$ ).

#### **IV.G.** Genetic Modification Characterization Conclusion

Molecular characterization of MON 88701 by Southern blot analyses confirmed that the T-DNA was inserted into the cotton genome at a single locus containing one copy of the *dmo* and *bar* expression cassettes. No backbone DNA sequences from PV-GHHT6997 were detected in MON 88701.

PCR and DNA sequence analyses performed on MON 88701 and the conventional control determined the following: the complete DNA sequence of the insert and the DNA sequences flanking the 5' and 3' ends of the insert in MON 88701; the organization of the genetic elements within the insert; and the 5' and 3' insert-to-genomic DNA junctions. The PCR and DNA sequence analysis also determined the DNA sequence at the insertion site in the conventional control and identified a rearrangement (123 base pair deletion) that occurred at the insertion site in MON 88701. Minor deletions and/or insertions of DNA due to double-strand break repair mechanisms in the plant during *Agrobacterium*-mediated transformation process are not uncommon (Salomon and Puchta, 1998).

Southern blot analysis of multiple MON 88701 generations demonstrated that the inserted DNA has been stably maintained through five generations of breeding, thereby, confirming the stability of the insert. Results from segregation analyses show inheritance and stability of the insert was as expected across multiple generations, which corroborates the molecular insert stability analysis and establishes the genetic behavior of the T-DNA in MON 88701 at a single chromosomal tocus.

Monsanto Company

#### V. CHARACTERIZATION AND SAFETY ASSESSMENT OF THE MON 88701 DMO AND PAT (*bar*) PROTEINS PRODUCED IN MON 88701

Characterization of the introduced protein(s) in a biotechnology-derived crop is important to establishing food, feed, and environmental safety. As described in Section IV, MON 88701 contains *dmo* and *bar* expression cassettes that, when transcribed and translated, result in the expression of the MON 88701 DMO and PAT (bar) proteins, respectively. This section summarizes: 1) the identity and function of the MON 88701 DMO and PAT (bar) proteins produced in MON 88701; 2) the demonstration of equivalence between the plant-produced and E. coli-produced proteins, which were used in various protein safety studies; 3) the expression levels of the MON 88701 DMO and PAT (bar) proteins in MON 88701 plant tissues; 4) the assessment of the potential allergenicity of the MON 88701 DMO and PAT (bar) proteins produced in MON 88701; and 5) the food, feed, and environmental safety assessment of the MON 88701 DMO and PAT (bar) proteins produced in MON 88701. The data support a conclusion that these two proteins produced in MON 88701 are safe for the environment and human or animal consumption based on several lines of evidence summarized below. These data were supplied to FDA for their evaluation in consultation BNF No. 135 on the food and feed safety and compositional assessment of MON 88701.

## V.A. Identity and Function of the MON 88701 DMO and PAT (bar) Proteins from MON 88701

0

#### V.A.1. Mode-of-Action of DMO and MON 88701 DMO

Wild-type DMO was initially purified from *Stenotrophomonas maltophilia* (*S. maltophilia*) strain DI-6, isolated from soil at a dicamba manufacturing plant (Krueger et al., 1989). DMO is an enzyme that catalyzes the demethylation of dicamba to the non-herbicidal compound DCSA and formaldehyde (Chakraborty et al., 2005). DMO is a Rieske-type non-heme iron oxygenase, that is part of a three component system comprised of a reductase, a ferredoxin, and a terminal oxygenase, in this case the DMO. These three proteins work together in a redox system similar to many other oxygenases to transport electrons from nicotinamide adenine dinucleotide (NADH) to oxygen and catalyze the demethylation of an electron acceptor substrate, in this case dicamba (Behrens et al., 2007). This three component redox system is presented in Figure V-1.

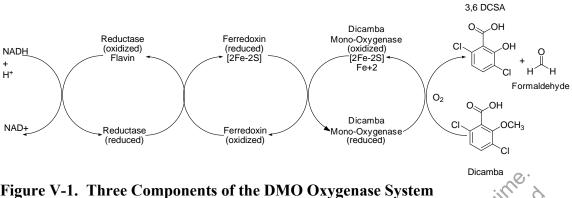



Figure V-1. Three Components of the DMO Oxygenase System

The crystal structure of a DMO has been solved (D'Ordine et al., 2009; Dumitru et al., 2009) and shows that the DMO monomers contain a Rieske [2Fe-2S] cluster domain and a non-heme iron center domain typical of all Rieske-type mono-oxygenases (Ferraro et al., 2005). To catalyze the demethylation of dicamba, electrons transferred from NADH are shuttled through an endogenous reductase and ferredoxin to the terminal DMO. The electrons are received by the Rieske [2Fe-28] cluster on one DMO monomer and transferred to the non-heme iron center at the catalytic site of an adjacent monomer (D'Ordine et al., 2009; Dumitru et al., 2009), where it reductively activates oxygen to catalyze the final demethylation of dicamba. As a result of the reaction, 3,6-dichlorosalicylic acid (DCSA) and formaldehyde are formed. DCSA is a known cotton, soybean, soil, and livestock metabolite whose safety has been evaluated by the EPA (FAO-WHO, 2011a; 2011b; U.S. EPA, 2009). Formaldehyde is found naturally in many plants at levels up to several hundred ppm (Adrian-Romero et al., 1999). An assessment of the safety and potential effects of the DMO reaction products is provided in Appendix C.1 20

# V.A.I.I. Description of MON 88701 DMO

DMO is targeted to chloroplasts for co-localization with the endogenous reductase and fetredoxin enzymes that supply electrons for the DMO demethylation reaction described by Behrens et al (2007). In the construction development of MON 88701, PV-GHHT6997, a transit peptide coding sequence (CTP2, Table IV-2) was joined to the driv coding sequence; this coding sequence results in the production of a precursor protein consisting of the DMO protein and an additional 76 amino acids at the N-terminus of the protein. These additional amino acids correspond to the chloroplast transit peptide (CTP) from Arabidopsis thaliana EPSPS (CTP2), which is incorporated to improve the targeting of the precursor protein to the chloroplast (Herrmann, 1995; Klee et al., 1987). Typically, transit peptides are precisely removed from the precursor protein following delivery to the targeted plastid (Della-Cioppa et al., 1986) resulting in the full-length protein. However, there are examples in the literature of alternatively processed forms of a protein targeted to a plant's chloroplast (Behrens et al., 2007; Clark and Lamppa, 1992). Such alternative processing is observed with the MON 88701 DMO protein produced in MON 88701.

Analysis of cottonseed extracts from MON 88701 determined that the expressed protein had an apparent molecular weight of 39.5 kDa and corresponded to the DMO protein with nine amino acids on the N-terminus originating from the EPSPS chloroplast transit peptide. Except for the 9 amino acids derived from the CTP2 and an additional leucine at position two, the MON 88701 DMO protein has an identical sequence to the wild-type DMO protein from the DI-6 strain of S. maltophilia (Herman et al., 2005). The differences in the amino acid sequence between the wild-type DMO protein and MON 88701 DMO protein are not expected to have an effect on structure, activity, or specificity because the N-terminus and position two are sterically distant from the catalytic site (D'Ordine et al., 2009; Dumitru et al., 2009). The DMO protein produced in MON 88701 is hereinafter referred to as MON 88701 DMO protein. Accordingly, the DMO protein produced from E. coli with the same sequence as MON 88701 DMO is referred to as E. coli-produced MON 88701 DMO protein.

As described previously the active form of DMO is a trimer (Chakraborty et al., 2005; Dumitru et al., 2009). For MON 88701 DMO to be functionally active and confer dicamba tolerance to MON 88701, a trimeric structure is required. The activity of MON 88701 DMO was confirmed during characterization (Section V.B and Appendix C). V.A.1.2. Specificity of MON 88701 DMO The substrate specificity of MON 88701 DMO was evaluated to understand potential

interactions DMO may have with potential substrates present in MON 88701 cotton. The literature indicates the specificity of DMO for dicamba is due to the specific interactions that occur at the catalytic site (D'Ordine et al., 2009; Dumitru et al., 2009). Dicamba interacts with amino acids in the catalytic site of DMO through both the carboxylate with structures similar to dicamba in plants and other eukaryotes (Wishart, 2009; Wishart et al., 2009), it is unlikely that MON 88701 DMO will catalyze the conversion of all endogenous substrates. moiety and the chlorine atoms of dicamba, which are primarily involved in orienting the

The potential for MON 88701 DMO to metabolize endogenous plant substrates was evaluated through in vitro experiments using a purified N-terminal histidine tagged DMO that was identical to wild-type DMO, except for a histidine tag at the N-terminus added to aid in protein purification. A comparison of DMO versions is shown in Appendix C, Figure C-L A set of potential endogenous substrates was selected for evaluation based on structural similarity of the compounds to dicamba and their presence in cotton, corn, and soybean (Buchanan et al., 2000; Janas et al., 2000; Lege et al., 1995; Schmelz et al., 2003). The potential substrates tested were o-anisic acid (2-methoxybenzoic acid), vanillic acid (4-hydroxy-3-methoxybenzoic acid), svringic acid (3,5-dimethoxy-4-hydroxybenzoic acid), ferulic acid [3-(4-hydroxy-3-methoxy-phenyl) prop-2-enoic acid] and sinapic acid [3-(4-hydroxy-3,5-dimethoxyphenyl)prop-2-enoic acid] (Figure V-2). The assay mixture included NADH, reductase, ferredoxin and DMO. Dicamba was first used as a positive control to demonstrate that the assay system was

functional. The disappearance of potential substrates and the formation of potential oxidation products were monitored using LC-UV and LC-MS (Appendix C). None of the tested substrates, except dicamba, were metabolized by the histidine tagged DMO in these in vitro experiments. To assess whether MON 88701 DMO protein has the same specificity as the histidine tagged DMO used in the in vitro experiments, the E. coli-produced MON 88701 DMO protein (i.e., lacking a histidine), shown to be equivalent to the plant produced MON 88701 DMO protein (Section V.B), was incubated with o-anisic acid, the endogenous compound that has the greatest structural similarity to dicamba. Again dicamba was used as a positive control to demonstrate the assay system was functional. This analysis demonstrated that o-anisic acid was not metabolized by the E. coli-produced MON 88701 DMO protein (i.e., lacking a histidine), but dicamba was. These results indicate that DMO, including the MON 88701 DMO protein is specific for dicamba as a substrate (See Section V.E.1.3 and Appendix C.3.2 for additional details).



### Figure V-2. Dicamba and Potential Endogenous Substrates Tested through In Vitro Experiments with DMO

The arrow indicates methyl group removed by DMO

The possibility that MON 88701 DMO can metabolize exogenous substrates was tested through in vivo greenhouse experiments. In addition to dicamba, nine other herbicides, representing eight families with distinct modes-of-action, some of which are approved for use in cotton, were tested with MON 88701 and the conventional control (Table V-1). Each herbicide was applied at two spray rates that are representative of potential commercial rates needed to control broadleaf weeds. Herbicides were applied preemergence or at the 2 to 5 leaf plant growth stage and plants were scored with a visual rating based on the amount of injury observed. Across all of the herbicides tested, that these herbicides do not serve as a substrate for MON 88701 DMO (Appendix C.3.). MON 88701 and the conventional control were similar in their level of injury, indicating

Further

Herbicide Active	
Ingredient	Herbicide Chemical Family (Mode-of-Action) ¹
Dicamba	Benzoic (Synthetic Auxin)
2,4-D	Phenoxycarboxylic acid (Synthetic Auxin)
2,4-DB	Phenoxycarboxylic acid (Synthetic Auxin)
Acetochlor	Chloroacetamide (Inhibition of VLCFAs)
Atrazine	Triazine (Inhibition of Photosynthesis at Photosytem II)
Oxyfluorfen	Diphenylether (Inhibition of PPO)
Halosulfuron	Sulfonylurea (Inhibition of ALS)
Trifluralin	Dinitroaniline (Microtubule Assembly Inhibition)
Paraquat	Dinitroaniline (Microtubule Assembly Inhibition) Bipyridilium (Photosystem I electron diversion)
Glyphosate	Glycine (Inhibition of EPSP synthase)
$^{1}_{2}$ (HRAC, 2009)	and on out is

Table V-1. Herbicides Applied to MON 88701 and Conventional Control

 2  2.4-D = 2.4-Dichlorophenoxyacetic acid; 2,4-DB = 4-(2,4-dichlorophenoxy) butyric acid. tory an tscon

V.A.2. Mode-of-Action of PAT Proteins The mode-of-action for PAT protein has been extensively assessed, as numerous glufosinate-tolerant products including those in cotton, corn, soy, canola, sugarbeet and rice have been reviewed by the FDA and several other regulatory agencies (ILSI-CERA, 2011; OECD, 1999a; 2002a), PAT, including the PAT (bar) protein produced in MON 88701, is an enzyme classified as an acetyltransferase which acetylates glufosinate to produce non-herbicidal N-acetyl glufosinate. Glufosinate is a racemic mixture of the D- and L- forms of phosphinothricin, though only the L-form has herbicidal activity. The herbicidal activity of glufosinate results from the binding of L-phosphinothricin to glutamine synthetase (OECD, 1999b; 2002a). Glutamine synthetase is responsible for the assimilation of ammonia generated during photorespiration. The binding of L-phosphinothricin to glutamine synthetase results in the inactivation of glutamine synthetase and a subsequent toxic build-up of ammonia within the plant, resulting in death of the plant (Manderscheid and Wild, 1986; OECD, 1999b; 2002a; Wild and Manderscheid, 1984).

The PAT (bar) protein produced in MON 88701 acetylates the free amine group of Lphosphinothricin form of glufosinate to produce non-herbicidal N-acetyl glufosinate. The acetvlated glufosinate is unable to bind to glutamine synthetase and therefore does not disrupt photorespiration and avoids the build-up of ammonia. Therefore, the production of PAT (bar) protein in MON 88701 confers glufosinate herbicide tolerance through this mechanism.

#### V.A.2.1. Description of PAT (bar)

Phosphinothricin N-acetyltransferase (PAT) proteins conferring tolerance to glufosinate herbicide (2-amino-4-(hydroxymethylphosphinyl) butanoic acid) have been isolated from two separate species of Streptomyces, S. hygroscopicus ( et al., 1987) and S. viridochromogenes (Wohlleben et al., 1988). The PAT protein isolated from S. hygroscopicus is encoded by the bar gene, and the PAT protein isolated from S. viridochromogenes is encoded by the pat gene. These PAT proteins are made up of 183 amino acids with 85% identity at the amino acid level. Based on previous studies (Wehrmann et al., 1996) that have extensively characterized PAT proteins produced from bar and pat genes, OECD recognizes both proteins to be equivalent with regard to function and safety (OECD, 1999b). In addition, EPA has issued a tolerance exemption for PAT protein regardless of the encoding gene (U.S. EPA, 1997). The safety of PAT proteins present in biotechnology-derived crops has been extensively assessed (Hérouet et al., 2005; ILSI-CERA, 2011).

The PAT protein produced in MON 88701 is from the bar gene, and for clarity, the PAT protein produced in MON 88701 will be referred to as PAT (bar). Analysis of cottonseed extracts from MON 88701 determined that the expressed protein corresponded to the 183 amino acid polypeptide, resulting in a 24.1 kDa PAT (bar) protein. The activity of the PAT (bar) protein purified from MON 88701 cottonseed was confirmed during characterization (Appendix C.4.).
V.A.2.2. PAT (*bar*) Specificity
The PAT proteins, including PAT (*bar*), are highly specific for glufosinate in the

presence of acetyl-CoA ( et al., 1987 Wehrmann et al., 1996). While the herbicidal activity of glufosinate comes from the L-amino acid form, other L-amino acids are unable to be acetylated by PAT protein and competition assays containing glufosinate, high concentrations of other amino acids and PAT showed no inhibition of glufosinate acetylation (Webrmann et al., 1996). Furthermore, L-glutamate, an analogue of glufosinate, also showed no inhibition of glufosinate acetylation in competition assays (Wehrmann et al., 1996). In addition, the PAT (bar) protein has more than 30-fold et al., 1987). Mon substrate specificity for L-phosphinothricin, the MON 88701 cotton. Numerous glufosinate-tolerant products including those in cotton, corn, soy, canola, sugarbeet, and rice have been reviewed with no concerns id (ILSI-CERA, 2011) higher affinity towards L-phosphinothricin over other analogues ( et al., 1987).

#### V.B. Characterization and Equivalence of MON 88701 DMO and PAT (bar) Proteins from MON 88701

The safety assessment of crops derived through biotechnology includes characterization of the physicochemical and functional properties of the protein(s) produced from the inserted DNA, and confirmation of the safety of the protein(s). For the safety data generated using E. coli-produced protein(s) to be applied to plant-produced protein(s), the equivalence of the plant- and E. coli-produced proteins must be assessed. For MON 88707 the physicochemical and functional characteristics of the MON 88701 DMO and MON 88701-produced PAT (bar) proteins were determined and each was shown to be equivalent to its respective E. coli-produced protein. A summary of the analytical results for each protein are shown below and the details of the materials, methods, and results are described in Appendix C.

The MON 88701 DMO protein purified from cottonseed of MON 88701 was characterized and the equivalence of the physicochemical and functional properties between the MON 88701 DMO and the E. coli-produced MON 88701 DMO proteins was established using a panel of analytical tests: 1) the identity could not be confirmed by N-terminal sequence analysis; however, MALDI-TOF MS analysis of peptides derived from tryptic digested MON 88701 DMO established the N-terminal sequence of MON 88701 DMO; 2) MALDI-TOF MS analysis yielded peptide masses consistent with the expected peptide masses from the theoretical trypsin digest of the MON 88701 DMO sequence; 3) MON 88701 DMO protein was detected on a western blot probed with antibodies specific for DMO protein and the immunoreactive and physiochemical properties of the MON 88701 DMO and E. coli-produced MON 88701 DMO proteins were shown to be equivalent; 4) the electrophoretic mobility and apparent molecular weight of the MON 88701 DMO and E. coli-produced MON 88701 DMO proteins were shown to be equivalent; 5) glycosylation status of MON 88701 DMO and E. coli-produced MON 88701 DMO proteins were determined to be equivalent; and 6) functional activity of the MON 88701 DMO and the E. coli-produced MON 88701 DMO proteins were demonstrated to be equivalent. C.O.

The MON 88701-produced PAT (bar) protein purified from cottonseed of MON 88701 was characterized and the equivalence of the immunoreactive and physicochemical characteristics and functional activity between the MON 88701- and the E. coli-produced PAT (bar) proteins was established using a panel of analytical tests: 1) N-terminal sequence analysis of the MON 88701-produced PAT (bar) protein established identity; 2) MALDI-TOF MS analysis yielded peptide masses consistent with the expected peptide masses from the theoretical trypsin digest of the MON 88701-produced PAT (bar) sequence; 3 MON 88701-produced PAT (bar) protein was detected on a western blot probed with antibodies specific for PAT (bar) protein and the immunoreactive properties of the MON 88701-produced and E. coli-produced PAT (bar) proteins were shown to be equivalent; 49 the electrophoretic mobility and apparent molecular weight of the MON 88701-produced and E. coli-produced PAT (bar) proteins were shown to be equivalent; 5) glycosylation status of MON 88701- and E. coli-produced MON 88701 PAT (bar) proteins were determined to be equivalent; and 6) functional activity of the MON 88701- and E. coli-produced PAT (bar) proteins were demonstrated to be equivalent.

Taken together, these data provide a detailed characterization of the MON 88701 DMO and PAT (*bar*) proteins and establish their respective equivalence to *E. coli*-produced MON 88701 DMO protein and *E. coli*-produced PAT (*bar*) protein. This equivalence justifies the use of the *E. coli*-produced proteins as test subtances in the protein safety studies.

### V.C. Expression Levels of MON 88701 DMO and PAT (*bar*) Proteins in MON 88701

MON 88701 DMO and PAT (*bar*) protein levels in various tissues of MON 88701 relevant to the risk assessment were determined by a validated enzyme-linked immunosorbent assay (ELISA). Tissues of MON 88701 were collected from four

replicate plots planted in a randomized complete block field design during the 2010 growing season from the following eight field sites in the U.S.: Arkansas (ARTI), Georgia (GACH), Kansas (KSLA), Louisiana (LACH), North Carolina (NCBD), New Mexico (NMLC), South Carolina (SCEK), and Texas (TXPL). MON 88701 plots were treated at the 3-5 leaf stage with glufosinate herbicide at the label rate (0.5 lbs active ingredient [a.i.]/acre) and at the 6-10 leaf stage with dicamba herbicide at the proposed label rate (0.5 lbs acid equivalent [a.e.]/acre). The field sites were representative of cotton-producing regions suitable for commercial production. Seed, pollen, root, and overseason leaf (OSL-1 through OSL-4) tissue samples were collected from each replicated plot at all field sites.

#### V.C.1. Expression Levels of MON 88701 DMO Protein

stein lev sA are sum. scribed in Appe. ot measured for pol MON 88701 DMO por LOD to 410 µg/g dw Tt inied across eight sites, with th imples <LOD were not included in m protein levels were highest in lead (ran OSL-4 at 230 µg/g dw to OSL-1 at 180 µg 21 µg/g dw, and pollen at 14 µg/g fw MON 88701 DMO protein levels were determined in all seven tissue types. The results obtained from ELISA are summarized in Table V-2 and the details of the materials and methods are described in Appendix D. Due to a limited amount of tissue, moisture content was not measured for pollen; therefore, pollen is reported on a fresh weight (fw) basis only. MON 88701 DMO protein levels in MON 88701 across tissue types ranged from <LOD to 410  $\mu$ g/g dw. The mean MON 88701 DMO protein levels were determined across eight sites, with the exception of OSL-P (7 sites) and OSL-4 (7 sites). Samples <LOD were not included in mean determinations. The mean MON 88701 DMO protein levels were highest in leaf (ranging from OSL-2 and OSL-3 at 240  $\mu$ g/g dw, OSL-4 at 230  $\mu$ g/g dw to OSL-1 at 180  $\mu$ g/g dw) followed by root at 43  $\mu$ g/g dw, seed at 21  $\mu$ g/g dw, and pollen at 14  $\mu$ g/g fw: protein levels were highest in leaf (ranging from OSL-2 and OSL-3 at 240 µg/g dw, without the permission of the owner of this document.

Monsanto Company

			MON 88701	MON 88701	
		Days	DMO	DMO	
		After	Mean (SD)	Mean (SD)	
	Development	Planting	Range	Range	LOQ/LOD ⁵
Tissue ¹	Stage ²	(DAP)	$(\mu g/g fw)^3$	$(\mu g/g dw)^4$	$(\mu g/g fw)$
OSL-1	2-4 leaf	14-25	27 (7.6)	180 (52)	0.168/0.313
			13 - 42	110 - 280	
					dill' no
OSL-2	4-7 leaf	25-37	41 (12)	240 (69)	0.168/0.313
			19 - 65	110 - 380	
				CI1-	isti
OSL-3	9 leaf - Full flower	35-99	52 (17)	240 (75)	0.168/0.313
			24 - 97	910410	1. XS
			K	x0 101 x	St. Q.
OSL-4	Cutout – Full	70-121	57 (18)	230 (59)	0.168/0.313
	flower	Ca	0.70 - 91	2.8 - 310	.O`
	7		Q' XO.	$n_{k}^{(1)}$	
Root	50% open flower	62-99	14 (37)	43 (12)	0.136/0.313
	Full flower	CLU	8.2-21	26-72	
			2 01 1		
Pollen	50% open flower –	68-99	0 14 (28)	NA (NA)	0.043/0.125
	Full Flower 🔗	i di n	0.31 - 110	NA NA	
		762" M	till nis 200	) 	
Seed	Maturity	148-183	20 (4.6)	21 (5.0)	0.059/0.313
		and still	8.2 29	8.9 - 33	

Table V-2. Summary of MON 88701 DMO Protein Levels in Tissues from MON 88701 Grown in 2010 U.S. Field Trials

¹OSL= overseason leaf. Seed = black seed (ginned and delinted).

et al., 2007).

²The crop development stage each tissue was collected (**1999** et al., 2007). ³Protein levels are expressed as the arithmetic mean and standard deviation (SD) as microgram (μg) of protein per gram (g) of tissue on a fresh weight basis (fw). The means, SD, and ranges (minimum and maximum values) were calculated for each tissue across all sites (n=32, except OSL-3 n=31 due to one sample <LOD, OSL-1 and OSL-4 n=28 due to missed sample collections, and pollen n=29 due to two samples expressing <LOD and one being inconclusive).

dividing the ug/g fw by the dry weight conversion factors obtained from moisture analysis data. NA= Not Applicable. Applicable. LOQ=limit of quantitation, LOD=limit of detection.

<section-header> Letter and the second of the s -onsequently and publication of the owner of this document may therefore owner of this document may there owner of this document may therefore owner of the owner of this document may therefore owner of this document may there owner owner of this document may there owner owner of this document may there owner owner

any connectation and use of this document, may therefore any connectation and use of this owner.

without the permission of the owner of this documer.

		Days	PAT (bar)	PAT (bar)	
		After	Mean (SD)	Mean (SD)	
	Development	Planting	Range	Range	LOD/LOQ ⁵
Tissue ¹	Stage ²	(DAP)	$(\mu g/g fw)^3$	$(\mu g/g dw)^4$	$(\mu g/g fw)$
	~81	()		(1.9.9)	
OSL-1	2-4 leaf	14-25	0.84 (0.21)	5.5 (1.5)	0.162/0.188
			0.46 - 1.4	3.7 - 9.1	
			0.10 1.1	5.7 9.1	°.
OSL-2	4-7 leaf	25-37	1.1 (0.26)	6.4 (1.4)	0162/0188
0.02 -		20 0 /	0.68 - 1.6	3.8 - 9.4	
			0.00 1.0	5.0 5.1	0,0
OSL-3	9 leaf – Full flower	35-99	1.0 (0.34)	4.8 (2.0)	0.162/0.188
ODE 5	y lour i un nower	55 77	0.34 – 1.7	1.3 - 10	90.102/0.100
			0.34 - 1.70	1.5 710 1	, xS
OST 4	Cutout Full	70 121	0.78 (0.20)	22 (10)	0,162/0.188
OSL-4	Cutout – Full	70-121	0.78 (0,29)	3.2 (1.2)	0.002/0.188
	flower		0.42 - 1.7	0 2.0 - 6.70	ç0.
		$\mathcal{C}_{\mathcal{D}}$	101 de	xS d	
Root	50% open flower-	62-99	0.56 (0.18)	01.8 (0.75)	0.096/0.188
	Full flower 🔬	· · · · ·	0.27 – 0.89	0.93 – 3.3	
	all	CL	100 CC	of dias	
Pollen	50% open flower –	68-99	0.56 (0.24)	NA (NA)	0.021/0.188
	Full flower	Oi In.	0.027 = 0.90	NA	
	XY S			<u>N</u>	
Seed	Maturity	198-183	6 1 0 950	6.6 (1.1)	0.032/0.188
Beeu	Opinaturity of the	0170-103		5.2 - 9.6	0.032/0.100
	<u> </u>	1 1 MIP	4.0 - 0.0	5.2 - 9.0	

Table V-3. Summary of PAT (bar) Protein Levels in Tissues from MON 88701 Grown in 2010 U.S. Field Trials

¹OSL= overseason leaf. Seed = black seed (ginned and delinted).

et al., 2007).

²The crop development stage each tissue was collected (**Δατρ** et al., 2007). ³Protein levels are expressed as the arithmetic mean and standard deviation (SD) as microgram (μg) of maximum values) were calculated for each tissue across all sites (n=32, except OSL-1 n=28 due to missed sample collections, OSL-4 n=27 due to missed sample collections. OSL-3 n=31 due to one sample expressing <LOD, and pollen n=6 due to 26 samples expressing <LOQ). Protein levels are expressed as ug/g on a dry weight (dw) basis. The dry weight values were calculated by dividing the ug/g fw by the dry weight conversion factors obtained from maintenant.

Applicable. ⁵LOQ=limit of quantitation; LOD=limit of detection.

#### V.D. Assessment of Potential Allergenicity of the MON 88701 DMO and PAT (bar) Proteins

Assessing the potential allergenicity of the expressed proteins is less relevant to MON 88701 since only cottonseed oil and linters from cotton are used in food applications, which have undetectable or negligible amounts of total protein ( and

, 1979; Sims et al., 1996). Nonetheless, the allergenic potential of MON 88701 DMO and PAT (bar) proteins was assessed by comparing the biochemical characteristics of these introduced proteins to biochemical characteristics of known allergens (Codex Alimentarius, 2009). A protein is not likely to be associated with allergenicity if: 1) the protein is from a non-allergenic source; 2) the protein represents a very small portion of the total plant protein; 3) the protein does not share structural similarities to known allergens based on the amino acid sequence; and (4) the protein is rapidly digested in mammalian gastrointestinal systems.

#### V.D.1. Assessment of Potential Allergenicity of the MON 88701 DMO Protein

MON 88701 DMO has been assessed for its potential allergenicity according to the safety assessment guidelines described above, and conclusions were as follows.

1) MON 88701 DMO originates from S. maltophilia, an organism that has not been reported to be a source of known allergens.

2) MON 88701 DMO represents no more than 0. 008% of the total protein in the cottonseed of MON 88701⁴. Therefore, the MON 88701 DMO protein represents a very small portion of the total protein in the cottonseed of MON 88701 and due to the harsh conditions used in cottonseed processing is most likely absent in the oil and linters that are used for food production.

This document 3) Bioinformatics analyses demonstrated that the MON 88701 DMO does not share amino acid sequence similarities with known allergens and, therefore, is highly unlikely to contain immunologically cross-reactive allergenic epitopes.

4) In vitro digestive fate experiments conducted with the MON 88701 DMO demonstrate that the proteins are rapidly digested in simulated gastric fluid (SGF) and in simulated intestinal fluid (SIF).

Taken together, these data support the conclusion that MON 88701 DMO does not pose a significant allergenic risk.

#### V.D.2, Assessment of Potential Allergenicity of the PAT (bar) Protein

The non-allergenic nature of PAT (bar) protein is established in the scientific literature (Hérouet et al., 2005) and by the tolerance exemption set by U.S. EPA (1997).

⁴ % protein = (Mean level of protein expression  $(\mu g/g)$ / Mean dry weight of total protein in seed  $\mu g/g$ ) x 100 %

Furthermore, the safety of PAT proteins, including the PAT (*bar*) protein produced in MON 88701, has been assessed extensively by regulatory agencies in 11 different countries for more than 38 biotechnology-derived events in eight different species (ILSI-CERA, 2011). In addition, potential allergenicity of PAT (*bar*) protein produced in MON 88701 has been assessed according to the safety assessment guidelines described above, and conclusions were as follows.

1) PAT (*bar*) originates from *S. hygroscopicus*, an organism that has not been reported to be a source of known allergens.

2) PAT (*bar*) represents no more than 0. 002% of the total protein in the cottonseed of MON 88701.⁵ Therefore, the PAT (*bar*) protein represents a very small portion of the total protein in the cottonseed of MON 88701 and due to the harsh conditions used in cottonseed processing is most likely absent in the oil and linters that are used for food production.

3) Bioinformatics analyses demonstrated that the PAT (*bar*) does not share amino acid sequence similarities with known allergens and, therefore, is highly unlikely to contain immunologically cross-reactive allergenic epitopes.

4) *In vitro* digestive fate experiments conducted with the PAT (*bar*) demonstrate that the proteins are rapidly digested in simulated gastric fluid (SGF) and in simulated intestinal fluid (SIF).

Taken together, these data support the conclusion that PAT (*bar*) does not pose a significant allergenic risk.

## V.E. Safety Assessment Summary of MON 88701 DMO and PAT (*bar*) Proteins in MON 88701

Characterization of the introduced protein(s) in a biotechnology-derived crop product is important to establishing its food, feed, and environmental safety. This section summarizes: 1) the functionality of MON 88701 DMO and PAT (*bar*); 2) the characterization of MON 88701 DMO and PAT (*bar*); 3) the levels of MON 88701 DMO and PAT (*bar*) in plant tissues; 4) assessment of the potential allergenicity of MON 88701 DMO and PAT (*bar*); and 5) the food, feed, and environmental safety assessment of MON 88701 DMO and PAT (*bar*). The data support a conclusion that MON 88701 is safe for the environment and human or animal consumption based on several lines of evidence, all of which are summarized below.

### V.E.1. MON 88701 DMO Donor Organism, History of Safe Use, and Specificity

Numerous factors have been considered in the safety assessment of MON 88701 DMO, which include but are not limited to donor organism safety, the safety of mono-

 $^{^5}$  % protein = (Mean level of protein expression (µg/g)/ Mean dry weight of total protein in seed µg/g) x 100 %

oxygenases, and MON 88701 DMO protein specificity. A comprehensive food, feed, and environmental safety assessment of the MON 88701 DMO was conducted. The results are summarized below, along with the conclusions reached from the assessment.

#### V.E.1.1. The *dmo* Donor Organism is Safe

The *dmo* gene is derived from the bacterium *Stenotrophomonas maltophilia* (Palleroni and Bradbury, 1993). S. maltophilia is ubiquitous in the environment and is found associated with the rhizosphere of plants. S. maltophilia can be found in a variety of foods and feeds, and is widespread in the home environment (Berg et al., 1999; Denton and Kerr, 1998; Echemendia, 2010). Exposure to S. maltophilia is incidental to its presence in food. It has been isolated from "ready to eat" salads, vegetables, frozen fish, milk, and poultry (Qureshi et al., 2005; Ryan et al., 2009). S. maltophilia can be found in healthy individuals without causing any harm to human health (Denton et al., 1998) and infections caused by S. maltophilia are extremely uncommon (Cunha, 2010). Strains have been found in the transient flora of hospitalized patients as a commensal organism (Echemendia, 2010) and, similar to the indigenous bacteria of the gastrointestinal tract, S. maltophilia can be an opportunistic pathogen (Berg, 1996). As such, S. maltophilia is of low virulence in immuno-compromised patients where a series of risk factors (severe debilitation, the presence of indwelling devices such as ventilator tubes or catheters, for prolonged periods of time and prolonged courses of antibiotics) must occur for colonization by S. maltophilia in humans (Ryan et al., 2009). Therefore, infections by S. maltophilia almost exclusively occur in hospital settings, in which case they are only present in a minimal percentage of infections (Ryan et al. 2009). Finally, S. maltophilia has not been reported to be source of allergens.

The ubiquitous presence of *S. maltophilia* in the environment, the presence in healthy individuals without causing infections, the incidental presence in foods without any adverse safety reports, and the lack of reported allergenicity establishes the safety of the donor organism.

### donor organism. V.E.1.2. MON 88701 DMO Protein Belongs to a Common Class of Mono-Oxygenases

MON 88701 DMO is classified as an oxygenase. Oxygenases are enzymes that incorporate one or two oxygen atoms into substrates and are widely distributed in many universal metabolic pathways (Harayama et al., 1992). Within this large enzymatic class are mono-oxygenases that incorporate a single oxygen atom as a hydroxyl group with the concomitant production of water and oxidation of NAD(P)H (Harayama et al., 1992). Non-heme iron oxygenases, where iron is involved in the catalytic site, are an important class of oxygenases. Within this class are Rieske oxygenases, which contain a Rieske iron-sulfur [2Fe-2S] cluster. All Rieske non-heme iron oxygenases contain two catalytic domains, a non-heme iron domain (nh-Fe) that is a site of oxygen activation, and a Rieske [2Fe-2S] domain (Ferraro et al., 2005). MON 88701 DMO belongs to this class of oxygenases which are found in diverse phyla ranging from bacteria to plants (Ferraro et al., 2005; Schmidt and Shaw, 2001).

As discussed previously, the crystal structure of a DMO has been solved (D'Ordine et al., 2009; Dumitru et al., 2009). The crystallography results demonstrated that, similar to all Rieske non-heme iron oxygenases, DMO contains two catalytically important and highly conserved domains; a mononuclear non-heme iron domain (nh-Fe) that is a site of oxygen activation, and a Rieske [2Fe-2S] domain (D'Ordine et al., 2009; Dumitru et al., 2009; Ferraro et al., 2005). The amino acids binding the non-heme iron and those that constitute the Rieske [2Fe-2S] domain in the DMO protein are also highly conserved in these plant proteins, as is their spatial orientation (D'Ordine et al., 2009; Ferraro et al., 2005). Rieske domains are ubiquitous in numerous bacterial and plant proteins like the iron-sulfur protein of the cytochrome bc1 complex, chloroplast cytochrome b6/fcomplex, and choline mono-oxygenases (Breyton, 2000; Darrouzet et al., 2004; Gray et al., 2004; Hibino et al., 2002; Rathinasabapathi et al., 1997; Russell et al., 1998). The presence of two conserved domains, a Rieske [2Fe-2S] domain and a mononuclear iron domain. suggests that all Rieske type non-heme iron oxygenases share the same reaction mechanism, by which the Rieske domain transfers electrons from the ferredoxin to the mononuclear iron to allow catalysis (Chakraborty et al., 2005; Dumitru et al., 2009; Ferraro et al., 2005). The structure and mechanistic homologies are further evidence of the evolutionary relatedness of all Rieske non-heme iron oxygenases to each other (Nam et al., 2001; Rosche et al., 1997; Werlen et al., 1996). Additionally, a FASTA alignment search of publicly available databases using the MON 88701 DMO protein sequence as a query yielded homologous sequences from many different species, predominantly bacteria, with amino acid sequence identity ranging up to approximately 42%. Alignments of MON 88701 DMO with plant proteins revealed homologous oxygenases present in crops such as canola (Brassica napus), corn (Zea mays), pea (Pisum sativum), rice (Orysa sativa), and soy (Glycine max), which were determined to have sequence identities up to approximately 27%. The highest homology was observed to proteins that are involved in chlorophyll metabolism. Chlorophyllide A oxygenase (Accession number: ACG42449) is Rieske-type oxygenase that is required for the formation of key role in the overall regulation of chlorophyll degradation in plants (Rodoni et al., 1997). Pheophorbide A oxygenase is constitutively present in all green tissues a slightly lower levels, in etiolated and nonal., 2004). As a Rieske-type oxygenase, Pheophorbide A oxygenase is expected to have high degree of secondary and tertiary structure homology to similar structural elements in DMO as described above. The presence of the DMO as described above. The presence of these conserved structural domains in these plant proteins is further evidence that exposure to a structural homolog of MON 88701 DMO has occurred through consumption of these crops.

Therefore, MON 88701 DMO shares sequence identity and many catalytic domain structural similarities with a wide variety of oxygenases present in bacteria and plants currently widely prevalent in the environment and consumed, establishing that animals and humans are extensively exposed to these types of enzymes.

#### V.E.1.3. DMO Catalyzes a Specific Enzyme Reaction

DMO converts dicamba to DCSA. This demethylation is very specific to dicamba, where both the carboxylate moiety and the chlorine atoms help position the substrate at the active site of the enzyme (D'Ordine et al., 2009; Dumitru et al., 2009). Crystallography studies of the substrate in the active site demonstrated that these chlorines function as steric "handles" that position the substrate in the proper orientation in the binding pocket (Dumitru et al., 2009). Potential substrates abundant in cotton (o-anisic acid, vanillic acid, syringic acid, ferulic acid and sinapic acid) that are structurally similar to dicamba, were not metabolized by an *E. coli*-produced N-terminal histidine DMO. In addition, *E.* coli-produced MON 88701 DMO did not metabolize o-anisic acid, the endogenous compound that has the greatest structural similarity to dicamba. These laboratory tests indicate that DMO, including MON 88701 DMO protein, is specific for dicamba (Section V.A.1.2). Given the limited amount of chlorinated metabolites with structures similar to dicamba in plants and other eukaryotes (Wishart, 2010; Wishart et al., 2009), it is unlikely that MON 88701 DMO will catalyze the conversion of other endogenous Therefore, the activity of the enzyme is specific for dicamba while it substrates. maintains many structural properties common to oxygenases that are ubiquitous to all organisms with a history of safe consumption.

#### V.E.2. PAT (bar) Donor Organism, History of Safe Use, and Specificity

The safety of PAT (*bar*) protein is established in the scientific literature (Hérouet et al., 2005) and by the tolerance exemption set by the EPA (U.S. EPA, 1997). In addition, the safety of PAT proteins, including the PAT (*bar*) protein produced in MON 88701, has been assessed extensively by regulatory agencies in 11 different countries for more than 38 biotechnology-derived events in eight different species (ILSI-CERA, 2011). The PAT (*bar*) protein expressed in MON 88701 has the same functional activity as the PAT proteins in all commercially available products that provide glufosinate tolerance in several crops, including cotton, corn, soybean, and canola. The lack of any documented reports of adverse effects of glufosinate tolerant crops since their introduction in 1995 (Duke and Powles, 2009) further demonstrates the safety of PAT (*bar*) protein.

Numerous factors have been considered in the safety assessment of PAT (*bar*), which include, but are not limited to, donor organism safety, the history of safe use, and PAT protein specificity.

### V.E.2.1. The bar Donor Organism is Safe

*S. hygroscopicus* is a saprophytic, soil-borne bacterium with no known safety issues. *Streptomyces* species are widespread in the environment and present no known allergenic or toxicity issues (Kämpfer, 2006; Kutzner, 1981) though human exposure is quite common (Goodfellow and Williams, 1983). *S. hygroscopicus* is not considered pathogenic to plants, humans or other animals (Cross, 1989; Goodfellow and Williams, 1983; Locci, 1989). The history of safe use of *S. hygroscopicus* is discussed previously (Hérouet et al., 2005), and this organism has been extensively reviewed during the

deregulation of several glufosinate-tolerant events with no safety or allergenicity issues identified.

The ubiquitous presence of *S. hygroscopicus* in the environment, the widespread human exposure without any adverse safety or allergenicity reports, and the successive reviews resulting from the deregulation of several glufosinate-tolerant events with no safety or allergenicity issues identified establishes the safety of the donor organism.

#### V.E.2.2. PAT Protein has a History of Safe Use

The PAT (*bar*) protein expressed in MON 88701 is identical to the wild-type protein produced in *S. hygroscopicus* and is analogous to the PAT proteins in commercially available glufosinate-tolerant products in several crops including cotton, corn, soybean, and canola. Based on studies characterizing the kinetic and chemical mechanisms of PAT proteins (Wehrmann et al., 1996), OECD recognizes PAT proteins produced from different genes to be equivalent with regard to function and safety (OECD, 1999b).

The safety of PAT protein present in biotechnology-derived crops has been extensively assessed (ILSI-CERA, 2011) and in 1997 a tolerance exemption was assued for PAT proteins by U.S. EPA (U.S. EPA, 1997). This exemption was based on a safety assessment that included rapid digestion in simulated gastric fluids, lack of significant homology to known toxins and known allergens, and lack of toxicity in an acute oral mouse gavage study. Numerous glufosinate-tolerant products including those in corn, soy, canola, sugarbeet and rice have been reviewed by the USDA and FDA with no concerns identified. Further, a comprehensive study on the safety of PAT proteins present in biotechnology-derived crops (Hérouet et al., 2005) demonstrated structural similarity only with other acetyltransferases known to not cause adverse effects after consumption, lack of sequence homology to know allergens and toxins, lack of glycosylation sites, rapid degradation in gastric and intestinal fluids, and no adverse effects in mice treated with high doses of PAT proteins. Hérouet et al. concluded that there is a reasonable certainty of no harm resulting from the inclusion of PAT proteins in human food or animal feed (2005).

The history of safe use of PAT is supported by the lack of any documented reports of adverse effects related to this protein since the introduction of glufosinate-tolerant crops in 1995 (Duke and Powles, 2009). Since then, approvals have been issued by regulatory agencies of 11 different countries for the environmental release of greater than 38 transformation events, including 8 different species of plants expressing the PAT protein (ILSI-CERA, 2011).

#### V.E.2.3. PAT (bar) Catalyzes a Specific Enzyme Reaction

The mode-of-action for PAT protein has been extensively assessed, as numerous glufosinate-tolerant products, including those in corn, soy, canola, sugarbeet, and rice, have been reviewed by the FDA and several other regulatory agencies (ILSI-CERA, 2011; OECD, 1999b; 2002a). PAT, including the PAT (*bar*) protein produced in MON 88701, is an enzyme classified as an acetyltransferase which acetylates glufosinate

to produce non-herbicidal N-acetyl glufosinate. Glufosinate is a racemic mixture of the D- and L- forms of phosphinothricin. The herbicidal activity of glufosinate results from the binding of L-phosphinothricin to glutamine synthetase (OECD, 1999b; 2002a). Glutamine synthetase is responsible for the assimilation of ammonia generated during photorespiration. The binding of L-phosphinothricin to glutamine synthetase results in the inactivation of glutamine synthetase and a subsequent toxic build-up of ammonia within the plant, resulting in death of the plant (Manderscheid and Wild, 1986; OECD, 1999b; 2002a; Wild and Manderscheid, 1984).

The PAT (*bar*) protein produced in MON 88701 acetylates the free amine group of Lphosphinothricin form of glufosinate to produce non-herbicidal N-acetyl glufosinate. The acetylated glufosinate is unable to bind to glutamine synthetase and therefore does not disrupt photorespiration and avoids the build-up of ammonia. Therefore, the production of PAT (*bar*) protein in MON 88701 confers glufosinate herbicide tolerance through this mechanism.

The PAT proteins, including PAT (bar), are highly specific for glufosinate in the et al., 1987; Wehrmann et al., 1996). While the presence of acetyl-CoA ( herbicidal activity of glufosinate comes from the L-amino acid form, other L-amino acids are unable to be acetylated by PAT protein and competition assays containing glufosinate, high concentrations of other amino acids and PAT showed no inhibition of glufosinate acetylation (Wehrmann et al., 1996). Furthermore, D-glutamate, an analogue of glufosinate, also showed no inhibition of glufosinate acetylation in competition assays (Wehrmann et al., 1996). In addition, the PAT (bar) protein has more than 30-fold higher affinity towards L-phosphinothricin over other plant analogues ( et al., 1987). Thus, the PAT (bar) protein has high substrate specificity for L-phosphinothricin, the herbicidal component of glufosinate, and is unlikely to affect the metabolic system of MON 88701 cotton. Numerous glufosinate-tolerant products, including those in corn, soy, canola, sugarbeet, and rice have been reviewed with no concerns identified (ILSI-CERA, 2011).

### V.E.3. MON 88701 DMO and PAT (bar) Proteins in MON 88701 are Not Homologous to Known Allergens or Toxins

Bioinformatics analyses were performed to assess the allergenic potential, toxicity, or biological activity of MON 88701 DMO and PAT (*bar*). The analysis demonstrated that neither protein shares amino acid sequence similarities with known allergens, gliadins, glutenins, or protein toxins which could have adverse effects to human or animal health (Section V.D).

## V.E.4. MON 88701 DMO and PAT (*bar*) Proteins in MON 88701 are Labile in *in vitro* Digestion Assays

MON 88701 DMO and PAT (*bar*) were readily digestible in simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Rapid degradation of the MON 88701 DMO and PAT (*bar*) proteins in SGF and SIF makes it highly unlikely that either protein would

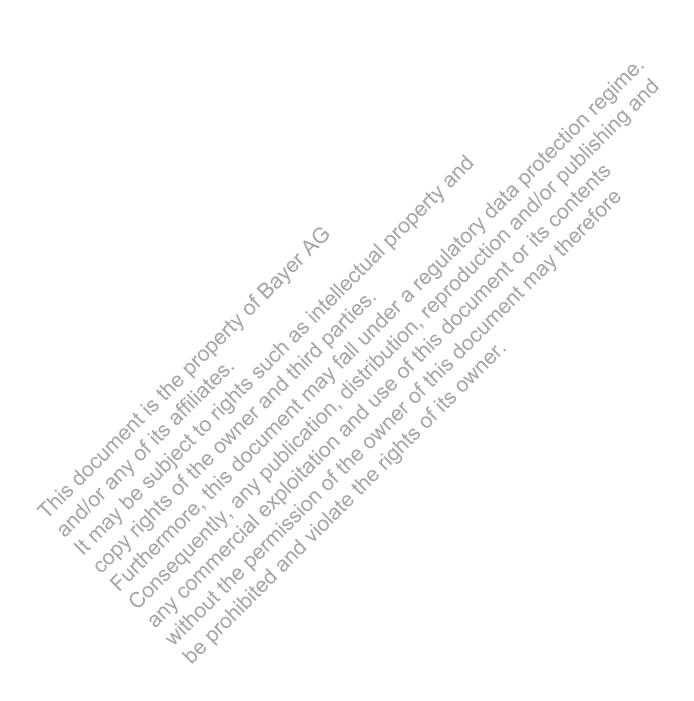
be absorbed in the small intestine and have any adverse effects on human or animal health.

## V.E.5. MON 88701 DMO and PAT (bar) Proteins in MON 88701 are Not Acutely Toxic

Acute oral toxicology studies were conducted with MON 88701 DMO and PAT (*bar*) proteins individually. Results indicate that neither MON 88701 DMO or PAT (*bar*) caused any adverse effects in mice, with No Observable Adverse Effect Levels (NOAELs) for MON 88701 DMO at 283 mg/ kg bw and PAT (*bar*) at 1086 mg/kg bw, respectively, the highest doses tested.

### V.E.6. Human and Animal Exposure to the MON 88701 DMO and PAT (bar) Proteins

Cottonseed is not consumed by humans because the majority of commercial cotton varieties contain the anti-nutrients gossypol and cyclopropenoid fatty acids. The primary human food currently produced from cottonseed is refined, bleached, and deodorized (RBD) oil, and to a smaller extent, linters, ORBD oil contains undetectable amounts of , 1979); therefore, oil produced from MON 88701 will protein ( and contain extremely low levels of MON 88701 DMO and PAT (bar) proteins. Linters are an industrial by-product of ginning, and can be consumed as a highly processed product composed of nearly pure (i.e., 99%) cellulose (NCPA, 2002; Nida et al., 1996). Cottonseed RBD oil and linters are processed fractions that contain undetectable or negligible amounts of protein there is minimal, if any dietary exposure to MON 88701 DMO and PAT (bar) proteins from consumption of foods derived from MON 88701. Therefore, MOE values were not calculated for the MON 88701 DMO or PAT (bar) proteins. Furthermore, the safety of PAT (bar) has been extensively assessed (Hérouet et tolerance exemption was issued for PAT proteins by U.S. EPA (1997). Estimated exposure of MON 88701 DVC al., 2005), several glufosinate-tolerant crops that produce PAT proteins have been reviewed by FDA and other regulatory agencies (ILSI-CERA, 2011) and in 1997 a


Estimated exposure of MON 88701 DMO and PAT (*bar*) proteins in animal feed were evaluated by calculating an estimate of daily dietary intake (DDI) for dairy cows. Exposure was calculated for the worst-case scenario, which assumes: 1) the source of cottonseed in the diet is cottonseed meal; 2) cottonseed meal is only derived from MON 88701 and contains no other cottonseed sources; 3) the protein expression level is the maximum expression level measured for each protein; and 4) no loss of protein due to heat. The maximum daily amount of MON 88701 DMO or PAT (*bar*) proteins consumed from MON 88701 would be for the dairy cow and would be 0.00043 g/kg of body weight for MON 88701 DMO and 0.000124 g/kg of body weight for PAT (*bar*). These values represent 0.007 and 0.002% of protein consumed, respectively. These very small levels of exposure of animals to MON 88701 DMO and PAT (*bar*) in their feed, in addition to the above mentioned safety data for both MON 88701 DMO and PAT (*bar*), support the conclusion that there is no risk to animal health when MON 88701 DMO or PAT (*bar*) are present in their diets.

## V.F. MON 88701 DMO and PAT (*bar*) Protein Characterization and Safety Conclusion

MON 88701 DMO is a Rieske-type mono-oxygenase that catalyzes the O-demethylation of the herbicide dicamba and has homologs in bacteria and plants that share many of the typical structural and functional characteristics of these types of oxygenases, while maintaining specificity for its substrate. The physicochemical characteristics of the MON 88701 DMO protein were determined and equivalence between MON 88701 DMO and E. coli-produced MON 88701 DMO proteins was demonstrated. This equivalence justifies the use of the E. coli-produced MON 88701 DMO as a test substances in the protein safety studies. Expression studies using ELISA demonstrated that MON 88701 DMO was expressed at levels ranging from <LOD to 410 µg/g dw, representing a low percentage of the total protein. An assessment of the allergenic potential of the MON 88701 DMO protein supports the conclusion that the MON 88701 DMO protein does not pose a significant allergenic risk. In addition, the donor organism for the MON 88701 DMO coding sequence, S. maltophilia, is ubiquitous in the environment and is not commonly known for human or animal pathogenicity or all regenicity. MON 88701 DMO protein lacks structural similarity to allergens, toxins or other proteins known to have adverse effects on mammals. The MON 88701 DMO protein is rapidly digested in simulated digestive fluids and demonstrates no oral toxicity in mice at the level tested. Based on the above information, the consumption of the MON 88701 DMO protein from MON 88701 or its progeny is considered safe for humans and animals

PAT (bar) protein is an acetyltransferase that catalyzes the acetylation of the herbicide glufosinate. The PAT (bar) protein expressed in MON 88701 is analogous to the PAT proteins in all commercially available products that provide glufosinate tolerance in several crops including cotton, corn, soybean, and canola. PAT proteins, including the PAT (bar) protein solated from MON 88701 have been previously characterized, and the Proteins has been well established. The data and PAT (*bar*) protein in MON 88701. The physicochemical characteristics of the PAT (*bar*) protein were determined and equivalence between MON 88701-produced *E. coli*-produced PAT (*bar*) proteins was determined and were of the T *E. coli*-produced PAT (*bar*) proteins was demonstrated. This equivalence justifies the use of the *E. coli*-produced PAT (*bar*) as a test substance in the protein and Expression studies using PLICA-1 Expression studies using ELISA demonstrated that MON 88701-produced PAT (*bar*) was expressed at levels ranging from <1 OD to 10 mm/s Othe total protein. An assessment of the allergenic potential of the PAT (bar) protein supports the conclusion that the PAT (bar) protein does not pose a significant allergenic risk.^O In addition, the donor organism for the PAT (bar) coding sequence, S. hygroscopicus is ubiquitous in the environment and is not commonly known for human or animal pathogenicity, or allergenicity. The PAT (bar) protein lacks structural similarity to allergens, toxins or other proteins known to have adverse effects on mammals. The PAT (bar) protein is rapidly digested in simulated digestive fluids and demonstrates no oral toxicity in mice at the level tested. Based on the above information, the consumption of the PAT (bar) protein from MON 88701 or its progeny is considered safe for humans and animals.

The protein safety data presented herein support the conclusion that food and feed products containing MON 88701 or derived from MON 88701 are as safe as cotton products currently on the market for human and animal consumption.



#### VI. COMPOSITIONAL ASSESSMENT OF MON 88701

Safety assessments of biotechnology-derived crops follow the comparative safety assessment process (Codex Alimentarius, 2009) in which the composition of grain and/or other raw agricultural commodities of the biotechnology-derived crop is compared to the appropriate conventional control that has a history of safe use. Compositional assessments are performed using the principles and analytes outlined in the OECD consensus document for cotton composition (OECD, 2009).

A recent review of compositional assessments conducted according to OECD guidelines that encompassed a total of seven biotechnology-derived crop varieties, nine countries and eleven growing seasons concluded that incorporation of biotechnology-derived agronomic traits has had little impact on natural variation in crop composition. Most compositional variation is attributable to growing region, agronomic practices and genetic background (Harrigan et al., 2010). Compositional quality, therefore, implies a very broad range of endogenous levels of individual constituents. Numerous scientific publications have further documented the extensive variability in the concentrations of crop nutrients and anti-nutrients that reflect the influence of environmental and genetic factors as well as extensive conventional breeding efforts to improve nutrition, agronomics and yield (Reynolds et al., 2005). This observation extends to publications specific to cotton (Berberich et al., 1996; Hamilton et al., 2004; Nida et al., 1996).

Compositional equivalence between biotechnology-derived and conventional crops supports an "equal or increased assurance of the safety of foods derived from genetically modified plants" (OECD, 2002b). The OECD consensus document on considerations for new varieties of cotton emphasize quantitative measurements of key nutrients and known anti-nutrients (OECD, 2009). This is based on the premise that such comprehensive and detailed analyses will most effectively discern any compositional changes that imply potential safety and nutritional concerns (*e.g.*, anti-nutritional). Levels of the components in the seed of the biotechnology-derived crop are compared to: 1) corresponding levels in a conventional comparator, the genetically similar conventional line, grown concurrently, under the same field conditions; and 2) natural ranges generated from an evaluation of commercial reference varieties grown concurrently and from data published in the scientific literature. The comparison to data published in the literature places any potential differences between the assessed crop and its comparator in the context of the well-documented variation in the concentrations of crop nutrients and anti-nutrients.

This section provides analyses of concentrations of key nutrients and anti-nutrients of cottonseed from MON 88701 treated with both dicamba and glufosinate compared to the conventional control grown and harvested under the same conditions, as appropriate. The analyses of concentrations of key nutrients and anti-nutrients of cottonseed from MON 88701 that was not treated with either dicamba or glufosinate are presented in Appendix E as supplemental information. In addition, conventional commercial cotton reference varieties were included in the composition analyses to establish a range of natural variability for each analyte, defined by a 99% tolerance interval. The production of materials for the compositional analyses used field designs to allow accurate assessments of compositional characteristics over a range of environmental conditions

under which MON 88701 is expected to be grown. The field trial design parameters included a sufficient number of trial sites to allow adequate exposure to the variety of conditions cotton plants typically encounter in nature. Field sites were replicated with an adequate number of plants sampled, and the methods of analysis were sufficiently sensitive and specific to detect variations in the components measured to allow statistically rigorous analyses. The information provided in this section also addresses the relevant factors in Codex Plant Guidelines, Section 4, paragraphs 44 and 45 for compositional analyses (Codex Alimentarius, 2009).

## VI.A. Compositional Equivalence of MON 88701 Cottonseed to Conventional Cotton

Compositional analyses comparing MON 88701 treated with dicamba and glufosinate herbicides to the conventional control variety (Coker 130) and conventional commercial reference varieties demonstrated that MON 88701 is compositionally equivalent to Samples of acid-delinted cottonseed were collected from conventional cotton. MON 88701 and the conventional control grown in a 2010 U.S. field production. Nine unique conventional cotton varieties, known as reference substances, were included across all sites of the field production with four varieties per site to provide data on natural variability of each compositional component analyzed. The field production was conducted at eight sites: Arkansas (ARTI), Georgia (GACH), Kansas (KSLA), Louisiana (LACH), North Carolina (NCBD), New Mexico (NMLC), South Carolina (SCEK) and, Texas (TXPL). The sites were planted in a randomized complete block design with four blocks per site. All cotton plants, including MON 88701, the conventional control, and the reference varieties, were grown under normal agronomic field conditions for their respective geographic regions, including maintenance pesticides as needed. In addition, MON 88701 plots were treated at the 3-5 leaf stage with glufosinate herbicide at the label rate (0.5 lbs a.i./acre), and at the 6-10 leaf stage with dicamba herbicide at the label rate

Compositional analyses were conducted to assess whether levels of key nutrients and anti-nutrients in MON 88701 were equivalent to levels in the conventional control comparable to the composition of convertional control description of nutrients and anti-nutrients present in cotton is provided in the OECD consensus document on compositional considerations for cottonseed (OECD, 2009). Nutrients assessed in this analysis included proximates (ash, calories and carbohydrates by calculation, fat, moisture, and protein), acid detergent fiber (ADF), neutral detergent fiber (NDF), crude fiber (CF), total dietary fiber (TDF), amino acids (AA, 18 components), fatty acids (FA, C8-C22), minerals (calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium and zinc), and vitamin E. Methods used in the assessments of nutrients and anti-nutrients are found in Appendix E. In all, 65 different analytical components were measured. Due to statistical constraints, in order to proceed with the statistical analysis of any component in this study, at least 50% of the observed values for that analyte needed to be greater than the assay limit of quantitation (LOQ). Of the 65 components measured, 13 had more than 50% of the observations below the assay LOQ and were excluded from statistical analysis. Therefore, 52 components were statistically assessed using a mixed-model analysis of variance method.

Values for all components were expressed on a dry weight basis with the exception of moisture, expressed as percent fresh weight, and fatty acids, expressed as percent of total FA.

For MON 88701, nine sets of statistical comparisons to the conventional control were conducted. One comparison was based on compositional data combined across all eight field sites (the combined-site analysis) and eight separate comparisons to the conventional control were conducted on data from each of the eight individual field sites. Statistically significant differences were identified at a 5% level of significance (p<0.05). Compositional data from the conventional commercial reference varieties, grown concurrently in the same trial as MON 88701 and the conventional control, Coker 130, were combined across all sites and used to calculate a 99% tolerance interval for each component to define the natural variability in cotton varieties that have a history of safe consumption.

For the combined-site analysis, statistically significant differences (p < 0.05) in nutrient and anti-nutrient components were evaluated further using considerations relevant to the safety and nutritional quality of MON 88701 when compared to the conventional control. The evaluation included: 1) the relative magnitude of the significant difference in the mean values of nutrient and anti-nutrient components of MON 88701 compared to the conventional control; 2) whether the MON 88701 component mean values were within the range of natural variability of that component as represented by the 99% tolerance interval of commercial conventional reference varieties grown concurrently in the same trial; 3) analyses of the reproducibility of the significant combined-site component differences at individual sites; and 4) assessing the combined-site statistically significant differences and reproducible individual site significant differences within the context of natural variability of commercial cottonseed composition published in the scientific literature and/or in the International Life Sciences Institute Crop Composition Database (ILSI, 2011) (See Table VI-4) Statistical summaries of nutrients and anti-nutrients for XS individual sites are found in Appendix E.

This analysis provides a comprehensive comparative assessment of the levels of key nutrients and anti-nutrients in cottonseed of MON 88701 and the conventional control discussed in the context of natural variability in composition of commercial cotton. Results of the comparison indicate that the composition of the cottonseed of MON 88701 is equivalent to that of conventional cotton.

Compositional results from MON 88701 plots treated with dicamba and glufosinate label rates are summarized in the following subsections. Similar results were obtained for MON 88701 plots that were not treated with either dicamba or glufosinate, which are provided as additional information in Appendix E.

#### VI.A.1 Nutrient Levels in Cottonseed

In the combined-site analysis of nutrient levels in cottonseed, the following components had no statistically significant differences (p<0.05) in mean values between MON 88701 and the conventional control: one proximate (protein), one type of fiber (crude fiber), 15

amino acids (alanine, aspartic acid, cystine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, phenylalanine, serine, threonine, tryptophan, tyrosine, and valine), seven fatty acids (16:0 palmitic acid, 16:1 palmitoleic acid, 18:0 stearic acid, 18:1 oleic acid, 18:3 linolenic acid, 20:0 arachidic acid, and 22:0 behenic acid), and four minerals (copper, iron, phosphorus, and sodium) (Table VI-1 and VI-2).

The components that had significant differences in mean values between MON 88701 and the conventional control in the combined-site analysis were: five proximates (ash, calories, carbohydrates, moisture, and total fat), three types of fiber (ADF, NDF, and TDF), three amino acids (arginine, methionine and proline), two fatty acids (14:0 myristic acid and 18:2 linoleic acid), five minerals (calcium, magnesium, manganese, potassium, and zinc) and vitamin E (Table VI-1).

The statistically significant differences in nutrients were further evaluated using the four previously described considerations relevant to the safety and nutritional quality of MON 88701 when compared to the conventional control:

- All nutrient component differences observed in the combined-site statistical analysis, whether reflecting increased or decreased MON 88701 mean values with respect to the conventional control, were 14.09% or less. The relative magnitudes of the differences were: 0.66 to 5.00% for proximates, 4.08 to 5.72% for fibers, 2.61 to 4.82% for amino acids, 0.69 to 2.69% for fatty acids, 4.94 to 14.09% for minerals and 6.70% for vitamin E.
- 2) With the exception of methionine, mean values for all significantly different nutrient components from the combined-site analysis of MON 88701 were within the 99% tolerance interval established from the conventional commercial reference varieties grown concurrently in the same trial.

3) Assessment of the reproducibility of the combined-site differences at the eight individual sites showed significant differences for: NDF, methionine, proline and 18:2 linoleie acid at one site; carbohydrates, total fat, ADF, manganese and zinc at two sites; TDF, arginine, 14:0 myristic acid, potassium, and vitamin E at three sites; magnesium at four sites, ash at six sites and calcium at seven sites. Moisture and calories were not affected at any site. With the exception of methionine, arginine, and zinc, all individual site mean values of MON 88701 for all nutrient components with significant differences were within the 99% tolerance interval established from the conventional commercial reference varieties grown concurrently in the same trial.

4) All combined-site mean values and individual mean values of MON 88701 for all nutrient components, including those that were significantly different, were within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011).

Five of the 19 cottonseed nutrient statistically significant differences between MON 88701 and the conventional control that were observed in the combined-site data analysis were attributable to small differences in proximates (ash, carbohydrates, total fat expressed as % dw, calories expressed as Kcal/100g dw, and moisture expressed as % fw). For ash, calories, and total fat the relative magnitude of the differences between the mean value for MON 88701 and the conventional control were all small increases (5.00% for ash, 0.66% for calories and 3.71% for total fat). The differences for carbohydrates and moisture between the mean value for MON 88701 and the conventional control were both small decreases (2.60% for carbohydrates and 4.51% for moisture). All of the nutrient mean values for MON 88701 observed in the combined-site analysis for proximates were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. Except for ash, significant differences for most proximate mean values between MON 88701 and the conventional control were not consistently observed among individual sites. There were no significant differences at any of the individual sites for calories or moisture. Total fat was increased at two sites ranging from 6.74 to 8.46% and carbohydrates were decreased at two sites, with decreases ranging from 4.33 to 5.08%. Although ash was increased in MON 88701 when compared to the conventional control at six sites, increases ranged from 4.95 to 11.50%, which was less than the variability for the control samples (range 3.46 to 4.29, a relative difference of 24.0%, Table VI-1). Overall, observed differences in proximate values between MON 88701 and the conventional control were not considered to be meaningful from a food and feed safety or nutritional perspective because the magnitudes of combined-site differences ranged only from 0.66% to 5.00%, most were not consistently reproduced across the individual sites, and the mean MON 88701 combined-site values were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial, and were within the context of the natural variability of commercial cotton composition as

Three of the 19 cottonseed nutrient statistically significant differences between MON 88701 and the conventional control observed in the combined-site data analysis were attributable to small differences in fiber (ADF, NDF, and TDF all expressed as % dw). All relative magnitudes of the differences for fiber between the mean values for MON 88701 and the conventional control were small decreases (4.94% for ADF, 5.72% for NDF and 4.08% for TDF). All of the nutrient mean values for MON 88701 observed in the combined-site analysis for fiber were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. Significant differences for fiber mean values between MON 88701 and the conventional control were among individual sites. TDF and ADF were decreased at three and two sites, respectively, with decreases ranging from 4.55 to 8.15% for TDF and 9.27 to 9.86% for ADF. NDF was significantly different at one site with a small decrease of 7.40%. Overall, observed differences in fiber values between MON 88701 and the conventional control were not considered to be meaningful from a food and feed safety or nutritional perspective because they were small, not consistently reproduced across the individual sites, and the mean MON 88701 combined-site values

were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial, and were within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011).

Three other combined-site nutrient statistically significant differences between MON 88701 and the conventional control observed in the combined-site analysis were attributed to small differences in amino acids (arginine, methionine, and proline; expressed as % dw). For both arginine and proline, the relative magnitude of the differences between the mean values for MON 88701 and the conventional control were small decreases (3.80% for arginine and 2.61% for proline). Methionine was increased 4.82% when MON 88701 was compared to the conventional control. With the exception of methionine, the nutrient mean values for MON 88701 observed in the combined-site analysis for amino acids were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. The combined-site mean value for methionine was within the context of natural variation of methionine found in commercial cotton as published in the scientific literature or as found in the ILSI Crop Composition Database (ILSI, 2011). Significant differences for amino acid mean values between MON 88701 and the conventional control were not consistently observed at all eight individual sites. Arginine and proline were decreased at three sites and one site, respectively, with decreases ranging from 6.10 to 8.35% for arginine and 6.16% for proline. Methionine was increased 12.03% at only one site. Overall, observed differences in amino acid values between MON 88701 and the conventional control were not considered to be meaningful from a food and feed safety or nutritional perspective because they were small in magnitude, not consistently reproduced across the individual sites, and with the exception of methionine, the mean MON 88701 combined-site values were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. In Two of the combined of the com addition, all MON 88701 amino acid values were within the context of the natural variability of commercial cotton composition as published in the scientific literature or

Two of the combined-site nutrient statistically significant differences between MON 8870L and the conventional control were attributed to the fatty acids 14:0 myristic acid and 18:2 linolete acid (expressed as % total FA). The relative magnitudes of the differences between the mean fatty acid values for MON 88701 and the conventional control in the combined-site analysis were small decreases (2.69% for 14:0 myristic acid and 0.69% for 18:2 linolete acid). The nutrient mean values for MON 88701 observed in the combined-site analysis for both 14:0 myristic acid and 18:2 linolete acid were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. Significant differences for fatty acid mean values between MON 88701 and the conventional control were not consistently observed among individual sites. 14:0 myristic acid was decreased at three sites while 18:2 linoleic acid was decreased at one site with differences ranging from 4.43 to 8.36% for 14:0 myristic acid and 1.93% for 18:2 linoleic acid. Overall, observed differences in fatty acid values between MON 88701 and the conventional control were not considered to be meaningful

from a food and feed safety and nutritional perspective because they were small, not consistently reproduced across the individual sites, and the mean MON 88701 values were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial and were within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011).

Five of the 19 cottonseed nutrient statistically significant differences between MON 88701 and the conventional control observed in the combined-site analysis were attributed to small differences in minerals (calcium, magnesium, and potassium expressed as % dw and manganese and zinc expressed as mg/kg dw). For calcium, magnesium, potassium, and manganese, the relative magnitudes of the differences between the mean values for MON 88701 and the conventional control were increases of 4.09% for calcium, 5.63% for magnesium, 9.20% for manganese, and 4.94% for potassium. The relative magnitude of the difference for zinc between the mean value for MON 88701 and the conventional control was a decrease of 6.39%. All of the nutrient mean values for MON 88701 observed in the combined-site analysis for minerals were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. Except for calcium, significant differences for mineral mean values between MON 88701 and the conventional control were not consistently observed among individual sites. Calcium was significantly different at seven sites, with increases ranging from 6.92 to 22,70%; this was less than the variability observed for the control samples (range 0.091 to 0.18, a relative difference of 97.8%, Table VI-1).

Magnesium, potassium, and manganese were significantly different at four, three, and two sites, respectively, with increases ranging from 5.54 to 9.36% for magnesium, 8.01 to 16.37% for potassium and from 16.52 to 20.59% for manganese. Zinc was significantly different at two sites, with decreases ranging from 7.68 to 17.66%. Overall, observed differences in mineral values between MON 88701 and the conventional control were not considered to be meaningful from a food and feed safety or nutritional perspective because they were small in magnitude, not consistently reproduced across the individual sites (with the exception of calcium), and the mean MON 88701 combined-site values were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial and within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the LSI Crop Composition Database (ILSI, 2011).

One other nutrient difference observed in the combined-site analysis between MON 88701 and the conventional control was attributed to vitamin E (expressed as mg/kg dw). The relative magnitude of the difference between the mean vitamin E value for MON 88701 and the conventional control in the combined-site analysis was a small increase of 6.70%. The nutrient mean value for MON 88701 observed in the combined-site analysis for vitamin E was within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. Significant differences for vitamin E mean values between MON 88701 and the conventional control were not consistently observed among individual sites, with

significant increases ranging from 7.78 to 13.28% observed at three sites. Overall, the observed difference in the vitamin E values between MON 88701 and the conventional control in the combined-site analysis were not considered to be meaningful from a food and feed safety and nutritional perspective because they were 13.28% or less, not consistently reproduced across the individual sites, and the mean MON 88701 values were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial, and were within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011).

In summary, except for calcium and ash, statistical analyses found no consistent differences between the levels of nutrient components in cottonseed from MON 88701 and the conventional control. Differences were observed for calcium and ash in combined-site analyses and most individual sites, but the magnitudes of differences for these nutrients were less than the variability for the control samples, and values were within the range of natural variability for cottonseed. These findings support the conclusion of compositional equivalence of MON 88701 to conventional cotton.

#### VI.A.2. Anti-Nutrient Levels in Cottonseed

Cottonseed was analyzed for five anti-nutrients and in the combined-site analysis the following components had no significant differences (p<0.05) in mean values between MON 88701 treated with dicamba and glufosinate and the conventional control: two cyclopropenoid fatty acids (malvalic and sterculic) (Table VI-3). The components that showed statistically significant differences in mean values between MON 88701 and the conventional control were: one cyclopropenoid fatty acid (dihydrosterculic), free gossypol, and total gossypol (Table VI-1).

The statistically significant differences in anti-nutrients were further evaluated using the four previously described considerations relevant to the safety and nutritional quality of

- 1) All anti-nutrient component allow analysis, which analysis, which reflected an increase in MON 88701 mean values with respect to the conventional control, were small in magnitude. The relative magnitude of the differences for dihydrosterculic acid, free gossypol. and total gossy
  - 2) Mean values for all significantly different anti-nutrient components from the combined-site analysis of MON 88701 were within the 99% tolerance interval established from the conventional commercial reference varieties grown concurrently in the same trial.
  - 3) Assessment of the reproducibility of the combined-site differences at the eight individual sites showed significant differences for: dihydrosterculic at one site; free gossypol at two sites; and total gossypol at three sites. All individual site mean values of MON 88701 for all anti-nutrient components with significant

differences were within the 99% tolerance interval established from the conventional commercial reference varieties grown concurrently in the same trial.

4) All combined-site mean values of MON 88701 for all anti-nutrient components, including those that were significantly different, were within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011).

The three cottonseed anti-nutrient differences between MON 88701 and the conventional control observed in the combined-site data analysis were attributed to small differences in one cyclopropenoid fatty acid (dihydrosterculic; expressed as % total fatty acid), free gossypol, and total gossypol (expressed as % dw). For dihydrosteroutic acid, free gossypol, and total gossypol, the relative magnitude of the differences between the mean values for MON 88701 and the conventional control were increases of 9.59% for dihydrosterculic acid, 6.23% for free gossypol, and 6.75% for total gossypol. These antinutrient differences between MON 88701 and the conventional control observed in the combined-site analysis were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. Significant differences for the three anti-nutrient mean values between MON 88701 and the conventional control were not consistently observed across all eight individual sites. Dihydrosterculic acid, free gossypol, and total gossypol were significantly different at one, two, and three sites respectively, with an increase of 28.35% for dihydrosterculic acid, and increases ranging from 12.69 to 22.32% for free gossypol and 9.54 to 15.53% for total gossypol. Overall, observed differences in anti-nutrient values between MON 88701 and the conventional control were not considered to be meaningful from a food and feed safety or nutritional perspective because they were generally small, not consistently reproduced across the individual sites, and the mean MON 88701 values were within the 99% tolerance interval established by conventional commercial reference and/or available in the ILSI Crop Composition Database (ILSI, 2011). varieties grown concurrently in the same trial and within the context of the natural variability of commercial cotton composition as published in the scientific literature

In summary, statistical analyses found no consistent statistically significant differences between the levels of anti-nutrient components in cottonseed from MON 88701 and the conventional control and mean values for anti-nutrients were within the range of natural variability for cottonseed. These findings supported the conclusion of compositional equivalence of MON 88701 to conventional cotton.

#### Table VI-1. Summary of Differences (p<0.05) for the Comparison of Cottonseed Component Levels for MON 88701 vs. Conventional Control

Conventional Control						
			Mean Diff			
			(MON 88701 mi	nus Control)	n ning	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵
Statistical Differences Observed in Co	mbined-Site Analys	sis	, DI.	6, 6,	antes a	
Cottonseed Proximate (% dw)			AN N	à do c	E C	
Ash	4.31	4.11	5.00	0:001	3.77 - 4.74	3.42, 4.65
		G	01 ×01	N . 15 . 0	, C	
Calories Kcal/100g	498.50 📢	495.24	0.66	0.013	482.46 - 517.46	457.61, 527.56
-	10	. Since	all hills	at al		
Carbohydrates	44.64	45.83	-2.60	< 0.001	41.40 - 48.89	40.26, 56.45
	O I		a cor con	O		
Moisture (% fw)	×715	748		0.005	5 93 - 9 67	4.79, 9.92
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	illo il solo	0.002	5.95 9.07	1.79, 9.92
Carbohydrates Moisture (% fw) Total Fat Cottonseed Fiber (% dw) Acid Detergent Fiber Neutral Detergent Fiber Cottonseed Fiber (% dw) Acid Detergent Fiber Neutral Detergent Fiber (% dw) Cottonseed Fiber (% dw) Acid Detergent Fiber (% dw) Cottonseed Fiber (% dw) Acid Detergent Fiber (% dw) Cottonseed Fiber (%	23 1X	2231	3.51	0.001	10 70 26 78	15.01, 28.51
Total Lat		42.51	O. LA.	0.001	19.79 - 20.78	15.01, 20.51
Cottoneed Fiber (9/ dre)	cilla the the selies	Un On he	0,45			
A aid Detengent Eihen			O Sin	0.002	22.26 27.74	22.24,21.06
Acid Deleigent Fiber	+0 \$9.21 PS	20.38 N	-4.94	0.002	23.20 - 27.74	22.24, 31.96
N I D I D I D I O			- TO	-0.001	05 10 04 40	27.02.42.40
Neutral Detergent Fiber	- HO 30. 13 JO	32,59	-5.72	<0.001	25.13 - 34.42	27.03, 42.49
	<u> 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>	, 0, Mr				
(11, 10, 10, 10, 15	en vot	ON XO				
and and in		100				
it to a stor	let contractions	1.				
CON THE	No or all					
L'UN ASO	an no do					
	200 Mile					
1	NO T					
Analytical Component (Units) ¹ Statistical Differences Observed in Co Cottonseed Proximate (% dw) Ash Calories Kcal/100g Carbohydrates Moisture (% fw) Total Fat Cottonseed Fiber (% dw) Acid Detergent Fiber Neutral Detergent Fiber Neutral Detergent Fiber Neutral Detergent Fiber		12-CT-2	24411			107 of 620
		12-01-	277U			10/01020

Conventional Control (continued)			Mean Diff	erence	100 and	
Analytical Component (Units) ¹ Statistical Differences Observed in C Cottonseed Fiber (% dw) Total Dietary Fiber Cottonseed Amino Acid (% dw) Arginine Methionine Proline Cottonseed Fatty Acid (% Total FA) 14:0 Myristic 18:2 Linoleic This doi and sub Cotton			(MON 88701 mi	nus Control)	ening.	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵
Statistical Differences Observed in C	ombined-Site Analys	sis	1. 31.	Q' ~ Q'	and the second s	
Cottonseed Fiber (% dw)			and a start	S.o. 910. 2	le co	
Fotal Dietary Fiber	39.44	41.12	Q -4.08	×0.001	36.91 - 42.13	34.52, 52.58
		S,				
Cottonseed Amino Acid (% dw)	o.s.	N	N NO CH	× 01 ~ 1		
Arginine	3.03	3.15	3.80	0,002	2.33 - 3.60	2.38, 3.47
Cottonseed Amino Acid (% dw) Arginine Methionine Proline Cottonseed Fatty Acid (% Total FA) 4:0 Myristic 8:2 Linoleic		xelle s.	S SI M			
Aethionine	0.40	0.38	4.82	0.026	0.35 - 0.46	0.32, 0.38
	er di	or in				
Proline	1.00	0 1.03	JIL 1-2.61	0.037	0.82 - 1.21	0.83, 1.08
	P. S. SV X	" A Cott	OI WIS WIT			
Cottonseed Fatty Acid (% Total FA)	indiana ano	Mon glis	SOLAS			
4:0 Myristic	ALL 10.0.170	0.79	-2:69	0.009	0.66 - 0.95	0.16, 1.37
SALL IN S	X to Marking	atter atter	NI +S G G	0.00	54.04 50.00	
8:2 Linoleic	CC 03554 (10	36.15	-0.69	0.026	54.24 - 58.22	47.49, 63.18
	the co out	Or XIII	(15			
	0, 10, W, W, 10	, O. M.				
1/1. 9/0 1 p. 1/13	er o et a					
all and the	10 the al is	ilon				
1th of oth	we all all all all					
CO MAIN OF	on alle by Shi					
fr ons	CONT THE YES					
C° ~	J JIL ilon					
D'	in or on					
	<i>b</i> ~					

## Table VI-1. Summary of Differences (p<0.05) for the Comparison of Cottonseed Component Levels for MON 88701 vs. Conventional Control (continued)

nalytical Component (Units) ¹ atistical Differences Observed in Contonseed Mineral alcium (% dw) agnesium (% dw) anganese (mg/kg dw) otassium (% dw) nc (mg/kg dw) ottonseed Vitamin (mg/kg dw) itamin E ottonseed Cyclopropenoid Fatty Action itamin E	MON 88701 ² Mean ³ ombined-Site Analys	Control ⁴ Mean <b>is</b>	Mean Diffe (MON 88701 mi Mean Difference (% of Control)	nus Control) Significance (p-Value)	MON 88701	Commercial
nalytical Component (Units) ¹ atistical Differences Observed in Co ottonseed Mineral	MON 88701 ² Mean ³ ombined-Site Analys	Control ⁴ Mean is	Mean Difference (% of Control)	Significance (p-Value)	MON 88701	Commercial
nalytical Component (Units) ¹ atistical Differences Observed in Co ottonseed Mineral	Mean ³ ombined-Site Analys	Mean is	(% of Control)	(n-Value)		
atistical Differences Observed in Co ottonseed Mineral	ombined-Site Analys	is		(p survey)	Range	Tolerance Interval
ottonseed Mineral			01	Q' ~ Q'	antes	
$1_{airren} (0/d_{arr})$			and a	Stor 910. 0	e le	
alcium (% dw)	0.15	0.13	Q 14.09	≪0.001	0.10 - 0.22	0.058, 0.21
		S .				
agnesium (% dw)	0.40	0.38	5,63	≪0.001	0.35 - 0.44	0.28, 0.47
	23	GUE	Con all a	S. C.o.		
anganese (mg/kg dw)	12,81	10.73 S.	9.20	0.001	10.18 - 14.81	9.07, 17.33
	X	in the dis				
otassium (% dw)	S 1.12		×10 4.94	0.021	0.98 - 1.24	0.92, 1.21
		10 kg 10	J. H. C. C.	0.005	27.21 46.74	27.27.44.05
nc (mg/kg dw)	2 5 ^{.37.58}	40:14	0, -6,39 M.	0.005	27.31 - 46.74	27.27, 44.95
	cilla due alla	and die le	0.5			
itamin E	149140	921-22	6 70	<0.001	86 22 170 24	41.91, 205.89
			0.70	<0.001	80.23 - 179.34	41.91, 203.09
ottonseed Cyclopropenoid Fatty Ac	id (% Total FA)	XIO'LO C				
hydrosterculic Acid		014	9 59	0.003	0 11 - 0 19	0.078, 0.25
	D. 11. 10 to		,	0.000	0.11 0.17	0.070, 0.20
A A A A	10,14, 20, C)					
S. C. US.		-in				
// 083×10, 0	and the set and	Þ.				
C UT Se	Connection and and and and and and and and and an					
	COLUMN 10					
	how hill					
	ill'or					
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0.40 12.80200 12.80200 12.80200 1.12 37.58 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12					

# Conventional Control (continued)

	/					
			Mean Diff		100. and	
			(MON 88701 m	inus Control)		
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵
Statistical Differences Observed in C	Combined-Site Analy	sis	an an	2 x x	anti-	
Cottonseed Gossypol (% dw)				sto dio n'i	NO NO	
Free Gossypol	0.94	0.89	6.23	0.016	0.80 - 1.18	0.099, 1.57
		S,	Q ¹ X ⁰	on the no	•	
Total Gossypol	1.04	0.97	6.75	≤0.001	0.84 - 1.24	0.064, 1.76
	27	CLU	(e) du	sh ha		
Statistical Differences Observed in M	More than One Indiv	idual Site	s or in			
<b>Cottonseed Mineral - 7 Sites</b>	~~ ⁰ .	in the till of		noi		
Calcium (% dw) Site ARTI	0.15	2 0012 V	الان 22.70 ()	0.010	0.14 - 0.16	0.058, 0.21
	15, 90,	10° 100 100	VII. HUIS 90	<		
Calcium (% dw) Site GACH	Q 9. 0.13 x	0.11	0 17.57 N	< 0.001	0.13 - 0.13	0.058, 0.21
<i>%</i>	is istents no	Ma dis				
Calcium (% dw) Site KSLA	S 0.20°	0.18	14.74	0.007	0.19 - 0.22	0.058, 0.21
8 ⁽¹⁾ .*9	to the me	The share	N° SO'			
Calcium (% dw) Site ARTI Calcium (% dw) Site GACH Calcium (% dw) Site KSLA Calcium (% dw) Site NCBD	$C^{1} O^{1} O.15$	0.14	6.92	0.007	0.14 - 0.15	0.058, 0.21
20° 7 10	I the go one	al the				
Calcium (% dw) Site NMLC	0,15 0	0.13	16.83	0.003	0.14 - 0.15	0.058, 0.21
- Alinglo, De te	e di etti	ON XO				
and the second sec	101 JUN 30 15	1010				
14 No Chill	i let el el el el el	2.				
COF HILL	son the be sti					
K. 13	on the co					
CO N	1 alt ibili					
all						
~	Nr. 61					
	MON 88701 ² Mean ³ Combined-Site Analy 0.94 1.04 More than One Indiv 0.15 0.13 0.20 0.15 0.13 0.20 0.15 0.15 0.15 0.15 0.15					
Monsanto Company		12-CT-	244U			110 of 620

Conventional Control (continued)			Mean Diff	erence	redin'nd	
Analytical Component (Units) ¹ Statistical Differences Observed in More Cottonseed Mineral - 7 Sites Calcium (% dw) Site SCEK Calcium (% dw) Site TXPL Cottonseed Proximate (% dw) - 6 Sites Ash Site GACH Ash Site KSLA Ash Site LACH Ash Site NCBD Ash Site SCEK Continue of the second Ash Site SCEK			(MON 88701 mi	nus Control)		
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵
Statistical Differences Observed in More	than One Indivi	dual Site	1 31	2° 2°		
Cottonseed Mineral - 7 Sites			and a start	stor glor at	e de	
Calcium (% dw) Site SCEK	0.11	0.091	Q 17.98	0.027	0.10 - 0.11	0.058, 0.21
		S,	of to i			
Calcium (% dw) Site TXPL	0.16	0.14	15.31	≪0.001	0.16 - 0.16	0.058, 0.21
	all	CU	(C) 60 60	in do.		
Cottonseed Proximate (% dw) - 6 Sites		xelle s.	S OF IN			
Ash Site GACH	4.53	4.210	Ø (7.56 C) (	<0.001	4.45 - 4.57	3.42, 4.65
	Ser o	3. ON UN				
Ash Site KSLA	4.53 ×	4.29	JI 15.64	0.027	4.25 - 4.66	3.42, 4.65
Q	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	IN A LEVIN	Ol this Mr			
Ash Site LACH	4:35	nº4.12	5.56	0.013	4.23 - 4.47	3.42, 4.65
Calcium (% dw) Site SCEK Calcium (% dw) Site TXPL Cottonseed Proximate (% dw) - 6 Sites Ash Site GACH Ash Site KSLA Ash Site LACH Ash Site NCBD Ash Site SCEK	ing. I all	6, 6	of the			
Ash Site NCBD	0 4.34	4.14	4.95	0.033	4.29 - 4.40	3.42, 4.65
WILL OF LOCK	On CU VIIC					
Ash Site SCEK	A.11	J 3.74	9.95	0.010	3.99 - 4.28	3.42, 4.65
	1013 0 10	<u>, 0, %, , , , , , , , , , , , , , , , , </u>				
1/1: 4/0. 1 p. 12 0	No et a					
all and the second	Ally al diss	illolo				
the of other	el el el el	>				
COT HILL COT	alle be sh					
<~~ (~ (~ (~ (~ (~ (~ (~ (~ (~ (~ (~ (~ (	1, 1/1° × 60					
Co do	Jul illi					
S. M						
J)	2,9,					
V,						

Conventional Control (continued)		-		-	- din d	
			Mean Diff (MON 88701 mi	erence		
	MON 88701 ² Mean ³ <b>Jore than One Indivises</b> 3.85 <b>- 5 Sites</b> 2.68 2.68 2.68 2.68 2.68 2.68 2.68 2.50 2.50 2.51 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.41 0.51 0.51 0.51	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval
Statistical Differences Observed in M	Iore than One Indivi	idual Site	0	6, 6		
Cottonseed Proximate (% dw) - 6 Sit	es		and a start	3.0 Alo. 2	le le	
Ash Site TXPL	3.85	3.46	Q 11.50	0.001	3.77 - 3.92	3.42, 4.65
		S.				
Cottonseed Fatty Acid (% Total FA)	- 5 Sites	See. N	N allia Ch	× 01 ~ 1		
8:0 Stearic Site ARTI	2.68	2.51	6.70	0,019	2.65 - 2.72	1.98, 2.95
		telles.	a a sel with	0.001	2 ( 1 - 2 7 2	1 00 0 05
8:0 Stearic Site LACH	2.68	2.520	6.04	0.001	2.64 - 2.73	1.98, 2.95
8:0 Steario Sita NCPD	2 50 10	2 23	1101 2520	0.026	2 20 2 64	1.98, 2.95
8.0 Stearle Sile NCDD				0.030	2.39 - 2.04	1.90, 2.95
<ul> <li>8:0 Stearic Site LACH</li> <li>8:0 Stearic Site NCBD</li> <li>8:0 Stearic Site NMLC</li> <li>8:0 Stearic Site TXPL</li> <li>Cottonseed Mineral - 4 Sites</li> <li>Magnesium (% dw) Site GACH</li> </ul>	0 x 0 x 51 x	2.645	~ 5.130 ^N	< 0.001	2.47 - 2.56	1.98, 2.95
.9	Allie Ol al a					
8:0 Stearic Site TXPL	2:35	2.46	4.67	0.006	2.30 - 2.43	1.98, 2.95
In the stills	Ct ON CUILIN					
Cottonseed Mineral - 4 Sites	sthe go and	all the	(19)			
Magnesium (% dw) Site GACH	6 0.41 O	0.38	6.92	< 0.001	0.40 - 0.41	0.28, 0.47
<u> (11, 10, 06, 15</u>	and all all	of to				
ill'and ill'a	01,114,31,15	, , 0.0.				
14 OV OT	i let et et et et	5				
COL	Son Une be all					
Er no	on the teo					
	J OUT MIDI					
D.	ithe roll					
	r ok					
	Ŷ					

### Table VI-1. Summary of Differences (p<0.05) for the Comparison of Cottonseed Component Levels for MON 88701 vs.

Conventional Control (continued)		1		Ŧ	din d	
			Mean Diff			
			(MON 88701 mi	nus Control)	n ning n	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵
Statistical Differences Observed in M	lore than One Indivi	dual Site	3	2° 2 2'	ants	
<b>Cottonseed Mineral - 4 Sites</b>			and a start	Stor Hora	e co	
Magnesium (% dw) Site KSLA	0.43	0.40	6.85	0.002	0.41 - 0.43	0.28, 0.47
		S,	on ton	n its ne		
Magnesium (% dw) Site SCEK	0.39	0.36	9,36	0.005	0.37 - 0.41	0.28, 0.47
	and the	CCC	(0) dv	n na,		
Magnesium (% dw) Site TXPL	0.35	0.34	5.54	0.003	0.35 - 0.37	0.28, 0.47
	0,	int till				
Cottonseed Fiber (% dw) - 3 Sites	all of	3 Sal M				
Total Dietary Fiber Site KSLA	38.32	<u>, 6</u> 40,14	JA 4.55	0.034	37.62 - 38.75	34.52, 52.58
	Q 5. 5 4	In a reality	Mr. Sin To			
Total Dietary Fiber Site LACH	39.82	43.35	8.150	0.002	39.02 - 40.86	34.52, 52.58
	in a contract	$\frac{1}{2}$				
Total Dietary Fiber Site NMLC	39.16	41,40	4.73	0.016	37.46 - 40.44	34.52, 52.58
	CI ON CUI IIC		. Mr.			
Cottonseed Amino Acid (% dw) - 3 \$	ites of which	all the				
Arginine Site GACH	2.95	3.21	-8.35	0.008	2.87 - 3.02	2.38, 3.47
~m ¹⁵ ,101, 106,15	and the	or xe				
and nay idn	or 114' 2 .53	:010				
is the she	i letter (Cherthing	11-				
	an up of all					
FUI NSE	on no do					
$C_{0,\gamma}$						
	10° MIL					
2	MON 88701 ² Mean ³ Iore than One Indivi 0.43 0.39 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35					
	00					
	7					

			Mean Diff	erence	10 N	
nalytical Component (Units) ¹ tatistical Differences Observed in More fottonseed Amino Acid (% dw) - 3 Sites rginine Site KSLA rginine Site NMLC fottonseed Fatty Acid (% Total FA) - 3 4:0 Myristic Site KSLA 4:0 Myristic Site NCBD 4:0 Myristic Site NMLC fottonseed Mineral - 3 Sites otassium (% dw) Site GACH otassium (% dw) Site SCEK			(MON 88701 mi	nus Control)	i jinos	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
nalytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval
tatistical Differences Observed in More	e than One Indivi	idual Site	1 DI	2° 2 2'		
ottonseed Amino Acid (% dw) - 3 Sites	5		and a second sec	Stor glo all	NO NO	
rginine Site KSLA	3.02	3.28	-7.87	0.013	2.95 - 3.10	2.38, 3.47
		NO N	Phi atonia	on the no		
rginine Site NMLC	3.48	3.71	-6.10	0.005	3.42 - 3.60	2.38, 3.47
	207	CL	Levi oprie	n' n'ai		
Cottonseed Fatty Acid (% Total FA) - 3	Sites	xelle S.	3 Claut			
4:0 Myristic Site KSLA	0.68	0.720	\$5.33	0.007	0.66 - 0.71	0.16, 1.37
	OBIC 2	S. O. M	xion's coo	0.000		0.1.6.1.05
4:0 Myristic Site NCBD	0.68		J. K. 8.360	0.002	0.66 - 0.70	0.16, 1.37
4:0 Myristic Site NCBD 4:0 Myristic Site NMLC Cottonseed Mineral - 3 Sites otassium (% dw) Site GACH otassium (% dw) Site SCEK			O' this with	0.001	0.02 0.05	0 16 1 27
4.0 Myristic Site NMLC	0.93	(1° 0.98°	-4.43	0.001	0.92 - 0.95	0.16, 1.37
attonsood Minoral 3 Sites	The of othe		NOT OT T			
otassium (% dw) Site GACH	1 2 WI .: C	A12 0	8.01	<0.001	1 17 - 1 24	0.92, 1.21
oussium (/o uw) site offen	~ ~ ~ ~ <i>\0</i>	till no	0.01	\$0.001	1.17 - 1.24	0.92, 1.21
otassium (% dw) Site SCEK	5 1.13	102	10.88	0.042	1 11 - 1 17	0.92, 1.21
	11. 200 + 200		10.00	0.012	1.11 1.17	0.92, 1.21
A CONTRACT OF A						
al the the the		JNO 1				
1/2 - 00 × 1/01 - 01	el el n	>				
C UN SOL	all of d'a					
	ON MID					
Nill	or					
	^v					

<b>Conventional Control (continued)</b>	1		Maan D:ff	Coronaa	redin. nd					
		Mean Nean         Mean Difference (MON 88701 minus Control) Mean         Mon S8701 minus Control) Mean         Mon S8701 minus Control) Mean         Mon S8701 minus Control) (% of Control)         Mon S8701 minus Control) (p-Value)         Mon S8701 minus Control) Range         Com Tolerand           e than One Individual Site         1.01         0.87         16.37         0.004         0.98 - 1.06         0.92           s         151.03         140.12         7.78         0.025         148.34 - 154.95         41.91           169.88         149.06         13.28         0.001         163.34 - 175.33         41.91           114.39         103.86         10.35         0.033         107.81 - 118.39         41.91           1.13         4.01         12.00         0.049         1.00 - 1.24         0.06           0.92         0.80         15.53         0.026         0.84 - 0.97         0.06           1.47         1.07         9.54         0.017         1.13 - 1.23         0.06								
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial				
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁴				
Statistical Differences Observed in M	lore than One Indivi	dual Site	0	6, 6						
Cottonseed Mineral - 3 Sites			(th)	Sto No.	e e					
Potassium (% dw) Site TXPL	1.01	0.87	16.37	0.004	0.98 - 1.06	0.92, 1.21				
		S,	or ton							
Cottonseed Vitamin (mg/kg dw) - 3 S	lites	Y		× 01 ~ 1						
/itamin E Site GACH	151.03	140.12	778	0.025	148.34 - 154.95	41.91, 205.89				
		xelle s.	3 gl un							
/itamin E Site LACH	169.88	149,96	43.280	0.001	163.34 - 175.33	41.91, 205.89				
				0.022	107.01 110.00	41 01 005 00				
/itamin E Site TXPL	114.39	0103.66	JU . 1 (10.35)	0.033	107.81 - 118.39	41.91, 205.89				
	OV S. S. S. XI	and still	O' this with							
Cottonseed Gossypol (% dw) - 3 Sites		1 01	1200	0.040	1.00 1.24	0.064, 1.76				
otal Gossypol Site KSLA			0 12.00	0.049	1.00 - 1.24	0.004, 1.70				
Cottonseed Vitamin (mg/kg dw) - 3 S Vitamin E Site GACH Vitamin E Site LACH Vitamin E Site TXPL Cottonseed Gossypol (% dw) - 3 Sites Fotal Gossypol Site KSLA Fotal Gossypol Site NMLC	Ct 0 92/	0.80 0	N 15 53	0.026	0 84 - 0 97	0.064, 1.76				
our cossypor site runing		tion to	0 15.55	0.020	0.01 - 0.97	0.004, 1.70				
Fotal Gossypol Site SCEK	1.17 N	07×	9 54	0.017	1 13 - 1 23	0.064, 1.76				
	0. 11. 10 th		,	0.017	1110 1120	0.000, 1.10				
	10, 111, 20, 61, 62	1010								
Six Months th	Contraction and	JID I								
/, 06, ×/6,	all all of all all	>								
LUN SE	an we to to									
	CO AT THE									
AL	100 MIN									
2	of this 1.17 10 of thi									
	00									

Conventional Control (continued	/		Mean Diff	ference	regin and	
					en 1	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval
Statistical Differences Observed in N	More than One Indivi	idual Site	N DI	2° ~ 2°	and the second s	
Cottonseed Proximate (% dw) - 2 Si	tes		and a second	Stor glor of	e co	
Carbohydrates Site SCEK	46.56	48.67	-4.33	0.031	45.10 - 47.48	40.26, 56.45
		S,	Qr Aloni	n the no		
Carbohydrates Site TXPL	44.03	46.39	-5.08	0.010	42.73 - 45.99	40.26, 56.45
	237	CLE	100 du	shi hou		
Fotal Fat Site NCBD	23.04	21.59	6.74	0.024	21.89 - 23.76	15.01, 28.51
	1 des	in the		ne ne		
Total Fat Site SCEK	25.65	23.65	<u>8</u> 46 cv	0.019	24.23 - 26.78	15.01, 28.51
		10 x m	nr the go of	Ş.		
Cottonseed Fiber (% dw) - 2 Sites		1 2 ctr	O' this will	=		
Acid Detergent Fiber Site ARTI	23.81	nº27.333	-9.860	0.007	24.44 - 25.20	22.24, 31.96
				0.005	24.16 27.00	22.24.21.00
Acid Detergent Fiber Site LACH	20 20.12	28,00	9.21	0.005	24.10 - 27.08	22.24, 31.96
Acid Detergent Fiber Site LACH C <b>ottonseed Amino Acid (% dw) - 2</b> Phenylalanine Site GACH		XION CO	ON STATES			
Cottonseed Amino Acta (76 dw) - 23	511es 5 1 40	140.00	5 80	0.030	1 27 1 42	1.12, 1.58
r nenylalanne Site GAET		():+;()	-3.89	0.039	1.57 - 1.45	1.12, 1.30
- Ali dio di dite						
an has ho	no all's clair als	ji ⁰				
1/2 Dr. Ch	all of other	5				
CO INTE	on all of you					
K COUS	COL XILL XCO					
	A out into					
S.	ittle roi					
	MON 88701 ² Mean ³ More than One Indivi tes 46.56 44.03 23.04 25.65 24.81 25.72 8 1.40 1.40 1.40 1.40 1.40 1.40 1.40					
	$\mathbf{\nabla}$					

Conventional Control (continued)	u	<b>-</b> -		-	dillind	
			Mean Diff			
	MON 88701 ²	Control ⁴	(MON 88701 mi Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval
Statistical Differences Observed in More	e than One Indivi	dual Site	3	6, 6	AL.	
Cottonseed Amino Acid (% dw) - 2 Sites			and a second	31.0 Alo. a	e ce	
Phenylalanine Site KSLA	1.44	1.53	-5.88	0.025	1.40 - 1.46	1.12, 1.58
		NO .	Pro Atolia	90% ⁽¹⁾ , N		
Cottonseed Fatty Acid (% Total FA) - 2	Sites	· · · · · · · · · · · · · · · · · · ·	A ANIC ICT	to at		
16:0 Palmitic Site LACH	24.48	24.04	(P81 00 0	0,094	24.37 - 24.55	16.54, 30.55
Analytical Component (Units) ¹ Statistical Differences Observed in More Cottonseed Amino Acid (% dw) - 2 Sites Phenylalanine Site KSLA Cottonseed Fatty Acid (% Total FA) - 2 16:0 Palmitic Site LACH 16:0 Palmitic Site SCEK 16:1 Palmitoleic Site NCBD 16:1 Palmitoleic Site NMLC 18:3 Linolenic Site ARTI 18:3 Linolenic Site NMLO	2474	21.30	at a sela cult	0 029	24 59 - 24 94	16.54, 30.55
10.01 annue Ste SCEK	24.74	24.90		0.029	24.39 - 24.94	10.54, 50.55
16:1 Palmitoleic Site NCBD	0.46	0.48	110, 13.880	• 0.019	0.44 - 0.47	0.39, 0.70
0	S. SUL		Po of the show	)*		,
16:1 Palmitoleic Site NMLC	0:53	0.54	-2.270	0.014	0.52 - 0.53	0.39, 0.70
· · · · · · · · · · · · · · · · · · ·		6, 70	or sites			
18:3 Linolenic Site ARTI	0 10.14	0.13	μ 41.92	0.012	0.14 - 0.15	0.060, 0.24
18:3 Linolenic Site ARTI 18:3 Linolenic Site NMLO			Q 12	0.000	0.15 0.16	0.060.0.24
18.5 Emolenic Site Mileo		0.1 <del>4</del>	0.12	0.009	0.13 - 0.10	0.060, 0.24
	the by the					
A BALLAN ON THE	14. 20. 25	10 Jai				
Six Months House	shirt clor mis	JID				
1. OB HE W	ner oer an	>				
FUN NS C	n'ine do					
$C_{0,7}$	JI IIII					
	6°,00%					
N.	0,°		14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 14300 143000 143000 143000 143000 143000 143000 143000 143000 1			
~	<u> </u>					

### Table VI-1. Summary of Differences (p<0.05) for the Comparison of Cottonseed Component Levels for MON 88701 vs.

			101° 0	
	Mean Diff (MON 88701 mi		Teging and	
² Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵
ividual Site	31	<u> </u>		
	(th)	NO'N	U. C	
48.04	-10.05	0.025	41.96 - 44.44	47.30, 97.12
S.	of tol	N its no		
79.02	-23.47	0.039	56.94 - 66.50	47.30, 97.12
	60, 60	all as		
11.51	7 16.52	0.003	12.79 - 14.14	9.07, 17.33
in the		10		
3 3 ²⁰⁴ 5	20.59	0.007	10.18 - 11.37	9.07, 17.33
Stilles Ohn	Mr. Hur go e	<b>.</b>		
49:54	0 -17.66 M	0.006	40.28 - 41.37	27.27, 44.95
* 10 40 40		0.000	44.12 46.74	27 27 44 05
49:43	\$7:08	0.009	44.12 - 46.74	27.27, 44.95
Carl a a	N 19			
0.95	12 69	0.014	1 03 - 1 10	0.099, 1.57
in the second	12.09	0.014	1.05 - 1.10	0.077, 1.57
SIO Jal				
, jil				
20				
<i>*</i>				
				2         Control Mean         MON 88701 minus Control) (% of Control)         MON 88701 Range           ividual Site         48.04         -10.05         0.025         41.96 - 44.44           79.02         -23.47         0.039         56.94 - 66.50           11.51         16.52         0.003         12.79 - 14.14           9.04         20.59         0.007         10.18 - 11.37           49.54         -17.66         0.009         44.12 - 46.74           0.95         12.69         0.014         1.03 - 1.10

			Mean Diff	erence		
Analytical Component (Units) ¹ Attistical Differences Observed in More Cottonseed Gossypol (% dw) - 2 Sites Tree Gossypol Site NMLC Attistical Differences Observed in One Cottonseed Proximate (% dw) Protein Site TXPL Cottonseed Fiber (% dw) Crude Fiber Site KSLA Neutral Detergent Fiber Site TXPL Cottonseed Amino Acid (% dw) Alanine Site LACH Aspartic Acid Site GACH Cottonseed Fiber Gach	MON 88701 ²	Control ⁴	(MON 88701 mi Mean Difference	Nus Control)	MON 88701	Commercial
analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval
tatistical Differences Observed in More	e than One Indivi	dual Site	. 36		- Clo	
Cottonseed Gossypol (% dw) - 2 Sites			i by	x'o lo x	U. C	
ree Gossypol Site NMLC	0.85	0.69	22.32	0.011	0.83 - 0.88	0.099, 1.57
		S.		Sol Chi Tr		
tatistical Differences Observed in One	Site	Y~ 2	A JUN CH	or the		
Cottonseed Proximate (% dw)	all a	CU	100 du 0	Ur Us,		
rotein Site TXPL	29,43	28.48	3,33	0.017	29.06 - 30.14	22.30, 29.41
	0.	in the time				
Cottonseed Fiber (% dw)	Shi o	S S I				
Crude Fiber Site KSLA	16.43	67.67	JU 17.04	0.019	16.06 - 17.24	16.93, 22.68
	S. S. W	" at ctri	OI WIS WI			
Neutral Detergent Fiber Site TXPL	29.75	32.32	<u>5</u> 5-7.400	0.006	28.74 - 30.56	27.03, 42.49
	i ilo: di alli	6, 70	or fills			
Cottonseed Amino Acid (% dw)	to Mi other		N ×9 2 72	0.020	1 00 1 11	0.96 1.11
Alanine Site LACH		1.03 O	3.73	0.030	1.00 - 1.11	0.86, 1.11
	Ne Could it	all all a		0.010	224 226	104 257
Aspartic Acid Site GACH	11/2231	Cr:43	-0.03	0.019	2.24 - 2.30	1.94, 2.57
	3. 0. etc.					
and and internet	Ally al diss	ilole				
the of set in	er el ellind					
CO. HIL CO.	alle 6 shi					
	N' the to					
	Ul ville					
	NON.					
P.	0,Y.					
_						

### Table VI-1. Summary of Differences (p<0.05) for the Comparison of Cottonseed Component Levels for MON 88701 vs.

			Mean Diffe		105 SI	
			(MON 88701 mi	nus Control)	ining	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵
Statistical Differences Observed in O	ne Site		01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	112	
Cottonseed Amino Acid (% dw)			and a	sto dio die	N°	
Glutamic Acid Site GACH	4.57	4.96	Q -7.95	0.010	4.35 - 4.77	3.74, 5.28
Isoleucine Site GACH	0.90	0.94 US	-4.29 ¹⁰ , 211	0.034	0.90 - 0.91	0.75, 0.96
Leucine Site GACH	1.510	1.58	21-432 UMP	0.024	1.49 - 1.54	1.25, 1.62
Lysine Site LACH	0ert 1.26 3	711 81SL		0.023	1.17 - 1.31	1.01, 1.30
Methionine Site LACH	0.42 ¹	0.38	61 12,63 M	0.013	0.37 - 0.44	0.32, 0.38
Proline Site GACH	affilia io 0.980 ont	(1.05)	6.16	0.033	0.97 - 0.99	0.83, 1.08
Threonine Site GACH	2 ^{Ct} 0 ^M 0.85 ^M 10	0.90	-5.14	0.049	0.83 - 0.88	0.72, 0.89
Tryptophan Site SCEK	61 mis 0.35 10	0.3810	-6.70	0.023	0.33 - 0.38	0.34, 0.42
Isoleucine Site GACH Leucine Site GACH Lysine Site LACH Methionine Site LACH Proline Site GACH Threonine Site GACH Tryptophan Site SCEK	MON 88701 ² Mean ³ me Site 4.57 0.90 1.510 1.26 0.421 1.26 0.98 0.421 1.26 0.98 0.8510 0.98 0.8510 0.98 0.85100 0.98 0.85100 0.98 0.90 0.85100 0.98 0.90 0.90 0.90 0.90 0.90 0.90 0.	, jiolo				
	$\mathbf{\nabla}$	10 07				100 6 (0)

Conventional Control (continued)			Mean Diff	erence	(0) D	
			(1 COLT 00 - 0 C )	~ *	eni n	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval
Statistical Differences Observed in One	e Site		1 21.	2 2 2 2		
Cottonseed Amino Acid (% dw)			and a second	Stor gloring	e ve	
Tyrosine Site GACH	0.80	0.84	-4.30	0.037	0.79 - 0.82	0.67, 0.84
/aline Site GACH	0.80 1.21 14.70 55.53 0.31 0.31 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14	1.26	-4.19 ¹⁰	0.017	1.19 - 1.23	1.00, 1.28
Cottonseed Fatty Acid (% Total FA)	Bas	llect	ALOS TO THE			
8:1 Oleic Site LACH	14.70	14.29	2.89	0.021	14.48 - 15.01	11.38, 20.64
8:2 Linoleic Site LACH	6 ^{6155.53}	0 56,63		0.001	55.15 - 55.99	47.49, 63.18
0:0 Arachidic Site LACH	0:31	1 0.29 ⁵¹	6.78 own	0.033	0.31 - 0.32	0.17, 0.38
2:0 Behenic Site ARTI	10 10 0.14 nor	j100.15	1 ⁰ 9.92	0.008	0.13 - 0.14	0.070, 0.21
Cottonseed Mineral Sodium (% dw) Site KSLA		2 ¹¹⁰ 60080 6	178.30	0.020	0.019 - 0.025	0, 0.066
Valine Site GACH Cottonseed Fatty Acid (% Total FA) 8:1 Oleic Site LACH 8:2 Linoleic Site LACH 20:0 Arachidic Site LACH 2:0 Behenic Site ARTI Cottonseed Mineral Sodium (% dw) Site KSLA	MON 88701 ² Mean ³ e Site 0.80 1.21 14.70 55.53 0.31 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.1	, ilo				

## Table VI-1. Summary of Differences (p<0.05) for the Comparison of Cottonseed Component Levels for MON 88701 vs.

Conventional Control (continued)					
			Mean Diff	erence	
		4	(MON 88701 mi	nus Control)	
	MON 88701 ²	Control ⁴	Mean Difference	Significance MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value) Range	Tolerance Interval ⁵
Statistical Differences Observed in One	e Site		~~ ·O·	x Q X X X X Q X Q	
Cottonseed Cyclopropenoid Fatty Acid	(% Total FA)	0.12		at all offer the	0.070.0.05
Dihydrosterculic Acid Site GACH	0.15	0.12	028.35	0.022 0.14 - 0.16	0.078, 0.25
	0	PO à			
1 dw = dry weight; fw = fresh weight; FA =	= fatty acid.	·	" dulle lot	x° al	
2 MON 88/01 was treated with dicamba at 3 Maan = loost aquara maan	nd giufosinate.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	105,00°,0		
⁴ Control refers to the non-biotechnology (	derived convention	al controb (C	kar 1300	ant	
⁵ With 95% confidence interval contains	29% of the values e	an control (CC	e nonulation of con	mercial substances Negative	limits set to zero
Analytical Component (Units) ¹ Statistical Differences Observed in One Cottonseed Cyclopropenoid Fatty Acid Dihydrosterculic Acid Site GACH ¹ dw = dry weight; fw = fresh weight; FA = ² MON 88701 was treated with dicamba an ³ Mean = least-square mean. ⁴ Control refers to the non-biotechnology of ⁵ With 95% confidence, interval contains 9 ⁵ With 95% confidence, interval contains 9 ⁶ Control refers to the non-biotechnology of ⁶ With 95% confidence, interval contains 9 ⁷ Non a streament, the full of the stream	Piles. Sudition indering to and the the owner and the owner and the owner and the the owner and the owner and the owner and the owner and the the owner and the owner	ation and user in a string of a string and user in	244U		
Manganta Company	Q-	12 CT	24411		$122 \circ f 620$

		-	Difference (	MON 88701 minus Co	ontrol)	
	MON 88701 ²	Control ⁴		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Proximate (% dw)			5		6	
Ash	4.31 (0.11)	4.11 (0.11)	0.21 (0.052)	0.094, 0.32	0.001	3.42, 4.65
	(3.77 - 4.74)	(3.34 - 5.00)	(-0.49 - 0.61)	dation dio inter	N ^O	(3.18 - 4.68)
Calories (Kcal/100g)	498.50 (1.65)	495.24 (1,71)	3.26 (1.29)	0.70, 3.82	0.013	457.61, 527.56
	(482.46 - 517.46)	(487.70 - 512.65)	(214.30 - 18.37)	0.094, 0.32 0.70, 5.82 0.70, 5.82 0.70, 5.82 0.70, 5.82 0.70, 5.82 0.70, 5.82 0.70, 5.82 0.70, 5.82		(466.09 - 509.91)
Carbohydrates	44.64 (0.56)	45.83 (0.57)	-1.19(0.32)	1.82, -0.56	< 0.001	40.26, 56.45
	(41.40 - 48.89)	(42.14 - 50,30)	(-5)19 - 2.45)	cume.		(43.28 - 54.90)
Moisture (% fw)	7.15 (0.26)	7.48 (0.27)	-0.34 (0.11)	-0.56, -0.11	0.005	4.79, 9.92
	(5.93 - 9.67)	(6.15 - 9.19)	(-1.82 - 0,79)	M		(6.05 - 10.50)
Protein	27.91 (0,77)	27.79 (0.77)	0.13 (0.31)	-0.53, 0.78	0.685	22.30, 29.41
	(22.71, 31,47)	(23,53 - 34,27)	0.13 (0.31) (41.99- 3.73) 0.83 (0.26)			(20.58 - 29.28)
Total Fat	23.14 (0.31)	22,31 (0.33)	0.83 (0.26)	0.32, 1.34	0.001	15.01, 28.51
This lo	(19.79 - 26.78)	(20.71 - 25.20)	(-2.89 - 3.86)			(16.58 - 25.25)
3C II	18 Light of the contract of th	22,31 (0,33) +1 (20.7) -25.20) 				
	FU. ORS CONTR	hibited				
	O. Witt Pr	)`				
	$\checkmark$					

 Table VI-2. Statistical Summary of Combined-Site Cottonseed Nutrients for MON 88701 vs. Conventional Control

(continued)					dill' do	
		_	Difference (	MON 88701 minus C	ontrol	
	MON 88701 ²	Control ⁴		95% Confidence Interval -2.06, -0.57 -D02, 0.27	ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	رp-Value)	(Range)
Fiber (% dw)			01	2		
Acid Detergent Fiber	25.27 (0.34)	26.58 (0.35)	-1.31 (0.35)	-2.06, -0.57	0.002	22.24, 31.96
	(23.26 - 27.74)	(22.08 - 29.58)	(-5.42 - 1.77)	A she co et		(23.42 - 31.62)
		S		1. The show		
Crude Fiber	18.17 (0.37)	18.54 (0.38)	0-0.38 (0.32)	-002, 0.27	0.246	16.93, 22.68
	(15.97 - 21.66)	(16.06 21.70)	(-3.36 - 4.75)	s de las		(16.92 - 23.32)
				ne th		
Neutral Detergent Fiber	30.73 (0.51)	32.59 (0.53)	1.86 (0.41)	-2.68 -1.05	< 0.001	27.03, 42.49
round Botorgont Phoen	(25.13 - 34.42)	(28 87 - 35 89)	(-6.95 - 1.16)	JI 2.00, 1.00	0.001	(29.27 - 40.63)
				о		(
Total Dietary Fiber	39.44 (0.39)	4112/0/11	-1.68 (0.36) (-5.34 1.09)	Confidence Interval -2.06, -0.57 -0.02, 0.27 -2.68, -1.05	<0.001	34.52, 52.58
Total Dietaly Fluer	(36.91 - 42.13)		-1.00(0.00)	-2.45, -0.91	<0.001	(37.29 - 48.60)
	(30.91 - 42.13)	(39.09 - 44.37)	(-3.34-1.09)			(37.29 - 48.00)
	ALL ON ON	1.05 (0.020) (0.88 - 117)	0.0026 (0.0091) (-0.13 - 0.12)			
Amino Acid (% dw)	1,06 (0.020)	N. IL. Sr. O.	N' xS	0.015.0.000		
Alanine	1.06 (0.020)	0.05 (0.020)	0.0026 (0.0091)	-0.017, 0.022	0.775	0.86, 1.11
Arginine this doc	(0.91 01.14)	(0.88 - 1.07)	0.0026 (0.0091) (-0.13 - 0.12)			(0.83 - 1.22)
is is	10, 0, 1/1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Arginine	3.03 (0.10)	$(\Lambda^{*} \cap \mathcal{A}) = (\Lambda^{*} \cap \mathcal{A})$	-0.12 (0.033)	-0.19, -0.049	0.002	2.38, 3.47
	(2.33 - 3.60)		(-0.47 - 0.39)			(2.30 - 3.55)
	d'all ler	Clermind Mr.				
Č	or the con the	C. M				
	Stuthe court					
	$CO. CO. \tilde{C}$					
	31,400	U.				
	Further on the on the one of the	ne led and				
	ve i					
Mongonto Compony	<b>T</b>	10	CT 244U			124  of  620

 Table VI-2. Statistical Summary of Combined-Site Cottonseed Nutrients for MON 88701 vs. Conventional Control (continued)

(continued)					dill. do	
			Difference (N	MON 88701 minus Co 95% Confidence Interval -0.072, 0.042 -0.0043, 0.023 -0.0043, 0.023 -0.021, 0.024	ontrol)	
	MON 88701 ²	Control ⁴		×10 ¹	ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			01			
Aspartic Acid	2.39 (0.062)	2.41 (0.062)	-0.015 (0.027)	0.072, 0.042	0.575	1.94, 2.57
	(1.94 - 2.64)	(1.92 - 2.74)	(-0.29) 0.29)	1 she co si	)	(1.79 - 2.72)
		S		in the second		
Cystine	0.41 (0.0091)	0.40 (0.0094)	0.0096 (0.0070)	-0.0043, 0.023	0.174	0.31, 0.45
	(0.32 - 0.47)	(0.31 0.46)	(-0.063 - 0.082)	, li la,		(0.29 - 0.47)
				The m		
Glutamic Acid	4.76 (0.13)	⁰ 4.84 (0.14)	-0.079 (0.072)	-0.23, 0.077	0.295	3.74, 5.28
	(3.80 - 5.38)	(3.66 - 5.70)	(-0.78 - 0.79)			(3.39 - 5.45)
		6. 35	11 July 10 10	<u></u>		
Glycine	1.10 (0.020)	£09 (0.020)	0.0014 (0.011) (-0.13_0.14)	-0.021 0.024	0 896	0.90, 1.14
Gryenie	1.10 (0.020) (0.93 - 1.19)	(0.91 - 1.20)	(013-014)	0.021, 0.021	0.070	(0.85 - 1.23)
	· · · · · · · · · · · · · · · · · · ·					(0.05 1.25)
Histidine	0.74 (0.019)	0.75 (0.019)	-0.0014 (0.0073)	-0.017, 0.014	0.854	0.59, 0.81
mshume	(0.58 - 0.85)	(0.61, 0.84)	-0.0014(0.0073)	-0.017, 0.014	0.834	(0.57 - 0.84)
C	(0.58 - 0.85)	0.61 0.840	-0.0014 (0.0073) (-0.062 - 0.091)			(0.37 - 0.84)
Isoleucine	(1) $(2)$ $(2)$ $(2)$		0.0066 (0.0079)	0.022 0.010	0.401	
	0.91 (0.018)	0.92(0.018) (0.77 - 1.03)	<b>~-</b> 0.0066 (0.00/9)	-0.023, 0.010	0.421	0.75, 0.96
Tindle	(0.75 - 1.01)	(0.77 - 1.03)	(-0.077 - 0.096)			(0.72 - 1.03)
Isoleucine						
	OP THE THE OUT THE OUT THE OTHER OF THE OTHE	sto etti d				
C	Silli con all'	all all all				
		N. 10				
	Co do an					
	SI HO					
	2, 6,	0.92 (0.018) (0.77 - 1.03) (0.77 - 1.03)				
	10°C					
Monsanto Company			12-CT-244U			125 of 620

 Table VI-2. Statistical Summary of Combined-Site Cottonseed Nutrients for MON 88701 vs. Conventional Control (continued)

(continued)					dill. Co	
			Difference (N	MON 88701 minus Co 95% Confidence Interval -0.029, 0.026 -0.026, 0.039 0.0023, 0.035	ontrol)	
	MON 88701 ²	Control ⁴		xil ^O	illes	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			2			
Leucine	1.53 (0.032)	1.54 (0.032)	-0.0018 (0.013)	0.029, 0.026	<u>ره</u> 0.892	1.25, 1.62
	(1.29 - 1.70)	(1.28 - 1.69)	(-0.14 - 0.16)	1 and co of	)	(1.20 - 1.72)
		S	PIC XO	in the nor		
Lysine	1.24 (0.025)	1.23 (0.025)	0.0069 (0.015)	-0.026, 0.039	0.658	1.01, 1.30
	(1.05 - 1.38)	(1.06 1.39)	(-0.11 - 0.15)	off flas		(0.99 - 1.44)
		K B C	6. 2 of	n the		
Methionine	0.40 (0.0079)	0.38 (0.0084)	0.018 (0.0081)	0.0023, 0.035	0.026	0.32, 0.38
	(0.35 - 0.46)	(0.32 - 0.46)	(-0.066 - 0.12)			(0.29 - 0.49)
		6. 6.	1 Julie this 20	à.		
Phenylalanine	1.43 (0.039)	£46 (0.039)	-0.022 (0.014) (-0.18 - 0.19)	-0.052, 0.0084	0.144	1.12, 1.58
	1.43 (0.039) (1.14- 1.66)	(1.15 - 1.66)	(018-019)			(1.10 - 1.63)
	S Allo					(1.10 1.00)
Proline			-0.027 (0.012) (-0.12 - 0.10)	-0.052, -0.0018	0.037	0.83, 1.08
1 Tolline	(0.82 - 1.21)	(0.81 - 1.25)	(-0.12 - 0.10)	-0.052, -0.0010	0.057	(0.79 - 1.17)
C		000.0011.2500 ×V	( ( 0.12 0.10)			(0.79 1.17)
Serine	1.00 (0.029) (0.82 - 1.21) 1.08 (0.025) (0.90 - 1.23)		×-0.0036 (0.015)	-0.035, 0.028	0.807	0.83, 1.21
		$(0.86 \pm 1.24)$	(-0.18 - 0.16)	-0.055, 0.028	0.807	(0.81 - 1.24)
1.001	1.08 (0.025) (0.90 - 1.23)	(0.00 - 1.24)	(-0.18 - 0.10)			(0.81 - 1.24)
3° 40	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	opy the needle contra	st ett no				
G	Juli se all	er ro				
	C A OUT					
	S. Hills (	), í				
	L'eV	1.09 (0.026) (0.86 - 1.24)				
	<i>Q</i> •	ne permis vio				
Monsanto Company		1	2-CT-244U			126  of  620

 Table VI-2. Statistical Summary of Combined-Site Cottonseed Nutrients for MON 88701 vs. Conventional Control (continued)

(continued)					dill' do	
		_	Difference (N	ontrol)		
	MON 88701 ²	Control ⁴		×10 ¹	ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			01	2 2 2 2 C	~	
Threonine	0.87 (0.016)	0.86 (0.016)	0.0057 (0.0083)	0.012, 0.023	0.504	0.72, 0.89
	(0.74 - 0.94)	(0.73 - 0.95)	(-0.10 0.10)	MON 88701 minus Co 95% Confidence Interval -0.012, 0.023 -0.019, 0.0071 -0.019, 0.017 -0.036, 0.012		(0.67 - 0.96)
Tarantoaloon	0.41 (0.0002)	0.42 (0.0005)		0.010.0.0071	0.261	0.24 0.42
Tryptophan	0.41 (0.0092)	0.42 (0.0095)	-0.0001(0.0000)	-0.019, 0.0071	0.301	0.34, 0.42
	(0.33 - 0.52)	(0.37, 0.52)	-0.081 -0.0/80	non the		(0.31 - 0.46)
Tyrosine	0.81 (0.017)	0.81 (0.018)	² -0.0011 (0.0083)	0.019. 0.017	0.898	0.67, 0.84
- )	(0.67 - 0.92)	(0.67 - 0.91)	(-0.074 - 0.12)	JI, III, III, III, III, III, III, III,		(0.63 - 0.91)
	OP		1 Julie Wils 60	di.		· · · · ·
Valine	1.21 (0.027)	E23 (0.027)	-0.012 (0.011)	-0.036, 0.012	0.296	1.00, 1.28
	(1.00 - 1.40)	(1.00 - 1.40)	(-0.012 (0.011) (-0.090 - 0.12)			(0.97 - 1.36)
	is all in	whet ment ion at	-0.021 (0.0071) (-0.077 - 0.047)			
Fatty Acid (% Total FA)	OT IS XYO	Mr. Ille Str. S.	WI 15			
14:0 Myristic	0.37 (0.030)	0.79 (0.031)	-0.021 (0.0071)	-0.036, -0.0060	0.009	0.16, 1.37
200	0.77 (0.030) (0.66 - 0.95)	0.79 (0.031) (0.71 - 0.98) 23,80 (0(30)	-0,021 (0.0071) (-0.077 - 0.047)			(0.45 - 1.04)
16:0 Palmitic $(his d)$				0.01( 0.21	0.072	16 54 20 55
16:0 Palmitic	23.95 (0.30)	23.80 (0.30)	0.15 (0.076)	-0.016, 0.31	0.073	16.54, 30.55
S. C.	0 (22,34 - 25.28)	(0.71 - 0.98) 23.80 (0.30) (22.69 - 25.05)	(-0.68 - 0.76)			(19.11 - 26.73)
	<del>26, 46, 47, 46</del>					
0	FUIL AS MIL	0,00				
	CO' CO JE					
	SC. MC.	$\mathcal{S}_{U_{L_{1}}}$				
	Mr. PI					
	100	ne led and				
Mongonto Compony		11	) CT $244U$			127  of  620

 Table VI-2. Statistical Summary of Combined-Site Cottonseed Nutrients for MON 88701 vs. Conventional Control (continued)

(continued)					dill. Co	
			Difference (N	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴			ILS	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% CL	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			, Or	6 2 4 m		
16:1 Palmitoleic	0.50 (0.0094)	0.50 (0.0094)	0.0022 (0.0038)	-0.0060, 0.010	0.572	0.39, 0.70
	(0.44 - 0.54)	(0.45 - 0.54)	(-0.025 - 0.039)	<u>40N 88701 minus Co</u> 95% Confidence Interval -0:0060, 0.010 -0.0091, 0.14 -0.0049, 0.29 -0.72, -0.053	)	(0.44 - 0.67)
		S		it's not		
8:0 Stearic	2.54 (0.058)	2.47 (0.058)	0.068 (0.036)	-0.0091, 0.14	0.079	1.98, 2.95
	(2.29 - 2.85)	(2.15 2.76)	(-0.16 - 0.24)			(1.98 - 2.97)
			6. 2.0	nº at i		
8:1 Oleic	15.10 (0.26)	14.96 (0.26)	0.94 (0.070)	0.0049, 0.29	0.057	11.38, 20.64
	(14.15 - 16.45)	(14.06 - 16.44)	(-0.48 - 0.75)	-JUL		(13.71 - 18.39)
	í í í í í í í í í í í í í í í í í í í	6. 35	1 Julie Hile 20	à.		
8:2 Linoleic	55.77 (0.39)	56.15 (0.40)	-0.39 (0.16)	-0.72, -0.053	0.026	47.49, 63.18
	(54.24 - 58.22)	(54.04 - 57.93)	-0.39 (0.16) (-1.42_0.80)	,,		(49.78 - 59.61)
	S (11)	Star and and				( )
18:3 Linolenic	0.18 (0.022)	0.17 (0.022)	0.011 (0.0068)	-0.0038, 0.025	0.136	0.060, 0.24
	(0.14 - 0.34)	(0.12 - 0.30)	0.011 (0.0068) (-0.0073 - 0.052)	0.00000, 0.020	0.120	(0.10 - 0.29)
C C	on los k	(0.12-0.30)	no dis			(
20:0 Arachidic		0 28 (0 0087)	0.0044 (0.0047)	-0.0057, 0.015	0.364	0.17, 0.38
Khis 10	(0.23 - 0.32)	(0.23 - 0.32)	(-0.027 - 0.046)	0.0007, 0.010	0.501	(0.20 - 0.36)
20:0 Arachidic	87 .01 .01 .17		(			(0.20 0.00)
. X 1	CONSCORMENT	Che Min A Ma				
	opy the medue the contract of the consecond the consecond the consecond the contract of the co	oer alle				
	En Contra	6,0				
	ALL HOUR	UIF				
	Popy the mouth of the state of	ne permis vie				
	00					
	<u>\</u>		12 CT 244U			100 of (0)

 Table VI-2. Statistical Summary of Combined-Site Cottonseed Nutrients for MON 88701 vs. Conventional Control (continued)

(continued)					dill' do	
			Difference (N	AON 88701 minus Co	ontrol	
	MON 88701 ²	Control ⁴		xil ^O	ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	چ (p-Value)	(Range)
Fatty Acid (% Total FA)			and Dr.			
22:0 Behenic	0.15 (0.0051)	0.15 (0.0051)	-0.0035 (0.0029)	-0.0098, 0.0029	<b>0.260</b>	0.070, 0.21
	(0.12 - 0.19)	(0.13 - 0.21)	(-0.049 0.032)	95% Confidence Interval -0.0098, 0.0029		(0.051 - 0.19)
		S	1 P1 10	ion its no		
Mineral		as	121 allia	CITY OF AN		
Calcium (% dw)	0.15 (0.0093)	0.13 (0.0093)	0.018 (0.0022)	0.013, 0.023	< 0.001	0.058, 0.21
	(0.10 - 0.22)	(0.081 - 0.19)	(-0.012) - 0.038)	n di		(0.081 - 0.18)
		in in in				
Copper (mg/kg dw)	8.90 (0.70)	8.93 (0.70)	-0.025 (0.16)	-0.34, 0.29	0.875	2.97, 12.86
	(5.22 - 11.91)	(5.40 - 11.92)	(-2.59 - 1.29)	-9.96, 1.71		(4.46 - 11.62)
	P S	She thing to	till of this w			
Iron (mg/kg dw)	67.21 (4.40)	×71.33 (4.48) S		-9.96, 1.71	0.153	47.30, 97.12
	(41.96 - 83.17)	(45.03 - 95.10)	(-38,15 - 12.79)			(39.49 - 114.34)
	of x5'0 x0'.	no no tilo o	NO OI			
Magnesium (% dw)	0.40 (0.0083)	0.38 (0.0084) (0.33 - 0.44)	0.021 (0.0032) (-0.036 - 0.054)	0.015, 0.028	< 0.001	0.28, 0.47
e é é é é é é é é é é é é é é é é é é é	(0.35 - 0.44)	(0.33 - 0.44)	(-0.036 - 0.054)	,		(0.31 - 0.46)
	all SU L'AL		*N [®]			
Manganese (mg/kg dw)	12.81 (0.47)	11,73 (0.48)	1.08 (0.28)	0.48, 1.68	0.001	9.07, 17.33
	(10.98 - 14.81)	(8.61 - 14.10)	(-1.95 - 2.54)	,		(9.07 - 17.14)
·0. K. (1)			(			(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	20, 20 all all					
0	Fullingeonnet	0,0,0				
		10 M				
	SP HE CONSCORME	he led and				
	've `					
	*	1,				100 6 (0)

 Table VI-2. Statistical Summary of Combined-Site Cottonseed Nutrients for MON 88701 vs. Conventional Control (continued)

(continued)					$d_{\mu}$ $d_{\nu}$	
			Difference (N	AON 88701 minus Co	ontrol)	
	MON 88701 ²	Control ⁴		; i0 ¹ ,	ill's	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral			1. 31.	6, 6, 6, 6,		
Phosphorus (% dw)	0.72 (0.031)	0.72 (0.031)	0.0081 (0.0067)	-0.0053, 0.021	S [©] 0.230	0.49, 0.87
	(0.56 - 0.84)	(0.54 - 0.87)	(-0.087)- 0.11)	10° ALC CO. AC	)`	(0.48 - 0.87)
		S	or , or			
Potassium (% dw)	1.12 (0.028)	1.07 (0.028)	0.053 (0.020)	0.0089, 0.097	0.021	0.92, 1.21
	(0.98 - 1.24)	(0.79 + 1.27)	(-0.12 - 0.27)			(0.90 - 1.26)
		Sol Me		a de la		
Sodium (% dw)	0.034 (0.0095)	0.029 (0.0096)	0.0045 (0.0046)	-0.0053, 0.014	0.346	0, 0.066
Sourdani (70 dw)	(0.018 - 0.12)	(0.0053 0.10)		-0.0055, 0.014	0.540	(0.0054 - 0.077)
	(0.010 - 0.12)	(0.0033/50.10)	(-0.065 - 0.030)	ر د ۰		(0.003 + 0.077)
7. ( /1 1)	27.59 (2.0)		-2.57 (0.77)		0.005	27.27.44.05
Zinc (mg/kg dw)	37.58 (2.01)	40.14 (2.02)		-4.22, -0.91	0.005	27.27, 44.95
	(27.31 - 46.74)	(28.22 - 52.95)	(411.57-3.27)			(25.07 - 48.49)
	ALE ALL A					
Vitamin (mg/kg dw)	CI IS XU	Mr. Ille Sp. S	Nixs			
Vitamin E	140.14 (9.87)	[31.33 (9.88)	8.80 (2.07)	4.39, 13.22	< 0.001	41.91, 205.89
200	(86.23 - 179,34)	(91,78 - 162.98)	(-6.54 - 26.36)			(84.07 - 162.76)
	N S S S	2 1 × 10, 01	1/1			

#### Table VI-2. Statistical Summary of Combined-Site Cottonseed Nutrients for MON 88701 vs. Conventional Control 6 12: (continued)

¹dw = dry weight; fw = fresh weight; FA ⊕ fatty acid. ²MON 88701 was treated with dicamba and glufosinate. ³Mean (S.E.) = least-square mean (standard error). ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130). ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero. 130 of

			Difference (	MON 88701 minus Cor	ntrol)	
	MON 88701 ²	Control ⁴		10		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)		Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Ac	id (% Total FA)		6			
Dihydrosterculic Acid	0.15 (0.0034)	0.14 (0.0037)	0.013 (0.0044)	0.0044, 0.022	0.003	0.078, 0.25
	(0.11 - 0.19)	(0.11 - 0.17)	(-0.026 - 0.068)	to do to	Ø	(0.038 - 0.23)
			Der.	100 200 CON \$10		
Malvalic Acid	0.39 (0.015)	0.37 (0.016)	0.013 (0.015)	0.016, 0.043	0.371	0.23, 0.54
	(0.20 - 0.55)	(0.26 - 0.49)	(-0.16 - 0.16)	dill of the		(0.11 - 0.59)
		aller i	40 - 10 - 11 - 11 - 11 - 11 - 11 - 11 -			
Sterculic Acid	0.22 (0.0067)	0.21 (0.0072)	0.0067 (0.0081)	-0,0096, 0.023	0.412	0.17, 0.27
	(0.13 - 0.29)	(0.17 - 0.27)	(-0.085 - 0.078)	J. C.		(0.061 - 0.34)
	, in the second s	a si al	NO Nº 20			· · · · · ·
Gossypol (% dw)	R	6 6 25	1 July 11 10 20	cume		
Free Gossypol	0.94 (0.037)	0.89 (0.037)	0.055 (0.020)	0.012, 0.099	0.016	0.099, 1.57
	0.94 (0.037) (0.80 (1.18)	×(0.68-1.20)	(-0.086 - 0.20)	0.012, 0.099	0.010	(0.50 - 1.41)
	(0.00, 1.10)					(0.50 1.11)
Total Gossypol	1.04 (0.037)		0.066 (0.017)	0.031, 0.10	< 0.001	0.064, 1.76
Total Gossypol	(0.04, 1.04)	(0.97 (0.037))	(-0.021 - 0.23)	0.031, 0.10	<0.001	(0.56 - 1.61)
C)	(0.84 - 1.24)	(0.74 1.10)	(-0.021 - 0.23)			(0.30 - 1.01)
	and with a construction of the construction of	C C KO K	0			
1 dw = dry weight; FA = fat	ty actd	207 101 -0	<i>N</i> .			
² MON 88701 was treated v ³ Mean (S.E.) = least-square ⁴ Control refers to the pop h	vith dicamba and gluf	osinater O	7			
4 (S.E.) = least-square	mean istandard error		1 (0.1 120)			

Table VI-3. Statistical Summary of Combined-Site Cottonseed Anti-nutrients for MON 88701 vs. Conventional Control

¹dw = dry weight; FA = fatty acid.
²MON 88701 was treated with dicamba and glufosinate.
³Mean (S.E.) = least-square mean (standard error).
⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

Cottonseed Tissue Components ¹	Literature Range ²	ILSI Range ³
<b>Cottonseed Nutrients</b>		
Proximates (% dw)		
Ash	$3.87 - 5.29^{a}$ ; $3.7 - 4.2^{d}$	3.761 - 5.342
Carbohydrates by calculation	$45.28 - 53.62^{a}$	39.0 - 53.6
Calories by calculation	$471.34 - 506.95^{a}$	Not available
(Kcal/100g)		
Moisture (% fw)	$2.25 - 7.49^{a}$	2.3 - 9.9
Protein	$24.54 - 30.83^{a}$ ; $21.2 - 25.9^{b}$	21.48 - 32.97
Total Fat	$17.37 - 25.16^{a}$ ; $14.4 - 16.9^{d}$	17.201 – 27.292
Fiber (% dw)		(0°) ()'
Acid Detergent Fiber	$21.10 - 34.8^{a}$ ; $37.6 - 40.5^{d}$	19.74 - 38.95
Neutral Detergent Fiber	$32.92 - 45.83^{a}; 50.0 - 53.6^{d}$	25 56 - 51 87
•	52.92 = 45.05, $50.0 = 55.0$	
Crude Fiber	13.85 – 17.94 ^a	15.00 - 25.10
Total Dietary Fiber	not available	33.69 - 47.55
Amino Acids	(% total AA)	19.74 - 38.95 $25.56 - 51.87$ $13.86 - 23.10$ $33.69 - 47.55$ (% dw) $0.80 - 1.22$ $2.06 - 3.72$ $1.82 - 2.94$ $0.35 - 0.56$ $3.91 - 6.72$ $0.83 - 1.32$
Alanine	$4.16 - 4.41^{\circ}, 3.6 - 4.2^{\circ}$	0 80 - 9 22
	$11.28 - 12.51^{a}; 10.9 - 12.3^{b}$	2.06 - 3.72
Aspartic acid	$9.73 - 9.99^{a}$ ; 8.8 - 9.5 ^b	2200 = 3.72
Arginine Aspartic acid Cystine/Cysteine Glutamic acid Glycine Histidine Isoleucine Leucine Lysine	$1.60 - 1.92^{a}: 2.3 - 3.4^{b}$	$\begin{array}{c} 0.80 - 1.22 \\ 2.06 - 3.72 \\ 1.82 - 2.94 \\ 0.35 - 0.56 \\ 3.91 - 6.72 \\ 0.83 - 1.32 \\ 0.57 - 0.91 \\ 0.62 - 1.05 \end{array}$
Glutamic acid	1.00 - 1.92, $2.5 - 5.4$	0.33 - 0.30
Chuaine		3.91 - 0.72
Glycine	4.44 - 4.08; $5.8 - 4.5$	0.83 - 1.32
Histidine	$3.00 - 3.12^{a} \cdot 2.6 - 2.8^{b}$	0.57 - 0.91
Isoleucine	3.10 = 3.67 ; 3.0 = 3.4	0.62 - 1.05
Leucine	$6.27 - 6.05^{a}; 5.5 - 6.1^{b}$	1.14 – 1.86
Lysine	4.85-5.37 4.2-4.6°	0.94 - 1.46
Methionine	$1.46 - 1.88$ "; $1.3 - 1.8^{\circ}$	0.30 - 0.47
Phenylalanine	$1.46 - 1.88^{\circ}; 1.3 - 1.8$ $5.56 - 5.77^{a}; 5.0 - 56^{b}$ $4.06 - 4.28^{a}; 3.1 - 4.0^{b}$	1.02 - 1.72
Proline	$4.06 - 4.28^{a}; 3.1 = 4.0^{b}$	0.75 - 1.23
Serine	$4.45 - 4.86^{4} \cdot 3.9 - 4.4^{9}$	0.91 - 1.35
Threonine	3.26 3.59 ^a ; 2.8 – 3.2 ^b	0.55 - 0.92
(Tryptophan C)	$0.97 - 121^{a}; 1.0 - 1.4^{b}$	0.194 - 0.319
C Tyrosine	2.65 2.92 ^a ; 2.8 – 3.3 ^b	0.53 - 0.84
Histidine Isoleucine Leucine Lysine Methionine Phenylalanne Proline Serine Threonine Tryptophan Tyrosine Valine	$4.76 - 5.14^{a}; 4.3 - 4.7^{b}$	0.87 - 1.49
Glycine Histidine Isoleucine Leucine Lysine Methionine Phenylalanne Proline Serine Threonine Tryptophan Tyrosine Valine Fatty Aeids (% total FA) 8:0 Caprylic 10:0 Capric		
Fatty Acids (% total FA) 8:0 Caprylic 10:0 Capric		
8.0 Caprylic	not available	not available
10:0 Capric	not available	not available
P2:0 Lauric	not available	not available
Methionine Phenylalanine Proline Serine Threonine Tryptophan Tyrosine Valine Fatty Aeids (% total FA) 8:0 Caprylic 10:0 Capric 12:0 Lauric 14:0 Myristic 14:0 Myristic 14:1 Myristoleic 15:0 Pentadecenoic 15:1 Pentadecenoic 16:0 Palmitie 16:1 Palmitoleic 17:0 Heptadecanoic	$0.55 - 2.40^{\rm a}; 0.6 - 1.5^{\rm b}$	0.455 - 2.400
14:1 Myristoleic	not available	not available
150 Pentadecanoio	$0.050 - 0.17^{a}$	0.103 - 0.481
15.1 Pentadecenoic	not available	not available
16:0 Palmitic	$21.23 - 27.9^{a}$ ; $17.6 - 24.8^{b}$	15.11 – 27.90
16:1 Palmitoleio	21.25 - 27.7, $17.0 - 24.00 55 - 1 16a$	0.464 - 1.190
17:0 Hentadagencia	0.55 = 1.10	0.404 - 1.190 0.092 - 0.119
17.0 reptadecation	not available	0.092 - 0.119

### Table VI-4. Literature and ILSI Ranges for Components in Cottonseed

	Cottonseed Tissue Components ¹	Literature Range ²	ILSI Range ³
	17:1 Heptadecenoic	not available	not available
	18:0 Stearic	1.99 – 3.11 ^a ; 2.0 – 2.5 ^b	0.20 - 3.11
	18:1 Oleic	13.90 – 20.10 ^a ; 15.0 – 20.7 ^b	12.8 - 25.3
	18:2 Linoleic	46.00 - 56.88 ^a	46.0 - 59.4
	18:3 Gamma Linolenic	$0.050 - 0.25^{a}$	0.097 - 0.232
	18:3 Linolenic	$0.050 - 0.25^{a}$	0.11 - 0.35
	20:0 Arachidic	$0.25 - 0.33^{a}$	0.186 - 0.414
	20:1 Eicosenoic	not available	0.095 - 0.098
	20:2 Eicosadienoic	not available	not available
	20:3 Eicosatrienoic	not available	not available
	20:4 Arachidonic		not available
		not available	not available
	22:0 Behenic	$0.13 - 0.17^{a}$	0.104 - 0.295
	Vitamins	$(mg/kg fw)$ $99 - 224^{\circ}$ $0.10 - 0.33^{a}$ $3.54 - 11.14^{a}$ $40.58 - 56.54^{a}$ $0.37 - 0.46^{a}$ $11.06 - 18.31^{a}$ $0.60 - 0.84^{a}$	(mg/kg dw)
		99 – 224°	70.825 - 197.243
			10.025 10 1.2 15
	Minerals (% dw)	alto stic.	dio. Te to
	Calcium	$0.10 - 0.33^{a}$	0.10323 - 0.32581
	Copper (mg/kg dw)	3,54-11.14 ^a	3 3 - 24.57
	Iron (mg/kg dw)	40.58 - 56.54	36.71 - 318.38
	Magnesium	$0.37 - 0.46^{a}$	0.34709 - 0.49312
	Manganese (mg/kg dw)	11.06 - 98 31 3	10.69 - 21.96
	Phosphorus	$0.60 - 0.84^{\circ}$	0.48254 - 0.99157
	Potassium	$\theta 98 = 104^{a}$	0.98345 - 1.44834
	Sodium	$0.0054 - 0.74^{\circ}$	0.00049 - 1.44050 0.01118 - 0.73548
	Zinc (mg/kg dw)	30.21 - 47.75 °	27.0 - 59.5
	Cottonseed Anti-Nutrients	Nto this of this who	
	Gossypol, Total (% dw)	$0.57 - 0.42^{a}$ , $0.55 - 0.77^{d}$	0.547 - 1.522
	Gossypol, Free (% dw)	0.53 1.20	0.454 - 1.399
	Cyclopropenoid Fatty Acids	al Wiss	
	(% total FA)	l or the	
G	Dihydrostetculic	$0.13 - 0.24^{\circ}$	0.075 - 0.310
200	Malvalie	0.13 - 0.21	0.079 - 0.079
	Stamulic	0.33 - 0.38	0.229 = 0.759 0.100 0.556
$\sqrt{n}$	Steleunic	0.21 - 0.50	0.190 - 0.330
1 °0'	Ale the state of the second second	10-	
2 8	² I it and in a second	$\int b^{b}(I_{av}) dr = 0$	with and Craalman 200
1	^d Portrand et al. 2005	t al., 2004); (Lawnon et al., 1977); (Sr	nith and Creelman, 200
*	³ (II St 2010)		
(			
C	X OL CO X XIX XO		
(			
(			
(			
	NIT NO.		
	Nitt Prot		
(	o with pro		
	o with pro		
	o with pro		
	Vitamin E Minerals (% dw) Calcium Copper (mg/kg dw) Iron (mg/kg dw) Magnesium Manganese (mg/kg dw) Phosphorus Potassium Sodium Zinc (mg/kg dw) <u>Cottonseed Anti-Nutrients</u> Gossypol, Total (% dw) Gossypol, Free (% dw) <u>Cvclopropenoid Fatty Acids</u> <u>C'v total FA</u> Dihydrosterculic Malvalie Stetculic ¹ fw=fresh weight; dw=dry weight ² Literature range references; "(Hamilton e ⁽⁴⁾ Bertrand et al., 2005). ³ (ILS1, 2011).		

#### Table VI-4. Literature and ILSI Ranges for Components in Cottonseed (continued)

#### VI.B. Compositional Assessment of MON 88701 Conclusion

Detailed analyses were conducted on nutrient and anti-nutrient levels in MON 88701 cottonseed from plants treated with dicamba and glufosinate, reported above, and plants not treated with dicamba or glufosinate (Appendix E). Component levels for MON 88701 were compared to levels in the conventional control. The analytes evaluated are consistent with those identified by the OECD as important to understanding the safety and nutrition of new varieties of biotechnology-derived cotton (OECD, 2009). These compositional comparisons were made by analyzing the acid-delinted cottonseed harvested from plants grown at each of eight field sites in the U.S. during the 2010 field Composition analyses of all samples, conducted in accordance with OECD season. guidelines, were performed for nutrients including proximates (ash, carbohydrates, and calories by calculation, moisture, protein, and fat), fibers (ADF, CF, NDF, and TDF), amino acids, fatty acids (C8-C22), minerals (calcium, copper, iron magnesium, manganese, phosphorus, potassium, sodium, and zinc), and vitamin E. The anti-nutrients assessed in this analysis included total and free gossypol and cycloproperoid fatty acids (dihydrosterculic, malvalic, and sterculic). These analyses also included measurements of the same nutrients and anti-nutrients in conventional commercial cotton varieties, known as reference varieties, to provide data on natural variability of each compositional component analyzed. All cotton plants including MON 88701, the conventional control, and the conventional commercial reference varieties were treated with maintenance pesticides as necessary throughout the growing season. In addition, MON 88701 plots were treated at the 3-5 leaf stage with glufosinate herbicide at the label rate (0.5 lbs a.i./acre) and at the 6-10 leaf stage with dicamba herbicide at the label rate (0.5 lbs +his 20' a.e./acre).

For MON 88701 compared to the conventional control, the combined-site analysis of cottonseed showed no statistically significant differences (p<0.05) between nutrient and anti-nutrient components of MON 88701 and the control for 30 (57.7%) of the 52 mean value comparisons. Cottonseed nutrient component differences included mean values for five proximates (ash, calories, carbohydrates, moisture, and total fat), three types of fiber (ADF, NDF, and TDF), three amino acids (arginine, methionine, and proline), two fatty acids (14.0 myristic acid and 18:2 Inoleic acid), five minerals (calcium, magnesium, manganese, potassium and zinc), and vitamin E. Cottonseed anti-nutrient component differences included mean values for dihydrosterculic acid, free and total gossypol. All nutrient and anti-nutrient component differences observed in the combined-site statistical analysis, whether reflecting increased or decreased MON 88701 mean values with respect to the conventional control, were 14.09% or less. Mean values for all significantly different nutrient and anti-nutrient components from the combined-site analysis of MON 88701, with the exception of methionine, were within the 99% tolerance interval established from the conventional, commercial reference varieties grown concurrently in the same trial. All combined-site mean values, including methionine, and individual site mean values of MON 88701 for all nutrient and anti-nutrient components were within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011).

Overall, for MON 88701 mean component values observed to be significantly different from those of the conventional control, the differences with the control were generally shown to be of small relative magnitudes. All MON 88701 mean component values in the combined-site analysis, with the exception of methionine, were within the 99% tolerance interval established from the conventional commercial references varieties grown concurrently and at the same field sites. All combined-site mean values including methionine and individual site mean values of MON 88701 for all nutrient and anti-nutrient components were within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011).

For MON 88701 treated with dicamba and glufosinate, compared to the conventional control, most of the combined-site differences were not reproducible among the individual sites, with the exception of ash and calcium; however, all of the combined-site component values were within the range of values reported in the scientific literature and/or in the ILSI Crop Composition Database. Additionally, the concentrations of key nutrients and anti-nutrients of cottonseed from MON 88701 that was not treated with dicamba or glufosinate were also analyzed (See Appendix E). Results from this analysis were similar to those of the dicamba and glufosinate treated analysis. Based on the results of this composition analysis, it is concluded that cottonseed from MON 88701 is compositionally equivalent to conventional cotton and therefore the food and feed safety and nutritional quality of this product is comparable to that of the commercially cultivated cotton.

Conventional cotton processing is described in Section II of this document. The processing of MON 88701 is not expected to be any different from that of conventional cotton. As described in this section, detailed compositional analyses of key components of MON 88701 have been performed and have demonstrated that MON 88701 is compositionally equivalent to conventional cotton. Additionally, the mode of action of the MON 88701 DMO and PAT (*bar*) proteins, as described in Section V.A., is well understood, and there is no reason to expect interactions with important nutrients or known anti-nutrients that are present in cotton. Therefore, when MON 88701 and its progeny are used on a commercial scale as a source of food or feed, these products are not expected to be different from the equivalent foods or feeds originating from commercially cultivated cotton.

#### VII. PHENOTYPIC, AGRONOMIC, AND ENVIRONMENTAL **INTERACTIONS ASSESSMENT**

This section provides a comparative assessment of the phenotypic, agronomic, and environmental interaction characteristics of MON 88701 compared to the conventional control. The data support a conclusion that MON 88701 is not meaningfully different from the conventional control with the exception of the dicamba and glufosinatetolerance traits, and therefore is no more likely to pose a plant pest risk or have a significant environmental impact compared to conventional cotton. These conclusions are based on the results of multiple evaluations from laboratory and field experiments.

Phenotypic, agronomic, and environmental interaction characteristics of MON 88701 were evaluated in a comparative manner to assess plant pest potential. These assessments included evaluation of seed germination characteristics, plant growth and development characteristics, pollen characteristics, observations of plant responses to abiotic stress, and plant-disease and plant-arthropod interactions. Results from these assessments demonstrate that MON 88701 does not possess: a) increased weedness characteristics; b) increased susceptibility or tolerance to specific abiotic stressors, diseases, or arthropods; or c) characteristics that would confer a plant pest risk or a significant environmental VII.A. Characteristics Measured for Assessment

impact compared to the conventional control. VII.A. Characteristics Measured for Assessment In the phenotypic, agronomic, and environmental interactions assessment of MON 88701, data were collected to evaluate altered plant pest potential. A detailed description of the regulated article phenotype is requested as part of the petition for determination of nonregulated status in 7 CFR § 340.6 including differences from the unmodified recipient organism that would "substantiate that the regulated article is As part of the characterization of MON 88701, data were collected to provide a detailed description of the phenotypic, agronomic, and environmental interactions characteristics of MON 88701.

1) seed germination, dormancy, and emergence; 2) vegetative growth; 3) reproductive development (including pollen characteristics); 4) -1 abiotic stress and interactions with diseases and arthropods. An overview of the characteristics assessed is presented in Table VII-1.

The phenotypic, agronomic, and environmental interactions data were evaluated from a basis of familiarity (OECD, 1993) and were comprised of a combination of field and laboratory studies conducted by scientists who are familiar with the production and evaluation of cotton. In each of these assessments, MON 88701 was compared to a conventional control, Coker 130, which has a genetic background similar to MON 88701, but does not possess the dicamba and glufosinate-tolerance traits. In addition, multiple commercial reference varieties developed through conventional selection and breeding (See Appendices F-H and Tables F-1, G-1, G-2, and H-1) were included to provide a range of comparative values that are representative of the variability in existing commercial cotton varieties for each characteristic. Data collected for the various characteristics from the commercial reference varieties provides context for interpreting experimental results.

The second and the second seco

-onsequently and publication of the owner of this document may therefore owner of this document may there owner owner of this document may there owner owner of this document may there owner owner of this document may there owner any connectation and violate the infits of this owner.

without the permission of the owner of this documer.

and/or any of its affinates, such as intellectual property and and/or any of its affinates and third parties.

t may be subject to hold on the and think and the subject to hold the and think and the subject to and the and the subject the owner and the a

This document is the property of Bayer AG

Inthe OUCUMENT OF ITS ATTING TO THE AND THE ATTING THE

Tutternore, this document of and use of this document of the content of the strong of this document of the strong of

### Table VII-1.Phenotypic, Agronomic, and Environmental InteractionCharacteristics Evaluated in United States Field Trials and Laboratory Studies

	Data Category	Characteristics measured (associated section where discussed) ¹	Evaluation timing (setting of evaluation) ²	Evaluation description (measurement endpoints)
	Seed germination, dormancy, and	Normal germinated (VII.C.1.)	Day 4 and 12 (20/30°C) (laboratory)	Percentage of seed producing seedlings exhibiting normal developmental characteristics
	emergence	Abnormal germinated (VII.C.1.)	Day 12 (20/30°C) (laboratory)	Percentage of seed producing seedlings that could not be classified as normal germinated
		Germinated (VII.C.1.)	Day 4, 12, and 18 (10, 20, 30, 10/20 and 10/30°C) (laboratory)	Percentage of seed that had germinated normally and abnormally
		Dead (VII.C.1.)	Day 4 and 12 (10, 20, 30, 10/20, 10/30, and 20/30°C); Day 18 (10, 20, 30, 10/20 and 10/30°C) (laboratory)	Percentage of seed that had visibly deteriorated and become soft to the touch (also included non-viable hard and nonviable firm-swollen seed)
		Viable hard (VII.C.1.)	Day 12 (20/30°C); Day 18 (10, 20, 30, 10/20 and 10/30°C) (laboratory)	Percentage of seed that did not imbibe water and remained hard to the toteh (viability determined by a tetrazolium test ² )
	S.	Viable firm- swollen (VII.C.1.)	Day 12 (20/30°C); Day 18 (10, 20, 30, 10/20 and 10/30°C) (laboratory)	Percentage of seed that imbibed water and were firm to the touch but did not germinate (viability determined by a tetrazolium test ³ )
	tis the think	Stand count (VII-C.2.1.) Final stand count (VII-C.2.1.)	Approximately 14 and 30 DAP (Field) Within approximately 7 days of harvest (Field)	Number of emerged plants in two rows, standardized to 20 ft rows Number of plants in two rows, standardized to 20 ft rows
>OCL	Vegetative Growth	Plant vigor (VII.C.2.1.)	Approximately 14 and 30	Rated on a 1-9 scale, where $1 =$ excellent, $5 =$ average, and $9 =$ poor vigor
Thisdor		Plant height (cm) (VII.C.2.1.)	Approximately 30 DAP and within approximately 7 days of harvest (Field)	Distance from cotyledonary node (0 node) to the uppermost terminal bud on 10 plants from two rows
S. H. M.	Vegetative Growth all sub- all	Nodes above white flower (NAWE) (VH C.2.1)	Three weekly observations starting approximately 7 days after first flower (Field)	Number of nodes from upper most first-position white flower to the terminal bud on 10 plants from two rows
	SUNITU SUNITU	(VII.C.2.1.) Plant height (cm) (VII.C.2.1.) Nodes above white flower (NAWE) (VH.C.2.1.)		

# Table VII-1.Phenotypic, Agronomic, and Environmental InteractionCharacteristics Evaluated in United States Field Trials and Laboratory Studies(continued)

	Data Category	Characteristics Measured (associated section where discussed)	Evaluation timing (setting of evaluation)	Evaluation description (measurement endpoints)
	Reproductive Development	Seedcotton yield (kg/ha) (VII.C.2.1.)	At harvest (Field)	Hand harvested all seedcotton from two rows
		Seed index (g per 100 seed) (VII.C.2.1.)	Post harvest (Field)	Mass of 100 ginned, fuzzy seed
		Total seed per boll (VII.C.2.1.)	Post harvest (Field)	Average number of seeds per boll calculated from a 50-boll sample
		Mature seed per boll (VII.C.2.1.)	Post harvest (Field)	Average number of mature seed in a boll calculated from a 50-boll sample
		Immature seed per boll (VII.C.2.1.)	Post harvest (Field)	Average number of immature seed in a boll calculated from a 50-boll sample
		Boll weight (g) (VII.C.2.b)	Post harvest (Field)	Average mass of a single boll calculated from a 50-boll sample
	S.	Fiber micronaire (mic units) (VII.C.2.1.)	Post harvest (Field) Post harvest (Field) Post harvest (Field) Post harvest (Field)	Measure of fiber fineness and maturity (expressed in dimensionless micronaire (mic) units)
	ON its it	Eiber elongation (%) (VII.C.2.1.)	Post harvest (Field)	Measure of the tensile-elastic behavior of the fiber. It is a measure of how much the fibers stretch before they tear.
This docu	and subjections	Fiber strength (g/tex) (VII.C.2.1.)		1,000 meters of fiber.
show	st indianor	Fiber length (em) (VII.C.2.1.)	Post harvest (Field)	Average length of the longer half of combed fibers
/~ c	op, the educ	Fiber uniformity (%) (VII.C.27).)	Post harvest (Field)	Ratio between the mean length and the longer half mean length of fibers
	AN HIGHTS OF	Potten viability (VII.C.3.)	Flowering (laboratory)	Percentage of viable pollen; viable pollen stains purple due to the presence of vital cytoplasmic content
	4 1 1	Pollen morphology (VII.C.3.)	Flowering (laboratory)	Diameter (µm) of viable pollen grains and observations

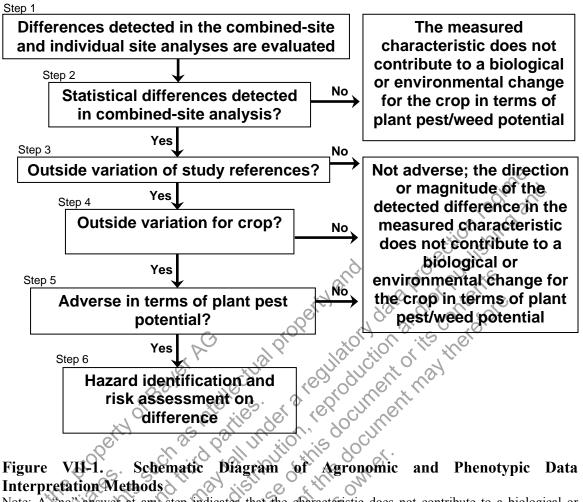
# Table VII-1.Phenotypic, Agronomic, and Environmental InteractionCharacteristics Evaluated in United States Field Trials and Laboratory Studies(continued)

		Characteristics		
		measured		
	Data	(associated	Evaluation timing (setting	Evaluation description
	Category	section where	of evaluation)	(measurement endpoints)
	Category	discussed)	of evaluation)	(measurement enupoints)
	Plant Mapping	Number of	At harvest (Field)	Number of mainstem nodes from
	Characteristics	mainstem nodes		cotyledonary node (node (0) to
		per plant		uppermost terminal meristem on 10
		(VII.C.2.2.)		plants per plot
		Number of nodes	At harvest (Field)	Number of nodes from
		to first fruiting		cotyledonary node (node 0) up to
		branch per plant		first fruiting branch on 10 plants per
		(VII.C.2.2.)	6	plot
		Number of first-	At harvest (Field)	Number of bolls at first position on
		position bolls	(A)	fruiting branches off of mainstem
		(total, normal &	el.	on 10 plants per plot
		abnormal) per	6 %	
		plant		
		(VII.C.2.2.)		
		Number of	At harvest (Field)	Number of vegetative bolls on 10 plants per plot
		vegetative bolls		plants per plot
		per plant	Post harvest (Field)	est in the second se
		(VII.C.2.2.)		
		Total bolls per	Post harvest (Field)	Sum of first-position bolls, second-
	.0	plant (VII.C2.2.)		position bolls, and vegetative bolls
	0	S. SUSTON	Post harvest (Field)	per plant on 10 plants per plot
		Retention of first-	Post harvest (Field)	Calculated first-position bolls
		position bolls (%)	and use of the	relative to number of fruiting
	A B ATT	(VII.C.2.2.)		branches on the mainstem
	, CI. , KS , X	First-position bolls	Post harvest (Field)	Calculated first-position bolls per
		(%) (VILC.2.2.0)		plant relative to total bolls per plant
CC CC				
80	Mr. Con Kin		A NO	
is dia		11. 10 10° -0		
11. 910	10 10° .0.	0 et :0		
	87 <u>(0</u> ) (0)	117°. 21° ; 5° ; (	2/2	
	A 11. 6	, Contuny di	•	
	N' We di	all of all		
0	UN Son	N. OY Y'O		
	mentisthe mentist anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anvesublet anve	The contract of the contract o		
		10, 10		
	31.10	0		
	NI	0/-		
	, e			
	$\checkmark$			

#### Table VII-1. Phenotypic, Agronomic, and Environmental Interaction Characteristics Evaluated in United States Field Trials and Laboratory Studies (continued)

Data Category	Characteristics measured (associated section where discussed)	Evaluation timing (setting of evaluation)	Evaluation description (measurement endpoints)
Plant- environmental interactions	Plant response to abiotic stress (VII.C.2.3.)	Four times per growing season – approximately 30, 60, 90 and 120 DAP (Field)	Qualitative assessment of each plot, with rating on a 0-9 scale, where 0 = no symptoms and 9 = severe symptoms
	Disease damage (VII.C.2.3.)	Four times per growing season – approximately 30, 60, 90 and 120 DAP (Field)	Qualitative assessment of each plot, with rating on a 0-9 scale, where 0 = no symptoms and 9 = severe symptoms
	Arthropod-related damage (VII.C.2.3.)	Four times per growing season – approximately 30, 60, 90 and 120 DAP (Field)	Qualitative assessment of each plot, with rating on a 0-9 scale, where 0 on symptoms and 9 = severe symptoms
	Thrips damage assessment (VII.C.2.3.)	Three assessments at approximately 14, 21 and 28 DAP (Pield)	Specific quantitative assessment of thrips from 10 plants in each plot using a 0-5 scale, where $0 = no$ thrips or visible damage and $5 =$ numerous thrips or severe damage from thrips
the price	Heliothine damage assessment (VII.C.2.3.)	Four assessments at approximately 45, 60, 75 and 90 DAP (Field)	Percent damage (number of damaged fruiting bodies divided by total number of fruiting bodies) and number live larvae on the top 7 nodes of 10 plants in each plot
pentis the atting	Arthropod abundance (VII.C.2.3.)	Four collections at approximately 30, 60, 90 and 120 DAP (Field)	Number of pest and beneficial arthropods

¹ (VILC.2.3.) and 120 DAP (Field) ¹ All cottonseed was from mature open Bolls. ² Cotton plant growth stages were determined using descriptions and guidelines outlined in Cotton Growth and Development (1990) ³ Viability of hard and firm-swollen seed were determined by a tetrazolium test (AOSA, 2007).


#### VII.B. Interpretation of Phenotypic and Environmental Interaction Data

Plant pest risk assessments for biotechnology-derived crops are comparative assessments. Familiarity provides a basis from which the potential environmental impact of a biotechnology-derived plant can be evaluated. The concept of familiarity is based on the fact that the biotechnology-derived plant is developed from a well-characterized conventional plant variety. Familiarity considers the biology of the crop, the introduced trait(s), the receiving environment and the interaction of these factors, and provides a basis for comparative environmental risk assessment between a biotechnology-derived plant and its conventional counterpart.

Expert knowledge and experience with conventionally bred cotton was the basis for selecting appropriate endpoints and estimating the range of responses that would be considered typical for cotton. As such, MON 88701 was compared to the conventional control, Coker 130, in the assessment of measured characteristics. An overview of the characteristics assessed is presented in Table-VII-1. Evaluation of environmental interaction characteristics (*e.g.*, plant abiotic stress, plant-disease, and plant-arthropod interactions) was also considered in the plant pest assessment. Based on all of the data collected, an assessment was made to determine if MON 88701 is likely to pose an increased plant pest risk compared to commercial cotton. Prior to analysis, the overall dataset was evaluated for possible evidence of biologically relevant changes and an unexpected plant response. No unexpected observations or issues were identified.

# VII.B.1. Interpretation of Detected Differences Criteria

Comparative plant characterization data between a biotechnology-derived crop and the conventional control are interpreted in the context of contributions to increased plant pest/weed potential as assessed by APHIS Under the framework of familiarity, characteristics for which no differences are detected support a conclusion of no increased plant pest/weed potential of the biotechnology-derived crop compared to the conventional crop. Characteristics for which differences are detected are considered in a step-wise method (Figure VII-1) or in a similar fashion. All detected differences for a characteristic are considered in the context of whether or not the difference would increase the plant pest/weed potential of the biotechnology-derived crop. Ultimately, a weight-of-evidence approach considering all characteristics and data is used for the overall risk assessment of differences and their significance. In detail, Figure VII-1 illustrates the stepwise assessment process employed:



#### Diagram Figure VII-1. Schematic Interpretation Methods

Note: A "no" answer at any step indicates that the characteristic does not contribute to a biological or environmental change for the crop in terms of plant pest/weed potential and subsequent steps are not considered. If the answer is "ves" or "uncertain" the subsequent step is considered.

### Steps 1 and 2 - Evaluate Detected Statistically Significant Differences

Data on each measured characteristic are statistically analyzed, where appropriate, within each individual site and in a combined-site analysis, in which the data are pooled among sites. All statistically significant differences are evaluated and considered in the context of a change in plant pest/weed potential. Differences detected in individual site analyses that are not detected when data across multiple environments are pooled in the combinedsite analysis are considered not biologically meaningful in terms of plant pest/weed potential and, therefore, are not further considered in subsequent steps. Any difference detected in the combined-site analysis is further assessed.

#### Step 3 - Evaluate differences in the context of commercial reference varieties included in the Study

If a difference for a characteristic is detected in the combined-site analysis across multiple environments, then the mean value of the biotechnology-derived crop for the characteristic is assessed relative to the range of variation of the commercial reference varieties included in the study (e.g., reference range).

#### Step 4 - Evaluate Differences in the Context of the Crop

If the mean value of the characteristics for a biotechnology-derived crop is outside the variation of the commercial reference varieties included in the study, the mean value of the biotechnology-derived crop is assessed relative to known values common for the crop (*e.g.*, published values).

#### Step 5 - Relevance of Difference to Plant Pest/Weed Potential

If the mean value of the characteristics for a biotechnology-derived crop is outside the range of values common for the crop, the detected difference for the characteristic is then assessed for whether or not it is adverse in terms of plant pest/weed potential.

### Step 6 - Conduct Risk Assessment on Identified Hazard

If an adverse effect (hazard) is identified, risk assessment on the difference is conducted. The risk assessment considers contributions to enhanced plant pest/weed potential of the crop itself, the impact of differences detected in other measured characteristics, and potential for and effects of trait introgression into any populations growing outside of cultivated environments or into a sexually-compatible species.

### VII.B.1.1. Interpretation of Vigor and Environmental Interactions Data

For the qualitative assessments of vigor and abiotic stress response, disease damage, and arthropod damage, the biotechnology-derived crop and conventional control were considered different in plant response ratings if the range of values or injury symptoms did not overlap between the biotechnology-derived crop and the conventional control across all four replications. Any observed differences between the biotechnology-derived crop and conventional control were assessed for biological significance in the context of the range of the commercial reference varieties, and consistency in other observation times and sites. Differences that are not consistently observed at other observations/collections and sites are considered not biologically meaningful in terms of plant pest potential or an adverse environmental impact.

Quantitative assessments of arthropod damage were analyzed within individual sites and pooled across sites in a combined-site analysis. Statistically significant differences detected between the biotechnology-derived crop and conventional control were evaluated using the method outlined in Figure VII-1.

Quantitative assessments of arthropod abundance were only analyzed within each individual site. Statistically significant differences between the biotechnology-derived crop and conventional control were assessed for biological significance in the context of the range of the commercial reference varieties, and for consistency with other collection times and collection sites. Differences that are not consistently detected at other times

and sites are considered not biologically meaningful in terms of plant pest potential or an adverse environmental impact.

### VII.C. Comparative Assessments of the Phenotypic, Agronomic, Plant Mapping, and Environmental Interaction Characteristics of MON 88701

This section provides the results of comparative assessments conducted in replicated laboratory and multi-site field experiments to provide a detailed phenotypic, agronomic, plant mapping, and environmental interaction description of MON 88701. The MON 88701 characteristics evaluated in these assessments included: seed dormancy and germination characteristics (Section VII.C.1.), plant phenotypic, plant mapping, and environmental interaction observations under field conditions (Section VH.C.2.), and pollen characteristics (Section VII.C.3). Additional details for each assessment are or publish VII.C.1. Seed Dormancy and Germination Characteristics

USDA-APHIS considers the potential for weediness to constitute a plant pest factor (7 CFR § 340.6). Seed germination and dormancy mechanisms vary among species and their genetic basis tends to be complex. Seed dormancy (e.g., hard seed) is an important characteristic that is often associated with plants that are considered weeds (Anderson, , 2007). Cotton does not exhibit significant levels of seed 1996; and dormancy as this characteristic has been removed through selection and conventional breeding (Christiansen and Moore, 1959). To assess germination characteristics, standardized germination assays are routinely used. The Association of Official Seed Analysts (AOSA), an internationally recognized seed testing organization, recommends a temperature range of alternating 20/30°C as optimal for testing the germination characteristics of cottonseed (AOSA, 2007, 2010a; 2010b; AOSA/SCST, 2010).

comparative assessments of seed dormaney and germination characteristics were conducted on MON 88701 and the conventional control. In addition, nine unique commercial reference varieties were included to provide a range of comparative that are representative of existing variability in lots for MON 2007 lots for MON 88701, the conventional control, and the commercial reference varieties were produced in three replicated field trials during 2010 located in Arkansas (ARPR), North Carolina (NCME), and Texas (TXPL). These geographic areas represent environmentally relevant conditions for cotton production. In addition to the AOSA recommended temperature range of 20/30°C, seed was tested at five additional temperature regimes of 10, 20, 30, alternating 10/20, and alternating 10/30°C to assess seed germination properties. The details of the materials, experimental methods, and germination data from all of the individual production sites are presented in Appendix F.

> In the combined-site analysis, in which the data were pooled from the three individual sites, no statistically significant differences (5% level of significance) were detected between MON 88701 and the conventional control for any characteristic at the AOSA temperature regime (alternating  $20^{\circ}C/30^{\circ}C$ ), or at the temperature regimes of  $10^{\circ}C$ ,  $20^{\circ}C$ , alternating 10°C/20°C, or alternating 10°C/30°C (Table VII-2). MON 88701 had a

significantly higher percentage of germinated seed (96.7 vs. 94.4, respectively) and lower percent dead seed (3.3 vs. 5.6, respectively) than the conventional control at 30°C. These differences were small in magnitude, not observed at other temperatures and the mean values of percent germinated and dead seed for MON 88701 were within the range of commercial reference varieties. Therefore, the differences in percent germinated and dead seed at 30°C are not considered to be biologically meaningful in terms of altered dormancy or germination characteristics (See Figure VII- 1 Step 3, answer "no").

ated is asses: is support th between MON is amba and glufosina int pest potential, increase is 701 compared to commercie The dormancy and germination characteristics evaluated were used to assess MON 88701 in the context of plant pest risk. The results of this assessment, particularly the fact that no hard seed were observed at any temperature, support the conclusion that there are no seed germination characteristic differences between MON 88701 and the conventional control. Thus, the introduction of the dicamba and glufosinate-tolerant traits into cotton Jultiennone this document index and use of this document in a log of this document is a log of this document in a log of this document is a log of the l is not likely to result in increased plant pest potential, increased weediness, or an altered environmental impact from MON 88701 compared to commercially cultivated cotton.

12-CT-244U

without the permission of the owner of this documer.

	Temperature	Germination	Mean % $(S.E.)^1$		
	Regime	Category	MON 88701 ²	Control	Reference Range $(\%)^3$
	10 °C	Germinated	32.8 (6.3)	34.8 (4.7)	14.2 - 58.0
		Viable Hard	0.0 (0.0)	0.3 (0.2)	0.2 - 23.8
		Dead	22.8 (3.8)	22.1 (3.3)	7.7 - 22.8
		Viable Firm-Swollen	44.3 (7.3)	42.8 (5.9)	29.0 - 66.5
	20 °C	Germinated	95.7 (0.7)	95.3 (1.2)	88.5 - 97.8
		Viable Hard	0.0 (0.0)	0.0 (0.0)	0.0 - 4.0
		Dead	4.3 (0.7)	4.7 (1.2)	2.0-9.0
		Viable Firm-Swollen	0.0 (0.0)	0.0 (0.0)	0.0 - 2.0
	30 °C	Germinated	96.7 (0.8)*	94.4 (1.2)	90.5 - 97.8
		Viable Hard ^{$\dagger$}	0.0 (0.0)	0.0 (0.0)	0.0 - 0.0
		Dead	3.3 (0.8)*	5.6 (1.2)	2,3 - 9.5
		Viable Firm-Swollen [†]	0.0 (0.0)	(0.0) 0.0	0.0 - 0.0
	10/20 °C	Germinated	94.4 (1.3)	92.0 (1.4)	64.3 - 91.3
		Viable Hard	0.0 (0.0)	0.1(0.1)	0.1 - 17.5
		Dead	4.3 (0.7) ····	6.6 (1.2)	5.0 - 10.3
		Viable Firm-Swollen	1.3 (1.0)	1.3 (0.6)	0.0 - 21.3
	10/30 °C	Germinated	<u>5 95.7 (1.0)</u>	95.1 (1.5)	90.8 - 95.5
		Viable Hard Dead	0.0 (0.0)	0.0(0.0)	0.0 - 2.0
		Dead 200	4.3 (1.0)	4.9 (1.5)	4.3 - 7.8
	K	Viable Firm-Swollen	0.0 (0.0)	0.0 (0.0)	0.0 - 1.5
	20/30 °C 🖉	Normal Germinated	0.0 (0.0) 89.6 (1.9) 4,8 (1.2)	88.0 (2.9)	80.8 - 92.8
	(AOSA) ⁴	Abnormal Germinated	4.8 (1.2)	6.0 (1.3)	2.0 - 6.3
	ALL ON	Viable Hard	4.8 (1.2) 0.0 (0.0)	0.0 (0.0)	0.0 - 4.8
	ment its all the	Dead J	<u> </u>	6.0 (2.0)	4.0 - 10.8
-Cl	20/30 °C ¢ (AOSA) ⁴ (iii)	⊘Viable Firm-Swollen	01 (0.1)	0.0 (0.0)	0.0 - 3.8
900	Note The expe	rimental design was a split-	plot with four repli	cations $(n = 12)$	c) and statistical analysis
in Single	consisted of an a	nalysis of variance (ANOVA	$\mathbf{M}$ model.	ONI 00701 141	h
This doct	¹ S.E. = Standard	nificant differences detected	(a-0.05) between M	O in 88/01 and the	ne conventional control.
S. C.	² In some instance	es, the total percentage of M	ION 88701 did not e	qual 100% due	to numerical rounding of

Table VII-2. Combined-Site Comparison of MON 88701 to Conventional Control for Germination Characteristics

the means. ³Minimum and maximum means determined from among the commercial reference varieties.

⁴AOSA recommended: †No statistical comparison could be made due to lack of variability in the data.

bepro

#### Field Phenotypic, Agronomic, Plant Mapping, and Environmental VII.C.2. **Interactions Characteristics**

Phenotypic, agronomic, and plant mapping characteristics, and environmental interactions were evaluated under field conditions as part of the plant characterization assessment of MON 88701. These data were developed to provide USDA-APHIS with a detailed description of MON 88701 relative to the conventional control and commercial reference varieties. According to 7 CFR § 340.6, as part of the petition to seek deregulation, a petitioner must submit "a detailed description of the phenotype of the regulated article." This information is being provided to assess whether there are phenotypic differences between MON 88701 and the conventional control that may impact its plant pest/weed potential. Environmental interactions were also assessed as an indirect indicator of phenotypic changes to MON 88701 compared to the same comparators described above and are also considered in the plant pest assessment.

The results of the assessment of agronomic, phenotypic, and plant mapping characteristics demonstrated that the introduction of the dicamba and glufosinatetolerance traits did not meaningfully alter the weediness of MON 88701 compared to the conventional control. Furthermore, the lack of meaningful differences in plant response to abiotic stress, disease damage, arthropod-related damage, and pest- and beneficialarthropod abundance also support the conclusion that the introduction of the dicamba and glufosinate-tolerance traits are not likely to result in increased plant pest potential, increased weediness, or an adverse environmental impact from MON 88701 compared to ionullai in indition the conventional control.

# VII.C.2.1. Field Phenotypic and Agronomic Characteristics

designed for the collection of plant mapping data and tissue samples for every compositional analyses. Field sites in both strutt block designs with four replicates per site. The sites were selected to provide a diverse range of environmental and agronomic conditions representative of commercial cotton ptoduction areas in North America (Table VII-3). All plots of MON 88701, the conventional control and the commercial reference varieties at each site were uniformly managed in order to assess whether the introduction of the dicamba and glufosinatetolerance traits altered the phenotypic and agronomic characteristics of MON 88701 compared to the conventional control. Both studies included MON 88701 that was not treated with dicamba or glufosinate herbicides to assess the effects of the traits on the plant.  $\sqrt{2}$ 

> Study 1 was conducted at 15 sites in the U.S. (Table VII-3). MON 88701, the conventional control, and four commercial reference varieties (three conventional reference varieties and one glyphosate-tolerant reference variety) were evaluated at each

site. Across sites, a total of 11 commercial reference varieties (Table G-1) were evaluated.

An additional study, Study 2, was conducted at 11 sites in the U.S. (Table VII-3). MON 88701, the conventional control, and four conventional reference varieties were evaluated at each site. Across sites a total of eight unique commercial reference varieties were evaluated. This study was designed for collection of plant mapping data, as well as, the production of tissues for the expression and compositional analyses discussed above in Sections V.C. and VI, respectively. Study 2 generated plant mapping information and data across test locations treated and not treated with dicamba or glufosinate herbicides in Study 2 (See section VII.C.2.2, C.2.3.2 and G.12.3), allowing for assessment of MON 88701 under the agronomic system that it is expected to be used.

Results from Study 1 and Study 2 are presented in the following sections:

Table VII-3. Study 1 and Study 2 Data Location Summary

0

Data/Results ¹	Study	Study 2	Petition Location
Not treated phenotypic characteristics	al prov	ALON CHIEF OF	Section VII.C.2.1
Not treated plant mapping			Section VII.C.2.2
Not treated environmental interactions	del rier	OCULARE	Section VII.C.2.3
Treated phenotypic characteristics	NUTION THIS	Dollar.	Appendix G.12.3
Treated plant mapping	JS ^O O	01 1	Appendix G.13.2
Treated environmental characteristics through plant mapping	What sol	$\checkmark$	Section VII.C.2.3; Appendix G.13.2

Not treated = not treated with dicamba or glufosinate herbicides; treated = treated with dicamba and glufosinate herbicides.

All plant, seed, and fiber characteristic data, except for plant vigor (qualitative data), were statistically analyzed within each site (*i.e.*, individual site analysis) and in a combined-site analysis in which the data were pooled across all sites within a study. The reference range was determined from the minimum and maximum mean values from the commercial reference varieties to provide phenotypic characteristic values representative of commercial cotton varieties.

For the assessment of plant vigor MON 88701 and the conventional control were considered different in plant response rating if the range of values did not overlap between the MON 88701 and the conventional control across all four plot replications. Any observed differences between MON 88701 and the conventional control were assessed for biological significance in the context of the range of the commercial reference varieties, and for consistency in other observations and sites. Differences that

are not consistently observed at other observations and sites are considered not biologically meaningful in terms of plant pest potential or an adverse environmental impact.

A description of the evaluated phenotypic characteristics and the designated developmental stages when evaluations occurred are listed in Table VII-1. The results n 8 ional co. s demonstrate n ot alter MON 8 The individual site c mental evaluations of M i.ate in Study 2 are presente i.ate in Study 2 are presen from Study 1 and 2 from combined-site analyses of MON 88701 plots not treated with either dicamba or glufosinate compared to the conventional control are presented in the following sub-sections. The results of these studies demonstrate that the introduction of the dicamba and glufosinate-tolerance traits did not alter MON 88701 compared to the conventional control in terms of weediness. The individual site data comparisons and A 889 . ed Shat . ed methods and detailed results of the supplemental evaluations of MON 88701 plots that were treated with dicamba and glufosinate in Study 2 are presented and discussed in Consequently and publication of the owner of this document may therefore owner of this document may there owner owner of this document may there owner owne any commercial empirision and use of this document, may there of the owner.

without the permission of the owner of this documer.

Study 1 Lo	cations ¹	Study 2 Lo	cations ²
County, State	Site Code	County, State	Site Code
Jackson, AR	ARAU	Crittenden, AR	ARPR
Crittenden, AR	ARPR	Desha, AR	ARTI
Desha, AR	ARTI	Tift, GA	GACH
Tift, GA	GACH	Twiggs, GA	GAJE
Twiggs, GA	GAJE	Pawnee, KS	KSLA
Pawnee, KS	KSLA	Rapides, LA	LACHC
Rapides, LA	LABU	Perquimans, NC	NCBD
Rapides, LA	LACH	Caswell, NC	NCME
Perquimans, NC	NCBD	Dona Ana, NM	MIGO
Caswell, NC	NCME	Barnwell, SC	SCER
Dona Ana, NM	NMGA	Whale, TX	TXPL
Dona Ana, NM	MILC N		
Barnwell, SC	SCEK C	les let let con a	(O)
Hale, TX	TXPD	UN HOR SO CUN	
San Patricio, TX	TXPO// 40	in the state of the	*
0 × 20° 10	5 22 23 4	St. O. W. W.	

 Table VII-4. Field Phenotypic Evaluation Sites for MON 88701 during 2010

Note: Field trials at all sites were conducted under USDA Notification number 10-071-101n. ¹MON 88701 was not treated with dicamba or glufosinate herbicides in Study 1. ²Study 2 included plots not treated with dicamba or glufosinate herbicides and plots treated with dicamba and glufosinate herbicides

# VILC.2.1.1. Field Phenotypic and Agronomic Characteristics of MON 88701 – Study 1

Vigor ratings were collected from each plot using a 1-9 scale, where 1 is outstanding plant vigor and 9 is poorest plant vigor. Since vigor data are categorical (qualitative), the data were not statistically analyzed. There were no differences observed between MON 88701 and the conventional control in plant vigor (Table G-7) at 14 and 30 days after planting (DAP) for 29 of 30 comparisons from all sites. At ARPR at 30 days after planting, MON 88701 had lower plant vigor than the conventional control (ranges of 4.0-4.0 vs. 2.0-3.0, respectively), but was within the range of the commercial reference varieties. Since only one difference (out of 30) was identified and it fell within the reference range, MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Section VII.B.1.1.).

In the combined-site analysis (Table VII-5), no statistically significant differences were detected between MON 88701 and the conventional control for stand count at 14 and 30 DAP, final stand count, number of nodes above white flower at observation 1, seedcotton yield, number of immature seed per boll, weight per boll, fiber micronaire, fiber elongation, fiber uniformity, and fiber length. The following statistically significant differences were detected in the combined-site analysis. MON 88701 plants were shorter at 30 DAP (18.3 vs. 19.7 cm) and at harvest (109.8 vs. 116.4 cm), had increased nodes , and on y seed), i. JII (22.6 vs. conventional con ge of the commercial I y, MON 88701 is unlikely avironmental impact compare , answer "no"). A potential and the potential of the pot above white flower at observation 2 (6.0 vs. 5.7) and observation 3 (4.9 vs. 4.6), a decreased seed index (9.8 vs. 10.5 g per 100 fuzzy seed), increased total seed per boll (29.0 vs. 27.4), increased mature seeds per boll (22.6 vs. 19.7), and increased fiber strength (31.8 vs. 31.0 g/tex) compared to the conventional control. However, the mean values of MON 88701 were within the range of the commercial reference varieties for the And the second set of the seco Torsequently and publication and used of this document may therefore out of the owner of this document may therefore out of this document may therefore of this document may therefore out of this document may there out of the o eight characteristics listed above. Thus, MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional e any commercial empiries on the industry of the provide and violate t

without the permission of the owner of this documer.

				0.0	
		MON 88701	Control	Referenc	e Range ¹
Phenotypic Characteristic (un	nits)	Mean $(SE)^2$	Mean (SE)	Minimum	Maximun
Stand Count at 14 DAP ³	(# in 2 rows per plot)	146.0 (4.3)	152.4 (4.2)	<b>96.2</b>	143.5
Stand Count at 30 DAP	(# in 2 rows per plot)	131.8 (5.5)	137.7 (5.5)	86.7	140.8
Final Stand Count at harvest	(# in 2 rows per plot)	125.2 (59)	152.4 (4.2) 137.7 (5.5) 128.9 (6.0) 19.7 (1.2) 116.4 (4.2)	88.2	131.4
Plant Height at 30 DAP (cm)	Co	18.3 (1.2)*	(197012)	8.3	23.3
Plant Height at harvest (cm)	A	109.8 (3.8)*	116.4 (4.2)	84.4	131.3
Nodes Above White Flower:	(# of nodes at observation 1)	6.9 (0.2)	116.4 (4.2) 6.7 (0.2) 5.7 (0.2)	5.8	8.6
	(# of nodes at observation 2)	6.0 (0,2)*	5.7 (0.2)	5.1	6.9
	(# of nodes at observation 3) $^{\circ}$	4.9 (0.3)*	4.6 (0.3)	3.7	5.7
Seedcotton Yield (kg/ha)	the share	2937.8 (153.7)	2869.9 (156.0)	2107.0	3636.5
Seed Index (g per 100 fuzzy se	ed)	9.8 (0.2)*	10.5 (0.1)	8.9	11.8
Total Seed per Boll (# per boll)	or s. sub thill f	29.0 (0.4)*	27.4 (0.3)	26.4	30.6
Mature Seed per Boll (# per bo		22.6 (0.7)*	19.7 (0.6)	11.8	27.2
Immature Seed per Boll (# per		6.4 (0.5)	7.7 (0.5)	3.4	16.0
Weight per Boll (g)	$\frac{boll}{boll} \underbrace{H^{(1)}}_{i_{1}} \underbrace{H^{(1)}}_{i_{1$	4.8 (0.1)	4.8 (0.1)	4.2	6.0
Fiber Micronaire (mic units) ⁴	and on on the form	4.6 (0.1)	4.5 (0.1)	4.0	5.0
Fiber Elongation (%)		6.0 (0.1)	6.0 (0.1)	4.8	8.0
Fiber Strength (g/tex)	S of this of thom of	31.8 (0.2)*	31.0 (0.1)	30.7	34.5
Fiber Uniformity (%)	No of a of ion in	84.0 (0.1)	83.7 (0.1)	83.7	84.8
Fiber Length (cm)	O O AN A A A A	2.8 (0.0)	2.9 (0.0)	2.8	3.1
14 01	officients officients				
				1	
Reference range = Minimum and n SE = standard error.	naximum mean values across all 15 sit	es and eleven reference	es from the Study I field	a trial.	
$\Delta P = days after planting$					

Table VII-5. Study 1 Combined-Site Comparison of MON 88701 to Conventional Control during 2010 for Phenotypic and eginand **Agronomic Characteristics** 

 $^{3}\text{DAP} = \text{days after planting.}$  $^{4}\text{Measure of fiber fineness and maturity (expressed in dimensionless micronaire units).}$ 

ve

### VII.C.2.1.2. Field Phenotypic and Agronomic Characteristics of MON 88701 – Study 2

Vigor ratings were collected from each plot using a 1-9 scale, where 1 is outstanding plant vigor and 9 is poorest plant vigor. Due to the non-specific nature of the scale used. the data were not statistically analyzed. There were no differences between MON 88701 and the conventional control in plant vigor (Table G-10) at 14 and 30 DAP for 22 of 22 comparisons from all sites. Therefore, the lack of differences in plant vigor supports a conclusion that MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Section VII.B.1.1.).

In the combined-site analysis of MON 88701 (Table VII-6), no statistically significant differences were detected between MON 88701 and the conventional control for stand count at 14 and 30 DAP, final stand count at harvest, nodes above white flower observations 1 and 3, seedcotton yield, immature seed per boll, weight per boll, fiber micronaire, fiber elongation, fiber uniformity, and fiber length. The following statistically significant differences were detected in the combined site analysis. MON 88701 plants were shorter than the conventional control at the 30 DAP (18.0 vs. 19.2 cm) and at harvest (96.1 vs. 105.0 cm), had increased nodes above white flower at observation 2 (5.5 vs. 5.2), had a decreased seed index (9.4 vs. 10.7 g/100 seed), had increased total seed per boll (29.1 s. 27.0 seed) and increased mature seed per boll (23.3 vs. 20.1), and had increased fiber strength as compared to the conventional control (30.9 vs. 30.2 g/tex). However, the mean values of MON 88701 were within the reference range for the seven characteristics listed above. Thus, MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control. (See Figure VII-1, Step 3, answer "no").

Results of the supplemental evaluation of MON 88701, described above, under the agronomic system in which it is expected to be used (*i.e.*, MON 88701 treated with environmental impact compared to the conventional control (See G.12.3). dicamba and glufosinate herbicides) are provided in Appendix G and further demonstrate that MON 88701 is unlikely to have increased plant pest/weed potential or an adverse

# VII.C.2.1.3. Field Phenotypic and Agronomic Characteristics – Conclusion

The results of the agronomic and phenotypic assessments on MON 88701 from Study 1 and Study 2 demonstrate that the introduction of the dicamba and glufosinate-tolerant traits did not alter MON 88701 compared to the conventional control relating to plant pest/weed potential. Additionally, agronomic and phenotypic assessments of MON 88701 treated with dicamba and glufosinate herbicides were also comparable to the conventional control. Thus, the introduction of the dicamba and glufosinate-tolerant traits into cotton is not likely to result in increased plant pest potential, increased weediness or an altered environmental impact from MON 88701 compared to commercially cultivated cotton.

				.0.	
	_	MON 88701 ¹	Control	Reference	e Range ²
Phenotypic Characteristic (units	3)	Mean (SE) ³	Mean (SE)	Minimum	Maximum
Stand Count at 14 DAP ⁴	(# in 2 rows per plot)	150.5 (4.2)	155.0 (4.4)	<b>5</b> 108.4	135.8
Stand Count at 30 DAP	(# in 2 rows per plot)	149.4 (3.9)	152.8(4.0)	105.8	134.1
Final Stand Count at harvest	(# in 2 rows per plot)	146.3 (4.0)	150.5 (4.3)	110.5	137.7
Plant Height at 30 DAP (cm)	6	18.0 (1.1)*	19.2 (1.1)	<del>ک</del> 11.4	20.7
Plant Height at harvest (cm)	(P)	96.1 (4.2)*	105.0 (4.9)	85.2	121.9
Nodes Above White Flower:	(# of nodes at observation 1)	× 6.6 (0.2) 0 ¹¹ ×	6.4 (0.2)	6.0	7.3
	(# of nodes at observation 2)	5.5 (0.3)*	5.2 (0.3)	4.8	5.7
	(# of nodes at observation 3)	€ 4.1 (0.2) € <u></u>	3.8 (0.2)	3.2	4.6
Seedcotton Yield (kg/ha)	AN SIN	3,334.1 (210.2)	3,164.1 (210.8)	2,181.7	3,970.8
Seed Index (g per 100 fuzzy s	eed)	9.4 (0.2)*	10.7 (0.2)	9.4	12.4
Total Seed per Boll (# per bol		29.1 (0.4)*	27.0 (0.4)	26.1	30.7
Mature Seed per Boll (# per b		23.3 (0.7)*	20.1 (0.8)	14.6	27.0
Immature Seed per Boll (# pe	r boll)	5.8 (0.6)	6.9 (0.6)	2.7	14.4
Weight per Boll (g)	in so to the net the	49(0.1)	4.8 (0.1)	4.5	5.9
Fiber Micronaire (mic units) ⁵	of the chies of publication of the contraction of t	4.7 (0.1)	4.6 (0.1)	4.2	5.0
Fiber Elongation (%)	I WE HE SO WE WITH A	6.1 (0.1)	6.2 (0.1)	5.6	8.1
Fiber Strength (g/tex)	S OT THIS H THOM OF	30.9 (0.2)*	30.2 (0.2)	30.7	34.0
Fiber Uniformity (%)	A C N N ON A	83.6 (0.2)	83.4 (0.2)	82.8	84.3
Fiber Length (cm)		2.8 (0.0)	2.8 (0.0)	2.7	3.1
the states	all of all all a				

### Table VII-6. Study 2 Combined-Site Comparison of MON 88701 to Conventional Control during 2010 for Phenotypic and sug **Agronomic Characteristics**

* Indicates a statistically significant difference ( $\alpha$ =0.05) between MON 88701 and the conventional control (n = 44). ¹ MON 88701 plots were not treated with dicamba or glufosinate.

 2 Reference range = Minimum and maximum mean values across all 11 sites and eight references from the Study 2 field trial. a

³ SE = standard error.

⁵DAP = days after planting. ⁵Measure of fiber fineness and maturity (expressed in dimensionless micronaire units).

### VII.C.2.2. Plant Mapping Characteristics

Plant mapping is a process commonly used by agronomists and breeders to quantify growth and development parameters of a cotton plant, including boll retention (Kerby et al., 2010; Plant and Kerby, 1995). Plant mapping parameters are used to measure crop productivity and are influenced by abiotic and biotic stressors. Plant mapping characteristics (Table VII-7) were evaluated under field conditions to provide USDA-APHIS with a detailed description of MON 88701 boll retention and distribution relative to the conventional control and commercial reference varieties, and to consider differences in context of pest/weed potential.

In addition to the methods discussed in Section VII.C.2.1, 10 plants from each plot in Study 2 were mapped at harvest for the number of mainstem nodes, number of nodes to the first fruiting branch, total number of bolls (sum of first-position, second-position and vegetative bolls), total number of first-position bolls, and total number of vegetative bolls. The percent of first-position bolls relative to total bolls and percent retention of first-position bolls on mainstem fruiting branches were calculated from plant mapping data. The combined-site statistical analysis comparing MON 88701 not treated with either dicamba or glufosinate to the conventional control is summarized below. Results of the individual site data comparisons are presented in Appendix G.13.1. Also the experimental methods and detailed results from the supplemental analyses comparing MON 88701 treated with dicamba and glufosinate herbicides to the conventional control are presented and discussed in Appendix G.13.2.

In the combined-site analysis of plant mapping parameters (Table VII-7), no statistically significant differences were detected between MON 88701 and the conventional control for number of mainstem nodes per plant, number of nodes to first fruiting branch, total number of bolls per plant, vegetative bolls per plant, percent retention of first-position bolls and percent first-position bolls (relative to total bolls). The mean value for first-position bolls per plant was higher in MON 88701 than the conventional control (5.2 vs. 4.6) (Table VII-7). However, the mean value for first-position bolls per plant was within the reference range. Furthermore, similar results of the plant mapping evaluation of dicamba and glufosinate-treated MON 88701, the agronomic system in which MON 88701 is expected to be used, were observed (See Appendix G.13.2; Table G-18). Thus, MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control. (See Figure VII-1, Step 3, answer "no³).

#### Table VII-7. Study 2 Combined-Site Comparison of MON 88701 to Conventional Control during 2010 for Plant Mapping sug **Characteristics**

		4		
	MON 88701 ¹	Control	Referenc	e Range ²
Phenotypic Characteristic (units)	Mean $(SE)^3$	Mean (SE)	Minimum	Maximum
		0 10 JU	xS	
Mainstem Nodes (# per plant)	18.1 (0.4)	18,2(0.4)	16.0	21.6
Nodes to First Fruiting Branch (# per plant)	5.2 (0.2)	5.5 (0.2)	o ^{4.2}	7.6
Total Bolls ⁴ (# per plant)	9.8(0.6)	9.0 (0.7)	8.6	13.4
Total First-Position Bolls (# per plant)	5.2(0.3)*	4.6 (0.3)	2.9	6.3
Total Vegetative Bolls (# per plant)		1.9 (0.6)	0.7	5.0
% Retention of First-Position Bolls (per plant)	42.1 (2.5)	38.6 (2.6)	21.2	53.5
% First-Position Bolls relative to total bolls (per plant	t)	56.5 (2.1)	36.0	59.6
(X)	$c_{11}$ $c_{12}$ $c_{02}$ $c_{13}$ $c_{03}$			

* Indicates a statistically significant difference ( $\alpha=0.05$ ) between MON 88701 and the conventional control (n = 44).

 ¹ MON 88701 plots were not treated with dicamba or glufosinate.
 ² Reference range = Minimum and maximum mean values among eight conventional commercial reference varieties. Monsanto Company Monsanto Company Andrew State Company Sta

#### VII.C.2.3. Environmental Interaction Characteristics

USDA-APHIS considers the environmental interactions of the biotechnology-derived crop compared to its conventional counterpart to determine the potential for increased plant pest characteristics. Evaluations of environmental interactions were conducted as part of the plant characterization for MON 88701. In the 2010, US field trials conducted for evaluation of phenotypic and agronomic characteristics of MON 88701, data were also collected on plant response to abiotic stress (*i.e.*, drought, wind, nutrient deficiency, etc.), disease damage, arthropod-related damage, and arthropod abundance (Appendix G; Tables G-20 through G-29). These data were used as part of the environmental analysis (Section IX) to assess plant pest potential and provide an indication of potential effects of MON 88701 on non-target organisms (NTOs) compared to the conventional control. The results of the field evaluations showed that the dicamba and glufosinate-tolerance traits did not unexpectedly alter the assessed environmental interactions of MON 88701 compared to the conventional control. The lack of significant biologically meaningful differences in plant response to abiotic stress, disease damage, arthropod-related damage, and pest- and beneficial-arthropod abundance supports the conclusion that the introduction of the dicamba and glufosinate-tolerance traits are unlikely to result in increased plant pest potential or an altered environmental impact from MON 88701 compared to commercial cotton.

# VII.C.2.3.1. Study 1 Environmental Interactions of MON 88701

MON 88701 was compared to the conventional control for qualitative and quantitative environmental interactions in Study 1 (See Section VII.C.2.1.). Qualitative assessments were conducted at 15 sites and included plant response to abiotic stressors, disease damage, and arthropod damage. The assessments were conducted four times during the growing season on all plots (4 time points x 4 plot replications = 16 data points per assessment). The first assessment was made at approximately 30 days after planting and the three subsequent assessments at approximately 30 day intervals thereafter.

0

Plant response to abiotic stressors, disease damage, and arthropod damage were assessed at natural levels (no artificial infestation or imposed abiotic stress); therefore these levels typically varied between observations at a site and among sites. Plant response to abiotic stress, and disease damage and arthropod damage data were collected from each plot using a 0-9 scale of increasing severity of observed damage for each stressor. This scale was utilized to allow for the evaluation of the wide variety of potential abiotic stressor, disease damage, and arthropod damage symptoms potentially occurring across the season and across sites. Due to the non-specific nature of the scale used, the data were not statistically analyzed but rather were placed into one of the following categories: none (0), slight (1-3), moderate (4-6), or severe (7-9). MON 88701 and conventional control cotton were considered different in plant response to stressors if the range of injury symptoms across all four replications did not overlap between MON 88701 and the conventional control. Any observed differences between the MON 88701 and conventional control were assessed for biological significance in the context of the range of the commercial reference varieties, and for consistency in other observations and sites. In addition to the qualitative assessment, quantitative arthropod assessments were conducted at five sites and included thrips damage, heliothine damage, and pest- and beneficial-arthropod abundance. Thrips damage was assessed three times (approximately 14, 21, and 28 DAP) during the growing season, heliothine damage was assessed four times (approximately 45, 60, 75, and 90 DAP) during the growing season, and arthropod abundance was assessed from collections performed four times (approximately 30, 60, 90, and 120 DAP) during the growing season.

Thrips damage was quantitatively assessed in each plot from 10 randomly selected plants using the arthropod-specific 0–5 rating scale of increasing severity. Heliothine damage was assessed quantitatively by recording the total number of fruiting bodies (flower buds, flowers, and bolls), number of damaged fruiting bodies and number of live larvae on the top 7 nodes from 10 randomly selected plants of each plot. These numerical data along with the quantitative arthropod abundance data were subjected to statistical analysis.

### VII.C.2.3.1.1. Qualitative Assessment Results - Study 1

lorput In an individual site assessment of qualitative data (Tables VII-8, G-20 through G-22), no differences were observed between MON 88701 and the conventional control for any of the 169 comparisons for plant response to abiotic stressors, including compaction, drought/dry, flood, hail, heat, nutrient deficiency, wet soil/ excess precipitation, and wind damage. Also, no differences were observed between MON 88701 and the conventional control for any of the 170 comparisons for the assessed diseases, including anthracnose, Ascochyta leafblight, bacterial blight, boll rot, cotton leaf rust, damping off, Fusarium wilt, leaf spots, Pythium, reniform nematode, Rhizoctonia, root-knot nematode. Thielaviopsis, and Verticillium wilt. Finally, no differences were observed between MON 88701 and the conventional control for any of the 159 comparisons for the assessed arthropods, including aphids, beet armyworms, cut worms, fall armyworms, fleahoppers, grasshoppers, heliothines, southern corn rootworm beetles, sovbean differences were observed between MON 88701 and the conventional control for plant tesponse to abiotic stressors, disease damage and arthropsed reliable to the stressors damage and arthropsed reliable to the stressors disease damage and arthropsed reliable to the stressors damage and arthropsed reliable to the stressors damage and arthropsed reliable to the stressors damage arthropsed reliable to the stressors damage and arthropsed reliable to the stressors damage arthropse environments, the assessed results support the conclusion that MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Section VII.B.1.1.).

	Number of Observations	Number of Observations with No Observed Differences Between MON 88701 and the
Stressor	Across All Sites	Conventional Control
		~~··
Abiotic stressors	169	169 oji no
Disease damage	170	170
Arthropod-related damage	159	159 (10) (11)
Total	498	498 de units

Study 1 Summary of Qualitative Environmental Interactions Table VII-8. Assessments Including MON 88701 Response to Abiotic Stress, Disease, and Arthropod Damage during 2010

Note: The experimental design was a randomized complete block with four replications (n = 60).

# VII.C.2.3.1.2. Quantitative Assessment Results - Study 1.

.e

In the combined-site analysis of thrips damage data (Table VII-9), no statistically significant differences were detected between MON 88701 and the conventional control. There were no biological differences in thrips damage that would contribute to increased pest potential of MON 88701 compared to the conventional control (See Section VII.B.1.1.).

#### Table VII-9. Study T Combined-Site Comparison of MON 88701 to Conventional Control during 2010 for Assessment of Thrips Damage 0.

Observation MON 88701 (SE)	Control (SE)	Reference range
in a second pilling of a second		
$0^{\circ}$ $1^{\circ}$ $1^{\circ}$ $0^{\circ}$ $0^{\circ}$ $0^{\circ}$ $0^{\circ}$ $0^{\circ}$	0.4 (0.1)	0.0 - 1.2
$(0.0)^{-1}$	0.1 (0.0)	0.0 - 0.2
1 \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</td <td>0.1 (0.0)</td> <td>0.0 - 0.5</td>	0.1 (0.0)	0.0 - 0.5

~ ~ ×

Note: The experimental design was a randomized complete block design with four replications (n  $\neq$  20). No statistically significant differences ( $\alpha$ =0.05) were detected between MON 88701 and the conventional control.

 $^{1}SE =$  standard error.

In the combined-site analysis of heliothine damage data (Table VII-10), no statistically significant differences were detected between MON 88701 and the conventional control for percent damaged fruiting bodies and the number of live larvae. Thus, there is no biological difference in heliothine damage that would contribute to increased pest potential of MON 88701 compared to the conventional control (See Section VII.B.1.1).

#### Table VII-10. Study 1 Combined-Site Comparison of MON 88701 to Conventional **Control during 2010 for Quantitative Assessment of Heliothine Damage**

	Percent Damaged Fruiting Bodies			# of Live Larvae ¹		
Observation	MON 88701 (SE) ²	Control (SE)	Reference Range	MON 88701 (SE)	Control (SE)	Reference Range
1	2.8 (0.9)	1.8 (0.8)	0.0 - 8.7	0.1 (0.1)	0.0 (0.0)	0.0 - 0.2
2	5.3 (3.0)	6.3 (2.8)	1.2 - 28.1	0.2 (0.1)	0.1 (0.0)	0.0-0.5
3	3.7 (0.7)	2.6 (0.5)	1.2 - 5.2	0.1 (0.0)	0.1 (0.0)	0.0 - 0.1
4	6.3 (1.9)	6.9 (1.8)	2.6 - 12.1	0.1 (0.0)	0.1 (0.0)	Ø 0.0 − 0.3

No statistically significant differences ( $\alpha$ =0.05) were detected between MON 88701 and onal control (n = 20). er of immature heliothines. andard error. Note: conventional control (n = 20).

¹ Number of immature heliothines.

 2  SE = standard error.

For arthropod abundance, a total of 178 comparisons were made between MON 88701 and the conventional control for the following pest- and beneficial-arthropods: aphids, cabbage loopers, fall armyworms, fleahoppers, heliothines, southern armyworms, stink bugs, tarnished plant bugs, thrips, white flies, big eved bugs, braconids, lacewings, ladybird beetles, Damsel bugs, Orius spp., and spiders (Araneae) (Tables G-25 and G-26). No statistically significant differences were detected between MON 88701 and the conventional control for 173 out of 178 comparisons, including 89 pest arthropod comparisons and 89 beneficial arthropod comparisons.  $\gamma_{\star}$ 

The five differences detected between MON 88701 and the conventional control included two differences for pest arthropods and three differences for beneficial arthropods (Tables G-25 and G-26). In the pest arthropod assessment, MON 88701 had lower abundance than the conventional control for stink bugs (0.3 vs. 1.8 per plot) and for tarnished plant bugs (0.5 vs. 2.0 per plot) in Collection 4 at the LABU site. For tarnished plant bugs, the mean abundance value for MON 88701 was within the reference range. For stink bugs, the mean abundance value for MON 88701 was outside the reference range. However, the statistical differences detected in stink bugs abundance were not consistent across collections or sites (Table G-25).

In the beneficial arthropod assessment, MON 88701 had increased abundance compared to the conventional control (Table G-26) for Damsel bugs in Collection 2 at the GACH site (6.0 vs. 2.3). MON 88701 had lower abundance than the conventional control for Orius spp. in Collection 2 (0.0 vs. 1.5 per plot) and collection 3 (0.5 vs. 2.8 per plot) at the ARAU site. The mean abundance value for MON 88701 was within the reference ranges for the differences detected for Damsel bugs The mean abundance values for Orius spp. in Collection 2 and collection 3 at the ARAU site were outside their respective reference range. However, the differences detected for Orius spp. were not consistently detected across collections or sites (Table G-26).

Since the arthropod differences detected were not consistently observed at other collections and sites, MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Section VII.B.1.1.).

### VII.C.2.3.2. Study 2 Environmental Interactions of MON 88701

MON 88701 was compared to the conventional control for qualitative environmental interactions in Study 2 (See section VII.C.2.1.). Only qualitative assessments were conducted at all 11 sites and included plant response to abiotic stressors, arthropod damage, and disease damage. The observations of plant response to abiotic stressors, disease damage, and arthropod damage were performed four times during the growing season at each site on all plots (4 replications). The first observation was made at approximately 30 days after planting and the three subsequent observations at a ralor publi approximately 30 day intervals thereafter. (Section VII.C.2.3.1). VII.C.2.3.2.1 Qualitative Assessment Results – Study 2

In an individual site assessment for Study 2 qualitative data (Table VII-11, G-27, G-28 and G-29), no differences were observed between MON 88701 and the conventional control for any of the 127 comparisons for plant response to abiotic stressors, including compaction, drought (dry), flood, hail damage, heat, nutrient deficiency, wet soil (excess precipitation), and wind damage Also, no differences were observed between MON 88701 and the conventional control for any of the 129 comparisons for the assessed diseases, including anthracnose, ascochyta leaf blight, bacterial blight, boll rot, cotton leaf rust, damping off, Fusarium wilt, leaf spots, Pythium, reniform nematode, Rhizoctoria, root-knot nematode, thielaviopsis, and Verticillium wilt. Finally, no differences were observed between MON 88701 and the conventional control for any of southern corn rootworm beetle, soybean loopers, spider mites, stink bugs, tarnished plant bugs, thrips and white flies. Since no differences were observed 1 MON 88701 and the conventional contraints damage, and arthropod-related damage in multiple environments, the assessed results are similar to those in Study P and support the conclusion that the biotechnology-derived traits in MON 88701 are unblikely to be traits in MON 88701 are unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Section VII.BJ.1.)ON the prohibited

	with No Observed
Number of	Differences Between
Observations	MON 88701 and the
Across All Sites	Conventional Control
	Q1°
127	127 jin d
129	129 0 21
129	129
385	C 385 15
	Observations Across All Sites 127 129 129

Table VII-11.Study 2 Summary of Qualitative Environmental InteractionsAssessments Including MON 88701 Response to Abiotic Stress and Disease andArthropod-related Damage during 2010

Note: The experimental design was a randomized complete block with four replications (n = 60

### VII.C.2.3.2.2. Plant Mapping as an Indicator of Plant Response to Environmental Stress

Final boll retention and distribution, as reflected in the plant mapping data, can provide an indication of the effect that abiotic and biotic stressors had on a cotton plant because squares and early bolls tend to abort if the plant experiences stress (1996), 1982; Kerby et al., 2010; University of California, 1996). For example, if plants experienced severe stress during early flowering, this could result in fewer bolls on the lowermost fruiting branches compared to unstressed plants. If plant map results are similar between two cotton lines this usually indicates that plants responded to stress in a similar manner. Within a study location and based on the proximity of plots within a location, it can be concluded that all plots would be subjected to similar stressors.

As previously indicated, there were no differences in plant mapping parameters between MON 88701 not treated with dicamba or glufosinate herbicides and the conventional control that would be indicative of a differential plant response to abiotic or biotic stressors (Study 2, Section VIICC.2.2, Table VII-7). Similar results were observed for MON 87701 plots treated with dicamba and glufosinate (Table G-18). Thus, since all Study 2 plots would be subjected to similar stressors and since MON 88701 treated and not treated with dicamba or glufosinate herbicides had similar plant map results, each compared to the conventional control (See Tables VII-7 and G-18); it can be concluded that both responded to stressors in a similar manner. Results showed that only the mean number of first-position bolls was significantly different in both comparisons of MON 88701 not treated compared to the conventional control (5.2 vs. 4.6, respectively) and MON 88701 treated compared to the conventional control (5.2 vs. 4.6, respectively). Both of the mean values of the number of first-position bolls in MON 88701 were within the reference range. Therefore, these data support the conclusion that the biotechnology-derived traits in MON 88701 are unlikely to have increased plant pest potential, increased

weediness, or an adverse environmental impact compared to commercially cultivated cotton.

### VII.C.2.3.3. Conclusions - Qualitative and Quantitative Environmental Interactions

The results of the qualitative and quantitative data of MON 88701 from Study 1 and qualitative data from Study 2 showed that the dicamba and glufosinate-tolerance traits did not unexpectedly alter the assessed environmental interactions of MON 88701 compared to the conventional control. The lack of significant biological differences in plant responses to abiotic stress, disease damage, arthropod-related damage, thrips/damage, heliothine damage, and pest- and beneficial-arthropod abundance for MON 88701 supports the conclusion that the introduction of the dicamba and glufosmate-tolerance traits are unlikely to result in increased plant pest potential, increased weediness or an altered environmental impact from MON 88701 compared to commercially cultivated cotton, irrespective of whether or not dicamba and glufosinate herbicide treatments were

applied. VII.C.3. Pollen Characteristics USDA-APHIS considers the potential for gene flow and introgression of the biotechnology-derived trait(s) into other cotton varieties and wild relatives to assess the potential for increased weedy or invasive characteristics of the receiving species. Pollen morphology and viability information are pertinent to this assessment and, therefore, were assessed for MON 88701. In addition, characterization of pollen produced by MON 88701 and the conventional control is relevant to the plant pest risk assessment because it adds to the detailed description of the phenotype of MON 88701 compared to may the conventional control. 20

The purpose of this evaluation was to assess the morphology and viability of pollen collected from MON 88701 compared to that of the conventional control. Pollen was collected from MON 88701, the conventional control, and four commercial reference varieties grown under similar agronomic conditions in Crittenden County replications Five flowers (subsamples) were collected from each plot; pollen was extracted from each flower and stained with Alexander's stain (Alexander, 1980). Pollen viability was evaluated for each subsample and pollen grain diameter was evaluated for ten representative viable pollen grains per subsample. General morphology of the pollen was observed for each subsample. MON 88701 was compared to the conventional control for percentage viable pollen and pollen diameter. A reference range was calculated from the minimum and maximum mean values of the commercial reference varieties to provide pollen viability and pollen diameter values representative of commercial cotton (See Appendix H).

> No statistically significant differences ( $\alpha$ =0.05) were detected between MON 88701 and the conventional control for percentage viable pollen or pollen grain diameter (Table VII-12). Furthermore, no visual differences in general pollen morphology were observed between MON 88701 and the conventional control. These results demonstrate that the

introduction of the dicamba and glufosinate-tolerance traits did not alter the overall morphology or pollen viability of MON 88701 compared to the conventional control (See Figure VII-1, Step 2, answer "no"). The pollen characterization data contribute to the detailed phenotypic description of MON 88701 compared to the conventional control. The results support an overall conclusion that MON 88701 is not different than the and the second and th conventional control in terms of plant pest or weed characteristics and is no more likely to pose a plant pest risk than commercially cultivated cotton.

Tuthering contraction and use of this document of the contraction and use of the contraction of the contraction and use of the con

Consequently and publication of the owner of this document may therefore owner of this document may there owner owner of this document may there owner any connectate permission and violate the indits of this owner.

without the permission of the owner of this documer.

This document is the property of Bayer AC intellectual property and is the property of Bayer AC intellectual property and is intellectual property and intellectual property and is intellectu

	MON 88701	Conventional Control	Reference	ce Range ¹
Pollen Characteristic	Mean $(S.E.)^2$	Mean (S.E.)	Minimum	Maximum
Viability (%)	97.8 (0.46)	97.9 (0.40)	96.0	98.2
Diameter (µm)	95.2 (1.49)	92.2 (1.47)	94.0	95.2

Table VII-12. MON 88701 Compared to the Conventional Control during 2010 forPollen Characteristics

The experimental design was a randomized complete block design with four replications (n = 4). No significant differences were detected between MON 88701 and the conventional control ( $\alpha$ =0.05) using analysis of variance (ANOVA).

^{$\hat{1}}$  Reference ranges = Minimum and maximum values of four commercial reference varieties.</sup>

 2  S.E. = Standard Error.

## VII.D. Conclusions for Phenotypic, Agronomic, Plant Mapping, and Environmental Interactions Evaluation

ò, Domesticated cotton lacks characteristics that are commonly associated with plants that are considered weeds (e.g. seed dormancy, seed dispersal mechanisms, ability to compete with and displace native vegetation). An extensive and robust set of information and data were used to assess whether the introduction of the dicamba and glufosinate-tolerant traits altered the plant pest potential of MON 88701 compared to the conventional control. These assessments included five general data categories: 1) seed dormancy and germination characteristics; 2) agronomic and phenotypic characteristics; 3) plant mapping characteristics; 4) observations of abiotic stress response, disease damage, arthropod related damage, and pest- and beneficial-arthropod abundance; and 5) pollen characteristics. Results from these assessments comparing MON 88701 and the conventional control demonstrate that MON 88701 does not possess weedy characteristics, increased susceptibility or tolerance to specific abiotic stressors, diseases, or arthropods, or characteristics that would confer a plant pest risk or significant environmental impact compared to conventional cotton. Therefore, based on the results of multiple assessments discussed above, MON 88701 is comparable to commercially cultivated cotton, and is no more likely to pose a plant pest/weediness risk or have a significant environmental impact. Consecond the period at any without of the providence of the providence of the providence of the period of the per

### VIII. U.S. AGRONOMIC PRACTICES

#### VIII.A. Introduction

As part of the plant pest assessment required by 7 CFR § 340.6(c)(4), impacts to agricultural and cultivation practices must be considered. This section provides a summary of current agronomic practices in the U.S. for producing cotton and is included in this petition as a baseline to assess possible impacts to agricultural practices due to the cultivation of MON 88701. Discussions include cotton production, seed production, plant growth and development, general management practices during the season, management of insects, diseases and weeds, cotton rotational crops, and volunteer cotton Information presented in the previous section demonstrated that management. MON 88701 is no more susceptible to diseases or pests than commercially cultivated cotton. Additionally, data presented in Section VII show that, with the exception of tolerances to both dicamba and glufosinate herbicides, MON 88701 is phenotypically equivalent to commercially cultivated cotton. Thus, there are no changes to the inputs needed for MON 88701, and no likely impacts to the majority of the agronomic practices employed for the production of cotton. Agronomic practices that maybe influenced from 30 the deregulation of MON 88701 are discussed.

Cotton production in the U.S. is limited primarily by climate. Cotton is a woody, warmseason perennial plant that is planted in 17 states across the southern U.S. Aside from temperature, the most influential climatic factor impacting cotton agronomic practices is moisture. Rainfall requirements and patterns are a major determinant of the cotton production practices adopted in both dryland and irrigated cotton. The length of the season may vary between cotton production regions, but the production cycle and production practices used are fairly consistent among geographic regions and between the upland and Pima cotton types. Proper seedbed preparation, appropriate variety selection, appropriate planting dates and plant population, and good integrated pest management practices are important for optimizing the yield potential and economic returns of cotton.

Annual and perennial weeds are a serious problem and must be managed in order to maximize cotton yield and quality. Weeds compete with cotton for water, nutrients, and light, resulting in reduced cotton lint yields and lint quality when left uncontrolled. Weed species in cotton vary from region to region and from state to state, but the economic thresholds of cotton require some form of weed management practice on all cotton acreage. Weed management practices include mechanical tillage, crop rotations, cultural practices (e.g., planting clean seed, cleaning tillage and harvesting equipment), and hetbreide application. Numerous selective herbicides are utilized for preplant, preemergence, and postemergence control of annual and perennial weeds in cotton. Approximately 97% of the cotton acreage in the U.S. receives a herbicide application. Herbicide-tolerant cotton is currently grown on 78% of U.S. cotton acres (Brookes and Barfoot, 2012) and glyphosate-tolerant cotton weed control systems have become the standard program for weed management in cotton since commercial introduction of glyphosate-tolerant cotton in 1997 (Brookes and Barfoot, 2012). Glyphosate-tolerant cotton which has resulted in reduced soil erosion, reduced fuel and labor costs, improved water

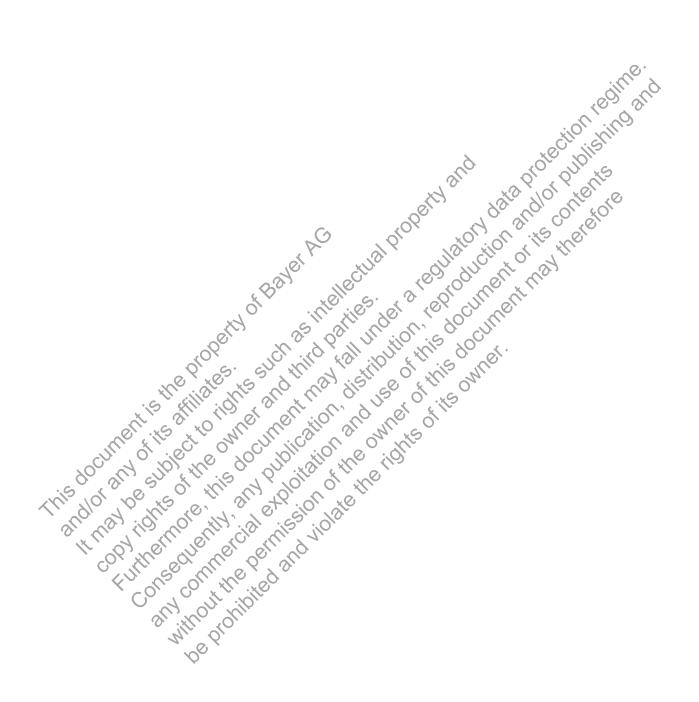
quality, and conserved soil moisture. Herbicides can replace the need for preplant tillage for weed control in no-tillage production systems. Insect pests, diseases, and nematodes are also common and continuous threats to cotton production and integrated pest management programs must be implemented to prevent yield losses due to these pests.

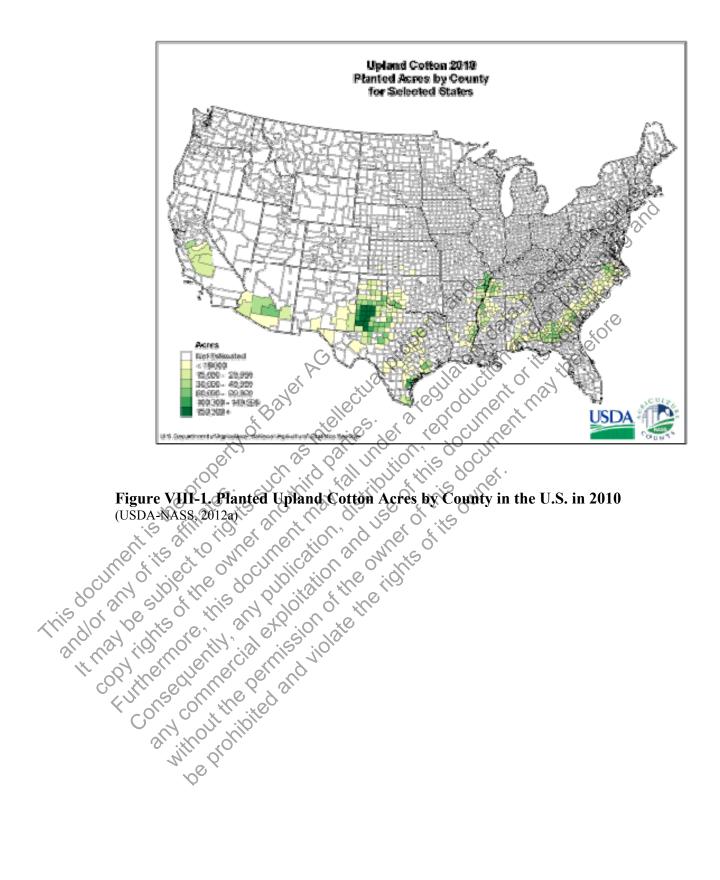
Volunteer cotton (*i.e.*, cotton plants that have germinated and emerged unintentionally in a subsequent crop) is not considered a significant problem in rotational crops primarily because mechanical and chemical control methods are available to manage the occasional volunteer cotton plant. Preplant tillage generally destroys volunteer cotton plants prior to planting rotational crops. Volunteer cotton is generally more of a problem in no-till cotton because of the lack of preplant tillage, but herbicides are available for control of Given that MON 88701 is agronomically, volunteer cotton in rotational crops. phenotypically, and ecologically comparable to commercially cultivated cotton, the introduction of MON 88701 in the cotton production system is expect to have no impact on the management of cotton volunteer plants in rotational crops such as corn, soybean, sorghum, and wheat. The numerous control measures that are effective on conventional and glyphosate-tolerant volunteer plants will continue to be effective on volunteer MON 88701 plants if they arise. See Section VIII.H.1 for additional information on control of MON 88701 volunteers.

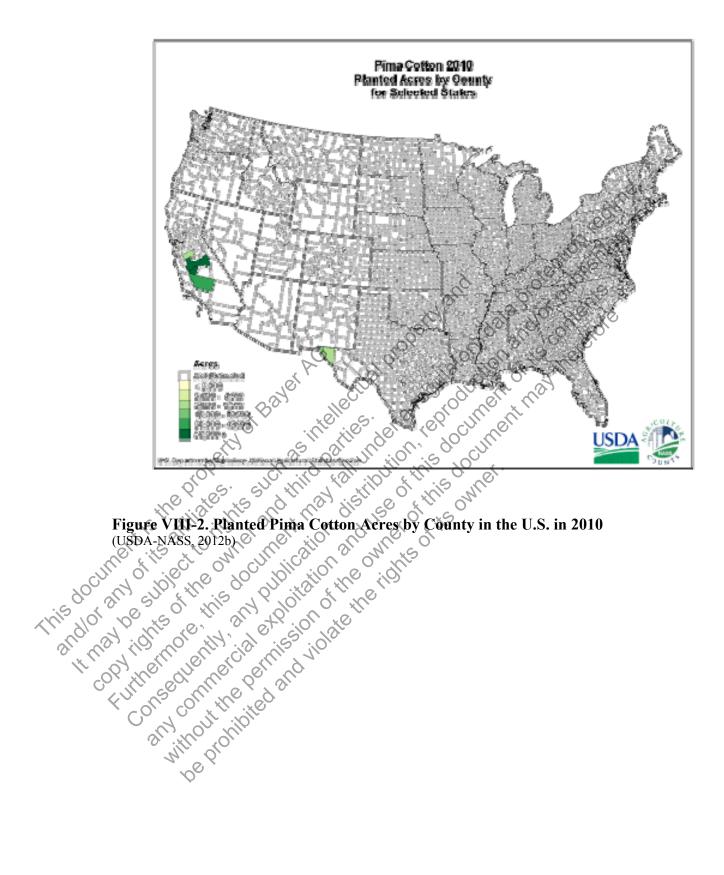
As shown in Sections VI and VII, with the exception of the tolerances to both dicamba and glufosinate herbicides, no biologically meaningful differences were observed in composition, phenotype, or environmental interactions between MON 88701 and commercially cultivated cotton. Moreover, herbicide-tolerant cotton is currently grown on 78% of U.S. cotton acres (Brookes and Barfoot, 2012). Therefore, it is anticipated that commercialization of MON 88701 in the U.S. is not likely to impact current cotton cultivation and/or agronomic practices, beyond the intended benefits of effective management of common and troublesome weeds, including herbicide-resistant weeds.

# VIII.B. Overview of U.S. Cotton Production

VIII.B.1. Cotton Production The majority of 4th Quantity quantity of the lint produced, and with the exception of contracted acres for planting seed ptoduction. Dittle consideration is given by grouper to the and its by-products. Most of the world's cotton production (116.40 million bales annually) is grown in China (30.5 million bales), India (26.4 million bales), United States (18. Pmillion bales), Pakistan (8.6 million bales) and Brazil (9.0 million). Figures are from the 2010/2011 cotton season (USDA-FAS, 2012). In 2010/2011, the U.S. supplied over 14 million bales of the world's cotton exports, accounting for approximately 40% of the total world export market for cotton (USDA-FAS, 2011). China, Bangladesh, Indonesia, and Turkey are major importers of cotton. The largest customers for U.S. cotton are Asian countries and Mexico, due to the prevalence of textile manufacturing (NCCA, 2010). Cottonseed production currently results in approximately 10% of the world's oilseed production (USDA-FAS, 2010), and is exceeded by soybean (58%) and rapeseed (13%).


*Gossypium hirsutum* (upland cotton) cultivars account for more than 90% of the world's annual cotton crop and 97% of the U.S. cotton production (Smith and Cothren, 1999; USDA-NASS, 2011e). *G. barbadense*, known as extra-long staple, Pima, or Egyptian cotton, is also grown in the U.S, which accounts for approximately 3% of the acreage in the U.S. (USDA-NASS, 2012c). The long, strong, fine fibers produced by Pima are ideal for specialized uses, but due to the geographic limitation for optimum production it is economically less viable than the *G. hirsutum* cultivars in the U.S. Pima cotton requires a longer growing season than upland cotton, and production is limited to the Southwestern states.


Cotton is a crop that produces two commodities: fiber and seed. The modern cotton gin has enhanced the value of cotton commodities by separating the fiber from the seed and by removing foreign matter, while preserving the inherent qualities of the fiber and seed (Smith and Cothren, 1999). The fiber is the more valuable product of the crop, normally accounting for approximately 85% of the value. For every 100 pounds of fiber produced by the cotton plant, it also produces about 162 pounds of cottonseed (NCCA, 2010). Cottonseed is crushed for oil and meal used in both food products and in livestock feed.


Cotton (*Gossypium* spp.) is grown in the U.S. across southern states where the climate is warmer and the season is longer (Figures VIII-1 and VIII-2). The total U.S. cotton acreage in the past 10 years has varied from approximately 9.15 to 15.77 million planted acres, with the lowest acreage recorded in 2009 and the highest in 2001 (Table VIII-1). Average cotton yields have varied from 632 to 879 pounds per acre over this same time period. Total annual cotton production ranged from 12.19 to 23.89 million bales (480 pounds/bale) over the past ten years. The variations observed in cotton acreage and production is driven by current market conditions, rather than agronomic considerations. According to data from USDA-NASS (USDA-NASS, 2011b), cotton was planted on approximately 11 million acres in the U.S. in 2010, producing approximately 18 million bales of cotton (Table VIII-1). The value of cotton production reached \$7.32 billion in the U.S. in 2010 (USDA-NASS, 2011b).

U.S. cotton production is divided into the following four major cotton growing regions, which span the southern and southwestern states: Southeast region (AL, FL, GA, NC, SC, and VA), Midsouth region (AR, LA, MS, MO, and TN), Southwest region (KS, NM, OK, and TX), and West region (AZ and CA) (Table VIII-2). Cotton planting and production figures for these regions in 2010 are shown in Table VIII-2 and discussed below (USDA-NASS, 2011e). Approximately 5.6 million acres of cotton were planted in Texas, representing about 51% of the total U.S. cotton acres. Texas produced 8.1 million bales (480 pounds/bale) of cotton, which represents approximately 44% of the U.S. cotton production. The second largest production. Average cotton yields across the four cotton growing regions ranged from 727 to 1416 pounds cotton lint per acre, with the highest yields in the West with full irrigation, and the lowest yields in areas such as Alabama, Oklahoma, and Texas, where little to no irrigation is employed (Table VIII-2). The average cotton yield across all regions is 821 pounds cotton lint per acre. The value of the cotton lint production among the four regions ranged from \$0.86 billion in the West region to \$3.35 billion in the Southwest region. The total value of the cottonseed

production in the U.S. in 2010 was \$1 billion with the value among the regions ranging from \$134 million in the West region to \$461 million in the Southwest region.







-						
		Acres	Acres	Average		
		Planted	Harvested	Yield	<b>Total Production</b>	Value
-	Year	(×1000)	(×1000)	(lbs/acre)	(480 lb bales)	(billions \$)
	2010	10,973	10,707	821	18,314,500	7.318
	2009	9,150	7,691	777	12,187,500	3.788
	2008	9,471	7,569	813	12,815,300	3.021 5.653 5.013 5.695
	2007	10,872	10,489	879	19,206,900	\$.653
	2006	15,274	12,732	814	21,587,800	5,013
	2005	14,245	13,803	831	23,890,200	\$.695
	2004	13,659	13,057	855	23,250,700	4.853
	2003	13,480	12,003	730	18,255,200	5.517
	2002	13,958	12,417	665	17,208,600	3.777
	2001	15,769	13,828	705	23,890,200 23,250,700 18,255,200 17,208,600 20,302,800	3.122
	2000	15,517	13,053	632	17,188,300	<u>4.260</u>
				No.	100 alle con si	) <b>,</b>
	l (USDA-l	NASS, 2011b)	S	or to	it's of	
			SY IS	al la	Ctill of J till	
		property of Bringhouse and	ye. div	60, 91	in an	
		<u>ک</u>			nº d'	
		, 0	inte xiles	Set tot Cr		
		(KA)	Sali	10 00, 90		
		in the second se	6.97 M	will will bo	<u></u>	
This docum		or g. gut			no	
	in ^e		o and there	CO ( HI ON		
	.5.5	Ellis all si		2° (0°		
	Nº O		St till all	ine or		
	(°', '1')	t'to Mi Jr		N' tS		
الای	, 0 ¹ , 6		Oll tion of			
800	a will	, 11°. 5°, 9°	A A A A A A A A A A A A A A A A A A A	3		
is it		a the at i				
Lui glo	V MB	er o et				
all all	$\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}_{\mathcal{O}}}}}}}}}}$		155,1010			
14	A ett.	Joi of off	6			
CO CO	C HI C	x lue be	St.			
<	in the	01. 110,00				
	01					
		NO OUI				
	S.	1. 01		den redou oution this do use of this out	23,890,200 23,250,700 18,255,200 17,208,600 20,302,800 17,188,300	
	-	ve				
		Ŧ				

 Table VIII-1. Cotton Production in the U.S., 2000-2010¹

	Acres Planted	Acres Harvested	Average Yield	Total Production	Cotton Lint \$	Cottonseed \$
Region/State	(thousands)	(thousands)	(pounds/acre)	(thousand bales)	Value (thousands)	Value (thousands)
Southeast Region			60 L	10.0		
Alabama	340	337	684	480	199,066	20,856
Florida	92	89	809	150	54,792	5,720
Georgia	1,330	1,320	811	2,230	926,966	91,120
North Carolina	550	545	854	970	338,957	44,992
South Carolina	202	201	872	365	136,656	16,756
Virginia	83	82	685	2 197.0	46,051	6,300
Region Totals	2,597	2,574	<u>804</u>	4312	0 1,702,488	185,744
<b>Midsouth Region</b>		02	N° N°CL	(85,00°,01)		
Arkansas	545	540	1,049	N1,180	395,914	71,400
Louisiana	255	250	25 864 JA	4312 1,180 450 1,180 450 1,180 685 685 680 680	174,960	24,024
Mississippi	420	415	983	10 NS 850 .	308,856	44,616
Missouri	310	0100 ⁴¹⁵ 308 51	983 1,068	685	226,214	40,630
Tennessee	390	387	843,55,5	680	275,482	42,180
<b>Region Totals</b>	1,920 😒	1,900	971	3,845	1,381,426	222,850
Southwest Region	<u>1</u>	5'0, 10, 10, 10	C. Allo allo M	N° SOI		
Kansas		<b>1,900</b> <b>1,900</b> 49 49 49 1,270 49	1,068 843 971 1,084 738 723 727	450,111 850 685 680 <b>3,845</b> 80 110	34,675	3,712
New Mexico	00,50	N. 18 249 0	1,084	110	46,721	7,215
Oklahoma	285	0 1270	738	415	180,276	20,727
Texas	285 5,567 5,953	S & 5,367 of	723	8,082	3,083,472	429,814
<b>Region Totals</b>	5,953	5,734	15 10 727	8,687	3,345,144	461,468
West	12 07 0	i alle elle elle	6			
Arizona	1981	20 AN 196	0 1,460	595	246384	46,200
California	306	303 10	1,388	876	610042	87,599
<b>Region Totals</b>	504	5,734 196 303 499 10,707	1,416	1,471	856,426	133,799
U.S. Total	10,973 ⁰	10,707	821	18,315	7,317,704	1,003,861

Monsanto Company

#### VIII.B.2. Cotton Seed Production

Standardized seed production practices are responsible for maintaining high-quality seed stocks, which is essential for U.S. agriculture. The value of seed quality (including genetic purity, vigor, and absence of weed seed, seed-borne diseases, and inert materials, such as dirt) are a major factor impacting crop yield potential. States developed seed laws and certification agencies to ensure that purchasers who received certified seed could be assured that the seed met established seed quality standards (Bradford, 2006). The federal government passed the U.S. Federal Seed Act of 1939 to recognize seed certification and the establishment of official certifying agencies. Regulations first adopted in 1969 under the Federal Seed Act recognize land history, field isolation, and varietal purity standards for foundation, registered, and certified seed Under international agreements such as the Organisation for Economic Co-operation and Development (OECD) system, the U.S. and other countries mutually recognize minimum seed quality standards (Bradford, 2006). The Association of Official Seed Certifying Agencies (AOSCA) represents state and private seed certification organizations in the U.S., and includes international member countries in North and South America, Australia, and New Zealand.

Cotton seed is separated into four seed classes: 1) breeder; 2) foundation; 3) registered; and 4) certified (AOSCA, 2012). Breeder seed is seed directly controlled by the originating or sponsoring plant breeding organization or firm. Foundation seed is firstgeneration seed increased from breeder seed and is handled in a manner to maintain specific levels of varietal purity and identity. Registered seed is the progeny of foundation seed that is handled to maintain satisfactory varietal purity and identity. Certified seed is the progeny of breeder, foundation or registered seed, and is typically two generations removed from foundation seed. While not all cotton seed sold to growers is officially certified, commercial cotton seed sold and planted for typical cotton production is produced predominately to meet or exceed certified seed standards. This section of the petition will provide a broad overview of the practices used in producing certified seed.

The majority of the cotton seed is produced in Texas with significant quantities produced in Arizona, Arkansas, California, and Mississippi (McDonald and Copeland, 1997). The entire seed production process at the majority of the seed companies uses International Organization for Standardization (ISO) certification standards and therefore include internal and external audits (ISO, 2009). ISO standards ensure desirable characteristics of seeds and services, such as quality, safety, reliability, and efficiency. The ISO standards represent an international consensus on good management practices with the aim of ensuring that the organization can consistently deliver excellent products or services. The standards must meet the customer's requirements, applicable seed regulatory requirements, and continually improve the process and process control systems (ISO, 2009). Agronomic practices for producing cotton seed are similar to commercial cotton production. However, increased management is needed in certain agronomic practices (*e.g.*, fertility, water management, cultivation, use of plant growth regulators, etc.) to produce seed with high quality, high germination rates, and high genetic purity.

After harvest and the ginning and delinting processes, commercially certified cotton seed must meet state and federal seed standards and labeling requirements. AOSCA standards for certified cotton seed are as follows: 98% pure seed (minimum), 2% inert matter (maximum), 0.02% weed seed (maximum), 0.3% other crop seeds (maximum), and 70% germination (minimum) (AOSCA, 2009). The cotton seed industry historically sets a minimum of 80% germination for labeling purposes. State seed certification standards vary slightly from state to state and can be more restrictive than the seed standards of AOSCA.

When deregulated, MON 88701 seed will be produced in the same manner as commercially certified cotton seed, such that it will meet all state and federal seed commercially certified cotton seed, such that it will meet an state and rederal seed standards and labeling requirements.
VIII.C. Production Management Considerations
VIII.C.1. Pre-Season
Production decisions regarding crop rotation, tillage system, soil fertility, variety election and rederal seed to be dependent of the extent of the extent

selection, and row spacing need to be made well in advance of planting the cotton crop. Many of the decisions in this area are made prior to or immediately after harvest of the previous crop. The rotation of cotton with other crops should be an integral part of a farm management program. Ideally, cotton should be rotated with other crops on a regular basis to maintain soil productivity and reduce the incidence of various weeds, insect pests or diseases (Hake et al., 1996d). However, production costs, relative rate of return, and the current market conditions will dictate which crops to rotate with cotton or whether to grow continuous cotton. See Section VIII.H for additional details on crop rotation practices in cotton. ONT

Tillage has been an integral part of production agriculture and is synonymous with seedbed preparation. The primary purposes of preplant tillage are to incorporate residue from the previous crop, reduce wheel traffic compaction from the previous season, improve water filtration and soil aeration, control weeds, loosen the soil for root penetration, and provide a suitable environment for the planting and germination of cottonseed (Hake et al, 1996d). Decreased profitability in cotton production, as well as soil erosion concerns, have increased interest in conservation tillage systems. The benefits of conservation tillage or no-till systems are well documented and include reduced soil erosion, reduced fuel and labor costs, and conservation of soil moisture (CTIC, 2011).

Maintaining optimum crop nutrition is critical in achieving high yields and quality in cotton. Pre-season soil test results for nitrogen, phosphorus, and potassium plus determination of pH, together with previous cropping and fertilization history determine the fertilizer and liming needs for the upcoming cotton crop. In the Southwest and West regions, monitoring soil salinity is of additional importance because cotton is most sensitive to sodium and salts during the germination and seedling growth stage (Hake et al., 1996d). Soil salinity will severely delay emergence, which can make the plants more vulnerable to seedling disease.

Yield potential has generally been the most important factor considered by growers in variety selection (Smith and Cothren, 1999). Growers also need to consider fiber properties (e.g., length, strength, micronaire, etc.), cold tolerance, seedling vigor, heat tolerance, leaf hairiness, insect and disease resistance, maturity, and a number of other factors. Cotton varieties are classified into three maturity groups: short-, medium-, or long-season varieties (Smith and Cothren, 1999). More determinate plants are planted in the short season northern portions of the cottonbelt and longer-season or more indeterminate varieties planted in the south. Growers in areas of western Texas and Oklahoma have tended to select 'stripper' or 'stormproof' varieties which produce a boll that is more resistant against yield loss under storm and hail conditions. "Picker" cotton varieties grown in the high plains of Texas produce large open bolls and are susceptible to yield loss from seasonally strong thunderstorm activity. Growers are advised to plant three or four varieties to reduce the risk of planting the entire farm to a poor-yielding variety or using traits that do not add value to their cropping system (NCCA, 2007).

VIII.C.2. Planting and Early Season The yield potential of a cotton crop is determined in the first 30 to 40 days after seed is and , 1982). Planting date management is an placed in the ground ( important element in achieving early fruit set, and establishing a strong yield potential (Smith and Cothren, 1999). Cotton should be planted into prepared seedbeds that are firm, warm, and moist. Cotton specialists recommend planting cotton when soil temperatures at seeding depth are at 64° F or higher at 8 a.m. for three consecutive days, , 1982; Smith and Cothren. with a favorable five-day forecast ( and and development before entering phases of rapid vegetative and reproductive growth. The growth of the cotton plant is temperature dependent and growth ceases will average daily temperature falls below 60° D period of slow development that cotton must be protected from damaging weed, insect, and disease pests to prevent yield losses (Hake et al., 1996b; Smith and Cothren, 1999).

When planting is delayed significantly due to time constraints or weather conditions. growers are advised to switch to more determinate (short-season) type varieties. Planting good quality seed with a germination of 85% or higher is also important for establishing a good and uniform stand of cotton ( and 1982). The single most important practice for minimizing damage from seedling diseases is selection of highquality planting seed (Smith and Cothren, 1999). Most cottonseed sold commercially is treated with a fungicide to protect the germinating seed and seedlings from seed- and soil-borne pathogens (Smith and Cothren, 1999).

Plant population management contributes toward early fruiting, good fruit retention, and improved earliness of crop maturity (Smith and Cothren, 1999). Seeding rates vary across the cotton growing region of the U.S. The seeding range will vary depending upon row-spacing, soil classification, available moisture, and overall environmental conditions. Cotton has the ability to compensate in response to row spacing and plant populations. However, higher plant densities tend to cause cotton plants to grow taller, develop more vegetative growth, and create more shading within the canopy (Smith and Cothren, 1999). These characteristics can result in delayed fruiting, alter the reproductive/vegetative balance, and decrease fruit retention. Conversely, low populations can delay overall plant maturity, allow sunlight to penetration through the canopy contributing to more weeds, and result in insufficient structure to produce adequate fruit which can influence overall harvestable yields.

#### VIII.C.3. Mid- to Late-Season

After early development, the next critical stage in the development of a cotton crop is rapid vegetative growth that includes the initiation of the first 'squares.' These floral buds develop into the subsequent fruiting forms called bolls. Fruiting development generally begins with the formation of fruiting branches on nodes four through eight (**1996**). After the accumulation of 40 to 60 days following emergence, the first square becomes visible, which is normally five to eight weeks after planting, depending on the area and temperature (**1996**). Approximately 85% of the total bolls that are harvested come from squares set during the first four to five weeks of squaring (**1996**). Therefore, it is critical to properly manage cotton during this period to maximize yields.

Management practices, such as water management, plant nutrition management, and weed, disease, and insect control are critical during this reproductive growth phase. To maximize yield fruiting square and resulting boll retention is critical, especially the first bolls set on the plant. The first three 'positions' on each reproductive branch are the key sites for fruiting and will account for the vast majority of the plant's yield (**1998**). Further, the first-position, or squares nearest the main stem, will account for over 50% of the total lint produced per plant. The second-position squares account for another one-third or more of the harvest, while squares further out on each reproductive branch produce 15% or less of the final number of mature bolls harvested that contribute to yield (**1998**).

Most growers or crop consultants currently use a number of measurements during midseason to monitor and manage cotton plant growth. Although each will not be discussed in detail here, the grower may monitor any one or more of the following parameters: 1) plant height; 2) number of mainstem nodes; 3) node number of first fruiting branch; 4) total number of fruiting branches; 5) height-to-node ratios; and 6) square or fruit retention (Hake et al., 1996c). These parameters are commonly referred to as plant mapping. In general, as cotton is a perennial grown as an annual the cotton grower is seeking to favor reproductive growth at the expense of vegetative growth. This transition from vegetative to reproductive growth influences crop maturity and season length. Available options to influence cotton plant growth include the use of a plant growth regulator such as mepiquat chloride, fertility management (primarily nitrogen and potassium), and water management. Also, weed management and insect pest control are

important at mid-season, both of which can dramatically decrease both square and immature boll retention.

As the end of the growing season approaches, the yield is established and management efforts shift to protecting the crop yield and quality. The stage in cotton when vegetative growth ceases is generally referred to as "cut-out" (Hake et al., 1996a). When the nodes above the first-position white flower decline to four or five, cut-out has been reached. This is also the point at which the last effective bloom, which could contribute to yield, is on the plant. The timing of cut-out is critical for both yield and quality of cotton. If cutout occurs too early, due to environment and management practices, the crop may not take full advantage of the available season. Late cut-out is often associated with poor Jolishing at

early-season fruit retention and results in delayed maturity and harvest. VIII.C.4. Preharvest and Harvest The complete defoliation or desiccation of leaf tissue in preparation for harvest is a necessity with harvesting (Hake et al., 1996a). Leaves not only interfere with harvesting, but contribute to trash and moisture content, which influences ginning, cleaning, and overall quality of cotton lint. Effective defoliation is an essential step in the overall process of harvesting high quality cotton lint with the grower seeking to accomplish a complete, quick and efficient defoliation by chemical means. Defoliation attempts to speed up and control the natural process of senescence. An additional objective of defoliation is to kill or desiccate weeds that can reduce harvest efficiency, contribute to the weed seed bank, and reduce both the quality and value of the lint because of staining by vegetation (University of Georgia, 2012). Successful defoliation in cotton depends on a number of factors including: 1) plant-water status; 2) nitrogen fertility status; 3) University of the set weather conditions; and 4) the chemical defoliant(s) (Smith and Cothren, 1999).

Insect and mite pests are a common and continuous threat to cotton production in all regions of the U.S., leading to decreased yield and quality. Generally, fewer than 25 insect pests are considered persistent problems causing economic losses in cotton (Smith and Cothren, 1999). The susceptibility of cotton plants to insect pests varies across and within the various production regions. Insect and mite pests affect cotton production by decreasing yield and reducing quality. Nearly every phenological stage of cotton is susceptible to injury by one or more insect pests during the growing season. Therefore, cotton fields must be monitored regularly to detect the presence of insect pests. The susceptibility of cotton plants to economic yield losses from insect pests is influenced by pest population density, timing of infestations as related to plant phenology, local environmental conditions, and agronomic practices (Smith and Cothren, 1999).

Numerous insect species are observed in cotton fields across the U.S., but only a few are considered of economic importance. Yield loss and treatment costs for the most common insect pests in cotton in 2010 are shown in Table VIII-3. These data are estimates collected from surveys of county agents, extension specialists, private consultants, and research entomologists. Insect damage resulted in yield losses of approximately 986 thousand bales of cotton in 2010 or a 3.9% yield loss which represented an average loss of \$22.56 per acre. The lepidopteran pests, bollworm/budworm, caused the greatest yield reductions followed by stink bugs and lygus insects, both of which are piercing and sucking insects. Thrips infested more acres in 2010 than any other insect in cotton. However, this insect ranked sixth in yield reductions, due to the damage occurring early in the growing season before the development of fruiting structures.

Successful and economical management of insect pests in cotton is accomplished through an integrated pest management approach of variety selection and implementation of cultural, biological, and chemical strategies (University of Georgia, 2011). Preplant tillage and crop rotation are important agronomic or cultural practices utilized to reduce insect populations prior to planting cotton. Other agronomic practices are utilized to promote early maturity and reduce that period of time the crop is susceptible to insect and mite pests, and to increase the probability that an acceptable yield can be produced before insect pest densities exceed economic threshold levels (Smith and Cothren, 1999).

Nematodes are another serious pest in cotton and have the potential to cause significant loss of yield, reduction in fiber quality, and crop maturity Yield losses in cotton from nematodes exceed \$400 million annually in the U.S. (NCCA, 2007). Management decisions for controlling nematodes must be made prior to or at planting since few control options are available during the season.

Monsanto Company

% Yield Insect PestCotton Acres ReductionAcres InfestedCost TreatedCotton Bales (\$/Acre)Bollworm/Budworm1.1868,148,8442,113,8422.54263,902Stink bugs0.7246,712,9882,782,4623,45162,397Lygus spp.0.66775,932,8352,458,4136.86191,826Cotton Fleahopper0.3624,487,0322,357,7272.7981.048Aphids0.2867,133,0291,270,2531.39663,377Thrips0.20010,165,6013,469,1952,32245,964Spider mites0.1993,522,476885,6841.7557,189Fall Armyworm0.1992,762,701203,1090,2041,256Clouded Plant Bugs0.024614,569243,6830.146,465Silverleaf Whitefly0.020508,430111,9029.814,935Cutworms0.001487,946543,5700.19699Grasshoppers0.00167,55252,2220.06146Loopers0.001735,9989,1600.01197Saltmarsh caterpillar0.001689,1273,4000.000Boll Weevil0.00014,547025,9200.010Pink Bollworm0.00014,98814,9880.000Cuton Leaf Perforator0.00014,98814,9880.000Cuton Leaf Perforator0.00014,98814,9880.0168,				Cotton	Treatment	000
Insect PestReductionInfestedTreated( $\$/Acre)$ LostBollworm/Budworm1.186 $\$,148,844$ $2,113,842$ $2.54$ $263,902$ Stink bugs $0.724$ $6,712,988$ $2,782,462$ $3,455$ $162,397$ Lygus spp. $0.677$ $5,932,835$ $2,458,413$ $6.86$ $191,826$ Cotton Fleahopper $0.362$ $4,487,032$ $2,357,727$ $2.79$ $81,048$ Aphids $0.286$ $7,133,029$ $1,270,253$ $1.38$ $69,377$ Thrips $0.200$ $10,165,601$ $3,469,195$ $2,322$ $45,964$ Spider mites $0.199$ $3,522,479$ $885,684$ $1.75$ $57,189$ Fall Armyworm $0.199$ $2,762,701$ $203,109$ $0.200$ $41,256$ Clouded Plant Bugs $0.024$ $614,569$ $243,683$ $0.14$ $6,465$ Silverleaf Whitefly $0.002$ $508,430$ $111,902$ $0.81$ $4,935$ Cutworms $0.001$ $487,946$ $543,570$ $0.19$ $699$ Grasshoppers $0.001$ $735,998$ $9,160$ $0.01$ $197$ Saltmarsh caterpillar $0.000$ $483,273$ $0.00$ $0$ Boll Weevil $0.000$ $14,948$ $14,988$ $0.00$ $0$ Pink Bollworm $0.000$ $97,725$ $-0.00$ $0$ Cuttor for Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ Cuttor for Leaf Perforator $0.000$ $0$ $-0.00$ $0$ Cutt		% Yield	Cotton Acres	Acres	Cost	Cotton Bales
Bollworm/Budworm $1.186$ $8,148,844$ $2,113,842$ $2.54$ $263,902$ Stink bugs $0.724$ $6,712,988$ $2,782,462$ $3,45$ $162,397$ Lygus spp. $0.677$ $5,932,835$ $2,458,413$ $6.86$ $191,826$ Cotton Fleahopper $0.362$ $4,487,032$ $2,357,727$ $2.79$ $81,048$ Aphids $0.286$ $7,133,029$ $1,270,253$ $1.39$ $60,377$ Thrips $0.200$ $10,165,601$ $3,469,195$ $2.32$ $45,964$ Spider mites $0.199$ $2,762,701$ $203,109$ $0.20$ $41,256$ Clouded Plant Bugs $0.024$ $614,569$ $213,683$ $0.14$ $6,465$ Silverleaf Whitefly $0.020$ $508,430$ $111,902$ $0.81$ $4,935$ Cutworms $0.003$ $487,946$ $543,570$ $0.19$ $699$ Grasshoppers $0.001$ $735,998$ $9,160$ $0.01$ $197$ Saltmarsh caterpillar $0.000$ $483,273$ $0.00$ $0$ Bould winged whitefly $0.000$ $242,500$ $ 0.00$ $0$ Southern Armyworm $0.000$ $242,500$ $ 0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $97,725$ $ 0.00$ $0$ Cutworms $0.000$ $49,988$ $14,988$ $0.00$ $0$ Cutworms $0.000$ $49,988$ $14,988$ $0.00$ $0$ Luopers	Insect Pest	Reduction	Infested	Treated	(\$/Acre)	Lost
Dim Orgo $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ <td></td> <td></td> <td></td> <td></td> <td>6</td> <td></td>					6	
Dim Orgo $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ $0.121$ <td>Bollworm/Budworm</td> <td>1.186</td> <td>8,148,844</td> <td>2,113,842</td> <td>2.54</td> <td>263,902</td>	Bollworm/Budworm	1.186	8,148,844	2,113,842	2.54	263,902
Aphids $0.286$ $7,133,029$ $1,270,253$ $1.39$ $60,377$ Thrips $0.200$ $10,165,601$ $3,469,195$ $2,32$ $45,964$ Spider mites $0.199$ $3,522,479$ $885,684$ $1.75$ $57,189$ Fall Armyworm $0.199$ $2,762,701$ $203,109$ $0.20$ $41,256$ Clouded Plant Bugs $0.024$ $614,569$ $213,683$ $0.14$ $6,465$ Silverleaf Whitefly $0.020$ $508,430$ $111,902$ $0.81$ $4,935$ Cutworms $0.003$ $487,946$ $543,570$ $0.19$ $699$ Grasshoppers $0.001$ $1,293,128$ $53,300$ $0.02$ $373$ Beet Armyworm $0.001$ $967,552$ $52,222$ $0.06$ $146$ Loopers $0.001$ $735,998$ $9,160$ $0.01$ $197$ Saltmarsh caterpillar $0.000$ $483,273$ $0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $14,988$ $14,988$ $0.00$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ Cutopean comborer $0.000$ $0$ $ 0.00$ $0$ Cutopean comborer $0.000$ $0$ $ 0.00$ $0$ Cutopean comborer $0.000$ $649,594$ $26,648$ $0.01$ $68,906$	Stink bugs	0.724	6,712,988	2,782,462		162,397
Aphids $0.286$ $7,133,029$ $1,270,253$ $1.39$ $60,377$ Thrips $0.200$ $10,165,601$ $3,469,195$ $2,32$ $45,964$ Spider mites $0.199$ $3,522,479$ $885,684$ $1.75$ $57,189$ Fall Armyworm $0.199$ $2,762,701$ $203,109$ $0.20$ $41,256$ Clouded Plant Bugs $0.024$ $614,569$ $213,683$ $0.14$ $6,465$ Silverleaf Whitefly $0.020$ $508,430$ $111,902$ $0.81$ $4,935$ Cutworms $0.003$ $487,946$ $543,570$ $0.19$ $699$ Grasshoppers $0.001$ $1,293,128$ $53,300$ $0.02$ $373$ Beet Armyworm $0.001$ $967,552$ $52,222$ $0.06$ $146$ Loopers $0.001$ $735,998$ $9,160$ $0.01$ $197$ Saltmarsh caterpillar $0.000$ $483,273$ $0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $14,988$ $14,988$ $0.00$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ Cutopean comborer $0.000$ $0$ $ 0.00$ $0$ Cutopean comborer $0.000$ $0$ $ 0.00$ $0$ Cutopean comborer $0.000$ $649,594$ $26,648$ $0.01$ $68,906$	Lygus spp.	0.677		2,458,413	6.86	191,826
Aphids $0.286$ $7,133,029$ $1,270,253$ $1.39$ $60,377$ Thrips $0.200$ $10,165,601$ $3,469,195$ $2,32$ $45,964$ Spider mites $0.199$ $3,522,479$ $885,684$ $1.75$ $57,189$ Fall Armyworm $0.199$ $2,762,701$ $203,109$ $0.20$ $41,256$ Clouded Plant Bugs $0.024$ $614,569$ $213,683$ $0.14$ $6,465$ Silverleaf Whitefly $0.020$ $508,430$ $111,902$ $0.81$ $4,935$ Cutworms $0.003$ $487,946$ $543,570$ $0.19$ $699$ Grasshoppers $0.001$ $1,293,128$ $53,300$ $0.02$ $373$ Beet Armyworm $0.001$ $967,552$ $52,222$ $0.06$ $146$ Loopers $0.001$ $735,998$ $9,160$ $0.01$ $197$ Saltmarsh caterpillar $0.000$ $483,273$ $0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $14,988$ $14,988$ $0.00$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ Cutopean comborer $0.000$ $0$ $ 0.00$ $0$ Cutopean comborer $0.000$ $0$ $ 0.00$ $0$ Cutopean comborer $0.000$ $649,594$ $26,648$ $0.01$ $68,906$	Cotton Fleahopper	0.362	4,487,032	2,357,727	2.79	81,048
Silventul (filled) $0.026$ $0.003$ $487,946$ $543,570$ $0.19$ $699$ Grasshoppers $0.001$ $1,293,128$ $53,300$ $0.02$ $373$ Beet Armyworm $0.001$ $967,552$ $52,222$ $0.06$ $146$ Loopers $0.001$ $735,998$ $9,160$ $001$ $197$ Saltmarsh caterpillar $0.000$ $483,273$ $ 0.000$ $140$ Banded winged whitefly $0.000$ $242,500$ $ 0.00$ $0$ Southern Armyworms $0.000$ $242,500$ $ 0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $97,725$ $ 0.00$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ Cutopean comborer $0.000$ $0$ $ 0.00$ $0$ Other Insects (1-4) $0.023$ $649,594$ $26,648$ $0.01$ $68,906$	Aphids	0.286	7,133,029		1.39	60,377
Silventul (filled) $0.026$ $0.026$ $0.001$ $112,02$ $0.01$ $1,552$ Cutworms $0.003$ $487,946$ $543,570$ $0.19$ $699$ Grasshoppers $0.001$ $1,293,128$ $53,300$ $0.02$ $373$ Beet Armyworm $0.001$ $967,552$ $52,222$ $0.06$ $146$ Loopers $0.001$ $735,998$ $9,160$ $0.01$ $197$ Saltmarsh caterpillar $0.001$ $689,127$ $3,400$ $0.00$ $140$ Banded winged whitefly $0.000$ $483,273$ $ 0.000$ $0$ Southern Armyworms $0.000$ $242,500$ $ 0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $97,725$ $ 0.00$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ European comborer $0.000$ $0$ $ 0.00$ $0$ Other Insects (1-4) $0.023$ $649,594$ $26,648$ $0.01$ $68,906$	Thrips	0.200	10,165,601	3,469,195	2,32	45,964
Silventul (filled) $0.026$ $0.003$ $487,946$ $543,570$ $0.19$ $699$ Grasshoppers $0.001$ $1,293,128$ $53,300$ $0.02$ $373$ Beet Armyworm $0.001$ $967,552$ $52,222$ $0.06$ $146$ Loopers $0.001$ $735,998$ $9,160$ $001$ $197$ Saltmarsh caterpillar $0.000$ $483,273$ $ 0.000$ $140$ Banded winged whitefly $0.000$ $242,500$ $ 0.00$ $0$ Southern Armyworms $0.000$ $242,500$ $ 0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $97,725$ $ 0.00$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ Cutopean comborer $0.000$ $0$ $ 0.00$ $0$ Other Insects (1-4) $0.023$ $649,594$ $26,648$ $0.01$ $68,906$	Spider mites	0.199	3,522,479	885,684	1.75	57,189
Silventul (filled) $0.026$ $0.003$ $487,946$ $543,570$ $0.19$ $699$ Grasshoppers $0.001$ $1,293,128$ $53,300$ $0.02$ $373$ Beet Armyworm $0.001$ $967,552$ $52,222$ $0.06$ $146$ Loopers $0.001$ $735,998$ $9,160$ $001$ $197$ Saltmarsh caterpillar $0.000$ $483,273$ $ 0.000$ $140$ Banded winged whitefly $0.000$ $242,500$ $ 0.00$ $0$ Southern Armyworms $0.000$ $242,500$ $ 0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $97,725$ $ 0.00$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ Cutopean comborer $0.000$ $0$ $ 0.00$ $0$ Other Insects (1-4) $0.023$ $649,594$ $26,648$ $0.01$ $68,906$	Fall Armyworm	0.199	2,762,701	203,409	0.20 ()	41,256
Silventul (filled) $0.026$ $0.003$ $487,946$ $543,570$ $0.19$ $699$ Grasshoppers $0.001$ $1,293,128$ $53,300$ $0.02$ $373$ Beet Armyworm $0.001$ $967,552$ $52,222$ $0.06$ $146$ Loopers $0.001$ $735,998$ $9,160$ $001$ $197$ Saltmarsh caterpillar $0.000$ $483,273$ $ 0.000$ $140$ Banded winged whitefly $0.000$ $242,500$ $ 0.00$ $0$ Southern Armyworms $0.000$ $242,500$ $ 0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $97,725$ $ 0.00$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ Cutopean comborer $0.000$ $0$ $ 0.00$ $0$ Other Insects (1-4) $0.023$ $649,594$ $26,648$ $0.01$ $68,906$	Clouded Plant Bugs	0.024	614,569	213,683	0.14	6,465
Cutworms $0.003$ $487,946$ $543,570$ $0.19$ $699$ Grasshoppers $0.001$ $1,293,128$ $53,300$ $0.02$ $373$ Beet Armyworm $0.001$ $967,552$ $52,222$ $0.06$ $146$ Loopers $0.001$ $735,998$ $9,160$ $0.01$ $197$ Saltmarsh caterpillar $0.001$ $689,127$ $3,400$ $0.00$ $140$ Banded winged whitefly $0.000$ $483,273$ $ 0.000$ $0$ Southern Armyworms $0.000$ $242,500$ $ 0.000$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $14,988$ $14,988$ $0.00$ $0$ Cotton Leaf Perforator $0.000$ $0$ $ 0.000$ $0$ Cutor Leaf Perforator $0.000$ $0$ $ 0.000$ $0$ Other Insects (1-4) $0.023$ $649,594$ $26,648$ $0.01$ $68,906$	Silverleaf Whitefly	0.020	508,430	111,902	0.81	<u> </u>
Beet Armyworm $0.001$ $967,552$ $52,222$ $0.06$ $146$ Loopers $0.001$ $735,998$ $9,160$ $0.01$ $197$ Saltmarsh caterpillar $0.001$ $689,127$ $3,400$ $0.00$ $140$ Banded winged whitefly $0.000$ $483,273$ $ 0.000$ $0$ Southern Armyworms $0.000$ $242,500$ $ 0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $97,725$ $ 0.000$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ European comborer $0.000$ $0$ $ 0.000$ $0$ Other Insects (1-4) $0.023$ $649,594$ $26,648$ $0.01$ $68,906$	Cutworms	0.003 💰	487,946	543,570	0.19	699
Beet Armyworm $0.001$ $967,552$ $52,222$ $0.06$ $146$ Loopers $0.001$ $735,998$ $9,160$ $0.01$ $197$ Saltmarsh caterpillar $0.001$ $689,127$ $3,400$ $0.00$ $140$ Banded winged whitefly $0.000$ $483,273$ $ 0.000$ $0$ Southern Armyworms $0.000$ $242,500$ $ 0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $97,725$ $ 0.000$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ European comborer $0.000$ $0$ $ 0.000$ $0$ Other Insects (1-4) $0.023$ $649,594$ $26,648$ $0.01$ $68,906$	Grasshoppers	0.001	1,293,128	\$3,300 0	0.02	373
Banded winged whitefly $0.000$ $483,273$ $2$ $0.00$ $0$ Southern Armyworms $0.000$ $242,500$ $ 0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $97,725$ $ 0.000$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ European comborer $0.000$ $0$ $ 0.000$ $0$ Other Insects (1-4) $0.023$ $649,594$ $26,648$ $0.01$ $68,906$	Beet Armyworm	0-001	967,552	52,222	$\cup$ 0 062	146
Banded winged whitefly $0.000$ $483,273$ $2$ $0.00$ $0$ Southern Armyworms $0.000$ $242,500$ $ 0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $97,725$ $ 0.000$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ European comborer $0.000$ $0$ $ 0.000$ $0$ Other Insects (1-4) $0.023$ $649,594$ $26,648$ $0.01$ $68,906$	Loopers	0.001	735,998	0 9,160	0.01	197
Banded winged whitefly $0.000$ $483,273$ $2$ $0.00$ $0$ Southern Armyworms $0.000$ $242,500$ $ 0.00$ $0$ Boll Weevil $0.000$ $115,470$ $25,920$ $0.01$ $0$ Pink Bollworm $0.000$ $97,725$ $ 0.000$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ European comborer $0.000$ $0$ $ 0.000$ $0$ Other Insects (1-4) $0.023$ $649,594$ $26,648$ $0.01$ $68,906$	Saltmarsh caterpillar	0.001	689,127	3,400	S0.00	140
Southern Armyworms         0.000         242,500         -         0.00         0           Boll Weevil         0.000         115,470         25,920         0.01         0           Pink Bollworm         0.000         97,725         -         0.000         0           Cotton Leaf Perforator         0.000         14,988         14,988         0.00         0           European cornborer         0.000         0         -         0.000         0           Other Insects (1-4)         0.023         649,594         26,648         0.01         68,906	Banded winged whitefly	0.000	⊘ 483,273	(0), 0, (0)	0.00	0
Doin weevin $0.000$ $97,725$ $ 0.00$ $0$ Pink Bollworm $0.000$ $97,725$ $ 0.00$ $0$ Cotton Leaf Perforator $0.000$ $14,988$ $14,988$ $0.00$ $0$ European comborer $0.000$ $0$ $ 0.000$ $0$ Other Insects (1-4) $0.023$ $649,594$ $26,648$ $0.01$ $68,906$	Southern Armyworm	× 000 × ×	242,500		0.00	0
Pink Bollworm       0.000       97,725       -       0.00       0         Cotton Leaf Perforator       0.000       14,988       14,988       0.00       0         European comborer       0.000       0       -       0.00       0         Other Insects (1-4)       0.023       649,594       26,648       0.01       68,906	Boll Weevil	0.000	115,470	25,920	0.01	0
Other Insects (1-4)         0.023         649,594         26,648         0.01         68,906	Pink Bollworm	0,000	97,725	· · · · ·	0.00	0
Other Insects (1-4)         0.023         649,594         26,648         0.01         68,906	Cotton Leaf Perforator	0.000	14,988	14,988	0.00	0
	European cornborer 🔨 🔬	0,000	of Oglingo	-	0.00	0
	Other Insects (1-4)	0.023	649,594	26,648	0.01	68,906
			ut the teo		22.56	985,821

## Table VIII-3 Insect Losses in Cotton in U.S. in 2010¹

#### VIII.E. Management of Diseases

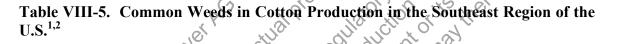
Disease management is essential in cotton production to achieve optimum yields and economic returns. Plant pathologists estimate that diseases cause annual losses in cotton production of 1.8 million bales or a yield reduction of approximately 9.0 % in the U.S. (Blasingame et al., 2008). Seedling diseases, fungal wilts, root rots, and foliar diseases constitute the major disease complex in cotton (Smith and Cothren, 1999). Yield losses are often underestimated because most of the diseases are caused by soil-borne pathogens that attack the roots and cause little reduction of the plant size or change to the crop canopy (Smith and Cothren, 1999). These types of infestation can result in yield losses of as much as 20% without any awareness of the root infections by soil-borne pathogens.

The major seedling disease complex (*i.e.*, Pythium spp., Rhizoctonia spp., Fusarium spp., and Thielaviopsis spp.) are caused by fungal pathogens and are generally classified as seed-borne pathogens that occur on or in seed prior to planting and soil-borne pathogens that reside in soil (Smith and Cothren, 1999). The soil-borne pathogens are the most important causes of seedling disease and the most difficult to control. *Verticillium* wilt and *Fusarium* wilt are the two major fungal wilt diseases causing losses in cotton production. The pathogens penetrate root tips and enter the xylem vessels of the cotton plant and the plants subsequently develop the characteristics of wilt symptoms. Phymatotrichum root rot, macrophomina root rot, agrobacterium root rot and root gall are the primary diseases are caused by pathogens that infect leaves, stems, bolls, and occasionally seedling roots. Bacterial blight, boll rot, fungal leaf spots, fungal boll rots, viran and mycoplasmal make up the primary foliar diseases.

An integrated management system is the best means of controlling diseases in cotton. This includes agronomic and cultural practices (*i.e.*, fertility, water management, crop practice for minimizing damage from seedling diseases is selection of high-quality planting seed that has minimal seed coat damage and has been assessed for germination and vigor (Smith and Cothren, 1999). Seedbed conditions that encourage rapid germination and emergence will minimize seedling disease losses (NCCA 2007) Selection of varieties with entipleter. rotation), use of resistant varieties, applications of fungicides and bactericides, and Selection of varieties with satisfactory levels of resistance is also an important step in the control of certain other diseases. Various culture 1 control of certain other diseases. Various cultural practices such as crop rotation, proper fertility and water management, clean tillage systems, early planting, eliminating weeds which are host plants to the pathogen, and practices that increase decomposition of crop residues can reduce the severity of diseases (Smith and Cothren, 1999). Fungicides are used to protect seeds and seedlings from seed- and soil-borne pathogens during their first few weeks of growth. Commercial cottonseed is normally treated and planted with a mixture of chemical fungicides applied to control these soil borne pathogens (Smith and Cothren, 1999). Fungicides are also used to prevent epidemics of foliar diseases when they approach economically damaging levels. An average of three fungicide treatments were made to cotton in 2007 (USDA-ERS, 2012a). Foliar fungicides are applied to approximately 2% of the cotton acreage (USDA-NASS, 2008).

#### VIII.F. Weed Management

Weed control in cotton is essential to maximize both cotton fiber yield and quality. In contrast to other crops, including corn and soybean, cotton emergence and above ground growth is relatively slow during the first few weeks after planting. The slow early growth of cotton does not permit the crop to aggressively compete against weed species that often grow more rapidly (Smith and Cothren, 1999). This is especially true under cool weather or adverse growing conditions which often prevail after cotton is planted. The extent or degree to which weeds interfere with cotton growth and yield is dependent on the species, densities, duration, and environmental conditions. For example a single common cocklebur over 30 row-feet can reduce cotton yields by 8.85%, while a single prickly sida plant at the same density reduces cotton yields by only 0.26% (Smith and Cothren, 1999). Weed-crop competition studies have demonstrated that the control of weeds during the first four to eight weeks after cotton planting is critical as weeds compete against the crop for water, nutrients, light, and other resources necessary for growth (Smith and Cothren, 1999). Although late-season infestations may not impact vield, they reduce harvesting efficiency, contribute to the weed seed bank, and lower the lint grade (Vargas et al., 1996). Weeds can also have an impact on cotton diseases and insect management because certain weed species can be a host for Rhizoctonia and Verticillium wilt and harbor insects such as lygus bugs.


The occurrence and frequency of individual weed species in cotton vary greatly between and within each state and geographical growing region. Cultural and chemical control practices can cause shifts in the composition of weed populations (Smith and Cothren, Weed populations are affected over time by edaphic (soil-rated) factors, 1999). reproductive ability, control methods, cropping sequences, herbicide regimes, herbicideresistance, climatic changes, and other environmental situations (Smith and Cothren, 1999). The most common weeds in cotton are not necessarily the most troublesome to the development of an effective weed management program. Table 4 lists the and species names of all weeds referred to interferred to inter provide summaries of the most common weeds in cotton for each of the four major cotton growing regions (Southeast, Midsouth, Southwest, and West). Barnyardgrass, crabgrass, pigweed spb (includino Patner amoranth) pigweed spp (including Palmer amaranth), morningglory spp., common cocklebur, and common lambsquarters are common annual weed species in almost all cotton growing regions. Johnsongrass, bermudagrass and nutsedge are common perennial weed species. Weed species of the Solanaceae family, such as the nightshade spp. and groundcherry, are more common in the Southwest and West regions. Palmer amaranth, morningglory spp., and nutsedge spp. are not only common in cotton, but are frequently reported as some of the most troublesome or serious weed species in cotton (Webster et al., 2009).

	Common Name	Scientific Name	Common Name	Scientific Name
	Annual bluegrass	Poa annua	Little barley	Hordeum pusillum
	Barnyardgrass	Echinochloa crus-galli	Jimsonweed	Datura stramonium
	Bermudagrass	Cynodon dactylon	Johnsongrass	Sorghum halepense
	Bindweed, field	Convolvulus arvensis	Junglerice	Echinochloa colona
	Black nightshade (Eastern)	Solanum ptychanthum	Large Crabgrass	Digitaria sanguinalis
	Broadleaf signalgrass	Urochloa platyphylla	Morningglory spp	Ipomoea spp.
	Browntop millet	Urochloa ramosa	Mustard spp.	Brassica spp.
	Buttercup	Ranunculus spp.	Nightshade, hairy	Solanum physalifolium
	Carolina geranium	Geranium carolinianum	Nightshade, silverleaf	Solanum elaeagnifolium
	Chickweed	Stellaria media	Nutsedge spp.	Cyperus spp.
	Citronmelon	Citrullus lanatus	Palmer amaranth	Amaranthus palmeri
	Common cocklebur	Xanthium strumarium	Pigweed spp.	Amaranthus spp
	Common hempnettle	Galeopsis tetrahit	Prickly lettuce	Lactuca serriola
	Common lambsquarters	Chenopodium album	Prickly sida	Sida spinosa
	Common ragweed	Ambrosia artemisiifolia	Purple nutsedge	Cyperus rotundus
	Crabgrass spp.	Digitaria spp.	Purslane, common	Portulaca oleracea
	Crowfootgrass	Dactyloctenium aegyptium	Purslane, common Purslane, horse Red rice	Trianthema
		aegyptium Eriochloa acuminata	Padrica	portulacastrum Oryza punctata
		Rumex crispus	Redweed	Melochia corchorifolia
	Cutleaf evening-	Rumex orispus Oenothera laciniata Proboseidea louisianica	.×9	, i i i i i i i i i i i i i i i i i i i
	primrose	Oenothera laciniata	Russian thistle	Salsola tragus
	Devil's claw	Proboscidea louisianica	Sandbur	Cenchrus spp.
C)	Fall panicum	Panicum dichotomiflorum	Shepard's purse	Capsella bursa-pastoris
90	Florida beggarweed	Desmodium tortuosum	Sicklepod	Senna obtusifolia
(his 101	Florida pusley Foxtail spp Giant foxtail Giant ragweed Goosegrass Groundcherry spp.	Richardia scabra	Smartweed spp.	Polygonum spp.
anon	Foxtail spp. Giant foxtail	Setaria faberi	Smellmellon	Cucumis melo
KC.	Giant foxtail	Setaria spp.	Sprangletop, red	Leptochloa panicea
ેલ્ડ	Giant ragweed	Ambrosia trifida	Spreading dayflower	Commelina diffusa
	Goosegrass	Eleusine indica	Spurge spp.	Euphorbia spp.
	Groundcherry spp.	Physalis spp.	Spurred anoda	Anoda cristata
	Henbit	Lamium amplexicaule	Sunflower	Helianthus annuus
	Hemp sesbania	Sesbania herbacea	Texas blueweed	Helianthus ciliaris
	Horseweed (marestail)	Conyza canadensis	Texas millet	Urochloa texana
	Italian ryegrass	Lolium multiflorum	Texas panicum	Urochloa reptans
	Kochia	Kochia scoparia	Tropical spiderwort	Tradescantia ohiensis
		Ł	Velvetleaf	Abutilon theophrasti

### Table VIII-4. Common and Scientific Names of Weeds Referred to in this Petition

 Table VIII-4. Common and Scientific Names of Weeds Referred to in this Petition (continued)

Virginia pepperweedLepidium virginicumVolunteer cornZea MaysVolunteer peanutArachis hypogaeaCommon waterhempAmaranthus rudisTall waterhempAmaranthus tuberculatusWild lettuceLactuca canadensisWild mustardSinapis arvensisWild radishRaphanus raphanistrumWoolyleaf bursageAmbrosia grayiYellow nutsedgeCyperus esculentus	Common Name	Scientific Name		
Volunteer cornZea MaysVolunteer peanutArachis hypogaeaCommon waterhempAmaranthus rudisTall waterhempAmaranthus tuberculatusWild lettuceLactuca canadensisWild mustardSinapis arvensisWild radishRaphanus raphanistrumWoolyleaf bursageAmbrosia grayi	<b>T</b> 7	T · 1· · · ·		
Volunteer peanutArachis hypogaeaCommon waterhempAmaranthus rudisTall waterhempAmaranthus tuberculatusWild lettuceLactuca canadensisWild mustardSinapis arvensisWild radishRaphanus raphanistrumWoolyleaf bursageAmbrosia grayi	virginia pepperweed	Lepidium virginicum		
Common waterhempAmaranthus rudisTall waterhempAmaranthus tuberculatusWild lettuceLactuca canadensisWild mustardSinapis arvensisWild radishRaphanus raphanistrumWoolyleaf bursageAmbrosia grayi	Volunteer corn	Zea Mays		
Tall waterhempAmaranthus tuberculatusWild lettuceLactuca canadensisWild mustardSinapis arvensisWild radishRaphanus raphanistrumWoolyleaf bursageAmbrosia grayi	Volunteer peanut	Arachis hypogaea		
Wild lettuceLactuca canadensisWild mustardSinapis arvensisWild radishRaphanus raphanistrumWoolyleaf bursageAmbrosia grayi	Common waterhemp	Amaranthus rudis		
Wild lettuceLactuca canadensisWild mustardSinapis arvensisWild radishRaphanus raphanistrumWoolyleaf bursageAmbrosia grayiYellow nutsedgeCyperus esculentus	Tall waterhemp	Amaranthus tuberculatus		
Wild mustardSinapis arvensisWild radishRaphanus raphanistrumWoolyleaf bursageAmbrosia grayiYellow nutsedgeCyperus esculentus	Wild lettuce	Lactuca canadensis		
Wild radishRaphanus raphanistrumWoolyleaf bursageAmbrosia grayiYellow nutsedgeCyperus esculentus	Wild mustard	Sinapis arvensis		
Woolyleaf bursage     Ambrosia grayi       Yellow nutsedge     Cyperus esculentus	Wild radish	Raphanus raphanistrum		
Yellow nutsedge Cyperus esculentus	Woolyleaf bursage	Ambrosia grayi	8	Xe
	Yellow nutsedge	Cyperus esculentus	SUC.	or or
			- 19-	20,10



Crabgrass spp.(6)PigsMorningglory spp.(6)CorPrickly sida(5)CorFlorida pusley(4)CorNutsedge spp.(4)FloridaSicklepod(4)PalnBroadleaf signalgrass(3)TexGoosegrass(3)Ber

Pigweed spp.(3) Common cocklebur(2) Common lambsquarters(2) Common ragweed(2) Florida beggarweed(2) Palmer amatanth(2) Texas millet(2) Bermudagrass(1) Crowfootgrass(1) Horseweed (marestail)(1) Jimsonweed(1) Johnsongrass(1) Smartweed spp.(1) Spurge spp.(1) Volunteer peanut(1)

¹OK data (Webster et al., 2009). ¹Number provided in parenthesis is the number of states out of the six total states (AL, FL, GA, NC, SC, and VA) in the Southeast region reporting each weed as one of the ten most common weeds.

Table VIII-6. Common Weeds in Cotton Production in the Midsouth Region of the U.S.^{1,2}

Morningglory spp.(5)	Velvetleaf(3)	Common cocklebur(1)
Broadleaf	Barnyardgrass(2)	Cutleaf evening-
signalgrass(4)	Horseweed	primrose(1)
Crabgrass spp.(4)	(marestail)(2)	Goosegrass(1)
Nutsedge spp.(4)	Johnsongrass(2)	Hemp sesbania(1)
Prickly sida(4)	Palmer amaranth(2)	Henbit(1)
Spurge spp.(4)	Bermudagrass(1)	Spurred anoda(1)
Pigweed spp.(3)	Browntop millet(1)	dinnd

²Number provided in parenthesis is the number of states out of the five total states (AR, LA, MS, MO, & TN) in the Midsouth region reporting each weed as one of the ten most communication.

#### Table VIII-7. Common Weeds in Cotton Production in the Southwest Region of the U.S.^{1,2} 10, 5 CA

		Son Chi The
Johnsongrass(4)	Mustard spp.(2)	Shepard's purse(1) Smartweed(1) Smellmelon(1) Spurred anoda(1)
Nutsedge spp.(4)	Pigweed spp.(2)	Smartweed(1)
Cocklebur, common(3)	Russian thistle(2)	Smellmelon(1)
Palmer amaranth(3)	Barnyardgrass(I)	Spurred anoda(1)
Silverleaf Nightshade 🔗	Russian thistle(2) Barnyardgrass(1) Bermudagrass(1) Bindweed, field (1) Foxtail spp.(1) Groundcherry spp.(1)	Sprangletop, red(1)
	Bindweed, field (1)	Sunflower(1)
Common Q S S M	Foxtail spp(1)	Texas blueweed(1)
lambsquarters(2)	Groundcherry spp (1)	Texas millet(2)
Large Crabgrass(2)	Kochia(1)	Velvetleaf(1)
Devil's claw(2)	Horseweed	Woolyleaf bursage(1)
Morningglory spp.(2)	(marestail)(1)	
OK data (Webster et al., 2009)	V S	Vanage State University Demonal
Communication November, 2019, N		Kansas State University – Personal w Mexico State University – Personal
Communication November, 2010; T		Texas A&M
University Personal Communication	ns November, 2010.	
² Number provided in parenthesis is th	he number of states out of the fo	ur total states (OK, KS, TX, & NM) in
the Southwest region reporting each v	weed as one of the ten most com	mon weeds.
the Southwest region reporting each w		

will pro

Table VIII-8. Common Weeds in Cotton Production in the West Region of the U.S.^{1,2}

Barnyardgrass(2)	Groundcherry spp.(1)	Nightshade, black(1)
Morningglory spp.(2)	Lambsquarters,	Nightshade, hairy(1)
Sprangletop(2)	common(1)	Nightshade, silverleaf(1)
Bermudagrass(1)	Johnsongrass(1)	Palmer amaranth(1)
Bindweed, field(1)	Junglerice(1)	Purslane, common(1)
Cupgrass,	Nutsedge spp.(1)	Purslane, horse(1)
southwestern(1)	Pigweed spp.(1)	Volunteer corn(1)
1.		

University of Arizona – Personal Communication, November, 2010; University of California - Personal Communication November, 2010.

CA – ²Number provided in parenthesis is the number of states out of the two total states (AZ & CA) in the West

0

¹Source:AZ –

VIII.F.1. Methods of Weed Control in Cotton
Weeds in cotton are controlled through the integrated use of various cultural, mechanical, and chemical methods (Hake et al., 1996d). Crop rotation, or the lack of rotation, in conjunction with other weed control methods, can play an important factor on the weed spectrum and drastically impact weed populations (Smith and Cothren, 1999). Historically, mechanical tillage and hand hoeing were the most important tools in cotton weed control. Current weed management practices include as many as five tillage operations in conventional tillage systems and two or three tillage operations in mulch tillage, or no-till systems (USDA-ERS, 2012b). Approximately, 38% of the total cotton acres are post-plant cultivated and within conventional tillage systems, over 50% cotton acres are cultivated for weed control (USDA-ERS, 2012b).  $\mathbf{O}$ 

The use of chemical methods for weed control began to develop in cotton in the 1940s and 1950s with the discovery and development of several selective herbicides (Buchanan, 1992) Dinoseb, chloropropham, dalapon, and diuron were developed and used in cotton. Despite the increased use of herbicides in the late 1950s, less than 10% of the total U.S. cotton acreage received a herbicide treatment. However, herbicide use rapidly accelerated in the 1960s as a series of more selective herbicides were introduced into the market. These herbicides provided good weed control with less cotton injury than most products used a decade earlier. These products included trifluralin, DSMA/MSMA, prometryn, and fluometuron. These herbicides, representing different chemical families and modes-of-action, are still widely used today. Additional herbicides were introduced during the 1970s that were efficient, effective, and relatively economical on a wide range of weed species. Glyphosate was introduced in the early 1970s and quickly became one of the most effective herbicides for nonselective spot treatments for control of johnsongrass and other weeds (Buchanan, 1992). Glyphosate was also an effective burndown treatment within no-till cotton production. The use of dinoseb for broadleaf weed control was halted in 1987 with the suspension of the registration by the Environmental Protection Agency (McWhorter and Bryson, 1992). Registrations were also discontinued for dinitramine, flurachloralin, profluralin, dalapon, dipropetryn, and

perfluidone. Numerous additional selective herbicides for grass and broadleaf weed control were introduced in the 1980s in cotton including fluazifop, metolachlor, oxyfluorfen, and sethoxydim. However, the use of these products does not equal the acreage treated with the herbicides which were discontinued (Buchanan, 1992). By the mid 1980s, there were 33 herbicides and herbicide combinations applied in cotton (Buchanan, 1992). The greatest use of herbicides on a per-acre basis was in the Midsouth which averaged 5.7 herbicide applications per acre each year. During the 1990s, the herbicides lactofen, bromoxynil, clethodim, clomazone, quizalifop, and pyrithiobac were introduced for use in cotton.

The first biotechnology-derived herbicide-tolerant cotton became available in 1995 and provided tolerance to bromoxynil (Stalker et al., 1996). Approximately 50,000 acres of bromoxynil-tolerant cotton were planted the year of introduction and approximately 2500 growers planted 200,000 acres of bromoxynil-tolerant cotton in 1996 (Smith and Cothren, 1999). The second herbicide-tolerant cotton product, the first generation glyphosate-tolerant cotton, was introduced in 1997. Glyphosate-tolerant cotton in combination with glyphosate herbicide became the standard program for weed management in cotton. The first generation glyphosate-tolerant weed control system in cotton provided postemergence control of a broad spectrum of weeds with excellent early-season crop safety (Wilcut et al., 2003). Glyphosate-tolerant cotton expanded the grower's options for weed management and made the mechanics of weed control much easier, more convenient, and less expensive (Carpenter and Gianessi, 2001; Wilcut et al., 2003). This system also provided a better fit into no-till and reduced-tillage systems, resulting in an increase in conservation tillage systems in cotton (Baldwin and Baldwin, 2002; Carpenter and Gianessi, 2001). Glyphosate could be applied postemergence to glyphosate-tolerant cotton from emergence through the four-leaf stage. After the four leaf stage and up to layby (canopy closure in the row), glyphosate had to be applied as a post-directed spray between the crop rows to minimize contact with the cotton plants to

In 2003, glyphosate-tolerant cotton was planted on approximately 59% of the cotton acres in the U.S (USDA-NASS, 2003) Glyphosate was the most widely used herbicide in cotton in terms acres treated (USDA-NASS, 2004). However, cotton growers continued to use a variety of herbicides with various modes-of-action in glyphosate-tolerant cotton. Trifturalin and pendimethalin were used on nearly half of the U.S. cotton acreage for small seeded grass and broadleaf weed control. Various substituted urea herbicides (diuron, prometryn, fluometuron and linuron) were also used on 50% of the U.S. cotton acreage (USDA-NASS, 2004). The soil residual activity of these herbicides on a number of weed species provided additional season-long control of continuously germinating weeds in glyphosate-tolerant cotton systems (Askew et al., 2002; Wilcut et al., 2003). Other herbicide products representing additional modes-of-action, including carfentrazone, MSMA, pyrithiobac and metolachlor, were also used on cotton ranging from four to 11% of the acres (USDA-NASS, 2002).

In 2006, a second generation glyphosate-tolerant product was introduced providing increased tolerance to glyphosate in the reproductive stages of cotton. This allowed for an expanded window for over-the-top applications of glyphosate in cotton. Glyphosate

can be applied over-the top in second generation glyphosate-tolerant cotton from emergence up to 7 days prior to harvest. With this additional application flexibility, growers were able to more effectively manage weeds in cotton using over-the-top applications as opposed to post-directed or hooded sprayer applications with previous glyphosate-tolerant varieties. In addition, foliar insecticides could be combined with glyphosate in a single application during the season for secondary pests such as thrips, aphids, and plant bugs. Mepiquat chloride, a plant growth regulator commonly used in cotton production to reduce vegetative growth and increase fruit retention, could also be applied with glyphosate in a single application. In 2010, approximately 78% of the cotton acreage was planted to herbicide-tolerant cotton, which was nearly all glyphosatetolerant (Brookes and Barfoot, 2012).

The third herbicide-tolerant cotton product, glufosinate-tolerant cotton, was introduced in 2003. Only 3% was planted to glufosinate-tolerant cotton in 2010 (USDA-ERS-FAS, 2010). Approximately 50% of the acres planted to cotton varieties containing both herbicide- and insect-tolerant traits (USDA-NASS, 2011a).

Table VIII-9 provides a summary of the herbicide applications registered for use in cotton in 2010, the data are discussed below. Herbicides are used on essentially all (99+%) cotton acres in the U.S. (Monsanto Company, 2011). A total of 32.8 million pounds of herbicide active ingredient were applied in cotton in 2010. Glyphosate was the predominate herbicide used in cotton with 19.6 million pounds active ingredient being applied on 91% of the acres. The number of glyphosate applications, on glyphosate-tolerant cotton, average approximately 2.4 applications per year at an average rate of 2.0 pounds of glyphosate active ingredient per acre per crop year (Monsanto, 2011). Dinitroanaline herbicides (pendimethalin and trifluralin) were applied on 53% of the cotton acres. Diuron (18%), flumioxazin (16%), metolachlor (16%), pyrithiobac (15%), fomesafen (13%), and 2,4-D (13%) were also frequently used herbicides in cotton (Monsanto Company, 2011).

According to USDA-ERS (2012a) statistics, growers make on average a total of four herbicide applications in cotton during the growing season. Approximately 16-19% of the growers utilizing the latest glyphosate-tolerant cotton varieties applied a fall herbicide application to control weeds prior to planting cotton depending on their crop rotation (Prince et al., 2011). Approximately 53-97% of the growers applied spring burndown treatments in glyphosate-tolerant cotton, which consisted of predominately glyphosate and/or synthetic auxins (2,4-D, dicamba).

Dicamba is currently labeled for use in cotton, although dicamba use is limited because applications are restricted to early preplant only, due to cotton injury. Before planting cotton, a minimum accumulation of one inch of rainfall or overhead irrigation must occur and a waiting interval of 21 days is required per 0.25 lbs acid equivalent (a.e.) or less. Dicamba-treated acres have increased in cotton primarily because it is a leading herbicide recommendation for glyphosate-resistant marestail (horseweed) in the Midsouth region et al., 2006).

Glufosinate may be used for weed control in non-glufosinate-tolerant cotton when applied with a hood sprayer in-crop to avoid contact with cotton plants. Glufosinate can also be applied in glufosinate-tolerant cotton from emergence up to the early bloom growth stage.

Approximately 15, 39, and 42% of growers made 1, 2, and 3 in-crop applications of glyphosate in continuous cotton, respectively (Prince et al., 2011). Although glyphosate is used extensively in glyphosate-tolerant cotton, non-glyphosate herbicides with different modes-of-action are also utilized to provide residual weed control, improve the control of certain weed species, extend weed control, and/or control resistant weeds. The use of herbicides with different modes-of-action is an effective practice to reduce the potential risk of weeds developing resistance to glyphosate or other herbicide modes-ofaction. Approximately 49-76% of growers applied non-glyphosate herbicides prior to planting, at planting, or postemergence in glyphosate-tolerant cotton in 2010 depending on cropping system (Prince et al., 2011). The non-glyphosate herbicides were ALS inhibitors (trifloxysulfuron, pyrithiobac), photosystem II inhibitors (prometryn, fluometuron, diuron), mitosis inhibitors (metolachlor), PPO inhibitors (flumioxazin, fomesafen) and synthetic auxins (2 4-D dicamba) ,eref0 ^C0, fomesafen), and synthetic auxins (2,4-D, dicamba). .x9

Weed management in conventional cotton varieties is very similar. The major difference in the herbicide programs is that alternative postemergence herbicides or herbicide tank mixtures are applied in place of glyphosate as in-crop post applications. Glyphosate can still be applied alone or in combinations with other herbicides in preplant burndown or preharvest applications in conventional cotton. A herbicide or combination of herbicides (trifluralin, pendimethalin, fluometuron, fomesafen, flumioxazin) is generally applied at planting for residual grass and broadleaf weed control. Generally, at least two in-crop post applications are made for control of emerged weeds during the growing season. Pyrithiobac, trifloxysulfuron, prometryn, clethodim, and sethoxydim are some of the more common herbicides used post in cotton. In addition, a layby application of one or more herbicides is applied such as diuron, MSMA, prometryn, or trifloxysulfuron.

Tables VIII-10 through VIII-14 provide a summary of the control ratings of common weed species to various herbicides and herbicide combinations in cotton. These tables list only the most commonly used herbicides or herbicide treatments in cotton production and control ratings are for non-glyphosate-resistant weeds. Seldom would one field or farm have all weed species, but they generally have a mixture of grass and broadleaf weed species. These ratings are utilized to facilitate the selection of a herbicide program for the cotton crop, which offers the best overall control of the weed species. Dinitroanalines (trifluralin and pendimethalin) provide effective control of most listed annual grasses, but only certain broadleaf species. Postemergence treatments of quizalofop, fluazifop, sethoxydim and clethodim are effective on the annual grasses and perennial grasses listed such as johnsongrass and bermudagrass, but provide no control of the broadleaf species. On the other hand, preemergence or postemergence applications of fluometuron or pyrithiobac provide good control of many broadleaf weeds and poor or no control of most grasses. In-crop applications of glyphosate and glufosinate provide good to excellent control of a broad spectrum of annual grass and broadleaf weeds. However,

glyphosate provides more effective control of perennial weeds such as bermudagrass, johnsongrass, and nutsedge species as compared to glufosinate. In addition, glyphosate combinations are the most effective herbicide treatments for silverleaf nightshade. Texas blueweed, and woolyleaf bursage, which are problem weeds in the Southwest region. Post-directed layby applications of MSMA in combination with diuron, flumioxazin, or prometryn and the premix combination of prometryn/trifloxysulfuron provide broad spectrum weed control. Due to the broad range of weed species present in cotton, The optimication and use of this documentation and use of the documentatio multiple treatments and/or combinations of herbicides are used to achieve effective

Consequently and publication of the owner of this document may therefore owner of this document may there owner owner of this document may there owner any connectate permission and violate the indits of this owner.

without the permission of the owner of this documer.

Herbicide	Chemical Family	Mode of Action (MOA)	Cotton Acres Treated (%)	Cotton Acres Treated per MOA (%)	Quantity Applied (1000 Ibs a.i. ² )	Total Quantity Applied/MOA (1000 lbs a.i. ²
Glyphosate	Glycine	EPSPS inhibitor	91	MOA (%) e MOA (%) e and 94 protection at the state of the state at the state of the state at the state of the state at the state of the state of the state at the state of the	19,602	19,602
Pendimethalin	Dinitroanaline	Microtubule	18	1 date follow	1,584	5 120
Trifluralin	Dinitroanaline	inhibitor 🔊	35.04	101 530 HS	3,554	5,138
Diuron	Urea	,et h	18 JO 18	Structure of all	1,527	
Prometyrn	Triazine	PSIL inhibitor	6 ^{CL 8} ( ^{6C} )	ode left hour	650	2 9 2 7
Fluometuron	Urea	PSILIMIDILO	i o z ol	UN 34	619	2,827
Linuron	Urea Triazolinone N-phenylphthalimide Diphenylether Diphenylether Diphenylether Phenylpyrazole Phenoxy Phenoxy Benzoic acid	att as a		CUILI	31	
Carfentrazone	Triazolinone	101,107	M. Witten	go er.	2	
Flumioxazin	N-phenylphthalimide	5. 55 Att. A	1.5 ¹¹ 160, 101	ON!	114	
Fomesafen	Diphenylether	PDOULLIST	, v13, 0, x	5	342	465
Lactofen	Diphenylether	PPOINTION	all we sol	30	1	403
Oxyfluorfen	Diphenylether		C Shi		6	
Pyraflufen	Phenylpyrazole	SOL PULLITOL	0 <1		<1	
2,4-D	Phenoxy	20 + 2 Or	o 13		891	
2,4-DB	Phenoxy O	Synthetic Auxin	<1	21	1	1,084
Dicamba	Phenoxy Phenoxy Benzoic acid	lerci ernind vi	8		192	
	Urea Urea Triazolinone N-phenylphthalimide Diphenylether Diphenylether Phenylpyrazole Phenoxy Phenoxy Benzoic acid	Synthetic Auxin				
Monsanto Company	<i>P</i> ₀		12-CT-244U			192 of

				Percent of	Quantity	
		Mada of Astion	Percent of	Cotton Acres	Applied	Total Quantit
Herbicide	Chemical Family	Mode of Action (MOA)	Treated	MOA	(1000  lbs) (1000 $(1000  lbs)$	Applied/MOA (1000 lbs a.i.
D			in wy St	*30,0,0,	ente	
Pyrithiobac	Benzoate		15 (~)	garugheon	× × × × × × × × × × × × × × × × × × ×	
Thifensulfuron	Sulfonylurea	ALS inhibitor	NOR N	01 - 020 × 5 0	<0 <1	75
Tribenuron	Sulfonylurea		×<1		<1	75
Trifloxysulfuron	Sulfonylurea	avei	č ^{uv} 4 0 ⁰	Jul at any	3	
Acetochlor	Chloroacetamide	Long-chain fatty	S. A O	In alt I	47	1 0 1 2
Metolachlor	Chloroacetamide	acid inhibitor	16 16 16 V	010	1,766	1,813
Paraquat	Bipyridylium	Photosystem-I- electron diverter	I UI UI OFICE	SOCU. 10	547	547
Glufosinate- ammonium	Phosphinic acid	(MOA) ALS inhibitor Long-chain fatty acid inhibitor Photosystem-I- electron diverter Glutamine synthesis inhibitor Cell membrane disruption ACCase inhibitor Auxin transport Diterpene synthesis inhibitor	Strike 8 this	Cotton Acres Treated per MOA MOA Control 20 Control 20	535	535
MSMA	Organoarsenical	Cell membrane	nd met of it	6	747	747
Clethodim	Cyclohexanedione		©_;(\$~1		6	
Fluazifop	Aryloxyphenoxy-	ACCase inhibitor	n ^o <1	1	1	7
Diflufenzopyr	Semicarbazone	Auxin transport	<1	<1	<1	<1
Clomazone	Isoxazolidinone	Diterpene synthesis inhibitor	<1	<1	10	10
Total	FUN ONSCON			99.4		32,856

Monsanto Company

									dill of	>		
					Co	mmon G	rass Wee	eds ¹				
Product	$AB^2$	BG ²	$CG^2$	GFT ⁴	GG ²	IRG ²	JGs ²	CLB2	RR ⁴	$SB^2$	$TP^2$	VC ²
2,4-D	$\frac{N}{6^3}$	Ν	N o ³	0	N o ³		SAN SI	NCOL	500 S	Ν	Ν	Ν
Glufosinate Glufosinate + 2,4-D or dicamba	6 ⁴	-	8 7 ⁴	- 8 ⁴	191 <u>-</u>	8 H	JGs ² N 9 ³ G-E G-E F-G G-E G-E P P	19 ⁴	- 7 ⁴	-	-	-
	E	F	2 E	11881111	E		©G-E	E	8	Е	E	Е
Glyphosate + 2,4-D	Е	Fo	G-Ę	S. 85.	G-E	$\mathcal{S}(\mathcal{G})$	G	E	8	G-E	G-E	Е
Glyphosate + dicamba	Е	F	G-E	318 M	GÆ	OG C	G	E	8	G-E	G-E	E
Glyphosate + carfentrazone or pyraflufen Glyphosate + diuron Glyphosate + thifensulfuron tribenuron Glyphosate + flumioxazin Paraquat Paraquat + diuron	E E E E E E E C E C E C E C E C E C E C	F S	ich Ello		Eth		G-E	Е	-	Е	E	E
Glyphosate + diuron	E S	ŇF /	C GC	No S	ୖୢୖୠୖ	F	F-G	Е	-	G	G	Е
Glyphosate + thifensulfuron tribenuron	E C	CMP J	n ^e Ezile	N STON	IN E.O	G	G-E	Е	-	Е	Е	Е
Glyphosate + flumioxazin	KE C	E B	JO E JI	), <b>(</b> 8)	()E	G	G-E	E	8	Е	Е	Е
Paraquat	G-E	is Py	EG	5 80°	F-G	F	Р	G	7	G	G	F-G
Paraquat + divron	E T	A. Spie	the Gol	Note -	G	F-G	Р	G-E	-	G	G-E	F-G

## Table VIII-10. Grass Weed Species Control Ratings to Preplant Burndown Herbicides in Cotton

¹Weed Species: AB = annual bluegrass, BG = bermudagrass, CG = crabgrass, GFT = giant foxtail, GG = goosegrass, IRG = Italian ryegrass, JGs = seedling johnsongrass, LB = little barley, RR = red rice, SB = sandbur, TP = Texas millet (Texas panicum), VC = volunteer corn.

²(University of Georgia, 2012). Weed control tatings key: E = 90% or better control; G = 80% to 90% control; F = 60%-80% control; P = 30% to 60% control; N = < 30% control.

N = < 30% control. ³ (MSU, 2012). Rating scale: 0-3 = none to slight 4-6 = fair, 7-8 = good, 9-10 = excellent control.

⁴ (University of Arkansas, 2011). Rating Scale: 0 = no control, 10 = 100% control.

						Com	mon Gi	<u>ass We</u>	eds & N	utsed	ge' 🔇	odiff of		<u>.</u>	
Product	BYG ²	BSG ³	CG ³	CFG ³	CPG ⁴	FT ³	GG ³	JR ⁵	JGs ³	ST ⁴	TP ³	BG ³	JGr ³	NSy ³	NSp
Preplant Incorpo	orated On	ly							6	ŏ.	80, 10/1.	2` 			
Pendimethalin	9	G	Е	Е	С	Е	Е	C 2	E	0	G	N	Р	Ν	Ν
Trifluralin	9	G	Е	Е	С	Е	Е	C C	E	C)	Ğ.	N N	Р	Ν	Ν
Preemergence						$(\gamma)$	d'	38	ord or	all'se					
Pendimethalin	-	F	G	G	C R	G	G	C	d GO	<u> </u>	<b>VF</b>	Ν	Р	Ν	Ν
Clomazone	-	Е	Е	G	and to i	E	<i>E</i>	60	d'G	<u>, 3</u>	F	P-F	Ν	Ν	Ν
Fluometuron	7	Р	F-G	F-G	$\diamond$ -	F-G	G.F	3 -0	P	×-	Р	Ν	Ν	Ν	Ν
Diuron	7	Р	F-G	F-G	C	n ⁱ -in	S. EQ	C	OC P C	N	Р	Ν	Ν	Ν	Ν
Fomesafen	-	F-G	F-G	°C-,	<u>_0</u>	$\sqrt{2}$	Jir-il		C. C.	-	F	Ν	-	G-E	-
Pyrithiobac	6	Р	P	× <u>-</u>	Nin Par	○ <b>₽</b> ⊘	P-F	<u>, 11.</u>	F-C	-	Ν	Ν	Ν	F	F
Postemergence <b>R</b>	esidual C	ontrol	Nor;	S, S		at is			ON						
Metolachlor	-	F-G	Ē	Ê	S. C.	E	Ľ,	°Ç%	F	С	P-F	Ν	Р	F	Р
Pyrithiobac	-	(P)	°P'xC		Cel X	^N P	P ₇ F	Ġ.	F	-	Ν	Ν	Ν	P-F	F
Trifloxsulfuron	9 - 7 7 - 6 cesidual C - - - - - - - - - - - - - - - - - - -	P I	Č	20 ³⁴ 00		TIOP	SON ON	(° -	Р	-	Р	N	Ν	-	-
~	BYG ² prated Onl 9 9 - - 7 7 - 6 cesidual C - - - - - - - - - - - - -	A COL	Solution of the second	the shirt shirt	CPG ⁴ C C C C C C C C C C C C C C C C C C C	o',	ll o								
		.0	with be	Qru .											

 Table VIII-11. Grass Weed Species Control Ratings to Preplant, Preemergence and Postemergence Herbicides in Cotton

					(	Comme	on Gras	s Weeds	& Nut	sedge ¹	onthin	3			
Product	BYG ²	BSG ³	CG ³	CFG ³	CPG ⁴	FT ³	GG ³	JR ⁴	JGs ³	ST	TP ³	BG ³	JGr ³	NSy ³	NSp
Postemergence O	ver-The-T	ор						ty and	X ⁰	pror p	ients				
Quizalofop	8	G	G	G	-	Е	G	S -	ŬĔ.	0 <u>,-</u> 0	©)	G	Е	Ν	Ν
Fluazifop	7	G-E	G	F	C	ЭE	( ¢ )	C o	G-E	· ve	G	G	G-E	Ν	Ν
Sethoxydim	8	Е	G-E	F-G	<u>S</u>	E	G-E	à.	Ġ-Ę Ċ	Q	Е	F	G	Ν	Ν
Clethodim	8	Е	G-E	G	2 C	EC	G-E <	[©] ÇO	E	C C	Е	G	G-E	Ν	Ν
MSMA	-	Р	Р	В	Р	101 <u>-</u> 03	P. P.	NO	Por	N	N-P	Ν	Р	Р	N-P
Fluometuron	-	Р	P-F	P-F	-5	3 China	P-EC	, 600	.JP	-	Ν	Ν	Ν	Ν	Ν
Pyrithiobac	2	Ν	Ŋ Q	N	NN O	N-P	N-P	(1 ⁵ N 20	<u>R</u> .	Ν	Ν	Ν	N-P	P-F	P-F
Trifloxsulfuron	7	Ν	P.	S.NS	N W	N-P	N-D	N N	F	Ν	N-P	Ν	Р	G	F-G
Glyphosate	9	E	E	ŇĚ	NO CU	E	SE C	્દ્રે	E	С	Е	F	G-E	F	F-G
Glyphosate + Pyrithiobac	9	entE 15	EO	NE	ment all	2 EUG	WES	0 -	Е	-	Е	F	G-E	F-G	F-G
Glyphosate + Trifloxsulfuron	- CUM	JÈ.	Ee	°. ² €	in the state	o Eo	È	-	Е	-	Е	F	G-E	G-E	G
Glufosinate	115 8, 31	Contraction of the second seco	ŎĞ.Ű	IS GH	+0101	O'GX	P P	С	G	С	G	Ν	F	Р	Р
	BYG ² ver-The-T 8 7 8 8 - 2 7 9 9 9 9 9 9 0 5 115 8 7 9 9 9	urther ons	NO SOLUTION	the per	John Child										

 Table VIII-11.
 Grass Weed Species Control Ratings to Preplant, Preemergence and Postemergence Herbicides in Cotton (continued)

 Table VIII-11. Grass Weed Species Control Ratings to Preplant, Preemergence and Postemergence Herbicides in Cotton (continued)

											1 d	·0·			
_					Cor	nmon (	Grass V	Weeds	& Nutse	edge	'n'n				
Product	BYG ²	BSG ³	CG ³	CFG ³	CPG ⁴	FT ³	GG ³	JR ⁴	JGs ³	$ST^4$	TP ³	BG ³	JGr ³	NSy ³	NSp ³
								all'	or		S.				
Postemergence Directed	l – Layby	y					(c)		JGs ³		S' S				
MSMA	-	F	F	F	Р	F	QF	N	FIL	R	é P	Ν	Р	F-G	F
Diuron + MSMA	9	G	G	F-G	P <u>O</u>	F-G	F-G	XO'	OF-G	3 40	F	Ν	Р	G	F
Prometryn + MSMA	9	F-G	F-G	F-G	- `	F-G	F-G		F-G	-68	F	Ν	Р	F-G	F
Product Postemergence Directed MSMA Diuron + MSMA Prometryn + MSMA Flumioxazin + MSMA Prometryn/ trifloxysulfuron +MSMA ¹ Weed species: BYG = b GG = goosegrass, JR = ju	9	F	F	C CFC	intelle	F	л F	NOCUT	NO F. M	-	P-F	Ν	Р	G	F-G
+MSMA	9	F-G	ÆG	F-G	Sigal	F-G	F-G	de ci	F-G	-	F	N	Р	E	Е
² (University of Arkansas, ³ (University of Georgia, 2 60% control; N = < 30% ⁴ (University of California		eed contr	ol rating	gs key: E		or better		; G = 8 no con	20% to 909 ntrol, - = n	% conti	rol; F = mation.	÷ 60%-8	30% con	trol; P =	= 30% -

										<u>5) (C</u>	<u></u>		
					Со	mmon B	Broadle	af Wee	ds ¹	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Product	$CD^2$	BC ³	CG ³	CW ³	CM ³	CLP ³	HB ³	MT ³	PA ³	SA ³	VP ³	WL ³	WR ³
							A	XO	, JIS.				
2,4-D	9	G	F	Р	F	E	P-F	G-E	SVFX?	• F-G	G-E	G	G
Glufosinate ⁴	-	-	8	10	-	EX.	6	08 5		0 -	9	-	-
Glufosinate + 2,4-D or					4	0 ⁰¹	9.0	ano' d	<i>5/, K</i> 0				
dicamba ²	8	10	8	<u>G</u> 10	. 510	8	5100	e e	9		10	-	-
Glyphosate	7	G-E	P-E	È E ,	G-E	P-F	G-E	OG-E	E	G	G	G-E	F-G
Glyphosate + 2,4-D	9	Е	E-G	Eec	E	(°E,O	) E	Ê	Е		Е	G-E	Е
Glyphosate + dicamba	9	ΕÖ	G	E.e	ې Ęږ (	` (B` (	E	E	Е	-	G-E	G-E	G-E
Glyphosate + carfentrazone or		KH.		. E	nor d	^{(, , , , , ,} ) ₀ ,	JU.		F	a	G		G
pyraflufen	- ~	G-E	F-G	$\mathcal{S}_{\mathcal{E}}^{\mathcal{A}}$	э. <u>Е</u> Ю	S they	о Е	G-E	Е	G	G	G-E	G
Glyphosate + diuron	oro	G-E	SGN	Ē,	G-E	F-G	ME	G-E	Е	G	G	G-E	G
Glyphosate + thifensulfuron /	the ist			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	Str. C	24-		_				_
tribenuron nuron		G-E	∂G-E	E	G-E	ૺૢૼૡૼૢૼૻ	Е	G-E	Е	-	G	G-E	Е
Glyphosate + flumioxazin	6 ⁰⁷ .0	G-E	G	E C	E F	₽-G	Е	G-E	Е	-	G-E	Е	G
Paraquat	Č,Č	OEC	G-E	E.	O FX	F	G-E	P-F	F-G	F-G	G	Р	F-G
Paraquat + diuron	JOK THE	E ^O	QUE N	JII EN	G	G-E	Е	F-G	G-E	F-G	G	F	G-E

# Table VIII-12. Broadleaf Weed Species Control Ratings to Preplant Burndown Herbicides in Cotton

¹Weed Species: CD = curly dock, BC = buttercup, CG = Carolina geranium, CW = chickweed, CM = citronmelon, CLP = cutleaf primrose, HB = henbit, MT = marestail, PA = Palmer amaranth, SA spurred anoda, VP = Virginia pepperweed, WL = wild lettuce, WR = wild radish.

² (University of Arkansas, 2011). Rating Scale:  $0 = n_0$  control, 10 = 100% control.

³(University of Georgia, 2012). Weed control ratings key: E = 90% or better control; G = 80% to 90% control; F = 60%-80% control; P = 30% to 60% control; N = < 30% control. ³(University of Georgia, 2012): weed control ratings were control ratings were control and the second of the sec

					C	ommon	Broadl	eaf Weed	s ¹	ilon hil	0		
Product	CB ²	DC ³	FB ²	FP ²	GC ⁴	HS ²	NS ⁴	JW ²	LQ ^{2C}	MG ²	PA ²	PW ²	PS ²
Duonlant Incound	amatad						es l	S/, *	20,01		>.		
<b>Preplant Incorpo</b> Pendimethalin	N	N	D	Б	N	N		NOO	GEC	on the off	G	G-E	N
Trifluralin	N	N	I P	E	N2	N	N	- No-	CAR	∠ O P	G	G-E G-E	N
Preemergence	1	1	1	Ľ	KA		1	al allo	O L	(Col	U	0-L	11
Pendimethalin	Ν	Ν	Р	F-GO	N .	o ^C N	N	ONO	G	Р	P-F	F-G	N
Clomazone	F	F	F-G	F-G		F S	<u>v.</u>	G	G	P-F	N-P	Р	Е
Fluometuron	F-G	F-G	G-E	F-G	5-0	P/C P/C	<u></u>	C GIN	G-E	G	F	G-E	G
Diuron	F	F	R. C.	P-F	0.0	1 P 1	in the second	o'G	G-E	F	F-G	G-E	F
Fomesafen	G	F-G	Q P S	B	1111-1	P	0 50	5 Nre	Е	P-F	Е	Е	-
Fomesafen Pyrithiobac <b>Postemergence F</b> Metolachlor Pyrithiobac	N-P	F-G	Ġ	K F	C CO.	dis P.S.		F-G	G	F	G-E	Е	G
Postemergence F	Residual (	Control	(in 10		$U_{r}$ $U_{r}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S SIN						
Metolachlor	P _	NS	P-F	G	3 <u>1</u>	S, BU	×9-	-	F	Р	G	G-E	F
Pyrithiobac	N-P	OG e	G	OF C		ν P	S -	F-G	G	F	G-E	G-E	G
Trifloxsulfuron	P N-P	S GO	¢¥F-Go	P-F	<u></u>		-	-	-	-	P-F	F	-
	3 01 1	ື້	), <i>K</i> , '	207 - 19		C)							
	Residual ( P N-P do - an anot (a)	indfraction of the second	P F-G G-E P P P P P F-G G F F-G G F F-G G G F F-G F G G C F F-G G G C F F G G C F F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C F G C G C	cial entities	ind violo	~		eaf Weed JW ² NOA NOA NOA NOA NOA F-G - F-G -					
			Y				47.7						1.04

 Table VIII-13. Broadleaf Weed Species Control Ratings to Preplant, Preemergence and Postemergence Herbicides in Cotton 

 Part I

					Ca		Ducad	leef W		0			
Product	CB ²	DC ³	FB ²	FP ²	$\frac{C_0}{GC^4}$	mmon HS ²	Broad NS ³		$\frac{eas}{LQ^2}$	MG ²	PA ²	PW ²	PS ²
i i ouuou	02	20	10		00	2	110	0,0				1	10
Postemergence Over-The-Top					4	B	XO	· /0/	XON (	5			
Quizalofop	Ν	Ν	Ν	Ν	-00	N	100	N C	NOT NOT	Ν	Ν	Ν	Ν
Fluazifop	Ν	Ν	No	Ν	N	N	N	. N	Ň	Ν	Ν	Ν	Ν
Sethoxydim	Ν	Ν	N	N	N	N	×N .		N N	Ν	Ν	Ν	Ν
Clethodim	Ν	N	δ N	N	N	ON N	N	N	Ν	Ν	Ν	Ν	Ν
MSMA	E	. <b>P-</b> F	E	N-P	P <<		P ×	Р	Р	P-F	Р	Р	Р
Fluometuron	F-G	F-G	G	PF	~	8 ⁻	<u>), -</u> Q	G	G	G	P-F	F	F-G
Pyrithiobac	ĢĄ	G	SG	N-P	P .	el GE		Е	Ν	G	F	G	F
Trifloxsulfuron	€-È	G	G-EQ	P	10°	5-10	<u> </u>	Ν	G	G	P-F	F-G	Ν
Glyphosate	KOXE	É	E S	P-G	S C X	P-F	Ć.	Е	G	F-G	Е	Е	F-G
Glyphosate + Pyrithiobac	S X E	SE X	Ē	P-G	<u> </u>	P-F G-E	<u>, -</u>	Е	G	G-E	Е	Е	G
Glyphosate + Trifloxsulfuron	STILLE	E	Ê	P-G	0-0		-	E	Е	Е	Е	Е	G
Glufosinate	E.	G-E	G C	ંદ્રે	Š	<u> </u>	С	Е	Е	Е	F-G	G	F
Postemergence Directed – Layby			All	P-G F PO	ine ine ine ine ine ine ine ine ine ine	5							
MSMA	C'EN	P-F	E	PO.	P	Ν	Р	F	P-F	F	Р	P-F	Р
Diuron + MSMA	E C	G-E	Ĕ.	_؆ ۯ؇ٚ	<u>(19</u>	P-F	-	G	G	G-E	G	G-E	G-E
Diuron + MSMA Prometryn + MSMA	Ś, Ś	G-E	SN E O	F	-	P-F	-	G	G	G-E	F	G	G-E
Flumioxazin + MSMA	E o	G-E	E.	F-G	-	-	-	Е	F-G	Е	F-G	G-E	G-E
Flumioxazin + MSMA Prometryn/ trifloxysulfuron + MSMA	ON E.	G-E	SE	F	-	-	-	G	G-E	Е	G	G-E	G-E

 Table VIII-13. Broadleaf Weed Species Control Ratings to Preplant, Preemergence and Postemergence Herbicides in Cotton

 – Part I (continued)

¹Weed species: CB = common cocklebur, DC = devil's claw, FB = Florida beggarweed, FP = Florida pusley, GC = ground cherry, HS = hemp sesbania, NS = nightshade, JW = jimsonweed, LG = Common lambsquarters, MG = morningglory species, PA = Palmer amaranth, PW = pigweed species, PS = Prickly sida. ²(University of Georgia, 2012). Weed control ratings key: E = 90% or better control; G = 80% to 90% control; F = 60%-80% control; P = 30% to 60% control; N = < 30% control

³Personal communications with **Control** (Texas A & M University - 2011, Weed control ratings key: E = 90% or better control; G = 80% to 90% control; F = 60%-80% control; P = 30% to 60% control; N = < 30% control.

⁴ (University of California, 2012). Ratings Key, C = control, P = partial control, N = no control, - = no information.

					Common	Broadlea	af Weeds	1	i Olix	ins	
Product	PL ²	RW ²	RdW ² N N N G-E E G-E G-E	SP ²	SG ²	SN ³	SW ²	TB ³	TSW25	VL ⁴	WB ³
							SIL	6	E P	9	
<b>Preplant Incorpo</b>	rated					Ő	$\mathcal{B}$	2000	10, 40.	NO NO	
Pendimethalin	E	Ν	Ν	Ν	N	N	Ν _N	N	CN &	0	Ν
Trifluralin	Е	Ν	Ν	Ν	N	Ŵ	NO.	ON .	N° N°	0	Ν
Preemergence				, e ^x	·	Jai	Julia Je	) N O	at		
Pendimethalin	G	Ν	Ν	N	NOC	N	S NO	N C	N	0	Ν
Clomazone	G-E	G	G-E	5 P	N.S.	N ^O .	ربي E	N	F	10	Ν
Fluometuron	Е	Е	EXA	G	PAF	N	ે હિં	N N	F	3	Ν
Clomazone Fluometuron Diuron Fomesafen Pyrithiobac <b>Postemergence R</b> Metolachlor Pyrithiobac Trifloxsulfuron	Е	G	N G-E E(T) G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G-E () G () G-E () G-E () G () G () G () G () G) () G () G)() G () G)() G () G)() G)() G)() G() G	F	. 8 F. M	Ň	is Go	Ň	P-F	7	Ν
Fomesafen	G	G	or s.	SPX	11- 6.0	NO NO	ini ² N	N	Ν	1	G
Pyrithiobac	G	N-P	G-E	R-F	n Gol	SN &	G	Ν	Р	8 ⁵	Ν
Postemergence R	esidual (	Control	(III) (O)	1'0' N	So no		S. ILS				
Metolachlor	G	Ontrol	to - whe	P.C	P-F	NN.S	-	Ν	Е	-	Ν
Pyrithiobac	G ^(C)	ON-RO	G-E	C Rollie	G O	A.	G	Ν	Р	-	Ν
Trifloxsulfuron	20 - M	y child	*// <u>-</u> 60	<b>₽-</b> ₽		© N	-	Ν	-	-	Ν
	2.10	\$~~S	All of	3 - 10	A XO						
	all at	6 16.	(°,14)	0, 3	1 ac						
Ø	in mon	10 Ma	ent ch	s mis	110						
	1, 06	, the d	J. Co.	Ser an	>						
		JI' SO	offi the	6							
		$C_{0,\mathcal{A}}$									
		ON X	10°,00°								
		24	EXU G-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF-E OF								
			Q~								

 Table VIII-14. Broadleaf Weed Species Control Ratings to Preplant, Preemergence and Postemergence Herbicides in Cotton

 – Part II

				C	ommon B	<b>Sroadle</b> af	Weeds	il il			
Product	PL ²	RW ²	RdW ²	SP ²	SG ²	SN ³	SW20	<b>TB</b> ³	TSW ²	VL ⁴	WB ³
						St.	29.5	er te	)		
Postemergence Over-The-Top	)				e (K)	NO.	i dilo	Nº co	Ø		
Quizalofop	Ν	Ν	N	Ν	NOON	N.	N N	N	Ν	0	Ν
Fluazifop	Ν	Ν	N	N	ΥN	NO	N	(N)	Ν	0	Ν
Sethoxydim	Ν	Ν	N	NUC	NO	, Ky	NO	Ν	Ν	0	Ν
Clethodim	Ν	N 🗸	6 N	N	N	N.C.	N	Ν	Ν	0	Ν
MSMA	P-F	P ₇ F	N	₹. ₽	O NO	P-F	N-P	Ν	Р	-	G
Fluometuron	F-G	G	FG	F-G	, OP-FG	N N	F-G	Ν	Р	-	Ν
Pyrithiobac	F	У Р	JCK - KO	P-F	F-G.	PO PO	G	Ν	F	9	Ν
Trifloxsulfuron	NO Y	<u></u> ્રે દુકુર્ગ	à G à	E	0° <u>+</u> 10	OP	G	Ν	P-F	-	Ν
Glyphosate	9 F-6	E.	E	E S	G	ε	G	G	P-G	7	G
Glyphosate + Pyrithiobac	, G x	○ E [©]	Nº EXIO	E N		Е	Е	G	G	-	G
Glyphosate + Trifloxsulfuron	60	OFC		E.	G	Е	Е	G	P-G	-	G
Glufosinate	JF-G	SE .	JUL Hall	EC	F-G	F-G	G	F-G	P-F	10 ⁵	F-G
is of one		the my	10.0								
Fluazifop Sethoxydim Clethodim MSMA Fluometuron Pyrithiobac Trifloxsulfuron Glyphosate Glyphosate + Pyrithiobac Glyphosate + Trifloxsulfuron Glufosinate	in any intro	nt the period	RdW ² N N N N N N N N N N N N N N N N N N N	¢.							
Aonsonto Compony	Ý			12 CT	24411						202

 Table VIII-14. Broadleaf Weed Species Control Ratings to Preplant, Preemergence and Postemergence Herbicides in Cotton

 – Part II (continued)

#### Table VIII-14. Broadleaf Weed Species Control Ratings to Preplant, Preemergence and Postemergence Herbicides in Cotton sug – Part II (continued)

								0	<u>s</u>		
				Co	ommon B	roadleaf	Weeds	10 X			
Product	PL ²	$RW^2$	RdW ²	SP ²	SG ²	SN ³	SW ²	TB ³	TSW ²	$VL^4$	WB ³
						SUL	Q1 (		)		
Postemergence Directed – Layl	by				etty	NO.	20/01	N ^E CO	Ø		
MSMA	P-F	F	N CA	F	NON.	Ň	0 PCC	N	F	-	G
Diuron + MSMA	G	Е	G-E	G-E	°G	N FIO	F	N	G	6 ⁵	G
Prometryn + MSMA	F-G	Е	G	G-E	GO	· AVF (	ES	Ν	F-G	6 ⁵	G
Flumioxazin + MSMA	G	G-E	- 2	G-E	OG O	FeG	G	Ν	G-E	9 ⁵	G
Prometryn/ trifloxysulfuron + MSMA	-	operte O'	th 25 into	arties of		CC Elle	-	Ν	F-G	9 ⁵	Ν

smartweed, TB = Texas blueweed, TSW = tropical spidetwort, VL = velvetleaf, WB = woolyleaf bursage.

²(University of Georgia, 2012). Weed control ratings key: E = 90% or better control; G = 80% to 90% control; F = 60%-80% control; P = 30% to 60% control; N = < 30% control. 0

, Texas A & M University - 2011, Weed control ratings key: E = 90% or better control; G =³Personal communications with 80% to 90% control; F = 60%-80% control; P = 30% to 60% control; N = <30% control.

⁴ (MSU, 2012). Rating scale: 0-3 = none to slight, 4-6 = fair, 7-8 = good, 9-10 = excellent control.

⁴ (MSU, 2012). Rating scale: 0-3 = none to slight, 4-6 = fair, 7-8 = good, 9-10 = ex ⁵ (University of Arkansas, 2011). Rating Scale: 0 = no control, 10 = 100% control.

#### VIII.F.2. Herbicide Resistant Weeds in Cotton

Table VIII-15 provides a summary of the common weeds in cotton that have biotypes reported resistant to the various herbicide modes-of-action in the U.S. To date there are only two species with biotypes confirmed to be resistant to dicamba in the U.S. after over , y. , and wild , and wild , wide with cot, , and eight broadleaf , aba provides good to e. , these broadleaf weed bio, , at to both glyphosate and dica. , stant to glufosinate was recently co population (Avila-Garcia and Mallory-A. , segrass from Malaysia has been confirmed .). Thus, there are a total of two species , sistance to glufosinate. A discussion regarding management of herbicide resistant weeds can be for potential for development of discussion regarding management of MON 88701 can be found in Appendix to the development of discussion regarding to the discussion regarding management of MON 88701 can be found in Appendix to , the development of discussion regarding to the discussion regarding management of MON 88701 can be found in Appendix to , the development of discussion regarding to the discussion regarding the development of discussion regarding to the discussion regarding to the discussion regarding management of MON 88701 can be found in Appendix to , the development of discussion regarding to the discussion r 40 years of use – kochia and prickly lettuce (Heap, 2012c). Additionally, a population of lambsquarters has been confirmed as resistant to dicamba in New Zealand, and in Canada, common hempnettle and wild mustard have been confirmed as resistant, for a total of five species worldwide with confirmed resistance to dicamba. Currently in the U.S., six grass species and eight broadleaf species have been confirmed to have resistance to glyphosate. Dicamba provides good to excellent control of all eight of these broadleaf species. None of these broadleaf weed biotypes have been shown to have populations that are resistant to both glyphosate and dicamba. The first species in the PS. with a biotype resistant to glufosinate was recently confirmed in a glyphosate-resistant Italian Ryegrass population (Avila-Garcia and Mallory-Smith, 2011). Additionally, a population of goosegrass from Malaysia has been confirmed resistant to glufosinate (Seng et al., Thus, there are a total of two species worldwide with biotypes that have resistance to glufosinate. A discussion regarding the usefulness of MON 88701 in and use of this document may seet in the second of this owner. And use of this document may and use of this owner. The provide of the owner. The provide of the owner. management of herbicide resistant weeds can be found in Section VIII.G., and the potential for development of dicamba and glufosinate resistance in weeds following the

without the permission of the owner of this documer.

					Mo	de of A	ction						
Weed Species Annual Grasses Barnyardgrass Crabgrass spp. (large, smooth) Foxtail spp. (giant, green) Italian ryegrass Goosegrass Junglerice Annual Broadleaves Black nightshade (Eastern) Common cocklebur Common purslane Common ragweed Horseweed (marestail) Jimsonweed Lambsquarters Palmer amaranth Prickly sida Pigweed spp. (redroot, smooth, Powell, waterhemp) Russian thistle Smartweed spp. (Pennsylvania, ladysthumb) Sunflower Velvetleaf Perennial Grasses Johnsongrass Perennial Broadleaves Field bindweed ¹ (Heap, 2012d)	ACCase Inhibitors	<b>ALS Inhibitors</b>	Chloroacetamides	Dinitroanilines	Glycines	Organoarsenicals	Photosystem II Inhibitors	Thiocarbamates	Ureas & Amides	Synthetic Auxins	Bipyridiliums	<b>PPO Inhibitors</b>	Glutamine Svnthase Inhibitors
Annual Grasses											ogli o	NG.	
Barnyardgrass	Х						Х	Х	Х	X			
Crabgrass spp. (large, smooth)	Х						2		Xec	X	nii .		
Foxtail spp. (giant, green)	Х	Х		Х		(	XX	Ś	$\mathcal{S}^{\mathcal{O}}$	2,716	S		
Italian ryegrass	Х	Х	Х		Х	B		X?	101	201	O,		Х
Goosegrass				Х	X	501	X		, c	) ×	X		Х
Junglerice		~	$\bigcirc$		×°		XON	5	15	, or o			
Annual Broadleaves Black nightshade (Eastern)	00	x		ectur		(egy)	OX A	int of	nat	2,			
Common cocklebur	S C	X.	XO'	ંહેં	· ~ '0	xeQ	' d'	on					
Common purslane		S		in c	90 X	5	XX		Х				
Common ragweed	Š	X	2.6	Mr.	x	inis	XX .	ς.				Х	
Horseweed (marestail)	SUC	X	1		X		X	)	Х		Х		
Jimsonweed		5	60,	ής,	S	2. C	X						
Lambsquarters	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	X	, S.	6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	il in the second s	X						
Palmer amaranth	, m	X		УХ _	NX.	3	Х						
Prickly sida	Ser X	X	$i^{(0)}$	$\sim$	10	-							
smooth, Powell,	, 90		× م م	"ine									
waterhemp)	17 13	X	$\mathcal{C}$	e vi	Х		Х		Х			Х	
Russian thistle	<u>\</u> 0'.	X	10										
(Pennsylvania,	. d	,~```\```\``` ```\\``	110										
ladysthumb)		3hu					Х						
Sunflower S of the	, ed	X											
Velvetleaf	SIL						Х						
Perennial Grasses													
Johnsongrass	Х	Х		Х	Х								
Perennial Broadleaves													
Field bindweed ¹ (Heap, 2012d)										Х			

Table VIII-15. Common Weeds in Cotton and Weed Resistance to Herbicide Modes of Action in the U.S.¹

#### VIII.G. Introduction of Dicamba and Glufosinate-Tolerant Cotton - MON 88701

#### VIII.G.1. MON 88701 Product Concept

Monsanto has developed herbicide-tolerant cotton, MON 88701, which will offer growers cotton varieties that are tolerant to both dicamba and glufosinate herbicides. Herbicide tolerances to dicamba and glufosinate were developed due to the benefits associated with these herbicides, including: the ability to control glyphosate-resistant and hard-to-control weeds with two unique modes-of-action and the familiarity growers have with these herbicides. Since dicamba is currently labeled for only preplant applications in cotton, MON 88701 will facilitate a wider window of application for dicamba in cotton by allowing preemergence applications of dicamba up to the day of crop emergence, as well as postemergence in-crop applications up to seven days preharvest. MON 88701 will provide the ability for in-crop postemergence applications of glufosinate from emergence up to the early bloom growth stage, which is the same as the current application timing for glufosinate-tolerant cotton. MON 88701 will be combined with glyphosate-tolerant cotton utilizing traditional breeding techniques. This combination of herbicide-tolerance traits will allow the use of dicamba, glufosinate, and glyphosate herbicides in an integrated weed management program to control a broad spectrum of grass and broadleaf weed species in cotton. These herbicides will provide three distinct modes-of-action for use in conjunction with other herbicide active ingredients and modes-of-action for an effective weed resistance management program in cotton. Dicamba will offer improved in-crop postemergence control of glyphosate's difficult-tocontrol broadleaf weeds, including Florida pusley, hemp sesbania, lambsquarters, morningglory species, prickly sida, purslane, and Pennsylvania smartweed (Table VIII-Glufosinate will offer improved control of certain broadleaf weeds, including 16). lambsquarters, morningglory species, and velvetleaf, as compared to glyphosate. Dicamba and glufosinate will also offer effective control options for glyphosate-resistant стурноваte-resistant biotypes of Palmer amaranth, glufosinate will offer an effective control option for broadleaf species resistant to other herbicide classes (e.g., ALS and PPO chemistries).

The current labeled use of dicamba in cotton is limited to early preplant application. Significant restrictions exist in cotton for preplant application of dicamba, including a maximum application rate of 0.25 lbs a.e. per acre, a 21-day interval between application and planting cotton, and a minimum of one inch of rainfall or overhead irrigation before planting cotton to avoid cotton injury (BASF, 2008). To support the introduction of MON 88701, Monsanto will be submitting an application to U.S. EPA to amend Registration Number 524-582, a DGA salt formulation, to allow preemergence and incrop postemergence dicamba applications to MON 88701. If approved, growers would be authorized to apply dicamba alone or in mixtures with glyphosate, glufosinate, or other herbicides for preplant or postemergence in-crop applications on MON 88701. Pending EPA registration, dicamba would be authorized to be applied up to 1.0 lb a.e. per acre prior to planting, up to the emergence of cotton, and postemergence in-crop applications, up to 0.5 lbs a.e. per acre each, could be applied up through seven days prior to harvest. These application rates are well within the dicamba rates applied to other crops, such as corn and sugarcane (BASF, 2008). Maximum application amounts for dicamba will be established for total preplant/preemergence applications and in-crop applications with the combined total not to exceed 2.0 lbs a.e. per acre of dicamba per year for all applications. Based on the dicamba label requested by Monsanto, aerial applications of dicamba will not be allowed on MON 88701.

Glufosinate is currently labeled for preplant and in-crop applications in cotton varieties designated as glufosinate-tolerant (Bayer CropScience, 2011). No changes to the glufosinate product labels will be necessary to permit broadcast in-crop applications of glufosinate to MON 88701. Glufosinate can also be applied as a burndown treatment prior to planting or prior to emergence of any conventional or non-glufosinate herbicidetolerant cotton varieties. Directed postemergence applications are also permitted in nonglufosinate-tolerant varieties, provided no herbicide contacts the cotton foliage. Once MON 88701 is available, growers will be able to apply glufosinate alone or tank-mixed with dicamba for preplant or postemergence in crop applications on MON 88701. Application rates and timings for glufosinate alone will be the same as currently labeled for glufosinate use in glufosinate-tolerant varieties (i.e., from emergence up to the early bloom stage at 0.402 to 0.530 lbs a.i/acre, seasonal maximum of 1.59 lbs a.i. per acre) oalt Ind (Bayer CropScience, 2011). HION 90,

The expected use patterns for dicamba and glufosinate on MON 88701 will vary across U.S. cotton growing regions. This variability is dictated by the environment and weed spectrum variations across these regions. The recommendations for the Midsouth and Southeast regions are shown in (Table VIII-16). In these regions, conventional tillage planted acres are expected to receive a single in-crop application per season of dicamba at 0.5 dbs a.e. per acre and conservation tillage or no-tillage acres are expected to receive two applications (one preplant application at 0.375 lbs a.e. per acre and one in-crop application at 0.50 lbs a.e. per acre). All acres in this region where glyphosate-resistant weeds are present, regardless of tillage, are expected to receive a single in-crop application of glufosinate as 0.53 lbs a.i. per acre. For the remaining acres where glyphosate-resistant weeds are not present, glyphosate will likely be used for control of late-emerging weeds. Dicamba and glufosinate use in eastern Texas, is expected to be similar to that described for the Midsouth and Southeast regions.

## Table VIII-16. Anticipated Weed Management Recommendations for MON 88701 Combined with Glyphosate-Tolerant Cotton Systems for MO, AR, TN, AL, FL, GA, NC, SC, VA, LA, MS and eastern TX¹

	Сог	ventional Tillage		onservation Tillage o-till or reduced till)
Application Timing	No GR Weeds ²	GR Weeds or Suspected GR Weeds ²	No GR Weeds ²	GR Weeds or Suspected GR Weeds ²
Preemergence (burndown, at planting) ³	Residual	Residual	Dicamba + Glyphosate + Residual	Dicamba Glyphosate Residual
Postemergence ³	Dicamba + Glyphosate	Dicamba + Glyphosate + Residual	Dicamba + Glyphosate + Residual	Clyphosate Residual
Postemergence ³	Glyphosate	Glufosinate	Glyphosate	Glufosinate + Residual

The anticipated use patterns represent a high-end estimate for predicting dicamba use associated with MON 88701 combined with glyphosate-tolerant cotton. Actual weed control practices by growers will vary depending on the specific weed spectrum and agronomic situation of the individual cotton field, specifically dicamba use could be lower especially for the preemergence and second postemergence applications.

² Recommendations for all fields in these regions will assume GR weeds are present.

³ Monsanto and academics recommend the use of soil residuals as part of a comprehensive weed resistance management program to ensure that two effective herbicide modes-of-action are used in cotton and to provide protections against additional resistance development to existing cotton herbicides.

In western Texas, New Mexico, Kansas, Oklahoma, California and Arizona, dicamba is expected to be utilized more extensively than glufosinate for management of hard-tocontrol and/or glyphosate-resistant weeds in MON 88701. Glufosinate is considered less effective on the weed spectrum under the high temperature and low humidity environmental conditions in these regions (Bayer CropScience, 2011). The recommendations for these cotton growing areas are shown in (Table VIII-17). All acres are expected to receive one preplant application of dicamba (0.375 lbs a.e. per acre). Areas with glyphosate-resistant weeds are also expected to receive two in-crop applications of dicamba (0. 50 lbs a.e./acre) per season, whereas areas without glyphosate-resistant weeds will only receive one in-crop application of dicamba (0.50 lbs a.e./acre).

# Table VIII-17. Anticipated Weed Management Recommendations for MON 88701 Combined with Glyphosate-Tolerant Cotton Systems for western TX, NM, KS, OK, CA, and AZ 1

	Cor	ventional Tillage		onservation Tillage o-till or reduced till)
Application Timing	No GR Weeds	GR Weeds or Suspected GR Weeds	No GR Weeds	GR Weeds or Suspected GR Weeds
Preemergence (burndown, at planting) ²	Dicamba + Glyphosate + Residual	Dicamba + Glyphosate + Residual	Dicamba + Glyphosate + Residual	Dicamba Glyphosate Residual
Postemergence ²	Dicamba + Glyphosate	Dicamba + Glyphosate	Dicamba + Glyphosate	Dicamba + Glyphosate
Postemergence ²	Glyphosate	Dicamba + Glyphosate	Glyphosate	Dicamba + Glyphosate

¹ The anticipated use patterns represent a high-end estimate for predicting dicamba use associated with MON 88701 combined with glyphosate-tolerant cotton. Actual weed control practices by growers will vary depending on the specific weed spectrum and agronomic situation of the individual cotton field, specifically dicamba use could be lower especially for the preemergence and second postemergence applications.

² Monsanto and academics recommend the use of soil residuals as part of a comprehensive weed resistance management program to ensure that two effective herbicide modes-of-action are used in cotton and to provide protections against additional resistance development to existing cotton herbicides.

## VIII.G.3. MON 88701 in Combination with Glyphosate-Tolerant Cotton Systems

With the introduction of MON 88701 into glyphosate-tolerant systems, growers will continue to be able to use dicamba, glufosinate, and glyphosate herbicides for preplant burndown, without the plant-back restrictions currently in place. Tables VIII-10 and VIII-12 show weed control ratings for glyphosate, glufosinate, glyphosate tank-mixed with dicamba, and glufosinate tank-mixed with dicamba compared to other herbicide regimes when applied as a preplant burndown application to common broadleaf weed species found in fields prior to planting cotton. Glyphosate alone provides excellent control of many grass species and is superior to glufosinate on many grass species. Therefore, glufosinate applications in MON 88701 are not expected to provide improvement in control of grass species in no-till systems, except where glyphosateresistant grass species may be present. Certain hard-to-control broadleaf weeds such as curly dock, Carolina geranium, cutleaf primrose, and wild radish, are difficult to control with glyphosate. Similarly, glufosinate provides unsatisfactory control of certain broadleaf weeds such as Carolina geranium, cutleaf primrose, and henbit. Tank-mixing dicamba with glyphosate or glufosinate improves the control of the difficult-to-control weed species for both of these products. The dicamba tank mix combinations will also provide excellent control of glyphosate-resistant marestail and fair to good control of glyphosate-resistant Palmer amaranth. Dicamba will be complementary to glyphosate or glufosinate for preplant burndown weed control in cotton and will offer growers equal or superior weed control to other preplant herbicides or herbicide tank mixtures. MON 88701 will provide additional application flexibility with dicamba allowing applications up to the day of planting in cotton. In addition to complementing the weed control of glyphosate-tolerant cotton systems to lower the potential risk of weed species developing resistance to glyphosate. Furthermore, dicamba and glufosinate will provide alternative modes-of-action for control of broadleaf weeds with populations known to be resistant to glycine, ALS, and PPO classes of herbicides (see Table VIII-15).

Upon integration of MON 88701 into glyphosate-tolerant cotton systems, in-crop postemergence applications of dicamba, glufosinate, and glyphosate herbicides will be permitted in cotton production. Tables VIII-18 and VIII-19 illustrate common broadleaf weed responses to dicamba, glyphosate, glufosinate, and several other labeled in-crop over-the-top herbicide treatments in cotton. Since dicamba is not currently labeled for incrop applications in cotton, weed control ratings for dicamba were taken from labeled incrop applications of dicamba in corn for comparison purposes. Glyphosate provides good to excellent control of all the listed annual grasses and most of the annual broadleaf weeds. When compared to glufosinate, glyphosate provides better control of some of the annual grasses (broadleaf signalgrass, crabgrass, crowsfootgrass, foxtail, goosegrass, seedling johnsongrass, Texas panicum), perennial grasses (johnsongrass and bermudagrass) and some of the broadleaf weeds (devil's claw, Florida beggarweed, Florida pusley, pigweed species, and silverleaf nightshade). However, glufosinate data complement the weed control of in-crop application(s) of either glyphosate or glufosinate. The use of dicamba will improve control of most of the broadlest of spurge, silverleaf nightshade, Texas blueweed, tropical spiderwort, velvetleaf, and woolyleaf bursage. Other herbicide treatments are available when needed to provide effective control of these weed species. In addition, an in-crop application of dicamba in combination with either glyphosate or glufosinate will assist in the management of glyphosate-resistant weed biotypes.

Currently, many residual and non-residual herbicides are used in combination with glyphosate in preplant and in-crop postemergence applications in cotton. The addition of dicamba and glufosinate to the system are expected to offer increased benefits over the current alternative herbicides as supplements to glyphosate for preplant and in-crop applications on MON 88701, including increased flexibility and reduced crop injury.

Since planting interval restrictions following preplant applications of dicamba in cotton will be removed, dicamba will have greater flexibility for preplant applications than current preplant applications of 2,4-D and will potentially replace some 2,4-D applications in cotton. The broadleaf weed control provided by dicamba and glufosinate, plus the crop tolerance when applied to MON 88701, will allow the potential replacement of some other in-crop alternative herbicides used for broadleaf weed control in cotton, particularly diuron, fomesafen, fluometuron, and paraquat. Considering the characteristics of dicamba and glufosinate from the perspective of weed control and compatibility with glyphosate, it is concluded that MON 88701 will complement the established safety and efficacy of glyphosate use in glyphosate-tolerant cotton systems.

#### VIII.G.4. MON 88701 as a Weed Resistance Management Tool

Although herbicide resistance may eventually occur in a weed species when an herbicide is widely used, resistance can be delayed, contained, and managed through research, education, and good management practices. The addition of dicamba and glufosinate tolerance to the glyphosate-tolerant cotton systems will provide an efficient method for incorporation of additional modes-of-action in the system, and reduce the potential for further resistance development to glyphosate, dicamba, and glufosinate, as well as other important cotton herbicides. Current research, conducted by Monsanto, to define the optimum weed management systems indicate the following: 1) in MO, AR, TN, AL, FL, GA, NC, SC, VA, LA, MS, and eastern TX, the recommendation will be to apply a soilactive residual herbicide followed by an in-crop early postemergence application of dicamba tank-mixed with glyphosate, and a residual product, followed by a late postemergence application of glufosinate tank-mixed with a residual product (Table VIII-16); and 2) in western TX, KS, OK, NM, AZ, and CA, the recommendation will be to apply a soil-active residual herbicide, followed by an in-crop postemergence application of dicamba tank-mixed with glyphosate at early and late postemergence (Table VIII-17). recommended, in addition to the in-crop applications described above. This is not expected to increase selection pressure on either product since the proof. . (r) . 0

Stewardship of dicamba and glufosinate to preserve their usefulness for growers is an important aspect of Monsanto's stewardship commitment, as is discussed in Appendix I. Specifically, Monsanto has implemented and will continue to develop and proactively provide weed resistance management practices⁶, and will utilize multiple methods to distribute technical and stewardship information to growers, academics, and grower advisors through a variety of communication tools. Monsanto's Technology Use Guide

⁶ Weed resistance management guidelines available at <u>http://www.weedtool.com</u> and <u>http://www.monsanto.com/weedmanagement/Pages/default.aspx</u>

(TUG) will set forth the requirements and best practices for the cultivation of MON 88701 including recommendations on weed resistance management practices. Growers purchasing products containing MON 88701 are required by the Monsanto Technology Stewardship Agreement (MTSA) to read and follow the TUG. Furthermore, Monsanto is committed to actively evaluate herbicide performance and weed efficacy on a continuing basis, and develop additional mitigation plans as necessary to manage resistance development for glyphosate, dicamba, and glufosinate.

#### VIII.G.5. Introduction of Dicamba and Glufosinate-Tolerant Cotton - MON 88701 - Conclusion

Integration of MON 88701 into glyphosate-tolerant cotton systems will allow the use of dicamba, glufosinate, and glyphosate herbicides in an integrated weed management program to control a broad spectrum of grass and broadleaf weed species in cotton. These herbicides will also provide three distinct modes-of-action for an effective proactive and reactive weed resistance management program in cotton. Due to the crop safety of MON 88701 to dicamba and glufosinate, growers will be afforded two effective herbicide modes-of-action for in-crop control of glyphosate's hard-to-control and resistant broadleaf weeds that are present in U.S. cotton production.

Furthermore, the integration of MON 88701, along with the glyphosate-tolerant cotton systems, will provide growers with the ability to continue use of established cotton production practices including tillage systems, the same planting and harvesting machinery; traditional management of insects, diseases, and other pests; and many of the current herbicides used for weed control including glyphosate with its established environmental and grower benefits. Therefore, it is anticipated that the commercialization of MON 88701 in the U.S. is not likely to impact current cotton agronomic practices, cultivation or seed production practices, beyond the intended benefits of more effective and improved management of common and troublesome

					Co	ommon	Broadle	eaf Weed	ls ¹	i Oi	ins.		
Product	CB ²	DC ³	FB ²	FP ²	GC ⁴	HS ²	NS ³	JW ²	LQ ²	MG	PA ²	PW ²	PS ²
Postemergence O	vor The	Ton						310	Pro'	COE ²	þ		
	-		$G^5$	$G^5$	$C^4$	E ⁵	CAL N	E ⁵ , 8	2 50	5.0	$G-E^5$	G-E ⁵	E ⁵
Dicamba	E ⁵	G-E	G	G	C	E	64	E	R.	COE.	G-E	G-E	E
MSMA	E	P-F	Е	N-P	PC	<	у́Р	P.	() P 💥	€ ⁵ R≥F	Р	Р	Р
Fluometuron	F-G	F-G	G	P-F	<u>ex</u> <u>-</u>	1SUX	- 3	DOE NO	Č Č	ץ``G	P-F	F	F-G
Pyrithiobac	G	G	G	N-PO	P N	<mark>сб-</mark> Е	C _C O	Q TO	N N	G	F	G	F
Trifloxsulfuron	G-E	G	G-E	૾૾	. <u>.</u> ~~~	`. <u></u>	<u>, '^-</u> , ©	do Eun	ĠĞ	G	P-F	F-G	Ν
Glyphosate	Е	Е	E	P-G	°C 3	P-F	, C	90 É'N	G	F-G	Е	Е	F-G
Glyphosate + Pyrithiobac Glyphosate +	Е	E	VE S	· P-G	third P	G-E		IS ENCE		G-E	Е	Е	G
Trifloxsulfuron	E	. E	E C	P-G	<u>~</u> ~~	<u>, , , , , , , , , , , , , , , , , , , </u>	$Q^{+}$	ΈE	Е	E	Е	Е	G
Glufosinate	Е	G-E	G	IneFine		SUG M	is coi	E	Е	Е	F-G	G	F

Table VIII-18. Responses of Common Broadleaf Weeds to Dicamba and Glufosinate Compared to Labeled Postemergence Herbicides in Cotton Production - Part I

nemp sesbania, NS = nightshade, JW = jimsonweed, LG = Common lambsquarters, MG = morningglory species, PA = Palmer amaranth, PW = pigweed species, PS = Prickly sida. ²(University of Georgia, 2012). Weed control ratings key: E = 90% or better control; G = 80% to 90% control; F = 60%-80% control; P = 30% to

Texas A & M University - 2011, Weed control ratings key: E = 90% or better control; G =60% control; N = 30% control.  $\cdot$ 

³ Personal communications with 80% to 90% control; F = 60% - 80% control; P = 30% to 60% control; N = < 30% control.

⁴ (University of California, 2012). Ratings Key C = control, P = partial control, N = no control, - = no information.

⁵ (University of Georgia, 2010). Weed control ratings key: E = Excellent control, 90% or above; G = Good control, 80% or above; F = Faircontrol, less than 80% control; P = Poor control.

Table VIII-19. Responses of Common Broadleaf Weeds to Dicamba and Glufosinate Compared to Labeled Postemergence Herbicides in Cotton Production – Part II ر کړ

					Common	Broadle	af Weeds ¹		1000 A	0	
Product	PL ²	RW ²	RdW ²	SP ²	SG ²	SN ³	SW ²	TB ³	TSW ²	$VL^4$	WB ³
Postemergence O	ver-The-	Тор					and	protect	Joll's		
Dicamba	$E^5$	$E^5$	-	$E^5$	$P^6$	F ³	E ⁵	E E	[©] P ⁵ [©]	$F-G^5$	F ³
MSMA	P-F	P-F	Ν	P-F	N	₹B-F	N-P	N	.⊘P	-	G
Fluometuron	F-G	G	F-G	F-G 🔊	P-F	^Q N	ðF-G	N. N	P	-	Ν
Pyrithiobac	F	Р	G	P-F	F-G	P	AC GUME	G	F	9	Ν
Trifloxsulfuron	-	G	G 🦿	¢°E	elle c.	P	NO GUE	Ň	P-F	-	Ν
Glyphosate	F-G	Е	Ê	E	MIL GE	¢ E K	GGR	G	P-G	7	G
Glyphosate + Pyrithiobac Glyphosate +	G	E	NORE S. C	UCE IN		JUL EUIS	de cui		G	-	G
Trifloxsulfuron	G	E	310-15	E C	ad astill	E	°E	G	P-G	-	G
Glufosinate	F-G	TE A	to righter	E	OF-G	F-G	G	F-G	P-F	10 ⁷	F-G
¹ Weed species: PL = smartweed, TB = Te ² (University of Georg	exas bluew	veed, TSW	= tropical	gweed, R spiderwor	dW = redw t, VL = vel	veed, SP = vetleaf, W	B = woolyl	eaf bursage	- -		-

80% to 90% control; F = 60%-80% control; P = 30% to

² (University of Georgia, 2012). Weed control ratings key: E = 90% of better control; G = 80% to 90% control; F = 60%-80% control; P = 30% to 60% control; N = < 30% control; N = < 30% control; F = 60%-80% control; G = 80% to 90% control; F = 60%-80% control; G = 80% to 90% control; F = 60%-80% control; P = 30% to 60% control; N = < 30% control.</li>
⁴ (MSU, 2012). Rating scale: 0-3 = none to slight, 4-6 = fair, 7-8 = good, 9-10 = excellent control.

⁵ (University of Georgia, 2010) Weed control ratings key: E = Excellent control, 90% or above; G = Good control, 80% or above; F = Fair control, less than 80% control; P = Poor control.

⁶ (University of California, 2012). Ratings Key:  $C^{2}$  control, P = partial control, N = no control, - = no information.

⁷ (University of Arkansas, 2011). Rating Scale 0 = no control, 10 = 100% control.

#### VIII.H. Crop Rotation Practices in Cotton

The rotation of cotton with other crops is an integral part of most farm management programs across the southern United States cotton growing region. Ideally, cotton should be rotated with other crops on a regular basis to maintain soil productivity and reduce the incidence of various weeds, insect pests, or diseases (Hake et al., 1996d). Rotating cotton with grass crops such as corn helps to reduce the soil inoculum level of the seedling disease fungi Pythium and Rhizoctonia. These seedling diseases can increase in continuous cotton cropping systems. Crop rotations or the lack of rotations, along with weed control programs used in these crops, can play an important factor on the weed spectrum (Smith and Cothren, 1999). In addition, the crop rotation and weed control programs can increase or decrease the populations of certain weed species. Production costs, relative rate of return, and the current market conditions will dictate which crops to rotate with cotton or whether to grow continuous cotton. These economic factors may outweigh the agronomic benefits of crop rotation. According to Sandretto and Payne (2006) statistics, cotton was grown in a continuous cropping system on 73% of the acreage in the major cotton growing states in 2003. Cotton was rotated with other row crops such as corn or soybean on about 20% of the acreage

Crop rotations for cotton vary from region to region and state to state and often within a state. This section provides a detailed description and quantitative assessment by state of the rotational cropping practices immediately following cotton production. This assessment accounts for about 99% of the total cotton acreage. These data are presented in Tables VIII-20 through VIII-24). Seventeen crops immediately follow cotton in the crop rotation sequence according to this assessment. In the U.S., approximately 54% of the cotton acrea are followed by cotton in the crop rotation sequence. Corn (16%), soybean (8%), sorghum (8%), wheat (9%), and peanuts (4%) are the other crops most frequently following cotton. The other crops following cotton are 0.5% or less of the cotton acres.

Grower survey data available to Monsanto (2011) for dicamba, glufosinate, and glyphosate herbicide usage were utilized for this assessment. For the purpose of this assessment, a 50% adoption rate in U.S. cotton and soybean production was assumed for both MON 88701 and MON 87708 (dicamba-tolerant soybean), respectively. In the following data tables, columns F, H, and J provide the number of acres of dicamba, glufosinate, glyphosate that follow cotton in the rotation crops, respectively. Columns K, L, and M provide the percentage of dicamba, glufosinate, and glyphosate usage (*i.e.*, the percentage of cotton acres where dicamba, glufosinate and glyphosate, respectively, are used in the subsequent crop). For the entire U.S. (Table VIII-20), 33.1%, 11.9%, and 75.0% of the rotational crop acreage would be treated with dicamba, glufosinate, and glyphosate, respectively. The percentage of dicamba usage in the rotation would be the highest in the Southeast region (35.8%) and lowest in the West region (17.9%). MO (45.6%) and OK (48.0%) would be the states with the highest dicamba usage in the rotation and NM (5.8%) and AZ (3.2%) the lowest. The percentage of glufosinate usage in the rotation would be the highest in the Southeast (25.7%) and Midsouth (21.4%) regions and lowest in the Southwest region (2.5%). MO (43.0%) and OK (45.1%) would be the states with the highest glufosinate usage in the

rotation and LA (1.8%), AZ (0%), and NM (0.2%) the lowest. The percentage of glyphosate usage in the rotation would be the highest in the Midsouth region (89.9%) and lowest in the West region (37.8.0%). MO (95.3%) would have the highest glyphosate usage in the rotation and AZ (19.7%) the lowest. In the Southwest region where almost 55% of the cotton is grown, 33.1%, 2.5%, and 70.4% of the rotational crop acres gt following cotton would be treated with dicamba, glufosinate, and glyphosate, respectively.

Tuthering contraction and use of this document of the contraction and use of the contraction of the contraction of the contraction and use of the contraction of the contraction of the contraction and use of the contraction of the cont

-Consequently and publication of the owner of this document may therefore owner of this document may there owner owner of this document may there owner owner of this document may there owner owner of this document may there owner any connectation and violate the infits of this owner.

without the permission of the owner of this documer.

This document is the property of Bayer AG and cument is the property of Bayer AG such as intellectual property and this document is afflictes. Such as intellectual property and this document is afflictes. Such as intellectual property and this document is afflictes of the owner and third parties.

t may be subject to rights such as intellectual parties. In the real parties of the owner inner in a partie of the owner inner inner in a partie of the owner inner inner in a partie of the owner inner inner

Α	В	С	D	Ε	F	G	Н	Ι	J	K	[∧] L	Μ
			%	Dic	amba	Glı	ıfosinate	Glyp	hosate		3	
State/	Rotational		Rotational	Us	age in	U	sage in	Usa	nge in	<u> </u>		
Total	Crops	Rotational	Crop of	Rot	ational	Ro	tational	Rota	ational	% Usage	in Total Rotat	ional Crop
Cotton	Following	Crop	Total	C	rop ⁴		Crop ⁵	C	rop ⁶ 🔍 🤇		Acres ⁷	
Acres ¹	Cotton	Acres ²	Cotton ³	%	Acres	%	Acres	~%	Acres	Dicamba	Glufosinate	Glyphosate
United	Cotton	5858	53.4	50	2930	21.	1264	90.2	5284	26.7	11.5	48.2
States	Corn	1736	15.8	8.1	141	6	37	88.0	1527	130 0	0.3	13.9
10,974	Soybean	861	7.8	50	431	2.1	80	95.90	826	3.9	0.1	7.5
,	Sorghum	836	7.6	8.3	69	1.0	XOX	34.7	290 5	0,6		2.6
	Wheat	1025	9.3	5.6	57	NL	ζ. ζ	×14.1 O	145	0.5		1.3
	Barley	40	0.4	5.0		NE	Un l	27.5	NP N	0.02		0.1
	Peanut	432	3.9	NL		ŇL	(C)	21.1	91	8		0.8
	Sunflower	22	0.2	NL		NL	2 5	72.7	16			0.1
	Alfalfa ⁸	47	0.4	NL		NL o	×0, ~	50	24			0.2
	Vegetables ⁹	50	0.5	NL	S	NO	6	$\mathcal{O}_2$	1			0.01
	Dry Beans	0.5	0.005	NL ?		NL	0.5	40.0	0.2			0.002
	Peppers	8	0.10	NE	() ().	NL	r. Hun	37.5	* 3			0.03
	Tomatoes	24	0.2 5	CNL	111 10	NĽ	N' N'S	45.8	11			0.1
	Onions	6	0.06	NLO	No XI	NL Q	y xv i	33.3	2			0.02
	Tobacco	30	03	NL	0.0	NL	0.49	NL				
		Total: ¹⁰	XII. (IN) o	1. N.	Total:	NL _	Totak		Total:			
		10,974	, 40 M		3,630	i N	1,309		8,231	33.1	11.9	75.0

Table VIII-20 Rotational Practices in the U.S. Following Cotton Production

This table was developed by compiling the data from all four regional summaries (Tables VIII-21 through VIII-24). All acreages are expressed as 1000s of acres. NL indicates not labeled for use. ¹Cotton acreage based on 2010 planting data (USDA-NASS, 2011e).

²Column C is obtained by compiling the data from the four regional summaries. ³Column D is obtained by dividing Column Otto Col

⁴Column E is obtained by dividing Column F by Column C; Column F is obtained by compiling the data from all four regional summaries.

⁵Column G is obtained by dividing Column H by Column C. Column H is obtained by compiling the data from all four regional summaries.

⁶Column I is obtained by dividing Column J by Column C Column J is obtained by compiling the data from all four regional summaries

⁷ Column K is obtained by dividing Column F Total by Column C Total; Column L is obtained by dividing Column H Total by Column C Total; Column M is obtained by dividing Column J Total by Column C Total.

⁸Newly seeded alfalfa.

⁹Vegetables: Cauliflower (37k acres), lettuce (271 k acres), and broccoli (124k acres) (USDA-NASS, 2011d).

¹⁰ Totals may not be exact due to rounding

01.

Α	В	С	D	Ε	F	G	Н	Ι	J	K	L C	Μ
				Dic	camba	Gluf	osinate	Gl	yphosate		0	
		Rotational		Us	age in	Us	age in		sage in		<b>b</b>	
State/	Rotational	Crop	%		ational	Rot	ational	Rotat	ional Crop ⁶	% Usage	in Total Rotati	ional Crop
Total	Crops	Acres	Rotational	C	rop ⁴	С	rop ⁵		×		Acres ⁷	
Cotton	Following	Following	Crop					2	<0 [~]	JUP .S		
Acres ¹	Cotton	Cotton ²	Acres ³	%	Acres	%	Acres	0%	Acres	Dicamba	Glufosinate	Glyphosat
Region	Cotton	1311	50.5	50	656	50	656	95.1	1247	25.2 0.8	25.2	48.0
2597	Corn	340	13.1	6.2	21	2.3	80	88.3	300	0.8	0.3	11.5
	Soybean	507	19.5	50	254	0.9	<u> </u>	97.8	496 86	25.2 0.8 9.8 1	0.2	19.1
	Peanut	410	15.8	NL	P	NL	8	97.8 20.9	86	N,		3.3
	Tobacco	30	1.1	NL	es i	NL ND	3	NL		}		
		Total: ¹⁰		2	Total:	C	Total		Total:	35.8	25.7	81.9
		2597		· · ·	0.20	<u> </u>	Total: 668		Total: 2128	33.8	25.7	81.9
4L	Cotton	102	30	$O_{50}$		50	Total: <u>668</u> 51 1 1 Total: <u>54</u> 23 1	.97		15.0	15.0	29.1
340	Corn	68	20	$7^{8}$	5	2 ⁸		97	66	1.4	0.4	19.4
	Soybean	119	35	50	60	18 ³	il il	100	<119	17.5	0.4	35.0
	Peanut	51	20 35 15 9	50 NL	60 Total	NĿO		30	©15			4.5
		Total:	1510 10,10 200 10 210,0 10	SX	Total:	S	~ Totak	12 M	Total:	33.9	15.8	88.0
		340			Total: 115	315 6	54	5	299		1010	
FL	Cotton	46 , 9	50	50 7 ⁸ 50 NL	23	50	23 4	99	46	25.0	25.0	49.5
92	Corn	9	10.0	78	1 A	$2^{8}$ .	$\sim 1^{\circ}$	$78^{8}$	7	0.7	1.1	7.8
	Soybean	5	St ON	50	C ²	1 ⁸ 0	0.05	94 ⁸	4	2.5	0.1	4.7
	Peanut	32 0	35 0 0	) NL (O		NL ¿	$\langle O \rangle$	27	9			9.5
		9 5 32 Total: 92	a with	290	115 23 1 2 Total: 26 399	"the	Total: 24		Total: 66	28.2	26.1	71.5
GA	Cotton	<b>92</b> 798	60 0	50	399	2 ₅₀	399	93	742	30.0	30.0	55.8
1330	Corn	133	d0 11	7 ⁸ c	59	2 ⁸	3	92	122	0.7	0.2	9.2
	Soybean	133	10	50	67	$1^{8}$	1	99	132	5.0	0.1	9.9
	Peanut 🔨	260	20 0	NL	0	NL		18	48			3.6
		133 260 Total: 1330	$\begin{array}{c} 60\\ 10\\ 10\\ 20\\ \end{array}$		Total: 475		Total: 403		Total: 1044	35.7	30.3	78.5
		S.		)IL-								

1.0 **T** 11 . ~ . . 0 п • . . _ . .

Α	В	С	D	Е	F	G	Н	Ι	J	K	COL	Μ
					amba		osinate		phosate		, <u>o</u> .	
			%	Usa	ıge in	Usa	age in	Us	age in	ni, 'Oi	9	
State/	Rotational		Rotational	Rota	ational		ational		ational	🔿 %Usage	e in Total Rotat	ional Crop
Total	Crops	Rotational	Crop of	C	rop ⁴	С	rop ⁵		Crop ⁶	0 10/10	Acres ⁷	
Cotton	Following	Crop	Total						20	02.25		
Acres ¹	Cotton	Acres ²	Cotton ³	%	Acres	%	Acres	° %	Acres	Dicamba	Glufosinate	Glyphosate
NC	Cotton	231	42	50	116	50	116	ح 99	2290	21.0	21.0	41.6
550	Corn	83	15	$7^{8}$	3	$2^{8}$	Å.	79	65	0.5.0	0.4	11.9
	Soybean	165	30	50	83	$1^8$ C	1	.95	157 💸	15.0	0.2	28.5
	Peanut	44	8	NL 🔍	, Y	ND		23 ⁸	10			1.8
	Tobacco	28	5	NL		NL	0	NE	Nº N	3		
		Total: 550	\$	(Q0.)	Total: 201	S	Total: 119	ion in	10 Total: 461	36.5	21.5	83.8
SC	Cotton	101	50	50	51	50		0100	101	25.0	25.0	50.0
202	Corn	30	15	7 ⁸ 7	20	28	O G	860	26	1.1	0.3	12.9
	Soybean	61	30	50	. 30	18	1	86C 98	59	15.0	0.3	29.4
	Peanut	8	\$ S'	NĽ 💉	111 × 10.	NL	N. 19	238	2			0.9
	Tobacco	2	01 X 5	NIO	i a i	NLe	, still	012				
		Total: 5	still's right	al al	Total: 83 17	0.	Total: 52	\$	Total: 188	41.1	25.6	93.2
VA	Cotton	330 . 19	400 m 20 m 30 0 0 510 m	50 7 ⁸ 50	N7 0	50 m 2 ⁸ 1 ⁸	17	91	30	20.0	20.0	36.4
83	Corn	17 5	20 0	378 ji	10	2 ⁸⁾	0.3	79	13	1.4	0.4	15.8
	Soybean	25	30 8 80	50	12 ¹² 11	M8 (1)	<i>2</i> 0.2	99	25	15.0	0.3	29.7
	Peanut 🔗	8, 3, 5,		NL		NE		23 ⁸	2			2.3
	THISAIC	Total:	10, 11, 3C	78 50) NL	Total: 30		Total: 17		Total: 70	36.4	20.7	84.2

Table VIII-21. Rotational Practices Following Cotton Production in the Southeast Region (continued)

The Southeast region summary was developed by compiling the data from all the states within the region. Column C, Column F, Column H, and Column J are obtained by compiling data from all the states within this region, Column D is obtained by dividing Column C by Column A, Column E is obtained by dividing Column F by Column C, Column G is obtained by dividing Column H by Column C, Column I is obtained by dividing Column C. All acreages are expressed as 1000s of acres. NL indicates not labeled for use.

¹Cotton acreage based on 2010 planting data (USDA-NASS, 2011e).

²Column C is obtained by multiplying Column A by Column D.

³The rotational crop percentages in Column D are based on estimates from individual state Extension Crop Production Specialist and Extension Weed Control Specialist in cotton ( Auburn University; University of Florida; University of Georgia;

Virginia Tech University, Personal Communications, November, 2010). Clemson University; and

⁴Dicamba usage data in Column E except for cotton and soybean is based on 2010 data (Monsanto Company, 2011). Dicamba usage in cotton (50%) and soybean (50%) are future market adoption estimates.

⁵Glufosinate usage data in Column G except for cotton is based on 2010 (Monsanto Company, 2011). Glufosinate usage in cotton (50%) is the future market adoption estimate.

⁶Glyphosate usage data in Column I is based on 2010 data (Monsanto Company, 2011).

¹Column K is obtained by dividing Column F Total by Column C Total, Column L is obtained by dividing Column H Total by Column C Total. ¹Since no data was reported or the survey sample size was too small for the herbicide data in the state to be statistically reliable, the percent usage for the herbicide corp in the U.S. was used. ¹⁰Totals may not be exact due to rounding. ^oGlyphosate usage data in Column 1 is based on 2010 data (Monsanto Company, 2011). ⁷Column K is obtained by dividing Column F Total by Column C Total; Column L is obtained by dividing Column H2Jotal by Column C Total, and Column M

without the permission of the owner owner

Α	В	С	D	Ε	F	G	Н	Ι	J	K	` L	Μ
				Dica	amba	Glufo	osinate		phosate		2	
			%	Usa	ge in	Usa	ge in	Us	age in		>	
State/	Rotational		Rotational		tional		tional		ational	% Usage	e in Total Rota	tional Crop
Total	Crops	Rotational	Crop of	Cr	op ⁴	Cr	op ⁵		Crop ⁶ xC		Acres ⁷	
Cotton	Following	Crop	Total					0	NO.	St Mr		
Acres ¹	Cotton	Acres ²	Cotton ³	%	Acres	%	Acres	%	Acres	Dicamba	Glufosinate	Glyphosat
Region	Cotton	786	40.9	50	393	50	393	99 🗙	7800	20.5	20.5	40.6
1920	Wheat	59	3.0	6.0	4	NL .	2	15	9	0.20		0.5
	Corn	711	37.0	10.1	72	2.10	15	15 85	607	3,9	0.8	31.6
	Soybean	337	17.6	50	169	1.0	4	⁷ 94	307	8.8	0.2	16.5
	Sorghum	27	1.4	12	3 0	NL	69	45		0.2		0.6
		0	ç	S		Co: I	2 5	, ne	Total:			00.0
		Total: ⁹ 1920	Ö		Total: 640	23 Joh	13 4 Total: 411	245 5 5 100	1725	33.3	21.4	89.9
AR	Cotton	218	40 30 25 5	50 8	109	50				20.0	20.0	40.0
545	Com	164	300	78		28	30	078 ⁸	128	2.9	0.6	23.4
	Soybean	136	25 5	550	68	18	3	78 ⁸ 87 45 ⁸	119	12.5	0.3	21.8
	Sorghum	07		120	N° E	~ NTT 1/1	STI -	45 ⁸	12	0.6		2.3
		164 136 27 <b>Total:</b> 545	fille (101. or	S. M.	Total:	d ve	1 Total: 114 0 4 1 Total:	)	Total: 476	36.0	20.9	87.4
LA	Cotton	00.5	-10 - NRO	50 . 6		50	<u> </u>	100	0			
255	Corn	S191 0 .	75	78	3	$22^8$	4	78	149	5.3	1.5	58.5
	Soybean	64	25 . 600	50	32	18	1	100	64	12.5	0.3	25.0
	Khis 10	164 136 27 <b>Total:</b> 545 0 191 64 <b>Total:</b> 255 68 189 63 <b>Total:</b> 420	300 25 5 5 6 75 0 75 0 75 0 75 0 75 0 75 0 75	1,00	3 Total: 196 0 13 32 Total: 45	IL.	Total: 4		Total: 213	17.8	1.8	83.5
MS	Cotton	3168; O	540	50,00	. 84	50	84	99	166	20.0	20.0	39.6
420	Corn	189	45	.78	13	$2^{8}$	4	98	185	3.2	0.9	44.1
	Soybean	, 'N, EO.	15	\$50	32	$1^{8}$	1	99	62	7.5	0.2	14.9
		Total: 255 168 189 63 Total: 420	40 45 195 01 195 01 10 10	60.0	Total: 129		Total: 88		Total: 414	30.7	21.1	98.6
		and	25 25 25 25 25 25 25 25 25 25									

Table VIII-22. Rotational Practices Following Cotton Production in the Midsouth Pogio

Α	В	С	D	Е	F	G	Н	Ι	J	K	COL	
State/ Total	Rotational Crops	Rotational	% Rotational Crop of	Usa	amba Ige in Itional	Us	fosinate age in ational	Usa	hosate ge in tional	tion min	0	
Cotton	Following	Crop	Total		rop ⁴		Crop ⁵		op ⁶	<b>W</b> Usage ir	Total Rotation	nal Crop Acres ⁷
Acres ¹	Cotton	Acres ²	Cotton ³	%	Acres	%	Acres	~	Acres		Glufosinate	Glyphosate
MO	Cotton	264	85	50	132	50	132 🗙	100	264	42.5 0	42.5	85.0
310	Corn	31	10	$7^{8}$	2	4	1 8	59	8	0.6	0.4	5.9
	Soybean	16	5	50	8	2	0.3	88	14 0	2.5	0.1	4.4
		Total: 310			Total: 142		Total: 133	Nato.	Total: 295	45.6	43.0	95.3
TN	Cotton	137	35	50	68	50	68	3970	132	17.5	17.5	34.0
390	Wheat	59	15	6 ⁸	4	NL	~	158	9 2	0.9		2.3
	Corn	137	35	D)	27	280	્યું હ	393 cV	127	6.9	0.7	32.6
	Soybean	59	15	50	29	18	ŎΥ N	100	59	7.5	0.2	15.0
		Total: 390	, open	5.	Total: 128		Total: 72	3_900,	Total:	32.8	18.4	83.8

Table VIII-22. Rotational Practices Following Cotton Production in the Midsouth Region (continued)

The Midsouth region summary was developed by compiling the data from all the states within the region. Column C, Column F, Column H, and Column J are obtained by compiling data from all the states within this region; Column D is obtained by dividing Column C by Column A, Column E is obtained by dividing Column F by Column C, Column G is obtained by dividing Column H by Column C. Column I is obtained by dividing Column J by Column C. All acreages are sug expressed as 1000s of acres. NL indicates not labeled for use. ONIC mts

¹Cotton acreage based on 2010 planting data (USDA-NASS 2011e)

²Column C is obtained by multiplying Column A by Column D.

³The rotational crop percentages in Column D are based on estimates from individual state Extension Crop Production Specialist and Extension Weed Control University of Arkansas: Specialist in cotton ( Louisiana State University; Mississippi State University; University of Missouri; and University of Tennessee, Personal Communications November, 2010).

⁴Dicamba usage data in Column E except for cotton and soybean is based on 2010 data (Monsanto Company, 2011). Dicamba usage in cotton (50%) and soybean (50%) are future market adoption estimates.

⁵Glufosinate usage data in Column G except for cotton is based on 2010 (Monsanto Company, 2011). Glufosinate usage in cotton (50%) is the future market adoption estimate.

⁶Glyphosate usage data in Column T is based on 2010 data (Monsanto Company, 2011).

⁷Column K is obtained by dividing Column F Fotal by Column C Total; Column L is obtained by dividing Column H Total by Column C Total, and Column M is obtained by dividing Column Total by Column C Total.

⁸Since no data was reported or the survey sample size was too small for the herbicide data in the state to be statistically reliable, the percent usage for the herbicide/crop in the U.S. was used.

⁹Totals may not be exact due to rounding.

Α	В	С	D	Ε	F	G	Н	Ι	J	К	L C	Μ
				Dic	amba			Gly	phosate	(09)	D.	
					ige in		fosinate		age in		<b>b</b>	
State/	Rotational		%		tional		sage in		ational	chill chill		
Total	Crops	Rotational	Rotational	Cı	rop ⁴	Rotati	onal Crop ⁵	<u> </u>	rop ⁶	<mark>% U</mark> sage ir	n Total Rotation	al Crop Acres
Cotton Acres ¹	Following Cotton	Crop Acres ²	Crop Total Cotton ³	%	Acres	%		21%	Acres	Dicamba	Glufosinate	Glyphosate
Region	Cotton	3607	60.6	50	1804	3.8	138	86.9	3136	30.3 0.7 C	2.3	52.7
953	Wheat	765	12.9	5.3	41	NL	.09	13,9	106	0.7		1.8
	Corn	685	11.5	7.0	48	2.0	04	90.5	620	0.8	0.2	10.4
	Soybean	17	0.3	50	8	1.0	0.2	78.2	130	0.1	0.003	0.2
	Sorghum	808	13.6	8.2	66	NL	69	34.4		1.1		4.7
	Dry Bean	0.5	0.01	NL		NL	20	34.4 35.0 50.0 23.0	278 0.2			0.003
	Alfalfa ⁸	18	0.3	. NL	in the	NC	0× (0×	50.0	9			0.1
	Peanuts	22	0.4	NL	Total	NL NL NL NL NL	Jer a res	23.0	5			0.1
	Sunflower	22	0.4	NL NL	<u>, o</u> 76	NL	till is	7 <b>4</b> .0	16 3			0.3
	Peppers	8	0.1	NL		NL X		43.0	3			0.1
		Total: ¹⁰ 5953	XIC Or v	$\sim \sim$	1967	dis .	5152	OW	Total: 4188	33.1	2.5	70.4
<b>KS</b>	Cotton	3	5.0	50	S D	50 NL	br still	100	3	2.5	2.5	5.0
1	Wheat	13	×25.0 ×	CI3	2	NL	Mr. CO.	8	1	3.3		2.0
	Corn	20 5	40.0	10	NE N	29 0	0.4	88	18	4.2	0.8	35.2
	Soybean	300-10	50 0	30 3		×1%	0.03	96	2	2.5	0.1	4.8
	Sorghum	े री दि	25.0	19 0	à ô	ŇĿ		57	7	4.7		14.3
	THIS	Total:		50 13 11 50 19	Total:	Xe V	Total:		Total: 31	17.2	3.4	61.3
	ð	tt nov ite	5.0 (111) (10) 25.0 (10) 5.0 (10) 25.0 (10) 25.0 (10) 15 (1	i oten	and in							

T II VIII AA D . ... 1.0 **T** .  $\sim$ . ... in the South t Dari . . -

Α	В	С	D	Е	F	G	Н	Ι	J	K	N° COL	Μ
				Dic	camba	Glufos	sinate	Gly	phosate	(0-	<i>Solution</i>	
			%	Us	age in	Usag	e in	Us	age in		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
State/	Rotational		Rotational		ational	Rotat			tational	Cill ist		_
Total	Crops	Rotational	Crop of	C	'rop ⁴	Cro	op ⁵		Crop ⁶	🔨 % Usage in	1 Total Rotation	al Crop Acres ⁷
Cotton Acres ¹	Following Cotton	Crop Acres ²	Total Cotton ³	%	Acres	%	Acres	<b>%</b>	Acres	Dicamba	Glufosinate	Glyphosate
NM	Cotton	3	5.0	50	1	0	0	91 ⁹	2000	2.5	0	4.6
50	Wheat	12	24.0	6 ⁹	0.7	NL	.00	15 ⁹	120	1.4 1.4 1.2		3.6
	Corn	5	10.0	7 ⁹	0.4	2 ⁹	0.1	780	4	0.7	0.2	7.8
	Sorghum	5	10.0	12 ⁹	AL Y	NL	•	459	<u>32</u> 0	1.2		4.5
	Dry Beans	0.5	1.0	NL	10	NL	.0	350	0.2	(D)		0.4
	Alfalfa ⁸	18	35.0	NO		NL	2	50	() ×	•		17.5
	Peppers	8	15.0	ÔNL	in to	NL	્ર હ	43%	30			6.5
		Total: 50	orth		Total:		Total: 0.1	50 60	Total: 22	5.8	0.2	44.8
OK	Cotton	257	90	50 0	128	(250 : 020)	128	. 99	254	45.0	45.0	89.1
285	Corn	9	3	- ⁷³ >	0.6	2 ⁹	0.2	69	6	0.2	0.1	2.1
	Soybean	14	5	50	700	d. 5	0.1 太 🎽	750	11	2.5	0.1	3.8
	Sorghum	6 . S	2111. 30	129	0.7	NL	of x	35	2	0.2		0.7
		Total: 285	in to wi	10 In	Total: 137	SU M	Total: 129		Total: 273	48.0	45.1	95.6
ГХ	Cotton	3346	60.1	050	1673	025	8	86	2877	30.1	0.2	51.7
5567	Wheat X	740	233	5.00	- 39° ¢`	NL		14	104	0.7		1.9
	Corn .	651	d1.7	$\int E_{n}$	045 0	2	13	91	593	0.8	0.2	10.6
	Sorghum	0785	5 14 1 0	8 7	.63	NL		34	267	1.1		4.8
	Peanuts Sunflower	223 22	0.4	NĽ NL	55,1010	NL NL		23 ⁹ 74 ⁹	5 16			0.1 0.3
	1	Total: 0 5567	olle mere	Qerl'?	Total: 1819		Total: 21		Total: 3862	32.7	0.4	69.4

Table VIII-23. Rotational Practices Following Cotton Production in the Southwest Region (continued)

The Southwest region summary was developed by compiling the data from all the states within the region. Column C, Column F, Column H, and Column J are obtained by compiling data from all the states within this region; Column D is obtained by dividing Column C by Column A, Column E is obtained by dividing Column F by Column C, Column G is obtained by dividing Column H by Column C, Column I is obtained by dividing Column C. All acreages are expressed as 1000s of acres. NL indicates not labeled for use.

¹Cotton acreage based on 2010 planting data (USDA-NASS, 2011e).

³ Th S S N	becialist in cotton ( btate University; To November, 2010).).	re based on estimates from individual state Extension Crop Production Kansas State University; <u>New Mexico State U</u>	Diversity, Oklahoma Oklahoma Oklahoma Oklahoma
Mo	nsanto Company	12-CT-244U	225 of 620

Α	В	С	D	Е	F	G	Н	Ι	J	K	C L	Μ
State/ Total	Rotational Crops	Rotational	% Rotational Crop of	Us Rot	camba age in ational Crop ⁴	Glufo Usag Rotat Crop C	tional	Us Rot	phosate age in ational Crop ⁶	. C% Usage in	Total Rotation	al Crop Acres ⁷
Cotton Acres ¹	Following Cotton	Crop Acres ²	Total Cotton ³	%	Acres	%	Acres	3%	Acres	Dicamba	Glufosinate	Glyphosate
Region	Cotton	153	30.4	50.0	77	50.0	77	79.0	221	15.2 2.4	15.2	24.0
504	Wheat	202	40.0	6.0	12	NL	20	15.0	30	24		6.0
	Barley	40	7.9	4.0	2_0	NL 🔍	SC .	27.0	», D. (	90.30		2.1
	Alfalfa ⁸	30	5.9	NL	4.	NL	×	50.0	15			2.9
	Tomatoes	24	4.9	NL .	101	NL	Ċ	43.0	,μČ	(2)		2.1
	Onions	6	1.2	NL	, í	NL	<0-	27.0	$\mathcal{Q}$			0.3
	Vegetables ⁹	50	9.8	NL	XO	NLS	500	Q3.0	1			0.3
		Total: ¹¹ 504	X	9	Total:	itile nde	Total: 77	2000	Total: 190	17.9	15.2	37.8
AZ	Wheat	79	40	6 ¹⁰	05.09	NL		15 ¹⁰ 27 ¹⁰ 50	.10	1.6		6.0
198	Barley	40	20	4 ¹⁰	2	NL V		2710	×11	0.5		5.4
	Alfalfa ⁸	30	15 × 00	NE	10 21	NE		50	15			7.5
	Vegetables ⁹	50	25.	NL		NE	$\circ$	310	1			0.8
		Total:	s affir in or	let a	Total:	and M	Total: 0		Total: 39	3.2	0.0	19.7
CA	Cotton	153	500 01	50 6 ¹⁰	197 N	50 0	77	79	121	25.0	25.0	39.5
306	Wheat	122	<u>_140</u> (2) 3	G ¹⁰	07	NE	<i>(</i> ).	$15^{10}$	18	2.4		6.0
	Tomatoes 👌	24		NLQ	No S	NL O		43	11			3.4
	Onions S	6.00	20 1115	NL	30 0	NL		27	2			0.5
	(III)	Total: 306	SOT HIS	ot	Total:	No.	Total: 77		Total: 151	27.4	25.0	49.5

Detational Practices Following Cotton Production in the West Degion T-LL VIII 24

The West region summary was developed by compiling the data from all the states within the region. Column C, Column F, Column H, and Column J are obtained by compiling data from all the states within this region, Column D is obtained by dividing Column C by Column A, Column E is obtained by dividing Column F by Column C, Column G is obtained by dividing Column H by Column C, Column I is obtained by dividing Column C. All acreages are expressed as 1000s of acres. NL indicates not labeled for use.

¹Cotton acreage based on 2010 planting data (USDA-NASS, 2011e).

²Column C is obtained by multiplying Column A by Column D.

- ³The rotational crop percentages in Column D are based on estimates from individual state Extension Crop Production Specialist and Extension Weed Control University of Arizona; and University of California, Personal Communications, November, Specialist in cotton ( 2010).
- ²⁰¹⁰). ⁴Dicamba usage data in Column E except for cotton and soybean is based on 2010 data (Monsanto Company, 2011). Dicamba usage in cotton (50%) and soybean (50%) are future market adoption estimates.
- ⁵Glufosinate usage data in Column G except for cotton is based on 2010 (Monsanto Company, 2011). Glufosinate usage in cotton (50%) is the future market QUID adoption estimate.
- ⁶Glyphosate usage data in Column I is based on 2010 data (Monsanto Company, 2011).
- ^oGlyphosate usage data in Column 1 is based on 2010 data (Monsanto Company, 2011). ⁷Column K is obtained by dividing Column F Total by Column C Total; Column L is obtained by dividing Column H Total by Column C Total, and Column M 20 snoll con is obtained by dividing Column J Total by Column C Total.

- ⁹AZ acreage: cauliflower (3), lettuce (62), broccoli (7); U.S. acreage: cauliflower (35), lettuce (199), broccoli (125),
   ¹⁰Since no data was reported or the survey sample size was too small for the herbicide data in the traction of the brock of the survey sample size was too small for the herbicide data in the traction of the traction ^{*}Newly seeded alfalia; Glyphosate usage in alfalia (50%) is future market adoption explanate. ^{*}AZ acreage: cauliflower (39), lettuce (199), broccoli (425). ^{**}Since no data was reported or the survey sample size was too small for the herbicide data in the state to be statistically reliable, the percent usage for the herbicide crop in the U.S. was used. ^{**}Totals may not be exact due to rounding. without the permission of the owner of this document indexed

#### VIII.H.1. Cotton Volunteer Management

Volunteer cotton refers to plants that have germinated, emerged and established unintentionally from the previous year's cotton crop ( et al., 2002). Volunteer cotton plants generally come from seed that falls to the ground as a result of preharvest losses due to adverse weather condition or losses during the harvesting operation. Volunteer cotton will compete with the rotational crop and potentially cause yield loss and act as early host plants for pests such as spider mites and aphids ( et al.. 2002). Although volunteer cotton in soybean fields can impact yield, recent studies indicate that other common grasses or broadleaf weeds are more problematic in soybean (Lee et al., 2009). The occurrence of volunteer cotton depends on the fillage after harvesting the crop and the severity of winters. Cotton volunteers are more frequently observed in conservation tillage systems where tillage is not used prior to planting. An integrated weed management system of tillage and herbicides has traditionally been the most common method of volunteer cotton control ( et al., 2002).

Mechanical tillage prior to planting is an effective and efficient method for controlling seedling volunteer cotton plants. This is accomplished in most soil conditions because the root and hypocotyls of seedling cotton are easily destroyed by the tillage process (**111**) et al., 2002). Any damage occurring below the cotyledons will kill the plant because there are no growing points from which the plant can recover. The disadvantages of tillage are moisture loss under arid conditions and the possibility of increased soil erosion. In-crop cultivation is a highly effective option for satisfactory control of volunteer seedlings. Where cultivation is not appropriate, the use of herbicides is effective in controlling volunteers.

University weed specialists have identified numerous effective and economical herbicide treatments for control of volunteer cotton in the various rotational crops including cotton (Table VIII-25). University studies have shown that the timing of the herbicide application can greatly impact the effectiveness of many herbicides. Newly emerged cotton (up to 2- 3-leaf stage) as a volunteer is much easier to control with herbicides than more mature cotton (mathematical and mathematical), 2010). If the volunteer cotton plants contain the glyphosate tolerance trait, the use of glyphosate alone in subsequent rotational crops will not control these seedlings. Similarly, volunteer cotton plants containing the dicamba and glufosinate tolerant traits from MON 88701 would not be controlled with either dicamba or glufosinate herbicides, and alternative herbicides would be required for control.

Currently both dicamba and glufosinate are labeled for use in crops rotated with cotton. Dicamba herbicide is labeled for weed control in soybean, corn, cotton, sorghum, wheat, barley, oats, millet, pasture, rangeland, asparagus, sugarcane, turf, grass grown for seed, conservation reserve programs, and fallow croplands. Glufosinate is used for postemergence weed control in canola, corn, cotton, and soybean varieties containing glufosinate-tolerance. It may also be applied as a preplant burndown application in conventional or herbicide-tolerant varieties of canola, corn, cotton, soybean, or sugarbeet. The herbicide control options available in rotational crops will continue to result in the ability to manage cotton volunteers.

Preplant burndown applications of carfentrazone, paraquat, or flumioxazin will effectively control emerged volunteer cotton prior to planting rotational crops (**1999**) et al., 2002; **1999** et al., 2002). In most situations, these preplant measures are sufficient and no additional control measures specifically for cotton volunteers are required the remainder of the season. In the event these measures are not sufficient, the preplant treatment will generally reduce infestation levels, allowing for more effective incrop management of the remaining volunteer cotton in rotational crops.

In emerged cotton, in-crop cultivation has been traditionally used in the subsequent cotton crop or other crops to effectively remove weeds and volunteer cotton plants between the crop rows. In reduced tillage situations, special high-residue cultivators with sweeps may be used to effectively lift weeds out of the soil to leave the ground cover undisturbed. Cotton emerging within the row can negatively impact cotton growth and management decisions due to increased plant population and disease susceptibility et al., 2002). However, plants remaining at the end of the season can generally be harvested with the planted population by mechanical picking or stripping. Several herbicides are also available for control of volunteer cotton plants after the emergence of the rotational crop. In emerged cotton, applications of carfentrazone or paraquat with hooded sprayers or other selective equipment will effectively control volunteer plants and other weeds in row middles (Alford et al., 2002; et al., 2002). However, special precautions must be taken to ensure that these non-selective herbicides do not contact the cotton crop (Gray et al., 2002) Chlorimuron and imazaquin provide control of volunteer cotton in soybean (Clemmer et al., 2001, York et al., 2004) (Table VIII-25). Volunteer cotton in corn generally is not an issue because of the sensitivity of cotton to a number of commonly used corn herbicides (e.g., atrazine).

<b>Rotation Crop/ Herbicide Product</b>	Rate Product/Acre	Preplant / Preemergent	In Cro
Cotton			
	32 oz	Х	X
Âim (carfentrazone)	1 oz	X	X
ET (pyraflufen)	15.07	X	
Lavby Pro (linuron/diuron)	32 07	A	X
Sharpen (saflufenacil)	15-202	x (es	<u>`</u> 0``
Corn	1.5-2.0 02		9
Atrazine	32.07	A ish	x
Callisto (mesotrione)	3 floz	X	X
Sharpen (saflufenacil)	15-2007		1
Status (diflufenzonyr/dicamba)	0.75.07	NO X CO	v
2.4 D	22 02		
Sayhaan	32 02 S		Λ
Bosouroo (flumioloroo)	all or other	01 11	v
Gramovone Inteon (paraquat)	3207	( v	Λ
Sencor + Classic (metribuzin +	2 DE C	A	
chlorimuron	10 CUM	X	
Classic (chlorimuron)	23 az		X
2 4-D	32.0Z	Х	21
Peanuts a Profile Statille Statille	Mr. Sing C		
Gramoxone Inteon (paraquat)	32.0z	Х	
Classic (chlorimuron)	2/3 oz		Х
Sunflower, W M M M	×9		
Paraguat Chick Chick	32 oz	Х	
Sunflower Paraquat Sharpen (saflufenacil/) Buctril Sorghum Gramoxone Inteon (paraquat) Sharpen (saflufenacil)	1.5-2.0 oz	Х	
Buctril	1 pt		Х
Sorghun of a straight			
Gramoxone Inteon (paraquat)	32 oz	Х	
Sharpen (saflufenacil)	1.5-2.0 oz	Х	
Atrazine	32 oz	Х	Х
Wheat			
CleanWave (aminopyralid/fluroxypyr)	14 oz		Х
Buctril (bromoxynil)	1 pt		Х
Gramoxone (paraquat) Aim (carfentrazone) ET (pyraflufen) Layby Pro (linuron/diuron) Sharpen (saflufenacil) Corn Atrazine Callisto (mesotrione) Sharpen (saflufenacil) Status (diflufenzopyr/dicamba) 2,4-D Soybean Resource (flumiclorac) Gramoxone Inteon (paraquat) Sencor + Classic (metribuzin + chlorimuron) Classic (chlorimuron) 2,4-D Peanuts Gramoxone Inteon (paraquat) Classic (chlorimuron) 2,4-D Peanuts Gramoxone Inteon (paraquat) Classic (chlorimuron) Sunflower Paraquat Sharpen (saflufenacil/) Buctril Sorghum Gramoxone Inteon (paraquat) Sharpen (saflufenacil) Atrazine Wheat CleanWave (aminopyralid/fluroxypyr) Buctril (bromoxynil) 2,4-D	32 oz		Х
Starane (nuroxypyr)	16 OZ		Х
Sharpen (saflufenacil)	1.5-2.0 oz	Х	

# Table VIII-25. Herbicides and Application Timing for Control of Volunteer Cotton in Labeled Rotational Crops¹

*Hooded or selective equipment only

#### VIII.I. Stewardship of MON 88701

Monsanto develops effective products and technologies and is committed to assuring that its products and technologies are safe and environmentally responsible. Monsanto demonstrates this commitment by implementing product stewardship processes throughout the lifecycle of a product and by participation in the Excellence Through StewardshipSM (ETS) Program (BIO, 2010). These policies and practices include rigorous field compliance and quality management systems and verification through auditing. Monsanto's Stewardship Principles are also articulated in Technology Use Guides (Monsanto Company, 2012) and Monsanto Technology Stewardship Agreements that are signed by growers who utilize Monsanto branded traits, to ensure stewardship compliance.

As an integral action of fulfilling this stewardship commitment, Monsanto will seek biotechnology regulatory approvals for MON 88701 in all key cotton import countries with a functioning regulatory system to assure global compliance and support the flow of international trade. These actions will be consistent with the Biotechnology Industry Organization (BIO) Policy on Product Launch (BIO, 2010). Monsanto continues to monitor other countries that are key importers of cotton from the U.S., for the development of formal biotechnology approval processes. If new functioning regulatory submissions. In addition, Monsanto actively interacts with and participates in cotton industry groups, such as the National Cotton Council, state grower boards, Farm Bureau, Cotton Inc., and trade affiliates, to obtain input on market trends to ensure awareness of the current key markets for whole cottonseed and cottonseed by-products.

Monsanto also commits to industry best practices on seed quality assurance and control to ensure the purity and integrity of MON 88701 cottonseed. As with all of Monsanto's products, before commercializing MON 88701 in any country, a MON 88701 detection method will be made available to cotton producers, processors, and buyers.

The dicamba and glufosinate-tolerant cotton system, which is applying dicamba and/or glufosinate herbicide to MON 88701 integrated into the glyphosate cotton systems, will enable expanded use of dicamba herbicide in cotton production. Monsanto is seeking regulatory approvals with the U.S. EPA for the expanded application of dicamba herbicide as a weed control tool in cotton. Furthermore, Monsanto will establish appropriate dicamba Maximum Residue Levels (MRLs) for key cotton import countries. No additional regulatory approvals with U.S. EPA will be required for glufosinate products for use in MON 88701.

As with all U.S. EPA registered herbicides for agricultural use, it is possible that offsite movement during and/or following application can occur such that non-target plants may be exposed to direct spray or to spray drift. Research has demonstrated that herbicide formulation, application equipment, and application procedures can be optimized to significantly reduce spray drift potential in most circumstances (Jordan et al., 2009; SDTF, 1997). Monsanto is addressing potential offsite movement of dicamba by seeking U.S. EPA registration of a low volatility dicamba formulation (DGA salt) for ground application only. Additionally Monsanto will implement a robust stewardship program that will include a strong emphasis on grower and applicator training. Furthermore, Monsanto will consult with U.S. EPA to identify what additional measures, if any are necessary, to address any potential impact of off-site movement of these herbicides.

Stewardship of dicamba and glufosinate, to preserve their usefulness for growers, is also an important aspect of Monsanto's stewardship commitment. Detailed information regarding dicamba and glufosinate weed resistance and the usefulness of dicamba and glufosinate-tolerant cotton in combination with glyphosate-tolerant cotton to address herbicide-resistance issues is presented in Section VIII.G and Appendix I.

# VIII.J. Impact of the Introduction of MON 88701 on Agricultural Practices

Introduction of MON 88701 is expected to have no impact on current agronomic, cultivation and management practices for cotton, with the exception of expanded dicamba application timings and more options for effective weed management. Dicamba has been used in corn, soybean, and small grain cropping systems since 1967. MON 88701 with its excellent crop tolerance to dicamba allows preemergence applications through crop emergence and in-crop postemergence applications up to seven days prior to harvest. MON 88701 will be combined with glyphosate-tolerant cotton systems utilizing traditional breeding techniques. Cotton containing both MON 88701 and glyphosate-tolerance will allow the use of glyphosate, dicamba, and glufosinate herbicides in an integrated weed management program to control a broad spectrum of grasses and broadleaf weed species, and to sustain and complement the benefits and value of the glyphosate use in glyphosate-tolerant cotton systems.

MON 88701 has been shown to be comparable to commercially cultivated cotton in its agronomic, phenotypic and compositional characteristics (refer to Sections VI, VII, and VIII), and has the same levels of susceptibility to insect pests and diseases as commercial cotton. Like other herbicide-tolerant cotton, such as glyphosate-tolerant cotton that have been cultivated and consumed in the U.S. since 1996, dicamba and glufosinate tolerant cotton (MQN 88701) will improve the current agricultural practices for U.S. cotton growers by providing two additional in-crop herbicide modes-of-action for the control of glyphosate's hard-to-control and resistant broadleaf weeds, as well as weeds resistant to other herbicide families, thereby improving the efficiency in the U.S. cotton production system to maximize or maintain cotton yield potential, and help meet growing needs for fiber, food, and feed

#### IX. ENVIRONMENTAL ANALYSIS

#### IX.A. Introduction

This section provides a brief review and assessment of the plant pest potential of MON 88701 and its impact on current agronomic practices. USDA-APHIS has responsibility, under the Plant Protection Act (7 U.S.C. § 7701-7772), to prevent the introduction and dissemination of plant pests into the U.S. APHIS regulation 7 CFR § 340.6 provides that an applicant may petition APHIS to evaluate submitted data to determine that a particular regulated article does not present a plant pest risk and no longer should be regulated. If APHIS determines that the regulated article does not present a plant pest risk, the petition must be granted, thereby allowing unrestricted introduction of the article.

The definition of "plant pest" in the Plant Protection Act (PPA) includes living organisms that could directly or indirectly injure, damage, or cause disease in any plant or plant product (7 U.S.C. § 7702[14]).

The regulatory endpoint under the PPA for biotechnology-derived crop products is not zero risk, but rather a determination that deregulation of the regulated article is unlikely to pose a plant pest risk. The approach used to assess the plant pest potential of MON 88701 is a weight-of-evidence approach based primarily on eight lines of evidence: 1) insertion of a single functional copy of the *dmo* and *bar* expression cassettes; 2) characterization of MON 88701 DMO and PAT (*bar*), 4) compositional equivalence of harvested MON 88701 seed to conventional commercial cotton; 5) phenotypic, agronomic, plant mapping, and environmental interaction characteristics demonstrating no increased plant pest potential compared to commercially cultivated cotton, including disease and pest susceptibilities; 6) negligible risk to NTOs; 7) familiarity with cotton as a cultivated crop and the inherently low plant pest potential of cotton; and 8) no greater likelihood to impact agronomic practices, including land use, cultivation practices, or the management of weeds (other than the intended benefits of dicamba and glufosinate for weed control), diseases, and insects than commercially cultivated cotton.

Using the aforementioned assessment, the data and analysis presented in this petition lead to a conclusion that MON 88701 is unlikely to be a plant pest, and therefore should no longer be subject to regulation under 7 CFR Part 340.

## IX.B. Plant Pest Assessment of MON 88701 Insert and Expressed Proteins

This section summarizes the details of the genetic insert, characteristics of the genetic modification, and safety and expression of the MON 88701 DMO and PAT (*bar*) proteins used to evaluate the food, feed, and environmental safety of MON 88701.

### **IX.B.1.** Characteristics of the Genetic Insert and Expressed Protein

### IX.B.1.1. Genetic Insert

As described in Section IV, molecular analyses demonstrated that MON 88701 contains a single copy of the inserted T-DNA at a single integration locus. No backbone sequences from the PV-GHHT6997 were detected in the genome of MON 88701. In addition, data confirmed the organization and sequence of the insert and the stability of the insert over several breeding generations.

### IX.B.1.2. Mode-of-Action

MON 88701 exhibits tolerance to the herbicide dicamba through the insertion of a demethylase gene from Stenotrophomonas maltophilia that encodes DMO and the herbicide glufosinate through the insertion of a N-acetyltransferase gene from Streptomyces hygroscopicus that encodes PAT. The DMO protein is a Rieske-type nonheme iron oxygenase that catalyzes the demethylation of dicamba to the non-herbicidal compound DCSA (Section V.A.1.). As shown in section V.A. and by Dumitru et. al. (2009), DMO is specific for dicamba.

The PAT protein has been extensively assessed, as numerous glufosinate-tolerant products including those in cotton, corn, soy, canola, sugarbeet and rice have been reviewed by the USDA and several other regulatory agencies (ILSI-CERA, 2011; OECD, 1999b; 2002a). The PAT (bar) protein produced in MON 88701 acetylates the free amine group of L-phosphinothricin, form of glufosinate to produce non-herbicidal N-acetyl glufosinate (Section V.A.2.). PAT is specific for glufosinate ( et al.. 1987; Wehrmannet al., 1996). IX.B.A.3. Protein Safety and Expression 1987; Wehrmann et al., 1996).

been established for both MON 88701 DMO and PAT (*bar*) proteins (Section V.E). MON 88701 DMO and PAT (*bar*) lack structural similarity to known allows glutenins, or protein toying (Section V.E). at very low levels in MON 88700 cottonseed (Section V.C.) and will constitute a small portion of the total protein present in feed derived from MON 88701 (Section V.E.). No consumption of the MON 88701 DMO or PAT (*bar*) proteins derived from MON 88701 is expected for the U.S. general population at the present time given that the only foods produced from cottonseed are RBD oil and linters, which contain undectable and neligible amounts of total protein, respectively. As shown in Section V.E. MON 88701 DMO and PAT (bar) are readily digestible in simulated gastric and simulated intestinal fluids and show no oral toxicity in mice (Section V.E.). In addition, PAT proteins have been evaluated in several previous safety assessments with no safety concerns identified.

#### **IX.B.2.** Compositional Characteristics

Detailed compositional analyses in accordance with OECD guidelines were conducted to assess whether levels of key nutrients and anti-nutrients in MON 88701, both treated and not treated with dicamba or glufosinate herbicides, were comparable to levels present in the near isogenic conventional cotton control Coker 130 and several conventional, commercial reference varieties (Section VI). Seed were harvested from eight individual sites in which MON 88701, the conventional control, and a range of commercial reference varieties were grown concurrently in the same field trial. The commercial reference varieties were used to establish a range of natural variability for the key nutrients and anti-nutrients in commercial cotton varieties that have a history of safe consumption.

The combined-site analysis was conducted to determine statistically significant differences (5% level of significance) between MON 88701 treated with dicamba and glufosinate and the conventional control. The biological significance of difference from the combined-site data were reviewed using considerations relevant to food and feed safety and nutritional quality. These considerations included: 1) the relative magnitude of differences in the mean values of nutrient and anti-nutrient components of MON 88701 and the conventional control, 2) whether the MON 88701 component mean value was within the range of natural variability of commercial cotton as represented by the 99% tolerance interval of the commercial reference varieties grown concurrently in the same field trial; 3) whether the MON 88701 component mean value was within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database; and 4) analyses of the reproducibility of the statistically significant combined-site component differences at individual sites.

Assessment of the analytical results confirmed that the differences observed in the combined-site analysis were not meaningful to food and feed safety or the nutritional quality of MON 88701 cotton. To further support the safety assessment, similar compositional analyses were also conducted on cottonseed from MON 88701 not treated with dicamba or glufosinate herbicides. Based on the analyzed nutrient and anti-nutrient levels of both dicamba and glufosinate-treated and not treated MON 88701, MON 88701 is compositionally equivalent to conventional commercial cotton and therefore the food and feed safety and nutritional quality of this product is comparable to that of commercially cultivated cotton. These results support the overall conclusion that MON 88701 is unlikely to be a plant pest.

### IX.B 3. Phenotypic, Agronomic, Plant Mapping, and Environmental Interaction Characteristics

An extensive set of comparative plant characterization data were used to assess whether the introduction of the dicamba and glufosinate tolerance traits altered the plant pest potential of MON 88701 compared to the conventional control (Section VII). Phenotypic, agronomic, plant mapping, and environmental interaction characteristics of MON 88701 were evaluated and compared to those of the conventional control (Section

VII.B). As described below, these assessments included: seed dormancy and germination characteristics; agronomic and phenotypic characteristics; plant mapping characteristics; observations for abiotic stress response, disease damage, arthropod-related damage, arthropod abundance, and pollen characteristics. To support the trait assessment, similar observations were also conducted on MON 88701 treated with dicamba and glufosinate herbicides. Results from all phenotypic, agronomic, plant mapping, and environmental interaction assessments demonstrated that MON 88701 does not possess weedy characteristics, or increased susceptibility or tolerance to specific diseases, insects, or abiotic stressors compared to the conventional control. Taken together, the results of the analysis support a determination that MON 88701 is no more likely to pose a plant pest tection rebinned risk or have a biologically meaningful change in environmental impact than commercially cultivated cotton.

### **IX.B.3.1.** Seed Dormancy and Germination

Seed dormancy and germination characterization demonstrated that MQN 88701 seed had germination characteristics similar to those of the conventional control (Section In particular, the lack of hard seed, a well-accepted characteristic often VII.C.1). associated with plants that are weeds, supports a conclusion of no increased weediness or plant pest potential of MON 88701 compared to commercially cultivated cotton.

# IX.B.3.2. Plant Growth and Development

IX.B.3.2. Plant Growth and Development Of the growth and development characteristics assessed between MON 88701 and the conventional control, eight significant differences were detected in a combined-site analysis (Section VII.C.2.1). MON 88701 observed a reduction in plant height at 30 connected to be biologically meaningful in terms of increased weediness or plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of increased weediness or plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of increased weediness or plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of increased weediness or plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of increased weediness or plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of increased weediness or plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of increased weediness or plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of increased weediness or plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of increased weediness of plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of increased weediness of plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of increased weediness of plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of increased weediness of plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of increased weediness of plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of plant pest potential of MON 88701 compared to commercially cultiveted to be biologically meaningful in terms of plant pest pote

Blant mapping is a process commonly used to quantify growth and development parameters of the cotton plant including ball actually and the cotton plant including ball actually actuall VII.C.2.2). Of the plant mapping characteristics assessed between MON 88701 and the conventional control, one significant difference was detected where MON 88701 had increased first-position bolls per plant compared to the conventional control. However, the mean value of the number of first-position bolls for MON 88701 was within the range of values observed for the commercial reference varieties. Thus, it is unlikely that the difference is biologically meaningful in the context of increased weediness of MON 88701 compared to commercially cultivated cotton.

#### IX.B.3.3. Response to Abiotic Stressors

No biologically meaningful differences were observed during comparative field observations between MON 88701 and the conventional control in their response to abiotic stressors, such as compaction, drought, high winds, nutrient deficiency, etc. (Section VII.C.2.3). The lack of significant biologically meaningful differences in the MON 88701 response to abiotic stress support the conclusion that the introduction of the dicamba and glufosinate-tolerance traits are unlikely to result in increased weediness or plant pest potential compared to commercially cultivated cotton.

#### IX.B.3.4. Pollen Morphology and Viability

Evaluations of pollen morphology and viability from field-grown plants provide information useful in a plant pest assessment as it relates to the potential for gene flow and introgression of the biotechnology-derived trait(s) into other cotton varieties and wild relatives (Section VII.C.3). Pollen morphology and viability evaluations demonstrated no statistically significant differences between MON 88701 and the conventional control. Taken together, these comparative assessments indicate that MON 88701 is not likely to have increased weediness or plant pest potential compared to commercially cultivated IX.B.3.5. Interactions with Non-target Organisms

cotton. IX.B.3.5. Interactions with Non-target Organisms Evaluation of MON 88701 for potential adverse impacts on NTOs is a component of the plant pest risk assessment. Since MON 88701 is not intended to have pesticidal activity, all organisms that interact with MON 88701 can be considered to be NTOs. In 2010 U.S. field trials, observational data on environmental interactions were collected for MON 88701 and the conventional control. In addition, multiple commercial reference varieties were included in the analysis to establish a range of natural variability for each characteristic among commercial cotton varieties. The environmental interactions assessment (Section VII.C.2.3) included data collected on plant-arthropod, plant-disease interactions, and plant mapping. The results of this assessment indicated that the presence of the dicamba and glufosinate-tolerance traits did not alter plant-arthropod susceptibility of MON 88701 compared to conventional cotton. In addition, there were no differences in plant mapping parameters between MON 88701 dicamba or glufosinate herbicides, and the conventional control that would be indicative of a differential plant response to abiotic or biotic stressors. Thus, since all plots evaluated for plant mapping characteristics were at the same sites they would be subjected to similar stressors. Given that MON 88701 plants treated and not treated with dicamba and glufosinate herbicides had similar plant map results, it can be concluded that both responded to stressors in a similar manner. Therefore, these data support the conclusion that the biotechnology-derived traits in MON 88701, treated or not treated with dicamba and glufosinate herbicides, are unlikely to have increased plant pest potential, weediness, or an adverse environmental impact compared to commercially cultivated cotton. The lack of biologically meaningful differences in disease damage, arthropod-related damage, pest- and beneficial-arthropod abundance, and plant mapping

data demonstrate that the introduction of the dicamba and glufosinate-tolerance traits are unlikely to be biologically meaningful in terms of increased plant pest potential as compared to commercially cultivated cotton.

The potential for MON 88701 to influence NTOs was evaluated using a combination of biochemical information and experimental data. The biochemical information and experimental data included molecular characterization, the MON 88701 DMO and environmental PAT (bar) safety assessments, the history of exposure to mono-oxygenases (the class of enzymes to which DMO belongs) and PAT proteins, results from the environmental interactions assessment described above, and the demonstration of compositional, agronomic and phenotypic equivalence to conventional cotton. Taken together, these data support the conclusion that MON 8870 is unlikely to adversely affect NTOs, including those beneficial to agriculture. Any effects on nontarget organisms that could potentially result from proposed changes in herbicide labels

will be evaluated by the EPA. **IX.C. Weed Potential of MON 88701** Cotton is not listed as a weed in the major weed references (Crockett, 1977; Holm et al., 1997), nor is it present on the lists of noxious weed species distributed by the federal government (7 CFR Part 360). United States Department of Agriculture has previously determined that "cotton is not considered to be a serious, principal or common weed pest in the U.S." (USDA-APHIS, 1995). Commercial Gossypium species in the U.S. are not considered weeds and are not effective in invading established ecosystems. Cotton is not considered to have weedy characteristics in the U.S. and does not possess attributes commonly associated with weeds, such as long soil persistence, the ability to invade and become a dominant species in new or diverse landscapes, or the ability to compete well with native vegetation. It is recognized that in some agricultural systems, cotton can volunteer in a subsequent rotational crop However, volunteers are easily controlled through tillage or use of appropriate herbicides (Alford et al., 2002; et al., 2002; et al., 2002).

In comparative studies between MON 88701 and the conventional control, phenotypic, autonomic plant mapping and attribute to the conventional control, phenotypic, agronomic, plant mapping, and environmental interaction data were evaluated (Section VID for changes that would impact the plant pest potential and in particular, plant weed potential. Results of these evaluations show that there is no biologically meaningful difference between MON 88701 and the conventional control for characteristics potentially associated with weediness. Furthermore, comparative field observations between MON 88701 and its conventional control in their response to abiotic stressors, such as drought, heat stress, and high winds, indicated no biologically meaningful differences and, therefore, no increased weed potential. Data on environmental interactions also indicate that MON 88701 does not confer any biologically meaningful increased susceptibility or tolerance to specific diseases or insect pests. Collectively, these findings support the conclusion that MON 88701 has no increased weediness compared to commercially cultivated cotton.

Volunteer MON 88701, like volunteer commercial cotton, would compete poorly with any succeeding crops and soon die, making it extremely unlikely to have any prolonged negative effects. Volunteer MON 88701 would also not be "extremely difficult to manage" because it can be controlled easily with numerous alternative herbicides and other mechanical means (Alford et al., 2002; et al., 2002; et al., 2002).

#### IX.D. Potential for Pollen Mediated Gene Flow and Introgression

Pollen mediated gene flow (often referred to as cross pollination) occurs when pollen of one plant fertilizes ovules of a second plant. Pollen mediated gene flow is affected by both biotic and abiotic factors such as plant biology, pollen biology/volume, plant phenology, overlap of flowering times, proximity of the pollen source and sink ambient conditions such as temperature and humidity, and field architecture. Pollen mediated gene flow is a natural biological process, and therefore does not constitute an environmental risk in and of itself.

Introgression is a process whereby one or more genes successfully incorporate into the genome of a recipient plant. Pollen mediated gene flow and gene introgression must be considered in the context of the transgenes inserted into the biotechnology-derived plant, and the likelihood that the presence of the transgenes and their subsequent transfer to recipient plants and plant populations will result in increased plant pest potential. The potential for gene flow and introgression from deregulation of MON 88701 is discussed ,eQ IX.D.1. Hybridization with Cultivated Cotton

90cm Although natural crossing can occur, cotton is normally considered to be a selfpollinating crop (Niles and Feaster, 1984). There are no morphological barriers to crosspollination based on flower structure. However, the pollen is heavy and sticky and Device et al., 2005). Numerous studies on cotton cross-pollination have been conducted, and the published results, with and without supplemental pollinators are supplemental pollinators. decreases with distance from the pollen source. (1976) traced movement of pollen by means of fluorescent particles and found that, even among flowers located only 150 to 200 feet from a cotton field that was surrounded by a large number of bee colonies to ensure ample opportunity for transfer of pollen, fluorescent particles were detected on only 1.6% of the flowers. In a 1996 study with various field designs, Llewellyn and Fitt (1996) also found low levels of cross-pollination in cotton. At one meter from the source they observed cross-pollination frequencies of 0.15 to 0.4%, decreasing to below 0.3% at 16 meters from the source. Umbeck et al. (1991) used a selectable marker to examine cross-pollination from a 30 x 136 meter source of biotechnology-derived cotton. Crosspollination decreased from five to less than one percent from one to seven meters, respectively, away from the source plot. A low level of cross-pollination (less than one percent) was sporadically detected at the furthest sampling distance of 25 meters. Berkey et al. (2002) reported that cross pollination between fields separated by a 13 foot road

decreased from 1.89% in the row nearest the source to zero percent in the 24th row. Van Deynze et al. (2005) conducted a two year study on pollen-mediated gene flow with high and low pollinator activity. In the presence of high pollinator activity the pollination frequency was 7.65% at 0.3 meters and less than 1% at greater than nine meters. Whereas, the pollination frequency in the presence of low pollinator activity was below 1% at just over a meter. In a 2008 study, pollination frequencies of 5.00% and 0.00% were demonstrated at 1 and 8 meters, respectively (Kairichi et al., 2008).

pit rita sion from Mc overnent by wind have demonstrated t wity, is limited by dist. transfer from MON 8870 et to be negligible to be negligib The potential for outcrossing and gene introgression from MON 88701 to cultivated cotton in the U.S. is low since cotton pollen movement by wind is limited due to it is large and sticky nature, and several studies have demonstrated that cross-pollination, .e. (4 .e. (4 .e. (4) .e. (4) .e. (4) .e. (4) .e. (6) other .e. (4) .e even in the presence of high pollinator activity, is limited by distance. Therefore, the environmental consequences of pollen transfer from MON 88701 to other cotton or -Consequently and publication of the owned of this document may therefore any contract of the owned of this document may therefore any contract of the owned of this document in a structure of the owned of this document in a structure of the owned of this document in a structure of the owned of this document in a structure of the owned of this document in a structure of the owned of this document in a structure of the owned of this document in a structure of the owned of this document in a structure of the owned of this document in a structure of the owned of any commercial empirision and use of this document, may there of the owner.

without the permission of the owner of this documer.

Distance from Pollen Source	Cross- Pollination		
(meters)	(%)	Comments	Reference
45-61	1.60%	Used fluorescent particles to follow pollinator movement in cotton fields over one season.	( <b>1</b> 976)
1	0.15-0.4%	Used a selectable marker to examine	6 min
4	<0.08%	cross-pollination in the progeny of	(Llewellyn and Fitt,
16	<0.03%	buffer row plants over one season.	1996)
1	5%	Used a selectable marker to examine	ctili, ish
1-25	<1%	cross-pollination from a 20 x 136 meter source of biotechnology- derived cotton over one season.	(Umbeck et al., 1991)
5	1.89%	Used herbicide bioefficacy to	ontrolo
10.5	0.77%	examine pollen flow between fields	(Darkers et al. 2002)
17	0.13%	separated by a 13 foot road over one	(Berkey et al., 2002)
25	0.00%	season.	
0.3	7.65% *	Used herbicide bioefficacy confirmed	
>9	Q≈1% *	by DNA testing to measured pollen-	(Van Deynze et al.,
>1	<1% **	mediated gene flowing in four	2005)
1625	0.04% **	directions over 2 years.	
1	5.00%	Used ELISA strips to examine	
2-2	2.00%	pollen-mediated gene flow in four directions from Bt source over a	(Kairichi et al., 2008)
1 P 2-27 P 1 8 2 1 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2		period of one season.	
High pollinator a	ctivity	ON NS	

#### Table IX-1. Summary of Published Literature on Cotton Cross Pollination

 ** Low pollinator activity
 IX.D.2. Hybridization with Wild and Feral Gossypium species
 Based on cytological evidence, seven genomic types, A through G, many with subtypes, have been identified for the genus Gossynium (Endrirgi et al., 1094). The descent seven genomic types are also as a seven genomic type of the genus Gossynium (Endrirgi et al., 1094). The descent seven genomic type of the genus Gossynium (Endrirgi et al., 1094). The descent seven genomic type of the genus Gossynium (Endrirgi et al., 1094). The descent seven genomic type of the genus Gossynium (Endrirgi et al., 1094). The descent seven genomic type of the genus Gossynium (Endrirgi et al., 1094). The descent seven genomic type of the genus Gossynium (Endrirgi et al., 1094). The descent seven genomic type of the genus Gossynium (Endrirgi et al., 1094). The descent seven genomic type of the genus Gossynium (Endrirgi et al., 1094). The descent seven genomic type of the genus Gossynium (Endrirgi et al., 1094). have been identified for the genus Gossypium (Endrizzi et al., 1984). The domesticated species G hirsurum and G barbadense are allotetraploid (AADD, 2n=4x=52), while G. thurbero is a diploid (DD, 2n=2x=26), and G. tomentosum is an allotetraploid (AADD, 2n=4x=52). G. tomentosum is capable of crossing with domesticated cotton to produce fertile offspring (Waghmare et al., 2005). However, Hawaii is the only U.S. region where G tomentosum is found and domesticated cotton is not grown commercially in Hawaii, with the exception of potential counter-season breeding nurseries where appropriate isolation distances and practices are required (Wagner et al., 1990). Thus, the potential for gene flow to these wild relatives is limited. Importantly, MON 88701 would not be expected to confer a selective advantage to, or enhance the pest potential of, progeny resulting from such a cross if it were to occur. Any potential gene exchange between G. thurberi and domesticated cotton, if it were to occur, would result in triploid

(ADD, 3x=39), sterile plants because G. hirsutum and G. barbadense are allotetraploids (AADD, 2n=4x=52) and G. thurberi is a diploid (DD, 2n=2x=26). Such sterile hybrids have not been observed to persist in the wild. Fertile allohexaploids (6x=78) have not been reported in the wild.

Only two 'wild' Gossypium species related to cultivated cotton are known to be present in the U.S., G. thurberi Todaro, which is known in Arizona (Fryxell, 1984), and feral populations of cultivated G. hirsutum and 'wild' populations of G. hirsutum are known to occur in South Florida and Puerto Rico (Brubaker et al., 1999). Both of these species would be capable of crossing with cultivated cotton, but they are not known to exist in cotton growing areas. Importantly, MON 88701 would not be expected to confer a selective advantage to, or enhance the pest potential of, progeny resulting from such crosses if they were to occur.

Importantly, the environmental consequences of pollen transfer from MON 88701 to other cotton or related Gossypium species is considered to be negligible due to the plant biology and limited movement of cotton pollen, the safety of the introduced protein, and the lack of any selective advantage by the dicamba and glufosinate traits that might be conferred on a recipient plant of feral or wild cotton, or a wild relative.

# IX.D.3. Transfer of Genetic Information to Species with which Cotton Cannot Interbreed (Horizontal Gene Flow) Monsanto is unaware of any reports regarding the unaided transfer of genetic material

from cotton species to other sexually-incompatible plant species. The likelihood for horizontal gene flow to occur is exceedingly small. Therefore, potential ecological risk associated with horizontal gene flow from MON 88701 due to the presence of the and glufosinate-tolerance traits would not be expected to increase of the dicamb-recipient species.

## IX.E. Potential Impact on Cotton Agronomic Practices

An assessment of current cotton agronomic practices was conducted to determine whether the cultivation of MON 88701 has the potential to impact current cotton and weed management practices (Section VIII). Cotton fields are typically highly managed agricultural areas that are dedicated to crop production. MON 88701 is likely to be used in common rotations on land previously used for agricultural purposes. Certified seed production will continue to use well-established industry practices to deliver high quality seed containing MON 88701 to growers. Cultivation of MON 88701 is not expected to differ from typical cotton cultivation, with the exception of an expanded window of dicamba applications. As glufosinate is already utilized within U.S. cotton growing areas, no change in agronomic practices or land use would occur with the cultivation of MON 88701 and the presence of the glufosinate-tolerance trait. Due to the crop safety of MON 88701 to dicamba and glufosinate, growers will have two herbicide modes-of-action for in-crop control of glyphosate's hard-to-control and resistant broadleaf weeds that are present in U.S. cotton production. As a result of cultivation of MON 88701 integrated into the glyphosate-tolerant cotton systems, the number of dicamba-treated cotton acres will likely increase, whereas the number of glufosinate-treated cotton acres is expected to remain relatively static with minimal increase in use as cotton varieties utilizing the biotechnology-derived glufosinate-tolerance trait are currently commercially available and being utilized across the U.S. cottonbelt. Additionally, due to the expanded timing of in-crop applications to cotton, dicamba treatments will be later in the growing season than most current labeled dicamba uses.

MON 88701 is similar to commercially cultivated cotton in its agronomic, phenotypic, ecological, and compositional characteristics, and has levels of resistance to insect pests and diseases comparable to commercially cultivated cotton. Based on this assessment, the introduction of MON 88701 is not likely to impact current U.S. cotton agronomic or cultivation practices, or weed management practices, other than the intended weed control benefits.

## IX.F. Conventional Breeding with Other Biotechnology-derived or Conventional Cotton

Several biotechnology-derived cotton products have been deregulated or are under consideration for deregulation. Once deregulated, MON 88701 may be bred with these deregulated biotechnology-derived cotton products, as well as with conventional cotton, creating new improved varieties. APHIS has determined that none of the individual previously deregulated biotechnology-derived cotton products with conventional or previously deregulated biotechnology-derived cotton are unlikely to exhibit new plant pest properties. This presumption, that combined-trait biotechnology products are unlikely to exhibit new characteristics that would pose new plant pest risks or potenti-1 environmental impacts not observed in the single event biotech-several facts. Namely: 1) stability of the biotech-derived cott biotechnology-derived cotton products it has previously deregulated displays increased biotech-derived cotton product across multiple generations (See Section IV.E for MON 88701 data); 2) stability of each of the introduced traits is continually and repeatedly assessed as new combined-trait varieties are created by plant breeders and tested over multiple seasons prior to commercialization; 3) combined-trait products are developed using the well established process of conventional breeding that has been safely used for thousands of years to generate new varieties (Cellini et al., 2004; NRC, 2004; WHO, 1995); 4) worldwide organizations, such as World Health Organization, Food and Agriculture Organization/World Health Organization, International Seed Federation, CropLife International and U.S. FDA, conclude that the safety of the combined-trait product can be based on the safety of the parental GE events (CLI, 2005; FAO-WHO, 1996; ISF, 2005; U.S. FDA, 2001; WHO, 1995); and 5) practical applications in the field have shown that two unrelated biotechnology traits combined together by conventional breeding do not display new characteristics or properties

distinct from those present in the single event biotech products (Brookes and Barfoot, 2012; 2010; Lemaux, 2008; Pilacinski et al., 2011; Sankula, 2006).

Therefore, based on the considerations above and the conclusion that MON 88701 is no more likely to pose a plant pest risk than commercially cultivated cotton it can be concluded that any progeny derived from crosses between MON 88701 and conventional cotton or deregulated biotechnology-derived cotton are no more likely to pose a plant risk than commercially cultivated cotton.

#### IX.G. Summary of Plant Pest Assessments

Plant pests are defined in the PPA as certain living organisms that can directly or indirectly injure, cause damage to, or cause disease to any plant or plant product (7 U.S.C. § 7702[14]). Characterization data presented in Sections III through VII of this petition confirm that although MON 88701 contains the dicamba and glufosinate-tolerant traits, it is not different from commercially cultivated cotton in terms of pest potential in its phenotypic, agronomic, plant mapping, and environmental interaction characteristics. Monsanto is not aware of any study results or observations associated with MON 88701 that would suggest an increased plant pest risk would result from its introduction.

The plant pest assessment was based on multiple lines of evidence developed from a detailed characterization of MON 88701 compared to commercially cultivated cotton, followed by a risk assessment on detected differences. The risk assessment considered various factors, including: 1) insertion of a single functional copy of the *dmo* and *bar* expression cassettes; 2) characterization and safety of the MON 88701 DMO and PAT (*bar*) proteins; 3) compositional equivalence of harvested MON 88701 cottonseed as compared to commercially cultivated cotton; 4) phenotypic, agronomic, and environmental interaction characteristics demonstrating no increased plant pest potential compared to commercially eultivated cotton; 5) negligible risk to NTOs; 6) familiarity with cotton as a cultivated crop and the inherently low plant pest potential of cotton; and 7) no greater likelihood to impact agronomic practices, including land use, cultivation practices, or the management of weeds, diseases, and insects than commercially cultivated cotton, with the exception of the expanded window of dicamba application.

Based on the data and information presented in this petition, it is concluded that, like conventional cotton and currently deregulated biotechnology-derived cotton, MON 88701 is highly unlikely to be a plant pest. Therefore, Monsanto Company requests a determination from APHIS that MON 88701 and any progeny derived from crosses between MON 88701 and other commercial cotton be granted nonregulated status under 7 CFR Part 340.

#### X. ADVERSE CONSEQUENCES OF INTRODUCTION

Monsanto does not know of any results or observations associated with MON 88701 or the MON 88701 DMO and PAT (*bar*) proteins indicating that there would be an adverse environmental consequence from the introduction of MON 88701. MON 88701 contains DMO and PAT that confers dicamba and glufosinate tolerance to the cotton plant, respectively. As demonstrated by field results and laboratory tests, the only phenotypic differences between MON 88701 and conventional cotton are the tolerances to dicamba and glufosinate herbicides.

The data and information presented in this petition demonstrate that MON 88701 is unlikely to pose an increased plant pest risk or to have an adverse environmental consequence compared commercially cultivated cotton. This conclusion is reached based on multiple lines of evidence developed from a detailed characterization of the product compared to commercially cultivated cotton, followed by a risk assessment on detected differences. The characterization evaluation included molecular analyses, which confirmed the insertion of a single functional copy of the dmo and bar expression cassettes at a single locus within the cotton genome. The amino acid sequence of the MON 88701 DMO and PAT (bar) proteins expressed in MON 88701 are identical to the amino acid sequences of the respective E. coli-produced proteins utilized in the protein safety studies supporting the safety of the proteins. Analyses of key nutrients and, antinutrients of MON 88701 seed demonstrate that MON 88701 is compositionally equivalent to commercially cultivated cotton. The phenotypic evaluations of MON 88701, including an assessment of seed germination and dormancy characteristics, plant growth and development characteristics, plant mapping parameters, pollen characteristics, and environmental interactions also indicated that MON 88701 is no more weedy than commercially cultivated cotton. There is no indication that MON 88701 would have an adverse impact on beneficial or non-target organisms. Therefore, based NTOs from introducing MON 88701 are negligible under the conditions of use. on the lack of increased plant pest potential or adverse environmental consequences compared to commercially cultivated cotton, the risks for humans, animals, and other

Successful integration of MON 88701 into glyphosate-tolerant cotton systems will provide growers with an opportunity for an efficient, effective weed management system for the management of glyphosate's hard-to-control and resistant broadleaf weeds; provide a flexible system for inclusion of a second and third herbicide mode-of-action in cotton production practices as recommended by weed science experts to manage weed resistance development; and continue to provide cotton growers with effective weed control systems necessary for production yields to meet the growing needs of the food, feed, and industrial markets.

#### REFERENCES

Adrian-Romero, M., G. Blunden, B.G. Carpenter and E. Tyihák. 1999. HPLC quantification of formaldehyde, as formaldemethone, in plants and plant-like organisms. Chromatographia 50:160-166.

Alexander, M.P. 1980. A versatile stain for pollen fungi, yeast and bacteria. Stain Technology 55:13-18.

Alford, J.L., R.M. Hayes, T.C. Mueller and G.N. Rhodes. 2002. Roundup Ready[®] soybean (*Glycine max*) and cotton (*Gossypium hirsutum* L.) control in Roundup Ready[®] cotton (*Gossypium hirsutum* L.). Pages 2-3 in 2002 Proceedings of the Southern Weed Science Society, Atlanta, Georgia.

Anderson, W.P. 1996. Weed ecology. Pages 27-38 in Weed Science: Principles and Applications. Third Edition. West Publishing Company, St. Paul, Minnesota.

AOSA. 2007. Tetrazolium testing handbook. Contribution No. 29. Association of Official Seed Analysts, Lincoln, Nebraska.

AOSA. 2010a. AOSA Rules for testing seeds. Volume 1: Principles and procedures. Volume 1: Principles and procedures, Association of Official Seed Analysts, Ithaca, New York.

AOSA. 2010b. AOSA Rules for testing seeds. Volume 4: Seedling evaluation. Volume 4: Seedling evaluation, Association of Official Seed Analysts, Ithaca, New York

AOSA/SCST. 2010. Tetrazolium testing handbook. Association of Official Seed Analysts and the Society of Commercial Seed Technologists, Ithaca, New York

AOSCA. 2009. Cotton (Gossypium) certification standards. Association of Official Seed Certifying Agencies, Moline, Illinois.

AOSCA. 2012. Seed certification. Association of Official Seed Certifying Agencies, Moline, Illinois. http://www.aosea.org/seed%20certification.htm [Accessed April 23, 2012].

Askew, S.D., W.A. Bailey, G.H. Scott and J.W. Wilcut. 2002. Economic assessment of weed management for transgenic and nontransgenic cotton in tilled and nontilled systems. Weed Science 50:512-520.

Avila-Garcia, W.V. and C. Mallory-Smith. 2011. Glyphosate-resistant Italian ryegrass (*Lolium perenne*) populations also exhibit resistance to glufosinate. Weed Science 59:305-309.

Baldwin, F.L. and T.L. Baldwin. 2002. Impact of herbicide resistant crops in the Americas - A southern prospective. Pages 650-654 in Thirteenth Australian Weeds Conference, Council of Australian Weed Societies Inc., Perth, Western Australia.

Barker, R.F., K.B. Idler, D.V. Thompson and J.D. Kemp. 1983. Nucleotide sequence of the T-DNA region from the *Agrobacterium tumefaciens* octopine Ti plasmid pTi15955. Plant Molecular Biology 2:335-350.

BASF. 2008. Clarity herbicide label. BASF Corporation, Research Triangle Park, North Carolina.

Bayer CropScience. 2011. Liberty herbicide label. Bayer CropScience LP, Research Triangle Park, North Carolina.

Beckie, H.J. and X. Reboud. 2009. Selecting for weed resistance: Herbicide rotation and mixture. Weed Technology 23:363-370.

Behrens, M.R., N. Mutlu, S. Chakraborty, R. Dumitru, W.Z. Jiang, B.J. LaVallee, P.L. Herman, T.E. Clemente and D.P. Weeks. 2007. Dicamba resistance: Enlarging and preserving biotechnology-based weed management strategies. Science 316:1185-1188.

Berberich, S.A., J.E. Ream, T.L. Jackson, R. Wood, R. Stipanovic, P. Harvey, S. Patzer and R.L. Fuchs. 1996. The composition of insect-protected cottonseed is equivalent to that of conventional cottonseed. Journal of Agricultural and Food Chemistry 44:365-371.

Berg, G., N. Roskot and K. Smalla. 1999. Genotypic and phenotypic relationships between clinical and environmental isolates of *Stenotrophomonas maltophilia*. Journal of Clinical Microbiology 37:3594-3600.

Berg, R.D. 1996. The indigenous gastrointestinal microflora. Trends in Microbiology 4:430-435@*

Berkey, D.A., B.R. Savoy, S.R. Miller and P.G. Johnson. 2002. Pollen dissemination from adjacent fields of genetically enhanced cotton in the Mississippi Delta. 2002 Proceedings of the Beltwide Cotton Conference, Atlanta, Georgia.

Bertrand, J.A., T.Q. Sudduth, A. Condon, T.C. Jenkins and M.C. Calhoun. 2005. Nutrient content of whole cottonseed. Journal of Dairy Science 88:1470-1477.

Bevan, M., W.M. Barnes and M.-D. Chilton. 1983. Structure and transcription of the nopaline synthase gene region of T-DNA. Nucleic Acids Research 11:369-385.

BIO. 2010. Product launch stewardship policy. Biotechnology Industry Organization, Washington, D.C. <u>http://www.bio.org/articles/product-launch-stewardship-policy</u> [Accessed May 31, 2012].

Blasingame, D., M.V. Patel, W. Gazaway, M. Olsen, T. Kirkpatrick, M. Davis, R.K. Sprenkel, B. Kemerait, P. Colyer, A. Wrather, N. Goldberg, S. Koenning, J.C. Banks, J. Muller, M. Newman, J. Woodward and P. Phipps. 2008. Cotton disease loss estimate committee report: Table 1. Estimated reduction in 2007 cotton yield resulting from diseases. National Cotton Council of America, Cordova, Tennessee.

Bowman, D.T., O.A. Gutierrez, R.G. Percy, D.S. Calhoun and O.L. May. 2006. Pedigrees of upland and pima cotton cultivars released between 1970 and 2005. Mississippi State University, Mississippi State, Mississippi.

Bradford, K.J. 2006. Methods to maintain genetic purity of seed stocks. Publication 8189. University of California, Oakland, California.

Breyton, C. 2000. The cytochrome  $b_{of}$  complex: Structural studies and comparison with the  $bc_1$  complex. Biochimica et Biophysica Acta 1459:467-474.

Brookes, G. and P. Barfoot. 2012. GM crops: Global socio-economic and environmental impacts 1996-2010. PG Economics, Ltd. Dorchester, United Kingdom.

Brubaker, CL., F.M. Bourland and J.F. Wendel. 1999. The origin and domestication of cotton. Pages 3-31 in Cotton. Origin, History, Technology, and Production C.W. Smith and J.T. Cothren (eds.). John Wiley & Sons, Inc., New York, New York.

Buchanan, B.B., W. Gruissem and R.L. Jones. 2000. Phenylpropanoid and phenylpropanoid-acetate pathway metabolites. Pages 1286-1289 in Biochemistry and Molecular Biology of Plants. American Society of Plant Biologists, Rockville, Maryland.

Buchanan, G.A. 1992. Trends in weed control methods. Pages 47-72 in Weeds of Cotton: Characterization and Control. C.G. McWhorter and J.R. Abernathy (eds.). The Cotton Foundation, Memphis, Tennessee.

Carpenter, J. and L. Gianessi. 2001. Why US farmers have adopted genetically modified crops and the impact on US agriculture. AgBiotechNet 3:1-4.

Cellini, F., A. Chesson, I. Colquhoun, A. Constable, H.V. Davies, K.H. Engel, A.M.R. Gatehouse, S. Kärenlampi, E.J. Kok, J.-J. Leguay, S. Lehesranta, H.P.J.M. Noteborn, J. Pedersen and M. Smith. 2004. Unintended effects and their detection in genetically modified crops. Food and Chemical Toxicology 42:1089-1125.

Chakraborty, S., M. Behrens, P.L. Herman, A.F. Arendsen, W.R. Hagen, D.L. Carlson, X.-Z. Wang and D.P. Weeks. 2005. A three-component dicamba *O*-demethylase from *Pseudomonas maltophilia*, strain DI-6: Purification and characterization. Archives of Biochemistry and Biophysics 437:20-28.

Christiansen, M.N. and R.P. Moore. 1959. Seed coat structural differences that influence water uptake and seed quality in hard seed cotton. Agronomy Journal 51:582-584.

Clark, S.E. and G.K. Lamppa. 1992. Processing of the precursors for the light-harvesting chlorophyllbinding proteins of photosystem II and photosystem I during import and in an organelle-free assay. Plant Physiology 98:595-601.

Clemmer, K.C., A.C. York and A.S. Culpepper. 2001. Control of volunteer glyphosate-resistant cotton in glyphosate-resistant soybean. Pages 53-54 in 2001 Proceedings, Southern Weed Science Society, Biloxi, Mississippi.

CLI. 2005. Position paper: Regulation of plant biotechnology products containing two or more traits combined by conventional plant breeding. CropLife International, Brussels, Belgium.

Codex Alimentarius. 2009, Foods derived from modern biotechnology, Codex Alimentarius Commission, Joint FAO/WHO Food Standards Programme, Food and Agriculture Organization of the United Nations, Rome, Italy.

Crockett, L. 1977. Contents, Pages vii-ix in Wuldly Successful Plants: A Handbook of North American Weeds. Macmillan Publishing Co., Inc., New York, New York.

Cross, T. 1989. Other genera. Pages 2586-2615 in Bergey's Manual of Systematic Bacteriology. Volume 4. S.T. Williams and M.E. Sharpe (eds.). Williams & Wilkins, Balitmore, Maryland.

 CTIC. 2010. Top 10 conservation tillage benefits. Conservation for agriculture's future. Conservation Technology
 Information
 Center,
 West
 Lafayette,
 Indiana.

 http://www.ctic.purdue.edu/Core4/CT/CTSurvey/10Benefits.html
 [Accessed September 23, 2011].

Cunha, B,A. 2010. *Stenotrophomonas maltophilia*. WebMD, LLC, New York, New York. <u>http://www.emedicine.com/med/topic3457.htm</u> [Accessed January 2, 2010].

D'Ordine, R.L., T.J. Rydel, M.J. Storek, E.J. Sturman, F. Moshiri, R.K. Bartlett, G.R. Brown, R.J. Eilers, C. Dart, Y. Qi, S. Flasinski and S.J. Franklin. 2009. Dicamba monooxygenase: Structural insights into a dynamic Rieske oxygenase that catalyzes an exocyclic monooxygenation. Journal of Molecular Biology 392:481-497.

Darrouzet, E., J.W. Cooley and F. Daldal. 2004. The cytochrome  $bc_1$  complex and its homologue the  $b_6 f$  complex: Similarities and differences. Photosynthesis Research 79:25-44.

Della-Cioppa, G., S.C. Bauer, B.K. Klein, D.M. Shah, R.T. Fraley and G.M. Kishore. 1986. Translocation of the precursor of 5-*enol*pyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants *in vitro*. Proceedings of the National Academy of Sciences of the United States of America 83:6873-6877.

Denton, M. and K.G. Kerr. 1998. Microbiological and clinical aspects of infection associated with *Stenotrophomonas maltophilia*. Clinical Microbiology Reviews 11:57-80.

Denton, M., N.J. Todd, K.G. Kerr, P.M. Hawkey and J.M. Littlewood. 1998. Molecular epidemiology of *Stenotrophomonas maltophilia* isolated from clinical specimens from patients with cystic fibrosis and associated environmental samples. Journal of Clinical Microbiology 36:1953-1958.

Depicker, A., S. Stachel, P. Dhaese, P. Zambryski and H.M. Goodman. 1982. Nopaline synthase: Transcript mapping and DNA sequence. Journal of Molecular and Applied Genetics 1:561-573.

and . 1982. How a cotton plant grows. Progressive Farmer, Birmingham, Alabama.

Duke, S.O. and S.B. Powles. 2009. Glyphosate-resistant crops and weeds: Now and in the future. AgBioForum 12:346-357.

Dumitru, R., W.Z. Jiang, D.P. Weeks and M.A. Wilson. 2009. Crystal structure of dicamba monooxygenase: A Rieske nonheme oxygenase that catalyzes oxidative demethylation. Journal of Molecular Biology 392:498-510.

Duncan, D.R. 2010. Cotton transformation. Pages 65-77 in Cotton: Biotechnological Advances. Volume 65. U.B. Zehr (ed.). Springer-Verlag, Berlin, Germany.

and 2011. Methods for inducing cotton embryogenic callus. Patent 7,947,869, U.S. Patent Office, Washington, D.C.

Echemendia, Y. 2010. Microorganism of the month: *Stenotrophomonas maltophilia*. Environmental Microbiology Laboratory, Inc., Cherty Hill, New Jersey. <u>http://www.emlab.com/s/sampling/env-report-07-2007.html</u> [Accessed August 10, 2010].

Elder, J.K. and E.M. Southern. 1983. Measurement of DNA length by gel electrophoresis II. Comparison of methods for relating mobility to fragment length. Analytical Biochemistry 128:227-231.

Endrizzi, J.E., E.I. Turcotte and R.J. Kohel. 1984. Qualitative genetics, cytology, cytogenetics. Pages 81-129 in Cotton, R.J. Kohel and C.F. Lewis (eds.). American Society of Agronomy, Inc., Crop Science Society of America, Inc., and Soil Society of America, Madison, Wisconsin.

FAO-WHO. 1996. Joint FAO/WHO expert consultation on biotechnology and food safety. Paper 61. Food and Agriculture Organization, World Health Organization, Rome, Italy.

FAO-WHO 2011a Pesticide residues in food 2010: Joint FAO/WHO meeting on pesticide residues. FAO Plant Production and Protection Paper 200. Food and Agriculture Organization of the United Nations, World Health Organization, Rome, Italy.

FAO-WHO. 2011b. Summary report: Acceptable daily intakes, acute reference doses, short-term and long-term dietary intakes, recommended maximum residue limits and supervised trials median residue values recorded by the 2011 meeting. Food and Agriculture Organization of the United Nations, World Health Organization, Geneva, Switzerland.

Ferraro, D.J., Gakhar and S. Ramaswamy. 2005. Rieske business: Structure-function of Rieske nonheme oxygenases. Biochemical and Biophysical Research and Communications 338:175-190.

Fling, M.E., J. Kopf and C. Richards. 1985. Nucleotide sequence of the transposon Tn7 gene encoding an aminoglycoside-modifying enzyme, 3"(9)-O-nucleotidyltransferase. Nucleic Acids Research 13:7095-7106.

Fraley, R.T., S.G. Rogers, R.B. Horsch, P.R. Sanders, J.S. Flick, S.P. Adams, M.L. Bittner, L.A. Brand, C.L. Fink, J.S. Fry, G.R. Galluppi, S.B. Goldberg, N.L. Hoffmann and S.C. Woo. 1983. Expression of bacterial genes in plant cells. Proceedings of the National Academy of Sciences of the United States of America 80:4803-4807.

Fryxell, P.A. 1984. Taxonomy and germplasm resources. Pages 27-58 in Cotton. R.J. Kohel and C.F. Lewis (eds.). American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin.

Giza, P.E. and R.C.C. Huang. 1989. A self-inducing runaway-replication plasmid expression system utilizing the Rop protein. Gene 78:73-84.

Goodfellow, M. and S.T. Williams. 1983. Ecology of actinomycetes. Annual Review of Microbiology 37:189-216.

Gray, C.J., D.R. Shaw and M.L. Tagert. 2002. Control of volunteer Roundup Ready crops in soybean and cotton systems. 2002 Proceedings of the Southern Weed Science Society, Southern Weed Science Society, Atlanta, Georgia.

Gray, J., E. Wardzala, M. Yang, S. Reinbothe, S. Haller and F. Pauli. 2004. A small family of LLS1-related non-heme oxygenases in plants with an origin amongst oxygenic photosynthesizers. Plant Molecular Biology 54:39-54.

Grichar, W.J., D.D. Fromme, P.A. Dotray and J.W. Keeling. 2010. Controlling volunteer cotton with postmergence herbicides. Page 1635 in 2010 Beltwide Cotton Conferences, New Orleans, Louisiana.

1982. Causes of square and boll shedding in cotton. Technical Bulletin Number 1672. United States Department of Agriculture, Agricultural Research Services, Washington, D.C.

Hake, S.J., K.D. Hake and T.A. Kerby. 1996a. Mid- to late-bloom decisions. Pages 64-79 in Cotton Production Manual. S.J. Hake, T.A. Kerby, and K.D. Hake (eds.). University of California Division of Agriculture and Natural Resources, Davis, California.

Hake, S.J., K.D. Hake and T.A. Kerby. 1996b. Planting and stand establishment. Pages 21-22 in Cotton Production Manual. S.J. Hake, T.A. Kerby, and K.D. Hake (eds.). University of California Division of Agriculture and Natural Resources, Davis, California

Hake, S.D., K.D. Hake and T.A. Kerby. 1996c. Prebloom decisions. Pages 29-32 in Cotton Production Manual. S.J. Hake, T.A. Kerby, and K.D. Hake (eds.). University of California Division of Agriculture and Natural Resources, Davis, California.

Hake, S.J., T.A. Kerby and K.D. Hake. 1996d. Preparation for the new crop season - Fall/winter. Pages 6-14 in Cotton Production Manual S.J. Hake, T.A. Kerby, and K.D. Hake (eds.). University of California Division of Agriculture and Natural Resources, Davis, California.

Hamilton, K.A., P.D. Pyla, M. Breeze, T. Olson, M. Li, E. Robinson, S.P. Gallagher, R. Sorbet and Y. Chen. 2004. Bollgard II cotton: Compositional analysis and feeding studies of cottonseed from insectprotected cotton (*Cossypium hirsutum* L.) producing the Cry1Ac and Cry2Ab2 proteins. Journal of Agricultural and Food Chemistry 52:6969-6976.

Harayama, S., M. Kok and E.L. Neidle. 1992. Functional and evolutionary relationships among diverse oxygenases. Annual Review of Microbiology 46:565-601.

Harrigan, G.G., D. Lundry, S. Drury, K. Berman, S.G. Riordan, M.A. Nemeth, W.P. Ridley and K.C. Glenn. 2010. Natural variation in crop composition and the impact of transgenesis. Nature Biotechnology 28:402-404.

Heap, I. 2012a. Herbicide resistant weeds - Glycines (G/9) resistant weeds by species and country. WeedScience.org, International Survey of Herbicide Resistant Weeds, Corvallis, Oregon. http://www.weedscience.org/summary/MOASummary.asp [Accessed June 11, 2012].

Heap, I. 2012b. Herbicide resistant weeds - Glutamine synthase inbibitors (H/10) resistant weeds by species and country. WeedScience.org, International Survey of Herbicide Resistant Weeds, Corvallis, Oregon. http://www.weedscience.org/summary/MOASummary.asp [Accessed June 11, 2012].

Heap, I. 2012c. Herbicide resistant weeds - Synthetic auxins (O/4) resistant weeds. WeedScience.org, International Survey of Herbicide Resistant Weeds, Corvallis, Oregon. http://www.weedscience.org/summary/MOASummary.asp [Accessed June 11, 2012].

Heap, I. 2012d. Herbicide resistant weeds summary table. WeedScience.org, International Survey of Herbicide Resistant Weeds, Corvallis, Oregon. <u>http://www.weedscience.org/summary.MOASummary.asp</u> [Accessed June 15, 2012].

Herman, P.L., M. Behrens, S. Chakraborty, B.M. Chrastil, J. Barycki and D.P. Weeks. 2005. A threecomponent dicamba *O*-demethylase from *Pseudomonas maltophilia*, strain DI-6. Gene isolation, characterization, and heterologous expression. Journal of Biological Chemistry 280:24759-24767.

Hérouet, C., D.J. Esdaile, B.A. Mallyon, E. Debruyne, A. Schulz, T. Currier, K. Hendrickx, R.-J. van der Klis and D. Rouan. 2005. Safety evaluation of the phosphinothricin acetyltransferase proteins encoded by the *pat* and *bar* sequences that confer tolerance to glufosinate-ammonium herbicide in transgenic plants. Regulatory Toxicology and Pharmacology 41:134-149.

Herrmann, K.M. 1995. The shikimate pathway Early steps in the biosynthesis of aromatic compounds. The Plant Cell 7:907-919.

Hibino, T., R. Waditee, E. Araki, H. Ishikawa, K. Aoki, Y. Tanaka and T. Takabe. 2002. Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. Journal of Biological Chemistry 277:41352-41360.

Holm, L., J. Doll, E. Holm, J. Pancho and J. Herberger. 1997. *Chenopodium murale* L. Pages 178-182 in World Weeds: Natural Histories and Distribution. John Wiley & Sons, Inc., New York, New York.

HRAC. 2009. Classification of herbieides according to mode of action. Herbicide Resistance Action Conmittee, Oregon. http://www.hracglobal.com/Publications/ClassificationofHerbicideModeofAction/tabid/222/Default.aspx [Accessed June 29, 2009].

Hurley, T.M., P.D. Mitchell and G.B. Frisvold. 2009. Weed management costs, weed best management practices, and the Roundup Ready weed management program. AgBioForum 12:281-290.

ILSI-CERA. 2011. A review of the environmental safety of the PAT protein. International Life Sciences Institute, Center for Environmental Risk Assessment, Washington, D.C. <u>http://cera-gmc.org/docs/cera-publications/pub_05_2011.pdf</u>.

ILSI. 2014 Crop Composition Database, Version 4.2. International Life Sciences Institute, Washington, D.C. <u>http://www.cropcomposition.org/</u>.

ISF. 2005. Genetically modified crops and plant breeding. International Seed Foundation, Nyon, Switzerland.

ISO. 2009. Selection and use of the ISO 9000 family of standards. International Standards Organization, Geneva, Switzerland.

2010. Global status of commercialized biotech/GM crops: 2010. Brief 42. International Service for the Acquisition of Agri-Biotech Applications, Ithaca, New York.

Janas, K.M., M. Cvikrová, A. Palagiewicz and J. Eder. 2000. Alterations in phenylpropanoid content in soybean roots during low temperature acclimation. Plant Physiology and Biochemistry 38:587-593.

John, M.E. 1996. Structural characterization of genes corresponding to cotton fiber mRNA, E6: Reduced E6 protein in transgenic plants by antisense gene. Plant Molecular Biology 30:297-306.

Jordan, T., G. Nice, B. Johnson and T. Bauman. 2009. Reducing spray drift from glyphosate and growth regulator herbicide drift caution. Purdue Extension, Purdue University, West Lafayette, Indiana. <u>http://www.ag.purdue.edu/btny/weedscience/Documents/ReducingDrift09.pdf</u> [Accessed December 18, 2009].

Kairichi, M.N., B.W. Waswa, C.N. Waturu, W. Wiesel, R.G. Ngigi, G.K. Njenga and S.M. Njinju. 2008. Assessment of pollen-mediated gene flow of *Bt*-cotton to local commerical variety, Hart 89m in Kari-Mwea Station. Page 257 in Proceedings of the 1st All African Congress on Biotechnology, Nairobi, Kenya.

Kämpfer, P. 2006. The family *Streptomycetaceae*, Part I: Taxonomy. Pages 538-604 in The Prokaryotes. A Handbook on the Biology of Bacteria: Archaea. Bacteria: Firmieutes, Actinomycetes. Volume 3. M.Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (eds.). Springer+ Business Media, LLC., New York, New York.

Kay, R., A. Chan, M. Daly and J. McPherson, 1987. Duplication of CaMV 355 promoter sequences creates a strong enhancer for plant genes. Science 236:1299-1302.

Keeling, J.W., J.D. Reed, D.M. Petty and B.A. Brown. 2009 Control of volunteer Roundup Ready Flex cotton with postemergence herbicides. Page 1333 in 2009 Beltwide Cotton Conferences, San Antonio, Texas.

Kerby, T.A., F.M. Bourland and K.D. Hake. 2010. Physiologyical rationales in plant monitoring and mapping Pages 304-317 in Physiology of Cotton J.M. Stewart, D.M. Oosterhuis, J.J. Heitholt, and J.R. Mauney (eds.). Springer Science+Business Media, Dordrecht, Netherlands.

Klee, H.J., Y.M. Muskopf and C.S. Gasser. 1987. Cloning of an *Arabidopsis thaliana* gene encoding 5enolpyruvyshikimate-3-phosphate synthase Sequence analysis and manipulation to obtain glyphosatetolerant plants. Molecular and General Genetics 210:437-442.

. 1984. Cotton American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin.

Krueger, J.P., R.G. Butz, Y.H. Atallah and D.J. Cork. 1989. Isolation and identification of microorganisms for the degradation of dicamba, Journal of Agricultural and Food Chemistry 37:534-538.

Kutzner, H.J. 1981. The family streptomycetaceae. Pages 2028-2090 in The Prokaryotes: A Handbook on Habitats, Isolation, and Identification of Bacteria. Volume 2. M.P. Starr, H. Stolp, H.G. Trüper, A. Balows, and H.G. Schlegel (eds.). Springer-Verlag, Berlin, Germany.

Lawhon, J.T., C.M. Cater and K.F. Mattil. 1977. Evaluation of the food use potential of sixteen varieties of cottonseed. Journal of the American Oil Chemists' Society 54:75-80.

Lee, D.R., D.K. Miller and D.C. Blouin. 2009. Glyphosate-resistant cotton interference in glyphosate-resistant soybean. Journal of Cotton Science 13:174-177.

Lee, J.A. 1984. Cotton as a world crop. Pages 1-25 in Cotton. R.J. Kohel and C.F. Lewis (eds.). American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin.

Lege, K.E., J.T. Cothren and C.W. Smith. 1995. Phenolic acid and condensed tannin concentrations of six cotton genotypes. Environmental and Experimental Botany 35:241-249.

Lemaux, P.G. 2008. Genetically engineered plants and foods: A scientist's analysis of the issues (Part I). Annual Review of Plant Biology 59:771-812.

Agricultural Research and Cooperative Extension, University Park, Pennsylvania.

Llewellyn, D. and G. Fitt. 1996. Pollen dispersal from two field trials of transgenic cotton in the Namoi Valley, Australia. Molecular Breeding 2:157-166.

Locci, R. 1989. Streptomycetes and related genera. Pages 2451-2508 in Bergey's Manual of Systematic Bacteriology. Volume 4. S.T. Williams and M.E. Sharpe (eds.). Williams & Wilkins, Baltimore, Maryland.

Maiti, I.B. and R.J. Shepherd. 1998. Isolation and expression analysis of peanut chlorotic streak caulimovirus (PCISV) full-length transcript (FLt) promoter in transgenic plants. Biochemical and Biophysical Research Communications 244:440-444.

Manderscheid, R. and A. Wild. 1986. Studies on the mechanism of inhibition by phosphinothricin of glutamine synthetase isolated from *Triticum aestivum* L. Journal of Plant Physiology 123:135-142.

0

and and 2006 Managing glyphosate-resistant horseweed in conservation-tillage cotton production. Final summary and recommendations. AAES Research Series 552. University of Arkansas Agricultural Experiment Station, Fayetteville, Arkansas.

McDonald, M.B. and L.O. Copeland. 1997. Cotton (Gossypium hirsutum L.). Pages 264-273 in Seed Production: Principles and Practices. Chapman & Hall, New York, New York.

1976 Insect pollination of cultivated crop plants. Agricultural Handbook No. 496. U.S. Department of Agriculture, Agricultural Research Service, Washington, D.C.

McWhorter, C.G. and C.T. Bryson. 1992. Use trends in the 1960s. Pages 241-254 in Weeds of Cotton: Characterization and Control. C.G. McWhorter and J.R. Abernathy (eds.). The Cotton Foundation, Memphis, Tennessee.

Monsanto Company, 2011. Unpublished grower survey data performed by a contracting agency. St. Louis, Missouri.

Monsanto Company. 2012. U.S. Technology use guide. Monsanto Company, St. Louis, Missouri. http://www.monsanto.com/ourcommitments/Pages/technology-use-guides.aspx [Accessed January 19, 2012]

MSU. 2012. 2012 weed control guidelines for Mississippi. Mississippi State University Extension Service, Mississippi State, Mississippi. <u>http://msucares.com/pubs/publications/p1532.pdf</u> [Accessed June 15, 2012].

and and 2002. Control of volunteer glyphosate (Roundup)-tolerant cotton and soybean in Roundup Ready cotton. 2002 Proceedings of the Beltwide Cotton Conference, National Cotton Council, Atlanta, Georgia.

Nam, J.-W., H. Nojiri, T. Yoshida, H. Habe, H. Yamane and T. Omori. 2001. New classification system for oxygenase components involved in ring-hydroxylating oxygenations. Bioscience, Biotechnology, and Biochemistry 65:254-263.

NCCA. 2007. The first 40 days: The most critical period in cotton production. National Cotton Council of America, The Cotton Foundation, Atlanta, Georgia.

NCCA. 2010. Cotton: From field to fabric. National Cotton Council of America, Atlanta, Georgia.

NCPA. 2002. Cottonseed and its products. National Cottonseed Products Association, Cordova, Tennessee. http://www.cottonseed.com/publications/cottonseedanditsproducts.asp [Accessed October 17, 2011].

Nida, D.L., S. Patzer, P. Harvey, R. Stipanovic, R. Wood and R.L. Fuchs. 1996. Glyphosate-tolerant cotton: The composition of the cottonseed is equivalent to that of conventional cottonseed. Journal of Agricultural and Food Chemistry 44:1967-1974.

Niepel, M. and D.R. Gallie. 1999. Identification and characterization of the functional elements within the tobacco etch virus 5' leader required for cap-independent translation. Journal of Virology 73:9080-9088.

Niles, G.A. and C.V. Feaster. 1984. Breeding. Pages 201-231 in Cotton R.J. Kohel and C.F. Lewis (eds.). American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc., Madison, Wisconsin

NRC. 2004. New approaches for identifying unintended changes in food composition. Pages 73-102 in Safety of Genetically Engineered Foods: Approaches to Assessing Unintended Health Effects. Institute of Medicine and National Research Council, National Academies Press, Washington, D.C.

Odell, J.T., F. Nagy and N.-H. Chua. 1985. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter, Nature 313:810-812.

OECD. 1993, Safety considerations for biotechnology: Scale-up of crop plants. Organisation for Economic Co-operation and Development, Paris, France. www.biosafety.6e/CU/BSL_Ressources/PDF/M00034525.pdf [Accessed January 9, 2009].

OECD. 1999a. Consensus document on general information concerning the genes and their enzymes that confer tolerance to phosphinothricin herbicide. ENV/JM/MONO(99)13. Series on Harmonization of Regulatory Oversight in Biotechnology No.11. Organisation for Economic Co-operation and Development, Paris, France.

OECD. 1999b. Consensus document on general information concerning the genes and their enzymes that confer tolerance to glyphosate herbicide ENV/JM/MONO(99)9. Series on Harmonization of Regulatory Oversight in Biotechnology No.10. Organisation for Economic Co-operation and Development, Paris, France

OECD. 2002a Module II: Herbicide biochemistry, herbicide metabolism and the residues in glufosinateammonium (Phosphinothricin)-tolentant transgenic plants. ENV/JM/MONO(2002)14. Series on Harmonization of Regulatory Oversight in Biotechnology No. 25. Organisation for Economic Co-operation and Development, Paris, France.

OECD. 2002b. Report of the OECD workshop on the toxicological and nutritional testing of novel foods. SG/ICGB(1998)1/FINAL. Organisation for Economic Co-operation and Development, Paris, France.

OECD. 2008. Consensus document on the biology of cotton (*Gossypium* spp.). ENV/JM/MONO(2008)33. Organisation for Economic Co-operation and Development, Paris, France.

OECD. 2009. Consensus document on the compositional considerations for new varities of cotton (Gossypium hirsutum and Gossypium barbadense): Key food and feed nutrients and anti-nutrients. ENV/JM/MONO(2004)16. Organisation for Economic Co-operation and Development, Paris, France.

OGTR. 2008. The biology of Gossypium hirsutum L. and Gossypium barbadense L. (cotton). Australian Government, Department of Health and Ageing, Office of the Gene Technology Regulator, Canberra, Australia.

Palleroni, N.J. and J.F. Bradbury. 1993. Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. International Journal of Systematic Bacteriology 43:606-609.

Percival, A.E., J.F. Wendel and J.M. Stewart. 1999. Taxonomy and germplasm resources. Pages 33-63 in Cotton: Origin, History, Technology, and Production. W.C. Smith and J.T. Cothren (eds.). John Wiley & Sons, Inc., New York, New York.

Pilacinski, W., A. Crawford, R. Downey, B. Harvey, S. Huber, P. Hunst, L.K. Lahman, S. MacIntosh, M. Pohl, C. Rickard, L. Tagliani and N. Weber. 2011. Plants with genetically modified events combined by conventional breeding: An assessment of the need for additional regulatory data. Food and Chemical Toxicology 49:1-7.

Plant, R.E. and T.A. Kerby. 1995. CPM: Software for cotton final plant mapping. Agronomy Journal 87:1143-1147.

C

Powles, S.B. 2008. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Management Science 64:360-365

Powles, S.B., C. Preston, I.B. Bryan and A.R. Jutsum. 1996, Herbicide resistance: Impact and management. Pages 57-93 in Advances in Agronomy, Volume 58. D.L. Sparks (ed.). Academic Press, San Diego, California.  $\boldsymbol{\varsigma}$ 

Price, A.J., K.S. Balkcom, S.A. Culpepper, J.A. Kelton, R.L. Nichols and H. Schomberg. 2011. Glyphosate-resistant Palmer amaranth. A threat to conservation tillage. Journal of Soil and Water Sr' Conservation 66:265-275. 0

Prince, J.M., D.R. Shaw, W.A. Givens, M.E. Newman, M.D.K. Owen, S.C. Weller, B.G. Young, R.G. Wilson and D.L. Jordan. 2011. Benchmark study; III. Survey on changing herbicide use patterns in glyphosate-resistant cropping systems. Weed Science Society of America, Champaign, Illinois.

Quresh, A., L. Mooney, M. Denton and K.G. Kerr. 2005. Stenotrophomonas maltophilia in salad. Emerging Infectious Diseases H:1157-1158.

Rathinasabapathi, B., M. Burnet, B.L. Russell, D.A. Gage, P.-C. Liao, G.J. Nye, P. Scott, J.H. Golbeck and A.D. Hanson. 1997. Choline monooxygenase, an unusual iron-sulfur enzyme catalyzing the first step of Glycine betaine synthesis in plants: Prosthetic group characterization and cDNA cloning. Proceedings of the National Academy of Sciences of the United States of America 94:3454-3458.

ane . 1979. Composition of foods. Agriculture Handbook 8-4. U.S. Department of Agriculture, Washington, D.C.

Rensing, S.A. and U.-G. Maier. 1994. Phylogenetic analysis of the stress-70 protein family. Journal of Molecular Evolution 39:80-86.

Reynolds, T.L., M.A. Nemeth, K.C. Glenn, W.P. Ridley and J.D. Astwood. 2005. Natural variability of metabolites in maize grain: Differences due to genetic background. Journal of Agricultural and Food Chemistry 53:10061-10067.

C

and and . 2007. Cotton growth and development. University of Georgia Cooperative Extension, Athens, Georgia.

and and 2002. Controlling volunteer cotton. Page F4 in WEEDpak - A Guide for Integrated Management of Weeds in Cotton. Cotton Catchment Communities CRC, Australian Cotton Research Institute, Narrabri, New South Wales.

Rodoni, S., W. Mühlecker, M. Anderl, B. Kräutler, D. Moser, H. Thomas, P. Matile and S. Hörtensteiner. 1997. Chlorophyll breakdown in senescent chloroplasts (cleavage of pheophorbide *a* in two enzymic steps). Plant Physiology 115:669-676.

Rosche, B., B. Tshisuaka, B. Hauer, F. Lingens and S. Fetzner. 1997. 2-oxo-1,2-dihydroquinoline 8monooxygenase: Phylogenetic relationship to other multicomponent nonheme iron oxygenases. Journal of Bacteriology 179:3549-3554.

Russell, B.L., B. Rathinasabapathi and A.D. Hanson. 1998. Osmotic stress induces expression of choline monooxygenase in sugar beet and amaranth. Plant Physiology 116:859-865.

Ryan, R.P., S. Monchy, M. Cardinale, S. Taghavi, L. Crossman, M.B. Avison, G. Berg, D. van der Lelie and J.M. Dow. 2009. The versatility and adaptation of bacteria from the genus *Stenotrophomonas*. Nature Reviews Microbiology 7:514-525.

Salomon, S. and H. Puchta. 1998. Capture of genomic and T-DNA sequences during double-strand break repair in somatic plant cells. EMBO Journal 17:6086-6095.

Ø

Sambrook, J. and D. Russell 2001. Protocol 1: Agarose gel electrophoresis. Pages 5.4-5.13 in Molecular Cloning. Third Edition. Cold Springs Laboratory Press, Cold Springs Harbor, Maine.

Sandretto, C. and J. Payne. 2006. Soil management and conservation. Pages 96-106 in Agricultural Resources and Environmental Indicators K. Wiebe and N. Gollehon (eds.). U.S. Department of Agriculture, Economic Research Service, Washington, D.C.

Sankula, S. 2006. Quantification of the impacts on US agriculture of biotechnology-derived crops planted in 2005. National Center for Food and Agricultural Policy, Washington, D.C.

Schmelz, E.A., J. Engelberth, H.T. Alborn, P. O'Donnell, M. Sammons, H. Toshima and J.H. Tumlinson. 2003. Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences of the United States of America 100:10552-10557.

Schmidt, C.L. and L. Shaw. 2001. A comprehensive phylogenetic analysis of Rieske and Rieske-type ironsulfur proteins. Journal of Bioenergetics and Biomembranes 33:9-26.

SDTF. 1997. A summary of ground application studies. Spray Drift Task Force, St. Louis, Missouri. http://www.agdrift.com/PDF_FLES/Ground.pdf [Accessed August 10, 2010].

Seng, C.T., L. Van Lun, C.T. San and I. Sahid. 2010. Initial report of glufosinate and paraquat multiple resistance that evolved in a biotype of goosegrass (*Eleusine indica*) in Malaysia. Weed Biology and Management 10:229-233.

Sims, S.R., S.A. Berberich, D.L. Nida, L.L. Segalini, J.N. Leach, C.C. Ebert and R.L. Fuchs. 1996. Analysis of expressed proteins in fiber fractions from insect-protected and glyphosate-tolerant cotton varieties. Crop Science 36:1212-1216.

Smith, C.W. and J.T. Cothren. 1999. Cotton: Origin, history, technology, and production. John Wiley and Sons, Inc., New York, New York.

Smith, C.W. and R.A. Creelman. 2001. Vitamin E concentration in upland cotton seeds. Crop Science 41:577-579.

Stalker, D.M., J.A. Kiser, G. Baldwin, B. Coulombe and C.M. Houck. 1996. Cotton weed control using the BXNTM system. Pages 93-105 in Herbicide-Resistant Crops: Agricultural, Environmental, Economic, Regulatory, and Technical Aspects. S.O. Duke (ed.). CRC Press, Inc., Boca Raton, Florida.

Stalker, D.M., C.M. Thomas and D.R. Helinski. 1981. Nucleotide sequence of the region of the origin of replication of the broad host range plasmid RK2. Molecular and General Genetics 181:8-12.

Sutcliffe, J.G. 1979. Complete nucleotide sequence of the *Escherichia coli* plasmid pBR322. Pages 77-90 in Cold Spring Harbor Symposia on Quantitative Biology, Cold Spring Harbor, New York.

Tanaka, A., H. Ito, R. Tanaka, N.K. Tanaka, K. Yoshida and K. Okada. 1998. Chlorophyll *a* oxygenase (*CAO*) is involved in chlorophyll *b* formation from chlorophyll *a*. Proceedings of the National Academy of Sciences of the United States of America 95:12719-12723.

. 2010. Controlling volunteer cotton in soybeans. W168. University of Tennessee Extension, Memphis, Tennessee.

Thompson, C.J., N.R. Movva, R. Tizard, R. Crameri, J.E. Davies, M. Lauwereys and J. Botterman. 1987. Characterization of the herbicide-resistance gene *bar* from *Streptomyces hygroscopicus*. EMBO Journal 6:2519-2523.

U.S. EPA. 1993. RED facts: Glyphosate. U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Washington, D.C. http://www.epa.gov/oppfead1/endanger/btstatus/effects/glyphosate-red.pdf [Accessed August 16, 2010].

U.S. EPA. 1997. Phosphinothricin acetyltransferase and the genetic material necessary for its production in all plants; Exemption from the requirement of a tolerance on all raw agricultural commodities. Federal Register 62:17717-17720.

U.S. EPA. 2003 Memorandum: Glufosinate ammonium (PC code 128850). Section 3 registrations for transgenic cotton and cotton (ID# - 0F06140), transgenic rice (ID# - 0F06210), and bushberry (ID# - 2E06404). Human health risk assessment DP barcode D290086. Case number: 293386. Submission: S635308. 40 CFR 180.473. U.S. Environmental Protection Agency, Office of Pevention, Pesticides, and Toxic Substances, Washington, D.C.

U.S. EPA. 2008. Glufosinate final work plan registration review: August 2008. Docket Number: EPA-HQ-OPP-2008-0190. U.S. Environmental Protection Agency, Washington, D.C.

U.S. EPA, 2009. Reregistration eligibility decision for dicamba and associated salts. U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Washington, D.C.

U.S. FDA: 1992. Statement of policy: Foods derived from new plant varieties. Federal Register 57: 22984-23005.

U.S. FDA. 2001. Premarket notice concerning bioengineered foods. Federal Register 66:4706-4738.

Umbeck, P.F., K.A. Barton, E.V. Nordheim, J.C. McCarty, W.L. Parrott and J.N. Jenkins. 1991. Degree of pollen dispersal by insects from a field test of genetically engineered cotton. Journal of Economic Entomology 84:1943-1950.

University of Arkansas. 2011. Recommended chemicals for weed and brush control. University of Arkansas, Cooperative Extension Service, Division of Agriculture, Fayetteville, Arkansas.

University of California. 1996. Development and growth requirements of the cotton plant. Pages 11-23 in Integrated Pest Management for Cotton in the Western Region of the United States. Publication 3305. Second Edition. University of California, Oakland, California.

University of California. 2012. Cotton: Susceptibility of weeds to herbicide control. University of California Agriculture & Natural Resources Statewide Integrated Pest Management Program, Davis, California. <u>http://ipm.ucdavis.edu/PMG/r114700411.html</u> [Accessed May 1, 2012].

University of Georgia. 2010. Corn production guide. University of Georgia, College of Agricultural & Environmental Sciences, Athens, Georgia. <u>http://www.caes.uga.edu/commodities/fieldcrops/gagrains/2008ComProductionGuide.html</u> [Accessed December 9, 2010].

University of Georgia. 2011. 2011 Georgia cotton production guide. University of Georgia College of Agricultural and Environmental Sciences, Athens, Georgia.

University of Georgia. 2012. 2012 Georgia cotton production guide. University of Georgia College of Agricultural and Environmental Sciences, Athens, Georgia.

USDA-AMS. 2001. The classification of cotton. Agricultural Handbook 566. U.S. Department of Agriculture, Agricultural Marketing Service, Washington, D.C.

USDA-APHIS. 1986. Coordinated framework for regulation of biotechnology Federal Register 51:23302.

USDA-APHIS. 1995. USDA/APHIS determination on a petition 94-308-01p of Monsanto Agricultural Company seeking nonregulated status of lepidopteran-resistant cotton lines 531, 757, 1076: Environmental assessment and finding of no significant impact. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Washington, D.C.

USDA-ERS-FAS 2010. Outlook for U.S. agricultural trade: FV 2010 exports expected to rise to \$104.5 billion; Imports drop to \$76.5 billion. U.S. Department of Agriculture, Economic Research Service and Foreign Agricultural Service, Washington, D.C. <u>http://www.fas.usda.gov/cmp/outlook/2010/May-10/May2010_fullreport.pdf</u> [Accessed July 11, 2011].

USDA-ERS. 2012a. 2007 crop production practices for cotton: All survey states. U.S. Department of Agriculture, Economic Research Service, Washington, D.C. <u>http://ers.usda.gov/data-products/arms-farm-financial-and-crop-production-practices/tailored-reports.aspx</u> [Accessed June 18, 2012].

USDA-ERS, 2012b. Crop production practices for cotton: National. U.S. Department of Agriculture, Economic Research Service, Washington, D.C.

USDA-FAS. 2005: Oilseeds: World markets and trade. Circular Series FOP 7 - 05. U.S. Department of Agriculture, Foreign Agricultural Service, Washington, D.C.

USDA-FAS. 2010. Record early-season soybean sales brighten U.S. export outlook. U.S. Department of Agriculture, Foreign Agricultural Service, Washington, D.C.

USDA-FAS. 2011. Cotton: World markets and trade. Circular Series FOP 12-11. U.S. Department of Agriculture, Foreign Agricultural Service, Washington, D.C.

USDA-FAS. 2012. Cotton: World markets and trade. U.S. Department of Agriculture, Foreign Agricultural Service, Washington, D.C.

USDA-NASS. 2002. 2002 census of agriculture. Geographic Area Series Part 51. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C.

USDA-NASS. 2003. Acreage - June 2003. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C.

USDA-NASS. 2004. Agricultural chemical usage - 2003 field crops summary. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C. <u>http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1560</u> [Accessed May 12, 2010].

USDA-NASS. 2008. Agricultural chemical usage - 2007 field crops summary. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C.

USDA-NASS. 2010. Acreage - June 2010. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C. <u>http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1000</u> [Accessed July 31, 2010].

USDA-NASS. 2011a. Acreage - June 2011. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C. <u>http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentD=1000</u> [Accessed June 22, 2012].

USDA-NASS. 2011b. Crop production: Historical track records, April 2011. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C.

USDA-NASS. 2011c. Crop values: 2010 summary, February 2011, U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C.

USDA-NASS. 2011d. Vegetables: 2010 summary, January 2011. Vg 1-2 (11). U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C.

USDA-NASS, 2011e. Crop production: 2010 summary, January 2011. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C.

USDA-NASS, 2012a. Upland cotton 2010 planted acres by county for selected states. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C.

USDA-NASS. 2012b. Pima cotton 2012 planted acres by county for selected states. U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C.

USDA-NASS. 2012c Quick stats: Cotton, acres planted, Pima - acres planted, Pima - price received, Upland acres, U.S. Department of Agriculture, National Agricultural Statistics Service, Washington, D.C. <u>http://quickstats.nass.usda.gov/data/printable/2550EF99-0495-3D73-97B4-C71FFC453437</u> [Accessed April 4, 2012].

Van Deynze, A.E., F.J. Sundstrom and K.J. Bradford. 2005. Pollen-mediated gene flow in California cotton depends on pollinator activity. Crop Science 45:1565-1570.

Vargas, R.N., W.B. Eischer, H.M. Kempen and S.D. Wright. 1996. Cotton weed management. Pages 187-188 in Cotton Production Manual. S.J. Hake, T.A. Kerby, and K.D. Hake (eds.). University of California Division of Agriculture and Natural Resources, Davis, California.

Waghmare, V.N., J. Rong, C.J. Rogers, G.J. Pierce, J.F. Wendel and A.H. Paterson. 2005. Genetic mapping of a cross between *Gossypium hirsutum* (cotton) and the Hawaiian endemic, *Gossypium tomentosum*. Theoretical and Applied Genetics 111:665-676.

Wagner, W.L., D.R. Herbst and S.H. Sohmer. 1990. Manual of the Flowering Plants of Hawai'i. University of Hawaii Press, Honolulu, Hawaii.

Wang, X.-Z., B. Li, P.L. Herman and D.P. Weeks. 1997. A three-component enzyme system catalyzes the O demethylation of the herbicide dicamba in *Pseudomonas maltophilia* DI-6. Applied and Environmental Microbiology 63:1623-1626.

Webster, T.M., M. Patterson, J. Everest, J. Ferrell, B. Brecke, A.S. Culpepper, E.P. Prostko, J.D. Green, J.R. Martin, E.Webster, S. Kelly, J. Griffin, D. Sanders, J. Byrd, A. Kendig, A. York, D. Jordan, L. Fisher, C. Medlin, D. Murray, J. Norsworthy, J. Chapin, L. Nelson and **Exercise**. 2005. Weed survey - Southern states 2005: Broadleaf crops subsection (cotton, peanut, soybean, tobacco, and forestry). Pages 291-306 in 2005 Proceedings of the Southern Weed Science Society, Memphis, Tennessee.

Webster, T.M., M. Patterson, J. Everest, K. Smith, D. Oliver, J. Norsworthy, N. Burgos, B. Scott, J. Byrd, C. Fristoe, J. Ferrell, B. Brecke, P. Minogue, A.S. Culpepper, E.P. Prostko, D. Moorhead, J.M. Moore, J.D. Green, J.R. Martin, B. Williams, D. Stephenson, D. Miller, D. Sanders, J. Griffin, K. Bradley, A. York, D. Jordan, L. Fisher, D. Murray, M. Marshall, S. Hagood and C. Johnson. 2009. Weed survey – Southern states 2009: Broadleaf crops subsection (cotton, peanut, soybean, tobacco, and forestry). Pages 509-524 in 2009 Proceedings of the Southern Weed Science Society, Las Cruces, New Mexico.

Wehrmann, A., A.V. Vliet, C. Opsomer, J. Botterman and A. Schulz (1996. The similarities of *bar* and *pat* gene products make them equally applicable for plant engineers. Nature Biotechnology 14:1274-1278.

Werlen, C., H.-P.E. Kohler and J.R. van der Meer. 1996. The broad substrate chlorobenzene dioxygenase and *cis*-chlorobenzene dihydrodiol dehydrogenase of *Pseudomonas* sp. strain P51 are linked evolutionarily to the enzymes for benzene and toluene degradation. Journal of Biological Chemistry 271:4009-4016.

WHO. 1995. Application of the principles of substantial equivalence to the safety evaluation of foods or food components from plants derived by modern biotechnology. World Health Organization, Geneva, Switzerland.

Wilcut, J.W., R.M. Hayes, R.L. Nichols, S.B. Clewis, J. Summerlin, D.K. Miller, A. Kendig, J.M. Chandler, D.C. Bridges, B. Brecke, C.E. Snipes and S.M. Brown. 2003. Weed management in transgenic cotton. North Carolina State University Agricultural Research Service, Raleigh, North Carolina.

Wild, A. and R. Manderscheid. 1984. The effect of phosphinothricin on the assimilation of ammonia in plants. Zeitschrift für Naturforschung C 39:500-504

Williams, M.R. 2010. Cotton insect losses 2010. Mississippi State University, Mississippi State, Mississippi. <u>http://www.entomology.msstate.edu/resources/tips/cotton-losses/data/2010/</u> [Accessed May 22, 2012].

Winter, J., R. Wright, N. Duck, C. Gasser, R. Fraley and D. Shah. 1988. The inhibition of petunia hsp70 mRNA processing during CdCl₂ stress. Molecular and General Genetics 211:315-319.

Wishart, D.S. 2010. Human metabolome database. www.hmdb.ca [Accessed June 2, 2010].

Wishart, D.S., C. Knox, A.C. Guo, R. Eisner, N. Young, B. Gautam, D.D. Hau, N. Psychogios, E. Dong, S. Bouatra, R. Mandal, I. Sinelnikov, J. Xia, L. Jia, J.A. Cruz, E. Lim, C.A. Sobsey, S. Shrivastava, P. Huang, P. Liu, L. Fang, J. Peng, R. Fradette, D. Cheng, D. Tzur, M. Clements, A. Lewis, A. De Souza, A. Zuniga, M. Dawe, Y. Xiong, D. Clive, R. Greiner, A. Nazyrova, R. Shaykhutdinov, L. Li, H.J. Vogel and I. Forsythe. 2009. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research 37:D603-D610.

Wohlleben, W., W. Arnold, I. Broer, D. Hillemann, E. Strauch and A. Pühler. 1988. Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression in Nicotiana tabacum. Gene 70:25-37.


Yang, M., E. Wardzala, G.S. Johal and J. Gray. 2004. The wound-inducible Lls1 gene from maize is an orthologue of the Arabidopsis Acd1 gene, and the LLS1 protein is present in non-photosynthetic tissues. Plant Molecular Biology 54:175-191.

York, A.C., A.M. Stewart, P.R. Vidrine and A.S. Culpepper. 2004. Control of volunteer glyphosateresistant cotton in glyphosate-resistant soybean. Weed Technology 18:532-539.

Zambryski, P., A. Depicker, K. Kruger and H.M. Goodman. 1982. Tumor induction by Agrobacterium tumefaciens: Analysis of the boundaries of T-DNA. Journal of Molecular and Applied Genetics 1:361-370.

entitiende in an provide and the and t Apelos and a state of the second of the seco and or and subjective of the owner and third paties. Torsequently and publication of the owner of this document may there on the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document in a strateging of the owner of this document is document. any connectation and violate the rights of this owner. This document is the property of Bayer AG A may be subject to home and third participation of the child participation without the permission of the owner of this documer. In and of any contraction of the second seco

### **APPENDICES**



### **Appendix A: Notifications**

Field trials of MON 88701 have been conducted in the U.S. since 2007. The protocols for these trials include field performance, breeding and observation, agronomics, and generation of field materials and data necessary for this petition. In addition to the MON 88701 phenotypic assessment data, observational data on pest and disease stressors were collected from these product development trials. The majority of the final reports e: .utifica .suifica have been submitted to the USDA. However, some final reports, mainly from the 2011-2012 seasons, are still in preparation. A list of trials conducted under USDA notifications This document is the property of Bayer AG paties. The property and the paties intellectual property and this action is and third paties. This document is affiliates in and third paties. This document is affiliates of the owner and third paties. This document is affiliate owner and third paties.

-Consequently and publication of the owner of this document may there on the owner of this document may there of the owner of this document in a state of the owner of this document in a state of the owner of this document in a state of the owner of this document in a state of the owner of this document in a state of the owner of this document in a state of the owner of this document in a state of the owner of the owner of this document in a state of the owner owner of the owner any commercial empirision and use of this document, may there of the owner.

without the permission of the owner of this documer.

	USDA #	Effective Date	# Release sites per state	Trial Status
	2007			
	07-241-107n	9/28/2007	PR-2	Submitted to USDA
	2008			
	08-042-109n	3/12/2008	TX-2, TN-1, NC-2, MS-3, GA-4	Submitted to USDA
	08-056-112n	3/26/2008		Submitted to USDA
	08-056-117n	3/26/2008	TX-3, SC-2, NC-2, MS-2, LA-1, GA-4, AR-1	Submitted to USDA
	08-266-130n	10/19/2008	PR-3	Submitted to USDA
	2009	10,19,2000	, vog	
	09-058-104n	3/29/2009	CA-1	Submitted to USDA
	09-065-111n	4/5/2009	AZ-5, GA-1, MS-3, SC-2, TX-4	Submitted to USDA
	00.069.109	4/8/2000	AL-1, AR-2, AZ21, GA-1, IL-1, LA-1,	Schwitted to USD A
	09-068-108n 09-072-103n	4/8/2009 4/8/2009	MS-1, NC-4, NM-2, TX-1 AR-1, MS-2, SC-5, TN-2, TX-5	Submitted to USDA Submitted to USDA
		9/21/2009	PR-2	Submitted to USDA
	09-224-101n <b>2010</b>	9/21/2009	MS-1, NC-4, NM-2, TX-1 AR-1, MS-2, SC-5, TN-2, TX-5 PR-2 TX-4 GA-2, NC-9, SC-3 MS-1, PR-7 CA-2, GA-1, LA-1, MO-1, OK-3, SC-1, AR-1	Submitted to USDA
	10-054-134n	3/20/2010	TX-4 2 - A R CULLERIT	Submitted to USDA
	10-059-109n	3/28/2010	GA-2, NC-9, SC-3	Submitted to USDA
	10-061-102n	7/10/2010	MS-1, PR-7	Submitted to USDA
	oro	S. SUS MI	CA-2, GA-1, LA-1, MO-1, OK-3, SC-1,	
	10-064-101n	4/3/2010		
	10-067-104n	4/7/2010	AZ-5, IL-1, MS-4, NM-2, PR-2, TX-10 AR-4, AZ-2, GA-2, KS-1, LA-1, NC-2,	Submitted to USDA
	10-071-101n	4/9/2010	NM-1, SC-1, TX-2	Submitted to USDA
راب	N OT SEC		AR-1, GA-1, LA-1, MS-1, NC-1, SC-1,	
200	10-071-102n	4/10/2010	TN-1, TX-2	Submitted to USDA
in Sint	10-242-102n	9/29/2010	PR-2	Submitted to USDA
TI. die	40-071-101n 10-071-102n 10-242-102n 10-285-105n 2011	11/11/2010	AR-1, GA-1, LA-1, NM-1	Submitted to USDA
S. M.	2011		jio	
	11-045-101n	3/16/2011	MS-1, PR-2	Pending
0	11.052 1051		AL-1, FL-2, GA-9, MS-1, NC-6, SC-4	Pending
		3/25/2011	AR-3, LA-2, MO-2, MS-8, TN-5, TX-4	Pending
	11-075-107n	4/15/2011	AL-1, AR-1, AZ-4, IL-1, LA-1, MO-1, MS-4, NC-1, SC-1, TX-9	Pending
	11-068-1030	X 4/8/2011	AL-2, AR-2, AZ-1, CA-2, GA-2, LA-1,	Donding
	11-068-103p 11-083-104n	4/8/2011	NC-1, NM-1, SC-1, TX-5	Pending
		4/23/2011	AL-1,MS-1	Pending
	11-084-107n	4/24/2011	NC-1 TV 1	Pending
	11-091-102n	5/1/2011	TX-1	Pending

 Table A-1. USDA Notifications and Permits Approved for MON 88701 and Status of Trials Conducted under These Notifications

-	USDA #	Effective Date	# Release sites per state	Trial Status
	2011 cont.			
	11-094-101n	5/4/2011	AZ-1	Pending
	11-111-104n	5/21/2011	FL-1	Pending
	11-133-103n	6/12/2011	IL-1	Pending
	11-153-101n	7/2/2011	MS-1, PR-2	Pending
	11-152-101n	7/1/2011	GA-1	Pending
	11-199-102n	8/17/2011	PR-1	Pending
	11-290-101n	11/16/2011	MS-1, PR-3	Pending
	2012		X XOT	10/13
	12-018-101n	2/17/2012	AL-1, TX-2	Pending
			AR-3, CA-1, GA-2, LA-2, MS-11, NC-	X ^O C
	12-053-110n	3/23/2012	1, TN-1, TX-2	Pending
	12 046 104	2/16/2012	AL-1, AR-4, FL-1, GA-2, LA-1, NC-3,	Pending
	12-046-104n	3/16/2012	AL-3, AR-3, FL-1, GA-3, MS-7, SC-1,	Pending
	12-051-106n	3/21/2012	TN-2, TX-5	Pending
	12-051-105n	3/21/2012	GA-5, MS-4, NC-6, SC-2, TN-1, TX-5	Pending
	12-046-109n	3/16/2012	AR-1, MO-5, TN-13, TX-2	Pending
	12-055-101n	3/25/2012	AR-1, CA-1, SC-1, TX-1	Pending
	12-068-101n	4/7/2012	CA24 SOUT & THE OT OF	Pending
		3/23/2012	AL-1, NC-1, SC-1, TX-4	Pending
	12-069-101n	4/8/2012	GA-9, TX-2	Pending
	12-075-102n	4/14/2012	AL-1, AR-2, MS-1, NC-1, SC-1, TX-4	Pending
2	12-074-107n	4/13/2012	TX-I N XS	Pending
CUI.	12-081-101n	4/20/2012	AL-1, TX-2	Pending
80° 2	12 Pristi		<u> </u>	-
This dlor of	Verse X	1. 203 + 2° 0		
1.00, 21	i dri dre i	17, 20, 55	- Nor	
This dio.	Withermoluer Withermoluer	it clor mis -		
i cot	s'the dr.	up. Der Mo.		
Ĭ	UN RECOM	in the second		
	withernored any internored	,01		
	MIL	in artier Period		
	60			

 Table A-1. USDA Notifications and Permits Approved for MON 88701 and Status of Trials Conducted under These Notifications (continued)

### **Appendix B:** Materials, Methods, and Results for Molecular Analyses of **MON 88701**

### **B.1.** Materials

The genomic DNA used in molecular analyses was isolated from leaf tissue of the R₃ generation of MON 88701 and the conventional control (Coker 130). The leaf tissue was harvested from a greenhouse production in 2010. For generational stability analysis, genomic DNA was extracted from leaf tissue of the  $R_2$ ,  $R_3$ ,  $R_4$ ,  $R_5$  and  $R_6$  generations of MON 88701. The leaf tissue was harvested from production plan PPN-10-1d3. The reference substance, PV-GHHT6997 (Figure III-1), was used as a positive hybridization control in Southern blot analyses. Probe templates generated from PV-GHHT6997 were used as additional positive hybridization controls. As additional reference standards, the 1 Kb DNA Extension Ladder and  $\lambda$  DNA/*Hind* III Fragments from Invitrogen (Carlsbad, CA) were used for size estimations on agarose gels and subsequent Southern blots. The 1 Kb DNA Ladder from Invitrogen was used for size estimations on agarose gels for PCR

analyses. **B.2. Characterization of the Materials** The identity of the source materials was verified by methods used in molecular characterization to confirm the presence or absence of MON 88701. The stability of the genomic DNA was confirmed by observation of interpretable signals from digested DNA samples on ethidium bromide stained agarose gels and/or specific PCR products, and the samples did not appear visibly degraded on the ethidium bromide stained gels.

## B.3. DNA Isolation for Southern Blot and PCR Analyses

Genomic DNA was isolated from MON 88701 leaf tissue using a hexadecyltrimethylammonium bromide (CTAB) based method. Briefly, 20 ml of CTAB buffer (1.5% w/v CTAB, 75 mM Tris HCl, 100 mM EDTA, 1.05 M NaCl, and 0.75% wwv PVP) and 10 mg RNase A were added to approximately 4 ml of ground leaf tissue and incubated at 60-70 °C for 40-50 min with intermittent mixing. Twenty milliliters of chloroform was added to the samples and mixed by hand for 2-3 min, then centrifuged at  $10,300 \times g$  for 8-10 min. The upper aqueous phase was put into a clean tube and the chloroform step was repeated twice. After the last chloroform step, the aqueous phase was put into a clean tube and the DNA was precipitated with 20 ml of 100% v/v ethanol The sample was centrifuged for one minute to condense the pellet, and then the precipitated DNA was hooked out and put into a tube with 4-6 ml of 70% v/x ethanol to wash the DNA pellet. The samples were centrifuged at  $5,100 \times g$  for 5 min to pellet the DNA. DNA pellets were air dried, then resuspended in 250 µl of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0). All extracted DNA was stored in a -20 C freezer.

### **B.4.** Quantification of DNA

Genomic DNA was quantified using a Qubit[™] Fluorometer (Invitrogen, Carlsbad, CA).

### **B.5. Restriction Enzyme Digestion of DNA**

Approximately 10 µg of genomic DNA extracted from MON 88701 and conventional control were digested with restriction enzyme Bcl I (New England Biolabs, Inc., Beverly, MA) or with restriction enzyme Ssp I- HF (New England Biolabs, Inc.). All Bcl I digests were conducted in 10X NEBuffer 3 buffer at 50 °C in a total volume of ~500 µl with ~50 units of restriction enzyme. All Ssp I-HF digests were conducted in 10X NEBuffer 4 at 37 °C in a total volume of ~500  $\mu$ l with ~100 units of restriction enzyme. For the purpose of running positive hybridization controls, ~10 µg of genomic DNA extracted from the conventional control was digested with the restriction enzyme Bcl L and the appropriate positive hybridization control(s) were added to these digests prior to loading

the agarose gel. **B.6. Agarose Gel Electrophoresis** Digested DNA was resolved on ~0.8% (w/v) agarose gels. For T-DNA insert/copy number and plasmid vector backbone analyses, individual digests containing  $\approx 10 \ \mu g$  each of MON 88701 and conventional control genomic DNA were loaded on the same gel in a long run/short run format. The long run allows for greater resolution of large molecular weight DNA, whereas the short run allows for retaining the small molecular weight DNA on the gel. The positive hybridization controls were only run in the short run format. For the insert stability analysis, individual digests of ~10 ug each of genomic DNA extracted from five leaf samples from multiple generations of MON 88701 and the conventional control along with the positive hybridization controls were loaded on the agarose gel in a single run format. B.7. DNA Probe Preparation for Southern Blot Analyses

Probe templates were prepared by PCR amplification using the PV-GHHT6997 DNA as template. The PCR products were separated on an agarose gel by electrophoresis and purified from the gel using QIAquick Gel Extraction Kit (Qiagen, Valencia, CA) according to manufacturer's instruction. The probe templates were designed based on the nucleotide composition (% CC) of the sequence in order to optimize the detection of DNA sequences during hybridization. When possible, probes possessing similar melting temperature (Tm) were combined in the same Southern blot hybridization. Approximately 25 ng of each probe template were radiolabeled with either  $\left[\alpha^{-32}P\right]$ deoxycytidine triphosphate (dCTP) (6000 Ci/mmol) or  $[\alpha^{-32}P]$  deoxyadenosine triphosphate (dATP) (6000 Ci/mmol) using RadPrime DNA Labeling System (Invitrogen, Carlsbad, CA) according to manufacturer's instruction.

## B.8. Southern Blot Analyses of DNA

Genomic DNA isolated from MON 88701 and the conventional control was digested and evaluated using Southern blot analyses (Southern, 1975). The PV-GHHT6997 DNA, previously digested with the restriction enzyme *Pci* I was added to conventional control genomic DNA digested with Bcl I to serve as positive hybridization control on each Southern blot. When multiple probes were hybridized simultaneously to one Southern

blot, the probe templates were spiked in the digested conventional control genomic DNA int is a pro-os °C, dep is used. Table. is the probes used in is using Kodak Bioman is with one Kodak Bioman is wi to serve as additional positive hybridization controls on the Southern blot. The DNA was then separated by agarose gel electrophoresis and transferred onto a nylon membrane. Southern blots were hybridized and washed at 55 °C, 60 °C, or 65 °C, depending on the calculated melting temperature (Tm) of the probes that were used. Table B-1 lists the radiolabeling conditions and hybridization temperatures of the probes used in this study. Multiple exposures of each blot were then generated using Kodak Biomax MS film June of the organization and use of the occurrent of the organization of the organization of the organization of the organization of the occurrent of (Eastman Kodak, Rochester, NY) in conjunction with one Kodak Biomax MS

any connectate permission and violate the indits of this owner.

without the permission of the owner of this documer.

	Probe	Labeling Method	Element Sequence Spanned by DNA Probe	Probe labeled with dNTP (32P)	Hybridization/ Wash Temperature (°C)
	1	RadPrime	B-Right Border, P-PCISV, L- TEV, TS-CTP2, CS-dmo (portion)	dATP	55
	2	RadPrime	TS-CTP2 (portion), CS-dmo (portion)	dCTP	regimend
	3	RadPrime	CS-dmo (portion), T-E6, P-e35S	dATP	ion hin 55
	4	RadPrime	P-e35S (portion), L-Hsp70, CS- bar, T-nos (portion)	dCTBYOTE	uplits 65
	5	RadPrime	P-e35S (portion), L-Hsp70, CS- bar, T-nos (portion) CS-bar (portion), T-nos, B- Left Border	dATP	Telore 55
	6	RadPrime	OR-ori	ACTP 1	60
	7	RadPrime	CS-rop, OR-ori-pBR322 (portion)	aCTP	60
	8	RadPrime	OR-ori-pBR322 (portion), aadA	det p	60
This docur and lor the no	Portient of the second	Neproperty of the property of	TEV, TS-CTP2, CS-dmo (portion) TS-CTP2 (portion), CS-dmo (portion) CS-dmo (portion), T-E6, P-e35S P-e35S (portion), L-Hsp70, CS- bar, T-nos (portion) CS-bar (portion), T-nos, B- Left Border OR-ori V CS-rop, OR-ori-pBR322 (portion) OR-ori-pBR322 (portion), aadA	Jou er.	

### Table B-1. Hybridization Conditions of Utilized Probes

### **B.9. DNA Sequence Analyses of the Insert**

Overlapping PCR products, denoted as Product A, Product B, and Product C, were generated that span the insert and adjacent 5' and 3' flanking DNA sequences in MON 88701. These products were analyzed to determine the nucleotide sequence of the insert in MON 88701, as well as that of the DNA flanking the 5' and 3' ends of the insert.

The PCR analysis for Product A was conducted using ~100 ng of genomic DNA template in a 50  $\mu$ l reaction volume. The reaction volume contained either a final concentration of 2 mM MgSO₄, 0.2  $\mu$ M of each primer, 0.2 mM of each dNTP, and 0.02 units/ $\mu$ l of Accuprime *Taq* DNA Polymerase High Fidelity (Invitrogen) or a final concentration of, 1.5 mM MgCl₂, 0.2  $\mu$ M of each primer, 0.2 mM of each dNTP, and 0.02 units/ $\mu$ l of Phusion Hot Start II High Fidelity DNA Polymerase (Finnzymes, Espoo, Finland). The Phusion Hot Start II High Fidelity DNA Polymerase was used to enhance the amplification and sequencing of a small A-rich region located in ProductA.

The PCR analyses for Product B and Product C were each conducted using ~100 ng of genomic DNA template in a 50  $\mu$ l reaction volume containing a final concentration of 2 mM MgSO₄, 0.2  $\mu$ M of each primer, 0.2 mM of each dNTP, 2.5% (v/v) DMSO, and 0.02 units/ $\mu$ l of Accuprime *Taq* DNA Polymerase High Fidelity (Invitrogen).

The amplification of Product A using Accuprime *Taq* was performed under the following cycling conditions: 1 cycle at 94 °C for 2 minutes; 35 cycles at 94 °C for 15 seconds, 59 °C for 30 seconds, 68 °C for 2.25 minutes; 1 cycle at 68 °C for 5 minutes. The amplification of Product A using Phusion Hot Start II DNA Polymerase was performed under the following cycling conditions: 1 cycle at 98 °C for 30 seconds, 35 cycles at 98 °C for 10 seconds, 64 °C for 15 seconds, and 72 °C for 1.25 minutes. The amplification of Product B was performed under the following cycling conditions: 1 cycle at 94 °C for 30 seconds, 50 °C for 30 seconds, 64 °C for 5 minutes. The amplification of Product B was performed under the following cycling conditions: 1 cycle at 94 °C for 30 seconds, 68 °C for 30 seconds, 50 °C for 30 seconds, 68 °C for 3 minutes; 1 cycle at 68 °C for 5 minutes. The amplification of Product C was performed under the following cycling conditions: 1 cycle at 94 °C for 2 minutes; 1 cycle at 68 °C for 2 minutes; 1 cycle at 68 °C for 5 minutes. The amplification of Product C was performed under the following cycling conditions: 1 cycle at 94 °C for 2 minutes; 1 cycle at 68 °C for 30 seconds, 68 °C for 2 minutes; 1 cycle at 68 °C for 5 minutes. The amplification of Product C was performed under the following cycling conditions: 1 cycle at 94 °C for 2 minutes; 35 cycles at 94 °C for 5 minutes. 1 cycle at 94 °C for 2 minutes; 35 cycles at 94 °C for 5 minutes. 1 cycle at 94 °C for 2 minutes; 35 cycles at 94 °C for 5 minutes.

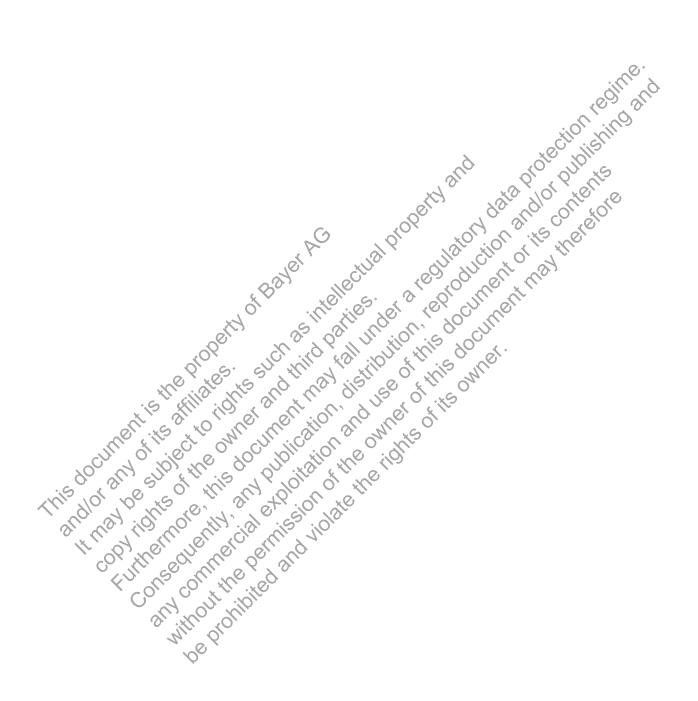
A small aliquot of each PCR product was separated on a 1.0% (w/v) agarose gel and visualized by ethidium bromide staining to verify that the products were the expected size. Prior to sequencing, each verified PCR product was purified using the QIAquick PCR Purification Kit (Qiagen, Inc., Valencia, CA) and quantified using a Qubit fluorometer. The purified PCR products were sequenced using multiple primers, including primers used for PCR amplification. All sequencing was performed by Monsanto TGAC (The Genome Analysis Center) using BigDye terminator chemistry (Applied Biosystems, Foster City, CA).

A consensus sequence was generated by compiling multiple sequencing reactions performed on the overlapping PCR products. This consensus sequence was aligned to the

PV-GHHT6997 sequence to determine the integrity and organization of the integrated DNA and the 5' and 3' insert-to-flank DNA junctions in MON 88701.

### **B.10.** PCR and DNA Sequence Analysis to Examine the MON 88701 Insertion Site

To examine the MON 88701 insertion site in conventional cotton, PCR and sequence analyses were performed on genomic DNA from both MON 88701 and conventional cotton. The primers used in this analysis were designed from the DNA sequences flanking the insert in MON 88701. A forward primer specific to the DNA sequence flanking the 5' end of the insert was paired with a reverse primer specific to the DNA sequence flanking the 3' end of the insert.


The PCR reactions were conducted using ~100 ng of genomic DNA template in a 50  $\mu$ l reaction volume containing a final concentration of 2 mM MgSO₄, 0.2  $\mu$ M of each primer, 0.2 mM of each dNTP, and 0.02 units/ $\mu$ l of Accuprime *Taq* DNA Polymerase High Fidelity (Invitrogen). The amplification was performed under the following cycling conditions: 1 cycle at 94 °C for 2 minutes; 35 cycles at 94 °C for 15 seconds, 58 °C for 30 seconds; 1 cycle at 68 °C for 5 minutes.

A small aliquot of each PCR product was separated on a 1.2% (w/v) agarose gel and visualized by ethidium bromide staining to verify that the PCR products were the expected size prior to sequencing. Only the verified PCR product from the parental conventional control was purified with the QIAquick PCR Purification Kit (Qiagen) and quantified using a Qubit Fluorometer. The purified PCR product was sequenced using multiple primers, including primers used for PCR amplification. All sequencing was performed by the Monsanto TGAC (The Genome Analysis Center) using BigDye terminator chemistry (Applied Biosystems).

A consensus sequence was generated by compiling multiple sequencing reactions performed on the verified PCR product. This consensus sequence was aligned to the 5' and 3' sequences flanking the MON 88701 insert to determine the integrity and organization of the insertion site.

### **References for Appendix B**

Southern, E.M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503-517.



### Appendix C: Protein Reaction Products, Materials, Methods, and Results for Characterization of MON 88701 DMO and PAT (bar) Proteins Produced in MON 88701, and Substrate Specificity

### C.1. DMO Reaction Products

MON 88701 when treated with dicamba herbicides will yield the reaction products 3,6dichlorosalicylic acid (DCSA) and formaldehyde during demethylation of the herbicide. These products, as you will see in the text below, have either been previously deemed safe (DCSA) or are commonly produced in nature and at sufficiently low levels in this otection shing at prayer with re MON 88701 cropping system (formaldehyde) so as to not raise concerns with regard to the plant pest risk assessment for MON 88701.

### C.1.1. DCSA in MON 88701

DCSA is a metabolite generated when dicamba herbicide is sprayed on MON 88701 cotton and soybean and is also produced by livestock and soil whose safety has been evaluated by the Environmental Protection Agency (U.S. EPA, 2009, FAO-WHO, 2011). DCSA residue levels were measured in dicamba-treated MON 88701 to support Monsanto's registration request for the inclusion of DCSA in the cottonseed and gin byproduct dicamba residue definitions. DCSA is structurally similar to salicylic acid (SA). Numerous studies have reported on the stress defense activities of SA, although most studies have looked at the protective effects of exogenously applied SA (Janda et al,

C.1.2. Formaldehyde in the Environment 2007). C.1.2. Formaldehyde in the Environment Formaldehyde is ubiquitous in the environment, plants and animals are constantly in the environment and the atmosphere from a industrial emissions) sources. In water, formaldehyde dissipates through biodegradation to low levels in a few days (USHHS-ATSDR, 1999). Aerobic biodegradation to low levels in a few days (USHHS-ATSDR, 1999). 2008). The half-life of formaldehyde in air is dependent on a number of factors (light vintensity, temperature, and location). Through reaction with hydroxyl radical, the halflife of formaldehyde in air varies from 7 to 70 hours (U.S. EPA, 2008). The photolytic half-life of formaldehyde in air (e.g., in the presence of sunlight) is estimated to be 1.6-6 hours (U.S. EPA, 2008, USHHS-ATSDR, 1999). Formaldehyde is rapidly consumed in the atmosphere through direct photolysis or by oxidation with hydroxyl or nitrate radicals (USHHS-ATSDR, 1999).

> Humans are constantly exposed to low levels of formaldehyde. Human exposure to formaldehyde is primarily due to indoor air exposures (USHHS-ATSDR, 1999). Formaldehyde is found in a variety of consumer products such as cosmetics and paints, often as an antimicrobial agent, and is used extensively in urea-formaldehyde "slowrelease" fertilizer formulations and adhesives (USHHS-ATSDR, 1999). Indoor formaldehyde air concentrations are generally significantly higher than outdoor air

concentrations (USHHS-ATSDR, 1999) as a result of combustion (cooking, heating, tobacco use) and the emission of formaldehyde from a variety of construction materials (*e.g.*, particle board, plywood or foam insulation) as well as permanent press fabrics (*e.g.*, clothing or draperies) (U.S. CPSC, 1997). Formaldehyde present in outdoor air results from a number of sources, and levels of formaldehyde are generally higher in urban areas than in rural areas (WHO-IPCS, 1989). Direct contributions of formaldehyde to the atmosphere (*i.e.*, those in the form of formaldehyde itself) from man-made sources are present, but are generally considered to be small relative to natural sources or indirect production of formaldehyde in the atmosphere (WHO, 2002).

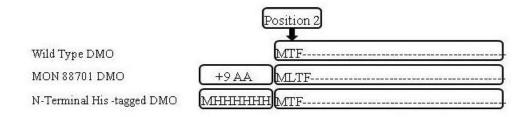
### C.1.3. Formaldehyde in MON 88701

Formaldehyde is a metabolite when dicamba is sprayed on MON 88701 cotton. However, formaldehyde is not considered a relevant metabolite in the demethylation of dicamba by U.S. EPA. According to the guidelines published by Office of Prevention, Pesticides and Toxic Substances, United States Environmental Protection Agency (US EPA OPPTS 860.1300), the methoxy side chain that is cleaved from dicamba to form formaldehyde would specifically not be chosen to be labeled in a metabolism study (U.S. EPA, 1996). This is because it is not metabolically stable and would not be considered a significant moiety as it would be readily metabolized and incorporated into the 1-carbon pool of the plant through known pathways. Therefore, formaldehyde was not measured in the residue study when dicamba was applied to MON 88701.

The maximum theoretical production of formaldehyde produced from dicamba-treated MON 88701 is estimated to be 6.3 mg/kg and 33 mg/kg⁷. This is well within the range of formaldehyde concentrations measured for a variety of agricultural commodities, including up to 60 mg/kg in fruits and vegetables (WHO-IPCS, 1989). Plants have a large capacity to metabolize formaldehyde naturally produced from internal processes (A. Hanson (2011), **Sector 1999**. Eminent Scholar, Horticulture Department, University of Florida, Personal Communication), and any additional amount of formaldehyde that could be theoretically produced in the plant by dicamba treatment in MON 88701 would be metabolized very quickly. Thus the incremental increase in formaldehyde over and above the levels already presumed to be present in the cotton plant would be small and transient and associated with an outdoor application of dicamba herbicide. Further, since current literature supports that formaldehyde is only emitted from foliage under certain

⁷Calculation based an assumption that the entire 0.56 kg/ha (0.5 lb/acre a.e.) application of dicamba that is intercepted by the MON 88701 cotton plant at the 6-leaf or first bloom plus 15 day growth stage is instantaneously and completely absorbed, and then instantaneously metabolized by the DMO enzyme (Complete demethylation of 560 g (2.5 mol)/ ha dicamba would yield 2.5 mol/ha formaldehyde). Canopy closure, and thus spray interception, is estimated at 30% at the 6-leaf stage (Krutz et al., 2012), resulting in production of 23 g/ha formaldehyde. Canopy closure is near complete at the first bloom plus 15 day growth stage (Reddy et al., 2009), so no adjustment is applied. Above-ground biomass of 6-leaf plants is estimated to be 0.7 metric tons/ha (Ducamp et al., 2012), and the estimated maximum theoretical concentration is 33 mg/kg formaldehyde *in planta*. For dicamba applications at first bloom plus 15 day growth stage, the crop biomass is estimated to be 12 metric tons/ha (Boquet and Breitenbeck, 2000), and the estimated maximum theoretical formaldehyde concentration produced *in planta* is 6.3 mg/kg.

conditions (Nemecek-Marshall et al., 1995; Cojocariu et al., 2004; Cojocariu et al., 2005) and that emission rates are low (Nemecek-Marshall et al., 1995), little opportunity exists for formaldehyde to be released from MON 88701 after dicamba treatment. Therefore human safety concerns of formaldehyde released from dicamba-treated MON 88701 are considered to be negligible and the most relevant route of exposure is from repeated inhalation of concentrated levels associated with indoor or occupational environments. USHHS-NTP (2011) has already stated that there is no evidence to suggest that dietary intake of formaldehyde is important, despite NTP's 12th Report on Carcinogens reclassifying formaldehyde as a known human carcinogen by (USHHS-NTP, 2011). In addition, the only human food currently produced from cottonseed is refined, bleached, and deodorized (RBD) oil, and to a smaller extent, linters. Therefore, the potential for human exposure to any formaldehyde in dicamba-treated MON 88701 cottonseed is utti Upishing o, highly unlikely.


### C.1.4. Conclusion

Data from both dicamba and glufosinate-treated and not treated MON 88701 compared to a conventional control are available from multiple sites across the U.S., where agronomic, phenotypic and environmental interaction data were collected. The results of this assessment demonstrate no biologically meaningful difference between MON 88701 treated with and without dicamba and glufosinate and the conventional control, and support a conclusion that the formation of DCSA and formaldehyde does not alter the weedy characteristics or increase susceptibility or tolerance to diseases, insect pests or abiotic stresses. Therefore, MON 88701, as cultivated, is no more likely to be a plant pest risk or have a biologically meaningful change in environmental impact than conventional cotton.

## C.2. Characterization of MON 88701 DMO Protein in MON 88701 and

# C.2.1 Forms of DMO

Various forms of the DMO protein (Figure C-1) were used to establish enzyme structure, activity, substrate specificity and safety of the proteins in MON 88701. The wild-type et al. 2005). The MON 88701 DMO protein present in MON 88701 is identical to the wild-type DMO, except for an additional lenging structure. amino acids at the N-terminus from the chloroplast transit peptide, CTP2 (Figure C-1). The *E* coli-produced form of DMO is identical to the wild-type DMO, but with a histidine-tag on the N-terminus (Figure C-1), was used for specificity experiments. The differences in the amino acid sequence or the addition of N-terminal histidine tag did not appear to have an effect on mode-of-action, structure, functional activity, or specificity of DMO, as these changes are sterically distant from the catalytic domain centers involved in electron transport (Rieske and non-heme iron centers) and the catalytic centers for the dicamba substrate (D'Ordine et al., 2009; Dumitru et al., 2009).



### Figure C-1. Forms of DMO Protein and Their Relation to the Wild-Type DMO Protein

The diagram represents the various DMO forms described in this petition. The wild-type DMO form isolated from S. maltophilia was the first form sequenced (Herman et al., 2005). The MON 88701 DMO protein has an insertion of a leucine at position 2, and the addition of 9 amino acids from CTP2 at the N-terminus. MON 88701 DMO was purified from cottonseed of MON 88701. E. coli-produced MON 88701 DMO has the same sequence as plant-produced MON 88701 DMO; equivalence between the two proteins has been demonstrated (Section V.B and Appendix C). The N-terminal histidine-tagged nas been demonstrated (Section V.B and Appendix C). The N-terminar installe-tagged DMO was produced in *E. coli* and was used for *in vitro* specificity studies (Section V.A.1.2).
C.2.2. Materials
The MON 88701 DMO protein (lot 01299151) was purified from cottonseed of MON 88701 (160 11287250). The MON 88701 purified from cottonseed of MON 88701 (160 11287250). The MON 88701 purified from cottonseed of MON 88701 (160 11287250). The MON 88701 purified from cottonseed of MON 88701 (160 11287250). The MON 88701 purified from cottonseed of MON 88701 (160 11287250). The MON 88701 purified from cottonseed of MON 88701 (160 11287250). The MON 88701 purified from cottonseed of MON 88701 (160 11287250). The MON 88701 purified from cottonseed of MON 88701 (160 11287250). The MON 88701 purified from cottonseed of MON 88701 (160 11287250). The MON 88701 purified from cottonseed of MON 88701 (160 11287250). The MON 88701 purified from cottonseed of MON 88701 (160 11287250). The MON 88701 purified from cottonseed purified from cottonsee purified from cottonseed purified from cottonseed purif

MON 88701 (10) 11287350). The MON 88701 DMO protein was stored in a -80 °C freezer in a buffer solution containing 50 mM potassium phosphate, pH 8.0, 1 mM DTT, 1 mM benzamidine HCI, 0.1 M sodium chloride and 10% glycerol.

The E. coli-produced MON 88701 DMO protein (lot 11300031) was used as the paste produced by large-scale fermentation of *E. coli* containing the pMON136400 expression plasmid. The coding sequence for days reference substance. The DMO protein reference substance was generated from cell (pMON136400) was confirmed prior to and after fermentation. The E. coli-produced MON 88701 DMO protein was previously characterized.

## C.2.3. Description of Assay Control

Protein MW standards (Precision Plus Protein Standards Dual color; Bio-Rad, Hercules, CA) were used to calibrate some SDS-PAGE gels and verify protein transfer to polyvinglidene diffuoride (PVDF) and nitrocellulose membranes. Broad Range SDS-PAGE MW standards (Bio-Rad, Hercules, CA) were used to generate a standard curve for the apparent MW estimation. Bovine serum albumin (BSA) and  $\alpha$ -aminobutyric acid (AAbA) were used as hydrolysis control and internal calibration standard for amino acid analysis. The E. coli-produced MON 88701 DMO reference standard was used to construct a standard curve for the estimation of total protein concentration using a Bio-Rad protein assay. A phenylthiohydantoin (PTH) amino acid standard mixture (Applied Biosystems, Foster City, CA) was used to calibrate the

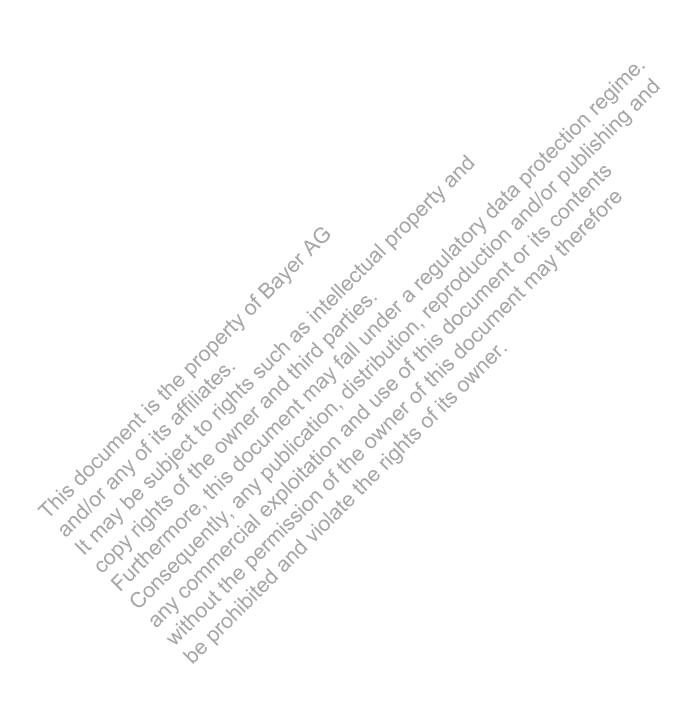
Applied Biosystems 494 Procise Sequencing System for each analysis. A peptide mixture (Sequazyme Peptide Mass Standards kit, Applied Biosystems, Foster City, CA) was used to calibrate the MALDI-TOF mass spectrometer for tryptic mass analysis. Transferrin (Sigma-Aldrich, St. Louis, MO) was used as positive control for glycosylation analysis.

### C.2.4. Protein Purification

The MON 88701 DMO was purified from cottonseed of MON 88701. The purification procedure was not performed under a GLP plan; however, all procedures were documented on worksheets and, where applicable, SOPs were followed. The MON 88701 DMO protein was purified from an extract of ground cottonseed using a combination of ammonium sulfate precipitation, hydrophobic interaction chromatography, anion exchange chromatography, mixed mode ion exchange chromatography and size exclusion chromatography. The purification procedure is briefly described below.

Approximately 1 kg of MON 88701 cottonseed expressing the DMO protein was mixed with ~1 kg of dry ice and ground to fine powder using a laboratory mill (model 3100, Perten Instruments). The ground powder was suspended in two liters of hexane (EMD Chemicals Inc., Gibbstown, NJ) and filtered. This process was repeated four times in order to completely defat the powder. After drying overnight, the powder was ready for further processing. All grinding and defatting steps were done in a fume hood at room temperature.

The ground powder was mixed with extraction buffer (50 mM Tris, pH 8.0, 2.0 M acid, 0.0 mM dithiothreitol (DTT), 1.0 mM deionized Qurea 0.2 M boric benzamidine-HCl, 1.0 µm bestatin, 1.0 µM E-64 and Complete EDTA free protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN)) to a final volume of 8 liters and incubated for 2 h at room temperature. The slurry was centrifuged at  $15000 \times g$  for 30 min at 4 °C. The supernatant was collected and brought to 0.05% polyethyleneimine (PEI). The solution was stirred at  $4^{\circ}$ C for 30 min and then centrifuged at 15000 × g for 30 min. The supernatant was collected and ~2.2 kg of ammonium sulfate was slowly stirred at  $4^{\circ}$ C for 2 h and the pellet was collected by centrifugation at 15000 × g for 30 min. The pellet was resuspended in 10 liters of the Tris HCl, pH 8.0, 0.35 M ammonium sulfate, 10 mM DTT, 1.0 mM benzamidine-HCl, 1.0 µM bestatin, 1.0 µM E-64 and Complete EDTA free protease inhibitor cocktail). The solution was stirred in the cold room overnight and then centrifuged at  $30,000 \times g$  for 1 h. Supernatant was collected and loaded onto a 1 liter butyl sepharose column (GE Healthcare) equilibrated with butyl sepharose equilibration (BSE) buffer (50 mM Tris-HCl, pH 8.0, 0.35 M ammonium sulfate, 1 mM DTT, 1.0 mM benzamidine-HCl, 1.0 µM bestatin, 1.0 µM E-64 and Complete EDTA-free protease inhibitor cocktail). All column steps were run at room temperature. The column was washed with 5 liters BSE buffer. Proteins were eluted with 1 liter of buffer containing 25 mM Triethanolamine, pH 8.0, 100 µM dicamba, 1.0 mM DTT, 1.0 mM benzamidine-HCl, 1.0 µM bestatin, 1.0 µM E-64 and Complete EDTA free protease inhibitor cocktail (BSEL buffer). After eluting the proteins with 1 liter of BSEL buffer, the flow was stopped for one hour and then elution was continued with additional 1 liter of BSEL buffer. Both elutions were pooled and loaded onto a 25 ml DEAE macroprep column (Bio Rad) equilibrated with DEAE macroprep equilibration (DME) buffer (50 mM Tris-HCl, pH 8.0, 100 µM dicamba, 1.0 mM DTT, 1.0 mM benzamidine-HCl, 1.0 µM bestatin, 1.0 µM E-64 and Complete EDTA free protease inhibitor cocktail). All steps associated with DEAE macroprep were performed at  $\sim 4$  °C. The column was washed with 125 ml DME buffer and proteins were eluted with 75 ml DME buffer containing 70 mM NaCl and then with a linear gradient that increased from 70 mM to 350 mM NaCl over 500 ml. Fractions containing MON 88701 DMO were pooled and loaded onto a 2.5 ml@ceramic hydroxyapatite (CHT) column (Bio-Rad) equilibrated with CHT equilibration buffer (50 mM Tris-HCl, pH 8.0, 100 µM dicamba, 1.0 mM DTT, 1.0 mM benzamidine-HCl, 1.0 µM bestatin, 1.0 µM E-64 and Complete EDTA free protease inhibitor cocktail). All steps associated with CHT were performed at ~4 °C. Most of the MON 88701 DMO was found in the flow through and wash fractions. Flow through and wash fractions from CHT were pooled separately (Pooled FT and Pooled Wash, respectively) and reloaded on two separate CHT columns as follows.


The Pooled FT was loaded onto a  $\sim 10$  ml CHT column (CHT3). The column was washed with 50 ml of CHT equilibration buffer and step eluted using the CHT equilibration buffer containing 1 mM, 2 mM and 3 mM potassium phosphate, pH 8.0. The Pooled Wash was loaded onto a  $\sim 3$  ml CHT column (CHT2). CHT2 was washed with  $\sim 45$  ml of CHT equilibration buffer and step eluted using the CHT equilibration buffer containing 1 mM, 2 mM and 3 mM potassium phosphate, pH 8.0.

Wash fractions from both the CHT2 and CHT3 chromatography runs that contained MON 88701 DMO were pooled and loaded onto a ~1 ml DEAE macroprep column equilibrated with DME buffer for concentration. The column was washed with 10 ml of the DME buffer and eluted with DME buffer containing 500 mM NaCl. The MON 88701 DMO containing fractions were pooled and loaded onto a Hi-Prep Sephacryl S 100 size exclusion column equilibrated at ~4 °C with 50 mM potassium phosphate, pH 8.0, 1 mM DTT, 1 mM benzamidine-HCl, 0.1 M NaCl and 10% (v/v) glycerol. Fractions containing MON 88701 DMO were pooled and concentrated with aquacide (EMD Bioscienes, Inc., La Jolla, CA) at ~4 °C to a final volume of 750  $\mu$ l.

Elution fractions (1-3 mM potassium phosphate, pH 8.0 fractions) from both the CHT2 and CHT3 that contained MON 88701 DMO were pooled and concentrated using a Amicon ultra spin concentrator (Millipore, Bedford, MA) with a 10K MWCO. The centriprep concentrated pool was then loaded onto a Hi Prep Sephacryl S 100 size exclusion column equilibrated at ~4 °C with 50 mM potassium phosphate, pH 8.0, 1 mM DTT, 1 mM benzamidine-HCl, 0.1 mM NaCl and 10% (v/v) glycerol. Fractions containing MON 88701 DMO were pooled and concentrated with aquacide at ~4 °C to a final volume of 750  $\mu$ l.

Both aquacide concentrated samples were pooled to a final volume of 1.5 ml. The final buffer composition of the purified MON 88701 DMO protein was 50 mM potassium phosphate, pH 8.0, 1 mM DTT, 1 mM benzamidine-HCl, 100 mM sodium chloride and

10% (v/v) glycerol. This MON 88701 DMO purified from the cottonseed of MON 88701 was aliquoted and stored in a -80 °C freezer.



### C.2.5. Summary of DMO Protein Identity and Equivalence

	alytical Test Assessment	An	alytical Test Outcome
1.	N-terminal sequence analysis of the	•	The identity could not be confirmed by
	MON 88701 DMO protein to assess		N-terminal sequence analysis
	identity	•	MALDI-TOF MS ¹ analysis of peptides
			derived from tryptic digested MON 88701
			DMO established the N-terminal sequence of
			MON 88701 DMO
2.	MALDI-TOF MS ¹ analysis of peptides	•	MALDI-TOF MS ¹ analysis yielded peptide
	derived from tryptic digested		masses consistent with the expected peptide
	MON 88701 DMO protein to assess		masses from the theoretical trypsin digest of
	identity		the MON 88701 DMO sequence
3.	Western blot analysis using anti-DMO	•	MON 88701 DMO protein identity was
	polyclonal antibodies to assess identity		confirmed using a western blot probed with
	and immunoreactive equivalence	6,	antibodies specific for DMO protein
	between MON 88701 DMO and the	•	Immunoreactive properties of the
	<i>E. coli</i> -produced MON 88701 DMO		MON 88701 DMO and the E. coli-produced
	proteins	(	MON 88701 DMO proteins were shown to be
		No.	equivalent
4.	SDS-PAGE ² to assess equivalence of		Electrophoretic mobility and apparent
	the apparent molecular weight between	10	molecular weight of the MON 88701 DMO
	MON 88701 DMO and the	<u>ک</u> کر	and the E. coli-produced MON 88701 DMO
	E. coli-produced MON 88701 DMO	~0`	proteins were shown to be equivalent
	proteins	S.	0
5.	Glycosylation analysis of the		Glycosylation status of MON 88701 DMO
No co	MON 88701 DMO protein to assess	11	and E. coli-produced MON 88701 DMO
JC .	equivalence between the MON 88701	<i>:.0</i>	proteins were shown to be equivalent
1) 6. () 6.	DMO and E. coli-produced	(12	
	MON 88701 DMO proteins		
60	DMO enzymatic activity analysis to	•	Functional activity of the MON 88701 DMO
de la	assess functional equivalence between		and the <i>E. coli</i> -produced MON 88701 DMO
11 1	MON 88701 DMO and the		proteins were shown to be equivalent
°96,	E. coli-produced MON 88701 DMO		
U .	proteins		

⁴MALDI-TOF MS = Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry ²SDS-PAGE = sodium dodecyl sulfate polyacrylamide gel electrophoresis

# C.2.6. N-Terminal Sequencing

### C.2.6.1. Methods

N-terminal sequencing by automated Edman degradation chemistry was carried out in an attempt to confirm the identity of MON 88701 DMO.

MON 88701 DMO was separated by SDS-PAGE and transferred to PVDF membrane. The blot was stained using Coomassie Blue R-250. The major band at  $\sim$ 39 kDa containing MON 88701 DMO was excised from the blot and was used for N-terminal sequence analysis. The analysis was performed for 15 cycles using automated Edman degradation chemistry (Hunkapiller et al., 1983) using an Applied Biosystems 494 Procise Sequencing System equipped with 140C Microgradient system a Perkin Elmer Series 200 UV/VIS Absorbance Detector with Procise[™] Control Software (version 2.1) for amino acid detection after each cycle. Chromatographic data were collected using SequencePro (version 2.1) software. A control protein, β-lactoglobulin, (Applied Biosystems, Foster City, CA) was analyzed before and after the sequence analysis of the MON 88701 DMO protein to verify that the sequencer met performance criteria for repetitive yield and sequence identity. Identity was established if  $\geq 8^{\circ}$  amino acids, consistent with the predicted sequence of the N-terminus of the MON 88701 DMO, were NOT PUBLIST observed during analysis.

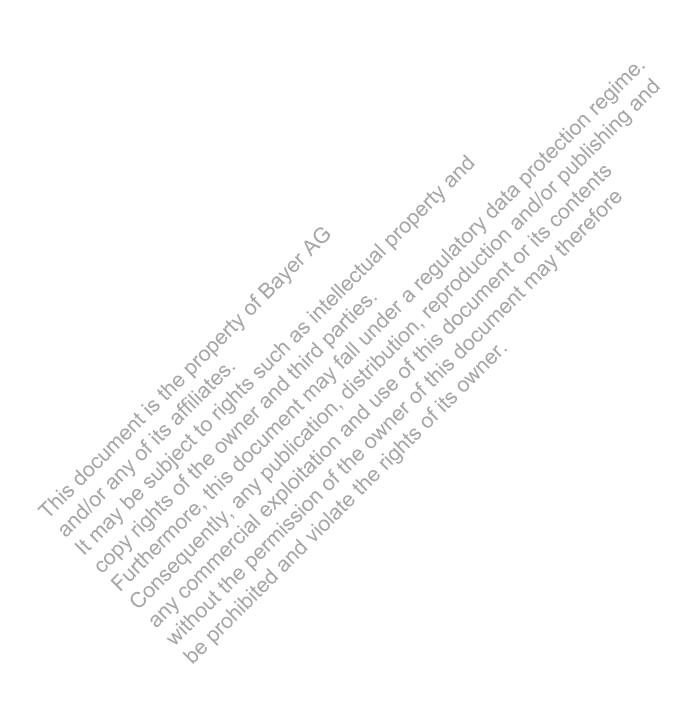
### C.2.6.2. Results of the N-terminal Sequence Analysis

N-terminal sequencing reaction was performed on MON 88701 DMO protein. The reaction did not yield any observable sequence presumably because the N-terminus was blocked. Although this analysis did not yield N-terminal sequence data, the N-terminus of the MON 88701 DMO protein was determined using MALDI-TOF tryptic mass map C.2.7. MALDI-TOF Tryptic Mass Map Analysis

# outio

String document MALDI-TOF tryptic mass fingerprint analysis was used to confirm the identity of the MON 88701 DMO protein, MON 88701 DMO protein (~15 µg) was chilled in a -20 °C freezer for at least 10 min. The chilled protein was precipitated with 200 µl of 95% acetone in a -20 °C freezer overnight. Precipitated protein sample was pelleted in a refrigerated centrifuge for at least 45 min at more than  $13,000 \times g$ . The supernatant was carefully removed and discarded. The protein pellet was washed twice with 200 µl of chilled ethanol to remove residual supernatant. The pellet was dried to completion using a Speed Vac concentrator and resuspended in 30  $\mu$ l of 40% 2,2,2,-trifluoroethanol (TFE) in 25 mM ammonium bicarbonate. The resuspended protein was vortexed vigorously and then sorticated for 5 min in a water bath. The sample was incubated at  $\sim$ 37 °C for 1 h to denature the proteins. Denatured protein sample was reduced with ~5 mM tris(2-carboxyethyl)phosphine (TCEP) for 1 h at  $\sim$ 37 °C. Reduced protein sample was then alkylated in the dark for 30 min at room temperature with ~10 mM iodoacetic acid. Additional TCEP was added to ~5 mM and the sample was incubated for 10 min at room temperature The reduced and denatured test substance was mixed with 67 µl of 25 mM ammonium bicarbonate and 2.5  $\mu$ l of trypsin solution (0.2  $\mu$ g/ $\mu$ l in 25 mM ammonium bicarbonate). The tryptic digestion was allowed to proceed for 15 h at 37 °C followed by quenching with 1 µl of formic acid. Proteolytic peptides were dried to completion using Speed Vac concentrator. To solubilize the dried peptides, a solution of 50% acetonitrile, 0.1% TFA was added and sonicated for 5 min. Aliquots from the digest were spotted to

three wells on an analysis plate. For each spot, 0.75 µl of 2, 5 dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (α-Cyano), or 3, 5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid) (Thermo Fisher Scientific Inc.) was added to one of the spots. The sample in DHB matrix was analyzed in the 300 to 5000 Da range. Samples in α-Cyano and Sinapinic acid were analyzed in the 500 to 5000 Da and 500 to 7000 Da range, respectively. The analysis was performed using a VoyagerTM DE Pro BiospectrometryTM workstation (Applied Biosystems) using Voyager Instrument Control Panel software (version 5.10.2) and Data Explorer data analysis software (version 4.0.0.0). Protonated peptide masses were monoisotopically resolved in reflector mode (Aebersold, 1993; Billeci and Stults, 1993). CalMix 2 was used as the external calibrant (Sequazyme Peptide Mass Standards kit, Applied Biosystems, Foster City, CA) for the analysis. GPMAW32 software (Lighthouse Data, Odense M, Denmark) was used to generate a theoretical trypsin digest of the MON 88701 DMO protein Masses within 1 Da of a monosiotopic mass were matched against the sequence. theoretical digest of the MON 88701 DMO sequence. All matching masses were tallied and a coverage map was generated for the mass fingerprint. The tryptic mass fingerprint coverage was considered acceptable if  $\geq 40\%$  of the protein sequence was identified by matching experimental masses observed for the tryptic peptide fragments to the expected ner masses for the fragments (Biron et al., 2006, Krause et al., 1999).


## C.2.7.2. Results of MALDI-TOF Tryptic Mass Map Analysis

The identity of the MON 88701 DMO protein was confirmed by MALDI-TOF MS analysis of peptide fragments produced from tryptic digestion of the MON 88701 DMO protein. The ability to identify a protein using this method is dependent upon matching a sufficient number of observed tryptic peptide fragment masses with predicted tryptic peptide fragment masses. In general, protein identification made by peptide mapping is considered to be reliable if  $\geq$  40% of the protein sequence was identified by matching experimental masses observed for the tryptic peptide fragments to the expected masses for the fragments (Biron et al., 2006, Krause et al., 1999).

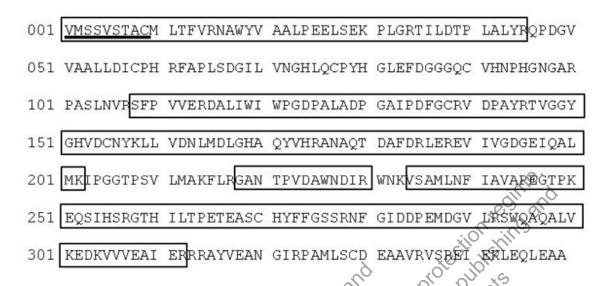
There were 19 unique peptides identified that corresponded to the masses expected to be produced by tryptic digestion of the MON 88701 DMO protein (Table C-2). The identified masses were used to assemble a coverage map of the entire MON 88701 DMO protein (Figure C-2). The experimentally determined mass coverage of the MON 88701 DMO protein was 66.5% (232 out of 349 amino acids). This analysis serves as identity confirmation for the MON 88701 DMO protein.

To identify the N-terminus, the experimentally determined masses of the peptides produced from tryptic digestion of the MON 88701 DMO protein were examined for the presence of a mass that matched the theoretical mass expected from the MON 88701 DMO protein deduced from the *dmo* gene present in MON 88701. A mass was identified that corresponded to the predicted mass of an acetylated peptide with nine amino acids from CTP2 followed by the MON 88701 DMO protein deduced from the *dmo* gene present in MON 88701. The additional nine amino acids of CTP2 resulted from the *alternative* processing of CTP2. Alternative processing of DMO precursor proteins has been observed in other dicamba-tolerant plants containing the *dmo* gene (Behrens et al.,

2007). Hence, the MON 88701 DMO protein was designated to have an N-terminal end as shown in Figure C-2.

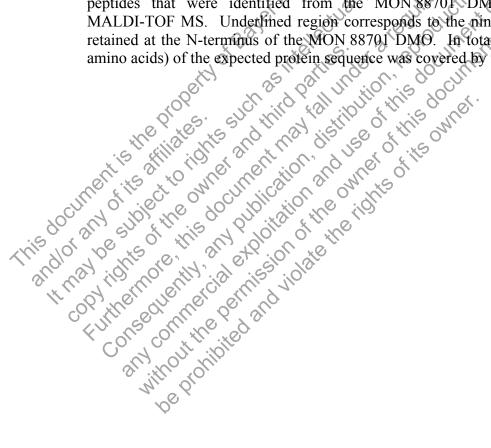


α-cyano	DHB	Sinapinic acid	Expected Mass	Diff. ²	Fragment ³	Sequence
720.40			720.37	0.03	140-145	VDPAYR
833.51	833.45		833.45	0.06	108-114	SFPVVER
856.49			856.43	0.06	251-257	EQSIHSR
914.60			914.53	0.07	305-312	VVVEAIER
	1030.58		1030.57	0.01	293-301	SWQAQALVK
1108.61	1108.59		1108.50	0.11	176-185	ANAQTDAFDR
1275.87	1275.83		1275.73	0.14	35-45	TILDTPLALYR
1286.83			1286.70	0.13	302-312	C C EDKVVEAIER
1428.84	1428.83		1428.69	0.15	218-230	GANTPVDAWNDIR
	1470.74		1470.63	0.11	146-158	UNGGYGHVDCNYK
	1501.91		1501.79	0.12	189-202	EVIVGDGEIQAALMK
	1506.86		1506.73	0.13	176-188	ANAQTDAFDRLER
	1577.89	1577.80	1577.73	0.16	279-292	NFGIDDPEMDGVLR
		1731.92	1731.80	0.12	1-15	VMSSVSTACMLTFVR +42 Da (N-acetylation)
	1745.09	1744.99	1744.93	5 0.16	234-250	VSAMLNFIAVAPEGTPK
	1994.30	1994.23	1994.03	0.27	159-175	LLVDNLMDLGHAQYVHR
		2143.35	2143.12	0.230	16-34	NAWYVAALPEELSEKPLGR
	2398.37	2398.35	2398.095	0.28	258-278	GTHILTPETEASCHYFFGSSR
		2724.72	2724.31	0.41	G115-139	DALIWIWPGDPALADPGAIPGCR
		. 5	( 10, 11) .		J. O. KS	


Table C-2. Summary of the Tryptic Masses¹ Identified for the MON 88701 DMO Protein Using MACDI-TOF MS 6 12:

¹Only experimental masses that matched expected masses are listed in the table.

²The difference between the expected mass and the first column mass. Other masses shown within a row are also within 1 Da of the expected mass. ³Position refers to amino acid residues within the predicted MON 88701 DMO sequence as depicted in Figure C-2.


O

³Position refers to amino acid residues within the predicted MON 88701 DMO sequence as depicted in Figure C-2. DHB = 5-dihydroxybenzoic acid matrix α-cyano = α-cyano-4-hydroxycinnamic acid matrix, Sinapinic acid = 3, 5-dimethoxy-4-hydroxycinnamic acid matrix.



### Figure C-2. MALDI-TOF MS Coverage Map of the MON 88701 DMO Protein

The amino acid sequence of the MON 88701 DMO protein was deduced from the *dmo* gene present in MON 88701. Boxed regions correspond to regions covered by tryptic peptides that were identified from the MON 88701 DMO protein sample using MALDI-TOF MS. Underlined region corresponds to the nine amino acids from CTP2 retained at the N-terminus of the MON 88701 DMO. In total, 66.5% (232 of 349 total amino acids) of the expected protein sequence was covered by the identified peptides.



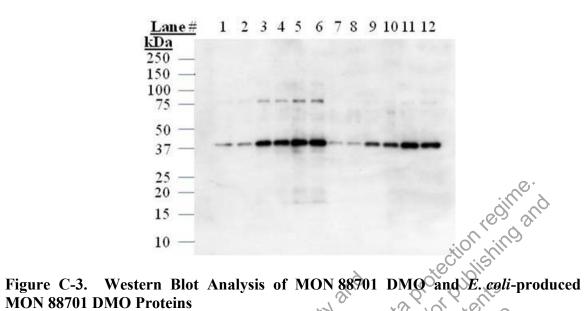
### C.2.8. Western Blot Analysis-Immunoreactivity

### C.2.8.1. Methods

Western blot analysis was performed to confirm the identity of the MON 88701 DMO protein purified from cottonseed of MON 88701 and to compare the immunoreactivity of the MON 88701 DMO and *E. coli*-produced MON 88701 DMO proteins.

The MON 88701 DMO and E. coli-produced MON 88701 DMO proteins were analyzed concurrently on the same gel using three loadings of 0.5, 2, and 6 ng. Loadings of the three concentrations were made in duplicate on the gel. Aliquots of each protein were diluted in water and 5X Laemmli buffer (LB) containing 312 mM Tris-HCl, 25% (v/v) 2-mercaptoethanol, 10% (w/v) SDS, 0.025% (w/v) bromophenol blue, 50% (v/v) glycerol, pH 6.8, heated at 101 °C for 3 min, and applied to a 15 well pre-cast Tris-glycine 4-20% polyacrylamide gradient gel (Invitrogen, Carlsbad, CA). Pre-stained molecular weight markers (Precision Plus Protein Standards Dual color; Bio-Rad, Hercules, CA) were loaded in parallel to verify electrotransfer of the proteins to the membrane and to estimate the size of the immunoreactive bands observed. Electrophoresis was performed at a constant voltage of 150 V for 90 min. Electrotransfer to a 0.45 µm nitrocellulose membrane (Invitrogen, Carlsbad, CA) was performed for 105 min at a constant voltage of 25 V After electrotransfer, the membrane was stored overnight with 1× phosphate buffered saline containing 0.05% (v/v) Tween-20 (PBST) at The membrane was blocked for 1 h with 5% (w/v) NFDM in PBST at room 4 °C. temperature. The membrane was then probed with a 1:5000 dilution of goat anti-DMO antibody (lot 11223358) in 2% NFDM in PBST for 1 h at room temperature. Excess antibody was removed using two 1 min washes followed by three 5 min washes with Finally, the membrane was probed with horseradish peroxidase (HRP)-PBST. conjugated horse anti-goat IgG (Thermo, Rockford, IL) at a dilution of 1:10,000 in at room temperature. Immunoreactive bands were visualized using the ECL detection system (GE, Healthcare, Piscataway, NJ) with exposure to Amersham Hyperfil (GE, Healthcare, Piscataway, ND). The film -(GE, Healthcare, Piscataway, NJ) with exposure to Amersham Hyperfilm ECL automated film processor (Konica Minolta Medical & Graphic Inc. Tokyo J

Quantification of the bands on the blot was performed using a Bio-Rad GS-800 densitometer with the supplied Quantity One software (version 4.4.0, Hercules, CA) using the band location and volume tool. The signal intensities of the immunoreactive bands observed for the MON 88701 DMO and *E. coli*-produced MON 88701 DMO proteins migrating at the expected position on the blot film were quantified as "adjusted volume" values. The raw data was exported to a Microsoft Excel (2007) file. The immunoreactivity of the MON 88701 DMO and *E. coli*-produced MON 88701 DMO proteins were reported as the mean signal intensity at each amount of protein analyzed. The immunoreactivity of the MON 88701 DMO and *E. coli*-produced MON 88701 DMO proteins were considered equivalent if the overall mean of the immunoreactive signal of the MON 88701 DMO protein.


### C.2.8.2. Results of MON 88701 DMO Protein Immunoreactivity Equivalence

Western blot analysis was conducted using goat anti-DMO polyclonal antibodies to 1) assess the identity of the MON 88701 DMO protein isolated from the cottonseed of MON 88701 and 2) determine the relative immunoreactivity of the MON 88701 DMO and the *E. coli*-produced MON 88701 DMO proteins. The results demonstrated that the anti-DMO antibodies recognized the MON 88701 DMO protein that migrated to the same position on the blot as the *E. coli*-produced MON 88701 DMO protein (Figure C-3). Furthermore, the immunoreactive signal increased with increasing amounts of MON 88701 DMO protein loaded. Two other bands, one migrating at ~75 kDa and the other at ~17 kDa were also observed. These bands were prominent in lanes with higher load amounts (Figure C-3, Lanes 3-6), and may represent products of aggregation and degradation of DMO, respectively.

Densitometric analysis was conducted to compare the immunoreactivity of MON 88701 DMO and *E. coli*-produced MON 88701 DMO proteins. The mean signal intensity  $(OD \times mm^2)$  from the MON 88701 DMO bands and from the *E. coli*-produced MON 88701 DMO bands at each amount of protein analyzed was calculated and then overall mean signal intensity was calculated (Table C-3). The immunoreactivity was considered equivalent if the overall mean signal intensity of all MON 88701 DMO protein bands was within  $\pm 35\%$  of the overall mean signal intensity of *E. coli*-produced MON 88701 DMO protein bands across all loading levels.

The overall mean signal intensity of the *E. coli*-produced MON 88701 DMO bands was  $6.500 \text{ OD} \times \text{mn}^2$ , and the overall mean signal intensity of the MON 88701 DMO bands was  $4.440 \text{ OD} \times \text{mm}^2$ . Because overall mean signal intensity of the MON 88701 DMO protein bands was between 4.225 and 8.775 (between -35% and +35% of the *E. coli*-produced MON 88701 DMO bands), the MON 88701 DMO and *E. coli*-produced MON 88701 DMO bands) the MON 88701 DMO and *E. coli*-produced MON 88701 DMO bands).

E. coli-produced MON 88701 DMO bands), the MON 88701 DMO and E. coli-pro-MON 88701 DMO proteins were determined to have equivalent immunoreactivity.



## **MON 88701 DMO Proteins**

Aliquots of the MON 88701 DMO protein and the *E. coli*-produced MON 88701 DMO protein were subjected to SDS-PAGE and electrotransferred to a nitrocellulose The membrane was incubated with anti-DMO antibodies and membrane. immunoreactive bands were visualized using an ECL system (GE Healthcare, Piscataway, NJ). Approximate molecular weights (kDa) are shown on the left. Lanes loaded with molecular weight markers were cropped, and lanes were renumbered relative to the original gel loading. The 6 min exposure is shown. Lane designations are as follows: A Par un tion his door

Lane Sample Suchting Fairing of this w	Amount (ng)
Lane Sample 1 <i>E. coli</i> -produced MQN 88701 DMO protein	0.5
26 E. coli-produced MON 88701 DMO protein	0.5
3 E. coli-produced MON 88701 DMO protein	2
4 E. coli produced MON 88701 DMO protein	2
5 <i>E. coli</i> -produced MON 88701 DMO protein	6
6 K coli produced MON 88701 PMO protein	6
S T MQN 88701 DMO protein	0.5
MON 88701 DMO protein	0.5
MON 88701 DMO protein	2
10 MON 88701 DMO protein	2
MON 88700 DMO protein	6
MON 88701 DMO protein	6
<ul> <li>MON 88701 DMO protein</li> </ul>	
DO L	

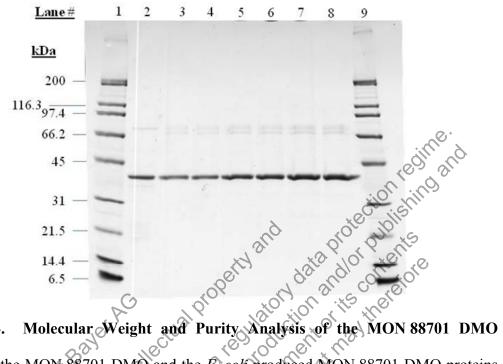
Table C-3. Comparison of Immunoreactive Signals Between MON 88701 DMO and
E. coli-produced MON 88701 DMO Proteins

	Mean Signal intensity from MON 88701 DMO $(OD \times mm^2)$	Mean Signal intensity from <i>E. coli</i> -produced MON 88701 DMO $(OD \times mm^2)$	Preset Acceptance limits for MON 88701 DMO ¹ (OD $\times$ mm ² )
	4.440	6.500	4.225 - 8.7750
	¹ The acceptance limits for MON -35% ( $6.500 \times 0.65$ ) of the overal six loads.	88701 DMO are based on the inter Il mean of the <i>E. coli</i> -produced MO	val between +35% (6500 × 1.35) and N 88701 DMO signal intensity across
	unentisthe property of Baye	AC Hectual proper a reputation	ton and conversion
	entisthe property such and the and the and the property and the and th	as pain une of this own	\$.
This doc	six loads.	88701 DMO are based on the inter I mean of the <i>E. coli</i> -produced MO	val between +35% (6,500 × 1.35) and N 88701 DMO signal intensity across
	any the prohibit		

#### C.2.9. Molecular Weight and Purity Estimation using SDS-PAGE

#### C.2.9.1. Methods

MON 88701 DMO and E. coli-produced MON 88701 DMO proteins were mixed with 5X LB and diluted with water to a final total protein concentration of  $0.1 \,\mu\text{g/}\mu\text{l}$ . Molecular Weight Standards, Bio-Rad broad range (Hercules, CA) were diluted to a final total protein concentration of 0.9 µg/µl. The MON 88701 DMO was analyzed in duplicate at 0.5, 1, and 1.5 µg protein per lane. The E. coli-produced MON 88701 DMO reference standard was analyzed at 0.5 µg total protein in a single lane. The samples were loaded onto a 10-well pre-cast Tris glycine 4-20% (w/v) polyacrylamide gradient mini-gel (Invitrogen, Carlsbad, CA) and electrophoresis was performed at a constant voltage of 125 V for 90 min. Proteins were fixed by placing the gek in a solution of 40% (v/v) methanol and 7% (v/v) acetic acid for 25 min, stained for >16 h with Brilliant Blue G-Colloidal stain (Sigma-Aldrich, St. Louis, MQ). Gels were destained once for 30 sec with a solution containing 10% (v/v) acetic acid and 25% (v/v) methanol, and with 25% (v/v) methanol for a total of 6 h. Analysis of the gel was performed using a Bio-Rad GS-800 densitometer with the supplied Quantity One software (version 4.4.0, Hercules, CA). The apparent MW of each observed band was estimated from a standard curve generated by the Quantity One software which was based on the MWs of the markers and their migration distance on the gel. To determine purity, all visible bands within each lane were quantified using Quantity One software. Apparent MW and purity were reported as an average of all six lanes containing the MON 88701 DMO.


## C.2.9.2. Results of MON 88701 DMO Protein Molecular Weight Equivalence

The molecular weight and purity of the MON 88701 DMO protein were determined to be 39.5 kDa and 97%, respectively. To assess molecular weight (MW) and purity, the MON 88701 DMO protein was subjected to SDS-PAGE. The gel was stained with Brilliant Blue G Colloidal stain and analyzed by densitometry (Figure C-4). *E. coli*-produced MON 88701 DMO protein was loaded in a single lane for reference (Figure C-4, Lane 2). The MON 88701 DMO protein (Figure C-4, Lanes 3-8) had an apparent MW of 39.5 kDa (Table C-4). The apparent MW of the *E. coli*-produced MON 88701 DMO protein as reported on its Certificate of Analysis was 38.7 kDa (Table C-4). Because the apparent MW of MON 88701 DMO protein was within the preset acceptance limits for equivalence (Table C-4), the MON 88701 DMO and *E. coli*-produced MON 88701 DMO proteins were determined to have equivalent apparent MWs.

The purity of the MON 88701 DMO protein was calculated based on the six loads on the gel (Figure C-4, Lanes 3 to 8). The average purity was determined to be 97%.

# Table C-4. Molecular Weight Comparison Between the MON 88701 DMO and *E. coli*-produced MON 88701 DMO Proteins Based on SDS-PAGE

Apparent MW of MON 88701 DMO Protein ¹ (kDa)	Apparent MW of E. coli-Produced MON 88701 DMO Protein ² (kDa)	Preset Acceptance Limits for MON 88701 DMO ³ (kDa)
39.5	38.7	38.5-39.7
¹ The reported value is the mean molecula 2 The molecular weight of the <i>E. coli</i> -pro Analysis. 3 See Section C.6.	ar weight across all six loads. bduced MON 88701 DMO protein as rep	ported on its Certificate of



# Figure C-4. Protein Aliquots of the MON 88701 DMO and the *E. coli* produced MON 88701 DMO proteins

were separated by SDS-PAGE and then stained with Brilliant Blue G-Colloidal stain. Approximate molecular weights are shown on the left and correspond to the markers loaded in Lanes 1 and 9. Empty lane was partially cropped. Lane designations are as follows:

LaneSample1Broad Range Molecular Weight Markers2E: coli-produced MON 88701 DMO protein3MON 88701 DMO protein4MON 88701 DMO protein5MON 88701 DMO protein5MON 88701 DMO protein	Amount (µg)
Broad Range Molecular Weight Markers	4.5
2 E. eoli-produced MON 88701 DMO protein	0.5
MON 88700 DMO protein	0.5
4 MON 88701 DMO protein	0.5
1Broad Range Molecular Weight Markers2E. eoli-produced MON 88701 DMO protein3MON 88701 DMO protein4MON 88701 DMO protein5MON 88701 DMO protein6MON 88701 DMO protein7MON 88701 DMO protein	1
6 MON 88701 DMO protein 6 MON 88701 DMO protein 7 MON 88701 DMO protein	1
6 MON 88701 DMO protein 7 MON 88701 DMO protein 8 MON 88701 DMO protein	1.5
8 MON 88701 DMO protein	1.5
Broad Range Molecular Weight markers	4.5
8 MON 88701 DMO protein Broad Range Molecular Weight markers	
and on with	

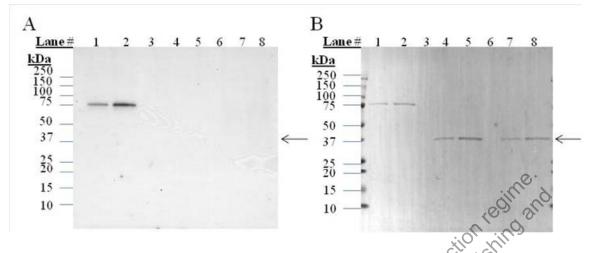
#### C.2.10. Glycosylation Analysis

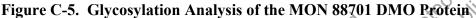
#### C.2.10.1. Methods

Glycosylation analysis was used to determine whether the MON 88701 DMO was posttranslationally modified with covalently bound carbohydrate moieties. Aliquots of the MON 88701 DMO protein, the *E. coli*-produced MON 88701 DMO (negative control) and the positive control, transferrin (Sigma-Aldrich, St Louis, MO), were each diluted with water and brought to 1X LB. These samples were heated at ~101 °C for 3 min. The MON 88701 DMO, the *E. coli*- produced MON 88701 DMO and transferrin were loaded at approximately 50 and 100 ng per lane on a Tris-glycine 10 well 4-20% polyacrylamide gradient mini-gel (Invitrogen, Carlsbad, CA). Precision Plus Protein Dual color Standards (Bio-Rad, Hercules, CA) were also loaded to verify electrotransfer of the proteins to the membrane and as markers for molecular weight. Electrophoresis was performed at a constant voltage of 150 V for 90 min. Electrotransfer to a 0.45  $\mu$ m PVDF membrane (Invitrogen, Carlsbad, CA) was performed for 90 min at a constant voltage of 25 V.

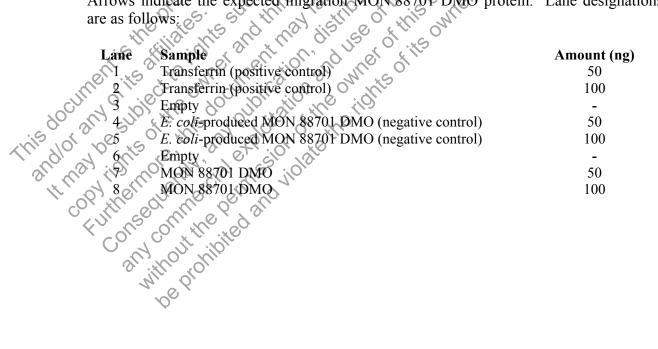
Carbohydrate detection was performed directly on the PVDF membrane at room temperature using the Amersham ECL glycoprotein Detection Module (GE, Healthcare, Piscataway, NJ). With this module, carbohydrate moieties of proteins were oxidized with sodium metaperiodate and then biotinylated with biotin-X-hydrazide. The biotinylated proteins can be detected on the blot by addition of streptavidin conjugated to HRP for luminol-based detection using ECL reagents (GE, Healthcare, Piscataway, NJ) and with subsequent exposure to Amersham Hyperfilm (GE, Healthcare). The film was developed using a Konica SRX-101A automated film processor (Konica Minolta Medical & Graphic, Inc., Tokyo, Japan).

An identical blot run in parallel to that used for the glycosylation analysis was stained to visualize the proteins present on the membrane. Proteins were stained for 30 sec to 2 min using Coomassie Brilliant Blue R-250 staining solution (Bio-Rad, Hercules, CA) and then destained with 1X Coomassie Brilliant Blue R-250 destaining solution (Bio-Rad) for 5 min. After washing with water, the blot was dried and scanned using Bio-Rad GS-800 densitometer with the supplied Quantity One software (version 4.4.0).


## C.2.10.2. Results of Glycosylation Analysis


Some eukaryotic proteins are post-translationally modified by the addition of earbohydrate moleties (Rademacher et al., 1988). To test whether DMO protein was glyeosylated when expressed in the cottonseed of MON 88701, the MON 88701 DMO protein was analyzed using an ECL Glycoprotein Detection Module (GE, Healthcare, Piscataway, NJ). Transferrin, a glycosylated protein, was used as a positive control in the assay. To assess equivalence of the MON 88701 DMO and *E. coli*-produced MON 88701 DMO proteins, the *E. coli*-produced MON 88701 DMO protein was also analyzed. The positive control was clearly detected at expected molecular weight (~80 kDa) and the band intensity increased with increasing concentration (Figure C-5, Panel A, Lanes 1-2). In contrast, signals were not observed in the lanes containing the

MON 88701 DMO or E. coli-produced MON 88701 DMO proteins at the expected molecular weight for the MON 88701 DMO protein (Figure C-5 Panel A, Lanes 7-8 and Lanes 4-5, respectively). To assess that sufficient MON 88701 DMO and E. coli-produced MON 88701 DMO proteins were present for glycosylation analysis, a second membrane (with identical loadings and transfer times) was stained with Coomassie Blue R250 for protein detection (Figure C-5 Panel B). Both the MON 88701 DMO and E. coli-produced MON 88701 DMO proteins were clearly detected (Figure C-All L All L Al 5 Panel B, Lanes 7-8 and Lanes 4-5, respectively). These data indicate that the glycosylation status of MON 88701 DMO and E. coli-produced MON 88701 DMO


Torsequently and publication of the owner of this document may therefore owner of this document may there owner owner of this document may there owner owner of this document may there owner own any connectate permission and violate the indits of this owner.

without the permission of the owner of this documer.





Aliquots of the transferrin (positive control), *E. coli*-produced MON 88701 DMO protein and MON 88701 DMO protein were subjected to SDS-PAGE and electrotransferred to PVDF membranes. Panel A corresponds to detection of the labeled carbohydrate moieties, where present, using the ECL-based system with exposure to Hyperfilm. A 6 min exposure is shown. Panel B corresponds to Coomassie Brilliant Blue R250 staining of an equivalent blot to confirm the presence of proteins. The signal was captured using a Bio-Rad GS-800 with Quantity One software (version 4.4.0). Approximate molecular weights (kDa) correspond to the Precision Plus, dual color markers (used to verify transfer and MW). Lanes loaded with molecular weight markers were partially cropped, and lanes were renumbered relative to the original gel loading. Arrows indicate the expected migration MON 88701 DMO protein. Lane designations are as follows:



#### C.2.11. Functional Activity Analysis

#### C.2.11.1. Methods

The specific activity of MON 88701 DMO and E. coli-produced MON 88701 DMO was determined by quantifying the conversion of 3,6-dichloro-2-methoxybenzoic acid (dicamba) to 3,6-dichlorosalicylic acid (DCSA) via HPLC (Agilent Technologies 1100 series, Santa Clara, CA) separation and fluorescence detection (Agilent Technologies 1200 series, G1321A). Each assay reaction contained 25 mM potassium phosphate, pH 7.2, 3.4 µg ferredoxin, 3.4 µg reductase, 0.5 mM FeSO₄, 10 mM MgCl₂₀0.7 mM NADH, 0.3 mM dicamba, 2 µl (42.48 U/ml) of formaldehyde dehydrogenase and either 2.9 µg MON 88701 DMO or 3 µg his-DMO as an assay positive control. The reactions were performed in PCR tubes (Sorenson, Salt Lake City, UT) and incubated at 30 °C for 15 min. Reactions (200  $\mu$ l) were initiated by the addition of dicamba and quenched with the addition of 50  $\mu$ l of 5% H₂SO₄. Reactions were then filtered using Whatman Anotop 10 filters (0.2 µm, GE healthcare), and 40 µl was transferred to a HPLC sample vial (200 µl, Agilent) for analysis. Twenty-five microliters of the filtered reaction was injected onto a Phenomenex® Synergi 4 µm C18/ODS Hydro-RP column (150 × 4.6 mm ID, Torrance, CA). The mobile phase consisted of solvent A (21.5 mM phosphoric acid) and solvent B (100% acetonitrile) running at 1.5 m/min DCSA was eluted from the column using a linear gradient from 90% to 40% solvent A for the first 14 min, followed by a step to 10% solvent A for 1 min and then re-equilibration at 90% solvent A for 10 min before the next injection DCSA was monitored by the detection of fluorescent emission at 424 nm (excitation 306 nm) and quantified relative to a standard curve of DCSA generated using 0.1, 0.3, 0.6, 0.9, 1.2, 2.4, and 4,8 nmol/250 µl. Chromatographic data were collected using AtlasTM 2003 software (Thermo Fisher Scientific Inc). The specific activity was calculated based on the amount of purity corrected MON 88701 C.2.11.2. Results of Functional Activity DMO protein added to the reaction mixture and expressed as nmol of DCSA produced per minute per mg of MON 88701 DMO protein (nmol  $\times$  min⁻¹  $\times$  mg⁻¹).

The functional activities of the MON 88701 DMO and E. coli-produced MON 88701 using HPLC separation and fluorescence detection. In this assay, protein-specific activity is expressed as nmol DCSA  $\times$  minute⁻¹  $\times$  mg⁻¹ of DMO

(0R3 The experimentally-determined specific activities for the MON 88701 DMO and E. coli-produced MON 88701 DMO proteins are presented in Table C-5. The specific activities of MON 88701 DMO and E. coli-produced MON 88701 DMO proteins were 5.48 and 7.23 nmol DCSA  $\times$  minute⁻¹  $\times$  mg⁻¹ of DMO, respectively. Because the mean specific activities of the MON 88701-produced and E. coli-produced MON 88701 DMO proteins fall within the preset acceptance criterion (Table C-5), the MON 88701 DMO and E. coli-produced MON 88701 DMO proteins were determined to have equivalent functional activity.

#### Table C-5. MON 88701 DMO Functional Activity Assay

$\begin{array}{c} \text{MON 88701 DMO}^{1} \\ \text{(nmol DCSA} \times \text{minute}^{\text{-1}} \times \text{mg}^{\text{-1}}) \end{array}$	<i>E. coli</i> -produced MON 88701 DMO ¹ (nmol DCSA $\times$ minute ⁻¹ $\times$ mg ⁻¹ )	Preset Acceptance Limits for MON 88701 DMO ² (nmol DCSA × minute ⁻¹ × mg ⁻¹ )
$5.48 \pm 1.3$	$7.23 \pm 2.1$	1.69-20.74

¹Value refers to mean and standard deviation calculated based on n = 5. ²See Section C.6.

#### C.3. Substrate Specificity of MON 88701 DMO Protein

# C.3.1. Exogenous Specificity Herbicide Tolerance - Greenhouse Analysis ection

#### C.3.1.1. Materials

MON 88701 (lots IG2000000439645080059904 and IG2000000371459002138624) and the near isogenic conventional control, Coker 130, (lots IG200000025726392598528, IG200000025726407540736, and IG200000025726372937728) were grown in greenhouses during 2010 and 2011. At the 2-5 leaf growth stage or pre-emergent, MON 88701 and the near isogenic conventional control, Coker 130, were spraved with different herbicides. The herbicides tested are listed in Table C-6.

Herbicides Tested in Exogenous Specificity Herbicide Tolerance Table C-6. 90 Greenhouse Triats ~O`

	<u>, 6, 75,</u>	I nr. M. go d.	
Manufacturer/ Retailer	Herbicide	Herbicide Formulation	Lot Number
·5 [[]];0		1, 1, 0, its	
Albaugh	2,4 DB	Butyrac [®] 200	HPR-0404-14987-F
BASE	dicamba	Clarity®	KIH-0702-18134-F
Dow ye	atrazine	Atrazine	AGT-0804-19336-F
SOUL Down in 1	trifluralin	Treflan [®]	MB231656T7
Dow O	oxyfluorfen	Goal [®] 2XL	EWP-0107-11628-F
Helena	2,4-D 10	2,4-D Amine 4	RUD-0502-15805-F
Monsanto	acetochlor	Harness®	MUS-0704-18520-F
Monsanto	halosulfuron	Permit [®]	MUS-0405-15154-F
Monsanto	glyphosate	Roundup WeatherMax [®]	MUS-0905-19887-F
Syngenta	paraquat	Gramoxone®	GTA-0606-17421
in the of			
Nº 1			

[®] Harness and Roundup WeatherMax are registered trademarks of Monsanto Technology LLC. All other trademarks are the property of their respective owners.

#### C.3.1.2. Exogenous Specificity Herbicide Tolerance Greenhouse Method

MON 88701 and the near isogenic conventional control, Coker 130, were planted in pots containing Redi-earth® and Osmocote® 14-14-14 slow release fertilizer or Peters® 20-20-20 fertilizer. There were 10 replicate pots and one plant per replicate of MON 88701 and the conventional control for each herbicide and rate tested. The pots were randomly placed in a greenhouse and grown under normal agronomic conditions for cotton (relative humidity 10-70%, temperature 21-34°C, 14 hour photoperiod, and watering as needed). At pre-emergence or when the plants were at the 2-5 leaf growth stage, the replicates were treated with a single herbicide and rate (Table 1). Two different application rates of each herbicide were applied to different replicate sets (Table 2). Based on the U.S. herbicide labeled rates, the rates for the experiments were chosen and then adjusted for use on cotton and for the optimal growing conditions in the greenhouse in order to achieve approximately 40 to 80% injury. Twenty to 22 days after application, all plants were rated for percent injury. Ratings were based on visual assessment of chlorosis, necrosis, malformation, stunting, and biomass reduction with being no visible injury and 100 being completely dead. All 10 replicate ratings were averaged.

## ·its co C.3.1.3. Results of Herbicide Tolerance Greenhouse Trials

MON 88701 demonstrated reduced injury ratings for dicamba, but similar injury ratings, and therefore similar levels of susceptibility as the near isogenic conventional control,

strated a inlar levels the remaining 9. Anaviorione in an officiation of the and the a and therefore similar levels of susceptibility as the near isog Coker 130, for the remaining 9 herbicides tested (Table C-7). without the permission of the owner of this documer.

Table C-7. Herb		e mju	- J		Injury Observations	bjury rat	$(\%)^3$
Formulation	Manufacturer	Herbicide ¹	Labeled Rate Range (g/ha) ²	Rates Applied $(g/ha)^2$	(days after application)	Control ⁴ Average (Range)	MON 88701 ⁵ Average (Range
Clarity®	BASF	dicamba	140-2242 (a.e.)	561 (a.e.) 1120 (a.e.)	22 tectio	87 (80-90) 92 (85-95)	0 5 (3-8)
2,4-D Amine 4	Helena	2,4-D	140-2242 (a.e.)	280 (a.e.) 561 (a.e.)	$\frac{22}{100}$	86 (80-90) 96 (90-99)	88 (85-95) 98 (95-99)
Butyrac [®] 200	Albaugh	2,4-DB	130-1682 (a.e.)	280 (a.e.) 561 (a.e.)	22	79 (70-85) 96 (90-99)	84 (75-95) 96 (90-99)
Gramoxone®	Syngenta	paraquat	280-1120 (a.e.)	561 (a.e.) 841 (a.e.)	ction 20 whe	88 (85-95) 95 (90-98)	84 (80-90) 95 (90-100)
Harness®	Monsanto	acetochlor	930-4485 (a.).	4485 (a.i.) 6732 (a.i.)	mentine	70 (30-100) 84 (40-100)	68 (50-100) 93 (80-100)
Atrazine	Dow	atrazine	1100- <b>3</b> 800 (a.i.)	3364 (a.i.)	21	28 (20-40) 48 (20-95)	29 (20-40) 62 (20-100)
Treflan [®]	Dow	trifturalin	560-2242 (a.i.)	· · · · · · · · · · · · · · · · · · ·	<u> </u>	2 (0-5) 4 (0-10)	1 (0-5) 5 (0-10)
oundup WeatherMax [®]	Monsanto	glyphosate	280-4162 (a.e.)	240 (2 2 2 2	21	9 (5-20) 46 (35-60)	12 (5-25) 50 (40-60)
Goal [®] 2XL	Dow	oxyfluorfen	280-2242 (ari.)	561 (a.i.) 84P (a.i.)	21	37 (25-25) 46 (30-80)	41 (30-50) 46 (35-80)
Permit®	Monsanto	halosulfuron	36-140 (a.t.)	75 (a.i.) 200 (a.i.)	21	48 (40-55) 59 (50-65)	50 (45-55) 59 (55-65)

¹Herbicides applied pre-emergent were acetochlor, atrazine, and trifluratin. All other herbicides were applied when the plants were at the 2-5 leaf growth stage.

²a.e. = acid equivalent; a.i. = active ingredient. Each herbicide contains the active ingredient directly or the salt form of the active ingredient. When determining the rate of application, the salt form is calculated back to the acid that is the active ingredient and therefore called acid equivalent. Each labeled rate is for cereal or/and broad acre row crops since these herbicides are not labeled to be sprayed on cotton or are labeled for cotton only as a pre-plant treatment. Based on the labeled rates, the rates for the experiments were chosen and then adjusted for use in-crop on ection and for the optimal growing conditions in the greenhouse.

³Injury ratings were determined by visual inspection of each plant, Ratings were based on visual assessment of chlorosis, necrosis, malformation, stunting, and biomass reduction. 0 percent = no visual adverse effects and 100 percent = completely dead.

⁴Control plants were near isogenic conventional cotton control Coker 130. Reported average and range of 10 replicate plants.

⁵Reported average and range of 10 replicate plants

#### C.3.2. In Vitro Endogenous Specificity Experiments

#### C.3.2.1 Materials

The DMO protein used in the endogenous specificity *in vitro* experiments was generated in Escherichia coli with a histidine-tag at the N-terminus and has an identical amino acid sequence to MON 88701 DMO with the exception of the lack of leucine at the second position and the nine amino acids from CTP2 (Figure C-1). The compounds tested and standards used in the *in vitro* experiments are listed in Table C-8.

Table C-8. Com	oounds Used in Specificity <i>In Vitro</i> E	Experiments	eginand
Manufacturer/		Common	Lot/Product
Retailer	Compound	Name 🔬	Number
Compounds Teste	$\langle \rangle$	ata prorp	tents
Aldrich	2-methoxybenzoic acid	o-anisic acid	A0230443
Chem Service	3,6-dichloro-2-methoxybenzoic acid	dicamba 🔗	341-9143
Sigma	2,4-dichlorophenoxyacetic acid	2,4-D	D7299-100G
Sigma	3-(4-hydroxy-3,5- dimethoxyphenyl)prop-2-enoic acid	sinapic acid	D7927-1G
Fluka	3,5-dimethoxy-4-hydroxybenzoic acid	syringic acid	86230
Fluka	4-hydroxy-3-methoxybenzoic acid	vanillic acid	94770
Fluka	3-(4-hydroxy-3-methoxy-phenyl)prop-	ferulic acid	46278
Streel and	3-(4-hydroxy-3-methoxy-phenyl)prop- 2-enoic acid s Standards: 3,6-dichlorosalicylic acid		
Compounds Used a	s Standards; () (O) (O) (C)		
Monsanto	3,6-dichlorosalicylic acid	DCSA	GLP-0603-16959-T
Niedel-de Haen	2,4-dichlorophenol	2,4-DCP	35811
and contenting	<u> </u>		

# C.3.2.2. In Vitro Specificity Experiments Enzymatic Reaction Mixture Method

The reaction of *E. cob*-produced DMO with different compounds evaluated as potential substrates was carried out using similar reaction conditions described in the characterization portion of this appendix (Appendix C.2.10.). The compounds (Table C-8) were combined with E. coli-produced DMO at 0.2 and/or 0.012 mM. The concentrations tested ensured adequate reaction conditions in terms of the substrate for the detection of product formation or disappearance of substrate.

#### C.3.2.3. In Vitro Experiments Liquid Chromatography Separation Method

The reaction mixture was separated by Ultra Performance Liquid Chromatography (UPLC) using an ACQUITY UPLC BEH C18 Column containing 1.7 µm Bridged Ethyl Hybrid (BEH) particles and an ACQUITY BEH C18 VanGuard Pre-column. The

S.

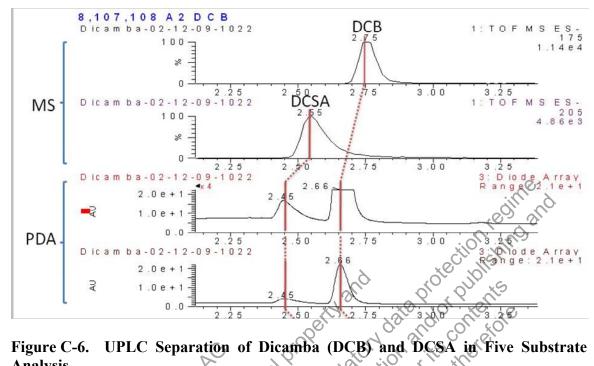
column was heated to 40°C. The tested substrates and potential oxidative by-products were monitored by ACQUITY UPLC photodiode array (PDA) with wavelength range from 200nm to 320nm with 1.2nm resolution. The chromatography was performed at 0.25ml/min and directed to the mass spectrometer following the separation. Both mobile phase A (water) and solvent B (acetonitrile) contained 0.1% v/v formic acid. Gradients used were substrate-specific:

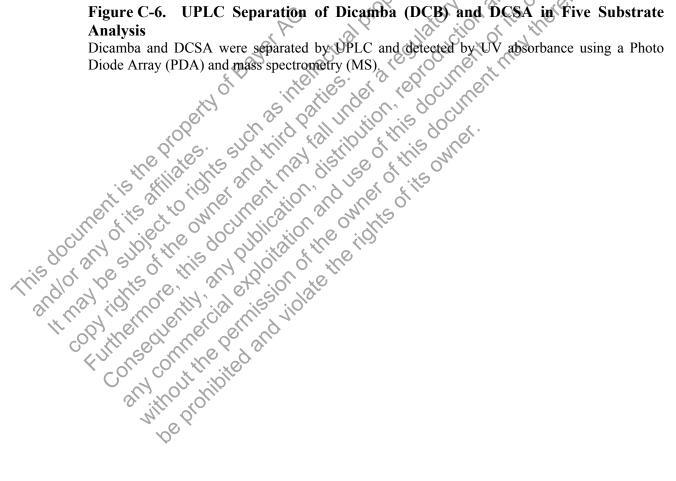
- The gradient for dicamba was run from 40 to 50% solvent B in 3min, 50 to 100% solvent B in 0.1 min and then kept at 100% solvent B for 1min before returning to 40% solvent B in 0.1 min.
- The gradient for 2,4-D was run from 40 to 45% solvent B in 6min, held at 45% solvent B for 1min, 45 to 100% solvent B in 0.1 min, and then held at 100% solvent B for 0.5 min before returning to 40% solvent B in 0.1 min.
- The gradient for ferulic acid, o-anisic acid, sinapic acid, syringic acid, and vanillic acid were run from 0 to 100% solvent B in 4 min and then held at 100% solvent B for 1 min before returning to 0% solvent B in 0.1 min.

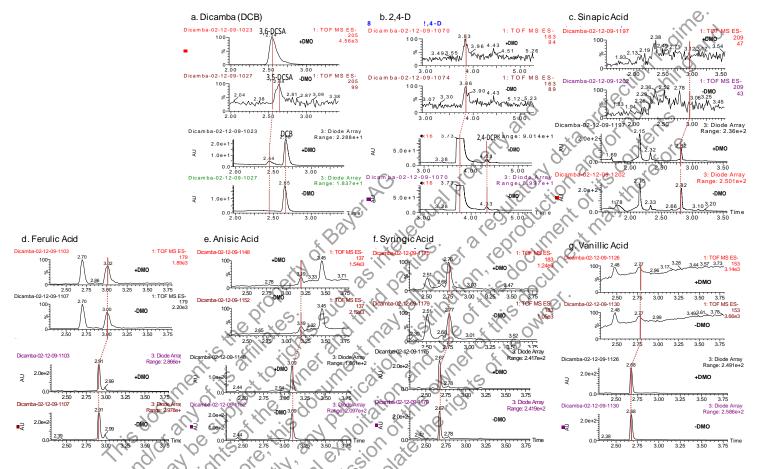
Five microliters injection of each sample was used for UPLC analysis where the disappearance of the potential substrate was monitored, and a 50 µl injection was used for UPLC analysis where formation of potential oxidative by-products was monitored.

#### C.3.2.4. In Vitro Experiments Mass Spectrometry Detection Method

Elution from the UPLC column (C.3.2.3) flowed directly to a Waters Micro Q-TOF mass spectrometer. The parameters used for the mass determination were: negative mode, capillary voltage of 2800 V, sample cone voltage of 26 V for all analytes with the exception of 2,4-D and 2,4-DCP, which was 10 V. The extraction cone was 1.5 V. The source temperature was 150 °C and the desolvation temperature was 390 °C. The desolvation gas flow was 500 L/hour. Scan time was 0.76 seconds and inter-scan delay was 0.1 seconds. The m/z range used was specific to each substrate and product. The m/z range for dicamba and DCSA was from 160 to 225 from 0 to 4 minutes. The m/z at 175, which is the fragment ion of dicamba, was used as a detection method for dicamba. This fragment ion of dicamba gave better sensitivity than the parent ion. The m/z at 205 or 207 was used to detect DCSA. The m/z range for 2,4-D and 2,4-DCP was from 160-164 or 160-225, dependent on the specific experiment from 0 to 6 minutes. The m/z range for all other acids is from 120 to 230 within 4 minutes.


# C.3.2.5. Results of In Vitro Experiments with Endogenous Cotton Compounds


The reaction of dicamba with *E. coli*-produced DMO has been well characterized utilizing an *in vitro* enzymatic assay that monitors the formation of DCSA by LC-MS, which allows for the detection of the product with high sensitivity. Both the substrate and reaction products can be detected by LC-UV and LC-MS after separation by UPLC (Figure C-6).


Compounds structurally similar to dicamba and found in cotton, soybean and corn were used as potential substrates to determine if these compounds could be metabolized by DMO (Table C-8). The compounds tested were syringic acid, o-anisic acid, vanillic acid, ferulic acid, and sinapic acid. Mass spectrometry scans were taken from 120 m/z to 250 m/z to cover the range of all potential oxidation products formed by DMO. Standard reaction conditions of dicamba with a histidine tagged E. coli-produced DMO were used as a positive control. LC-MS data demonstrated that there are no additional peaks formed when reactions of each compound incubated with histidine tagged E. coliproduced DMO and without histidine tagged E. coli-produced DMO are compared (Figure C-7) (dicamba m/z 205, 2, 4-D m/z 163, ferulic acid m/z 175, o-anisic acid m/z 137, sinapic acid m/z 209, syringic acid m/z 183, and vanillic acid m/z 153). There were no peaks observed at the respective masses for the predicted reaction products of each compound incubated with histidine tagged E. coli-produced DMO, indicating these

To assess whether MON 88701 DMO protein has the same specificity as the histidine tagged DMO used in the *in vitro* experiments, the *E. coli*-produced MON 88701 DMO protein (*i.e.*, lacking a histidine tag), shown to be equivalent to the plant produced MON 88701 DMO protein (Section V.B), was incubated with o-anisic acid, the endogenous compound that has the greatest structural similarity to dicamba. Again dicamba was used as a positive control to demonstrate the assay system was functional (Figure C-8). This analysis demonstrated that o-anisic acid was not metabolized by the E. coli-produced MON 88701 DMO protein (i.e., lacking a histidine tag), but dicamba was (Figures C-8 and C-9). These results indicate that DMO, including the MON 88701

, icat , ective n. histidine ta , olized by DMO. MON 88701 DMO prot. (acking a histidine tag), shown (a DMO protein (Section V.B), (a nous compound that has the greatest st indo as a positive control to demon rigure C-8). This analysis demonstrated that oracle (*ac.*) DMO protein (*i.e.*) (*ac.*) DMO protein (*i.e.*) (as (Figures C-8 and C-9). These results indicate that DMO protein, is specific for dicamba as a substrate. without the permission of the owner of this owner.







#### Figure C-7. E. coli-produced DMO Conversion of Endogenous Substrates

Endogenous substrates, as well as dicamba and 2.4-D, were incubated with E. coli-produced DMO and the formation of products and disappearance of substrate was monitored by LC-MS (top two chromatograms) and LC-UV (bottom two chromatograms) for a positive control (dicamba (a)), (2,4-D (b)) and each endogenous compound:, sinapic acid(c), ferulic acid (d), anisic acid (e), syringic acid (f), and vanillic acid (g). For each experiment the reaction mixture was made with (+E. coli-produced DMO, upper) and without (-E. coli-produced DMO, lower). The red line indicates the migration of the substrates (and DCSA in Nithou be prohit the case of dicamba) in each chromatogram.

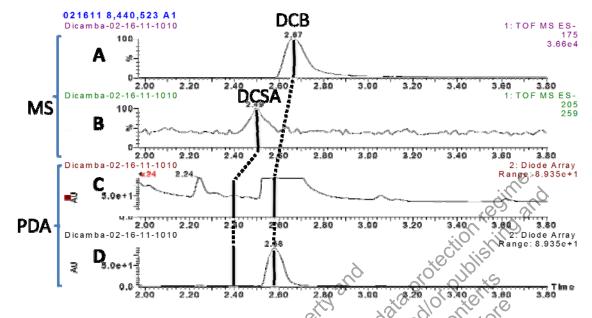
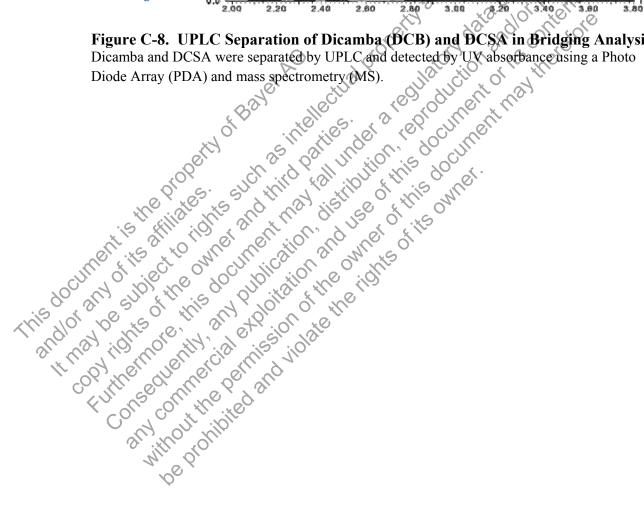
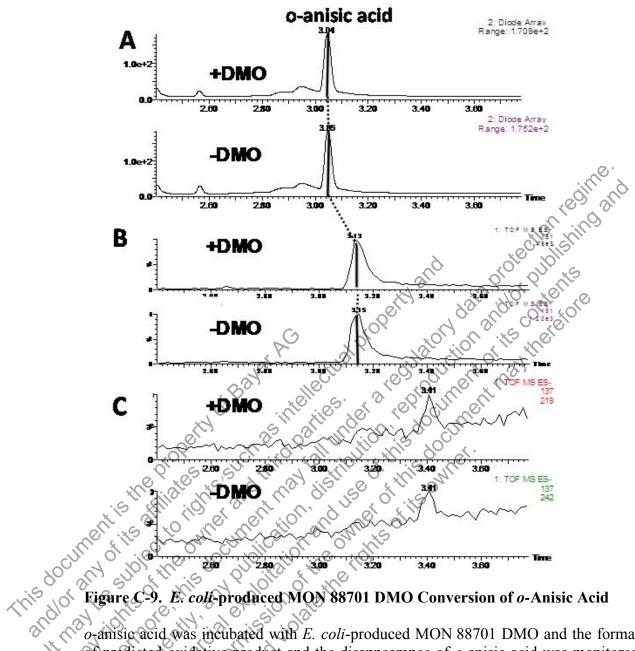





Figure C-8. UPLC Separation of Dicamba (DCB) and DCSA in Bridging Analysis





E. coli produced MON 88701 DMO Conversion of o-Anisic Acid Figure C-9

It ma o-anisic acid was incubated with E. coli-produced MON 88701 DMO and the formation of predicted oxidative product and the disappearance of *o*-anisic acid was monitored by LC-UV (A chromatograms) and LC-MS (B and C chromatograms). o-Anisic acid was included in a reaction mixture made with (+DMO, upper) and without (-DMO, lower) MON 88701 DMO. The dotted line indicates the solvent delay between the UV and MS detectors as they are connected in series.

#### C.4. Characterization of PAT (bar) Protein in MON 88701

#### C.4.1. Materials

The MON 88701-produced PAT (bar) protein (lot 11295997) was purified from The MON 88701-produced PAT (bar) cottonseed of MON 88701 (lot 11287350). protein was stored in a -80 °C freezer in a buffer solution containing 50 mM Tris-HCl, pH 7.5, 0.16 M sodium chloride and 20% glycerol.

The E. coli-produced PAT (bar) protein (lot 11270310) was used as the reference substance. The PAT (bar) protein reference substance was generated from cell paste produced by large-scale fermentation of *E. coli* containing the pMON106653 expression The coding sequence for *bar* contained on the expression plasmid plasmid. (pMON106653) was confirmed prior to and after fermentation. The E coli-produced ata protection

PAT (*bar*) protein was previously characterized. C.4.2. Description of Assay Control Protein MW standards (Precision Plus Protein Standards Dual color; Bio-Rad, Hercules, CA) were used to calibrate some SDS-PAGE gels and verify protein transfer to polyvinylidene difluoride (PVDF) and nitrocellulose membranes. Broad Range SDS-PAGE molecular weight standards (Bio-Rad, Hercules, CA) were used to generate a standard curve for the apparent MW estimation. Bovine serum albumin (BSA) and  $\alpha$ -aminobutyric acid (AAbA) were used as hydrolysis control and internal calibration standard for amino acid analysis. A phenylthiohydantoin (PTH) amino acid standard mixture (Applied Biosystems, Foster City, CA) was used to calibrate the Applied Biosystems 494 Procise Sequencing System for each analysis. A peptide mixture (Sequazyme Peptide Mass Standards kit, Applied Biosystems, Foster City, CA) was used to calibrate the MALDI-TOF mass spectrometer for tryptic mass analysis. Transferrin (Sigma-Aldrich, St. Louis, MO) was used as positive control for glycosylation analysis.

#### Ô C.4.3. PAT (bar) Protein Purification

The plant-produced PAT (bar) protein was purified from cottonseed of MON 88701. The purification procedure was not performed under a GLP plan; however, all procedures were documented on worksheets and, where applicable, SOPs were followed. The plantproduced PAT (bar) was purified from an extract of ground cottonseed using a combination of dye affinity chromatography and anionic exchange chromatography. The purification procedure is briefly described below.

Approximately 1kg of cottonseed of MON 88701 was ground to fine powder using a laboratory mill (model 3100, Perten Instruments). The ground powder was suspended in 4 liters of hexane (EMD Chemicals Inc., Gibbstown, NJ) and filtered 3 times in order to defat the powder. After drying overnight, the powder was ready for further processing. All grinding and defatting steps were done in a fume hood at room temperature.

A portion (200 g) of the defatted powder was extracted with 2 liters of 20 mM Tris-HCl, pH 7.5, and the solids were removed by centrifugation at  $25,000 \times g$  for 20 min. The decanted solution was treated with 15 ml of 1 M CaCl2 solution to precipitate some proteins and centrifuged at  $25,000 \times g$  for 20 min to remove the precipitated proteins. The soluble portion (~1450 ml), containing the PAT (bar) protein, was batch absorbed onto 20 ml of reactive brown 10 agarose (Sigma-Aldrich, St. Louis, MO) equilibrated with 200 ml of 20 mM Tris-HCl, pH 7.5. The reactive brown 10 agarose was centrifuged at  $1000 \times g$  for 2 min and the resin, after decanting the supernatant, was transferred to a column. To remove unbound proteins, reactive brown 10 agarose was washed with 80 ml of 20 mM Tris-HCl buffer, pH 7.5, followed by 120 ml of 20 mM Tris-HCl buffer, pH 7.5, 1.5 M NaCl. Finally, the column was rinsed with 120 ml of 20 mM Tris-HCl buffer, pH 7.5. The PAT (bar) protein was then eluted, with 80 ml of 1 mM acetyl CoA in 20 mM Tris-HCl, pH 7.5. The eluted PAT (bar) protein was loaded onto a 1 ml Q Sepharose Fast Flow (GE Healthcare) column, equilibrated with 10 ml of 20 mM Tris-HCl, pH 7.5, using an automated chromatography system (AKTA, GE Healthcare). The Q Sepharose Fast Flow column was washed with 20 ml of 20 mM Tos-HCl, pH 7.5, 0.1 M NaCl and consecutive step wise elution using 0.2 M and 0.5 M NaCl in 20 mM Tris-HCl, pH 7.5 to a total volume of 23 ml was conducted. Fractions containing PAT (bar) protein were pooled (8 ml) and concentrated to a volume of 1170 µl using a centrifugal filter (Ultracel 10K; Millipore, Billerica, MA; Molecular Weight Cutoff (MWCO) of 10 kDa). Buffer was added to the concentrated sample to bring the final volume to 2 ml and the final buffer composition to 50 mM Tris-HCl, pH 7.5, 0.16 M NaCl, and 20% (v/v) glycerol. This PAT (bar) protein purified from the cottonseed of

volume to 2 ml and the final buffer composition to 50 mN NaCl, and 20% (v/v) glycerol. This PAT*(bar)* protein pur MON 88701 was aliquoted and stored in a -80 °C freezer.

#### C.4.4. Summary of PAT (bar) Protein Identity and Equivalence

		Section	
		Cross	
	Analytical Test Assessment	Reference	Analytical Test Outcome
	1. N-terminal sequence analysis of	VI.C.3.1.	• The identity was confirmed by
	the MON 88701-produced		N-terminal sequence analysis
	PAT (bar) protein to assess		in the A
	identity		
	2. MALDI-TOF MS ¹ analysis of	VI.C.3.2.	<ul> <li>MALDI-TOF MS¹ analysis yielded</li> </ul>
	peptides derived from tryptic		peptide masses consistent with the
	digested MON 88701-produced		expected peptide masses from the
	PAT (bar) protein to assess		theoretical trypsin digest of the
	identity		MON 88701 PAT (bar) sequence
	3. Western blot analysis using anti-	VI.C.3.3.	MON 88701-produced PAT (bar)
	PAT (bar) polyclonal	R	protein identity was confirmed using a
	antibodies to assess identity and		western blot probed with antibodies
	immunoreactive equivalence	3	specific for PAT protein
	between MON 88701- and the	- CV	• Immunoreactive properties of the
	E. coli-produced PAT (bar)		MON 88701- and the <i>E. coli</i> -produced
	proteins		PAT ( <i>bar</i> ) proteins were shown to be
	AN G	<u>(1, 0, 0, 1)</u>	Cequivalent
	<ul> <li>4. SDS-PAGE² to assess equivalence of the apparent molecular weight between MON 88701- and the <i>E. coli</i>-produced PAT (<i>bar</i>) proteins</li> <li>5. Glycosylation analysis of the PAT (<i>bar</i>) protein to assess</li> </ul>	VIC.3.4 VIC.3.4 distibutes distibutes VEC.3.5	• Electrophoretic mobility and apparent
	equivalence of the apparent	an ilon th	molecular weight of the MON 88701-
	molecular weight between	Sti Ois	and the <i>E. coli</i> -produced PAT ( <i>bar</i> )
	MON 88/01- and the	015,150,01	proteins were shown to be equivalent
	E. coli-produced PAT (bar)	a di al	
	proteins	VIL 2 2 2 S	
	5. Grycosylation analysis of the	VI.C.3.3.	• Glycosylation status of MON 88701-
	PAT ( <i>bar</i> ) protein to assess	no ins	and the <i>E. coli</i> -produced PAT ( <i>bar</i> )
00	MON 82701 and the	N/s	proteins were shown to be equivalent
×1013,101	F and produced <b>PAT</b> (bar)	0 T	
~ , <u>~</u> 01	E. con-ploadced FAD (our)	2	
This doct	6 PAT (bar) enzymatic activity	VIC36	• Functional activity of the MON 88701-
	analysis to assess functional	v1.C.J.0.	and the <i>E. coli</i> -produced PAT ( <i>bar</i> )
Ċ	<ul> <li>molecular weight between MON 88701- and the <i>E. coli</i>-produced PAT (<i>bar</i>) proteins</li> <li>5. Glycosylation analysis of the PAT (<i>bar</i>) protein to assess equivalence between the MON 88701- and the <i>E. coli</i>-produced PAT (<i>bar</i>) proteins</li> <li>6. PAT (<i>bar</i>) enzymatic activity analysis to assess functional equivalence between MON 88701- and the <i>E. coli</i>-produced PAT (<i>bar</i>) proteins</li> </ul>		proteins were shown to be equivalent
	MON 88701- and the		proteins were shown to be equivalent
	E. coli-produced PAT (bar)		
	proteins		
		sisted laser	desorption/ionization time-of-flight mass

#### Table C-9. Summary of MON 88701-produced PAT (bar) Protein Identity and Equivalence

MS = Matrix-assisted laser desorption/ionization time-of-flight mass ¹ MALDI-TOF MS = Matrix-assisted laser desorption/form2ation spectrometry  2  SDS-PAGE = sodium dodecyl sulfate polyacrylamide gel electrophoresis

#### C.4.5. N-Terminal Sequencing

#### C.4.5.1. Methods

N-terminal sequencing, carried out by automated Edman degradation chemistry, was used to confirm the identity of the MON 88701-produced PAT (bar).

One aliquot of MON 88701-produced PAT (bar) was used for N-terminal sequence analysis. The analysis was performed for 15 cycles. using automated Edman degradation chemistry (Hunkapiller et al., 1983). An Applied Biosystems 494 Procise Sequencing System equipped with 140C Microgradient system a Perkin Elmer Series 200 UV/VIS Absorbance Detector with Procise[™] Control Software (version 2.1) was used for amino acid detection after each cycle. Chromatographic data were collected using SequencePro (version 2.1) software. A control protein, β-lactoglobulin, (Applied Biosystems, Foster City, CA) was analyzed before and after the sequence analysis of the MON 88701produced PAT (bar) protein to verify that the sequencer met performance criteria for repetitive yield and sequence identity. Identity was established if 28 amino acids, consistent with the predicted sequence of the N-terminus of the MON 88701-produced PAT (*bar*), were observed during analysis.

# C.4.5.2. Results of the N-terminal Sequence Analysis

first 15 amino acids was The expected sequence from MON 88701 was protein John sequencing of the N-terminal was performed on MON 88701-produced PAT (bar). The expected sequence for the PAT (bar) protein deduced from the bar gene present in MON 88701 was observed. The data obtained correspond to the deduced PAT (bar) protein beginning at amino acid positions 2 and 3 (Table C-10, Experimental Sequence 1 and 2, respectively). The N-terminal methionine residue in the PAT (bar) protein was not observed. This result is expected as removal of the N-terminal methionine, catalyzed by methionine aminopeptidase, is common in many Bradshaw et al., 1998, Polevoda and Sherman, 2000). Hence, the sequence information confirms the identity of the PAT (har) motion Bradshaw et al., 1998; Polevoda and Sherman, 2000). Hence, the sequence information confirms the identity of the PAT (*bar*) protein isolated from the cottonseed of MON 88701.

Amino acid residue # from the N-terminus		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Expected	$\rightarrow$	М	S	Р	Е	R	R	Р	А	D	Ι	R	R	А	Т	Е	А
Sequence				I					I	 D		I		I		T	
Experimental	$\rightarrow$	-	S	P	Ė	Ŕ	Ŕ	P	À	Ď	Ĭ	Ŕ	Ŕ	À	Ť	Ė	À
Sequence 1					Т	Ι	Ι	Т	Ι	Ι	T	T		T		.	T
Experimental	$\rightarrow$	-	-	Р	Ë	R	X	X	Å	 D	I	X	X	X	T)	Æ	-
Sequence 2														10	૾૾ૢૼૢૺ		

Table C-10. N-Terminal Sequence of the MON 88701-produced PAT (bar) Protein The expected amino acid sequence of the N-terminus of PAT (bar) protein was deduced from the bar coding region present in MON 88701. The experimental sequences obtained from the MON 88701-produced PAT (bar) protein were compared to the contained from the MON 86/01-produced PAT (bar) protein were compared to the expected sequence. The single letter IUPACeIUB amino acid code is M methionine; S, serine; P, proline; E, glutamic acid; R, arginine; A, alanine; D, aspatic acid; I, isoleucine; and T, threonine. X indicates that the residue was not identifiable; (-) indicates the residue was not observed. expected sequence. The single letter IUPAC-IUB amino acid code is M, methionine; and use of this document may diverse of this document may and use of this document may and use of this document may and use of this owner.

without the permission of the owner of this documer.

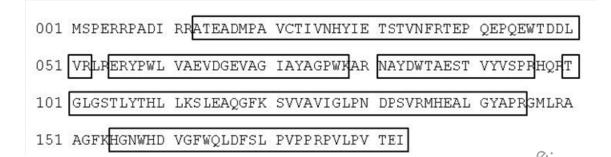
#### C.4.6. MALDI-TOF Tryptic Mass Map Analysis

#### C.4.6.1. Methods

MALDI-TOF tryptic mass fingerprint analysis was used to confirm the identity of the MON 88701-produced PAT (bar) protein. MON 88701-produced PAT (bar) protein was subjected to SDS-PAGE and the gel was stained using Brilliant Blue G Colloidal stain. Each ~25 kDa band was excised and transferred to a microcentrifuge tube. The gel slices were destained with 40% (v/v) methanol/ 10% (v/v) acetic acid and washed in 100 mM ammonium bicarbonate and then, to reduce the protein in each, gel slices were incubated in 100  $\mu$ l of 10 mM DTT at ~37 °C for 1 h. The protein was then alkylated in the dark for 20 min with 100 µl of 20 mM iodoacetic acid and washed three times for 15-20 min each with 200 µl of 25 mM ammonium bicarbonate. Gel slices were dried with a Speed-Vac[®] concentrator (Thermo Fisher Scientific, Waltham, MA) and then rehydrated with 20 µl of trypsin solution (20 µg/ml). After 1.25 h, excess liquid was removed and the gel was incubated overnight at ~37.5 °C in 40 µl of 10% acetonitrile in 25 mM ammonium bicarbonate. Gel slices were sonicated for 5 min to further elute proteolytic fragments. The resulting extracts were transferred to new microcentrifuge tubes labeled Extract 1 and dried using Speed-Vac concentrator. The gel slices were re-extracted twice with 30  $\mu$ l of a 60% acetonitrile, 0.1% trifluoroacetic acid, 0.1%  $\beta$ -octylglucopyranoside solution and sonicated for 5 min. Both extracts were pooled into a new tube labeled Extract 2 and dried with a Speed-Vac concentrator, A solution (20 µl) of 0.1% trifluoroacetic acid (TFA) was added to all Extract 1 and 2 tubes and the samples were dried to completion via vacuum centrifugation. To solubilize the extracts, 5 µl of 50% acetonitrile, 0.1% trifluoroacetic acid was added to Extract 1 tube and 10 µl of 50% acetonitrile, 0.1% trifluoroacetic acid was added to Extract 2 tube and all were sonicated for 5 min, Each extract was spotted to three wells on an analysis plate. For each extract, 0.75 μl of 2, 5 dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (α-Cyano), or 3, 5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid) (Thermo Fisher Scientific Inc.) was added to one of the spots. The samples in DHB matrix were analyzed in the 300 to 5000 Da range. Samples in a-Cyano and sinapinic acid were analyzed in the 500 to 5000 Da and 500 to 7500 Da range, respectively. The analysis was performed using a VoyagerTM DE Pro BiospectrometryTM workstation (Applied Biosystems) using Voyager Instrument Control Panel software (version 5.10.2) analysis software (version 4.0.0.0). Protonated peptide masses were monoisotopically resolved in reflector mode (Aebersold, 1002; Dill used as the external calibrant (Sequazyme Peptide Mass Standards kit, Applied Biosystems, Foster City, CA) for the analysis. GPMAW32 software (Lighthouse Data, Odense M, Denmark) was used to generate a theoretical trypsin digest of the PAT (bar) protein sequence. Masses within 1 Da of a monosiotopic mass were matched against the theoretical digest of the PAT (bar) sequence. All matching masses were tallied and a coverage map was generated for the mass fingerprint. The tryptic mass fingerprint coverage was considered acceptable if  $\geq 40\%$  of the protein sequence was identified by matching experimental masses observed for the tryptic peptide fragments to the expected masses for the fragments (Biron et al., 2006, Krause et al., 1999).

 Junction

 Provide the prov


without the permission of the owner of this documer.

Extract 1         Extract 2         Extract 1         Extract 2         Extract 1         Extract 2         Mass         DIII.         Fragment         Sequence           879.65         879.65         879.46         0.19         113-120         SLEAQGFK           1144.65         1144.75         1144.84         1144.56         0.09         136-145         MHEALGYAPR           1403.93         1404.03         1404.12         1404.18         1403.79         0.44         100-112         TGLGSTLYTHLLK           1523.02         1523.13         1523.14         1523.19         1522.93         1522.86         0.16         121-135         SVVAVIGLPNDPSVR           1843.07         1843.18         1843.27         1842.98         1843.19         1842.85         0.22         38-52         TEPQEPQEWTDDLVR           1859.06         1859.22         1858.98         1859.18         1858.86         0.20         81-96         NAYDWTAESTVYVSPR           2676.67         2676.64         2676.88         2676.35         0.32         55-78         ERYPWLVAEVDGEVAGIAYAGPWK           2840.62         2840.62         2840.32         0.36         13-37         ATEADMPAVCTIVNHYIETSTVNFR					~ · ·					
Extract 1       Extract 2       Extract 1       Extract 1       Extract 2       Mass       C       I         879.65       879.65       879.46       0.19       113-120       SLEAQGFK         1144.65       1144.75       1144.84       1144.56       0.09       136-145       MHEALGYAPR         1403.93       1404.03       1404.12       1404.18       1403.79       0.14       100-112       TGLGSTLYTHLLK         1523.02       1523.13       1523.14       1523.19       1522.93       1522.86       0.16       121-135       SVVAVIGLPNDPSVR         1843.07       1843.18       1843.27       1842.98       1843.19       1842.85       0.22       38-52       TEPQEPQEWTDDLVR         1859.06       1859.22       1859.88       1859.48       1859.48       1858.86       0.20       81-96       NAYDWTAESTVYVSPR         2676.67       2391.45       2391.64       2391.20       0.25       57-78       YPWLVAEVDGEVAGIAYAGPWK         2676.67       2840.62       2840.32       0.30       13-37       ATEADMPAVCTIVNHYIETSTVNFR	a-cy	/ano	DF	łΒ	Sinapin	ic acid	Expected	$Diff^2$	Fragment ³	Sequence
1144.65       1144.75       1144.84       1144.56       0.09       136-145       MHEALGYAPR         1403.93       1404.03       1404.12       1404.18       1403.79       0.14       100-112       TGLGSTLYTHLLK         1523.02       1523.13       1523.14       1523.19       1522.93       1522.86       0.16       121-135       SVVAVIGLPNDPSVR         1843.07       1843.18       1843.27       1842.98       1843.19       1842.85       0.22       38-52       TEPQEPQEWTDDLVR         1859.06       1859.22       1859.22       1858.98       1859.18       1858.86       0.20       81-96       NAYDWTAESTVYVSPR         2676.67       2676.64       2676.88       2676.35       0.32       55-78       ERYPWLVAEVDGEVAGIAYAGPWK         2676.67       2840.62       2840.32       0.30       13-37       ATEADMPAVCTIVNHYIETSTVNFR	Extract 1	Extract 2	Extract 1	Extract 2	Extract 1	Extract 2	Mass	DIII.	Tragment	Sequence
1144.65       1144.75       1144.84       1144.56       0.09       136-145       MHEALGYAPR         1403.93       1404.03       1404.12       1404.18       1403.79       0.14       100-112       TGLGSTLYTHLLK         1523.02       1523.13       1523.14       1523.19       1522.93       1522.86       0.16       121-135       SVVAVIGLPNDPSVR         1843.07       1843.18       1843.27       1842.98       1843.19       1842.85       0.22       38-52       TEPQEPQEWTDDLVR         1859.06       1859.22       1859.22       1858.98       1859.18       1858.86       0.20       81-96       NAYDWTAESTVYVSPR         2676.67       2676.64       2676.88       2676.35       0.32       55-78       ERYPWLVAEVDGEVAGIAYAGPWK         2676.67       2840.62       2840.32       0.30       13-37       ATEADMPAVCTIVNHYIETSTVNFR									6	No 10
1403.93       1404.03       1404.12       1404.18       1403.79       0.14       100-112       TGLGSTLYTHLLK         1523.02       1523.13       1523.14       1523.19       1522.93       1522.86       0.16       121-135       SVVAVIGLPNDPSVR         1843.07       1843.18       1843.27       1842.98       1843.19       1842.85       0.22       38-52       TEPQEPQEWTDDLVR         1859.06       1859.22       1859.22       1858.98       1859.18       1858.86       0.20       81-96       NAYDWTAESTVYVSPR         2676.67       2676.64       2676.88       2676.35       0.32       55-78       ERYPWLVAEVDGEVAGIAYAGPWK         2840.62       2840.62       0.30       13-37       ATEADMPAVCTIVNHYIETSTVNFR			879.65				879.46	0.19	113-120	SLEAQGFK
1523.02       1523.13       1523.14       1523.19       1522.93       1522.93       1522.86       0.16       121-135       SVVAVIGLPNDPSVR         1843.07       1843.18       1843.27       1842.98       1843.19       1842.85       0.22       38-52       TEPQEPQEWTDDLVR         1859.06       1859.22       1859.22       1859.48       1859.48       1858.86       0.20       81-96       NAYDWTAESTVYVSPR         2676.67       2676.64       2676.88       2676.35       0.32       55-78       ERYPWLVAEVDGEVAGIAYAGPWK         2840.62       2840.62       0.30       13-37       ATEADMPAVCTIVNHYIETSTVNFR	1144.65	1144.75	1144.84				1144.56	0.09	136-145	MHEALGYAPR
1843.07       1843.18       1843.27       1842.98       1843.19       1842.85       0.22       38-52       TEPQEPQEWTDDLVR         1859.06       1859.22       1859.22       1859.18       1859.18       1858.86       0.20       81-96       NAYDWTAESTVYVSPR         2676.67       2676.64       2676.88       2676.35       0.32       55-78       ERYPWLVAEVDGEVAGIAYAGPWK         2840.62       2840.32       0.30       13-37       ATEADMPAVCTIVNHYIETSTVNFR	1403.93	1404.03	1404.12	1404.18			1403.79	0.14	100-112	CGLGSTLYTHLLK
1843.07       1843.18       1843.27       1842.98       1843.19       1842.85       0.22       38-52       TEPQEPQEWTDDLVR         1859.06       1859.22       1859.22       1859.98       1859.18       1858.86       0.20       81-96       NAYDWTAESTVYVSPR         2676.67       2676.64       2676.88       2676.88       2676.35       0.32       55-78       ERYPWLVAEVDGEVAGIAYAGPWK         2840.62       2840.62       2840.32       0.30       113-37       ATEADMPAVCTIVNHYIETSTVNFR	1523.02	1523.13	1523.14	1523.19	1522.93	(	1522.86	0.16	121-135	SVVAVIGLPNDPSVR
2676.67         2391.45         2391.64         2391.20         0.25         57-78         YPWLVAEVDGEVAGIAYAGPWK           2676.67         2676.64         2676.88         2676.35         0.32         55-78         ERYPWLVAEVDGEVAGIAYAGPWK           2840.62         2840.32         0.30         13-37         ATEADMPAVCTIVNHYIETSTVNFR	1843.07	1843.18	1843.27		1842.98			0.22	38-52	
2676.67         2676.64         2676.88         2676.35         0.32         55.78         ERYPWLVAEVDGEVAGIAYAGPWK           2840.62         2840.32         0.30         13-37         ATEADMPAVCTIVNHYIETSTVNFR	1859.06	1859.22	1859.22		1858.98	1859,18	1858.86	0.20	81-96	NAYDWTAESTVYVSPR
2840.62 2840.32 0.30 13-37 ATEADMPAVCTIVNHYIETSTVNFR					2391.45	2391,64	2391.20	0.25	57-78	YPWLVAEVDGEVAGIAYAGPWK
	2676.67				2676.64 🦕	2676.88	2676.35	0.32	55-78	ERYPWLVAEVDGEVAGIAYAGPWK
							2840.32	0.30	13-37	ATEADMPAVCTIVNHYIETSTVNFR
	3353.14	3353.36			3353.17	3353.48	3352.73	0.41	155-183	HGNWHDVGFWQLDFSLPVPPRPVLPVTEI
					a contraction of the second se	5. 15	N. 1. 1. 1	in li	20	

Table C-11. Summary of the Tryptic Masses¹ Identified for the MON 88701-produced PAT (bar) Protein Using MALDI-TOF and MS  $\overline{\mathbf{O}}$ 

¹Only experimental masses that matched expected masses are listed in the table. ²The difference between the expected mass and the first column mass. Other masses shown within a row are also within 1 Da of the expected mass. ³Position refers to amino acid residues within the predicted PAT (*bar*) sequence as depicted in Figure C-10.

³Position refers to amino acid residues within the predicted PAT (*bar*) sequence as depicted in Figure C-10. DHB = 5-dihydroxybenzoic acid matrix, α-cyaro = α-cyaro 4-hydroxycinnamic acid matrix, Sinapinic acid = 3, 5-dimethoxy-4-hydroxycinnamic acid matrix Monsanto Company 12-CT-24U 314 of 62



#### MALDI-TOF MS Coverage Map of the MON 88791-produced Figure C-10. PAT (bar) Protein

The amino acid sequence of the PAT (bar) protein was deduced from the bar gene - ( JNS CON 20N 8870A .7% (155 out 2 identified peptide 2 identified pep present in MON 88701. Boxed regions correspond to regions covered by tryptic peptides any connecta endised and violate the industry of this of the of this of the owner. uthermore, this document, navial use of this document of this document, action and use of this document of t that were identified from the MON 88701-produced PAT (bar) protein sample using MALDI-TOF MS. In total, 84.7% (155 out of 183 amino acids) of the expected protein

without the permission of the owner of this documer.

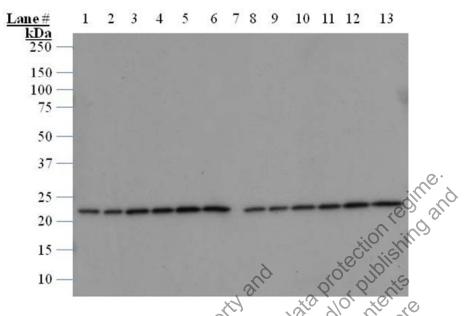
#### C.4.7. Western Blot Analysis-Immunoreactivity

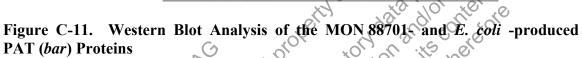
#### C.4.7.1. Methods

Western blot analysis was performed to confirm the identity of the PAT (*bar*) protein purified from cottonseed of MON 88701 and to compare the immunoreactivity of the MON 88701- and *E. coli*-produced proteins.

The MON 88701- and E. coli-produced PAT (bar) proteins were analyzed concurrently on the same gel using three loadings of 2, 4, and 6 ng. Loadings of the three concentrations were made in duplicate on the gel. Aliquots of each protein were diluted in water and 5X Laemmli buffer (LB) containing 312 mM Tris-HCl 25% (v/v) 2-mercaptoethanol, 10% (w/v) SDS, 0.025% (w/v) bromophenol blue, 50% (v/v) glycerol, pH 6.8, heated at ~96 °C for 4 min, and applied to a 15° well pre-cast Tris-glycine 4-20% polyacrylamide gradient gel (Invitrogen, Carlsbad, CA) Pre-stained moelcular weight markers (Precision Plus Protein Standards Dual color; Bio-Rad, Hercules, CA) were loaded in parallel to verify electrotransfer of the proteins to the membrane and to estimate the size of the immunoreactive bands observed. Electrophoresis was performed at a constant voltage of 150 V for 85 min. Electrotransfer to a 0.45 µm PVDF membrane (Invitrogen, Carlsbad, CA) was performed for 60 min at a constant current of 200 mA. After electrotransfer, the membrane was blocked for 1 h with 10% (w/v) non-fat dried milk (NEDM) in 1X phosphate buffered saline containing 0.05% (v/v) Tween-20 (PBST). The membrane was then probed with a 1:2000 dilution of goat anti-PAT (bar) antibody (lot G863803) in 5% NFDM in PBST for 1 h at room temperature. Excess antibody was removed using three 10 min washes with PBST. Finally, the membrane was probed with horseradish peroxidase (HRP)-conjugated horse anti-goat IgG (Thermo, Rockford, ID) at a dilution of 1:10,000 in 5% NFDM in PBST for with FBS1. All washes were performed at room temperature. Immunoreactive bands were visualized using the ECL detection system (GE, Healthcare, Piscataway, NJ) with exposure to Amersham Hyperfilm ECL (GE, Healthcare, Piscataway, NJ). The film was developed using a Konica SRX-101A automated film processor (Konica Minolta Medical & Graphic, Inc., Tokyo, Japan).

Quantification of the bands on the blot was performed using a Bio-Rad GS-800 densitometer with the supplied Quantity One software (version 4.4.0, Hercules, CA) using the lane selection and contour tool. The signal intensities of the immunoreactive bands observed for the MON 88701- and *E. coli*-produced proteins migrating at the expected position on the blot film were quantified as "contour quantity" values. The raw data was exported to a Microsoft Excel (2007) file. The immunoreactivity of the MON 88701- and *E. coli*-produced PAT (*bar*) proteins were reported as the mean signal intensity at each amount of protein analyzed. The immunoreactivity of the MON 88701- and *E. coli*-produced PAT (*bar*) proteins were considered equivalent if the overall mean of the immunoreactive signal of the MON 88701-produced PAT (*bar*) protein.


#### C.4.7.2. Results of PAT (bar) Protein Immunoreactivity Equivalence


Western blot analysis was conducted using goat anti- PAT (bar) polyclonal antibodies to 1) assess the identity of the PAT (bar) protein isolated from the cottonseed of MON 88701 and 2) to determine the relative immunoreactivity of the MON 88701- and the *E. coli*-produced PAT (*bar*) proteins. The results demonstrated that the anti-PAT (bar) antibodies recognized the MON 88701-produced PAT (bar) protein that migrated to an identical position on the blot as the E. coli-produced PAT (bar) protein (Figure C-11). Furthermore, the immunoreactive signal increased with increasing amounts of PAT (bar) protein loaded.

Densitometric analysis was conducted to compare the immunoreactivity of MON 88701- and the *E. coli*-produced PAT (*bar*) proteins. The mean signal intensity  $(OD \times mm^2)$  from the MON 88701-produced PAT (bar) bands and from the E. coli-produced PAT (bar) bands at each amount of protein analyzed was calculated and then overall mean signal intensity was calculated (Table C-12) The immunoreactivity considered equivalent if the overall mean signal intensity of was all MON 88701-produced PAT (bar) protein bands was within ±35% of the overall mean signal intensity of all E. coli-produced PAT (bar) protein bands.

The overall mean signal intensity of the E. coli-produced PAT (bar) bands was 4.669  $OD \times mm^2$ , and the overall mean signal intensity of the MON 88701-produced PAT (bar) bands was  $4.167 \text{ QD} \times \text{mm}^2$ . Because overall mean signal intensity of the MON 88701-produced PAT (*bar*) protein bands was between 3.035 and 6.303 OD  $\times$  mm² (between -35% and +35% of the *E. coli*-produced PAT (*bar*) bands), the MON 88701-produced and *E. coli*-produced PAT (*bar*) proteins were determined to have equivalent immunoreactivity. -35% 5701-produ alent immunor, alent immunor, the subjection of the subjection o MON 88701-produced PAT (bar) protein bands was between 3.035 and 6.303  $OD \times mm^2$ 

any commercial exploitation and use of this any commercial exploitation of the rights without the permission of the inone of this own t may be supect to non the anorth





Aliquots of the MON 88701-produced PAT (*bar*) protein and the *E. coli*-produced PAT (*bar*) protein were subjected to SDS-PAGE and electrotransferred to a PVDF membrane. The membrane was incubated with anti-PAT (*bar*) antibodies and immunoreactive bands were visualized using an ECL system (GE Healthcare, Piscataway, NJ). Approximate molecular weights (kDa) are shown on the left. Lanes loaded with molecular weight markers were cropped, and lanes were renumbered relative to the original gel loading. The I min exposure is shown. Lane designations are as follows:

Lane Sample Sample States	Amount (ng)
1 E. coli-produced PAT (bar) protein	2
<i>E. coll</i> -produced PAT ( <i>bar</i> ) protein	2
3 <i>E coli</i> -produced PAT ( <i>bar</i> ) protein	4
<i>E. coli</i> -produced PAT (bar) protein	4
5 <i>E. coli</i> -produced PAT ( <i>bar</i> ) protein	6
6 E. coli-produced PAT (bar) protein	6
C C L Empty C C L	-
MON 88701-produced PAT ( <i>bar</i> ) protein	2
MON 88701-produced PAT (bar) protein	2
10 MON 88701-produced PAT (bar) protein	4
MON 88701-produced PAT (bar) protein	4
12 MON 88701-produced PAT (bar) protein	6
13 MON 88701-produced PAT (bar) protein	6
0 ⁰	

1

Table C-12. Comparison of Immunoreactive Signals Between MON 88701- and E. coli-produced PAT (bar) Proteins

	Signal intensity from N 88701-produced PAT ( <i>bar</i> ) (OD × mm ² )	Mean Signal intensity from <i>E. coli</i> -produced PAT ( <i>bar</i> ) (OD × mm ² )	Preset Acceptance limits for MON 88701-produced PAT $(bar)^1$ (OD × mm ² )
	4.167	4.669	3.035 - 6.303
The acc (4.669 × intensity	eptance limits for the MO 1.35) and -35% (4.669 × across all loads.	N 88701-produced PAT ( <i>bar</i> ) are bas 0.65) of the overall mean of the <i>P</i>	sed on the interval between +35% E. coli-produced PAT (bar) signal

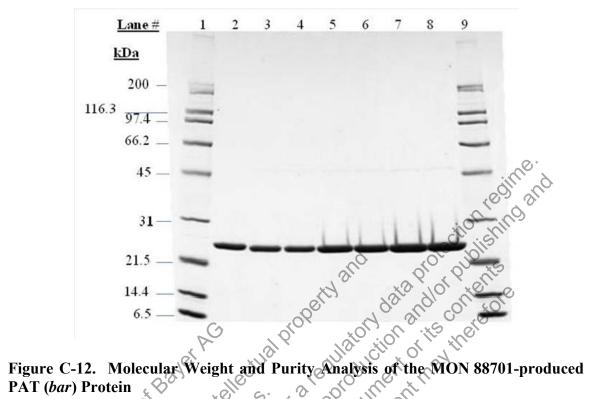
without the permission of the owner of this documer.

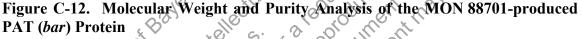
#### C.4.8. Molecular Weight and Purity Estimation using SDS-PAGE

#### C.4.8.1. Methods

MON 88701- and E. coli-produced PAT (bar) proteins were mixed with 5X LB and diluted with water to a final total protein concentration of 0.136  $\mu$ g/ $\mu$ l. Molecular Weight Standards, Bio-Rad broad range (Hercules, CA) were diluted to a final total protein concentration of 0.9 µg/µl. The MON 88701-produced PAT (bar) was analyzed in duplicate at 1, 2, and 3 µg protein per lane. The E. coli-produced PAT (bar) reference standard was analyzed at 1 µg total protein in a single lane. The samples were loaded onto a 10-well pre-cast Tris glycine 4-20% polyacrylamide gradient mini-gel (Invitrogen, Carlsbad, CA) and electrophoresis was performed at a constant voltage of 150 V for 95 min. Proteins were fixed by placing the gel in a solution of 40% (v/v) methanol and 7% (v/v) acetic acid for 30 min, stained for 16.25 h with Brilliant Blue G-Colloidal stain (Sigma-Aldrich, St. Louis, MO). Gels were destained once for 30 to 45 sec with a solution containing 10% (v/v) acetic acid and 25% (v/v) methanol, and four times for 2 h each (for a total of 8 h) with 25% (v/v) methanol. Analysis of the gel was performed using a Bio-Rad GS-800 densitometer with the supplied Quantity One software (version 4.4.0, Hercules, CA). The apparent MW of each observed band was estimated from a standard curve generated by the Quantity One software which was based on the MWs of the markers and their migration distance on the gel. To determine purity, all visible bands within each lane were quantified using Quantity One software. Apparent MW and purity were reported as an average of all six lanes containing the MON 88701-produced PAT (bar).

## C.4.8.2. Results of PAT (bar) Protein Molecular Weight Equivalence


The molecular weight and purity of the PAT (*bar*) protein was determined to be 24.1 kDa and 99%, respectively. To assess apparent molecular weight (MW) and purity, the MON 88701-produced PAT (*bar*) protein was subjected to SDS-PAGE. The gel was stained with Britliant Blue G Colloidal stain and analyzed by densitometry (Figure C-12). *E. coli*-produced PAT (*bar*) protein was loaded in a single lane for reference (Figure C-12, Lane 2). The MON 88701-produced PAT (*bar*) protein (Figure C-12, Lanes 3-8) had an apparent MW of 24.1 kDa (Table C-13). The apparent MW of the *E. coli*-produced PAT (*bar*) protein as reported on its Certificate of Analysis was 25.0 kDa (Table C-8). Because the apparent MW of MON 88701-produced PAT (*bar*) protein was within the preset acceptance limits (Table C-13), the MON 88701-produced and *E. coli*-produced PAT (*bar*) proteins were determined to have equivalent apparent MWs.


 $\cap$ 

The purity of the MON 88701-produced PAT (*bar*) protein was calculated based on the six loads on the gel (Figure C-12, Lanes 3-8). The average purity was determined to be more than 99%.

# Table C-13.Molecular Weight Comparison Between the MON 88701- andE. coli-produced PAT (bar) Proteins Based on SDS-PAGE

	Apparent Molecular Weight of MON 88701-Produced PAT ( <i>bar</i> ) Protein ¹ (kDa)	Apparent Molecular Weight of <i>E. coli</i> -Produced PAT ( <i>bar</i> ) Protein ² (kDa)	Preset Acceptance Limits for MON 88701- produced PAT ( <i>bar</i> ) ³ (kDa)
	24.1	25.0	23.9-25.4
This doct	¹ The reported value is the mean molect ² The molecular weight of the <i>E. coli</i> -p ³ See Section C.6.	z5.0 cular weight across all six loads. produced PAT ( <i>bar</i> ) protein as reported to the protein as reported to the protein as rep	d on its Certificate of Analysis.
	SU, HOS OUL		





Aliquots of the MON 88701-produced and the *E. coli*-produced PAT (*bar*) proteins were subjected to SDS-PAGE and then stained with Brilliant Blue G-Colloidal stain. Approximate molecular weights are shown on the left and correspond to the markers loaded in Lanes 1 and 9. Empty lane was partially cropped. Lane designations are as ::+50 follows the indentification of the offer

Lane Sample	•
Lane Sample of the contract of	Amount (µg)
Broad Range Molecular weight Markets	4.5
2 E. coli-produced PAT (bar) protein	1
3 MON 88701-produced PAT ( <i>bar</i> ) protein	1
3MON 88701-produced PAT (bar) protein4MON 88701-produced PAT (bar) protein5MON 88701-produced PAT (bar) protein6MON 88701-produced PAT (bar) protein	1
MON 88701-produced PAT (bar) protein	2
6 MON 88701-produced PAT (bar) protein	2
	3
MON 88/01-produced PAT ( <i>bar</i> ) protein 8 MON 88701-produced PAT ( <i>bar</i> ) protein 9 Broad Range Molecular Weight markers	3
9 Broad Range Molecular Weight markers	4.5
Broad Range Molecular Weight markers	
will of	

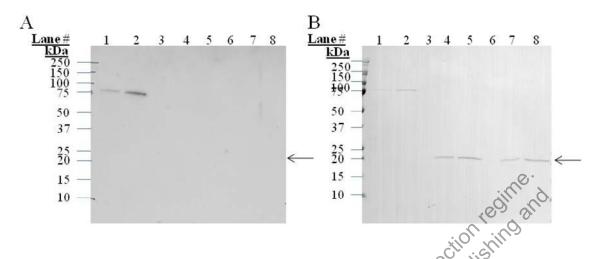
#### C.4.9. Glycosylation Analysis

#### C.4.9.1. Methods

Glycosylation analysis was used to determine whether the MON 88701-produced PAT (bar) was post-translationally modified with covalently bound carbohydrate moieties. Aliquots of the MON 88701-produced PAT (bar) protein, the E. coli-produced PAT (bar) (negative control) and the positive control, transferrin (Sigma-Aldrich, St. Louis, MO), were each diluted with water and brought to 1X LB. These samples were heated at ~102 °C for 4 min. The MON 88701-produced PAT (bar), the E. coli-produced PAT (bar) and transferrin were loaded at approximately 50 and 100 ng per lane on a Tris-glycine 10 well 4-20% polyacrylamide gradient mini-gel (Invitrogen, Carlsbad, CA). Precision Plus Protein Dual color Standards (Bio-Rad, Hercules, CA) were also loaded to verify electrotransfer of the proteins to the membrane and as markers for molecular weight. Electrophoresis was performed at a constant voltage of 150 V for 90 min. Electrotransfer to a 0.45 µm PVDF membrane (Invitrogen, Carlsbad, CA) was performed NX 0 for 60 min at a constant current of 200 mA. 505

Carbohydrate detection was performed directly on the PVDF membrane at room temperature using the Amersham ECL glycoprotein Detection Module (GE, Healthcare, Piscataway, NJ). With this module, carbohydrate moieties of proteins were oxidized with sodium metaperiodate and then biotinylated with biotin-X-hydrazide. The biotinylated proteins can be detected on the blot by addition of streptavidin conjugated to HRP for luminol-based detection using ECL reagents (GE, Healthcare, Piscataway, NJ) and with subsequent exposure to Amersham Hyperfilm (GE, Healthcare). The film was developed using a Konica SRX-101A automated film processor (Konica Minolta Medical & Graphic, Inc., Tokyo, Japan).

An identical blot run in parallel to that used for the glycosylation analysis was stained to visualize the proteins present on the membrane. Proteins were stained for 30 sec to 2 min using Coomassie Brilliant Blue R-250 staining solution (Bio-Rad, Hercules, CA) and then destained with 1X Coomassie Brilliant Blue R-250 destaining solution (Bio-Rad) for more than 5 min. After washing with water, the blot was dried and scanned using Bio-Rad GS-800 densitometer with the supplied Quantity One software (version 4.4.0).


## C.4.9.2. Results of Glycosylation Analysis

Some eukaryotic proteins are post-translationally modified by the addition of carbohydrate moleties (Rademacher et al., 1988). To test whether PAT (bar) protein was glyeosylated when of MON 88701. expressed in the cottonseed the MON 88701-produced PAT (bar) protein was analyzed using an ECL Glycoprotein Detection Module (GE, Healthcare, Piscataway, NJ). Transferrin, a glycosylated protein, was used as a positive control in the assay. To assess equivalence of the MON 88701and E. coli-produced PAT (bar) proteins, the E. coli-produced PAT (bar) protein was also analyzed. The positive control was clearly detected at the expected molecular weight (~80 kDa) and the band intensity increased with increasing concentration (Figure C-13, Panel A, Lanes 1-2). In contrast, signals were not observed in the lanes

containing the MON 88701- or E. coli-produced protein at the expected molecular weight for the PAT (bar) protein (Figure C-13 Panel A, Lanes 7-8 and Lanes 4-5, respectively). . (ba mbrane 8-250 for pr. -produced PAT ( -8 and Lanes 4-5, r. MON 88701-produced - are equivalent and that - are equival To assess whether the MON 88701- and E. coli-produced PAT (bar) proteins were loaded appropriately for glycosylation analysis, a second membrane (with identical loadings and transfer times) was stained with Coomassie Blue R-250 for protein detection (Figure C-13 Panel B). Both the MON 88701- and E. coli-produced PAT (bar) proteins were clearly detected (Figure C-13 Panel B, Lanes 7-8 and Lanes 4-5, respectively). In neithe neithe neithe and a solution and use of this document of the contents of the solution and use of this document of the solution and use of t These data indicate that the glycosylation status of MON 88701-produced PAT (bar) protein and E. coli-produced PAT (bar) protein are equivalent and that neither is

Consequently and publication of the owner of this document may therefore owner of this document may there owner owner of this document may there owner any commercial empirision and use of this document, may there of the owner.

without the permission of the owner of this documer.



Glycosylation Analysis of the MON 88701-produced PAT (bar) Figure C-13. Protein N

Aliquots of the transferrin (positive control), E. coli-produced PAT (bar) protein and MON 88701-produced PAT (bar) protein were subjected to SDS-PAGE and electrotransferred to PVDF membranes. Panel A corresponds to detection of labeled carbohydrate moieties, where present, using the ECL-based system with exposure to Hyperfilm. A 7 min exposure is shown. Panel B corresponds to Coomassie Blue R-250 staining of an equivalent blot to confirm the presence of proteins. The signal was captured using a Bio-Rad GS-800 with Quantity One software (version 4.4.0). Approximate molecular weights (RDa) correspond to the Precision Plus, dual color markers (used to verify transfer and MW). Lanes loaded with molecular weight markers were cropped, and lanes were renumbered relative to the original gel loading. Arrows indicate the expected migration of PAT (bar) protein. Lane designations are as follows: .... 5

Lane Sample of other the	Amount (ng)
1 Transferrin (positive control)	50
Transferrin (positive control)	100
S A 3 OF Empty OF AN AN AN AN	-
<i>E. coli</i> -produced PAT ( <i>bar</i> ) (negative control)	50
5 S E. coli-produced PAT (bar) (negative control)	100
Empty Strate	-
MON 88701-produced PAT (bar)	50
8 MON 88701-produced PAT (bar)	100
for the contraction to the second	

an ithe promit

# C.4.10. Functional Activity Analysis

# C.4.10.1. Methods

PAT (bar) catalyzes the reaction of phosphinothricin (PPT) with acetyl CoA to form acetyl PPT and free CoA. To assess functional activity of PAT (bar), the amount of CoA released during the reaction can be monitored using the reduction of 5,5'-dithio-bis (2-nitrobenzoic acid) (DTNB) by CoA to form the colorimetric reagent 5-thio-nitrobenzoate (TNB) (Wehrmann et al., 1996).

Prior to functional activity analysis, both MON 88701- and E. coli-produced PAT (bar) proteins were diluted to a purity corrected concentration of  $1 \text{ ng/}\mu l$  with a 50 mM Tris, pH 7.5, and 0.5 mM EDTA buffer. Assays for both proteins were conducted using five replicates. The reaction mixtures containing 2 mM acetyl CoA, 1 mM DTNB, 50 mM Tris, pH 7.8, and 0.5 mM EDTA with or without 1 mM phosphinothricin were pre incubated at ~30 °C for 10-60 min. The reactions were then initiated by the addition of 10 ng of PAT (bar) enzyme. The reaction rate was monitored in each well at 412 nm and ~30 °C using a plate reader in one minute intervals for 30 min. A response curve was prepared using 3.9 μM to 250 μM β-mercaptoethanol in 1 mM DTNB, 50 mM Tris, pH 7.8, and 0.5 mM EDTA. The response curve was generated only to verify assay conditions and instrument performance. The initial assay results are reported as the mean velocity of the reaction of PAT (bar) (generated by the KC4 software, Power Wave Xi, Bio Tek, Richmond, VA) and expressed as  $min^{-1}$ . The specific activities of the MON 88701- and *E. coli*-produced PAT (*bar*) proteins were then calculated using the molar absorptivity of product released during the assay, TNB (13,600  $M^{-1} \times cm^{-1}$  or 13.6  $\mu$ mol⁻¹ ×ml). Specific activity is expressed as  $\mu$ mol of TNB released per minute per mg of PAT (bar) ( $\mu$ mol×min⁻¹×mg⁻¹). Calculations of the specific activities were nts of its C.4.10.2. Results of Functional Activity performed using Microsoft Excel (2007).

The functional activities of the MON 88701- and E. coli-produced PAT (bar) proteins were assessed using a colorimetric assay that measures PAT (bar) catalyzed release of phosphinothricin. In this assay, protein-specific activity is expressed  $\mu mol \times minute^{-1} \times mg^{-1}$  of PAT enzyme coenzyme A (CoA) from acetyl-CoA upon transfer of an acetyl-group to as

experimentally determined specific activities for the MON 88701- and The E. coli-produced PAT (bar) proteins are presented in Table C-14. The specific activities of MON 88701 and E. coli-produced PAT (bar) proteins were 36.4 and 46.2  $\mu$ mol × minute⁻¹ × mg⁻¹ of PAT (*bar*), respectively. Because the specific activities of the MON 88701-produced and E. coli-produced PAT (bar) proteins fall within the preset acceptance criterion (Table C-14), the MON 88701- and E. coli-produced PAT (bar) proteins were determined to have equivalent functional activity.

### Table C-14. PAT (bar) Functional Activity

		Preset Acceptance Limits
MON 88701-produced	E. coli-produced	for
PAT $(bar)^1$	$PAT(bar)^{1}$	MON 88701-produced
$(\mu mol \times minute^{-1} \times mg^{-1})$	$(\mu mol \times minute^{-1} \times mg^{-1})$	PAT $(bar)^2$
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$(\mu mol \times minute^{-1} \times mg^{-1})$
$36.4 \pm 1.3$	$46.2 \pm 2.1$	30.17 - 51.70

¹Value refers to mean and standard deviation calculated based on n = 5. ²See Section C.6.

# C.5. Substrate Specificity of PAT (bar) Protein Produced in MON 88701

The PAT proteins, including PAT (bar) protein, were demonstrated to be highly specific for glufosinate in the presence of acetyl-CoA. Since the specificity of PAT proteins has been well established in literature, and due to the lack of any documented reports of nonspecific effects of PAT proteins since the introduction of glufosinate tolerant crops in 1995, in-house experiments were not conducted to further demonstrate substrate specificity of PAT (bar) protein isolated from MON 88701.

# C.6. Prediction Intervals as Acceptance criteria

Acceptance criteria (acceptance limits) based on prediction intervals were used to assess the equivalence of the MON 88701-produced and E. coli-produced proteins for apparent MW and functional activity. A prediction interval is an estimate of an interval in which a randomly selected future observation from a population will fall, with a certain degree of confidence, given what has already been observed (Hahn and Meeker, 1991a; b); i.e., prediction intervals are generated based on the statistical analysis of the existing data. guidelines were used for this purpose. Data obtained from multiple assays of E. coli-produced protein conducted under GLP

To generate the 95% prediction interval (PI), the mean and standard deviation of the data from several assays were calculated. The number of assays used to calculate the mean and the number of future assays (one for equivalence studies) were used in the following formula to generate the PI. bited and ut the per

$$\overline{X} \pm r(1 - \alpha; m, n)$$
 (s)

 $r_{(1-\alpha; m, n)}$  is estimated using the formula given below:

$$r_{(1-\alpha;m,n)} \cong t_{(1-.05/(2m);n-1)} \sqrt{1 + \frac{1}{n}}$$

Where X is mean of the replicate assays; s is standard deviation of the replicates;  $1-\alpha$  is me h h t-n-l degree. .d within this in a to have been den a do follow a normal du .et to have been den a do follow a normal du .et to have been den a do follow a normal du .et to have been den a do follow a normal du .et to have been den a do follow a normal du .et to have been den .et to ha the level of confidence; n is the number of assays used to generate the mean; and m is the number of future assays (one for equivalence studies). The t-value is the  $100(1-.05/(2m))^{\text{th}}$  percentile from Student's t-distribution with n-1 degrees of freedom. With 95% confidence, all m future values of the assay will fall within this interval (Hahn and Meeker, 1991a; b). If the assay means do not appear to have been derived from a normal distribution, but the logarithms of the raw values do follow a normal distribution, .ah then prediction intervals may be applied to the logarithms of the raw values (Hahn and

Consequently and publication of the owner of this document may therefore owner of this document may there owner owner of this document may there owner any connectate permission and violate the indits of this owner.

without the permission of the owner of this documer.

# **References for Appendix C**

Aebersold, R. 1993. Mass spectrometry of proteins and peptides in biotechnology. Current Opinion in Biotechnology 4:412-419.

Arfin, S.M. and R.A. Bradshaw. 1988. Cotranslational processing and protein turnover in eukaryotic cells. Biochemistry 27:7979-7984.

Behrens, M.R., N. Mutlu, S. Chakraborty, R. Dumitru, W.Z. Jiang, B.J. LaVallee, P.L. Herman, T.E. Clemente and D.P. Weeks. 2007. Dicamba resistance: Enlarging and preserving biotechnology-based weed management strategies. Science 316:1185-1188.

Billeci, T.M. and J.T. Stults. 1993. Tryptic mapping of recombinant proteins by matrixassisted laser desorption/ionization mass spectrometry. Analytical Chemistry 65:1709-1716.

Biron, D. G.; Brun, C.; Lefevre, T.; Lebarbenchon, C.; Loxdale, H. D.; Chevenet, F.; Brizard, J. P.; Thomas, F., 2006 The pitfalls of proteomics experiments without the correct use of bioinformatics tools. Proteomics 6:5577–5596.

Boquet, D.J. and G.A. Breitenbeck. 2000. Nitrogen rate effect on partitioning of nitrogen and dry matter by cotton. Crop Science 40:1685-1693.

Bradshaw, R.A., W.W. Briekey and K.W. Walker. 1998. N-terminal processing: The methionine aminopeptidase and N^a-acetyl transferase families. Trends in Biochemical Sciences 23:263-267.

Cojocariu, C., P. Escher, K.-H. Häberle, R. Matyssek, H. Rennenberg and J. Kreuszeiser. 2005. The effect of ozone on the emission of carbonyls from leaves of adult *Fagus sylvatica*. Plant, Cell and Environment 28:603-611.

Cojocariu, C., J. Kreuzwieser and H. Rennenberg. 2004. Correlation of short-chained carbonyls emitted from *Picea abies* with physiological and environmental parameters. New Phytologist 162:717-727.

D'Ordine, R.L., T.J. Rydel, M.J. Storek, E.J. Sturman, F. Moshiri, R.K. Bartlett, G.R. Brown, R.J. Eilers, C. Dart, Y. Qi, S. Flasinski and S.J. Franklin. 2009. Dicamba monooxygenase: Structural insights into a dynamic Rieske oxygenase that catalyzes an exocyclic monooxygenation. Journal of Molecular Biology 392:481-497.

Ducamp, F., F.O. Arriaga, K.S. Balkcom, S.A. Prior, E. van Santen and C.C. Mitchell. 2012. Cover crop biomass harvest influences cotton nitrogen utilization and productivity. International Journal of Agronomy 2012:1-12.

Dumitru, R., W.Z. Jiang, D.P. Weeks and M.A. Wilson. 2009. Crystal structure of dicamba monooxygenase: A Rieske nonheme oxygenase that catalyzes oxidative demethylation. Journal of Molecular Biology 392:498-510.

FAO-WHO. 2011. Pesticide residues in food 2010: Joint FAO/WHO meeting on pesticide residues. FAO Plant Production and Protection Paper 200. Food and Agriculture Organization of the United Nations, World Health Organization, Rome, Italy.

Hahn, G.J. and W.Q. Meeker. 1991a. Methods for calculating statistical intervals for a normal distribution. Pages 53-74 in Statistical Intervals: A Guide for Practitioners. John Wiley and Sons, Inc., Hoboken, New Jersey.

Hahn, G.J. and W.Q. Meeker. 1991b. Overview of different types of statistical intervals. Pages 27-40 in Statistical Intervals: A Guide for Practitioners. John Wiley and Sons, Inc., Hoboken, New Jersey.

Herman, P.L., M. Behrens, S. Chakraborty, B.M. Chrastil, J. Barycki and D.P. Weeks. 2005. A three-component dicamba -demethylase from *Pseudomonas maltophilia*, strain DI-6: Gene isolation, characterization, and heterologous expression. Journal of Biological Chemistry 280:24759-24767.

Hunkapiller, M.W., R.M. Hewick, W.J. Dreyer, and L.E. Hood. 1983. High-sensitivity sequencing with gas-phase sequenator. Methods in Enzymology 91:399-413.

Janda, T., E. Horvath, G. Szalai and E. Paldi. 2007. Role of salicylic acid in the induction of abiotic stress tolerance. Pages 91-150 in Salicylic Acid: A Plant Hormone. S. Hayat and A. Ahmad (eds.). Springer, Dordrecht, The Netherlands.

Krause, E., Wenschuh, H., Jungblut, P. R., 1999. The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Analytical Chemistry 71:4160-4165

Krutz, E.J., M.A. Locke, R.W. Steinriede, K.N. Reddy, L. Libous-Bailey and I.C. Burke. 2012. Water, sediment, and metolachlor transport differences between wide- and narrowrow cotton production systems. Journal of Soil and Water Conservation 67:8-15.

Nemecek-Marshall, M., R.C. Macdonald, J.J. Franzen, C.L. Wojciechowski and R. Fall. 1995. Methanol emission from leaves: Enzymatic detection of gas-phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiology 108:1359-1368.

Polevoda, B and E. Sherman. 2000.  $N^{\alpha}$ -terminal acetylation of eukaryotic proteins. Journal of Biological Chemistry 275:36479-36482.

Rademacher, T.W., R.B. Parekh and R.A. Dwek. 1988. Glycobiology. Annual Review of Biochemistry 57:785-838.

Reddy, K.N., I.C. Burke, J.C. Boykin and J.R. Williford. 2009. Narrow-row cotton production under irrigated and non-irrigated environment: Plant population and lint yield. Journal of Cotton Science 13:48-55.

U.S. CPSC. 1997. An update on formaldehyde. U.S. Consumer Product Safety Commission, Washington, D.C.

U.S. EPA. 1996. Residue chemistry test guidelines - Nature of the residue - Plants, livestock. OPPTS 860.1300. U.S. Environmental Protection Agency, Office of Prevention, Pesticides and Toxic Substances, Washington, D.C.

U.S. EPA. 2008. Reregistration eligibility decision for formaldehyde and paraformaldehyde. EPA 739-R-08-004. U.S. Environmental Protection Agency, Office of Pesticide Programs Washington, D.C.

U.S. EPA. 2009. Reregistration eligibility decision for dicamba and associated salts. U.S. Environmental Protection Agency, Office of Prevention, Pesticides, and Toxic Substances, Washington, D.C.

USHHS-ATSDR. 1999. Toxicological profile for formaldehyde. U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry, Washington, D.C.

USHHS-NTP. 2011. Report on carcinogens. U.S. Department of Health and Human Services, National Toxicology Program, Washington, D.C.

Wehrmann, A., A.V. Vliet, C. Opsomer, J. Botterman and A. Schulz. 1996. The similarities of *bar* and *pat* gene products make them equally applicable for plant engineers. Nature Biotechnology 14: 1274-1278.

WHO. 2002. Concise international chemical assessment document 40: Formaldehyde. World Health Organization, Geneva, Switzerland.

WHO-IPCS 1989. Environmental health criteria 89: Formaldehyde. World Health Organization, International Programme on Chemical Safety, Geneva, Switzerland. http://www.inchem.org/documents/ehc/ehc/ehc89.htm [Accessed February 2, 2011].

# Appendix D: Materials and Methods Used for the Analysis of the Levels of MON 88701 DMO and PAT (bar) Proteins in MON 88701

# **D.1.** Materials

Seed, over season leaf (OSL-1-4), root, and pollen tissue samples from dicamba and glufosinate-treated MON 88701 were harvested from eight field sites in the U.S. during the 2010 growing season from starting seed lot 11268129, with the exception of OSL-1 (7 sites) and OSL-4 (7 sites). MON 88701 plots were treated at the 3-5 leaf stage with glufosinate herbicide at the label rate (0.5 lbs a.i./acre) and at the 6-10 leaf stage with dicamba herbicide at the label rate (0.5 lbs a.e./acre). E. coli-produced MON 88701 DMO (lot 11293429) and PAT (bar) protein (lot 11270310) were used as the analytical entification of the second rotection reference standards.

# **D.2.** Characterization of the Materials

The identity of MON 88701 was confirmed by conducting MON 88701 event specific polymerase chain reaction (PCR) analyses on the harvested seed from each site. Any seed sample and its associated tissues for which three or more pools out of four tested unexpectedly during PCR verification were not analyzed in this study.

**D.3. Field Design and Tissue Collection** Field trials were initiated during the 2010 planting season to generate MON 88701 seed, OSL-1-4, root, and pollen samples at various cotton growing locations in the U.S. The tissue samples from the following field sites were analyzed: Arkansas (ARTI), Georgia (GACH), Kansas (KSLA), Louisiana (LACH), North Carolina (NCBD), New Mexico (NMLC), South Carolina (SCEK) and Texas (TXPL). These field sites were representative of cotton producing regions suitable for commercial production. At each randomized complete-block field design. Seed, over season leaf (OSL-1-4), root, and pollen samples were collected from each replicated plot at all field at the two season of the two season leaf (OSL-1-4). site TXPL and OSL-4 at site LACH. See Tables V-4 and V-5 for detailed descriptions of when the samples were collected.

# D.4. Tissue Processing and Protein Extraction

Tissue samples were shipped to Monsanto Company (St. Louis, Missouri), and were prepared by the Monsanto Sample Management Team. The prepared tissue samples were stored in a -80° C freezer until transferred on dry ice to the analytical facility.

# D.4.1. MON 88701 DMO Protein

MON 88701 DMO protein was extracted from tissue samples as described in Table D-1. MON 88701 DMO was extracted from over season leaf (OSL-1-4) and root tissues samples with the appropriate amount of Tris borate buffer with 0.5% (w/v) bovine serum albumin  $(1 \times TB + 0.5\% BSA)$  [0.1 M Tris, 0.1 M Na₂B₄O₇, 0.05 M MgCl₂, 0.05% (v/v) Tween 20 at pH 7.8, 0.5% (w/v) BSA]. MON 88701 DMO was extracted from pollen and seed tissues with the appropriate amount of phosphate buffered saline (PBS) with Tween 20 (1  $\times$  PBST). Extractions were done using 8 1/4" chrome-steel beads, and shaking in a Harbil mixer (Fluid Management, Wheeling, Illinois). Insoluble material was removed from all tissue extracts using a serum filter (Fisher Scientific, Pittsburgh, PA) The extracts were aliquoted and stored frozen in a -80 °C freezer until ELISA analysis.

Sample Type	Tissue-to-Buffer Ratio	Extraction Buffer
Leaf ¹	1:100	$1 \times TB + 0.5\% BSA$
Root	1:100	1 × TB ∉ 0.5% BSA
Pollen	1:100	N × RBST
Seed	1:100	A PBST C
	1.001.0.000	

Table D-1.	<b>MON 88701</b>	<b>DMO</b> Protein	Extraction	Methods for	<b>Tissue Samples</b>
------------	------------------	--------------------	------------	-------------	-----------------------

¹Over- season leaf (OSL-1, OSL-2, OSL-3, and OSL-4). **D.4.2. PAT (bar) Protein** PAT (bar) protein was extracted from tissue samples as described in Table D-2. PAT (bar) was extracted from over season leaf (OSL-1-4) and root tissues samples with the appropriate amount of Tris borate buffer with L-ascorbic acid (1× TBA) [0.1 M Tris, 0.1 M Na₂B₄O₇, 0.05 M MgCl₂, 0.05% (v/v) Tween 20 at pH 7.8, 0.2% (w/v) L-ascorbic acid]. PAT (bar) was extracted from pollen and seed tissues with the appropriate amount of  $1 \times PBST$ . Extractions were done using  $8^{1}/4^{\prime\prime}$  chrome-steel beads, and shaking in a Harbil mixer. Insoluble material was removed from all tissue extracts using a serum filter. The extracts were aliquoted and stored frozen in a -80 °C freezer until ELISA 20C analysis.

# Table D-2. PAT (bar) Protein Extraction Methods for Tissue Samples

11 dl 1 1 12 10 1 1 0 0		
Sample Type Tissu	e-to-Buffer Ratio	Extraction Buffer
12 0 co al of of	>	
C Leaf C A	1:100	$1 \times TBA$
Root	1:100	$1 \times TBA$
Pollet	1:100	$1 \times PBST$
Seed	1:100	$1 \times PBST$
00		

¹Over- season leaf (OSL-1, OSL-2, OSL-3, and OSL-4)

# **D.5.** Protein Antibodies

# D.5.1. MON 88701 DMO Protein

Goat polyclonal antibodies specific for the DMO protein were purified using Protein G affinity chromatography. The concentration of the purified IgG was determined to be 8.1 mg/ml by spectrophotometric methods. The purified antibody was stored in  $1 \times PBS$ .

Protein G-affinity purified goat polyclonal anti-DMO antibodies were coupled with biotin (Thermo Fisher Scientific, Rockford, IL) according to the manufacturer's instructions. The detection reagent was NeutrAvidin (Thermo Fisher Scientific, Rockford, IL) iting an conjugated to horseradish peroxidase (HRP).

D.5.2. PAT (*bar*) Protein Goat polyclonal PAT (*bar*)-specific IgG was purified by Protein G-affinity chromatography followed by PAT (bar) antigen affinity chromatography. The concentration of the purified IgG was determined to be 3.6 mg/ml by spectrophotometric ere methods. The purified antibody was stored in  $\mathbb{T} \times PBS$ .

Protein G-affinity purified goat polyclonal anti-PAT (bar) antibodies were coupled with biotin (Thermo Fisher Scientific, Rockford, IL) according to the manufacturer's The detection reagent was NeutrAvidin (Thermo Fisher Scientific, instructions. Rockford, IL) conjugated to horseradish peroxidase (HRP)

D.6. Protein ELISA Method D.6.1. MON 88701 DMO Protein Goat anti-DMO antibodies were dilated of the Goat anti-DMO antibodies were diluted in coating buffer (15 mM Na₂CO₃, 35 mM NaHCO₃, and 150 mM NaCl) to a final concentration of 5 µg/ml and immobilized onto 96 well microtiter plates followed by incubation in a 4° C refrigerator for > 8 hours. Prior to each step in the assay, plates were washed with 1× PBST. Plates were blocked with the addition of 200 µl per well of blocking buffer, Blocker Casein (Thermo Fisher Scientific, Rockford, IL) in Tris Buffered Saline (TBS) for 60 to 70 minutes at room temperature (RT). DMO protein standard or sample extract was added at 100 µl per well and incubated for 60 to 65 minutes at 37° C. Biotinylated goat anti-DMO antibodies prepared in 1× Tris-borate buffer with 10% Blocker Casein in TBS were added at 100 µl per well and incubated for 60 to 65 minutes at 37° C. NeutrAvidin HRP conjugate was added at 100 ul per well and incubated for 30 to 35 minutes at 37° C. Plates were developed by adding 100 µl per well of substrate, 3,3',5,5' tetramethyl benzidine (TMB; Kirkegaard & Perry, Gaithersburg, MD). The enzymatic reaction was terminated by the addition of  $100 \,\mu$  per well of 3 M H₃PO₄. Quantification of the DMO protein was accomplished by interpolation from a DMO protein standard curve that ranged from 0.313 - 10 ng/ml.

### D.6.2. PAT (bar) Protein

Affinity purified goat anti PAT (bar) antibodies were diluted in coating buffer (15 mM  $Na_2CO_3$ , 35 mM  $NaHCO_3$ , and 150 mM sodium chloride) to a final concentration of 4 µg/ml and immobilized onto 96 well microtiter plates, followed by incubation in a 4° C refrigerator for >12 h. Prior to each step in the assay, plates were washed with  $1 \times PBST$ . Plates were blocked with the addition of 200 µl per well of blocking buffer (1× PBST+1% BSA) for 60 to 70 minutes at 37° C. PAT (bar) protein standard or sample extract was added at 100 µl per well and incubated for 60 to 70 minutes at 37° C. Biotinylated goat anti-PAT (bar) antibodies diluted in  $1 \times PBST + 0.1\% BSA$  were added at 100 µl per well and incubated for 60 to 70 minutes at 37° C. NeutrAvidin HRP conjugate was added at 100 µl per well and incubated for 60 to 70 minutes at 37° C. Plates were developed by adding 100 µl per well of TMB substrate. The enzymatic reaction was terminated by the addition of 100 µl per well of 3 M H₃PO₄. Quantification of the PAT (bar) protein was accomplished by interpolation from a PAT (bar) protein Notata proportients standard curve that ranged from 0.625 - 20 ng/ml.

# **D.7.** Moisture Analysis

Tissue moisture content was determined using an IR-200 Moisture Analyzer (Denver Instrument Company, Arvada, CO). A homogeneous tissue-specific site pool (TSSP) was prepared consisting of samples of a given tissue type grown at a given site. The average percent moisture for each TSSP was calculated from triplicate analyses. A TSSP Dry Weight Conversion Factor (DWCF) was calculated as follows: .0

$$WCF = 1 - \left(\frac{Mean\%TSSPMoisture}{100}\right)$$

. 6

The DWCF was used to convert protein levels assessed on a  $\mu g/g$  fresh weight (fw) basis into levels reported on a µg/g dry weight (dw) basis using the following calculation: 11  $\cdot$ 0 . N.

Protein Level in Dry Weight = 
$$\frac{\text{Protein Level Fresh Weight}}{\text{DWCF}}$$

this docume of the and Due to a limited amount of tissue, pollen was not analyzed for moisture content. Therefore, no dry weight calculation was performed and pollen was reported on a  $\mu g/g$  fresh weight (fw) basis only fresh weight (fw) basis only.

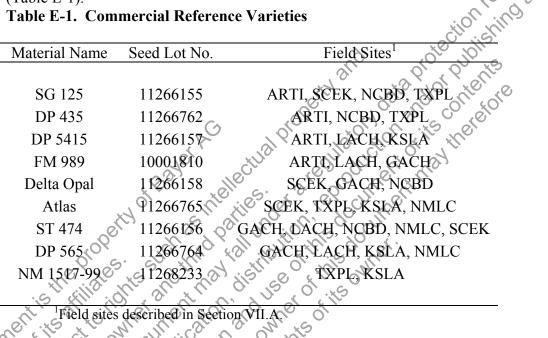
> The protein levels (ng/ml) that were reported to be less than or equal to the limit of detection (LOD) or tess than the limit of quantitation (LOQ) on a fresh weight basis were not reported on a dry weight basis.

# D.8. Data Analyses

All MON 88701 DMO and PAT (bar) ELISA plates were analyzed on a SPECTRAmax Plus 384 (Molecular Devices, Sunnyvale, CA) microplate spectrophotometer, using a dual wavelength detection method. All protein concentrations were determined by optical absorbance at a wavelength of 450 nm with a simultaneous reference reading of

Monsanto Company

Data reduction analyses were performed using Molecular Devices 620-650 nm. SOFTmax PRO GxP version 5.0.1 software. Absorbance readings and protein standard concentrations were fitted with a four-parameter logistic curve fit. Following the interpolation from the standard curve, the amount of protein (ng/ml) in the tissue was converted to a  $\mu g/g$  fw basis for data that were greater than or equal to the LOO. This conversion utilized a sample dilution factor, and tissue-to-buffer ratio. The protein values in  $\mu g/g$  fw were also converted to  $\mu g/g$  dw by applying the DWCF (except pollen). Microsoft Excel 2007 (Microsoft, Redmond, WA) was used to calculate the protein levels in all cotton tissues. The sample means, standard deviations, and ranges were also calculated by Microsoft Excel 2007. All protein expression levels were rounded to two


esuited in an unexp. resulted in an unexp. Any MON 88701 sample extracts that resulted in an unexpectedly negative result by Any MON 88/01 sample extracts that resulted in an unexpectedly negative result by ELISA analysis was re extracted twice for the protein of interest and te analyzed by ELISA to confirm the results. Samples with confirmed unexpected results were omitted from all calculations. ELISA analysis was re extracted twice for the protein of interest and re analyzed by any connectation and use of this document, may there for any connectation and use of this document, may there for any connectation and use of this owner.

without the permission of the owner of this documer.

# Appendix E: Materials, Methods, and Individual Site Results for Compositional Analysis of MON 88701 Cottonseed

# E.1. Materials

Cottonseed from MON 88701 (Seed Lot Number 11268129) treated with dicamba and glufosinate (T) and MON 88701 not treated with dicamba or glufosinate (NT) and the conventional control (Seed Lot Number 11268128) was evaluated. The conventional control has background genetics similar to that of MON 88701 but does not contain either the dicamba mono-oxygenase (DMO) or phosphinothricin N-acetyltransferase (PAT) proteins. The commercial reference varieties were nine conventional cotton varieties (Table E-1).



# E.2. Characterization of the Materials

The identities of MON 88701(T) and MON 88701(NT), the conventional control, and commercial reference varieties were confirmed by verifying the chain of custody documentation prior to analysis. To further confirm the identities of MON 88701(T) and MON 88701(NT), the conventional control, and commercial reference varieties, event-specific polymerase chain reaction (PCR) analyses were conducted on the harvested, acid-delinted cottonseed from each site to confirm the presence or absence of the MON 88701 event.

# E.3. Field Production of the Samples

Cottonseed samples were collected from MON 88701(T) and MON 88701(NT) and the conventional control Coker 130 grown in a 2010 U.S. field production. Four different conventional cotton varieties, known as reference substances, were included at each site of the field production to provide data on natural variability of each compositional

Monsanto Company

component analyzed. The field production was conducted at eight sites: Arkansas (ARTI), Georgia (GACH), Kansas (KSLA), Louisiana (LACH), North Carolina (NCBD), New Mexico (NMLC), South Carolina (SCEK) and Texas (TXPL). The sites were planted in a randomized complete block design with four blocks per site. MON 88701 plots were treated at the 3-5 leaf stage with glufosinate herbicide at the label rate (0.5 lbs a.i. /acre) and at the 6-10 leaf stage with dicamba herbicide at the label rate T/C/R substances were grown under normal agronomic field (0.5 lbs a.e./acre).conditions for their respective geographic regions. Cottonseed samples were harvested and ginned from all plots and shipped at ambient temperature to Monsanto Company (St. Louis, Missouri). The samples were acid-delinted and a subsample was obtained from each for compositional analyses. These subsamples were ground and stored in a freezer set to maintain -20°C until their shipment on dry ice to Covance Laboratories Inc. (Madison, Wisconsin) for analysis. The label on the samples shipped listed the protocol (study) number, tissue type, material name, storage conditions, and a unique sample ID

number. E.4. Summary of Analytical Methods Harvested, acid-delinted cottonseed samples were analyzed by Covance Laboratories Inc. Upon receipt, the samples were stored in a freezer set to maintain -20 °C until their use. Nutrients assessed in this analysis included proximates (ash, fat, moisture, protein, and carbohydrates and calories by calculation), acid detergent fiber (ADF), neutral detergent fiber (NDF), crude fiber (CF), total dietary fiber (TDF), amino acids (AA), fatty acids (C8-C22), minerals (Ca, Cu, Fe, Mg, Mn, P, K, Na, Zn) and vitamin E (α-tocopherol). Anti-nutrients analyzed included gossypol and cyclopropenoid fatty acids (CPFA).

# E.4.1. Acid Detergent Fiber

The ANKOM2000 Fiber Analyzer automated the process of removal of proteins, carbohydrates, and ash. Fats and pigments were removed with an acetone wash prior to analysis. The fibrous residue that is primarily cellulose, lignin, and insoluble protein complexes remained in the Ankom filter bag, and were determined gravimetrically. (Komarek, et al., 1993; USDA, 1970). The results were reported on fresh weight basis. The limit of quantitation was 0.100%. - The man of quantitation was 0.100 navio (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not the cial mission) continent of the cial mission (not

50

distr

### E.4.2. Amino Acid Composition

The following 18 amino acids were analyzed:

Total threonine	Total aspartic acid (including asparagine)
Total serine	Total tyrosine
Total phenylalanine	Total glutamic acid (including glutamine)
Total proline	Total histidine
Total glycine	Total lysine
Total alanine	Total arginine
Total valine	Total tryptophan
Total isoleucine	Total methionine
Total leucine	Total cystine (including cysteine)

The samples were hydrolyzed in 6N hydrochloric acid for approximately 24 hours at approximately 106-110°C. Phenol was added to the 6N hydrochloric acid to prevent halogenation of tyrosine. Cystine and cysteine are converted to S-2-carboxyethylthiocysteine by the addition of dithiodipropionic acid. Tryptophan was hydrolyzed from proteins by heating at approximately 110°C in 4.2N sodium hydroxide for 20 hours. The samples were analyzed by HPLC after pre-injection derivatization. The primary amino acids were derivatized with o-phthalaldehyde (OPA) and the secondary amino acids are derivatized with fluorenvlmethyl chloroformate (FMOC) before injection. (AOAC, 2011a; Barkholt and Jensen, 1989; and , et al., 2000; Schuster, 1988). The results were reported on Brooks, 2010; fresh weight basis. The limit of quantitation was 0,100 mg/g. 

# Reference Standards.

fresh weight basis. The finite of quantitation was 0,100 mg/g.						
Reference Standards:	O' M' SIN'O					
the starts no most instead	S L' CO					
Component	Manufacturer	Lot No.	Purity (%)			
	(° 0,					
L-Alanine L-Arginine Monohydrochloride L-Aspartic Acid L-Cystine	Sigma-Aldrich	1440397	99.9			
L-Arginine Monohydrochloride	Sigma-Aldrich	1361811	100			
L-Aspartic Acid L-Cystine L-Glutamic Acid	Sigma-Aldrich	BCBB9274	100.6			
S (L-Cystine ) (	Sigma-Aldrich	1418036	99.9			
L-Cystine	Sigma-Aldrich	1423805	100.2			
Glycine O (1) of Si	Sigma-Aldrich	1119375	100			
L-Histidine Monohydrochloride Monohydrate	Sigma-Aldrich	BCBB1348	99.9			
L-Isoleucine	Sigma-Aldrich	1423806	100			
L-Leucine	Sigma-Aldrich	BCBB1733	98.6			
L-Lysine Monohydrochloride	Sigma-Aldrich	1362380	100.2			
L-Methionine	Sigma-Aldrich	1423807	99.9			
L-Phenylalanine	Sigma-Aldrich	BCBB9200	100			
L-Proline	Sigma-Aldrich	1414414	99.7			
L-Serine	Sigma-Aldrich	1336081	99.9			
L-Threonine	Sigma-Aldrich	1402329	100			
L-Tryptophan	Sigma-Aldrich	BCBB1284	99.8			
L-Tyrosine	Sigma-Aldrich	BCBB5393	99.5			
L-Valine	Sigma-Aldrich	1352709	100			

# E.4.3. Ash

The sample was placed in an electric furnace at 550 °C and ignited. The nonvolatile matter remaining was quantified gravimetrically and calculated to determine percent ash (AOAC, 2011b). The limit of quantitation was 0.100%.

# E.4.4. Calories

Calories were calculated using the Atwater factors with the fresh weight-derived data and the following equation:

```
calories (Kcal/100g) = (4 \times \% \text{ protein}) + (9 \times \% \text{ fat}) + (4 \times \% \text{ carbohydrates})
```

The limit of quantitation was calculated as 2.00 K calories/100g on a fresh weight basis (Code of Federal Regulation, Title 21, Part 101.9, pp. 24-25). its cor onant

# E.4.5. Carbohydrates

The total carbohydrate level was calculated by difference using the fresh weight-derived data and the following equation:

```
% carbohydrates = 100% - (% protein + %
                                         fat + % moisture + % ash)
```

The results were reported on fresh weight basis (USDA, 1973). The limit of quantitation owher and U. was 0.100%.

# .6. Crude Fiber

Crude fiber was quantitated as the loss on ignition of dried residue remaining after digestion of the sample with 1.25% sulfuric acid and 1.25% sodium hydroxide solutions under specific conditions (AOAC, 2011c). The results were reported on fresh weight basis. The limit of quantitation was 0.100%.

# Fat by Soxhlet Extraction

The sample was weighed into a cellulose thimble containing sodium sulfate and dried to remove excess moisture. Pentane was dripped through the sample to remove the fat. The extract was then evaporated, dried, and weighed (AOAC, 2011d; e). The results were reported on fresh weight basis. The limit of quantitation was 0.100%.

# E.4.8. Cyclopropenoid Fatty Acids

The total lipid fraction was extracted from the sample using chloroform and methanol. A portion of the lipid fraction was then saponified with a mild alkaline hydrolysis. The free fatty acids were extracted with ethyl ether and hexane. The free fatty acids were then converted to their phenacyl derivatives with 2-bromoacetophenone. The derivatives were quantitated on a high-performance liquid chromatography system equipped with an ultraviolet detector. The amount of malvalic, sterculic and dihydrosterculic acids were determined by comparison to an external calibration curves of similarly derivatized reference standards (Wood, 1986). The results were expressed on a fresh weight basis. Monsanto, Malvalic Acid, 100%, Lot Number GLP-0208-12964-A Monsanto, Sterculic Acid, 99%, Lot Number GLP-0208-12963-A Monsanto, Dihydrosterculic, 98%, Lot Number GLP-0311-14474 The limit of quantitation was  $50.0 \,\mu\text{g/g}$ .

# **Reference** Standards:

- •
- •
- therefore J. HE COT •

**E.4.9. Fatty Acids** The lipid was extracted and saponified with 0.5 N methanolic sodium hydroxide, and methylated with 14% boron trifluoride in methanol. The resulting methyl esters of the fatty acids were extracted with heptane containing an internal standard. The methyl without the permission of the normal states of the owner o esters of the fatty acids were analyzed by gas chromatography using external standards ai .ation Jasis The Jasis The sister the lates affiliation for quantitation (AOCS, 1997; 2001; 2009a; c) The weight basis. The limit of quantitation was 0.0200%. for quantitation (AOCS, 1997; 2001; 2009a; c) The results were reported on fresh any commercial exploration and use of the indicate the indicate the of the indicate the indicate

# Reference Standards:

Component	Lot Number	Component	Weight (%)	Purity (%)
		Methyl Octanoate	16.66	99.6
		Methyl Decanoate	16.66	99.6
Nu-Chek Prep GLC		Methyl Laurate	16.66	99.8
Reference Standard	JY20-U	Methyl Myristate	16.66	99.8
Hazelton No. 1		Methyl Palmitoleate	16.66	99.7
		Methyl Linolenate	16.66	99.5
Nu-Chek Prep GLC		Methyl Arachidate	33.33	. 99.6
Reference Standard	AU16-U	Methyl 11-Eicosenoate	33.33	99.5
Hazelton No. 2	110100	Methyl Arachidonate	33.33	99.6
		Methyl Myristoleate	12,5	99.5
		Methyl Pentadecanoate	12.5	99.6
		Methyl 10-Pentadecenoate	0 12.5	99.5
Nu Chalt Bron CLC		Methyl Heptadecanoate	12.5	99.6
Nu-Chek Prep GLC Reference Standard	J28-U	Methyl 10-Heptadecenoate	012.5	99.0
Hazelton No. 3	J28-U			<u>99.5</u> 99.6
nazeitoli No. 3		Methyl 11-14 Eicosadienoate	125	
		Methyl Behenate	12.20	99.8
	$(\land$	Methyl 11-14-17	5 B.S	99.5
		Eicosatrienoate		
	of Bayer Arellect	Methyl Myristoleate	12.5	99.5
		Methyl Pentadecanoate	12.5	99.6
		Methyl 10-Pentadecenoate	12.5	99.5
Nu-Chek Prep GLC		Methyl Heptadecanoate	12.5	99.6
Reference Standard	F15-W	Methyl 10-Heptadecenoate	12.5	99.5
Hazelton No. 3	0,00	Methyl 11-14 Eicosadienoate	12.5	99.6
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(h, 0), 'h,	Methyl Behenate	12.5	99.8
Hazelton No. 3	F15-Viele	Methyl 11-14-17 Eicosatrienoate	12.5	99.5
	Sur U. O.	Methyl Palmitate	27.0	99.6
Nu-Chek Prep GLC		Methyl Stearate	19.0	99.5
Reference Standard	MA30-0	Methyl Oleate	27.0	99.8
Hazelton No. 4	CUI ICO ON	Methyl Linoleate	27.0	99.8
	D 10 the we	Methyl Palmitate	27.0	99.7
Nu-Chek Prep GLC	1 C il c L	Methyl Stearate	19.0	99.7
Reference Standard	β λ	Methyl Oleate	27.0	99.8
Hazelton No. 4	oft. 101 20	Methyl Linoleate	27.0	99.8
Reference Standard Hazelton No. 4 Nu-Chek Prep Methyl- Gamma Linolenate	MA30-U JA31-V U-63M-MT8-U	Not applicable	Not applicable	>99
Nu-Chek Prep Methyl Gamma Linolenate	U-63M-N2-U	Not applicable	Not applicable	>99
Nu-Chek Prep Methyl Tridecanoate	N-13M-F16-V	Not applicable	Not applicable	>99
Nu-Chek Prep Methyl Tridecanoate	N-13M-MA25-T	Not applicable	Not applicable	>99

E.4.10. Free and Total Gossypol

For free gossypol, the sample was extracted with aqueous acetone. The solution was then filtered and the free gossypol was reacted with aniline. For total gossypol analysis, the sample was extracted using a complexing reagent containing acetic acid,

3-amino-1-propanol, and dimethylformamide. The solution was then filtered and the total gossypol was reacted with aniline. For both analyses, the dianilinogossypol was quantitated spectrophotometrically using a standard curve (AOCS, 2011a; b) The results were reported on fresh weight basis. The limit of quantitation was 0.00200%.

ia protection regim Kejerence Standard:
Sigma-Aldrich, Gossypol, 97.7%, Lot Number 059K4046
E.4.11. ICP Emission Spectrometry
The sample was dried, precharred, and ashed overnight in a muffle furnace set to maintain 500 °C. The ashed sample was re-ashed with mitric acid tracted with mitric acid tracted with mitric acid. maintain 500 °C. The ashed sample was re-ashed with nitric acid, treated with hydrochloric acid, taken to dryness, and put into a solution of 5% hydrochloric acid. The amount of each element was determined at appropriate wavelengths by comparing the emission of the unknown sample, measured on the inductively coupled plasma spectrometer, with the emission of the standard solutions (AOAC, 2011f; g). The results n. John were reported on fresh weight basis

Inorganic Ventures Reference Standards and Limits of Quantitation 2 **G**. 10% 1. Si is 21. ~ \

		Limit of
	Concentration	Quantitation
Mineral C C Lot Numbers	(µg/mL)	(ppm)
Calcium E2-MEB360079MCA, E2-MEB360081	200, 1000	20.0
Copper E2-MEB360079MCA, E2-MEB360080MCA	2.00, 10.0	0.500
Iron E2-MEB360079MCA, E2-MEB360082	10.0, 50.0	2.00
Magnesium E2-MEB360079MCA, E2-MEB360080MCA	50.0, 250	20.0
Manganese E2-MEB360079MCA, E2-MEB360080MCA	2.00, 10.0	0.300
Phosphorus E2-MEB360079MCA, E2-MEB360081	200, 1000	20.0
Potassium E2-MEB360079MCA, E2-MEB360081	200, 1000	100
Sodium E2-MEB360079MCA, E2-MEB360081	200, 1000	100
Zino E2-MEB360079MCA, E2-MEB360080MCA	10.0, 50.0	0.400

with prof.

E.4.12. Moisture

The sample was dried in a vacuum oven at approximately 100 °C to a constant weight. The moisture weight loss was determined and converted to percent moisture (AOAC, 2011h; i). The results were reported on fresh weight basis. The limit of quantitation was 0.100%.

E.4.13. Neutral Detergent Fiber, Enzyme Method

The ANKOM2000 Fiber Analyzer automated the process of the removal of proteins, carbohydrates, and ash. The fats and pigments were removed with an acetone wash prior to analysis. Hemicellulose, cellulose, lignin, and insoluble protein fraction were left in the filter bag and determined gravimetrically (AACC, 1999; Komarek et al., 1994; USDA, 1970). The results were reported on fresh weight basis. The unit of quantitation

was 0.100%. E.4.14. Protein The protein and other organic nitrogen in the sample were converted to ammonia by digesting the sample with sulfuric acid containing a catalyst mixture. The acid digest was The ammonia was distilled and then titrated with a previously made alkaline. standardized acid. The percent nitrogen was calculated and converted to equivalent protein using the factor 6.25 (AOAC, 2011j; k; AOCS, 2009a) The results were reported on fresh weight basis. The limit of quantitation was 0,100%. 9000

E.4.15. Total Dietary Fiber

5

Duplicate samples were gelatinized with a amylase and digested with enzymes to break down starch and protein. Ethanol was added to each sample to precipitate the soluble fiber. The sample was filtered, and the residue was rinsed with ethanol and acetone to remove starch and protein degradation products and moisture. Protein content was determined for one of the duplicates, ash content was determined for the other. The total dietary fiber in the sample was calculated using protein and ash values (AOAC, 2011j). The results were reported on fresh weight basis. The limit of quantitation was 1.00%.

C

E.4.16. Vitamin E

The sample was saponified to break down any fat and release vitamin E. The saponified mixture was extracted with ethyl ether and then quantified by high-performance liquid chromatography using a silica column (Cort, et al., 1983; McMurray, et al., 1980; Speek, et al., 1985). The results were reported on fresh weight basis. The limit of quantitation was 0.500 mg/100g.

Note: Alpha tocopherol is part of a mixed standard which also includes beta, delta, and gamma isomers. The reference standard material for those isomers may contain small amounts of alpha tocopherol. All reference standards that contributed to the alpha tocopherol concentration are listed below.

Reference Standards:

- USP, Alpha Tocopherol, 98,9%, Lot Number N0F068
- Acros Organics, D-gamma-Tocopherol, 99.4%, A0083534
- Sigma-Aldrich, (+)-delta-Tocopherol, 92%, 090M1916V

without the permission of the owner of this documer.

E.5. Data Processing and Statistical Analysis

La spreadshee, not Company (St. International (Chester, and statistically analyzed isition data for statistical and isition data for After compositional analyses were performed, data spreadsheets containing individual values for each analysis were sent to Monsanto Company (St. Louis, Missouri) for review. Data were then transferred to Certus International (Chesterfield, MO) where they M The matrixes were converted into the appropriate units and statistically analyzed. The formulas that -Consequently and publication of the owner of this document may there on the owner of this document in a strategies of the owner of this document in a strategies of the owner of this document in a strategies of the owner of this document in a strategies of the owner of this document in a strategies of the owner of this document in a strategies of the owner of the owner of this document in a strategies of the owner own were used for re-expression of composition data for statistical analysis are listed in any commercial empirision and use of this document, may there fore any commercial empirision and violate the rights of its owner.

Component	From (X)	То	Formula ¹
Proximates (excluding Moisture and Calories), Fiber, Gossypol	% fw	% dw	X/d
Calories	Kcal/100g fw	Kcal/100g dw	X/d
Copper, Iron, Manganese, Zinc	ppm fw	mg/kg dw	X/d
Calcium, Magnesium, Phosphorus, Potassium, Sodium	ppm fw	% dw	X/(10 ⁴ d)
Vitamin E	mg/100g fw	mg/kg dw	10(X/d)
Amino Acids (AA)	mg/g fw	% dw	X/(10d)
Sterculic, Malvalic, and Dihydrosterculic Acids ²	µg/g fw	% fw	N X/104
Fatty Acids (FA)	% fw	% TotalFA	(100) $X_j/\Sigma X$, for each FA _j where ΣX is over all the FA

Table E-2. Re-expression Formulas for Statistical Analysis of Composition Data

¹d is the fraction of the sample that is dry matter.

²Sterculic Acid, Malvalic Acid and Dihydrosterculic Acid were first converted to % fw as an intermediate step for final re-expression as % Total FA.

0

In order to complete a statistical analysis for a compositional component in this study, at least 50% of the values for a component had to be greater than the assay limit of quantitation (LOQ). Components with more than 50% of observations below the assay LOQ were excluded from summaries and analysis. The following 13 components with more than 50% of the observations below the assay LOQ were excluded: 8:0 caprylic acid, 10:0 capric acid, 12:0 lauric acid, 14:1 myristoleic acid, 15:0 pentadecanoic acid, 15:1 pentadecenoic acid, 17:0 heptadecanoic acid, 17:1 heptadecenoic acid, 18:3 gamma-linolenic acid, 20:1 eicosenoic acid; 20:2 eicosadienoic acid, 20:3 eicosatrienoic acid, and 20:4 arachidonic acid.

If less than 50% of the observations for a component were below the LOQ, individual analyses that were below the LOQ were assigned a value equal to one-half the LOQ. In this study 187 values for 22:0 behenic acid were assigned a value of 0.010% fw and 187 values for sodium were assigned a value of 50.00 ppm fw.

The data were assessed for potential outliers using a studentized PRESS residuals calculation. A PRESS residual is the difference between any value and its value predicted from a statistical model that excludes the data point. The studentized version scales these residuals so that the values tend to have a standard normal distribution when outliers are absent. Thus, most values are expected to be between ± 3 . Extreme data points that are also outside of the ± 6 studentized PRESS residual range are considered for exclusion, as outliers, from the final analyses. One sodium value from the commercial control at the ARTI site and one sodium value from a commercial reference

at the ARTI site were extreme data points that were outside the ± 6 studentized PRESS residual range and were removed from the statistical analysis.

All cottonseed components were statistically analyzed using a mixed model analysis of variance. The eight replicated field sites were analyzed individually and as a combined data set. Individual site analysis mean comparison tests were not conducted on site ARTI sodium content because only one Coker 130 replicate was available at that site.

Analyses of the combined replicated sites were performed using model (1).

(1)
$$Y_{ijk} = U + T_i + L_j + B(L)_{jk} + LT_{ij} + e_{ijk}$$

where Y_{ijk} = unique individual observation, U = overall mean, T_i = substance effect, L_i = random site effect, $B(L)_{ik}$ = random block within site effect. LT_{ii} = random site by substance interaction effect, and e_{iik} = residual error.

(2)
$$Y_{ij} = U + T_i + B_j + e_{ij}$$

Individual sites were also analyzed separately. Individual site analyses were performed using model (2). (2) $Y_{ij} = U + T_i + B_j + e_{ij}$, where $Y_{ij} =$ unique individual observation, U = overall mean, $T_i =$ substance effect, $B_j =$ random block effect, and $e_{ij} =$ residual error. 40CU

Pairwise comparisons between the test and control materials were defined within the ANOVA and tested using t-tests. The variability from the ANOVA was used to compute the standard error of the difference and to conduct the t-tests for the comparisons.

For each compositional component, a range of observed values and a 99% tolerance interval were calculated. A tolerance interval is an interval that one can claim, with a specified degree of confidence, contains at least a specified proportion, p, of an entire sampled population for the parameter measured. The calculated tolerance intervals are expected to contain, with 95% confidence, 99% of the quantities expressed in the average observation for each unique reference material. Because negative quantities are not possible negative calculated lower tolerance 1 population of conventional cotton. Each tolerance interval estimate was based upon the not possible negative calculated lower tolerance bounds were set to zero.

SAS[®] (Version 92) software was used to generate all summary statistics and perform all analyses.

Report tables present p-values from SAS as either <0.001 or the actual value truncated to three decimal places.

				-	011 00	
			Difference (Difference (MON 88701 minus Control)		
	MON 88701 ²	Control ⁴		xil ^O	ins	Commercial
Analytical Component	()	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Unis) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Proximate (% dw)			DI.	2° 1 4 10	_	
Ash	4.62 (0.087)	4.74 (0.12)	-0.13 (0.15)	-0.55, 0.29	^ر 0.440	3.42, 4.65
	(4.51 - 4.74)	(4.49 - 5.00)	(-0.49-0.047)	y and const		(3.18 - 4.68)
Calarias (Vas1/100a)	495.41 (3.00)	488.30 (3.88)	7.11 (3.90) ³	-3.94, 1.39	0.142	15761 57756
Calories (Kcal/100g)			(1.02 + 10.00)	-5.75, 17.94	0.142	457.61, 527.56
	(487.88 - 504.08)	(487.70 - 494.60)	(4.92 - 16.38)	all'i part		(466.09 - 509.91)
Carbohydrates	45.08 (0.58)	46.35 (0.81)	× 127 (0.96)	-3.94, 1.39	0.254	40.26, 56.45
5	(43.42 - 46.31)	(45.03 - 47.37)				(43.28 - 54.90)
	OP CONTRACTOR	6. 6.	1 Julie Hills de	-1.49, 0.43		`
Moisture (% fw)	7.10 (0,27)	7.63 (0.35)	-0.53 (0.35)	-1.49, 0.43	0.197	4.79, 9.92
	(6.71 7.58)	(7.32-7.40)	(-0.690.36)			(6.05 - 10.50)
Duratain	27.52-00.240		0.49 (0.41) (0.12 - 0.65)	0 (5 1 (2	0.207	22 20 20 41
Protein	27.53 (0.24)	27.04 (0.33)	0.49(0.41)	-0.65, 1.63	0.297	22.30, 29.41
~C	(27.16 - 28.11)	(26.97 - 27.16)	0.12 - 0.65)			(20.58 - 29.28)
Total Fat	22 76 (0.59)	21 50 0 78	1.26 (0.81)	-0.98, 3.50	0.193	15.01, 28.51
×1/13/10	(21.32 - 24.40)	(21,15 - 22,89)	(0.69 - 3.25)	0.00,0.00	0.170	(16.58 - 25.25)
aller	Kity non loi, Ka					× ,
14	-OPV there are comme	SC STR. D				
(-opy the on the on the	0 9 - A 31.				
	Furthe conne					
	and nous	(il)				
	COPY the multiple of the second t)				
Monsanto Company	10 ¹ C	role not vie	2-CT-244U			348 of 620

 Table E-3. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control

					111. 00	
			Difference (1	Difference (MON 88701 minus Control)		
	MON 88701 ²	Control ⁴		il ^O	illes	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fiber (% dw)			al.	Q' (Q (1)		
Acid Detergent Fiber	24.81 (0.32)	27.53 (0.45)	-2.71 (0.55)	4.23, -1.20	Ø 0.007	22.24, 31.96
-	(24.44 - 25.20)	(26.57 - 28.49)	(-3.982.13)	100 Llo CO, 40		(23.42 - 31.62)
		G		S all its all		
Crude Fiber	18.33 (0.90)	19.47 (1.20)	01.14 (1.26)	-4.64 2.36	0 417	16.93, 22.68
	(15.97 - 20.56)	(19.33 - 19.85)	(-3.360.40)			(16.92 - 23.32)
	(10.37 20.00)			No. Xn.		(10.52 20.02)
Neutral Detergent Fiber	31.27 (0.79)	32.89 (1.06)	0 - PK1 (1(13) - C	95% Confidence Interval 4.23, -1.20 -4.64, 2.36	0 227	27.03, 42.49
Neutral Detergent 1 lber	(29.99 - 32.89)	(30.67 - 34.42)			0.227	(29.27 - 40.63)
	(29.99 - 32.89)	(30.07 + 2+.+2)	(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,	ر) ^د .		(29.27 - 40.03)
	40.05 (1.00)		-0.82 (1.83)	-5.91, 4.27	0.670	
Total Dietary Fiber	40.85 (1.06)	41.67 (1.50)		-5.91, 4.27	0.678	34.52, 52.58
	(39.82 - 42.13)	(40.50 - 42.84)				(37.29 - 48.60)
	the string	1.02 (0.018)				
Amino Acid (% dw)	CI its to	0.02 (0.018) (0.99 - 1.05)	0.029 (0.017) (0.011 - 0.036)			
Alanine	1.05 (0.015)	1.02 (0.018)	0.029 (0.017)	-0.018, 0.077	0.161	0.86, 1.11
2000		(0.99 - 1.05)	(0.011 - 0.036)			(0.83 - 1.22)
.5 .	on co on the	, 9, %o. °o	ill ^o			
Arginine $\sqrt{10}$	3.00 (0.052)	3,02 (0.073)	-0.018 (0.084)	-0.25, 0.21	0.840	2.38, 3.47
	(2.86 - 3.07)	(2.89-3.13)	(-0.0980.032)			(2.30 - 3.55)
antin	A all let a	Creating dr				
C	N. He all all	Q. M.				
0	FURTINECOMMENT	0.0				
	FURTHE SULL COMME	UL				
	with or	7				
Monsanto Company	"OC"	ribited and	2-CT-244U			349 of 620
company	\$	12	2012110			515 01 020

Table E-3. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

					q_{\parallel}	
			Difference (N	MON 88701 minus Co	ontroly	
	MON 88701 ²	Control ⁴		il ⁰	ILIS	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			, DI.	6, 6, 6, 6,		
Aspartic Acid	2.41 (0.045)	2.32 (0.060)	0.087 (0.065)	-0.093, 0.27	0.252	1.94, 2.57
	(2.29 - 2.48)	(2.19 - 2.42)	(-0.030-0.10)	-0.093, 0.27 -0.015, 0.082 -0.15, 0.78 -0.052, 0.11)`	(1.79 - 2.72)
		S	of 10, vol			
Cystine	0.40 (0.010)	0.37 (0.014)	0.034 (0.017)	-0.015, 0.082	0.124	0.31, 0.45
5	(0.38 - 0.42)	(0.35 - 0.39)	(0.014 - 0.074)	alt al		(0.29 - 0.47)
	· · · · ·			al the		
Glutamic Acid	4.82 (0.099)	4.51 (0.14)	031 (0.17)	-0 15 0 78	0.134	3.74, 5.28
	(4.61 - 5.07)	(4.34 - 4.67)	(0.14 - 0.27)		0.101	(3.39 - 5.45)
	(1.01 5.07)	(1.51 0.07)		<u> </u>		(5.5) 5.15)
Glycine	1.10 (0.020)	£08 (0.026)	0.027 (0.028)	-0.052, 0.11	0.397	0.90, 1.14
Giyelle	(1.05 - 1.14)		(0.020(0.028))	-0.032, 0.11	0.397	(0.85 - 1.23)
	(1.05-1.14)	(1.03 - 1.17)	(-0,015 0.021)			(0.85 - 1.25)
TT: /: 1:			0.0028 (0.026)	0.071.0.07(0.010	0.50, 0.01
Histidine	0.74 (0.016)	0.74 (0.023)	(-0.00190.00095)	-0.071, 0.076	0.919	0.59, 0.81
C)	(0.71 - 0.76)	(0.71 0.77)	(-0.00190.00095)			(0.57 - 0.84)
800	$\langle \cdot \cdot \rangle \langle $	C C A A	0			
Isoleucine	0.89 (0.018)	0.91 (0.024)	-0.010 (0.025)	-0.079, 0.058	0.696	0.75, 0.96
The allow	(0.87 - 0.92)	(0.88 - 0.93)	6 (-0.0270.0076)			(0.72 - 1.03)
Isoleucine), (10; °0, °1/2)					
	of en verer	o still d				
	With Cor Min	R. SI				
•	Further of the providence of t	10.x00				
	C y wit	ill'				
	o, m. K					
	Nr. GI					
Monsanto Company	1000	e per and the	2-CT-244U			350 of 620

 Table E-3. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

					011.00	
			Difference (I	MON 88701 minus Co	ontrol	
	MON 88701 ²	Control ⁴		i O'	ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			01	6, 6, 6		
Leucine	1.53 (0.027)	1.50 (0.037)	0.029 (0.042)	-0.086, 0.14	0.524	1.25, 1.62
	(1.47 - 1.55)	(1.44 - 1.55)	(-0.0060 - 0.032)	95% Confidence Interval -0.086, 0.14 -018, 0.17 -0.18, 0.17 -0.029, 0.11)`	(1.20 - 1.72)
		Ś	or 10, 10	its of		
Lysine	1.22 (0.044)	1.23 (0.058)	-0.0029 (0.062)	-0.18, 0.17	0.965	1.01, 1.30
5	(1.15 - 1.27)	(1.19-1.26)	(-0.0410.016)			(0.99 - 1.44)
		Sol N		no th		· · · · · ·
Methionine	0.39 (0.015)	0.35 (0.021)	0.041 (0.025)	-0.029.011	0 181	0.32, 0.38
	(0.35 - 0.43)	(0.35 - 0.36)	(-0.014 - 0.087)	JU 0.029, 0.11	0.101	(0.29 - 0.49)
	(0.55 0.15)	(0.55 (0.50)		J _{ •		(0.2) 0.19)
Dhanylalanina	1.43 (0.027)	E41.(0.038)	0.016 (0.045)	-0.11, 0.14	0.737	1 1 2 1 5 9
Phenylalanine		241 (0.038)	(0.010(0.043))	-0.11, 0.14	0.737	1.12, 1.58
	(1.36 - 1.45)	(1.54 - 1.40)	(-0.027_0.022)			(1.10 - 1.63)
		1.00 (0.028) (0.98 1.02)		0.4.4. 0.0 5	o 41 -	0.00 1.00
Proline	0.97 (0.021)	1.00 (0.028)	-0.027 (0.030)	-0.11, 0.057	0.417	0.83, 1.08
- Star		(0.98 1.02)	(-0.0270.024)			(0.79 - 1.17)
200	a jointo					
Serine	1,11(0.022)	1.03 (0.031)	0.089 (0.038)	-0.016, 0.19	0.079	0.83, 1.21
<10, 10.	(1.07 - 1.19)	(0.99 - 1.06)	(0.011 - 0.096)			(0.81 - 1.24)
Serine	N (0) (0) (1)	(0.99 - 1.06)				
	at off let of	10 M. 9 4.				
	of the do the	le se				
	Further conne					
	COULD OUT					
	Furthern conner	$U_{I_{\bullet}}$				
	SP its no. dis	Ŧ				
Monsanto Company	ve i	e per and no	12-CT-244U			351 of 620
	Ŧ					221 31 020

 Table E-3. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

					011.00	
			Difference (I	MON 88701 minus 🕻	ontroly	
	MON 88701 ²	Control ⁴		95% Confidence Interval 0.028, 0.087 -0.042, 0.017	ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			, DI.	6, 6, 6, 6, 6,		
Threonine	0.88 (0.012)	0.85 (0.017)	0.029 (0.021)	0.028, 0.087	0.230	0.72, 0.89
	(0.85 - 0.90)	(0.82 - 0.88)	(-0.0045 - 0.033)		<u> </u>	(0.67 - 0.96)
		S	of xo	in its of		
Tryptophan	0.41 (0.0062)	0.42 (0.0087)	-0.012 (0.011)	-0.042, 0.017	0.306	0.34, 0.42
	(0.40 - 0.42)	(0.40 - 0.44)	(-0.041 - 0.0060))			(0.31 - 0.46)
				n ^o th		· /
Tyrosine	0.82 (0.015)	0.79 (0.021)	0.030 (0.026)	-0.042.0.10	0 313	0.67, 0.84
19105	(0.79 - 0.84)	(0.76 - 0.82)	(0.0011 - 0.028)	-JII 0.0 12, 0.10	0.010	(0.63 - 0.91)
		(0.70,0.02)		<u>.</u>		(0.05 0.91)
Valine	1.19 (0.02P)	E21 (0.027)	-0.018 (0.026)	-0.028, 0.087 -0.042, 0.017 -0.042, 0.10 -0.090, 0.055	0.537	1.00, 1.28
vanne	(1.14 - 1.23)	S(1 157 1 201	(-0.018 (0.020)	-0.090, 0.035	0.557	(0.97 - 1.36)
		(1.1 x - 1.2+)	5 (-0.030 -0.010)			(0.97 - 1.50)
	At 12 all offer	0.78 (0.012)	no nei oi			
Fatty Acid (% Total FA)			0,0020 (0,012)	0.041.0.021	0 722	0.16.1.27
14:0 Myristic	0.77 (0.0085)	0.78 (0.012) (0.77 - 0.78)	-0.0049 (0.013) (-0.029 - 0.0018)	-0.041, 0.031	0.723	0.16, 1.37
200		(0.77 - 0.78)	(-0.029 - 0.0018)			(0.45 - 1.04)
is it	0 8 01 Hui	10 10 C	H.			
16:0 Palmitic	25.16 (0.10)	24,98 (0.04)	0.18 (0.18)	-0.31, 0.67	0.360	16.54, 30.55
16:0 Palmitic This dior	(25.01 - 25.28)	(24.92 - 25.05)	(0.028 - 0.094)			(19.11 - 26.73)
11	or en le é	o alle d				
C C	Funti condition	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	En Us Ol A	× 00				
	Futthe on control to					
	6. M. K					
	Mr. CI					
Monsanto Company	Ver ver	e Ped and	12-CT-244U			352 of 620

 Table E-3. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

					<i>gli</i> . <i>Co</i>	
			Difference (1	MON 88701 minus 🕼	ntrol	
	MON 88701 ²	Control ⁴			Illes	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			, DI.	6, 6, 6, 6, 6,		
16:1 Palmitoleic	0.53 (0.0052)	0.52 (0.0073)	0.017 (0.0089)	-0.0082, 0.041	0.137	0.39, 0.70
	(0.52 - 0.54)	(0.52 - 0.52)	(-0.00060 - 0.017)	Confidence Interval -0.0082, 0.041 0.044, 0.29 -0.34, 0.59 -1.62, 0.45)	(0.44 - 0.67)
		S	of to to	it's poll		
18:0 Stearic	2.68 (0.026)	2.51 (0.036)	0.17 (0.045)	0.044, 0.29	0.019	1.98, 2.95
	(2.65 - 2.72)	(2.45 2.57)	(0.083 - 0.22)	relit Car		(1.98 - 2.97)
		8.0		nº x''		
18:1 Oleic	14.81 (0.11)	14.68 (0.15)	012(017)	-0 34 0 59	0.501	11.38, 20.64
	(14.46 - 15.08)	(14.58 - 14.70)	(-0.24 - 0.18)		0.001	(13.71 - 18.39)
	(1110 10100)					(101/1 10105))
18:2 Linoleic	54.73 (0.22)	55 31 (0 31)	-0.59 (0.37)	-1.62, 0.45	0 189	47.49, 63.18
18.2 Emolete	(54.24 - 55.29)	× (55.26-55.38)	(-0.45 -0.037)	-1.02, 0.45	0.107	(49.78 - 59.61)
	(34.24-03.25)	(55.20 - 55.50)	G. (19.13 G.03 F)			(4).70 - 59.01)
18:3 Linolenic	014 (0.0021)		0,015 (0,0035)	0.0056, 0.025	0.012	0.060, 0.24
18.5 Linolenic	0.14 (0.0021)	0.13 (0.0030)	(0.0064 - 0.021)	0.0030, 0.023	0.012	(0.10 - 0.29)
- Ch	(0.14 - 0.13)	(0.12) 0.14)	(0.0004 - 0.021)			(0.10 - 0.29)
200 A 111				0.0007.0.054	0.115	0.15.0.20
20:0 Arachidic	0.31 (0.0079)	0.29 (0.011)	0.023 (0.011)	-0.0087, 0.054	0.115	0.17, 0.38
(1, de	(0.31 = 0.32)	0 (0,27 - 0,31)	(0.0032 - 0.046)			(0.20 - 0.36)
21.0	0., (10, Co. (11)	$\cdot \circ \cdot \circ \cdot \circ \cdot \circ$				
	of set we e	o official				
C	opy the light on the optime	2 Q 2 21				
	Further second	NO. XO				
	ppy the moule of the providence of the providenc	iloli				
	2, 6,					
Monsanto Company	Pro-	i pited and the	12-CT-244U			353 of 620

 Table E-3. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

					JH 0	
			Difference (1	MON 88701 minus Co	ntroly	
	MON 88701 ²	Control ⁴			ll a	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			2	Part Part	/	
22:0 Behenic	0.14 (0.0026)	0.15 (0.0033)	-0.015 (0.0031)	-0.024, -0.0065	0.008	0.070, 0.21
	(0.13 - 0.14)	(0.15 - 0.16)	(-0.019 -0.012)	-0.024, -0.0065		(0.051 - 0.19)
		S	Q ^C X ^O			
Mineral		of Y	al al alla	Cities of white		
Calcium (% dw)	0.15 (0.0035)	0.12 (0.0050)	0.028 (0.0061)	0.011, 0.045	0.010	0.058, 0.21
	(0.14 - 0.16)	(0.12 - 0.13)	(0.024 - 0.035)	ment		(0.081 - 0.18)
		in in in				
Copper (mg/kg dw)	9.66 (0.34)	9.64 (0,41)	0.018 (0.38)	-1.03, 1.06	0.963	2.97, 12.86
	(9.23 - 10.15)	(8.79 - 9.79)	(-0.57 - 0.58)	as.		(4.46 - 11.62)
	Phos.	SUS this to	till of the	ILO		
Iron (mg/kg dw)	75.27 (5.63)	80.76 (7.78)	5.49 (8.79)	-29.91, 18.93	0.566	47.30, 97.12
	(72.55 - 77.65)	(72.89 - 87.72)	(-15,17 - 2.25)			(39.49 - 114.34)
	of x5'0 x0 1	no no still of				
Magnesium (% dw)	0.41 (0.0076)	0.40 (0.010) (0.38 - 0.41)	0.0099 (0.011) (0.0077 - 0.016)	-0.020, 0.040	0.413	0.28, 0.47
	(0.40 0.42)	(0.38 - 0.41)	(0.0077 - 0.016)			(0.31 - 0.46)
	all's SU of this	A Plot of	ine			
Manganese (mg/kg dw)	13.27 (0.63)	0 11,50 (0,89)	1.77 (1.06)	-1.18, 4.73	0.171	9.07, 17.33
	(12.58 - 13.63)	(11.34 11.55)	(1.03 - 1.95)	,		(9.07 - 17.14)
	N all lelight	C_{1} , C_{1} , C_{1}	``´´´			``´´´
	N'ILE CON CO	Q. A.				
Č.	Fulti sed mit	0.0				
	Futter contents	//-				
	WILL OF					
Monsanto Company	V [®]	e pellano ipited ano	2-CT-244U			354 of 620
1 5						

Table E-3. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701	(Treated) vs. Conventional Control (continued)
v	

					α_{1}, α_{2}	
			Difference (M	ION 88701 minus Co	ontrol)	
	MON 88701 ²	Control ⁴			ill's	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral			, OL		·	
Phosphorus (% dw)	0.83 (0.012)	0.84 (0.016)	-0.015 (0.018)	0.066, 0.036	s [©] 0.450	0.49, 0.87
	(0.82 - 0.84)	(0.82 - 0.87)	(-0.027 - 0.0054))`	(0.48 - 0.87)
		S	or vor	its of		
Potassium (% dw)	1.18 (0.029)	1.11 (0.040)	0.071 (0.047)	-0.059, 0.20	0.204	0.92, 1.21
	(1.16 - 1.20)	(1.06 1.15)	(0.028 - 0.14)	ant and		(0.90 - 1.26)
		Sol M		Cont II		· · · · ·
Sodium (% dw)	0.027 (0.0038)	O' N'	is if tor cu	inent II.	ND^{6}	0, 0.066
	(0.023 - 0.029)	(0.013 - 0.013)	1. 10° 11, 90 0	JI.	112	(0.0054 - 0.077)
	(0.023 - 0.027)	(0.013 - 0.015)	11 J. 110 118 200	<u>~</u> .		(0.003 + -0.077)
	27.09 (1.05)				0 1 1 7	27.27.44.05
Zinc (mg/kg dw)	37.08 (1.65)	40.81 (2.03)	-3.12(1.8%)	-8.92, 1.47	0.117	27.27, 44.95
	(35.15 - 38.88)	(38.03 - 40./1)	(-3.48 - 3.41)			(25.07 - 48.49)
	At 15 all the	er en ion	no no n'			
Vitamin (mg/kg dw)	O' is in		A. N. 19			
Vitamin E	147.20 (2,44)	136.55 (3.46)	10.65 (4.23)	-1.10, 22.40	0.065	41.91, 205.89
200	(144.99, 149.40)	(133.79 - 139.31)	(6.47 - 15.60)			(84.07 - 162.76)
.9.4	10. 0° 0° 11/13	y, %, 0,	N-			

Table E-3. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued) 6 Mi

¹dw = dry weight; fw ≠ fresh weight; FA ∈ fatty acid.

¹dw = dry weight; fw = fresh weight; FA ∈ fatty acid. ²MON 88701 plants were treated with dicamba and glufosinate. ³Mean (S.E.) = least-square mean (standard error). ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130). ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero. umber of d. anyithour of d. ⁶Not determined due to insufficient number of observations for the control.

			Difference (N	40N 88701 minus C e	ontrol	
	MON 88701 ²	Control ⁴		.: O	in s	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Aci	d (% Total FA)		21	Q, Q, W	2	
Dihydrosterculic Acid	0.15 (0.0073)	0.15 (0.010)	0.0022 (0.013)	-0.033, 0.037	0.867	0.078, 0.25
	(0.14 - 0.16)	(0.14 - 0.15)	(-0.0021 -0.00026)	O ANO CON SIC)`	(0.038 - 0.23)
		G	or vor			
Malvalic Acid	0.37 (0.016)	0.36 (0.023)	0.0088 (0.025)	-0.061, 0.078	0.742	0.23, 0.54
	(0.34 - 0.39)	(0.33 - 0.37)	(-0.031 - 0.032)			(0.11 - 0.59)
		So.		no th		
Sterculic Acid	0.21 (0.014)	0.20 (0.020)	0.013 (0.023)	0.052, 0.078	0.605	0.17, 0.27
	(0.19 - 0.22)	(0.19 - 0.20)	(-0.0076 - 0.032)			(0.061 - 0.34)
		6. 75	in a still will you	<u>.</u>		()
Gossypol (% dw)	orvis	SUC WILL S		n ^{o.}		
Free Gossypol	0.91 (0.035)	0.82 (0.049)	0.090 (0.060)	-0.076, 0.26	0.207	0.099, 1.57
Je stady r	(0.80 - 1.02)	(0.80 - 0.84)	(-0.035 - 0.10)	,		(0.50 - 1.41)
		NOT ON TION	no no ot			
Total Gossypol	0.97 (0.034)	0.93 (0.044)	0.042 (0.044)	-0.081, 0.16	0.399	0.064, 1.76
	(0.89 0).04)	(0.94 - 0.98)	(0.0013 - 0.10)			(0.56 - 1.61)
80	an sur fine	A POIL OF	*//°			()

Table E-4. Statistical Summary of Site ARTI Cottonseed Anti-nutrients for MON 88701 (Treated) xs. Conventional Control 6, 1 11

 1 dw = dry weight; FA = fatty acid. 2 MON 88701 plants were treated with dicamba and glufosinate. 3 Mean (S.E.) = least-square mean (standard error).

⁴Control refers to the non-biotechnology derived, conventional control (Coker 130). ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero. Monsanto Company 12-CT-244U 356 of

Ø

			Difference	(MON 88701 minus C e	ontrol	
	MON 88701 ²	Control ⁴			ing	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval		(Range)
Proximate (% dw)			all	0.23, 0.41	?	
Ash	4.53 (0.044)	4.21 (0.047)	0.32 (0.034)	0.23, 0.41	∢⊘<0.001	3.42, 4.65
	(4.45 - 4.57)	(4.12 - 4.23)	(0.31 0.34)	1 00 Mar Con the)`	(3.18 - 4.68)
		0	XOX XC	Confidence Interval 0.23, 0.41 -7.79, 10.12 -3.27, 1.39 -0.85, 0.35		
Calories (Kcal/100g)	497.72 (2.28)	496.55 (2.63)	01.16 (3.48)	-7.79, 10.12	0.751	457.61, 527.56
	(489.91 - 504.20)	(494.57 - 498.27)	(-6.91 - 8,49)	Junt and		(466.09 - 509.91)
	· · · · · · · · · · · · · · · · · · ·	B'as No		all the		· · · · · · · · · · · · · · · · · · ·
Carbohydrates	44.91 (0.59)	45.84 (0.68)	2 -0.94 (0.91) ~	-3 27 1 39	0 348	40.26, 56.45
	(43.42 - 46.94)	(44.64 - 47.09)	(-3 23 - 1 14)	JUN 5.27, 1.55	0.510	(43.28 - 54.90)
)		(10.20 0 1130)
Moisture (% fw)	6.98 (0.15)	(118)	-0.25 (0.23)	-0.85, 0.35	0.328	4.79, 9.92
Woisture (70 fw)	(6.42, 7.33)	S(6.99-7.48)	(=1.06 - 0.12)	-0.05, 0.55	0.526	(6.05 - 10.50)
	(0.72)		(31.00-0.12)			(0.05 - 10.50)
Protein	27.41 (0.33)	07.28 (0.22)	0.11 (0.37)	-0.83, 1.06	0.770	22 20 20 41
Protein	(26.97, 27.78)	2/30(0.37)	(-0.43 - 0.96)	-0.83, 1.00	0.770	22.30, 29.41 (20.58 - 29.28)
C)	(20.87 - 2) (8)	(26.45 - 28.21)	2 (-0.43 - 0.90)			(20.38 - 29.28)
				1 2 4 2 20	0.526	15.01 20.51
Total Fat	23.14 (0.46)	22.67 (0.53)	0.47 (0.70)	-1.34, 2.28	0.536	15.01, 28.51
ZI, Allo	(21.58 - 24.46)	(22,26 - 23,02)	(-1.16 - 1.93)			(16.58 - 25.25)
	8, <u>(18, 00, 11)</u>					
1º	opy the ledue in	of the off				
C	Furthe conne	el e				
		S. LON				
	Printiper and contraction of the	dipi				
	Si illi), .				
	N. 6.					
Monsanto Company	<i>V</i>	the permit and the shift of the	2-CT-244U			357 of 620

Table E-5. Statistical Summary of Site GACH Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control

				, [©]	5 Di	
			Difference (MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴	,	Children		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fiber (% dw)			(c)	to do to	Ø	
Acid Detergent Fiber	25.69 (0.52)	27.52 (0.60)	-1.83 (0.79)	-3.86, 0.20	0.068	22.24, 31.96
	(25.04 - 26.77)	(26.81 - 28.3)	(-3.090.87)	-3.86, 0.20 -3.86, 0.20 -3.24, 1.92		(23.42 - 31.62)
		A Second	alt la	dill of the		
Crude Fiber	19.27 (0.68)	19.92 (0.78)	-0.64 (1.00)	-3.21, 1.92	0.547	16.93, 22.68
	(17.10 - 20.64)	(1870 - 21.18)	(-1.600.54)	no th		(16.92 - 23.32)
			est of tot o	D. CI.		
Neutral Detergent Fiber	31.47 (0.90)	33.92 (1.04)	-2.44 (1.38)	-5.98, 1.09	0.135	27.03, 42.49
	(29.71 - 34.04)	(32.79 - 35.89)	(-5,13 - (1.40))			(29.27 - 40.63)
				ine.		()
Total Dietary Fiber	39.64 (0.86)	×41.49(1.00)	S = 46 (1.32)	-4.85, 1.93	0.318	34.52, 52.58
Total Dictary Tiber	(37.72 - 41.91)	(39.89 - 42.04)	(-4.320.44)	1.05, 1.95	0.510	(37.29 - 48.60)
						(37.2) 10.00)
Amino Acid (% dw)		M. J. Corner	ONKS			
Alanine Acid (78 dw)	1.04 (0.019)	1.10 (0.022)	-0.059 (0.025)	-0.12, 0.0050	0.064	0.86, 1.11
	(1.02 - 1.05)	(1.06.01.17)	(-0.130.016)	-0.12, 0.0050	0.004	(0.83 - 1.22)
in Single			(-0.130.010)			(0.03 - 1.22)
TI. dlo	2 and a child	3.21 (0.067)	0.07 (0.0(4)	0.42 0.10	0.000	2 2 2 2 47
Arginine	2.95 (0.061)	3.21 (0.06/0	-0.27 (0.064)	-0.43, -0.10	0.008	2.38, 3.47
NY .	12.87-3.020	(3.07 - 3.46)	(-0.470.14)			(2.30 - 3.55)
G	S. KI. CO. M.	N. N.				
		No. Koo				
	anythout	diple				
	SI HILL					
	FUTU SOUTH					
Monsanto Company	$\mathcal{O}_{\mathcal{O}}$	11	2-CT-244U			358 of 620

Table E-5. Statistical Summary of Site GACH Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

	MON 88701 ²	<u> </u>	Difference (1	MON 88701 minus Cor	frol	
		C			1101)	
		Control ⁴		CU iSI		Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)				20 210 allo allo	0	
Aspartic Acid	2.31 (0.043)	2.45 (0.047)	-0.15 (0.044)	-0.26, -0.035	0.019	1.94, 2.57
	(2.24 - 2.36)	(2.36 - 2.60)	(-0.290.054)			(1.79 - 2.72)
		1 P	131 × 1131	ctill of the		
Cystine	0.40 (0.012)	0.40 (0.013)	-0.0089 (0.018)	-0.054, 0.036	0.636	0.31, 0.45
-	(0.38 - 0.42)	(038 - 0.43)	(-0.052 - 0.011)	nº th		(0.29 - 0.47)
			Si di der di	N' ON		
Glutamic Acid	4.57 (0.098)	4.96 (0,11)	-0.39 (0.099)	-0.054, 0.036	0.010	3.74, 5.28
	(4.35 - 4.77)	(4.77-5.21)	(-0.630.17)	<u></u>		(3.39 - 5.45)
	ors	. SULLING FO	ill finds	ne.		()
Glycine	1.08 (0.020)	1.13 (0.023)	(-0.630.17) -0.052 (0.026) (-0.13 - 0.011)	-0.12, 0.014	0.099	0.90, 1.14
Gryenie	(1.06 - 1.12)	(109 - 120)	(-0.13 - 0.011)	0.12, 0.011	0.077	(0.85 - 1.23)
		ne ne tio				(0.05 1.25)
Histidine	0,73 (0.013)		0.029 (0.012)	-0.061, 0.0030	0.067	0.59, 0.81
- CUI	(0.68 - 0.76)	(0.75 - 0.78)	(-0.022 - 0.020)	-0.001, 0.0050	0.007	(0.57 - 0.84)
80° 3	10.00 20.700	0.00-0.00)	(-0.0220.020)			(0.37 - 0.04)
	0.90 (0.010)	0.94 (0.012)		0.075 0.0040	0.024	0.75.0.00
Isoleucine $\sqrt{100}$			-0.040 (0.014)	-0.075, -0.0042	0.034	0.75, 0.96
Isoleucine this dora	(0.90 - 0.91)	(0.92 - 0.97)	(-0.0740.012)			(0.72 - 1.03)
X	N Cl NC. C	o chi di				
CO.	Until secondition	a Q ~ Dir				
<		, x00				
	C d un					
	Un see on the					
	Unthe equilibrium Consecondition any ithout the	te pertand t				
Monsanto Company	$\phi_{\mathcal{O}}$	12	2-CT-244U			359 of 620

Table E-5. Statistical Summary of Site GACH Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

					10	<u> </u>	
				Difference (MON 88701 minus Cor	trol)	
		MON 88701 ²	Control ⁴		CU ISI		Commercial
-	omponent	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (%	dw)				sto do de	Ø	
Leucine		1.51 (0.022)	1.58 (0.024)	-0.068 (0.021)	-0,12, -0,013	0.024	1.25, 1.62
		(1.49 - 1.54)	(1.52 - 1.65)	(-0.140.030)	10 ¹⁰ -0,12, -0,013 50		(1.20 - 1.72)
			- KP	131× 1131	dill of the		
Lysine		1.24 (0.018)	1.23 (0.020)	0.0073 (0.024)	-0.055, 0.069	0.775	1.01, 1.30
-		(1.21 - 1.28)	(122 - 1.25)	(0.0016 - 0.032)	nº th		(0.99 - 1.44)
				S S S S S	D. OL.		
Methionine		0.40 (0.017)	0.42 (0.019)	-0.025 (0.024)	-0.92, -0.013 -0.055, 0.069	0.337	0.32, 0.38
		(0.36 - 0.43)	(0.37-0.46)	(-0.0570.011)			(0.29 - 0.49)
			CUL HILL FOR		ine.		(11111)
Phenylalanine		1.40 (0.030)	1.49 (0.033)	-0.088 (0.032)	-0.17, -0.0064	0.039	1.12, 1.58
r nony luluinite		(1.37 - 1.43)	(141 - 161)	(-0.180.033)	0.17, 0.0001	0.057	(1.10 - 1.63)
							(1.10 1.05)
Proline	4	0,98 (0.020)	(1.41 - 1.61) (1.05 (0.022)	0.065 (0.022)	-0.12, -0.0075	0.033	0.83, 1.08
TIOIIIC	- CUI	$(0.97, 0.99)^{\circ}$	(1.05 (0.022) (1.03 - 1.09)	(-0.0970.032)	-0.12, -0.0075	0.055	(0.79 - 1.17)
	2000	10.37 20.359		(-0.0970.032)			(0.79 - 1.17)
C	in Sin		0 1.12 (0.035)		0.10.0.010	0.070	0.02 1.21
Serine	(1. dlo	1.05 (0.05 H)	1.12 (0.035) (1.08 - 1.20)	-0.090 (0.039)	-0.19, 0.010	0.069	0.83, 1.21
	This dor ?	(0.96 - 101)	. (1.08 51.200	(-0.18 - 0.011)			(0.81 - 1.24)
	<u> </u>	2^{3} e^{1} v^{e} e^{2}	<u>con d</u>				
	CO CO	FURTI-SOC MAT	all				
	<		N C				
		Co do an					
		FUIL ONS COMIN					
		FURTHER OUT TO ANY THOUSE	ne period and the second the period and the second				
Monsanto Compar	ny	VC VC	12	2-CT-244U			360 of 620

 Table E-5. Statistical Summary of Site GACH Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

MON 88701 ² Control ⁴	Difference (MON 88701 minus Control)Mean (S.E.)95%SignificanceCommercial(Range)Confidence Interval(p-Value)(Range)
MON 88701 ² Control ⁴	Mean (S.F.) 95% Significance Tolerance Interve
	Mean (S.F.) A 95% Significance Tolerance Interva
	Significance interve
(Units) ¹ (Range) (Range)	(Range) Confidence Interval (p-Value) (Range)
Amino Acid (% dw)	ATT ATTO NOT TO TO
	0.046 (0.018) 0.092, -0.00006 0.049 0.72, 0.89
(0.83 - 0.88) (0.87 - 0.95) (-0	.100.0034) (0.67 - 0.96)
Tryptophan 0.42 (0.011) 0.42 (0.013)	0013 (0.017) 0044 - 0.041 0044 - 0.041 0044 - 0.041 0044 - 0.041
	0.044 - 0.041) (0.31 - 0.46)
Tyrosine 0.80 (0.011) 0.84 (0.013)	0.036 (0.013) -0.069, -0.0030 0.037 0.67, 0.84
(0.79 - 0.82) (0.81 - 0.89) (-0	068 - (0.015) (0.63 - 0.91) 0653 (0.015) -0.091, -0.014 0.017 1.00, 1.28 .0900.022) (0.97 - 1.36)
or s. sur thin to this	OT THE WILL
Valine 1.21 (0.018) 1.26 (0.019) -0	.053 (0.015) -0.091, -0.014 0.017 1.00, 1.28
(1.19-1.23) (1.23-1.32) (-0	.0900.022) (0.97 - 1.36)
and the state of t	Nº COI
Fatty Acid (% Total FA)	
14:0 Myristic 0.78 (0.0068) 0.77 (0.0079) 0.	0029 (0.010) -0.024, 0.030 0.793 0.16, 1.37
(0.76-0.78) (0.76-0.78)	0.026 - 0.018) (0.45 - 1.04)
AH1310 10 15 01 01 10 10 10	
16:0 Palmitic 24.40 (0.14) 24.12 (0.16)	0.28 (0.20) -0.24, 0.80 0.227 16.54, 30.55
(24.27 - 24.66) (23.78 - 24.45) (-	-0.11 - 0.56) (19.11 - 26.73)
FUN AS ON WOLD	
21 it out in the	
Monsanto Company	
Monsanto Company V 12-CT-	244U 361 of

				(⁰)	5 Di	
		_	Difference (MON 88701 minus Co	ntrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
Fatty Acid (% Total FA)	(8-)	(8-)		10 10 10 10 10 1	(p ·	(8-)
16:1 Palmitoleic	0.52 (0.0058)	0.51 (0.0067)	0.011 (0.0089)	-0.012, 0.034	0.268	0.39, 0.70
	(0.51 - 0.54)	(0.50 - 0.52)	(-0.012 - 0.025)			(0.44 - 0.67)
18:0 Stearic	2.54 (0.032)	2.43 (0.037)	0.11 (0.046)	-0.0057, 0.23	0.058	1.98, 2.95
	(2.45 - 2.67)	(237 - 2.46)	(0.066 - 0.21)	-0.078, 0.58		(1.98 - 2.97)
18:1 Oleic	14.64 (0.098)	14.39 (0.11) 31	0.25 (0.13)	Jun-0.078, 0.58	0.107	11.38, 20.64
	(14.39 - 14.84)	(14.06 - 14.61)	(-0.0098 - 0.34)	let.		(13.71 - 18.39)
18:2 Linoleic	55.81 (0.24)	56,59 (0,28)	£0.78 (0.35)	-1.67, 0.12	0.075	47.49, 63.18
	(55.04 - 56.24)	(56.02 57.32)	(-1.39 - 0.12)			(49.78 - 59.61)
18:3 Linolenic	0.15 (0.0066)	0.15 (0.0076)	0.0076 (0.010)	-0.018, 0.033	0.481	0.060, 0.24
80 ^C	(0.15) 0.16)	0,15 (0,0076) (0,14 - 0,15)	(0.00091 - 0.013)			(0.10 - 0.29)
20:0 Arachidic	0.29 (0.0098)	0.28 (0.001)	0.013 (0.013)	-0.021, 0.047	0.376	0.17, 0.38
3 norma	(0,26 - 0,31)	(0.26 - 0.29)	(0.0016 - 0.015)			(0.20 - 0.36)
	20 the cherce	1 Control of the second				
	FURTINECOMMENT	le teo				
	FURTHE COULT NE	te per and				
Monsanto Company	2 POP	12	2-CT-244U			362 of 620

 Table E-5. Statistical Summary of Site GACH Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				< ⁰	S. M.	
			Difference (MON 88701 minus Co	ntrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
Fatty Acid (% Total FA) 22:0 Behenic	0.14 (0.0026) (0.14 - 0.15)	0.14 (0.0030) (0.14 - 0.15)	-0.00014 (0.0037) (-0.0017 - 0.0028)	0.0097, 0.0095	0.971	0.070, 0.21 (0.051 - 0.19)
Mineral Calcium (% dw)	0.13 (0.0015) (0.13 - 0.13)	0.11 (0.0018) (0.11 - 0.11)	0.019 (0.0023) (0.014 - 0.024)	0,013, 0.025	<0.001	0.058, 0.21 (0.081 - 0.18)
Copper (mg/kg dw)	8.51 (0.26) (8.02 - 9.13)	8.21 (0,30) (7.48 - 8.64)	0,30 (0,39) (-0.49 - 1,13)	winet -0.70, 1.31	0.473	2.97, 12.86 (4.46 - 11.62)
Iron (mg/kg dw)	75:42 (3.80) (70.35 - 79.72)	78.00 (4.39) (75.01 - 80.40)	-2,58 (5,81) (+8.31,-4.71)	-17.51, 12.35	0.675	47.30, 97.12 (39.49 - 114.34)
Magnesium (% dw)	0.41 (0.0052) (0.40 - 0.41)	0.38 (0.0054) (0.37-0.39)	0.026 (0.0034) (0.021 - 0.031)	0.018, 0.035	<0.001	0.28, 0.47 (0.31 - 0.46)
Manganese (mg/kg,dw)	13,41 (0,31) (12.79 - 14.14))1.51 (0.34) (10.81 - 11.75)	1.90 (0.37) (1.18 - 2.39)	0.95, 2.85	0.003	9.07, 17.33 (9.07 - 17.14)
	FUCORS COMIT	nipited t				
Monsanto Company	10°C	1	12-CT-244U			363 of 620

				10	- (D.	
			Difference ()	MON 88701 minus Cor	itrol)	
	MON 88701 ²	Control ⁴		Chilsh		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral			(C)	20 NO. 20. 1	Ø	
Phosphorus (% dw)	0.78 (0.011)	0.76 (0.012)	0.018 (0.0082)	-0.0028, 0.040	0.076	0.49, 0.87
	(0.75 - 0.81)	(0.75 - 0.79)	(0.0052 - 0.029)			(0.48 - 0.87)
		A.	alt lat	till of the		
Potassium (% dw)	1.21 (0.012)	1.12 (0.013)	0.090 (0.010)	0.064, 0.12	< 0.001	0.92, 1.21
	(1.17 - 1.24)	(1210 - 1.13)	(0.075 - 0.11)	no. th		(0.90 - 1.26)
	× /		S S C C), OL		,
Sodium (% dw)	0.022 (0.0045)	0.017 (0.0052)	0.0049 (0.0069)	-0.013, 0.023	0.515	0, 0.066
	(0.019 - 0.027)	(0.013 - 0.022)	(-0.0020 - 0.014)		01010	(0.0054 - 0.077)
	(0.01) 0.02.0			ne'		(0.0001 0.077)
Zinc (mg/kg dw)	39.10 (0.67)	39.55 (0.75)	S (15 (0 82)	-2.58, 1.68	0.610	27.27, 44.95
Zine (ing/kg dw)	(37.49 - 40.18)	(38.49 - 40.84)	(-1.35 - 0.51)	-2.36, 1.06	0.010	(25.07 - 48.49)
	(37.41-40.10)	(20.49740.04)	(-1.35 - 0.31)			(23.07 - 46.49)
TTI I I I I I I I I I	Chills the	M. M. Sp. S	N' OWIN'S			
Vitamin (mg/kg dw)			$\langle \rangle \rightarrow \langle \rangle$	1.05, 10.02	0.005	41.01.005.00
Vitamin E	151.03 (2.27)	0 140.12 (2.63)	10.90 (3.47)	1.97, 19.83	0.025	41.91, 205.89
:5.5	(148.34 - 154.95)	(133.64 - 145.15)	(3.19 - 18.52)			(84.07 - 162.76)
×10, 10,		or trior xe	5			

 ¹dw = dry weight; fw = fresh weight; FA = fatty acid.

 ²MON 88701 plants were treated with dicamba and glutosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 364 of

				(O)100701 : 0	9. A	
			Difference (N	MON 88701 minus Co	ntroly	
	MON 88701 ²	Control ⁴			illes	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Aci	d (% Total FA)		all	01 0 X	0	
Dihydrosterculic Acid	0.15 (0.0067)	0.12 (0.0077)	0.033 (0.010)	0.0069, 0.059	0.022	0.078, 0.25
-	(0.14 - 0.16)	(0.11 - 0.13)	(0.021 - 0.050)	On the contract		(0.038 - 0.23)
		Ġ	Nor of			
Malvalic Acid	0.37 (0.027)	0.32 (0.031)	0.044 (0.038)	-0.055, 0.14	0.304	0.23, 0.54
	(0.26 - 0.45)	(0.31 - 0.34)	(-0.052 - 0.12)			(0.11 - 0.59)
	``´´	B'a' Me		all'all		· · · · · ·
Sterculic Acid	0.21 (0.011)	0.18 (0.013)	0.030 (0.015)	-0.0072, 0.068	0.092	0.17, 0.27
	(0.18 - 0.25)	(0.18 - 0.20)	(-0.0018 - 0.050)	IL.		(0.061 - 0.34)
		6 6	10, the his for	d'		· · · · · ·
Gossypol (% dw)	or s	. SUC WILL FO				
Free Gossypol	0.85 (0.017)	0.86 0.019	-0.016 (0.020)	-0.068, 0.037	0.474	0.099, 1.57
	(0.83 - 0.88)	(0.85 - 0.90)	(-0.055 - 0.028)	,		(0.50 - 1.41)
						(0.00 1.11)
Total Gossypol	(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.96 (0.920)	0.019 (0.017)	-0.026, 0.063	0.324	0.064, 1.76
i otari Gossypor		(0.00 - 0.00)	(-0.012 - 0.033)	0.020, 0.000	0.521	(0.56 - 1.61)
800	(U.33) - 110 LV	(0.30 - 0.39)	-0.012 - 0.033)			(0.30 - 1.01)
.5 .	0' x/(1'		<i>N</i> .			

¹dw = dry weight; FA = fatty acid. ²MON 88701 plants were treated with dicamba and glufosinate. ³Mean (S.E.) = least-square mean (standard error).

⁴Control refers to the non-biotechnology derived, conventional control (Coker 130). ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero. Monsanto Company 12-CT-244U 365 of

			Difference (MON 88701 minus 🔇	ontrol	
	MON 88701 ²	Control ⁴			in ^o	Commercial
Analytical Component		Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	· ·	(Range)
Proximate (% dw)			SIL	, 9°, 9°, 1	3	
Ash	4.53 (0.063)	4.29 (0.071)	0.24 (0.078)	0.040, 0.44	0.027	3.42, 4.65
	(4.25 - 4.66)	(4.21 - 4.33)	(0.042 - 0.34)	y or all coi al	2.	(3.18 - 4.68)
		S		Confidence Interval 0.040, 0.44 -9.15, 10.75 -2.94, 2.67 -0.86, 0.18		
Calories (Kcal/100g)	496.63 (2.75)	495.83 (3.16)	0.80 (3.87)	-9:15, 10.75	0.844	457.61, 527.56
	(492.91 - 499.03)	(492.30 - 504.10)	(-8.23 - 6,50)	station of the second s		(466.09 - 509.91)
			G. A OT	ine at 1		
Carbohydrates	44.10 (0.71)	44.23 (0.82)	0.14 (1.09)	-2.94, 2.67	0.905	40.26, 56.45
	(42.20 - 44.98)	(42.53 - 45.14)	(-0.77 - 2.45)	CUIL		(43.28 - 54.90)
	.02	6. 75.	1 July 1015 de			
Moisture (% fw)	7.02 (0.17)	5.36 (0.19)	-0.34 (0.20)	-0.86, 0.18	0.153	4.79, 9.92
	(6.63 - 7.36)	(7.17-7.62)	(-0.73 - 0.19)			(6.05 - 10.50)
	is filling	Star Children	due of sills			
Protein	28.42 (0.62)	28.82 (0.72)	-0.40 (0.93)	-2.80, 1.99	0.681	22.30, 29.41
	(26.95 - 30.82)	(28.58 - 29.04)	(-1.630.87)			(20.58 - 29.28)
	101, 101, 10°	a and the second				
Total Fat	22.96 (0.55)	22.62 (0.64)	0.34 (0.81)	-1.75, 2.43	0.692	15.01, 28.51
×1/1/2/10	(22.34 - 23.50)	(21,87 - 24,18)	(-1.58 - 1.56)			(16.58 - 25.25)
alle	(0) (0) (0) (0)	1. 2 :5 ; 0 ¹⁰				
1×1	at ettinet	lo alle d				
Č	opy the equenne	6 36				
	SP'ithe educing	Co. ed				
	Contraction	ipili				
	SI, NO.	20.				
	CONTRECTION CONTRECTION					
Monsanto Company	00	ne permit and vie	2-CT-244U			366 of 620

					JII. 0	
			Difference (MON 88701 minus 🕼	ntroly	
	MON 88701 ²	Control ⁴			Ins.	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fiber (% dw)			all	Q1, Q2, 12	2	
Acid Detergent Fiber	24.04 (0.55)	24.01 (0.61)	0.027 (0.65)	1.64, 9.70	0.968	22.24, 31.96
-	(23.86 - 24.16)	(22.08 - 25.22)	(-1.08 1.77)	100 Mr. CON 40		(23.42 - 31.62)
	``´´´	G		C . S . of		· · · · · ·
Crude Fiber	16.43 (0.24)	17.67 (0.28)	01.24 (0.37)	Confidence Interval -1.64, 1.70 -2,19, -0.29 -2,19, -0.29 -3.46, -0.19	0.019	16.93, 22.68
	(16.06 - 17.24)	(17.49 17.88)	(-1.690.24)	July and		(16.92 - 23.32)
	(10.00 1/.2.)					(1002 20002)
Neutral Detergent Fiber	28.04 (0.88)	30.20 (1.00)	2 215 (191) -0	5 27 0 07	0.136	27.03, 42.49
Neutral Detergent Tiber	(25.13 - 30.18)	(28.87 - 32.60)	0 2 03 0 63	-J. 27, 0.77	0.150	(29.27 - 40.63)
	(23.13 - 30.18)	(20.07-132.00)	J(-2.33-0.03)			(29.27 - 40.03)
	20.22 (0.40)		-1.83 (0.63)	-3.46, -0.19	0.024	
Total Dietary Fiber	38.32 (0.42)	40.14 (0.49)	-1.83 (0.63)	-3.46, -0.19	0.034	34.52, 52.58
	(37.62 - 38.75)	(39.32 - 41.35)	(-3.740.57)			(37.29 - 48.60)
	the still all					
Amino Acid (% dw)	OT IS XU	1.06 (0.012) (1.02 - 1.10)	WI 19			
Alanine	1.04 (0.011)	1.06 (0.012)	-0.022 (0.014)	-0.058, 0.014	0.175	0.86, 1.11
2000	(1.02 01.05)	(1.02 - 1.10)	-0.0480.00010)			(0.83 - 1.22)
Arginine This do	SI SI ON THIS	, 4, 10, 0, x	<u>i</u> le			
Arginine	3.02 (0.053)	3,28 (0.060)	-0.26 (0.069)	-0.43, -0.082	0.013	2.38, 3.47
	(2.95 - 300)	(3.10-3.43)	(-0.340.14)			(2.30 - 3.55)
SUC M		\mathcal{O}				
	2 the and the					
	FURTI SOLOTION	6,0				
	all's course	1112 March 1				
	SP HIC SIN COMME)				
Monsanto Company	"ver	he pet and hibited and	·CT-244U			367 of 620
wonsanto Company	\checkmark	12-	01-2440			50/01/020

 Table E-7. Statistical Summary of Site KSLA Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

					111. 00	
			Difference (N	MON 88701 minus 🕉	ntroly	
	MON 88701 ²	Control ⁴		in ¹ Oix	illes .	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			, BI.	6, 16, 11, 11, 11, 11, 11, 11, 11, 11, 1		
Aspartic Acid	2.38 (0.037)	2.50 (0.043)	-0.11 (0.053)	-0.25, 0.022	0.083	1.94, 2.57
	(2.32 - 2.46)	(2.39 - 2.64)	(-0.26 -0.073)			(1.79 - 2.72)
		S	01 ×01	its of		
Cystine	0.43 (0.010)	0.42 (0.012)	0.0076 (0.016)	-0.033, 0.048	0.651	0.31, 0.45
5	(0.41 - 0.44)	(0.41 + 0.43)	(-0.017 - 0.015)			(0.29 - 0.47)
	· · · · ·			no th		,
Glutamic Acid	4.82 (0.12)	5.07 (0.14)	625 (0 18) ~ ⁽¹	95% Confidence Interval -0.25, 0.022 -0.033, 0.048 -0.71, 0.21	0.219	3.74, 5.28
	(4.58 - 5.22)	(4.86 - 5.43)	(-0.780.017)	JI 0.71, 0.21	0.219	(3.39 - 5.45)
	(1.50 5.22)	(1.00 13.15)		_<.		(5.5) 5.15)
Chusing	1.09 (0.010)	511.00021)	-0.029 (0.027)	-0.099, 0.040	0.330	0.90, 1.14
Glycine	1.08 (0.018)		-0.029(0.027)	-0.099, 0.040	0.330	(0.90, 1.14)
	(1.06-(1.12))	(1.07 - 1.10)	(-0.11 - 0.0024)			(0.85 - 1.23)
· · · · ·		er en ion			0.0 7 /	0.50.0.01
Histidine	0.75 (0.013)	0.77 (0.014)	-0.024 (0.011)	-0.052, 0.0035	0.074	0.59, 0.81
il.	(0.73 - 0.77)	(0.74 0.80)	(-0.045 - 0.0022)			(0.57 - 0.84)
200						
Isoleucine	0.92 (0.014)	0.95 (0.015)	-0.027 (0.014)	-0.063, 0.0091	0.112	0.75, 0.96
1/1. 1/0.	(0.91 - 0.95)	(0.91 - 0.98)	(-0.062 - 0.0079)			(0.72 - 1.03)
Isoleucine	1, 10, 10, 11, 1					
. X `	at all lot al	C Clark				
	of the cos the	le su				
	Futhe content	0 0				
		·iji				
	Further of the providence of t	11.				
	WILL OF					
Monsanto Company	v ^e `	e per and the	12-CT-244U			368 of 620
· · · · · · · · · · · · · · · · · · ·	Ŧ					200 01 020

 Table E-7. Statistical Summary of Site KSLA Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

						din do	
				Difference (<u>MON 88701 minus Co</u>	ontroly	
		MON 88701 ²	Control ⁴		: 01	ill ^{es}	Commercial
Analytical	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid	l (% dw)			, all	Q, Q, Q,	?	
Leucine		1.54 (0.020)	1.58 (0.022)	-0.043 (0.021)	-0.097, 0.011	0.098	1.25, 1.62
		(1.51 - 1.57)	(1.52 - 1.65)	(-0.083 -0.0065)	100 Lou Con XC)`	(1.20 - 1.72)
			Ġ	NON XO	Chinese of		
Lysine		1.22 (0.017)	1.25 (0.019)	-0.033 (0.021)	Confidence Interval -0.097, 0.011 -0.087, 0.021 -0.046, 0.050	0.178	1.01, 1.30
J ~ ~		(1.21 - 1.23)	(1.19 - 1.30)	(-0.073 - 0.027)			(0.99 - 1.44)
		()			No. X C.		(****
Methionine		0.39 (0.015)	0.39 (0.017)	0,0021 (0.019)	0.046 0.050	0.915	0.32, 0.38
Wiedholinie		(0.37 - 0.42)	(0.34 - 0.44)	(-0.017 - 0.027)	+0.040, 0.050	0.915	(0.29 - 0.49)
		(0.37 - 0.42)	(0.54 + 0.44)	(10.010 - 0.024)			(0.29 - 0.49)
DI 11.		1 44 (0 0 0		-0.090 (0.029)	0.16 0.016	0.025	1 10 1 50
Phenylalanii	ne	1.44 (0.022)	4,53 (0.025)	-0.090 (0.029)	-0.16, -0.016	0.025	1.12, 1.58
		(1.40-(1.46))	(1.45 - 1.58)	(-0,130.049)			(1.10 - 1.63)
		the string					
Proline		1.01 (0.018)	1.07 (0.020)	-0.060 (0.027)	-0.13, 0.0090	0.075	0.83, 1.08
	- Star	(0.98 - 1.03)	(1.03 - 1.12)	-0.060(0.027) (-0.120.042)			(0.79 - 1.17)
	2000	at the					
Serine		1.08 (0.029)	1.11 (0.034)	-0.031 (0.045)	-0.15, 0.083	0.513	0.83, 1.21
	<n, 1="" 12="" td="" you<=""><td>(1.03 - 1.18)</td><td>0 (1,06 - 1,20)</td><td>(-0.17 - 0.0023)</td><td></td><td></td><td>(0.81 - 1.24)</td></n,>	(1.03 - 1.18)	0 (1,06 - 1,20)	(-0.17 - 0.0023)			(0.81 - 1.24)
	This doct	KIL TON TON K					
		at all lot	Con all y di				
	CC SC	N'He dr ne	or all				
		Further conne	6,0				
		Further of the offer offer of the offer of the offer offer offer of the offer o	Ult				
		with or)				
Monsanto Co	mpony	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ne permis no	12-CT-244U			369 of 620
monsanto Co	mpany	\checkmark		12-01-2440			509 01 020

Table E-7. Statistical Summary of Site KSLA Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)
U C	din d

						d11. 0	
				Difference (MON 88701 minus 🕻	ontroly	
		MON 88701 ²	Control ⁴			ins	Commercial
Analytical	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid	l (% dw)			. SI	, Q, Q, Q,	?	
Threonine		0.86 (0.013)	0.88 (0.015)	-0.022 (0.019)	-0.071, 0.028	0.317	0.72, 0.89
		(0.84 - 0.88)	(0.83 - 0.92)	(-0.053 0.0050)	100 Mar CON SC)`	(0.67 - 0.96)
			Ġ.				· · · · ·
Tryptophan		0.42 (0.0061)	0.42 (0.0070)	-0.0028 (0.0090)	Confidence Interval -0.071, 0.028 -0.026, 0.020 -0.087, 0.0096	0.771	0.34, 0.42
		(0.42 - 0.43)	(0.42 - 0.43)	(-0.016 - 0.011)			(0.31 - 0.46)
		(0.12 0.10)			lo. th.		(0.01 0.10)
Tyrosine		0.80 (0.014)	0.84 (0.016)	·0.039 (0.019)	9 087 0 0096	0.094	0.67, 0.84
1 yrosine		(0.78 - 0.83)	(0.79 - 0.87)	(0.074) (0.015)	-0.087, 0.0090	0.094	(0.63 - 0.91)
		(0.78 - 0.83)	(0.79-70.07)	(-0.074 - 0.013)			(0.03 - 0.91)
X 7 1.					0.11.0.010	0.007	1 00 1 00
Valine		1.21 (0.017)	4.26 (0.019)	-0.048 (0.023)	-0.11, 0.010	0.087	1.00, 1.28
		(1.19-1.23)	(1.21-1.30)	(-0.0850.027)			(0.97 - 1.36)
		A Salling		d et the			
•	(% Total FA)	of the to the	0.72 (0.0096) (0.71 - 0.73)	-0.038 (0.0090) (-0.0490.016)			
14:0 Myristi	ic	0.68 (0.0087)	0.72 (0.0096)	-0.038 (0.0090)	-0.061, -0.015	0.007	0.16, 1.37
	20 ^{CC}	(0.66 0.71)	0 (0.71 - 0.73)	(-0.0490.016)			(0.45 - 1.04)
			1×10, 01	ill'e			
16:0 Palmiti	c this dor	22.61 (0.089)	22,73 (0.00)	-0.12 (0.13)	-0.46, 0.21	0.394	16.54, 30.55
	200.22	(22,34 - 22.84)	(22.69 - 22.78)	(-0.11 - 0.093)	·		(19.11 - 26.73)
	·0. /1-	al all chier		· · · · · · · · · · · · · · · · · · ·			· · · · · ·
		A the dry the					
	0	FURTINE COMMUNIC	0 2 0.0				
		FUTTO STATION CONTRACTOR	(IIV				
		o itt. ro)*				
		Nº OK	ie Ped and t				250 0.000
Monsanto Co	mpany	\checkmark	1	2-CT-244U			370 of 620

 Table E-7. Statistical Summary of Site KSLA Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

					111. 20	
			Difference (N	MON 88701 minus 🖒	ntrol)	
	MON 88701 ²	Control ⁴			ll s	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			, al.	6, 16 U.		
16:1 Palmitoleic	0.50 (0.0057)	0.49 (0.0062)	0.0067 (0.0059)	-0.0086, 0.022	0.312	0.39, 0.70
	(0.48 - 0.52)	(0.49 - 0.50)	(-0.0046 - 0.021)	Confidence Interval -0:0086, 0.022 -0:016, 0.23 -0.59, 0.31		(0.44 - 0.67)
		S	or vol	it's of		
18:0 Stearic	2.31 (0.031)	2.20 (0.036)	0.11 (0.047)	-0.016, 0.23	0.075	1.98, 2.95
	(2.29 - 2.32)	(2.15 - 2.28)	(0.039 - 0.17)	and and		(1.98 - 2.97)
	· · · · ·	So.		Clo XII		
18:1 Oleic	14.69 (0.11)	14.83 (0.13)	2014 (0.17)	-0.59, 0.31	0.454	11.38, 20.64
	(14.51 - 14.88)	(14.74 - 14.99)	(-0.48 - 0.14)			(13.71 - 18.39)
				<u>.</u>		()
18:2 Linoleic	57.84 (0.19)	57 78 (0 22)	0.059 (0.29)	-0.67, 0.79	0.843	47.49, 63.18
	(57.49 - 58.22)	57 65 - 57 93	(-0.44_0.19)	-0.07, 0.77	0.045	(49.78 - 59.61)
	(379.22)	(31.03 - 3(.53)	J. (59.1100.1)			(4).70 - 59.01)
18:3 Linolenic	0.18 (0.0027)		0.0066 (0.0033)	-0.0018, 0.015	0.100	0.060, 0.24
18.3 Linolenic		(0.17 - 0.18)	(0.0051 - 0.010)	-0.0018, 0.013	0.100	(0.10 - 0.29)
- CV	(0.18 - 0.19)	(0.17 0.18)	(0.0031 - 0.010)			(0.10 - 0.29)
20.0.4. 1.1.1. XO				0.014.0.0004	0.651	0.15.0.20
20:0 Arachidic	0.23 (0.0029)	0.24 (0.0034)	-0.0021 (0.0045)	-0.014, 0.0094	0.651	0.17, 0.38
LI. All	(0.23 = 0.24)	(0,23 - 0.24)	(-0.0063 - 0.0087)			(0.20 - 0.36)
a la	0, (10, 00, Cill)	$\cdot \circ \cdot \circ \cdot \circ \cdot \circ$				
1×)	or set we e	lo elli d				
Ċ	50 ³ Helloule ne					
	Futthe conne	No.xe				
	ppy the moule of the providence of the providenc					
	O, M. K					
	N, 6,					
Monsanto Company	10°0	e permis vie	12-CT-244U			371 of 620

 Table E-7. Statistical Summary of Site KSLA Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

					JII. 20	
			Difference (1	MON 88701 minus 🕼	ntrol	
	MON 88701 ²	Control ⁴			IL S	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			, DI	6, 6, 6, 6,		
22:0 Behenic	0.13 (0.0030)	0.13 (0.0035)	-0.0051 (0.0046)	-0.017\0.0067	0.318	0.070, 0.21
	(0.12 - 0.14)	(0.13 - 0.14)	(-0.0084 - 0.0036)	100 x 10 co. 80)*	(0.051 - 0.19)
		S	of to to	0.017, 0.0067		
Mineral		- KK	10°	dill of the		
Calcium (% dw)	0.20 (0.0060)	0.18 (0.0065)	0.026 (0.0061)	0.010, 0.042	0.007	0.058, 0.21
	(0.19 - 0.22)	(0.17 - 0.19)	(0.013 - 0.038)	nº at li		(0.081 - 0.18)
	· · · · ·	i OI interio	est rev ch), OI,		· · · · · ·
Copper (mg/kg dw)	10.08 (0.54)	11.01 (0.61)	-0.93 (0 71)	-2 75 0 89	0.246	2.97, 12.86
	(8.74 - 11.06)	(10.09 - 11.33)	(-2.59-0.69)	, 0.05	0.2.10	(4.46 - 11.62)
				ine.		()
Iron (mg/kg dw)	78.87 (5.50)	74.39 (6.35)	5 A48 (8 10)	-17.11, 26.07	0.616	47.30, 97.12
non (mg/kg uw)	(74.49 - 89.99)	(7265 - 7627)	3 93 - 8 73	-17.11, 20.07	0.010	(39.49 - 114.34)
			(3.3. 0,13)			(39.19 111.31)
Magnesium (% dw)	0.43 (0.0033)	0,40 (0.0038) (0.39 - 0.40)	0.027 (0.0046) (0.015 - 0.041)	0.015, 0.039	0.002	0.28, 0.47
Magnesium (% dw)	(0.43, (0.0033))	0.40 (0.0038)	(0.02)(0.0040)	0.015, 0.059	0.002	,
800	(0.41) - 0.450	(0.39 - 0.40)	(0.015 - 0.041)			(0.31 - 0.46)
					0.105	
Manganese (mg/kg dw)	13.34 (0.29)	12,56 (0.33)	0.78 (0.44)	-0.35, 1.90	0.135	9.07, 17.33
al al	(12.94 - 13.60)	(11.96 - 13.28)	(-0.53 - 1.64)			(9.07 - 17.14)
	or el verel	en di				
C C	Funti sea nat	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	En Us Oli A	.xe				
	Further out the protection of					
	0, 71, 18					
	N, 6,					
Monsanto Company	<i>b</i> e	e per and ipited and	2-CT-244U			372 of 620

Table E-7. Statistical Summary of Site KSLA Cottonseed Nutrients for MON 88701 ((Treated) vs. Conventional Control (continued)
·	

					<u>di. 0</u>	
			Difference (M	10N 88701 minus 🕻	ontroly	
	MON 88701 ²	Control ⁴			ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral			, DI,	Q' (Q' ()	9	
Phosphorus (% dw)	0.79 (0.0090)	0.78 (0.010)	0.0090 (0.011)	0.019, 0.037	S [©] 0.440	0.49, 0.87
	(0.75 - 0.82)	(0.77 - 0.79)	(-0.024) 0.029))`	(0.48 - 0.87)
		S	No. XOL	its of		
Potassium (% dw)	1.09 (0.010)	1.08 (0.012)	0.018 (0.015)	-0.020, 0.056	0.281	0.92, 1.21
	(1.08 - 1.11)	(1.05 + 1.10)	(-0.0048 - 0.063)	ant and		(0.90 - 1.26)
	· · · · ·	Boy Me		Cont II		,
Sodium (% dw)	0.022 (0.0028)	0.0080 (0.0032)	0.014 (0.0042)	0.0033, 0.025	0.020	0, 0.066
	(0.019 - 0.025)	(0.0054 - 0.013)	(0.0098 - 0.016)	J. 0.0055, 0.025	0.020	(0.0054 - 0.077)
	(0.01) 0.020)			<u> </u>		(0.0001 0.077)
Zing (mg/lig dw)	40.79 (1.18)	4200/127		5 95 2 11	0.533	27 27 44 05
Zinc (mg/kg dw)		42.00 (1.37)	-1.21(1.01)	-5.85, 3.44	0.555	27.27, 44.95
	(37.59 - 43.87)	(40.99-43.30)	(-5.91 3.27)			(25.07 - 48.49)
	ALL SILL					
Vitamin (mg/kg dw)	Chills at the	NI WILLIGHT	Nº 49			
Vitamin E	93 11 (2,67)	92.34 (2.91)	0.76 (2.71)	-6.20, 7.72	0.789	41.91, 205.89
200	(86.23 - 100.03)	0(91.78 - 95.85)	(-6.54 - 4.18)			(84.07 - 162.76)
S	10. 2 01 M/	× 1, %, 0,	-7Jy			

Table E-7. Statistical Summary of Site KSLA Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued) 6 Mi

 ¹dw = dry weight, fw = fresh weight, FA ⇒ fatty acid.

 ²MON 88701 plants were treated with dicamba and glufosinate

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 373 of

			Difference (N	MON 88701 minus 🛠	ontrol	
	MON 88701 ²	Control ⁴	X		ing	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Acid	d (% Total FA)		211		2	
Dihydrosterculic Acid	0.15 (0.010)	0.12 (0.012)	0.026 (0.014)	-0.011, 0.063	0.129	0.078, 0.25
	(0.11 - 0.18)	(0.12 - 0.13)	(-0.0087-0.054)	100 aller con flo)`	(0.038 - 0.23)
		S	No' xol	its of		
Malvalic Acid	0.45 (0.030)	0.37 (0.034)	0.083 (0.039)	-0.018, 0.18	0.088	0.23, 0.54
	(0.34 - 0.55)	(0.33 - 0.39)	(-0.024 - 0.15)			(0.11 - 0.59)
	· · · ·	Boy M		all'all		
Sterculic Acid	0.23 (0.014)	0.20 (0.016)	0.031 (0.019)	-0.017, 0.079	0.159	0.17, 0.27
	(0.18 - 0.28)	(0.19 - 0.21)	(-0.023 - 0.078)	JI		(0.061 - 0.34)
						(((((((((((((((((((((((((((((((((((((((
Gossypol (% dw)	orois	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		Co.		
Free Gossypol	1.07 (0.027)	× 0 95 00 030	0,12 (0.033)	0.036, 0.20	0.014	0.099, 1.57
	(1.03 - 1.10)	(0.86 - 1.05)	(0.051 - 0.20)	0.050, 0.20	0.014	(0.50 - 1.41)
	(1.03 - 110)		(0.001 - 0.20)			(0.50 - 1.41)
Total Casaymal		101 (0020)	00 12 00 047)	0.00016, 0.24	0.049	0.064 1.76
Total Gossypol	1.13 (0.033)		0.12 (0.047)	0.00010, 0.24	0.049	0.064, 1.76
200	GI.UU(SI.24)	(1.00 - 1.02)	(0.0061 - 0.23)			(0.56 - 1.61)
		2,10.0.	11			

Table E-8. Statistical Summary of Site KSLA Cottonseed Anti-nutrients for MON 88701 (Treated) S. Conventional Control JI, 6

 1 dw = dry weight; FA = fatty acid. 2 MON 88701 plants were treated with dicamba and glufosinate. 3 Mean (S.E.) = least-square mean (standard error).

⁴Control refers to the non-biotechnology derived, conventional control (Coker 130). ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero. Monsanto Company 12-CT-244U 374 of

Table E-9. St	tatistical S	ummary of Site L	ACH Cottonseed	Nutrients for N	ION 88701 (Treat	ed) vs. Con	ventional Control
				Difference (MON 88701 minus C	ontrol)	
		MON 88701 ²	Control ⁴		C ⁽¹⁾ iS		Commercial
Analytical C	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	- -	(Range)	(Range)	(Range)	Confidence Interval	🦻 (p-Value)	(Range)
Proximate (%	dw)			(th)	to lo to	<u> (</u> 0	
Ash		4.35 (0.047)	4.12 (0.047)	0.23 (0.066)	0.066, 0.39	0.013	3.42, 4.65
		(4.23 - 4.47)	(4.06 - 4.15)	(0.11 - 0.41)	tion of its there		(3.18 - 4.68)
Calories (Kcal/	100g)	494.11 (3.01)	494.75 (3.01)	-0.64 (4.19)	10,89, 9.61	0.883	457.61, 527.56
		(482.46 - 501.83)	(490,27 - 498.67)	(-14.30 - 4.88)	0,066, 0.39		(466.09 - 509.91)
Carbohydrates		45.92 (0.79)	47.84 (0.79) 3	-1.91 (1.11)	-4.64, 0.81	0.136	40.26, 56.45
		(44.17 - 48.89)	(46.77 - 50.30)	(-5.19 - 1.91))	et.		(43.28 - 54.90)
Moisture (% fw	7)	6.70 (0.26)	6.98 (0.26)	-0.28 (0.36)	-1.17, 0.62	0.478	4.79, 9.92
		(6.46 - 6.94)	(6.15 - 7.40)	(-0,90 - 0,79)			(6.05 - 10.50)
Protein		27 44 (0.56)	25.80 (0.56)	1.64 (0.80)	-0.31, 3.59	0.084	22.30, 29.41
	rhis lor	(27.06-27.92)	(23,53 - 27,85)	(0.074 - 3.73)			(20.58 - 29.28)
Total Fat	THIS JOY	22.27 (0.64)	22,25 (0.64)	0.018 (0.90)	-2.18, 2.22	0.984	15.01, 28.51
	This dlor	(19.79 - 23.86)	(21.29 - 23.02)	(-2.89 - 1.18)			(16.58 - 25.25)
	C	SPY HEI COLLE COMME	ne pertind t				
Monsanto Compa	any	Pe ,	12	-CT-244U			375 of 620

				(O)	201	
			Difference (MON 88701 minus Cor	ttrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
Fiber (% dw)			(th)	sto do de	Ø	
Acid Detergent Fiber	25.72 (0.45)	28.35 (0.45)	-2.63 (0.63)	<u>_</u> -4,18, -1.08	0.005	22.24, 31.96
	(24.16 - 27.08)	(27.81 - 29.58)	(-5.420.73)	1 07-4,18, - 1-08 60		(23.42 - 31.62)
Crude Fiber	18.73 (0.66)	19.62 (0.66)	-0.89 (0.93)	3.15, 1.38	0.376	16.93, 22.68
	(17.75 - 19.77)	(18,46 - 20.54)	(-1.79 - 0.17)	-4,18, -1,98 -4,18, -1,98 -1,97, 0.10		(16.92 - 23.32)
Neutral Detergent Fiber	33.12 (0.65)	34.05 (0.65)	-0.93 (0.42)	-1.97, 0.10	0.070	27.03, 42.49
C	(32.24 - 34.42)	(32.61 - 35.84)	(-1.65 - 0.23)	ner.		(29.27 - 40.63)
Total Dietary Fiber	39.82 (0.49)	43,35 (0,49)	e3.53 (0.69)	-5.21, -1.85	0.002	34.52, 52.58
Amino Acid (% dw)	(39.02 - 40.86)	(42.33 - 44.37)	6 (-5.341.47)			(37.29 - 48.60)
Alanine Acid (76 dw)	1.07 (0.018)	1.03 (0.018)	0.038 (0.014)	0.0050, 0.072	0.030	0.86, 1.11
This 10t		(1.00-01.06)	(0.00025 - 0.082)			(0.83 - 1.22)
Arginine	2.96 (0.073)	2.98 (0.073)	-0.017 (0.084)	-0.22, 0.19	0.849	2.38, 3.47
W. C.	(2.64-3.13)	(2.89 - 3.13)	(-0.25 - 0.15)			(2.30 - 3.55)
	FUCONS CONT	(i) ^{ieo}				
Monsanto Company	100 Ve	12	2-CT-244U			376 of 620

				(O)	3 N	
		_	Difference (MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		Cli ist		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			(th)	077, 022		
Aspartic Acid	2.37 (0.050)	2.30 (0.050)	0.074 (0.062)	0.077, 0.22	0.278	1.94, 2.57
	(2.17 - 2.49)	(2.25 - 2.40)	(-0.12 - 0.22)	-0.097, 0.22 -0.024, 0.074		(1.79 - 2.72)
		al r	3	Still of I this		
Cystine	0.41 (0.016)	0.38 (0.016)	0.026 (0.019)	-0.021, 0.074	0.222	0.31, 0.45
	(0.38 - 0.46)	(036 - 0.44)	(-0.024 - 0.082)	me at 1.		(0.29 - 0.47)
		ix ³ / ₁ / ₁ / ₀ /	So to tot c			
Glutamic Acid	4.78 (0.13)	4.52 (0,13)	0.27 (0.16)	-0.13, 0.67	0.151	3.74, 5.28
	(4.32 - 5.26)	(4.37 - 4.75)	(-0.15 - 0.79)	d'		(3.39 - 5.45)
	of s	SUL HUIL FOR	xillo of this .	Ino		
Glycine	1.11 (0.020)	1.06 (0.020)	0.057 (0.025)	-0.0034, 0.12	0.060	0.90, 1.14
	(1.02 - 1.18)	(1.04 - 1.09)	(-0.024 - 0.14)	, , , , , , , , , , , , , , , , , , , ,		(0.85 - 1.23)
	N S S XO	ner ner still al	lo inco oi			
Histidine	0.74 (0.020)			-0.014, 0.052	0.206	0.59, 0.81
CV CV	(0.68 - 0.78)	0.72 (0.020) (0.67 - 0.76)	0.019 (0.014) (0.013 - 0.029)	0.01., 0.002	0.200	(0.57 - 0.84)
80.2	AND SUPERIOR					(********)
Isoleucine This do	090(0018)	0.8870.018)	0.020 (0.020)	-0.028, 0.068	0.355	0.75, 0.96
	(0.84 - 0.97)	(0.87 - 0.90)	(-0.028 - 0.096)	0.020, 0.000	0.555	(0.72 - 1.03)
and he had			(0.020 0.090)			(0.72 1.05)
	R X C C					
G	Furtherseamin	0× 2'0'				
· · · · · · · · · · · · · · · · · · ·	Furthorse connection	N 100				
	and our	dip				
	Furthe contraction of the contra)`				
	Nº COK	ne period and the second and the sec				
Monsanto Company	Ŷ	12	-CT-244U			377 of 620

				([©]	S ON	
		_	Difference (MON 88701 minus Co	ntrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (n-Value)	Commercial Tolerance Interval ⁵ (Range)
Amino Acid (% dw)	(ituiige)	(Itunge)	(itunge)			(Itunge)
Leucine	1.51 (0.026) (1.40 - 1.58)	1.48 (0.026) (1.44 - 1.52)	0.039 (0.028) (-0.035 - 0.12)			1.25, 1.62 (1.20 - 1.72)
Lysine	1.26 (0.024) (1.17 - 1.31)	1.18 (0.024) (1.12 - 1.23)	0.083 (0.027) (0.021 - 0.15)	-0.030, 0.91 -0.030, 0.91 -0.016, 0.15 -0.016, 0.15 -0.013, 0.077	0.023	1.01, 1.30 (0.99 - 1.44)
Methionine	0.42 (0.017) (0.37 - 0.44)	0.38 (0.617) (0.32 - 0.42)	0.045 (0.013) (0.020 - 0.075)	our 0.013, 0.077	0.013	0.32, 0.38 (0.29 - 0.49)
Phenylalanine	1.41 (0.027) (1.28 - 1.47)	1.39 (0.027) (1.36 - 1.43)	(-0.077 - 0.094)	-0.066, 0.095	0.668	1.12, 1.58 (1.10 - 1.63)
Proline	(0.94 01.04)	ne we still si	0.017 (0.022) (-0.039 - 0.093)	-0.036, 0.071	0.459	0.83, 1.08 (0.79 - 1.17)
Serine This do	9.07 (0.022)	1.03 (0.022) (1.01 - 1.06)	0.038 (0.030) (-0.047 - 0.12)	-0.036, 0.11	0.257	0.83, 1.21 (0.81 - 1.24)
an an a	SON LOONSCOMMENTE	$(0, (0, 7_{d}))$				
Monsanto Company	L' POP	12	-CT-244U			378 of 620

 Table E-9. Statistical Summary of Site LACH Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				(^O)	S ON	
			Difference (N	MON 88701 minus Co	ntrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
Amino Acid (% dw)						
Threonine	0.87 (0.016) (0.80 - 0.90)	0.84 (0.016) (0.82 - 0.86)	0.027 (0.012) (-0.021 - 0.060)	0-0,0036, 0,057 50	0.074	0.72, 0.89 (0.67 - 0.96)
Tryptophan	0.41 (0.014) (0.36 - 0.46)	0.39 (0.014) (0.38 - 0.43)	0.019 (0.018) (-0.024 - 0.078)	-0.026, 0.063	0.347	0.34, 0.42 (0.31 - 0.46)
Tyrosine	(0.30 (0.018) (0.72 - 0.84)	0.79 (0.018) (0.76 - 0.81)	0.010 (0.021) (-0.045 - 0.058)	-0.0036, 0.057 -0.026, 0.063	0.643	0.67, 0.84 (0.63 - 0.91)
Valine	1.21 (0.024) (1.10 - 1.29)	1.18 (0.024) (1.17 - 1.19)	(-0.045 - 0.058) 0.026 (0.029) (-0.054 - 0.12)	-0.044, 0.096	0.397	1.00, 1.28 (0.97 - 1.36)
Fatty Acid (% Total FA)	1.21 (0.024) (1.19 - 1.29) 0.74 (0.013) (0.71 - 0.76)	2 (U. 13 LU. 18)	-0.012 (0.018) (-0.032 - 0.0064)	-0.057, 0.032	0.523	0.16, 1.37 (0.45 - 1.04)
16:0 Palmitic	24,48 (0,091) (24.37 - 24.55)	24.04 (0.091) (23.92 - 24.16)	0.44 (0.13) (0.21 - 0.61)	0.12, 0.75	0.014	16.54, 30.55 (19.11 - 26.73)
<	FURCINE CONTENT	i lotte				
Monsanto Company	60	12	2-CT-244U			379 of 620

				10	S ON	
			Difference (MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		CU IISI		Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			(KA)			
16:1 Palmitoleic	0.51 (0.0035)	0.50 (0.0035)	0.0090 (0.0049)	-0.0030, 0.021	0.116	0.39, 0.70
	(0.50 - 0.52)	(0.49 - 0.50)	(-0.0051 - 0.020)	it's not		(0.44 - 0.67)
		of t	Jal Julia	CHICK ON A TH		
18:0 Stearic	2.68 (0.018)	2.52 (0.018)	0.15 (0.026)	0.089, 0.22	0.001	1.98, 2.95
	(2.64 - 2.73)	(2:49 - 2.57)	(0.11-0.24)	0.089, 0.22		(1.98 - 2.97)
		10. int X		. not		
18:1 Oleic	14.70 (0.095)	14.29 (0,095)	0.41 (0.13)	0.084, 0.74	0.021	11.38, 20.64
	(14.48 - 15.01)	(14.13 - 14.53)	(0.16 - 0.72)	d'		(13.71 - 18.39)
	R R S	· SU thing is	atting of this w	NC .		
18:2 Linoleic	55.53 (0.14)	56,63 (0,14)	ef.09 (0.20)	-1.59, -0.60	0.001	47.49, 63.18
	(55.15 - 55.99)	(56.52 - 56.72)	(-1.420.63)			(49.78 - 59.61)
	en xo xo	The the still s	0.0063 (0.0059) (-0.0073 - 0.019)			
18:3 Linolenic	0.15 (0.0042)	0.15 (0.0042)	0.0063 (0.0059)	-0.0082, 0.021	0.327	0.060, 0.24
XOCC	(0.14 0.17)	(0.13 - 0.15)	(-0.0073 - 0.019)			(0.10 - 0.29)
is	Si S OI MIS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
20:0 Arachidic	0.31 (0.0054)	0.29 (0.0054)	0.020 (0.0071)	0.0022, 0.037	0.033	0.17, 0.38
SUL ME	(0.31 - 0.32)	(0.29-0.30)	(0.016 - 0.023)			(0.20 - 0.36)
	of en je e	10. M. 9				
C.	Si All Coralle	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
	Furthinged man	Ne. Ke				
	C A ON	iloli				
	Furthe could ne					
	2 OC	ribited and				
Monsanto Company	\checkmark	12	2-CT-244U			380 of 620

 Table E-9. Statistical Summary of Site LACH Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				(^O)	S ON	
			Difference (MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		CU IISI		Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			a ka	all all all a		
22:0 Behenic	0.14 (0.0039)	0.14 (0.0039)	0.00029 (0.0055)	-0,013, 0.014	0.959	0.070, 0.21
	(0.14 - 0.15)	(0.14 - 0.15)	(-0.0046 - 0.0027)	1) of its work		(0.051 - 0.19)
		al r	3	Ctill of I this		
Mineral		all	Stor Con Sta	r dr das		
Calcium (% dw)	0.12 (0.0039)	0.12 (0.0039)	0.0047 (0.0050)	-0,0075, 0.017	0.381	0.058, 0.21
	(0.11 - 0.13)	(0.12 - 0.12)	C (-0.012 - 0.015)	2. 01		(0.081 - 0.18)
	a de la companya de la	a sint				
Copper (mg/kg dw)	8.48 (0.30)	8.70 (0.30)	-0.22 (0.42)	vines ·-1.26, 0.82	0.621	2.97, 12.86
	(7.86 - 9.49)	(8.11 - 9.14)	(-1.27 - 0.99)	inc.		(4.46 - 11.62)
	NO XO	15 di di s	Stice Att O	2		· · · · ·
Iron (mg/kg dw)	76.74 (4.19)	68.59 (4.19)	8.15 (4.72)	-3.40, 19.69	0.134	47.30, 97.12
	(73 99 - 83 170)	(66 28 - 70 38)	(3.68 - 12.79)	5.10, 19.09	0.121	(39.49 - 114.34)
	Contraction of the					(••••••)
Magnesium (% dw)	0 ,41 (0.0065)	0 39 (0 0065)	0.021 (0.0093)	-0.0018, 0.043	0.065	0.28, 0.47
widghesium (70 dw)	(0.39 - 0.44)	$(0.38 \cdot 0.41)$	(-0.014 - 0.054)	-0.0010, 0.045	0.005	(0.31 - 0.46)
inis or		(0.30(0.+1))	(-0.01+ - 0.05+)			(0.51 - 0.50)
Manganaga (mg/kg dir)	1202 (020) 11	12 97 6 27	0.26 (0.52)	-1.03, 1.54	0.642	9.07, 17.33
Manganese (mg/kg dw)	(1102, 1270)	(12.07(0.57))	0.26 (0.52) (-1.95 - 1.16)	-1.05, 1.54	0.042	9.07, 17.33
	(11.92-13.79)	(12.31 - 13.87)	(-1.95 - 1.10)			(9.07 - 17.14)
C ¹	the solution	N N N				
		N. KOU				
	any inour					
	FUCONSCOPPT					
	FUCONS CONT					
Monsanto Company	<i>\Q</i>	1	2-CT-244U			381 of 620

				< <u>~</u>	~ (). _ ().	
			Difference (1	MON 88701 minus Cor	ntrol)	
	MON 88701 ²	Control ⁴		Chilish		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral			(Charles)	to do to	Ø	
Phosphorus (% dw)	0.75 (0.014)	0.71 (0.014)	0.036 (0.019)	-0.012, 0.083	0.113	0.49, 0.87
	(0.71 - 0.80)	(0.69 - 0.73)	(-0.023 - 0.11)	S all its all		(0.48 - 0.87)
		A .	al al al	dill of the		
Potassium (% dw)	1.18 (0.022)	1.17 (0.022)	0.0099 (0.029)	-0.061, 0.081	0.742	0.92, 1.21
, , , , , , , , , , , , , , , , , , ,	(1.16 - 1.22)	(12 - 1.27)	(-0.087 - 0.064)	no th		(0.90 - 1.26)
	,		e al character	N. Oli		,
Sodium (% dw)	0.023 (0.0043)	0.015 (0.0043)	0.0078 (0.0060)	-0.0069, 0.022	0.242	0, 0.066
	(0.021 - 0.024)	(0.0053 - 0.027)	(-0.0031 - 0.017)	(·	0.212	(0.0054 - 0.077)
	(0.021 0.02)			NO'		(0.0001 0.077)
Zina (ma/lea duu)	33.97 (0.93)	35.74 (0.93)	S 877 4 72	4.00 1.45	0.227	27 27 44 05
Zinc (mg/kg dw)		(2510, 2700)	EI. / / CI. 52)	-4.99, 1.45	0.227	27.27, 44.95
	(31.68 - 37.84)	(\$3.10 - \$7.09)	6 (-5,41 - 2,55)			(25.07 - 48.49)
	Con its it is	Mur Mur Spr S	OWNES			
Vitamin (mg/kg dw)			$\emptyset \cdot 0$			
Vitamin E	169.88 (2.48)	0 149.96 (2,48)	19.92 (3.48)	11.40, 28.43	0.001	41.91, 205.89
.9.4	(163.34 - 175.33)	(148.96 - 152.67)	(14.16 - 26.36)			(84.07 - 162.76)
×his 101	V XS and	2' 12 . 10 xe)			

 ¹dw = dry weight; fw = fresh weight; FA = fatty acid.

 ²MON 88701 plants were treated with dicamba and glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 382 of

			D:ff ()	ION 00701		
		4	Difference (N	<u> 40N 88701 minus Co</u>	nitoly	
	MON 88701 ²	Control ⁴		×i0	ll 3	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)		Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Acid	l (% Total FA)		all	Q1 Q X	2	
Dihydrosterculic Acid	0.15 (0.011)	0.13 (0.011)	0.019 (0.016)	-0.019, 0.057	0.271	0.078, 0.25
	(0.13 - 0.19)	(0.12 - 0.14)	(-0.0082 - 0.068)	0,00,00,00,40		(0.038 - 0.23)
		Ġ	ofor tot	in its of		· · · · ·
Malvalic Acid	0.39 (0.035)	0.35 (0.035)	0.032 (0.049)	-0.088, 0.15	0.535	0.23, 0.54
	(0.33 - 0.53)	(0.31 - 0.38)	(-0.047 -016)			(0.11 - 0.59)
		(B))		ne th		
Sterculic Acid	0.22 (0.016)	0.20 (0.016)	0.020 (0.023)	0.037, 0.076	0.432	0.17, 0.27
	(0.19 - 0.29)	(0.17 - 0.21)	(-0.011 - 0.076)			(0.061 - 0.34)
	020	6. 3	11 July 11 400	à.		· · · · ·
Gossypol (% dw)	pros.	SUL HUIL		(°		
Free Gossypol	0.86 (0.026)	0.81 (0.026)	0.056 (0.036)	-0.033, 0.14	0.175	0.099, 1.57
~ 1	(0.80 - 0.92)	(0.78 - 0.84)	(0.0028 - 0.13)	,		(0.50 - 1.41)
	ALL SIXO	ner ner tion	no ne oi			
Total Gossypol	0.93 (0.025)	0.90 (0.025)	0.033 (0.036)	-0.055, 0.12	0.395	0.064, 1.76
	(0.90 D.00)	(0.82 - 0.94)	(-0.015 - 0.086)	,		(0.56 - 1.61)
20	SUL ETTING					(
· · · · · · · · · · · · · · · · · · ·	α \cup \times		$\mathbf{\nabla}$			

 1 dw = dry weight; FA = fatty acid. 2 MON 88701 plants were treated with dicamba and glufosinate. 3 Mean (S.E.) = least-square mean (standard error).

^aMean (S.E.) = least-square mean (standard error). ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130). ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero. Monsanto Company 12-CT-244U 383 of

			Difference	(MON 88701 minus 🔇	ontrol	
	MON 88701 ²	Control ⁴			in ^o	Commercial
Analytical Component		Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Proximate (% dw)			SIL	Connuence interval	3	
Ash	4.34 (0.057)	4.14 (0.064)	0.20 (0.070)	0.024, 0.39	0.033	3.42, 4.65
	(4.29 - 4.40)	(3.94 - 4.26)	(0.13 0.35)	NO MU CON SI)`)`	(3.18 - 4.68)
		S	of xC	Confidence Interval 0.024, 0.39 -0.15, 12.51 -0.26, 0.70		
Calories (Kcal/100g)	497.98 (1.61)	491.80 (1.86)	6.18 (2.46)	-0.15, 12.51	0.053	457.61, 527.56
	(491.46 - 501.77)	(488.93 - 494.48)	(-3.01 - 10.35)	n li la		(466.09 - 509.91)
		, 8°°° , 10°	G. DO	in only		
Carbohydrates	44.40 (0.59)	44.36 (0.68)	0.044 (0.87)	-2.20, 2.29	0.961	40.26, 56.45
	(43.84 - 45.31)	(43.65 - 49.15)	(-1.31 - 0,79)	CUIL		(43.28 - 54.90)
	000	6. 75.	1 JUL HOLE OF			
Moisture (% fw)	9.18 (0.22)	8.96 (0.23)	0.22 (0.19)	-0.26, 0.70	0.287	4.79, 9.92
	(8.64 9.67)	(8.59-9,19)	(-0.050 - 0.48)			(6.05 - 10.50)
	is "All's	Star and and	0.22(0,19) (-0.050 - 0.48)			
Protein	28.24 (0.61)	29.84 (0.70)	-1.60 (0.85)	-3.78, 0.59	0.119	22.30, 29.41
	(26.53 - 29.33)	(29.62 - 30.42)	41.60 (0.85) (-1.990.53)			(20.58 - 29.28)
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
Total Fat	23.04 (0.30)	21.59 (0.34)	1.45 (0.46)	0.28, 2.63	0.024	15.01, 28.51
<1/11/2/101	(21.89 - 23.76)	(21,03 - 22,21)	(-0.32 - 2.22)			(16.58 - 25.25)
aller	(or ill' in the	·				
1×1	at all let	los alles of the				
Ì	opy the edue me	Se su				
	SP HINE COUNTE					
	SP inthe educine	SU.				
	opy the not connection of the constant of the constant of the constant of the context of the constant of the c					
Monsanto Company	00	ne permit and the prive and the permit and the perm	2-CT-244U			384 of 620

				(O)	201	
			Difference (	MON 88701 minus Cor	ttrol)	
Analytical Component	MON 88701 ² Mean (S.E.) ³	Control ⁴ Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Commercial Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fiber (% dw)	( 8-)			10,10, 10,	Ø	
Acid Detergent Fiber	25.91 (1.12)	26.31 (1.29)	-0.40 (1.71)		0.822	22.24, 31.96
e	(24.26 - 27.74)	(24.72 - 28.08)	(-1.880.096)	No. 19 of		(23.42 - 31.62)
		· A		dill'ar it the		· · · · · · · · · · · · · · · · · · ·
Crude Fiber	17.01 (0.29)	16.93 (0.33)	0.086 (0.38)	-4.80, 3.99 -4.80, 3.99 -4.80, 3.99 -4.10 -4.11, 4.00	0.831	16.93, 22.68
	(16.31 - 17.78)	(16.30 - 17.90)	(-0.12 - 0.31)	No. X		(16.92 - 23.32)
			es al relation	JI OL		( )
Neutral Detergent Fiber	31.08 (1.03)	31.14 (1.19)	-0.057 (1.58)	-4 11 4 00	0.972	27.03, 42.49
	(29.23 - 32.66)	(30.85 - 31.49)	(-1.62 - (1.16)		0.27	(29.27 - 40.63)
				ine.		(
Total Dietary Fiber	38.51 (0.55)	39.52 (0.64)	el.01 (0.85)	-3.19, 1.16	0.285	34.52, 52.58
Total Dietary Tiber	(36.91 - 39.40)	(39.05 - 39.86)	(-0.900.088)	5.17, 1.10	0.205	(37.29 - 48.60)
			(-0.900.088)			(27.23 10.00)
Amino Acid (% dw)	NO' & T'S C' S'					
Alanine	1.11 (0.020)	1.10 (0.023)	0.011 (0.031)	-0.068, 0.091	0.727	0.86, 1.11
	(1.07 - 1.14)	(1.05 - 1.14)	(-0.0051 - 0.026)	0.000, 0.071	0.727	(0.83 - 1.22)
inis jor		201 + 201 - 8	( 0.0051 0.020)			(0.05 1.22)
Arginine	3 08 (0 052) 1	3.20 (0.060)	-0.12 (0.080)	-0.33, 0.080	0.178	2.38, 3.47
Arginine	(2 97 - 3 20)	(3.11 - 3.27)	(-0.190.031)	-0.35, 0.080	0.178	(2.30 - 3.55)
1/2 ·	R 12.7 6 3.200	(3.11 - 3.27)	(-0.1)0.031)			(2.30 - 3.33)
G						
	FUCONSCOPPT					
	2ny thous	dill.				
	o ville of	)`				
Monsanto Company	FUCONSCORMENT	1′	2-CT-244U			385 of 620
Monsulto Company	<b>T</b>	14	2 01 2770			565 01 020

 Table E-11. Statistical Summary of Site NCBD Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				( ^O )	2 Di	
			Difference (	MON 88701 minus Co	ntrol)	
Analytical Component	MON 88701 ² Mean (S.E.) ³	Control ⁴ Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Commercial Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)						
Aspartic Acid	2.50 (0.053)	2.55 (0.061)	-0.045 (0.081)	-0,25, 0.16	0.604	1.94, 2.57
	(2.43 - 2.58)	(2.46 - 2.63)	(-0.042 - 0.0096)	10 01 10 10 10 10 10 10 10 10 10 10 10 1		(1.79 - 2.72)
Cystine	0.43 (0.018)	0.42 (0.021)	0.016 (0.028)	-0.056, 0.088	0.594	0.31, 0.45
	(0.40 - 0.46)	(0.39 - 0.46)	(-0.051 - 0.055)	meent		(0.29 - 0.47)
Glutamic Acid	4.71 (0.13)	5.08 (0, 15)	-0.37 (0.20)	-0.88, 0.14	0.120	3.74, 5.28
	(4.64 - 4.79)	(4.85 - 5.40)	(-0.660.19) 0.0013 (0.029) (-0.015 - 0.023)	-9,25, 0.16 -0.056, 0.088 -0.88, 0.14		(3.39 - 5.45)
Glycine	1.11 (0.019)	1.11 (0.022)	0.0013 (0.029)	-0.072, 0.075	0.964	0.90, 1.14
	(1.06 - 1.16)	(1.08 - 1.14)	(-0.015 - 0.023)			(0.85 - 1.23)
Histidine	0.76 (0.013)	(1.08 - 1.14) (0.76 (0.015)	0 (0.019)	-0.049, 0.049	0.999	0.59, 0.81
C ^V .	$(0.73 \pm 0.79)$	0.76 (0.015) (0.74 - 0.79)	0 (0.019) (-0.032 - 0.052)			(0.57 - 0.84)
Isoleucine this of	0.96 (0.018)	0.96 (0.020)	-0.00058 (0.020)	-0.053, 0.051	0.978	0.75, 0.96
Isoleucine This do an	(0,90 - 1,00)	(0.93 0.97)	(-0.030 - 0.040)	,		(0.72 - 1.03)
90° **	A CL US C	erri d'				
	Untre contre	e Pedand				
Monsanto Company	will pro	10	2-CT-244U			386 of 620

 Table E-11. Statistical Summary of Site NCBD Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

s Control) Significance (p-Value) 0.869	Commercial Tolerance Interval ⁵ (Range)
Significance (p-Value) 0.869	Commercial Tolerance Interval ⁵ (Range)
Significance rval (p-Value) 0.869	Tolerance Interval ⁵ (Range)
val (p-Value)	(Range)
0.869	
0.869	
	1.25, 1.62
	(1.20 - 1.72)
0.819	1.01, 1.30
	(0.99 - 1.44)
0.477	0.32, 0.38
	(0.29 - 0.49)
0.342	1.12, 1.58
	(1.10 - 1.63)
0.075	0.83, 1.08
	(0.79 - 1.17)
0.696	0.83, 1.21
	(0.81 - 1.24)
	,
	387 of 620
	0.342

 Table E-11. Statistical Summary of Site NCBD Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				( [©]	2 Dr.	
			Difference (N	10N 88701 minus Cor	ntrol)	
Analytical Component	MON 88701 ² Mean (S.E.) ³	Control ⁴ Mean (S.E.)	Mean (S.E.) 太	95% Confidence Interval	Significance	Commercial Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			(c)	0.045 0.064		
Threonine	0.90 (0.014)	0.89 (0.016)	0.0096 (0.021)	-0.045, 0.064	0.669	0.72, 0.89
	(0.88 - 0.92)	(0.86 - 0.92)	(-0.0050 - 0.015)	tion the there		(0.67 - 0.96)
Tryptophan	0.41 (0.021)	0.45 (0.024)	-0.039 (0.032)	-0.045, 0.064	0.285	0.34, 0.42
	(0.40 - 0.44)	(039 - 0.52)	(-0.081 - 0.024)	no nt li		(0.31 - 0.46)
Tyrosine	0.84 (0.012)	0.84 (0,014)	0.0015 (0.018)	-0.12, 0.045	0.937	0.67, 0.84
5	(0.81 - 0.87)	(0.82 - 0.87)	(-0.026 - 0.039)	e ^{t.}		(0.63 - 0.91)
Valine	1.26 (0.025)	1.30 (0.027)	(-0.026 - 0.039) -0.038 (0.021) (-0.0670.010)	-0.091, 0.016	0.130	1.00, 1.28
	(1.17-1.31)	(1.24 - 1.32)	-0.038 (0.021) (-0.0670.010)		0.120	(0.97 - 1.36)
Fatty Acid (% Total FA)	ner its at to		-0.063 (0.011)			
4:0 Myristic	0.68 (0.0074)	0.75 (0.0086)	-0.063 (0.011)	-0.091, -0.034	0.002	0.16, 1.37
in the second	o (0.66 - 0.70)	(0.74 - 0.76)	-0.003 (0.011)			(0.45 - 1.04)
6:0 Palmitic	22.89 (0012)	23.10 (0.14)	-0.21 (0.18)	-0.68, 0.25	0.286	16.54, 30.55
	(22.47 - 23.15)	(23.07 - 23.15)	(-0.68 - 0.079)	,		(19.11 - 26.73)
C	CALLS OF THE	6 <u>6</u> <u>8</u>				
	FUCONS CON W					
	FUCORS COMMENT					
Monsanto Company	Ve ,	1	2-CT-244U			388 of 620

 Table E-11. Statistical Summary of Site NCBD Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				( ⁰ )	<u> </u>	
			Difference (	MON 88701 minus Cor	urol)	
	MON 88701 ²	Control ⁴		Chi ist		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			(t)			
16:1 Palmitoleic	0.46 (0.0047)	0.48 (0.0053)	-0.018 (0.0055)	0.033, -0.0044	0.019	0.39, 0.70
	(0.44 - 0.47)	(0.47 - 0.49)	(-0.0250.0092)	it's cl		(0.44 - 0.67)
		d'Y	al la	Ctill of the		
18:0 Stearic	2.50 (0.037)	2.34 (0.043)	0.16 (0.057)	0.015, 0.31	0.036	1.98, 2.95
	(2.39 - 2.64)	(232 - 2.38)	(0.011 - 0.22)	al the		(1.98 - 2.97)
			S S S C C	D. OL.		
18:1 Oleic	15.04 (0.12)	14.70 (0.14)	0.35 (0.19)	0.015,0.31	0.127	11.38, 20.64
	(14.58 - 15.26)	(14.51 - 14.83)	(-0.17 - 0.75)			(13.71 - 18.39)
	of s	CUL WIGHT	in the states	ine.		(
18:2 Linoleic	56.95 (0.23)	57,19 (0,26)	e0.24 (0.35)	-1.13, 0.66	0.528	47.49, 63.18
	(56.35 - 57.88)	(57.01 - 57.46)	(-1,12 - 0,80)	1.15, 0.00	0.520	(49.78 - 59.61)
	(30.35 37.00)					(19.70 59.01)
18:3 Linolenic		0.29 (0.014)	0.028 (0.018)	-0.018, 0.074	0.178	0.060, 0.24
18.5 Linolenic	(0.31(0.012))	(0.27 - 0.30)	(-0.0012 - 0.052)	-0.018, 0.074	0.178	(0.10 - 0.29)
800	(0.27 0.34)	(0.2) - 0.30)	(-0.0012 - 0.032)			(0.10 - 0.29)
				0.001.0.000	0.660	
20:0 Arachidic	0.28 (0.0065)	0.28 (0.0075)	0.0046 (0.0099)	-0.021, 0.030	0.663	0.17, 0.38
all all	(0,26 - 030)	(0.27 - 0.28)	(-0.024 - 0.024)			(0.20 - 0.36)
	of en jer e	10 M. D				
G	Dr. Hur Bor Une	6 3h				
	FURTINEECONNIT	No.xeO				
	Contonit	illi				
	FUIL ORS COMIN					
	FUTTIONSCOMME					
Monsanto Company	60	nipited and	2-CT-244U			389 of 620

 Table E-11. Statistical Summary of Site NCBD Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				(O)	S ON	
			Difference (	MON 88701 minus Cor	itrol)	
	MON 88701 ²	Control ⁴		Chi jish		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			(th)	0.001 0.033 50		
22:0 Behenic	0.16 (0.0056)	0.15 (0.0065)	0.011 (0.0086)	0-0,011, 0.033	0.258	0.070, 0.21
	(0.15 - 0.19)	(0.15 - 0.16)	(-0.0044 - 0.032)			(0.051 - 0.19)
		d'r	131 1135			
Mineral		ale.	ill cost	10,0039, 0.015		
Calcium (% dw)	0.15 (0.0014)	0.14 (0.0017)	0.0095 (0.0022)	0.0039, 0.015	0.007	0.058, 0.21
	(0.14 - 0.15)	(0.14 - 0.14)	0 (0.0056 - 0.013)	2. 01.		(0.081 - 0.18)
	×	a sign		III,		
Copper (mg/kg dw)	6.82 (0.36)	6.91 (0.41)	-0.084 (0.54)	v ^v ·-1.48, 1.31	0.883	2.97, 12.86
	(5.81 - 7.58)	(6.64 - 7.19)	(-1.38 - 0.53)	Inci		(4.46 - 11.62)
	NO XO	is a with a	Still Att of	2		· · · · ·
Iron (mg/kg dw)	43.21 (1.00)	48 04 (1-15)	4.83 (1.53)	-8.75, -0.90	0.025	47.30, 97.12
	(41 96 - 44 440)	45.03 - 50.87)	(-6.432.22)	0.70, 0.20	0.020	(39.49 - 114.34)
-C	Contraction of the second		ON NE			(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)
Magnesium (% dw)	0.41 (0.010)	0 40 0 012	0.011 (0.016)	-0.030, 0.052	0.529	0.28, 0.47
	(0.40 - 0.43)	$(0.37 \cdot 0.44)$	(-0.036 - 0.049)	0.050, 0.052	0.52)	(0.31 - 0.46)
in the second		20.57 (0.11)				(0.51 0.10)
Manganese (mg/kg dw)	1100 (026)	13.83 (0.42)	0.29 (0.56)	-1.14, 1.72	0.622	9.07, 17.33
Manganese (mg/kg.gw)	(12.57, 14.91)	(13.65 - 14.11)	(-0.54 - 0.52)	-1.14, 1.72	0.022	(9.07 - 17.14)
	(13.3/~14.01)	(13.03 - 14.11)	(-0.34 - 0.32)			(9.07 - 17.14)
6		$\mathcal{S}$				
	anythout					
	S. Will C					
	FUIC ON COMMENT					
Monsanto Company	Ŷ-	1	2-CT-244U			390 of 620

 Table E-11. Statistical Summary of Site NCBD Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				10.	· ().	
			Difference (I	MON 88701 minus Con	trol)	
	MON 88701 ²	Control ⁴		Chilsh		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% S	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral			(C)	to do to do	2	
Phosphorus (% dw)	0.64 (0.020)	0.66 (0.023)	-0.020 (0.031)	0-0.099, 0.059	0.548	0.49, 0.87
	(0.61 - 0.67)	(0.59 - 0.70)	(-0.087 - 0.068)			(0.48 - 0.87)
		A Y	alt lar	dillo of the		
Potassium (% dw)	1.06 (0.019)	1.08 (0.022)	-0.022 (0.029)	-0.097, 0.052	0.471	0.92, 1.21
	(1.04 - 1.09)	(103 - 1.16)	(-0.12 - 0.032)	all'at li		(0.90 - 1.26)
	· · · · ·		Sid with			,
Sodium (% dw)	0.11 (0.0084)	0.099 (0.0096)	0.0074 (0.019)	-0.022, 0.036	0.539	0, 0.066
	(0.068 - 0.12)	(0.094 - 0.10)	(-0.031 - 0.030)		0.005	(0.0054 - 0.077)
	(0.000 0.12)			NON CON		(0.0001 0.077)
Zinc (mg/kg dw)	40.79 (1.30)	49.54 (1.50)	975 K1 08	-13.84, -3.66	0.006	27.27, 44.95
Zine (ing/kg dw)	(40.28 - 41.37)	(44.04 - 52.05)		-13.84, -3.00	0.000	,
	(40.28 - 41.37)	6 (44:04 - 52.93)	(-11.573.76)			(25.07 - 48.49)
	ON IS IN	Mur Mur Syn S	(1) (1) (5 (0)			
Vitamin (mg/kg dw)			0.0			
Vitamin E	169.03 (3.66)	0 130.99 (4.23)	12.04 (3.00)	-2.34, 26.43	0.084	41.91, 205.89
·S ·	(163.57 - 179.34)	(151.55 - 162.98)	(8.84 - 16.38)			(84.07 - 162.76)
X/n=x/0,	V XS and	3, 4× 0, ×6				

 ¹dw = dry weight; fw = fresh weight; FA = fatty acid.

 ²MON 88701 plants were treated with dicamba and glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 391 of

			Difference ()	(ON 00701	9. 6	
			Difference (N	<u>/ION 88701 minus Ce</u>	miroly	
	MON 88701 ²	Control ⁴		×10	illes -	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Acid	d (% Total FA)		alle	Q1 Q X	9	
Dihydrosterculic Acid	0.14 (0.0093)	0.13 (0.011)	0.012 (0.014)	-0.024, 0.048	0.422	0.078, 0.25
	(0.13 - 0.15)	(0.12 - 0.14)	(0.0062 - 0.024)	0,00,00,00,40	)`	(0.038 - 0.23)
	`````	Ġ	NOT SOL	Y CO. HS COLO		× ,
Malvalic Acid	0.36 (0.040)	0.37 (0.046)	-9.017 (0.056)	-0.16, 0.13	0.773	0.23, 0.54
	(0.20 - 0.43)	(0.36 - 0.41)	(0.0058 - 0.056)			(0.11 - 0.59)
		B'a'		no. x n		
Sterculic Acid	0.22 (0.024)	0.22 (0.028)	-0.0024 (0.037)	-0.098, 0.093	0.951	0.17, 0.27
	(0.13 - 0.27)	(0.21 - 0.23)	(0.0028 - 0.040)	JN 10.090, 0.095	0.901	(0.061 - 0.34)
	(0.15 0.27)	(0.21 (0.25))		<u>ر</u> بر .		(0.001 0.51)
	Nor	No in the		CI		
Gossypol (% dw)	0, 2, 200	S AN A	Stl. O' WILL N			
Free Gossypol	0.94 (0.026)	0.90 (0.030)	0.038 (0.039)	-0.063, 0.14	0.374	0.099, 1.57
	(0.91 - 0.97)	(0.81 - 0.95)	(-0.024 - 0.097)			(0.50 - 1.41)
	(1, s'o v)	no no tio	AC MC GO			
Total Gossypol	1,12 (0.067)	1.09 (0.077)	0.037 (0.10)	-0.22, 0.30	0.731	0.064, 1.76
C'	(1.07 01.18)	0 (1.08 - 1.10)	(-0.0038 - 0.050)			(0.56 - 1.61)
	and sur of the	, A K JOIL OF	"The			. ,

### Table E-12. Statistical Summary of Site NCBD Cottonseed Anti-nutrients for MON 88701 (Treated) vs. Conventional Control

 1 dw = dry weight; FA = fatty acid.  2 MON 88701 plants were treated with dicamba and glufosinate.  3 Mean (S.E.) = least-square mean (standard error).

⁴Control refers to the non-biotechnology derived, conventional control (Coker 130). ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero. Monsanto Company 12-CT-244U 392 of

			Difference (	MON 88701 minus Co	ontrol)	
	MON 88701 ²	Control ⁴		C th is		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Proximate (% dw)			(KB)	20. 10. 10		
Ash	4.16 (0.087)	4.27 (0.10)	-0.11((0.13)	-0.45, 0.22	0.434	3.42, 4.65
	(3.77 - 4.38)	(4.20 - 4.39)	(-0.093 - 0.13)	1. The short		(3.18 - 4.68)
		as yes	al illo	-2.31, 1.30		
Calories (Kcal/100g)	496.46 (2.64)	492,81 (3.05)	3.66 (4.04)	-6.73, 94.04	0.406	457.61, 527.56
	(486.87 - 500.48)	(490,52 - 494.31)	(-7.44 - 9.96)	me at i		(466.09 - 509.91)
		Nix ¹ ni ¹ O	S LOT COL COL			
Carbohydrates	42.09 (0.46)	42.60 (0.53)	-0.50 (0.70)	-2.31, 1.30	0.504	40.26, 56.45
	(41.40 - 43.69)	(42.14 - 43.05)	(-1.65 - 1.09)	o.K.		(43.28 - 54.90)
	Pros.	SUC WILL TO	rill of the	INPO		
Moisture (% fw)	6.59 (0.25)	7.28 (0.28)	-0.70 (0.32)	-1.53, 0.13	0.082	4.79, 9.92
	(5.93 - 7.28)	(6.63 - 7.75)	(-1.820.34)			(6.05 - 10.50)
	(), (), (), (), (), (), (), (), (), (),					· · · · · ·
Protein	3145 (0.13)	31.18 (0.15)	-0.025 (0.19)	-0.52, 0.47	0.902	22.30, 29.41
- Total	(30.63 - 31.47)	(31.00 - 31.27)	(-0.65 - 0.46)		0.202	(20.58 - 29.28)
90	and survey is		-0.025 (0.19) (-0.65 - 0.46)			()
Total Fat This dio	22 59 60 54	21,95 (0.62)	0.64 (0.83)	-1.48, 2.77	0.471	15.01, 28.51
Total Tat	22.52 (0.57)	(21, 42, -22, 23)	(-1.60 - 2.16)	-1.40, 2.77	0.471	(16.58 - 25.25)
S. C	0 (20.02 - 25.56)	(41.12.522.42)	(-1.00 - 2.10)			(10.50 - 25.25)
	<u>0, 10, 0, 0, 00, 00, 00, 00, 00, 00, 00,</u>	ipited and				
C	L'UN' Secontin	07 20				
	SP HE CONSCONT	. NOT				
	and contra	jp.				
	's will do	*				
	Nº COK	10				
Monsanto Company	$\vee$	12-	-CT-244U			393 of 620

 Table E-13. Statistical Summary of Site NMLC Cottonseed Nutrients for MON 88701 (Treated) vs Conventional Control

				< [©]	S ON	
			Difference (	MON 88701 minus Co	ntrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
<b>Fiber (% dw)</b> Acid Detergent Fiber	24.46 (0.51) (23.26 - 25.45)	26.40 (0.59) (25.76 - 27. <b>1</b> 0)	-1.94 (0.79) (-3.081.80)	-3,96, 0,080	0.056	22.24, 31.96 (23.42 - 31.62)
Crude Fiber	17.90 (0.74) (17.33 - 18.57)	17.74 (0.84) (1606 - 20.78)	0.20 (0.94) (-2.21 - 1.44)	-6.49, 0.31	0.841	16.93, 22.68 (16.92 - 23.32)
Neutral Detergent Fiber	29.73 (0.87) (27.53 - 32.00)	32.83 (1.00) (31.58 - 34.49)	-3.09 (1.32) (-6.950.41)	-6.49, 0.31	0.066	27.03, 42.49 (29.27 - 40.63)
Total Dietary Fiber	39.16 (0.71) (37.46 - 40.44)	41,40 (0,75) (39.09 - 43.00)	=1.94 (0.55) (-3.610.88)	-3.36, -0.53	0.016	34.52, 52.58 (37.29 - 48.60)
Amino Acid (% dw) Alanine	1.11 (0.011) (1.10 - 1.13)	0 1.13 (0.013)		-0.054, 0.015	0.212	0.86, 1.11 (0.83 - 1.22)
Arginine Thurdlor	3.48 (0.049) (3.42 - 3.60)	3.71 (0.053) (3.67 - 3.77)	-0.23 (0.048) (-0.340.17)	-0.35, -0.10	0.005	2.38, 3.47 (2.30 - 3.55)
	FUCOTS COTAL	nipited.				
Monsanto Company	60	12	-CT-244U			394 of 620

 Table E-13. Statistical Summary of Site NMLC Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				101			
	Difference (MON 88701 minus Control)						
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance	Commercial Tolerance Interval ⁵ (Range)	
Amino Acid (% dw)	(Range)	(Range)	(Kange) V	Connuence intervar	(p-value)	(Range)	
Aspartic Acid	2.60 (0.033)	2.66 (0.037)	-0.062 (0.043)		0.206	1.94, 2.57	
ispuitto ricid	(2.55 - 2.64)	(2.58 - 2.74)	(-0.410.031)	-0,17, 0,048 -0,017, 0,048 -0.061, 0.040 -0.50, 0.18	0.200	(1.79 - 2.72)	
Cystine	0.43 (0.013)	0.44 (0.015)	-0.010 (0.920)	-0.061 0.040	0.620	0.31, 0.45	
	(0.39 - 0.47)	(0.43 - 0.45)	(-0.063 - 0.038)	IN ONT N		(0.29 - 0.47)	
Glutamic Acid	5.30 (0.087)	5.46 (0, 10)	-0.16 (0.13)	-0.50, 0.18	0.285	3.74, 5.28	
	(5.24 - 5.38)	(5.29 - 5.70)	(-0.460.0085) -0.021 (0.016) (-0.0370.013)	act.		(3.39 - 5.45)	
Glycine	1.16 (0.014)	1.18 (0.015)	-0.021 (0.016)	-0.063, 0.020	0.247	0.90, 1.14	
	(1.14 - 1.19)	0.83 (0.012)	(-0.0370.013)	,		(0.85 - 1.23)	
Histidine	0.82 (0.010)	0.83 (0.012)	0.0065 (0.015)	-0.044, 0.031	0.675	0.59, 0.81	
	(0.80 - 0.85)	(0.83 (0.012) (0.83 - 0.84)	0.0065 (0.015) (-0.026 - 0.024)			(0.57 - 0.84)	
Isoleucine this of	0.97 (0.017)	0.98 (0.018) ×0	-0.011 (0.012)	-0.041, 0.019	0.397	0.75, 0.96	
soleucine this do a	(0.94 - 101)	(0.94 51.03)	(-0.038 - 0.021)			(0.72 - 1.03)	
CO CO	2 the charge	Cel and					
<	FURTING COMMUNIC	Ne de la companya de					
	Futtre out on the provision of the provi	re per and the per					
Monsanto Company	, pe	12	2-CT-244U			395 of 620	

 Table E-13. Statistical Summary of Site NMLC Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				( ⁰ )	S. S.	
			Difference (1	Difference (MON 88701 minus Control)		
	MON 88701 ²	Control ⁴		CU iSI		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)				0.063. 0-049		
Leucine	1.65 (0.021)	1.66 (0.023)	-0.0069 (0.022)	-0.063, 0.049	0.763	1.25, 1.62
	(1.62 - 1.70)	(1.63 - 1.69)	(-0.039 - 0.0098)	-0.083, 0.049 -0		(1.20 - 1.72)
		of the	ulal i ulla	Ctill of a til		
Lysine	1.33 (0.019)	1.36 (0.022)	-0.030 (0.922)	-0.087, 0.027	0.232	1.01, 1.30
	(1.26 - 1.38)	(132 - 1.39)	(-0.058, -0.0056)	ment		(0.99 - 1.44)
		JO. MIN		mo		
Methionine	0.43 (0.012)	0.40 (0.014)	0.033 (0.018)	-0.014, 0.081	0.129	0.32, 0.38
	(0.40 - 0.46)	(0.38 - 0.41)	(-0.013 - 0.071)	et.		(0.29 - 0.49)
Dhamulalanina	1 (1 (100))	1.61 (0.028)	-0.0044 (0.022)	0.061.0.052	0.950	1 10 1 50
Phenylalanine	1.61 (0.026) (1.56 - 1.66)	(1.01(0.028))		-0.061, 0.052	0.850	1.12, 1.58 (1.10 - 1.63)
	(1.20 - 1.00)		(-0.038 - 0.015)			(1.10 - 1.03)
Proline	1.14 (0.027)	(1.60 - 1.66) (1.18 (0.031)	0.040 (0.039)	-0.14, 0.060	0.353	0.83, 1.08
	(1.09 (1.21)	(1.18 (0.031))	(-0.0800.015)	0.11, 0.000	0.555	(0.79 - 1.17)
90	and sur firms					()
Serine $\kappa h^{1/2} N^{0/1}$	9.17 (0.026)	0 1,20 (0.030)	-0.028 (0.040)	-0.13, 0.075	0.512	0.83, 1.21
Serine This dor a	0 (1.05 - 1.23)	(1.16 1.24)	(-0.0690.0042)			(0.81 - 1.24)
	at other of a					
Ċ	of the col the	6 36				
	FURTI SCOMMUN	No.xeO				
	Co do al					
	PUTTICONSCOLUTION					
Mongonto Compony	Zr. O	te Perland	2 CT 2441			396 of 620
Monsanto Company	¥	1	2-CT-244U			390 01 020

 Table E-13. Statistical Summary of Site NMLC Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				( [©] )	S ON	
			Difference (N	10N 88701 minus Cor	ntrol)	
Analytical Component	MON 88701 ² Mean (S.E.) ³	Control ⁴ Mean (S.E.)	Mean (S.E.) 太	95% Confidence Interval	Significance	Commercial Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)				10° 10° 100	Ø	
Threonine	0.92 (0.015)	0.93 (0.017)	-0.0072 (0.021)	0.062, 0.048	0.747	0.72, 0.89
	(0.89 - 0.94)	(0.91 - 0.94)	(-0.024 - 0.0027)	0.062, 0.048 50 tion of the the		(0.67 - 0.96)
Гryptophan	0.46 (0.014)	0.44 (0.016)	0.019 (0.020) 0.01	-0.032, 0.071	0.382	0.34, 0.42
	(0.43 - 0.52)	(0.43 - 0.45)	(-0.019 - 0.076)	-0.048, 0.024		(0.31 - 0.46)
Гуrosine	0.87 (0.014)	0.89 (0.015)			0.440	0.67, 0.84
	(0.85 - 0.92)	(0.86 - 0.91)	(-0.039 - 0.0089) -0.021 (0.019) (-0.048 - 0.0048)	er.		(0.63 - 0.91)
Valine	1.32 (0.024)	1.34 (0.026)	-0,021 (0.019)	-0.070, 0.029	0.329	1.00, 1.28
	(1.26 - 1.40)	(1.31 - 1.40)	-0.021 (0.019) (-0.048 - 0.0048)			(0.97 - 1.36)
Fatty Acid (% Total FA)	Mentite at 0					
14:0 Myristic	0.93 (0.0046) (0.92 - 0.95)	0.98 (0.0054)	-0.043 (0.0071)	-0.062, -0.025	0.001	0.16, 1.37
is al	0 (0.92 - 0.95)	(0.97-0.98)	-0.0600.037)			(0.45 - 1.04)
16:0 Palmitic	24.09 (0.088)	24.11-60.100	0.083 (0.13)	-0.26, 0.43	0.562	16.54, 30.55
	(24.02 - 24.42)	(23.89 - 24.34)	(-0.32 - 0.33)	0.20, 0.10	0.001	(19.11 - 26.73)
C C	Chillie Control	O C SIL				
	FUCONS CONT					
	FUCINE COMMENT	<u>,</u>				
Monsanto Company	"per	1	2-CT-244U			397 of 620

 Table E-13. Statistical Summary of Site NMLC Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				, ©	S. M.	
			Difference (	MON 88701 minus Co	ntrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
Fatty Acid (% Total FA)			alt d	ato do to		
16:1 Palmitoleic	0.53 (0.0022) (0.52 - 0.53)	0.54 (0.0025) (0.53 - 0.54)	-0.012 (0.0033) (-0.0190.0082)		0.014	0.39, 0.70 (0.44 - 0.67)
18:0 Stearic	2.51 (0.020) (2.47 - 2.56)	2.64 (0.021) (2.61 - 2.70)	-0.14 (0.016) (-0.15 ₇ -0.095)	-0.22, 0.23	<0.001	1.98, 2.95 (1.98 - 2.97)
18:1 Oleic	16.21 (0.067) (16.03 - 16.40)	16.21 (0 076) (16.10 - 1635)	0.0024 (0.088) (-0.11 - 0.24)	-0.22, 0.23	0.979	11.38, 20.64 (13.71 - 18.39)
18:2 Linoleic	54.32 (0.084) (54.30 - 54.33)	54.29 (0.097) (54.04 - 54.50)	0,029 (0.13) (-0,18 - 0,30)	-0.30, 0.36	0.833	47.49, 63.18 (49.78 - 59.61)
18:3 Linolenic	0.16 (0.0019) (0.15 0.16)	0.14 (0.0022) (0.14 - 0.15)	0.012 (0.0029) (0.0078 - 0.014)	0.0043, 0.019	0.009	0.060, 0.24 (0.10 - 0.29)
20:0 Arachidic <u>this</u> alor and the	0.30 (0.0052) (0.29 - 0.30)	0.31 (0.0060) (0.28 - 0.32)	-0.011 (0.0080) (-0.025 - 0.014)	-0.031, 0.0095	0.225	0.17, 0.38 (0.20 - 0.36)
C	FUTTORSCOULT	e Ped and T				
Monsanto Company	V [®]	1	2-CT-244U			398 of 620

 Table E-13. Statistical Summary of Site NMLC Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				<0 2	S. W.	
			Difference (	MON 88701 minus Co	ntrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
Fatty Acid (% Total FA) 22:0 Behenic	0.16 (0.0065) (0.16 - 0.17)	0.19 (0.0075) (0.17 - 0.21)	-0.023 (0.0099) (-0.0490.0086)	-0,049, 0,0021	0.065	0.070, 0.21 (0.051 - 0.19)
<b>Mineral</b> Calcium (% dw)	0.15 (0.0029) (0.14 - 0.15)	0.13 (0.0034) (0.12 - 0.13)	0.021 (0.0042) (0.0081 - 0.031)	une 0,011, 0.032	0.003	0.058, 0.21 (0.081 - 0.18)
Copper (mg/kg dw)	11.35 (0.15) (11.11 - 11.91)	11.75 (0.17) (11.46 - 11.92)	-0.40 (0.22) (-0.76 - 0.060)	5011° Nrest -0.97, 0.18	0.134	2.97, 12.86 (4.46 - 11.62)
Iron (mg/kg dw)	63.88 (3.33) (60.27 - 66.59)	64.62 (3.84) (63.58 - 66.45)	-0.74 (5.08) (+6.18 - 2.76)	-13.80, 12.32	0.890	47.30, 97.12 (39.49 - 114.34)
Magnesium (% dw)	0,39 (0,0053) (0.38 - 0.41)	0.37 (0.0061) (0.36 - 0.38)	0.019 (0.0081) (0.0045 - 0.036)	-0.0015, 0.040	0.062	0.28, 0.47 (0.31 - 0.46)
Manganese (mg/kg dw)	12.93 (0.23) (12.73-13.13)	12.90 (0.26) (12.00 - 13.47)	0.029 (0.34) (-0.47 - 1.13)	-0.86, 0.92	0.936	9.07, 17.33 (9.07 - 17.14)
	FUCONSCONT	Cipited Co.				
Monsanto Company	60	1	2-CT-244U			399 of 620

 Table E-13. Statistical Summary of Site NMLC Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				.0.		
			Difference (I	MON 88701 minus Con	trol)	
	MON 88701 ²	Control ⁴		Chilist		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% S	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral			(C)		2	
Phosphorus (% dw)	0.77 (0.010)	0.79 (0.012)	-0.020 (0.016)	-0.060, 0.021	0.264	0.49, 0.87
	(0.74 - 0.80)	(0.78 - 0.80)	(-0.035 - 0.019)	its of		(0.48 - 0.87)
		A s		dillo of the		
Potassium (% dw)	1.10 (0.016)	1.11 (0.018)	-0.0086 (0.017)	-0.052, 0.035	0.636	0.92, 1.21
	(1.05 - 1.14)	(107 - 1.14)	(-0.020 -0.0045)	all'all'		(0.90 - 1.26)
						· · · · · ·
Sodium (% dw)	0.021 (0.0034)	0.013 (0.0039)	0.0075 (0.0052)	-0.0057, 0.021	0.203	0, 0.066
	(0.019 - 0.022)	(0.0054 - 0.023)	(-0.0044 - 0.016)	<u></u>		(0.0054 - 0.077)
		Children to		n ^o .		()
Zinc (mg/kg dw)	45.63 (0.60)	49.43 (0.69)	5 = <del>3</del> 80 (0 92)	-6.16, -1.44	0.009	27.27, 44.95
	(44.12 - 46.74)	(47.66 - 50.87)	(-5.640.92)	0.10, 1.11	0.009	(25.07 - 48.49)
		$\mathcal{O}$				(23.07 10.17)
Vitamin (mg/lig du)	NO'S THE AND	Mi JA COL O	"ON the			
Vitamin (mg/kg dw) Vitamin E	114.29 (2.04)	112,18 (2,36)	2:11 (3.12)	-5.90, 10.12	0.528	41.91, 205.89
Vitamin E	S S S S S			-5.90, 10.12	0.328	,
all all	(107.78 - 119.15)	(107.02 - 115.99)	(-5.75 - 12.13)			(84.07 - 162.76)
XXXX XVV	V X AN	· O T O X	/			

#### Table E-13. Statistical Summary of Site NMLC Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control gin nd (continued)

 ¹dw = dry weight; fw = fresh weight; FA = fatty acid.

 ²MON 88701 plants were treated with dicamba and glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 400 of

Table E-14. Statistical S	Summary of Site 1	WILL CORONSCEU	Anti-nutrients io		Thanku ys	Conventional
Control				× (2)	di ano	
			Difference (	MON 88701 minus Co	ontrol)	
	MON 88701 ²	Control ⁴		Chillis		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range) 🔗	Confidence Interval	🤊 (p-Value)	(Range)
<b>Cyclopropenoid Fatty Acie</b>	d (% Total FA)		(C)		<u> 3</u>	
Dihydrosterculic Acid	0.16 (0.0079)	0.14 (0.0092)	0.019 (0.012)	-0,012, 0.050	0.178	0.078, 0.25
	(0.14 - 0.18)	(0.12 - 0.15)	(-0.0065 - 0.041)	-0,012, 0.050		(0.038 - 0.23)
		1 K	1 2 1 1 1 2 °	dill of the		
Malvalic Acid	0.34 (0.023)	0.29 (0.026)	0.054 (0.035)	-0.035, 0.14	0.177	0.23, 0.54
	(0.30 - 0.38)	(026 - 0.31)	(-0.0093 - 0.074)	nº x'		(0.11 - 0.59)
			S S C C	J. OI.		
Sterculic Acid	0.20 (0.018)	0.18 (0.020)	0.018 (0.027)	-0.051, 0.087	0.531	0.17, 0.27
	(0.18 - 0.23)	(0.17 - 0.19)	(-0.012 - 0.032)			(0.061 - 0.34)
	or s	. SUL WILL FOR	till this s	iner		,
Gossypol (% dw)	NO XO	No d'ad	0.018 (0.027) (-0.012 - 0.032) 0.15 (0.040) (0.14 - 0.18) 0.12 (0.040)	-0.012, 0.050 -0.035, 0.14 -0.051, 0.087		
Free Gossypol	0.85 (0.026)	0.69 (0.030)	0.15 (0.040)	0.052, 0.26	0.011	0.099, 1.57
51	(0.83 - 0.88)	(0.68-0.70)	(0.14 - 0.18)	,		(0.50 - 1.41)
	No still and a		ON NES			· · · · ·
Total Gossypol	0.92 (0.026)	0.80 (0.030)	0.12 (0.040)	0.022, 0.23	0.026	0.064, 1.76
iour cossipor	(0.84 - 0.97)	$(0.74 \cdot 0.87)$	(0.060 - 0.18)	0.022, 0.23	0.020	(0.56 - 1.61)
this lot		20, +2, 0, 00	(0.000 0.10)			(0.00 1.01)
1 dw = dry weight; FA = fatt	hard him					
² MON 88701 plants were tre		and olufosinate				
³ Mean (S.E.) = least-square	mean (standard error	r).				
⁴ Control refers to the non-bi	otechnology derived	Conventional contro	l (Coker 130).			
⁵ With 95% confidence, inter	rval contains 99% of	the values expressed	in the population of	f commercial substance	es. Negative l	imits set to zero.
	C M COUL				-	
	S. Willing					
	T OY					
Monsanto Company	Ŷ	12	-CT-244U			401 of 620

Table E-14. Statistical Summary of Site NMLC Cottonseed Anti-nutrients for MON 88701 (Treated) vs. Conventional

			Difference	ontrol		
	MON 88701 ²	Control ⁴		10:	ing	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)		Confidence Interval		
Proximate (% dw)	/		- AL	0.12, 0.62	2	
Ash	4.11 (0.095)	3.74 (0.095)	0.37 (0,10)	0.12, 0.62	∢⊘ 0.010	3.42, 4.65
	(3.99 - 4.28)	(3.38 - 3.98)	(0.25 0.61)	1 de llo col x	)`	(3.18 - 4.68)
		S	NON XC	Stores and a store		
Calories (Kcal/100g)	511.69 (2.44)	503.38 (2.44)	8.31 (3.45)	-0.13, 16.75	0.052	457.61, 527.56
	(505.01 - 517.46)	(499.09 - 512.65)	(-7.65 - 1837)	Junt and		(466.09 - 509.91)
	· · · · · · · · · · · · · · · · · · ·	Bar No	i alo do	all the		· · · · · · · · · · · · · · · · · · ·
Carbohydrates	46.56 (0.54)	48.67 (0.54)	° -211 (0.75) ~	Confidence Interval 0.12, 0.62 -0.13, 16.75 -0.13, 16.75 -0.81, 0.12	0.031	40.26, 56.45
	(45.10 - 47.48)	(47.50 - 49.59)	(-3.200.23)			(43.28 - 54.90)
			N IN NO N	) 		(10120 0 1030)
Moisture (% fw)	6.73 (0.17)	A 08 (0.17)	-0.35 (0.19)	-0.81 0.12	0 1 1 9	4.79, 9.92
Molstale (70 IW)	(6.27, 7.13)	× (6 63-7 37)	-0.35 (0.19) (-0.89 - 0.030)	0.01, 0.12	0.119	(6.05 - 10.50)
	(0.27) //15/0					(0.05 10.50)
Protein	23.70(0.42)	23.99 (0.42)	10 22 (0 49)	-1.43, 0.98	0.669	22.30, 29.41
Tiotem	(22.71 - 24.70)	(23.56-94.61)	(-0.85 - 0.64)	-1.+5, 0.76	0.007	(20.58 - 29.28)
-C)		(23.56 - 24.61)				(20.30 2).20)
Total Fat	25 65 (0-M)	23 65 (0 1/1)	2.00 (0.63)	0.46, 3.54	0.019	15.01, 28.51
	(22.03(0.11))	(22.92 - 25.20)	(-0.97 - 3.86)	0.40, 5.54	0.017	(16.58 - 25.25)
~`	(27.22)=20.09	S S S	(-0.97 - 5.00)			(10.50 - 25.25)
	opy the mount	<u>,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0</u>				
12	op, the edue me	S1 011 10				
C	op it needs me	0× 2'0'				
	opsithereducing	U. KO				
	any nour	NIV.				
	'o jill of	5.				
Managenta Commons	Nº OF	the performed and vie				402 - £ (20
Monsanto Company	$\checkmark$	12	2-CT-244U			402 of 620

### Table E-15. Statistical Summary of Site SCEK Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control

				< ⁰	S. O.	
			Difference (	MON 88701 minus Co	ntrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
Fiber (% dw)			(th)	20 10° 200	C	
Acid Detergent Fiber	25.95 (0.44)	27.04 (0.44)	-1.09 (0.60)	-2,36, 0.37	0.118	22.24, 31.96
	(24.75 - 26.52)	(26.24 - 27.74)	(-1,750.099)	in its the		(23.42 - 31.62)
Crude Fiber	19.72 (0.80)	19.13 (0.80)	0.59 (1.13)	2.17 3.36	0.617	16.93, 22.68
	(17.98 - 21.66)	(16.91 - 21.70)	(-2.59 - 4.75)	-4.59, 0.049		(16.92 - 23.32)
Neutral Detergent Fiber	31.34 (0.67)	33.60 (0.67)	-2.27 (0.95)	-4.59, 0.049	0.053	27.03, 42.49
C C	(29.42 - 32.89)	(32.74 - 35.52)	(-6,10 0.44)	iner.		(29.27 - 40.63)
Total Dietary Fiber	39.72 (0.62)	41.87 (0.62)	e2.14 (0.88)	-4.29, 0.0015	0.050	34.52, 52.58
Amino Acid (% dw)	(38:66 - 40:44)	(40.16 - 43.29)	6 (-3.560.63)			(37.29 - 48.60)
Alanine	0.96 (0.022) (0.91 - 1-00)	0.94 (0.022) (0.88 -0.97)	0.017 (0.029) (-0.020 - 0.033)	-0.055, 0.089	0.583	0.86, 1.11 (0.83 - 1.22)
Arginine and	2.52 (0.088) (2.33 - 2.74)	2.59 (0.088) (2.41 - 2.71)	-0.063 (0.10) (-0.18 - 0.021)	-0.31, 0.18	0.556	2.38, 3.47 (2.30 - 3.55)
G	FUCONS COMMENT	Cipited of				
Monsanto Company	60	12	2-CT-244U			403 of 620

# Table E-15. Statistical Summary of Site SCEK Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				(O)	S. C.	
			Difference (	MON 88701 minus Cor	ttrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
Amino Acid (% dw) Aspartic Acid	2.08 (0.054) (1.94 - 2.20)	2.07 (0.054) (1.92 - 2.18)	0.0087 (0.070) (-0.085 - 0.096)	1,0°-9,06, 0:18, 50	0.904	1.94, 2.57 (1.79 - 2.72)
Cystine	0.36 (0.017) (0.32 - 0.41)	0.35 (0.017) (0.31 - 0.39)	0.0082 (0.018) (-0.018)- 0.024)	-0.036, 0.052	0.666	0.31, 0.45 (0.29 - 0.47)
Glutamic Acid	4.14 (0.13) (3.80 - 4.40)	4.10 (0.13) (3.66 - 4.40)	0.039 (0.18) (-0.11 - 0.14)	-0.40, 0.47	0.833	3.74, 5.28 (3.39 - 5.45)
Glycine	0.99 (0.022) (0.93 - 1.04)	0.98 (0.022) (0.91 - 1.02) 0.64 (0.021)	(-0.11 - 0.14) 0.016 (0.031) (-0.0040 - 0.033)	-0.061, 0.093	0.627	0.90, 1.14 (0.85 - 1.23)
Histidine	(0.58 0.70)	0.64 (0.021) (0.61 - 0.66)	0.0012 (0.025) (-0.053 - 0.033)	-0.060, 0.062	0.961	0.59, 0.81 (0.57 - 0.84)
Isoleucine This dor	0.81 (0.023) (0.75 - 0.88)	0.82 (0.023) (0.77 - 0.83)	-0.0053 (0.030) (-0.077 - 0.054)	-0.078, 0.068	0.865	0.75, 0.96 (0.72 - 1.03)
05 05	FURTHONSOUTHON	ripited and				
Monsanto Company	Pe .	12	2-CT-244U			404 of 620

 Table E-15. Statistical Summary of Site SCEK Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

					10	S. O.	
				Difference (	MON 88701 minus Cor	itrol)	
		MON 88701 ²	Control ⁴		CUISI		Commercial
-	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (	% dw)			(C)	sto do do	0	
Leucine		1.36 (0.034)	1.36 (0.034)	0.0086 (0.046)	02-0,10, 0.12	0.858	1.25, 1.62
		(1.29 - 1.46)	(1.28 - 1.40)	(-0.053 - 0.064)	-0.0093, 0.091		(1.20 - 1.72)
			~ K	191 × 112			
Lysine		1.12 (0.027)	1.11 (0.027)	0.0024 (0.025)	-0.059, 0.064	0.925	1.01, 1.30
-		(1.05 - 1.18)	(106 - 1.17)	(-0.018 - 0.026)	Nº XII		(0.99 - 1.44)
				STOT COLO	D. OI.		
Methionine		0.38 (0.016)	0.33 (0.016)	0.041 (0.020)	-0.0093. 0.091	0.093	0.32, 0.38
		(0.35 - 0.42)	(0.32 - 0.35)	(0.017 - 0.077)			(0.29 - 0.49)
		of a	. all the for	illo stiss	ine.		()
Phenylalanine		1.22 (0.033)	1.23 (0.033)	⁻³ -0-0097 (0.039)	-0.11, 0.086	0.811	1.12, 1.58
r neny laianne		(1.14 - 1.31)	(125(0.055))	(-0.075 - 0.043)	0.11, 0.000	0.011	(1.10 - 1.63)
							(1.10 1.05)
Proline	, c	0.87 (0.026)	(1.15 - 1.27) (0.87 (0.026)	0.0028 (0.026)	-0.060, 0.066	0.916	0.83, 1.08
rionne	الاي	(0.82 (0.020)	0.87 (0.026) (0.81 - 0.93)	(-0.035 - 0.034)	-0.000, 0.000	0.910	(0.79 - 1.17)
	2000	10.02 - 0.921	(0.ar - 0.35)	(-0.033 - 0.034)			(0.79 - 1.17)
C	in Sint		0.96 (0.028)		0.0(2, 0.10	0.507	0.02 1.21
Serine	LI. dlo	0.98 (0.028)	0.96 (0.028)	0.019 (0.033)	-0.062, 0.10	0.587	0.83, 1.21
	This dor?	· (0,90 - 1,04)	(0.86~1.03)	(-0.0099 - 0.042)			(0.81 - 1.24)
	14	or chi we e					
	co	Funth seaming	a Q an				
	<		No. Ke				
		Co do an					
		Funcinsecondity	<u>)</u>				
		FURTICE CONTRACTOR	ne pertand t				
Monsanto Comp	bany	100	12	2-CT-244U			405 of 620

 Table E-15. Statistical Summary of Site SCEK Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				( ⁰⁾	201	
			Difference (]	MON 88701 minus Cor	urol)	
	MON 88701 ²	Control ⁴		C ¹ iSI		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)				12 10 10 Alor	0	
Threonine	0.79 (0.019)	0.77 (0.019)	0.016 (0.023)	-0.041, 0.073	0.518	0.72, 0.89
	(0.74 - 0.83)	(0.73 - 0.80)	(0.0053 - 0.039)			(0.67 - 0.96)
		a'r	al i la	0.046, -0.0048		
Tryptophan	0.35 (0.0093)	0.38 (0.0093)	-0.025 (0.0085)	-0.046, -0.0048	0.023	0.34, 0.42
	(0.33 - 0.38)	(037 - 0.40)	(-0.040 - 0.0010)	m at !!		(0.31 - 0.46)
		in in initiation	es at ret of			
Tyrosine	0.72 (0.020)	0.71 (0.020)	0.0042 (0.025)	-0.058, 0.066	0.873	0.67, 0.84
	(0.67 - 0.78)	(0.67 - 0.74)	(-0.033 - 0.040)	à.		(0.63 - 0.91)
	of s	· SUL HUIL	xillo of the	Ine		
Valine	1.07 (0.029)	1.07 (0.029)	0.0056 (0.039)	-0.090, 0.10	0.889	1.00, 1.28
	(1.00 - 1.14)	(1.00 1.10)	(-0.084 - 0.049)			(0.97 - 1.36)
	an 20 10	nor nor tior of	NO MO OI			
Fatty Acid (% Total FA)	nent its of to	N' CUILLICO ON	ONTRA			
14:0 Myristic	0.70 (0.011)	0.73 (0.011)	e-0.028 (0.012)	-0.057, 0.00046	0.052	0.16, 1.37
80	(0.67 - 0.72)	(0.72-0.75)	(-0.049 - 0.0062)	, ,		(0.45 - 1.04)
× his 101	NO 19 MIL	21, +9, of xe				
16:0 Palmitic	24.74 (0.086)	24.39 (0.086)	0.35 (0.12)	0.049, 0.65	0.029	16.54, 30.55
, o, x ()	(24.59 - 24.94)	(24.07 - 24.59)	(0.17 - 0.61)			(19.11 - 26.73)
, C	S, He dry he		· · · · ·			· · · · · ·
	Chi as all a	0 0				
	FU ORSCORLEY	UL				
	will of	7				
Monsanto Company	FUCONSCONT	1	2-CT-244U			406 of 620
1 2						

# Table E-15. Statistical Summary of Site SCEK Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				( ⁰ )	5 0°	
			Difference (I	MON 88701 minus Co	ntrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
Fatty Acid (% Total FA)			(A)	10 10 Xer	°C	
16:1 Palmitoleic	0.48 (0.0056)	0.48 (0.0056)	-0.0075 (0.0076)	-0.026, 0.011	0.361	0.39, 0.70
	(0.47 - 0.49)	(0.47 - 0.49)	(-0.020 - 0.018)			(0.44 - 0.67)
18:0 Stearic	2.78 (0.036)	2.67 (0.036)	0.11 (0.050)	-0.015, 0.23	0.076	1.98, 2.95
	(2.75 - 2.85)	(258 - 2.76)	(0.0076 - 0.18)	-0.43, 0.31		(1.98 - 2.97)
18:1 Oleic	14.40 (0.11)	14.46 (0,911)	-0.059 (0.15)	-0.43, 0.31	0.706	11.38, 20.64
	(14.15 - 14.68)	(14.42 - 14.49)	(-0.33 - 0.19)	let.		(13.71 - 18.39)
18:2 Linoleic	55.54 (0.18)	55.87 (0,18)	€0.33 (0.25).	-0.94, 0.29	0.242	47.49, 63.18
	(55:18 - 55.96)	(55.61 - 56.29)	6 (-1,11 - 0,13)			(49.78 - 59.61)
18:3 Linolenic	0.15 (0.0017)	0.15 (0.0017)	0.0044 (0.0023)	-0.0012, 0.0099	0.103	0.060, 0.24
80CN	(0.15) 00.16)	(0.14 - 0.15)	(-0.00022 - 0.011)			(0.10 - 0.29)
20:0 Arachidic Khis Jor	0.29 (0.0070)	0.30 (0.0070)	-0.0046 (0.0099)	-0.029, 0.020	0.656	0.17, 0.38
SUC NO	(0,27 - 0,31)	(0.29 - 0.30)	(-0.027 - 0.019)			(0.20 - 0.36)
	Principal and	Certified				
	FURTINECONNIT	le de				
	FURTICE COLLENCE	ripited and				
Monsanto Company	1º OGY	12	2-CT-244U			407 of 620

 Table E-15. Statistical Summary of Site SCEK Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				<0 2	N.	
			Difference (	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		C ^t is		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			(th)	sto do do		
22:0 Behenic	0.14 (0.0033)	0.14 (0.0033)	-0.0014 (0.0046)	-0,013, 0,0099	0.765	0.070, 0.21
	(0.13 - 0.14)	(0.13 - 0.14)	(-0.0030 - 0.00006)	it's of		(0.051 - 0.19)
		- KP	1 21 × 1121	dill of the		
Mineral		Noi	6 CO			
Calcium (% dw)	0.11 (0.0040)	0.091 (0.0040)	0.016 (0.0056)	une 0,0025, 0.030	0.027	0.058, 0.21
	(0.10 - 0.11)	(0.081 - 0.095)	(0,0059 - 0.023)	D. OI.		(0.081 - 0.18)
	2	a sign	100 10 90	UN.		. ,
Copper (mg/kg dw)	5.82 (0.24)	5.64 (0.24)	0.18 (0.32)	wine -0.61, 0.97	0.593	2.97, 12.86
	(5.22 - 6.30)	(5.40 - 5.85)	(-0.28 - 0.55)	in the second se		(4.46 - 11.62)
	NO YO	15 0 00 3	St O KHINO	<u> </u>		
Iron (mg/kg dw)	63.78 (4.68)	73.46 (4.68)	-9.68 (4.30)	-20.21, 0.84	0.065	47.30, 97.12
non (ing/kg uw)	(59.75 - 67.62)	(63.01 - 89.93)	(-22.31 - 1.16)	20.21, 0.01	0.000	(39.49 - 114.34)
,						
Magnesium (% dw)	0.39 (0.0090)	0.36(0.0090)	0.033 (0.0080)	0.014, 0.053	0.005	0.28, 0.47
	(0.37 - 0.41)	(0.34, 0.37)	(0.014 - 0.044)	0.014, 0.055	0.005	(0.31 - 0.46)
inis or			(0.01+-0.0++)			(0.51 - 0.40)
Mongonogo (mg/kg dir)	1120 (051)	9.72 (0.51)	1 67 (0 72)	-0.080, 3.42	0.058	0.07 17.22
Manganese (mg/kg dw)	(10.00 11.00		1.67(0.72)	-0.080, 5.42	0.038	9.07, 17.33 (9.07 - 17.14)
	(10.88 - 11.68)	(8.61 - 11.03)	(0.65 - 2.27)			(9.07 - 17.14)
CC CC	the second	N N				
		No. No.				
	any inour					
	FUT ONS ON H					
	FUTCION COMMENT					
Monsanto Company	$\mathcal{O}_{\mathcal{I}}$	1	2-CT-244U			408 of 620

## Table E-15. Statistical Summary of Site SCEK Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				10		
			Difference (1	MON 88701 minus Cor	trol)	
	MON 88701 ²	Control ⁴		CCL IST		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral			(C)	210 NO. 20.	$\otimes$	
Phosphorus (% dw)	0.67 (0.022)	0.63 (0.022)	0.035 (0.018)	-0.0093, 0.080	0.100	0.49, 0.87
	(0.64 - 0.71)	(0.58 - 0.68)	(0.0036 - 0.072)			(0.48 - 0.87)
		4 K	1 21 × 1121	dill of the		
Potassium (% dw)	1.13 (0.031)	1.02 (0.031)	0.11 (0.043)	0.0051, 0.22	0.042	0.92, 1.21
	(1.11 - 1.17)	(0.88 - 1.08)	(0.046 - 0.23)	nº x'		(0.90 - 1.26)
			est reviou	N. C.		· · · · · ·
Sodium (% dw)	0.022 (0.0033)	0.015 (0.0033)	0.0070 (0.0046)	-0.0043, 0.018	0.180	0, 0.066
	(0.018 - 0.027)	(0.012 - 0.023)	(0.0039 - 0.013)	ు. స		(0.0054 - 0.077)
		CULL NO		n ^e .		()
Zinc (mg/kg dw)	29.14 (0.82)	30.08 (0.82)	6 94 (0 82)	-2.96, 1.08	0.297	27.27, 44.95
	(27.31-31.57)	(28, 22, 31, 74)	(-2.85 - 1.07)	-2.90, 1.00	0.277	(25.07 - 48.49)
	(27.37 - 34.57)					(23.07 - 40.47)
	NOTE STON	M. M. Corno	0 1 (2 50)			
Vitamin (mg/kg dw)	10 170 770	2150 20 (1.77)		21(1010)	0.164	41 01 205 90
Vitamin E	162.17 (1.77)	130.20 (1777)	3.97 (2.30)	-2.16, 10.10	0.164	41.91, 205.89
	(158.92 - 165.82)	(153.15 - 162.63)	(2.38 - 7.55)			(84.07 - 162.76)
XX1. 70	V X ON	of it is the	7			

#### Table E-15. Statistical Summary of Site SCEK Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional **Control (continued)** ojin no

 ¹dw = dry weight; fw = fresh weight; FA = fatty acid.

 ²MON 88701 plants were treated with dicamba and glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 409 of

			Difference (	MON 88701 minus 😪	introl	
	MON 88701 ²	Control ⁴				Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Acid			3100		0	
Dihydrosterculic Acid	0.15 (0.0087)	0.15 (0.0087)	0.0014 (0.012)	-0.029, 0.031	0.914	0.078, 0.25
-	(0.12 - 0.18)	(0.14 - 0.15)	(-0.023 0.043)	100 200 COI 40		(0.038 - 0.23)
		G	NON XO	Non its of		
Malvalic Acid	0.41 (0.029)	0.43 (0.029)	-0.022 (0.041)	-0.12, 0.078	0.607	0.23, 0.54
	(0.33 - 0.52)	(0.39 - 0.46)	(-0.11 - 0.13)			(0.11 - 0.59)
		Bor Me		nº x''		
Sterculic Acid	0.23 (0.014)	0.24 (0.014)	·0.011 (0.020)	0.060, 0.038	0.607	0.17, 0.27
	(0.19 - 0.28)	(0.22 - 0.25)	(-0.060 - 0.060)			(0.061 - 0.34)
	R	6. 6. 15	1 Julio will do	<u></u>		````
Gossypol (% dw)	pros	· GUU HAIL FO	x illo a vision	Ine		
Free Gossypol	1.10 (0.029)	1.13 (0.029)	-0.030 (0.027)	-0.096, 0.035	0.303	0.099, 1.57
21	(1.05 - 1.18)	(1.06 - 1.20)	(-0.086 - 0.00085)	,		(0.50 - 1.41)
	all's d' xO	ner ner till'	no ne oi			
Total Gossypol	1.17 (0.025)	1.07 (0.025)	0.10 (0.031)	0.026, 0.18	0.017	0.064, 1.76
	(1.13 0).23)	(1.05 - 1.10) ×	(0.074 - 0.13)	,		(0.56 - 1.61)
80	Min SU. Altris	14 JOIL OF	the			· · · · ·

### Table E-16. Statistical Summary of Site SCEK Cottonseed Anti-nutrients for MON 88701 (Treated) vs. Conventional Control

 1 dw = dry weight; FA = fatty acid.  2 MON 88701 plants were treated with dicamba and glufosinate.  3 Mean (S.E.) = least-square mean (standard error).

⁴Control refers to the non-biotechnology derived, conventional control (Coker 130). ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero. Monsanto Company 12-CT-244U 410 of

Ø

			Difference	ontrol		
	MON 88701 ²	Control ⁴			in ^o	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)		Confidence Interval	· ·	( <b>-</b> )
Proximate (% dw)	/		3h		9	
Ash	3.85 (0.051)	3.46 (0.051)	0.40 (0.072)	0.22, 0.57	0.001	3.42, 4.65
	(3.77 - 3.92)	(3.34 - 3.61)	(0.24 0.58)	1 00 allor coli fo	)`	(3.18 - 4.68)
		Ġ	NOX XC			
Calories (Kcal/100g)	498.01 (2.54)	494.42 (2.54)	3.59 (3.47)	-4.90, 12.07	0.340	457.61, 527.56
	(489.04 - 502.78)	(489.10 - 500.98)	(-1.24 - 13.67)	No at an		(466.09 - 509.91)
	· · · · · · · · · · · · · · · · · · ·	Bor Mor		all the		· · · · · · · · · · · · · · · · · · ·
Carbohydrates	44.03 (0.48)	46.39 (0.48)	236 (0.64)	Confidence Interval 0.22, 0.57 -4.90, 12.07 -3.92, -0.79 -1.30, 0.13	0.010	40.26, 56.45
	(42.73 - 45.99)	(45.65 - 47.07)			0.010	(43.28 - 54.90)
			V. HO NIS X			(10120 0 10 0)
Moisture (% fw)	6.88 (0.21)	<b>7.47 (0.21)</b>	-0.59 (0.29)	-1.30, 0.13	0.090	4.79, 9.92
Wolstare (70 Tw)	(6.32, 7.37)	× (7 1)- 7 79	(-1.47 - 0.18)	1.50, 0.15	0.090	(6.05 - 10.50)
	(0.52) (1.57)0		J. J. J. Oving			(0.05 10.50)
Protein	29.43 (0.24)	28-18 (0.21)	0.95 (0.29)	0.24, 1.66	0.017	22.30, 29.41
Tiotem	(29.06 - 30.14)	(28,09, 98,77)	(0.38 - 1.82)	0.24, 1.00	0.017	(20.58 - 29.28)
-Co	(2)-00 - 5001+)	(28.09 - 28.77)	(0.50 - 1.62)			(20.30 - 29.20)
Total Fat	22 571 (0-18)	21 70 (0 19)	1.01 (0.65)	-0.58, 2.61	0.169	15.01, 28.51
Total Fat	(22.71 (0.40))	(20.71 - 22.88)	(0.15 - 2.88)	-0.38, 2.01	0.109	(16.58 - 25.25)
1, 01,	(20.54 - 23.53)		(0.13 - 2.88)			(10.38 - 23.23)
<u></u>	the the the the	<u>, , , , , , , , , , , , , , , , , , , </u>				
	op, the edue me	st of no				
C	of uthe conne	Nor Yor				
	opy the not on the strain of t	ne permis vie phibited and vie				
	C M OUT	illo.				
	'o' it's	5.				
	Nº OY					
Monsanto Company	Ŷ	12	-CT-244U			411 of 620

### Table E-17. Statistical Summary of Site TXPL Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control

				<0°	S ON	
			Difference (I	MON 88701 minus Cor	utrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
Fiber (% dw) Acid Detergent Fiber	25.53 (0.37)	25.53 (0.37)	0.0023 (0.41)	dat and the sol	0.995	22.24, 31.96
Acid Detergent Fiber	(25.31 - 25.83)	(24.51 - 26.91)	(-1.08 - 0.91)	401, 101, 101 510 1.26, 0.92	0.995	(23.42 - 31.62)
Crude Fiber	17.93 (0.38)	18.10 (0.38)	-0.17 (0.45)	-1.26, 0.92	0.716	16.93, 22.68
	(17.17 - 18.84)	(1735 - 19.63)	(-1.48 - 1.07)	-3.80, -0.96		(16.92 - 23.32)
Neutral Detergent Fiber	29.75 (0.41)	32.12 (0.41)	-2.38 (0.58)	-3.80, -0.96	0.006	27.03, 42.49
-	(28.74 - 30.56)	(30.49 - 33.05)	(-4.310.26)	Nor.		(29.27 - 40.63)
Total Dietary Fiber	39.54 (0.62) (38.76 - 40.86)	40,47 (0,62) (39.15 - 42.09)	2 (NO3 (0 72) 0	-2.69, 0.83	0.245	34.52, 52.58 (37.29 - 48.60)
Amino Acid (% dw) Alanine	1.07 (0.019) C	40,47 (0.62) (39.15 - 42.09) 1.05 (0.019)	SX XS	-0.042, 0.086	0.438	0.86, 1.11
THIS 101	of (1.05 - 1.10)	(0.97-01.10)	(-0.040 - 0.12)		0	(0.83 - 1.22)
Arginine and the	3.25 (0.074) (3.15 - 3.33)	3.25 (0.074) (2.94 - 3.49)	-0.0020 (0.10) (-0.34 - 0.39)	-0.26, 0.25	0.985	2.38, 3.47 (2.30 - 3.55)
	FUCONS COMMENTS	nipited -				
Monsanto Company	P.C.	12	-CT-244U			412 of 62

 Table E-17. Statistical Summary of Site TXPL Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				< ⁰	S. M.	
			Difference (N	/ION 88701 minus Co	ntrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance	Commercial Tolerance Interval ⁵ (Range)
Amino Acid (% dw)	(Range)	(Range)	(Kange)	Confidence interval	(p-value)	(Range)
Aspartic Acid	2.51 (0.047)	2.45 (0.047)	0.060 (0.67)	0,000,000,00	0.407	1.94, 2.57
ispurite ricid	(2.43 - 2.55)	(2.26 - 2.62)	(-0.092 - 0.29)	in the set	0.107	(1.79 - 2.72)
Cystine	0.41 (0.015)	0.40 (0.015)	0.0068 (0.017)	-0.034 0.047	0.697	0.31, 0.45
	(0.39 - 0.43)	(0.36 - 0.45)	(-0.030 - 0.073)	-0.034, 0.047 -0.53, 0.39		(0.29 - 0.47)
Glutamic Acid	4.94 (0.13)	5.02 (0,13)	-0.072 (0.19)	-0.53, 0.39	0.714	3.74, 5.28
	(4.73 - 5.14)	(4.41 - 5.32)	(-0.44 - 0.73) 0.0062 (0.031) (-0.073 - 0.12)	lot.		(3.39 - 5.45)
Glycine	1.12 (0.022)	1.14 0.022	0.0062 (0.031)	-0.070, 0.082	0.849	0.90, 1.14
5	(1.07 - 1.15)	(1.03 - 1.19)	(-0.073 - 0.12)	,		(0.85 - 1.23)
listidine	0, 17 (0.018)	(1.03 - 1.19) (0.76 (0.018)	0.017 (0.026)	-0.046, 0.079	0.538	0.59, 0.81
soleucine	$(0.73 \cdot 0.81)$	(0.71 - 0.82)	(-0.062 - 0.091)			(0.57 - 0.84)
soleucine this lot	0.95 (0.013)	0.93 (0.013)	0.013 (0.017)	-0.027, 0.054	0.457	0.75, 0.96
soleucine this do a	(0.93 - 0.97)	(0.89 0.97)	(-0.023 - 0.051)			(0.72 - 1.03)
	A Here average	10 or and				
~	Funtingeommut	N. KO				
	Futtre out on the second the seco	nibited and				
Monsanto Company	2 per	12	-CT-244U			413 of 620

 Table E-17. Statistical Summary of Site TXPL Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				( ⁰	N. A.	
			Difference (N	/ION 88701 minus Co	ntrol)	
Analytical Compon		Control ⁴ Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Commercial Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			02			
Leucine	1.58 (0.026)	1.55 (0.026)	0.028 (0.037)	-0,064, 0,42	0.486	1.25, 1.62
	(1.52 - 1.61)	(1.45 - 1.64)	(-0-072 - 0.16)	-0,064, 0,92		(1.20 - 1.72)
Lysine	1.26 (0.026)	1.24 (0.026)	0.024 (0.037)	-0.067, 0.12	0.537	1.01, 1.30
	(1.21 - 1.33)	(119 - 1.33)	(-0.14)- 0.13)	-0,064, 0,12 -0.067, 0.12 -0.056, 0.088		(0.99 - 1.44)
Methionine	0.40 (0.021)	0.39 (0.021)	0.016 (0.029)	-0.056, 0.088	0.605	0.32, 0.38
	(0.37 - 0.44)	(0.32 - 0.44)	(-0.066 - 0.12) 0.026 (0.048) (-0.14 - 0.19)	ner.		(0.29 - 0.49)
Phenylalanine	1.51 (0.034)	1.48 (0.034)	0.026 (0.048)	-0.092, 0.14	0.614	1.12, 1.58
5	(1.46 - 1.55)	(1.36 - 1.61)	(-0,14 - 0,19)	,		(1.10 - 1.63)
Proline	1.04 (0.024)	1.04 (0.024)	0.0028 (0.033)	-0.079, 0.084	0.935	0.83, 1.08
6	(0.99 O.1.1)		(40.12 - 0.10)			(0.79 - 1.17)
Serine	0.11 (0.031)	0 1 H (0.031) × 0	0.00043 (0.044)	-0.11, 0.11	0.992	0.83, 1.21
Serine This and	(1,06 - 1,03) 11	(0.9/51.1/0	(-0.087 - 0.16)			(0.81 - 1.24)
	FUTTO STATE COLOR	ripited and				
Monsanto Company	00	12	2-CT-244U			414 of 620

 Table E-17. Statistical Summary of Site TXPL Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				<0)	2 N.	
			Difference (N	10N 88701 minus Cor	ntrol)	
Analytical Component	MON 88701 ² Mean (S.E.) ³	Control ⁴ Mean (S.E.)	Mean (S.E.)	95% Confidence Interval	Significance	Commercial Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)				stor Alor de	Ø	
Threonine	0.89 (0.016)	0.86 (0.016)	0.032 (0.022)	0-0.022, 0.086	0.197	0.72, 0.89
	(0.86 - 0.92)	(0.80 - 0.90)	(-0-026 - 0.10)	0.0.022, 0.086 50		(0.67 - 0.96)
Tryptophan	0.42 (0.013)	0.43 (0.013)	-0.0094 (0,018)	-0.054, 0.035	0.626	0.34, 0.42
	(0.40 - 0.44)	(0.38 - 0.47)	(-0.070 - 0.030)	-0.022, 0.086 -0.054, 0.035 -0.028, 0.089		(0.31 - 0.46)
Гуrosine	0.84 (0.017)	0.81 (0.017)	0.031 (0.024)	J ^{-0.028} , 0.089	0.245	0.67, 0.84
	(0.82 - 0.86)	(0.74 - 0.87)	(-0.048 - 0.12) 0.024 (0.042) (-0.046 - 0.12)	d.		(0.63 - 0.91)
Valine	1.26 (0.030)	1.23 (0.030)	6 ¹ 0.024 (0.042)	-0.079, 0.13	0.586	1.00, 1.28
	(1.29 - 1.29)	(1.16 - 1.29)	(-0.046 - 0.12)			(0.97 - 1.36)
Fatty Acid (% Total FA)	NOT ITS CT NO		0.017 (0.013)			
14:0 Myristic	0.86 (0.010)	0.84 (0.010)	0.017 (0.013)	-0.016, 0.050	0.246	0.16, 1.37
is of	0 (0.84 - 0.88)	(0.81-0.87)	(-0.010 - 0.047)			(0.45 - 1.04)
16:0 Palmitic	2305 (004)	23.01(0.14)	0.13 (0.16)	-0.27, 0.53	0.443	16.54, 30.55
	(22.72 - 23.62)	(22.86 - 23.25)	(-0.27 - 0.76)	,,	00	(19.11 - 26.73)
G	STATI COMME					
	FUCONS CON W					
	FUCONSCOPPT					
Monsanto Company	"ve	12	2-CT-244U			415 of 620

 Table E-17. Statistical Summary of Site TXPL Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

				(°)	S DI.	
			Difference (	MON 88701 minus Cor	itrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
Fatty Acid (% Total FA) 16:1 Palmitoleic	0.48 (0.0058) (0.47 - 0.49)	0.46 (0.0058) (0.45 - 0.47)	0.016 (0.0072) (0.0040 - 0.039)	-0.0018, 0.034	0.070	0.39, 0.70 (0.44 - 0.67)
18:0 Stearic	2.35 (0.025) (2.30 - 2.43)	2.46 (0.025) (2.40 - 2.52)	-0.11 (0.028) (-0.16, -0.097)	-0.083, 0.45	0.006	1.98, 2.95 (1.98 - 2.97)
18:1 Oleic	16.34 (0.078) (16.22 - 16.45)	16.16 (0,078) (15.86 - 16:44)	0.18 (0.11) (-0.14 - 0.53)	-0.083, 0.45	0.143	11.38, 20.64 (13.71 - 18.39)
18:2 Linoleic	55.42 (0.21) (54.97 - 55.95)	55,58 (0,21) (55:18 - 56.13)	=0.15 (0.29) (-1.16 - 0.77)	-0.87, 0.56	0.616	47.49, 63.18 (49.78 - 59.61)
18:3 Linolenic	0.17 (0.0056) (0.17 0.18)	0.17 (0.0056) (0.16 - 0.17)	0.0057 (0.0079) (0.00091 - 0.011)	-0.014, 0.025	0.497	0.060, 0.24 (0.10 - 0.29)
20:0 Arachidic This	0.28 (0.0055) (0.27 - 0.28)	0.28 (0.0055)	-0.0041 (0.0078) (-0.00610.0022)	-0.023, 0.015	0.618	0.17, 0.38 (0.20 - 0.36)
C	Furthe could ne	ribited and				
Monsanto Company	Po I	12	2-CT-244U			416 of 620

 Table E-17. Statistical Summary of Site TXPL Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

``´´				( ⁰ )	S. M.	
			Difference (	MON 88701 minus Co	ntrol)	
Analytical Component (Units) ¹	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance	Commercial Tolerance Interval ⁵ (Range)
Fatty Acid (% Total FA)	(Runge)	(Runge)	(Runge) V			(Runge)
22:0 Behenic	0.16 (0.0015)	0.16 (0.0015)	0.0020 (0.0020)	0.0029, 0.0068	0.362	0.070, 0.21
	(0.16 - 0.16)	(0.16 - 0.16)	(-0.00054 - 0.0042)	it's of		(0.051 - 0.19)
Mineral		wer'	ctura. comedi	Scrit or and		
Calcium (% dw)	0.16 (0.0016)	0.14 (0.0016)	0.021 (0.0023)	0.015, 0.027	< 0.001	0.058, 0.21
	(0.16 - 0.16)	(0.13 - 0.14)	(0.018 - 0.023)	une 0.015, 0.027		(0.081 - 0.18)
Copper (mg/kg dw)	10.49 (0.15)	9.98 (0.15)	0.51 (0.22)	-0.023, 1.04	0.057	2.97, 12.86
	(10.09 - 10.87)	(9,58 - 10.41)	(0.12 - 1.29)	-0.023, 1.04		(4.46 - 11.62)
fron (mg/kg dw)	60.47 (5 67)	79.02 (5.67)	-18.55 (7.06)	-35.82, -1.28	0.039	47.30, 97.12
	(56.94 - 66.50)	(67.45 - 95.10)	(-38.15 - 0.95)			(39.49 - 114.34)
Magnesium (% dw)	0.35 (0.0045)	0.34 (0.0045)	0.019 (0.0040)	0.0087, 0.028	0.003	0.28, 0.47
is of	(0.35 - 0.37)	(0.33-0.34)	(0.0082 - 0.024)			(0.31 - 0.46)
Manganese (mg/kg.dw)	1091 (034)	9.04(0.34)	1.86 (0.48)	0.70, 3.03	0.007	9.07, 17.33
	(10.18 - 11.37)	(8.83 - 9.54)	(0.64 - 2.54)	,		(9.07 - 17.14)
	KN OLE COLL	le le company de la company de				
	Functi economiti any connection to any thous to	, nilo.				
Monsanto Company	"ve '	1	2-CT-244U			417 of 620

 Table E-17. Statistical Summary of Site TXPL Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control (continued)

					10		
				Difference ()	MON 88701 minus Co	ntrol)	
		MON 88701 ²	Control ⁴		CUISI	*	Commercial
Analytical	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral				(C)	and all all all all all all all all all al	Ś	
Phosphorus	(% dw)	0.58 (0.0099)	0.57 (0.0099)	0.0036 (0.011)	-0.022, 0.030	0.742	0.49, 0.87
		(0.56 - 0.61)	(0.54 - 0.60)	(-0.0098 - 0.018)	its of		(0.48 - 0.87)
			- KP	121× 1121	dill of the		
Potassium (	% dw)	1.01 (0.023)	0.87 (0.023)	0.14 (0.033)	0.062, 0.22	0.004	0.92, 1.21
,	,	(0.98 - 1.06)	(0.79 - 0.93)	(0.073 - 0.27)	Nº XIII		(0.90 - 1.26)
		× ,			), CI,		· · · · · ·
Sodium (% o	dw)	0.024 (0.010)	0.047 (0.010)	0.023 (0.014)	-0.058, 0.012	0.161	0, 0.066
		(0.019 - 0.027)	(0.019 - 0.090)	(-0.065 - 0.0062)			(0.0054 - 0.077)
					ine.		(***********)
Zinc (mg/kg	dw)	34.10 (0.45)	34.96 (0.45)	S = 0 86 (0 64)	-2.44, 0.71	0.227	27.27, 44.95
Zine (ing/kg	, uw)	(33.36 - 35.30)	(33 70 - 35 89)	(-2,31 - 1,61)	-2.77, 0.71	0.227	(25.07 - 48.49)
		(35.30 - 33.50)		$(0, \gamma), \gamma$			(23.07 - 40.47)
Vitanin (m	a/lea dev)	NO CHE CHINA	N' JN' COL (	N' ON HE			
Vitamin (m	g/kg dw)	11/ 2020 750		(O) : (O)	1 20 20 26	0.022	41 01 205 90
Vitamin E	200	414.39 (2./3)	(07, 02, 02, 020, 00)	10.73 (3.90)	1.20, 20.26	0.033	41.91, 205.89
	is is	(107.81 - 148.39)	(93.92 - 109.90)	(6.69 - 14.40)			(84.07 - 162.76)
	X11. 410	V X C'	10 ot :0 x				

Table E-17. Statistical Summary of Site TXPL Cottonseed Nutrients for MON 88701 (Treated) vs. Conventional Control gin nd (continued)

 ¹dw = dry weight; fw = fresh weight; FA = fatty acid.

 ²MON 88701 plants were treated with dicamba and glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 418 of

			Difference (N	MON 88701 minus 😋	introl	
	MON 88701 ²	Control ⁴		<u></u>		Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Acie	d (% Total FA)		all	0, 0, V	0	,
Dihydrosterculic Acid	0.16 (0.0047)	0.16 (0.0047)	-0.0044 (0.0066)	0.021, 0.012	0.533	0.078, 0.25
	(0.14 - 0.17)	(0.15 - 0.17)	(-0.026 - 0.021)		)`	(0.038 - 0.23)
		S	NON XON	its of		
Malvalic Acid	0.41 (0.020)	0.47 (0.020)	-0.054 (0.029)	-0.12, 0.017	0.112	0.23, 0.54
	(0.33 - 0.47)	(0.44 - 0.49)	(-0.16 - 0.0068)	and and		(0.11 - 0.59)
		e Biori		no at 1.		
Sterculic Acid	0.23 (0.013)	0.26 (0.013)	-0.026 (0.018)	0.070, 0.017	0.189	0.17, 0.27
	(0.18 - 0.27)	(0.25 - 0.27)	(-0.085 - 0.024)			(0.061 - 0.34)
	02	6, 6, %	1 Julie this 20	e.s.		
Gossypol (% dw)	QUES.	SUL WIN I FO	will of the N	nº		
Free Gossypol	0.98 (0.024)	0.93 (0.024)	0.054 (0.033)	-0.028, 0.14	0.157	0.099, 1.57
	(0.91 - 1.06)	(0.91 - 0.95)	(-0.025 - 0.13)			(0.50 - 1.41)
	and so the	no. no. till ?	In Mrs OI			
Total Gossypol	1,06 (0.024)	1.01 (0.024)	0.053 (0.022)	-0.00013, 0.11	0.050	0.064, 1.76
	(1.03 01.11)	(0.97 - 1.05)	(-0.021 - 0.092)			(0.56 - 1.61)
	ALL SU OF THIS	Ar John of	the			

### Table E-18. Statistical Summary of Site TXPL Cottonseed Anti-nutrients for MON 88701 (Treated) vs. Conventional Control

 1 dw = dry weight; FA = fatty acid.  2 MON 88701 plants were treated with dicamba and glufosinate.  3 Mean (S.E.) = least-square mean (standard error).

⁴Control refers to the non-biotechnology derived, conventional control (Coker 130). ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero. Monsanto Company 12-CT-244U 419 of

Ø

#### E.5. Composition of Cottonseed Not Treated with Dicamba or Glufosinate

#### E.5.1. Nutrient Levels in Cottonseed Not Treated with Dicamba or Glufosinate

In the combined-site analysis of nutrient levels in cottonseed, the following components had no significant differences (p<0.05) in mean values between MON 88701 not treated with dicamba or glufosinate and the conventional control: one proximate (protein), 17 amino acids (alanine, aspartic acid, cystine, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, and valine), eight fatty acids (16:0 palmitic acid, 16:1 palmitoleic acid, 18:0 stearic acid, 18:1 oleic acid, 18:2 linoleic acid, 18:3 linolenic acid, 20:0 arachidic acid, and 22:0 behenic acid), and four minerals (copper, iron, phosphorus, and sodium) (Tables E-19 and E-20).

The nutrient components that had significant differences in mean values between MON 88701 and the conventional control in the combined-site analysis were: five proximates (ash, calories, carbohydrates, moisture, and total fat), four types of fiber (ADF, crude fiber, NDF, and TDF), one amino acid (arginine), one fatty acid (14:0 myristic acid), five minerals (calcium, magnesium, manganese, potassium, and zinc) and vitamin E (Table E-19).

The significant differences in nutrients were further evaluated using considerations relevant to the safety and nutritional quality of MON 88701 when compared to the conventional control:

All nutrient component differences observed in the combined-site statistical analysis, whether reflecting increased or decreased MON 88701 mean values, with respect to the conventional control, were 16.14% or less. The relative magnitude of the differences were as follows: 1.04 to 6.45% for proximates; 3.35 to 4.12% for fibers; 3.82% for arginine; 2.39% for 14:0 myristic acid; 5.48 to 16.14% for minerals; and 5.84% for yitamin E.

- 1) All mean values for all significantly different nutrient components from the combinedsite analysis of MON 88701 were within the 99% tolerance interval established from the conventional commercial reference varieties grown concurrently in the same trial.
- 2) Assessment of the reproducibility of the combined-site differences at the eight individual sites showed statistically significant differences for: calories, carbohydrates, total fat, crude fiber, and NDF at one site; moisture, ADF, TDF, arginine and zinc at two sites; 14:0 myristic, potassium, and vitamin E at three sites; ash and magnesium at four sites, manganese at five sites and calcium at 7 sites. With the exception of potassium, arginine and zinc, each at a single site, all individual site mean values of MON 88701 for all nutrient components with significant differences were within the 99% tolerance interval established from the conventional commercial reference varieties grown concurrently in the same trial. The control values for arginine and zinc were also outside the tolerance interval at the individual sites where the MON 88701 value was outside the tolerance interval.
- 3) With the exception of calories, combined-site mean values and individual site mean values of MON 88701 for all nutrient components including those that were significantly different were within the context of the natural variability of commercial cotton

composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011).

Five of the 17 cottonseed nutrient statistically significant differences between MON 88701 and the conventional control observed in the combined-site data analysis were attributable to small differences in proximates (ash, carbohydrates expressed as % dw, calories expressed as Kcal/100g % dw, moisture expressed as % fw and total fat expressed as % dw). For ash, calories, and total fat, the relative magnitudes of the differences between the mean values for MON 88701 and the conventional control were all small increases (4.77% for ash, 1.04% for calories and 5.37% for total fat). The relative magnitudes of differences for mean values of carbohydrates and moisture between MON 88701 and the conventional control were both small decreases, 2.96% for carbohydrates and 6.45% for moisture. All of the nutrient mean values for MON 88701 observed in the combined-site analysis for proximates were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. Significant differences for proximate mean values between MON 88701 and the conventional control were not consistently observed among sites. Ash was significantly different at four individual sites, with relative magnitudes of differences ranging from 4.34 to 11.0%. Moisture was decreased at two sites, with relative magnitude of differences ranging from 8.51 to 11.58%, carbohydrates had a relative decrease of 4.71% at one site. Both calories and total fat had small increases at one site with 1.30% for calories and 6.90% for total fat. Overall, observed differences in proximate values between MON 88701 and the conventional control were not considered to be meaningful from a food and feed safety or nutritional perspective because they were small, not consistently reproduced across the individual sites, and the mean MON 88701 combined-site values were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial and within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011).

Four of the 17 cottonseed nutrient differences between MON 88701 and the conventional control observed in the combined-site data analysis were attributable to small differences in fiber (ADF, crude fiber, NDF, and TDF, all expressed as % dw). All relative magnitudes of the differences between the mean value for MON 88701 and the conventional control were small decreases (3.93% for ADF, 4.12% for crude fiber, 3.56% for NDF, and 3.35% for TDF). All of the nutrient mean values for MON 88701 observed in the combined-site analysis for fiber were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. Significant differences for fiber mean values between MON 88701 and the conventional control were not consistently observed among individual sites. ADF and TDF were significantly different at two sites, with small decreases ranging from 8.50 to 8.91% for ADF and 5.21 to 6.83% for TDF. Crude fiber and NDF were significantly different at one site, with a small decrease of 5.46% for crude fiber and 5.66% for NDF. Overall, observed differences in fiber values between MON 88701 and the conventional control were not considered to be meaningful from a food and feed safety or nutritional perspective because they were small, not consistently reproduced across the individual sites, and the mean MON 88701 combined-site values were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial and within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011).

One of the cottonseed nutrient differences between MON 88701 and the conventional control observed in the combined-site analysis was attributed to a small difference in one amino acid (arginine, expressed as % dw). The relative magnitude of the difference between the mean value for MON 88701 and the conventional control was a small decrease of 3.82%. The mean arginine value for MON 88701 observed in the combined-site analysis was within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. Significant differences for arginine mean values between MON 887012 and the conventional control were not consistently observed among individual sites, with small decreases ranging from 5.36 to 8.48% observed at two sites. Overall, observed differences in arginine values between MON 88701 and the conventional control were not considered to be meaningful from a food and feed safety or nutritional perspective because they were small, not consistently reproduced across the individual sites, and the mean MON 88701 combined site values was within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial or within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011). xO

One of the cottonseed nutrient differences between MON 88701 and the conventional control observed in the combined-site analysis was attributed to the fatty acid 14:0 myristic acid (expressed as % total FA). The relative magnitude of the difference between the mean fatty acid value for MON 88701 and the conventional control in the combined-site analysis was a small decrease of 2.39%. The mean 14:0 myristic acid value for MON 88701 observed in the combined-site analysis was within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. Significant differences for 14:0 myristic acid mean values between MON 88701 and the conventional control were not consistently observed among individual sites, with three sites with small decreases ranging from 3.08 to 4.79%. Overall, observed differences in 14:0 myristic acid values between MON 88701 and the conventional control were not considered to be meaningful from a food and feed safety and nutritional perspective because they were small, not consistently reproduced across the individual sites, and the mean MON 88701 combined-site value was within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial and within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database onn (ILSI, 2014). ne

Five of the 17 cottonseed nutrient differences between MON 88701 and the conventional control observed in the combined-site data analysis were attributable to small differences in minerals (calcium, magnesium, and potassium expressed as % dw and manganese and zinc expressed as mg/kg dw). For calcium, magnesium, manganese and potassium, the relative magnitude of the differences between the mean values for MON 88701 and the conventional control were all increases (14.72% for calcium, 5.81% for magnesium, 16.14% for manganese and 5.48% for potassium). The difference for zinc between the mean value for MON 88701 and the conventional control was a decrease of 5.81%. All of the nutrient mean values for MON 88701

observed in the combined-site analysis for minerals were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. With the exception of calcium and manganese, significant differences for mineral mean values between MON 88701 and the conventional control were not consistently observed among individual sites. Although calcium was significantly different at seven sites, with increases ranging from 9.33 to 24.41%, the variability observed for the test (mean range 0.10 to 0.21% dw) and control samples (mean range 0.081 to 0.19% dw) were very similar (Table E-20). Manganese was significantly different at five sites with increased differences ranging from 12.88 to 29.26%. Magnesium was significantly different at four sites with relative increases in MON 88701, ranging from 5.69 to 8.36%, and potassium was significantly increased at three sites, with relative increases ranging from 8.76 to 18.36%. Zinc was significantly different at two sites with small decreases in relative magnitude of differences ranging from 8.98 to 16.23%. Overall, observed differences in mineral values between MON 88701 and the conventional control were not considered to be meaningful from a food and feed safety or nutritional perspective because they were generally small, not consistently reproduced across individual sites (with the exception of calcium), and the mean MON 88701 combined-site values were within the 99% tolerance interval established by conventional, commercial reference varieties grown concurrently in the same trial or within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011).

The relative magnitude of the difference between the mean vitamin E value for MON 88701 and the conventional control in the combined-site analysis was a small increase of 5.84%. The mean vitamin E value for MON 88701 observed in the combined-site analysis was within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. The significant difference for the vitamin E mean value between MON 88701 and the conventional control was not consistently observed among individual sites, with significant increases ranging from 6.54 to 11.36% observed at three sites. Overall, the observed difference in the vitamin E value between MON 88701 and the conventional from a food and feed safety and nutritional perspective because it was small, not consistently reproduced across the individual sites, and the mean MON 88701 combined-site value was within the 99% tolerance interval established by conventional control may be same trial and was within the conventional control was within the 1LSI Crop Composition Database (ILSI, 2011).

In summary, with the exception of calcium and manganese, statistical analyses found no consistent differences between the levels of nutrient components in cottonseed from MON 88701 and the conventional control. Differences were observed for calcium and manganese in combined analyses and most individual sites, but the magnitudes of differences for this nutrient was less than the variability for the control samples, and values were within the range of natural variability for cottonseed.

These findings support the conclusion of compositional equivalence of MON 88701 to conventional cotton.

#### E.5.2. Anti-Nutrient Levels in Cottonseed Not Treated with Dicamba or Glufosinate

Cottonseed was analyzed for five anti-nutrients, namely: dihydrosterculic acid, malvalic acid, sterculic acid, free gossypol, and total gossypol. Out of these five anti-nutrients, in the combined-site analysis of MON 88701 not treated with dicamba or glufosinate and the conventional control, malvalic and sterculic acids, as well as free gossypol, did not show any significant differences (p<0.05) in their mean values (Table E-21). In the combined-site analysis dihydrosterculic acid and total gossypol were significantly different (Table E-2).

The significant differences in anti-nutrients were further evaluated using considerations relevant to the safety and nutritional quality of MON 88701 when compared to the conventional control:

- 1) All anti-nutrient component differences observed in the combined-site statistical analysis, which reflected an increase in MON 88701 mean values with respect to the conventional control, were 12.64% or less. The relative magnitudes of the differences for dihydrosterculic acid and total gossypol were 12.64% and 6.26%, respectively.
- 2) Mean values for all significantly different anti-nutrient components from the combined-site analysis of MON 88701 were within the 99% tolerance interval established from the conventional commercial reference varieties grown concurrently in the same trial.
- 3) Assessment of the reproducibility of the combined-site differences at the eight individual sites showed significant differences for dihydrosterculic and total gossypol at only one site. All individual site mean values of MON 88701 for both anti-nutrient components with significant differences were within the 99% tolerance interval established from the conventional commercial reference varieties grown concurrently in the same trial.
- 4) All combined-site mean values and individual site mean values of MON 88701 for all antinutrient components including those that were significantly different were within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the ILSI Crop Composition Database (ILSI, 2011).
- The two cottonseed anti-nutrient differences between MON 88701 and the conventional control observed in the combined-site data analysis were attributed to small differences in one cyclopropenoid fatty acid (dihydrosterculic; expressed as % total fatty acid) and total gossypol (expressed as % dw). The relative magnitude of the differences between the mean values for MON 88701 and the conventional control were increases of 12.64% for dihydrosterculic acid and 6.26% for total gossypol. These anti-nutrient mean values for MON 88701 observed in the combined-site analysis were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial. Significant differences for the two anti-nutrient mean values between MON 88701 and the conventional control were not consistently observed among individual sites. Both dihydrosterculic acid and total gossypol were significantly different at only one site with an increase of 33.11% for dihydrosterculic acid and an increase of 7.99% for total gossypol. Overall, observed differences in anti-nutrient values between MON 88701 and the conventional control were not considered to be meaningful from a food and feed safety or nutritional perspective because they were generally small, not

consistently reproduced across the individual sites, and the mean MON 88701 values were within the 99% tolerance interval established by conventional commercial reference varieties grown concurrently in the same trial and within the context of the natural variability of commercial cotton composition as published in the scientific literature and/or available in the

, significant diffe, MON 88701 and the and the natural variability, sion of compositional equ. In summary, statistical analyses found no consistent statistically significant differences between an found quivalence quivalence and contraction and use of the document of the the levels of anti-nutrient components in cottonseed from MON 88701 and the conventional control and mean values for anti-nutrients were within the natural variability found for These findings supported the conclusion of compositional equivalence of

-Consequently and publication of the owner of this document may there for any publication of the owner of this document may there for any the owner of this document may there for any the owner of this document in any the owner of the owner of this document. any commercial empirision and use of this document, may there of the owner.

without the permission of the owner of this documer.

Table E-19.       Summary of Different         (Not Treated) vs.       Conventional C	· _ /	e Comparis	on of Cottonseed	Component	Levels for MON	88701
			Mean Diffe (MON 88701 mir	erence	itshing	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	MON 88701 Range	Tolerance Interval
Statistical Differences Observed in C	Combined-Site Analys	sis	20. 20	all's con	¢O`	
Cottonseed Proximate (% dw)		S.	of tot	n its not	<u>``</u>	
Ash	4.30	4.11	4.770	0.002	3.76 - 4.88	3.42, 4.65
Calories (Kcal/100g)	500.37	495.24	1.04 dune	€0.001	487.62 - 511.92	457.61, 527.56
Carbohydrates	44.47	45.83	-2.96 cull	<0.001	41.07 - 48.81	40.26, 56.45
Moisture (% fw)	01005. 7.000 ch	7.48	1116 the 45 where	<0.001	5.81 - 9.07	4.79, 9.92
Fotal Fat	atilia 1023,52	22.31	5.37	< 0.001	20.99 - 25.54	15.01, 28.51
Calories (Kcal/100g) Carbohydrates Moisture (% fw) Fotal Fat Cottonseed Fiber (% dw) Acid Detergent Fiber Crude Fiber	MON 88701 ² Mean ³ Combined-Site Analys 4.30 500.37 44.47 44.47 23.57 6 17.78 17.78	26,58	-3.93	0.009	23.30 - 30.43	22.24, 31.96
Crude Fiber This dior of the this	0 HI 19.78 P	18.54	-4.12	0.020	14.54 - 20.73	16.93, 22.68
Crude Fiber this dot be the copy them copy the copy and copy and copy the copy and c	4.30 500.37 44.47 44.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 41.47 4	<del>VIO.</del>				
Monsanto Company	^v o ^e [×]	12-CT	-244U			426 of 620

### Table E-19. Summary of Differences (n<0.05) for the Comparison of Cottonseed Component Levels for MON 88701

### Table E-19. Summary of Differences (p<0.05) for the Comparison of Cottonseed Component Levels for MON 88701 (Not Treated) vs. Conventional Control (continued) MON Range J005 Hore 28 / J005 Hore 28 / J000 Hore 2 Commercial Tolerance Interval⁵ Analytical Component (Units)¹ **Statistical Differences Observed in Combined-Site Analysis** Cottonseed Fiber (% dw) Neutral Detergent Fiber 27.03, 42.49 **Total Dietary Fiber** 34.52, 52.58 **Cottonseed Amino Acid (% dw)** Arginine 2.38, 3.47 **Cottonseed Fatty Acid (% Total FA)** 14:0 Myristic 0.16, 1.37 **Cottonseed Mineral** Calcium (% dw) 0.058, 0.21 Magnesium (% dw) 0.28, 0.47 Monsanto Company 427 of 620

MON 88701 (Not Treated) vs. Conv	ventional Control	(continued)		L		
			Mean Diff	erence	105 31	
			(MON 88701 mi	nus Control)	i dines	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	SMON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵
Statistical Differences Observed in Con	mbined-Site Analy	sis	D.	2.20	201-	
Cottonseed Mineral			all a	sto dia n'i	e de	
Manganese (mg/kg dw)	13.63	11.73	Q 16.14	≪0.001	10.59 - 17.47	9.07, 17.33
		S.				
Potassium (% dw)	1.13	1.07	5,48	0.012	0.99 - 1.32	0.92, 1.21
	and a	CLU.	(0) dv	Cr Co,		
Zinc (mg/kg dw) Cottonseed Vitamin (mg/kg dw) Vitamin E Cottonseed Cyclopropenoid Fatty Acto Dihydrosterculic Acid Cottonseed Gossypol (% dw) Total Gossypol Cottonseed Gossypol (% dw) Total Gossypol	37.81	40.14	0 -5.81 N	0.009	27.60 - 46.04	27.27, 44.95
	0	in it in the start	of tor cond	lo,		
Cottonseed Vitamin (mg/kg dw)		S St Il		*		
Vitamin E	139.01	0131.33	JH . (5.84)	0.002	87.22 - 184.47	41.91, 205.89
	of g. gul th	111 - 4.0. × (1)C	of this is the			
Cottonseed Cyclopropenoid Fatty Acid	l (% TotaPFA)	and fish a	O KAL ON			
Dihydrosterculic Acid	0.15	0.14	12.64	< 0.001	0.12 - 0.19	0.078, 0.25
	×O , CO , CO	till'aller	no oi			
Cottonseed Gossypol (% dw)	it is all its		in the second			
Total Gossypol	A.03	0.97	6.26	< 0.001	0.84 - 1.52	0.064, 1.76
do all subs		NO STINO				,
ALL ON ALL AND	10,11,000,00	No ale				
al dia dia dia		jio.				
1 Quel	no el ellid	5				
CO THE CO	VUL OF SUL					
4° offis	01, 11°. 10°.					
6.3						
Real Providence of the second s	Kr CV.					
Analytical Component (Units) ¹ Statistical Differences Observed in Con Cottonseed Mineral Manganese (mg/kg dw) Potassium (% dw) Zinc (mg/kg dw) Cottonseed Vitamin (mg/kg dw) Vitamin E Cottonseed Cyclopropenoid Fatty Acto Dihydrosterculic Acid Cottonseed Gossypol (% dw) Total Gossypol Including Contention of the second Cottonseed Gossypol (% dw) Total Gossypol						
Monsanto Company	$\langle O_{\mathcal{L}} \rangle$	12-CT-	244U			428 of 620

### Table E-19. Summary of Differences (p<0.05) for the Comparison of Cottonseed Component Levels for

Table E-19. Summary of Difference MON 88701 (Not Treated) vs. Con	ventional Control	(continued)		•	6. 71			
	Mean Difference							
			(MON 88701 mi	nus Control)	SU			
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial		
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(pValue)	Range	Tolerance Interval ⁵		
Statistical Differences Observed in Me	ore than One Indivi	dual Site	and a	Stor Mor Le	NO NO			
Cottonseed Mineral - 7 Sites			20 20	she coi a				
Calcium (% dw) Site ARTI	0.15	0.12	24.41	0.007	0.14 - 0.16	0.058, 0.21		
	Ś	Y O		Ol Jul				
Calcium (% dw) Site GACH	0.13	0.11	1280	<0.001	0.13 - 0.13	0.058, 0.21		
	<u>ر</u> م	ello s.	s' or in	-Ct				
Calcium (% dw) Site KSLA	0.20	0.18		0.032	0.18 - 0.21	0.058, 0.21		
		S SI IN						
Calcium (% dw) Site NCBD	0.15	0.14	JH (9.33)	0.002	0.15 - 0.15	0.058, 0.21		
	Phose Sur th	In Story	of inis who					
Calcium (% dw) Site NMLC	0.15	0.13	\$15.030	0.006	0.14 - 0.15	0.058, 0.21		
		(a)						
Calcium (% dw) Site SCEK	0,011	0.091	21.62	0.013	0.10 - 0.12	0.058, 0.21		
In the state	Ct ON CUI II		Mis					
Calcium (% dw) Site TXPL	we 0.16	0.14	17.83	< 0.001	0.16 - 0.17	0.058, 0.21		
CO ALL GV	it in a Valo	1, 0 M						
Calcium (% dw) Site GACH Calcium (% dw) Site KSLA Calcium (% dw) Site NCBD Calcium (% dw) Site NMLC Calcium (% dw) Site SCEK Calcium (% dw) Site TXPL Calcium (% dw) Site TXPL	MON 88701 ² Mean ³ ore than One Indivi 0.15 0.13 0.20 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1	NIO ATE						
Monsanto Company	Ve .	12-CT	-244U			429 of 620		

Table E-19. Summary of Differen MON 88701 (Not Treated) vs. Con	u ,	1		1	$\cdot \circ \cdot >$			
	Mean Difference							
			(MON 88701 mi	nus Control)	Shi			
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial		
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵		
Statistical Differences Observed in M	ore than One Indiv	idual Site	A Cha	sto dio nie				
Cottonseed Fatty Acid (% Total FA)	- 5 Sites	C	08	SUL CO				
18:0 Stearic Site ARTI	2.65	\$2.51	5.54	0.035	2.59 - 2.71	1.98, 2.95		
18:0 Stearic Site LACH	2.61	2.52	9.54 000	0,094	2.58 - 2.64	1.98, 2.95		
18:0 Stearic Site NCBD	2.33	12.3405	6 ¹ 7.94 CUI	0.021	2.49 - 2.57	1.98, 2.95		
18:0 Stearic Site NMLC	2.52	2.64	U ¹¹⁰ 1.4.700	<0.001	2.49 - 2.56	1.98, 2.95		
18:0 Stearic Site TXPL	2 1 1 1 C 231 0	102.46 ⁵¹	50 5 -6.140 M	0.001	2.26 - 2.34	1.98, 2.95		
Cottonseed Mineral - 5 Sites	Still of the of the of	tioning	Inel of the					
Manganese (mg/kg dw) Site ARTI	20 N14.86	1.50	29.26	0.034	13.28 - 17.47	9.07, 17.33		
Manganese (mg/kg dw) Site GACH	51 ¹¹ 11151426	61.51 C	23.89	<0.001	13.82 - 15.04	9.07, 17.33		
18:0 Stearic Site NMLC 18:0 Stearic Site TXPL <b>Cottonseed Mineral - 5 Sites</b> Manganese (mg/kg dw) Site GACH Manganese (mg/kg dw) Site GACH	MON 88701 ² Mean ³ Jore than One Indiv - 5 Sites 2.65 2.61 2.33 2.52 2.52 2.52 2.51 2.52 2.52 2.52 2.52	N NOS						
Monsanto Company	Ve .	12-CT	244U			430 of 620		

MON 88701 (Not Treated) vs. Conven	tional Control	(continued)			TEGIN POTO1	
		4	(MON 88701 mi	nus Control)	- Mas	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	SMON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵
Statistical Differences Observed in More	than One Indivi	dual Site	x dr	x d l of xe		
Cottonseed Mineral - 5 Sites	14 10	12 56	(12.00	0012	92 10 14 04	9.07, 17.33
Manganese (mg/kg dw) Site KSLA	14.18	12.30	12.00 H	JU.013	013.48 - 14.84	9.07, 17.55
Manganese (mg/kg dw) Site SCEK	12.44	9.72	28.04	0.008	10.59 - 13.87	9.07, 17.33
	all	C.C.C.	(0) du	n no		
Manganese (mg/kg dw) Site TXPL	11.38	9.04	25.84	0.002	10.73 - 12.83	9.07, 17.33
Cottonseed Proximate (% dw) - 4 Sites	they a	Sill altien	Ser 1 do un			
Ash Site GACH	4.39 ک	0 4.21	Jill 14.3400	0.003	4.24 - 4.50	3.42, 4.65
	*65. 5 ¹ , 1	Way istill	OT THIS WA	0.042		
Ash Site NCBD	A 4233	1. PA 3	4.56	0.043	4.20 - 4.48	3.42, 4.65
Ash Site SCEK	A.10 C	1103.74 C	9.72	0.011	3.91 - 4.23	3.42, 4.65
The fillest	ON CUI IIC		- Mis			
Analytical Component (Units) ¹ Statistical Differences Observed in More Cottonseed Mineral - 5 Sites Manganese (mg/kg dw) Site KSLA Manganese (mg/kg dw) Site SCEK Manganese (mg/kg dw) Site TXPL Cottonseed Proximate (% dw) - 4 Sites Ash Site GACH Ash Site NCBD Ash Site SCEK Ash Site SCEK Ash Site TXPL Cotton Sector Ash Site TXPL Cotton Sector Ash Site TXPL	3.84	3.46	11.00	0.001	3.76 - 3.98	3.42, 4.65
ATTE UN VE XS	<u> 201 - 400</u>	<u> </u>				
The still at	117. 20.55					
the strend is	In store start of					
COT HIT COT	une be su					
	the teo					
and the	Jur ilo.					
N	Qru					
Monsanto Company	5	12-CT-	2244U			431 of 620

## Table E-19. Summary of Differences (p<0.05) for the Comparison of Cottonseed Component Levels for</th>

MON 88701 (Not Treated) vs. Con	nventional Control	(continued)		-	6 Min	
	Mean Difference (MON 88701 minus Control) MON 887012 Control ⁴ Mean Difference Signification MON 88701 comm					
			(MON 88701 mi	nus Control)	1. MIRS	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵
Statistical Differences Observed in M	lore than One Indivi	dual Site	201	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SUL	
Cottonseed Fatty Acid (% Total FA)	- 4 Sites	0.10		sp dlo ni		
18:3 Linolenic Site ARTI	0.14	0.13	09-9.88	0.022	0.14 - 0.14	0.060, 0.24
		R I	Q1	on its no		
18:3 Linolenic Site NCBD	0.36	0.29	25.90	0.008	0.34 - 0.38	0.060, 0.24
	227	NEGL	100000			
18:3 Linolenic Site NMLC	0.16	0.14	2 9.67 JUL	0.004	0.15 - 0.16	0.060, 0.24
	X	in the				
18:3 Linolenic Site SCEK	0.16	0015	6.70° CV	0.005	0.15 - 0.16	0.060, 0.24
	or ich	N. Ry Oh	Mr. HI CO C	S.		
Cottonseed Mineral - 4 Sites		i di cilli	OI this wi			
Magnesium (% dw) Site GACH	0:41	0.38	8.36	<0.001	0.40 - 0.43	0.28, 0.47
	All in the stand		of the	0.004	0.41 0.42	0.00.0.47
Magnesium (% dw) Site KSLA	0.42	0.40	5.69	0.004	0.41 - 0.43	0.28, 0.47
	SC, C, C	XIO		0.017	0.00 0.41	0.00.0.47
Magnesium (% dw) Site SCEK	2 4 C C C . 38 V	0.30	1.25	0.01/	0.36 - 0.41	0.28, 0.47
	0, <del>10, 0, 0</del>	<u>. 0. Kr.</u>				
(h, 9/0, 10, 14)	er o et à					
The and the prints	101 111 113 1153	illolo				
12 of of	inter el el el el	>				
COT KIT C	or the be sti					
En Us	COLL THE TO					
D.	in or the					
	N, 6,					
Monsanto Company	MON 88701 ² Mean ³ Iore than One Indivi - 4 Sites 0.14 0.36 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.1	12-CT-	-244U			432 of 620

### Table E-19. Summary of Differences (p<0.05) for the Comparison of Cottonseed Component Levels for

MON 88701 (Not Treated) vs. Co	nventional Control	(continued)			dill' d	
			Mean Dif	ference	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		~ -4	(MON 88701 m	inus Control)		~
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-value)	Kange	Tolerance Interval ⁵
Statistical Differences Observed in M	Iore than One Indivi	dual Site	×1'or	× O VOY ×	er e	
Cottonseed Mineral - 4 Sites	0.26	0.24		AL BOOL	60.25 0.27	0.00.0.47
Magnesium (% dw) Site TXPL	0.36	0.34	00-7.43	≤0.001	0.35 - 0.37	0.28, 0.47
	2.64	P i	Q' 20.	or rits the	)*	
Cottonseed Fatty Acid (% Total FA)	- 3 Sites	0 70 1	" alle loc		0.(( 0.70	016127
14:0 Myristic Site KSLA	0.69	0.72	Q ⁴²⁶⁴	0.043	0.66 - 0.70	0.16, 1.37
		Selle S.	a george		0.00 0.70	0.1.6.1.07
14:0 Myristic Site NCBD	0.71	0.750	×4.79	0.024	0.69 - 0.73	0.16, 1.37
	er's o	S. ON. J.				
14:0 Myristic Site NMLC	0.95	0.98	JU: 1-3.080	<b>0.008</b>	0.94 - 0.95	0.16, 1.37
	R 85. 5 4	in at is stri	OI this wh			
Cottonseed Mineral - 3 Sites	is in the mo	Mo. dis	S ALLS A			
Potassium (% dw) Site GACH	S1.220	d.12	8.76	< 0.001	1.18 - 1.24	0.92, 1.21
ex. 19	to the me	all all	NIL SO			
Potassium (% dw) Site SCEK	C 0 1.14	1.02	11.89	0.031	1.11 - 1.19	0.92, 1.21
10° 3° 10'	, the go and	all the				
Potassium (% dw) Site TXPL	0 1.03 NO	0.87	18.36	0.002	0.99 - 1.09	0.92, 1.21
<h1 10="" 10,="" 15<="" 2="" td=""><td>and at i</td><td>Or to</td><td></td><td></td><td></td><td></td></h1>	and at i	Or to				
14:0 Myristic Site NMLC <b>Cottonseed Mineral - 3 Sites</b> Potassium (% dw) Site GACH Potassium (% dw) Site SCEK Potassium (% dw) Site TXPD	or 114'. 2 :55					
the states	i on charmin	11				
ON AND	dr de oer all					
LUN AS	on ne d					
$C^{\circ}$						
	, "Or With					
	NIT OF					
Monsanto Company	MON 88701 ² Mean ³ <b>Jore than One Indivi</b> 0.36 <b>- 3 Sites</b> 0.69 0.71 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0	12-CT	-244U			433 of 620
···· J		01	-			

MON 88701 (Not Treated) vs. Conv	entional Control	(continued)		•	din d					
			Mean Diff		Les an					
			(MON 88701 mi	nus Control)	Mi dilles					
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial				
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵				
Statistical Differences Observed in Mon	re than One Indivi	idual Site	1 DI	9, 49	on 13					
Cottonseed Vitamin (mg/kg dw) - 3 Site	es		AN AN	Stor Alor	e co					
Vitamin E Site GACH	149.29	140.12	6.54	0.046	42.84 - 153.55	41.91, 205.89				
		S		N its no						
Vitamin E Site LACH	167.00	149.96	11.36	0.002	158.95 - 173.30	41.91, 205.89				
	No	, city	COL dur	n' nor						
Vitamin E Site NCBD	174.64	156.99	n 11.24	0.025	165.41 - 184.47	41.91, 205.89				
	, 0	interios	or ror con	O						
MON 88701²         Control ¹ Mean ² (MON 88701²) Mean ² Control ¹ Mean ² (MON 88701²) Mean ² Control ¹ Mean ² MON 88701²         Commercial Tolerance Interva ⁵ Statistical Differences Observed in More than One Individual Site Cottonseed Vitamin (mg/kg dw) - 3 Sites         149.29         140.12         6.54         90.046         142.84 - 153.55         41.91, 205.89           Vitamin E Site GACH         167.00         149.96         11.86         0.002         158.95 - 173.30         41.91, 205.89           Vitamin E Site CACH         167.00         149.96         11.86         0.002         158.95 - 173.30         41.91, 205.89           Vitamin E Site NCBD         174.64         156.99         11.24         0.025         165.41 - 184.47         41.91, 205.89           Moisture (% fw) Site GACH         6.39         7.23         41.58         0.015         6.19 - 6.64         4.79, 9.92           Cottonseed Fiber (% dw) - 2 Sites Acid Detergent Fiber Site LaCH         25.09         27.53         -8.91         0.010         24.53 - 25.48         22.24, 31.96           Acid Detergent Fiber Site LaCH         25.94         28.35         -8.50         0.008         25.56 - 26.33         22.24, 31.96           Monsanto Company         12-CT-244U         25.44 - 02.44         <										
Moisture (% fw) Site GACH	6.39	7.23	N.580	• 0.015	6.19 - 6.64	4.79, 9.92				
	or a. all it	Ill for ill								
Moisture (% fw) Site SCEK	648	085	0 x - 8 510	0.019	6 16 - 6 98	4.79, 9.92				
Moistare (701w) Site Bellik				0.019	0.10 0.90	1.19, 9.92				
Cottonseed Fiber (% dw) - 2 Sites	i ne el el	ill'ino								
Acid Detergent Fiber Site ARTI	25.07	27 53	-8.91	0.010	24 53 - 25 48	22.24, 31.96				
Acid Detergent Hoer Site Ait I			-0.91	0.010	24.33 - 23.40	22.24, 51.90				
Acid Detergent Fiber Site LACH	* S 25 08 3	40.25	Q 50	0.000	7556 7677	22.24, 31.96				
Acid Deleigent Fiber She DACH	11 23.94	28.33	-8.30	0.008	23.30 - 20.33	22.24, 51.90				
	e o et à									
	i dill' al diss	illolo								
the of selling	Jon of or office	5								
COL KILL CO	i alle be su									
FUI AS	01, 4/10, 00									
Co. 7										
S	0°.011.									
N.	el el									
Monsanto Company		12-CT-2	244U			434 of 620				
1 2										

MON 88701 (Not Treated) vs. Conver	ntional Control	(continued)			dingo	
			Mean Diff		105 0	
		G 14	(MON 88701 mi	nus Control)		
Analytical Component (Unita)	MON 88701 ²	Control ⁴	Mean Difference $(9/af Cantrol)$	Significance	SMON 88701	Commercial
Analytical Component (Units) ¹ Statistical Differences Observed in More	than One Indivi	Mean dual Sita	(% 01 Conuol)	(p-value)	Kange	Tolerance Interval ⁵
Cottonseed Fiber (% dw) - 2 Sites	than One mulvi	iuuai site	XY.o.	XOX ION X	2	
Total Dietary Fiber Site LACH	41 09	43 35	5 21	00160	39.95 - 42.26	34.52, 52.58
Total Dietary Ther Site Diferr	11.09	6	NOR J.ZI	().010) ().x5	0.55.55 12.20	51.52, 52.50
Total Dietary Fiber Site NMLC	38 30	× 41 10 m	-6.83	0 003	37 12 - 39 32	34.52, 52.58
	20.20		19 AV	A A	0,112 0,102	0.1102,02100
Cottonseed Amino Acid (% dw) - 2 Sites	<i>ر</i> م`ه. ۲		ale do de			
Arginine Site KSLA	3.00	3.28	×8.48 C	0.009	2.88 - 3.05	2.38, 3.47
C	the star	S all all	San 90 ch			
Arginine Site NMLC	3.51	3.71	jill 1-5.360	0.008	3.34 - 3.62	2.38, 3.47
Q	S. SUL	11- 40 410	of this will	) -		
Lysine Site KSLA	× £19	1.25	° <-3.16°	0.028	1.16 - 1.22	1.01, 1.30
Lysine Site LACH	0 1.25	1.18	6.25	0.035	1.23 - 1.27	1.01, 1.30
The All C	ON CUI IIC		Alles			
Cottonseed Fatty Acid (% Total FA) - 2.	Sites 6 July	Still the				
18:2 Linoleic Site LACH	56.04	56.63	-1.03	0.027	55.71 - 56.35	47.49, 63.18
1/1 ¹ /10 ¹ , 0 ⁶ , 15, 0	2 2 A	on to				
Cottonseed Amino Acid (% dw) - 2 Sites Arginine Site KSLA Arginine Site NMLC Lysine Site KSLA Lysine Site LACH Cottonseed Fatty Acid (% Total FA) - 2.1 18:2 Linoleic Site LACH	A114 . A . 15	1010				
It a chille	st for all is	2.				
COF HILL OC	The be sh					
4 ¹¹ , 11 ² , 0	1,40,00					
Co do						
THE TO						
D.	2,9`					
Analytical Component (Units) ¹ Statistical Differences Observed in More Cottonseed Fiber (% dw) - 2 Sites Total Dietary Fiber Site LACH Total Dietary Fiber Site NMLC Cottonseed Amino Acid (% dw) - 2 Sites Arginine Site KSLA Arginine Site NMLC Lysine Site KSLA Lysine Site LACH Cottonseed Fatty Acid (% Total FA) - 2 Sites 18:2 Linoleic Site LACH	antin's 56.04 10 antin's 10 10 10 10 10 10 10 10 10 10 10 10 10	12-CT-2	244U			435 of 620

		· · · · · ·	Mean Diff		1000 00	
	MON 997012	Control ⁴	(MON 88701 mi Mean Difference (% of Control)	Cignificana	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(n-Value)	Range	Tolerance Interval ⁵
Statistical Differences Observed in More	than One Indivi	dual Site			A runge	Tototunee Interval
Cottonseed Fatty Acid (% Total FA) - 2	Sites		(the second seco	X° IO' X	O) (O	
18:2 Linoleic Site NCBD	56.04	57.19	-2.01	0.021	35.76 - 56.31	47.49, 63.18
		S.	or tor	N its of	, C	
Cottonseed Mineral - 2 Sites	Ś	Y 2		Or Jul		
Zinc (mg/kg dw) Site NCBD	41.50	49.54	16.23	0,009	39.45 - 43.05	27.27, 44.95
	500	xelle s.	s or in	ant i		
Zinc (mg/kg dw) Site NMLC	44.99	49.43	€8.98	0.004	44.56 - 46.04	27.27, 44.95
	SC, S	S ON UN				
Statistical Differences Observed in One S	jite C	10 × 11 · 1	Mr. Hungoo			
Cottonseed Proximate (% dw)	× 5. 5. ×	201.00	OI HOIS WIT	0.040	10( 22 100 (2	
Calories (Kcal/100g) Site NCBD	498.21	(491.80	S 1.30 0	0.048	496.22 - 499.62	457.61, 527.56
Zinc (mg/kg dw) Site NCBD Zinc (mg/kg dw) Site NMLC Statistical Differences Observed in One S Cottonseed Proximate (% dw) Calories (Kcal/100g) Site NCBD Carbohydrates Site TXPL Total Fat Site NCBD	4820 -0	16 30	0171	0.014	13 36 11 51	40.26, 56.45
Carbonyurates Site TATE		20 40 AX	S 4.71	0.014	45.50 - 44.54	40.20, 50.45
Total Fat Site NCBD	S 2908 0	21.58	6 90	0.022	22 78 - 23 39	15.01, 28.51
		() O	0.90	0.022	22.10 23.37	10.01, 20.01
anti- lot you so	40. N. 16					
This dor an est of an and the start of the s	14. 10.55	10 alt				
Si Mo The Mo	n's clarmis	JIO I				
It obstantion of	ner en ne	>				
CUT SE	(11, 10 × 9.0					
AL W	Dr. Will					
Will	Qr I		-244U			
	· ·					

MON 88701 (Not Treated) vs. Conv	ventional Control	(continued)		-	TEGININ 89701	
			Mean Diff	ference	105 0	
		~ 14	(MON 88701 mi	nus Control)	- Cillis	~ · ·
	MON 88701 ²	Control ⁴	Mean Difference	Significance	SMON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Kange	Tolerance Interval ⁵
Statistical Differences Observed in On	ie Site		20.	*0/.5/~*		
Cottonseed Fiber (% dw)	16 51	1		an glo ni		16.02 22 60
Crude Fiber Site KSLA	16.71	17.67	00-5.46	0:047	6.10 - 17.37	16.93, 22.68
		R I	Q1	on the wo		
Neutral Detergent Fiber Site LACH	32.12	34.05	-5.66	0.003	30.20 - 33.94	27.03, 42.49
	237	CL	100,000			
Cottonseed Amino Acid (% dw)	<u> </u>	xelle s.	S Q A	ant.		
Aspartic Acid Site KSLA	2.35	2.50	\$5.91	0.038	2.32 - 2.37	1.94, 2.57
	6	? OU UN				
Glutamic Acid Site GACH	4.69	4.96	JN 175.450	0.041	4.51 - 4.98	3.74, 5.28
0	Q 5. 5 , W	IN A TO STILL	OI this M			
Histidine Site KSLA	0:73	0.75°	6.410	0.006	0.69 - 0.76	0.59, 0.81
	All in the second	in dr	or still			
Isoleucine Site KSLA	0.90	0.95	5.13	0.017	0.88 - 0.94	0.75, 0.96
Mr. Chief	CL ON CU III		du			
Leucine Site KSLA	MC 0.51 JV	1.58	-4.68	0.017	1.47 - 1.55	1.25, 1.62
	Minis J Marine	01 11 0 V				
This you be sto	and the	ON to				
and and internet						
it as are	let contained	7.				
COX XC X	No Co Si					
C ( UI NEO	on the of					
$C_{0}$						
	HO. MIT					
in the second	in ble					
Analytical Component (Units) ¹ Statistical Differences Observed in On Cottonseed Fiber (% dw) Crude Fiber Site KSLA Neutral Detergent Fiber Site LACH Cottonseed Amino Acid (% dw) Aspartic Acid Site KSLA Glutamic Acid Site GACH Histidine Site KSLA Leucine Site KSLA Leucine Site KSLA Leucine Site KSLA Monsanto Company	pe .	12-CT-	244U			437 of 620

MON 88701 (Not Treated) vs. Conve	entional Control	(continued)		•	din d	
			Mean Diff			
			(MON 88701 mi	nus Control)	in the second	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵
Statistical Differences Observed in One	Site		01	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n's	
Cottonseed Amino Acid (% dw)			and a start	sto dio die	NO NO	
Phenylalanine Site KSLA	1.42	1.53	-6.88	0.014	1.37 - 1.45	1.12, 1.58
		S	on ton	N . HS . NO		
Tyrosine Site KSLA	0.79	0.84	-5.94	0.045	0.76 - 0.80	0.67, 0.84
	all	CLU	100 du 0	l' da,		
Cottonseed Fatty Acid (% Total FA)	, Φ [°]	collo s.	s of the			
18:1 Oleic Site NCBD	15.29	14.70	× 4.04	0.026	15.01 - 15.50	11.38, 20.64
	and a	3 St Inc		*		
22:0 Behenic Site ARTI	0.14	0.15	JH . ~6.750	0.029	0.14 - 0.15	0.070, 0.21
	and a sub the	11 7,00,4110	of the work			
Cottonseed Cyclopropenoid Fatty Acid	(% TotaPFA)	and the c	O L'U ON			
Dihydrosterculic Acid Site GACH	0.16	0.12	33,11	0.012	0.14 - 0.17	0.078, 0.25
and a second	×0, 10, 10,	dill'all' al	no ol			
Cottonseed Fatty Acid (% Total FA) 18:1 Oleic Site NCBD 22:0 Behenic Site ARTI Cottonseed Cyclopropenoid Fatty Acid Dihydrosterculic Acid Site GACH Sterculic Acid Site GACH	0.23	0.18	24.51	0.028	0.20 - 0.24	0.17, 0.27
CUT OF 10	10° 20° 10°	atil the	<u>1</u> 0.			
This do and sub to this of and the sub the second	Civils J Pio	1, 0 , 10 , 10 , 10 , 10 , 10 , 10 , 10				
x mis, 101 08 x5	"", SC, to.	1 ×0				
and a start of	( N) ( S)	10 100				
Si Mo Mestro	anti cila mis	JID I				
12 - 63, 46, 4	De les en le	>				
CC UN SO	all of you					
Y ON O	D' the to					
	OU HID.					
O.	i' 10'					
7	MON 88701 ² Mean ³ Site 1.42 0.79 15.29 0.14 (% Total FA) 0.16 0.23 0.16 0.23 0.16 0.23 0.16 0.16 0.16 0.16 0.16 0.16					
Monsanto Company	Ŷ	12-CT-2	244U			438 of 620

#### Table E-19. Summary of Differences (p<0.05) for the Comparison of Cottonseed Component Levels for MON 88701 (Not Treated) vs. Conventional Control (continued)

			Mean Dift (MON 88701 mi	ference	100 01	
	MON 88701 ²	Control ⁴	Mean Difference	Significance	MON 88701	Commercial
Analytical Component (Units) ¹	Mean ³	Mean	(% of Control)	(p-Value)	Range	Tolerance Interval ⁵
Statistical Differences Observed in One Si	te		, DI,	Q' < Q'	CL S	
Cottonseed Gossypol (% dw)				To No. The	No Contraction of the contractio	
Free Gossypol Site NMLC	0.86	0.69	23.91	0.008	0.76 - 0.95	0.099, 1.57
		S	of tot	10, etj. n.	0	
Total Gossypol Site TXPL	1.09	1.01	7.99	0.009	1.03 - 1.16	0.064, 1.76
21	No	, city	1995 - 911C	a a		
1 dw = drv weight: fw = fresh weight: FA = f	atty acid.		n n n			
² Test refers to MON 88701 (Not Treated). T	hese plants wer	e not treated w	ith dicamba or glu	fosinate.		
³ Mean = least-square mean.	By By	Si ali n				
⁴ Control refers to the non-biotechnology der	ived, convention	al control (Co	ker 130)	٢.		
⁵ With 95% confidence, interval contains 99%	% of the values e	xpressed in the	e population of con	nmercial substar	nces. Negative li	mits set to zero.
Analytical Component (Units) ¹ Statistical Differences Observed in One Si Cottonseed Gossypol (% dw) Free Gossypol Site NMLC Total Gossypol Site TXPL ¹ dw = dry weight; fw = fresh weight; FA = ft ² Test refers to MON 88701 (Not Treated). T ³ Mean = least-square mean. ⁴ Control refers to the non-biotechnology der ⁵ With 95% confidence, interval contains 99% Control refers to the non-biotechnology der ⁵ With 95% confidence, interval contains 99% Control refers to the non-biotechnology der ⁶ With 95% confidence, interval contains 99% Monsanto Company	the permised and the pe	mandie the	ner of the or			
Monsanto Company	<u>,                                    </u>	12-CT-	244U			439 of 620

Control					<u>dii 0</u> 0		
		_	Difference (MON 88701 minus Control)				
	MON 88701 ²	Control ⁴		, ¹ 0;;	ins	Commercial	
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵	
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)	
Proximate (% dw)			, DI,	Q' 2 Q' A	e e e e e e e e e e e e e e e e e e e		
Ash	4.30 (0.11)	4.11 (0.11)	0.20 (0.052)	0.084, 0.31	0.002	3.42, 4.65	
	(3.76 - 4.88)	(3.34 - 5.00)	(-0.42 0.79)	10° all cor al	O`	(3.18 - 4.68)	
		G	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	No its of			
Calories (Kcal/100g)	500.37 (1.65)	495.24 (1.71)	5.13 (1.29)	Confidence Interval 0.084, 0.31 2,57, 7,69	< 0.001	457.61, 527.56	
	(487.62 - 511.92)	(487.70 512.65)	(-5.97 - 15.41)	Junit and		(466.09 - 509.91)	
				and the		( )	
Carbohydrates	44.47 (0.56)	45.83 (0.57)	2 - P36 (0 32) - C	-1 99 -0 73	<0.001	40.26, 56.45	
Curbony diales	(41.07 - 48.81)	(42.14 - 50.30)	(-5.09 - 1.56)	JIII 1.77, 0.75	0.001	(43.28 - 54.90)	
	(11.07 10.01)			S		(13.20 51.90)	
Moisture (% fw)	7.00 (0,26)	718 (1) 7)	-0.48 (0.11)	Confidence Interval 0.084, 0.31 2.57, 7, 69 -0.71, -0.26	<0.001	4.79, 9.92	
Wolsture (70 IW)	(5.81-9.07)	9.40 (0.27) S(6 15, 0 10)	-0.40(0.11)	-0.71, -0.20	<0.001	(6.05 - 10.50)	
	(3.81-9.07)	(0.15-3.13)				(0.03 - 10.30)	
D ( '			0.075 (0.31) (-2.53 - 4.39)	0.72 0.50	0.010	22 20 20 41	
Protein	27./190.//)	27.79(0.77)	-0.0/5(0.31)	-0.73, 0.58	0.810	22.30, 29.41	
c)	(22.49 - 31.29) 0	(23.53 - 31.27)	(-2.53 - 4.39)			(20.58 - 29.28)	
200	and which the		0				
Total Fat	23.51 (0.31)	22.31 (0.33)	××××××××××××××××××××××××××××××××××××××	0.69, 1.71	< 0.001	15.01, 28.51	
211.90	(20.99 - 25.54)	(20.71 - 25.20)	(-1.21 - 3.21)			(16.58 - 25.25)	
all a	9, (10, ¹ 0, ¹ 1),						
	of elline	in all of					
C	opy the due the	Po all					
	Furthe du ne						
		illi					
	op the educine	SC.					
	Printiper Contraction	-					
Monsanto Company	V [®]	ne permit and vie	2-CT-244U			440 of 620	
1 2							

Table E-20. Statistical Summary of Combined-Site Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control

Control (continued)				- (	111. CO	
			Difference (N			
	MON 88701 ²	Control ⁴			lles	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fiber (% dw)			, D),	Q' ( Q' ()'	)	
Acid Detergent Fiber	25.53 (0.34)	26.58 (0.35)	-1.05 (0.35)	-1.79, -0.30	0.009	22.24, 31.96
	(23.30 - 30.43)	(22.08 - 29.58)	(-4.02 + 5.70)			(23.42 - 31.62)
		G	No xol	its of		
Crude Fiber	17.78 (0.37)	18.54 (0.38)	0.76 (0.32)	95% Confidence Interval -1.79, -0.30 -1.41, -0.12 -1.97, -0.35 -2.15, -0.61	0.020	16.93, 22.68
	(14.54 - 20.73)	(16.06 21.70)	(-5.57 - 3.82)			(16.92 - 23.32)
	()	( Boy I Boo		all'all'		()
Neutral Detergent Fiber	31.43 (0.51)	32.59 (0.53)			0.005	27.03, 42.49
redutal Detergent i iber	(28.05 - 37.27)	(28.87 - 35.89)	-1 66 - 6 12	JUN-1.97, -0.55	0.005	(29.27 - 40.63)
	(20.03 - 37.27)	(20.07 4 2 3.0 )	(	-ر ج ب		(2).27 - 40.03)
T ( 1 D' (	20.75 (0.20)		-1.38 (0.36)	-2.15, -0.61	0.001	24.52.52.59
Total Dietary Fiber	39.75 (0.39)	41.12 (0.41)	-1.38 (0.56)	-2.15, -0.61	0.001	34.52, 52.58
	(36.22 - 43.22)	(39.05 - 44.37)				(37.29 - 48.60)
	ALE ATT THE	1.05 (0.020)				
Amino Acid (% dw)	1.05 (0.020)	1.05 (0.020) (0.88 - 1.17)	-0.0034 (0.0091) (-0.076 - 0.11)			
Alanine	1.05 (0.020)	1.05 (0.020)	-0.0034 (0.0091)	-0.023, 0.016	0.714	0.86, 1.11
2001	(0.88 01.15)	0 (0.88 - 1.17)	(-0.076 - 0.11)			(0.83 - 1.22)
· 9 · 1	Si S OI HUIS					
Arginine This do	3.03 (0.10)	3,15 (0,00) 70	-0.12 (0.033)	-0.19, -0.050	0.002	2.38, 3.47
	(2.31 - 3.62)	(2.41 - 3.770)	(-0.37 - 0.26)			(2.30 - 3.55)
anoin	N other of a					
6	2 the dr the	P. M.				
0	Futtingeonne	6.0				
	FUITHER OF COMMENTS	Ult				
	will of					
Monsanto Company	"ve "	te pertind t	CT-244U			441 of 620
monsuluo Company	<u>~</u>	12-	01 2770			+1 01 020

Control (continued)					JII. 0		
			$\begin{array}{c c} \hline \text{Difference (MON 88701 minus Control)} \\ \hline \text{Difference (MON 88701 minus Control)} \\ \hline \text{Mean (S.E.)} & 95\% & \text{Significance} \\ (\text{Range)} & \text{Confidence Interval (p-Value)} \\ \hline \text{H} (0.062) & -0.022 (0.027) & 0.079, 0.035 & 0.422 \\ (-0.28 + 0.20) & (-0.28 + 0.20) \\ \hline \text{O} (0.0094) & -0.0018 (0.0070) & -0.016, 0.012 & 0.793 \\ (-0.074 + 0.086) & (-0.074 - 0.086) \\ \hline \text{84} (0.14) & -0.13 (0.072) & -0.29, 0.025 & 0.093 \\ (-1.01 - 0.57) & (-1.01 - 0.57) \\ \hline \text{9} (0.020) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.11 - 0.020) \\ \hline \text{O} (0.011 - 0.020) & 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.021 & 0.012 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.0061 (0.011) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline \text{O} (0.021) & -0.029, 0.017 & 0.577 \\ \hline $				
	MON 88701 ²	Control ⁴		xi ^O	Ins	Commercial	
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵	
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)	
Amino Acid (% dw)			1 31				
Aspartic Acid	2.39 (0.062)	2.41 (0.062)	-0.022 (0.027)	-0.079, 0.035	0.422	1.94, 2.57	
	(1.95 - 2.69)	(1.92 - 2.74)	(-0.28 - 0.20)	10, 36, 00, 60		(1.79 - 2.72)	
		S		it's of			
Cystine	0.40 (0.0091)	0.40 (0.0094)	-0.0018 (0.0070)	-0.016, 0.012	0.793	0.31, 0.45	
-	(0.33 - 0.49)	(0.31 + 0.46)	(-0.074 - 0.086)	and and		(0.29 - 0.47)	
	· · · · · ·	Bar		no x''			
Glutamic Acid	4.71 (0.13)	4.84 (0.14)	-0213 (0.072)	-0.29, 0.025	0.093	3.74, 5.28	
	(3.79 - 5.57)	(3.66 - 5.70)	(-1.01 - 0.57)			(3.39 - 5.45)	
				<u> </u>		(0.0) 0.10)	
Glycine	1.09 (0.020)	1.09 (0.020)	0.0061 (0.611)	-0.029, 0.017	0.577	0.90, 1.14	
Gryenie	(0.92 - 1.19)	(0.91 - 1.20)	(-0.11 - 0.088)	-0.027, 0.017	0.577	(0.85 - 1.23)	
	(0.92, 1.15)		G.11 (4.000)			(0.05 - 1.25)	
Histidine	0.74 (0.019)	0.75 (0.019)	-0.0076 (0.0073)	-0.023, 0.0079	0.312	0.50.0.91	
Histidille	(0.58, 0.019)	0.13(0.019)		-0.025, 0.0079	0.512	0.59, 0.81	
CO.	(0.58 - 0.84)	(0.61 0.84)	(-0.069 - 0.064)			(0.57 - 0.84)	
	0,91 (0.018)						
Isoleucine	0.91 (0.018)	0.92 (0.018)	-0.0087 (0.0079)	-0.026, 0.0082	0.291	0.75, 0.96	
ZIT All	(0.76 - 1.06)	(0.77 - 1.03)	(-0.074 - 0.074)			(0.72 - 1.03)	
Isoleucine		ial diss into					
	of rel were	in all a					
C.	illi co an	2 Q 2).					
•	Further on the on the	NO. * 60					
	Putthernoviting	iloli					
	S, W, K						
	2/1, 6,						
Monsanto Company	10°0	repertand and the	12-CT-244U			442 of 620	

Control (continued)					<u>911. 00</u>	
			Difference (1	MON 88701 minus Co	ntroly	
	MON 88701 ²	Control ⁴		MON 88701 minus Co 95% Confidence Interval 0.036, 0.020 -0.034, 0.031 -0.0049, 0.027 -0.056, 0.0044	ILS	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			0	6° 1 9° 11		
Leucine	1.53 (0.032)	1.54 (0.032)	-0.0080 (0.013)	0.036, 0.020	0.544	1.25, 1.62
	(1.28 - 1.68)	(1.28 - 1.69)	(-0.095 - 0.14)	1 or allo co. el	)	(1.20 - 1.72)
		S		it's polo		
Lysine	1.23 (0.025)	1.23 (0.025)	-0.0019 (0.015)	-0.034, 0.031	0.904	1.01, 1.30
	(1.03 - 1.37)	(1.06 - 1.39)	(-0.084 -0.14)	in an		(0.99 - 1.44)
	× /			nº th		
Methionine	0.39 (0.0079)	0.38 (0.0084)	0.001 (0.0081)	0049 0027	0 167	0.32, 0.38
	(0.33 - 0.44)	(0.32 - 0.46)	(-0.081 - 0.088)	-JI 0.000 19, 0.027	01107	(0.29 - 0.49)
				<u>.</u>		(0.2) 0.1)
Phenylalanine	1.43 (0.039)	1.46 (0.039)	0 076 (0.0M	0.056.0.0044	0.088	1.12, 1.58
Thenylarannic	1.43 (0.039) (1.13 - 1.63)	(1.15 - 1.66)	(0.020(0.014))	-0.030, 0.0044	0.088	(1.10 - 1.63)
		(1.13 - 1.00)	J 199.14 00.113			(1.10 - 1.05)
Duelling	1.02 (0.029)	1.03 (0.029) (0.81 - 1.25)	-0.026 (0.014) (-0.14 - 0.11) -0.014 (0.012) (-0.13 - 0.10)	0.020.0.011	0.246	0.02 1.00
Proline	1.02 (0.029)	1.03(0.029)	-0.014(0.012)	-0.039, 0.011	0.246	0.83, 1.08
ری لائے	(0.78 - 1.16)	(0.81 1.25)	(-0.13 - 0.10)			(0.79 - 1.17)
800	My white a					
Serine	1.08 (0.025)	1.09 (0.026)	-0.0031 (0.015)	-0.035, 0.028	0.834	0.83, 1.21
The Alle	(0.93 - 1.28)	(0.86 - 1.24)	(-0.14 - 0.14)			(0.81 - 1.24)
Serine						
1º	or ser we e	in all of				
	the conduction	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	Further of connet	×00.				
	Co do ni	illi				
	FUITHER COMME					
	SP II PERCONTRACTION					
Monsanto Company	10°C	reperand vie	12-CT-244U			443 of 620

Control (continued)				Ċ	111. CO		
		<u> </u>	$\begin{array}{c c} \hline \text{Difference (MON 88701 minus Control)} \\ \hline \text{ntrol}^4 \\ \text{n (S.E.)} \\ \text{ange)} & \hline \text{Mean (S.E.)} & 95\% & \text{Significance} \\ (Range) & \text{Confidence Interval (p-Value)} \\ \hline (0.016) & 0.0033 (0.0083) & 0.014, 0.021 & 0.694 \\ (-0.062 + 0.086) & 0.022, 0.0041 & 0.171 \\ (-0.095) & -0.0092 (0.0066) & -0.022, 0.0041 & 0.171 \\ (-0.099 + 0.11) & (-0.018) & -0.0030 (0.0083) & -0.021, 0.015 & 0.718 \\ (-0.076 - 0.074) & (-0.076 - 0.074) & \hline \end{array}$				
	MON 88701 ²	Control ⁴			(CS)	Commercial	
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵	
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)	
Amino Acid (% dw)			0	Park Park	/		
Threonine	0.87 (0.016)	0.86 (0.016)	0.0033 (0.0083)	0.014, 0.021	Ø 0.694	0.72, 0.89	
	(0.73 - 0.95)	(0.73 - 0.95)	(-0.062 0.086)	y all conten		(0.67 - 0.96)	
Tryptophan	0.41 (0.0092)	0.42 (0.0095)	-0.0092 (0.0066)	-0.022, 0.0041 -0.021, 0.015 -0.037, 0.011	0.171	0.34, 0.42	
	(0.34 - 0.50)	(0.37-0.52)	(-0.099 -0.11)	on man		(0.31 - 0.46)	
Tyrosine	0.81 (0.017)	0.81 (0.018)	2-0.0030 (0.0083)	0 021 0 015	0 718	0.67, 0.84	
1 yrosine	(0.68 - 0.88)	(0.67 - 0.91)	(-0.076 - 0.074)	JIN 10.021, 0.015	0.710	(0.63 - 0.91)	
	109			er.			
Valine	1.21 (0.027) (0.98 - 1.38)	£23 (0.027) (1.00 - 1.40)	(-0.10-0.15)	-0.037, 0.011	0.257	1.00, 1.28 (0.97 - 1.36)	
	to fill in	0.79 (0.031)	-0.019 (0.0071) (-0.087 - 0.041)				
Fatty Acid (% Total FA)	OL its to	No Illo Spi S	WI KS				
14:0 Myristic	0,77 (0.030)	0.79 (0.031) (0.71 - 0.98)	0.19*(0.007/1)	-0.034, -0.0036	0.018	0.16, 1.37	
2007	(0.66 - 0.95)	0 (0.71 - 0.98)	(-0.087 - 0.041)			(0.45 - 1.04)	
16:0 Palmitic Anis Jor	23.93 (0.30)	23,80 (0(30)	0.13 (0.076)	-0.035, 0.29	0.116	16.54, 30.55	
16:0 Palmitic This dor	(22.30 - 25.45)	(22.69 25.05)	(-0.48 - 0.63)			(19.11 - 26.73)	
Y	2 <u>7 61. 70 61</u>	elling					
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	UN SCOMMUN	6 2 3					
	FURTHE CONTRECT CONTR						
	Printie entre provinte	e Pedano					
Monsanto Company	Ver	12	2-CT-244U			444 of 620	

 Table E-20. Statistical Summary of Combined-Site Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Control (continued)				- (JII. 00	
			Difference (1	MON 88701 minus 🕉	ntroly	
	MON 88701 ²	Control ⁴			les -	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			10	6° 1 6° 11°		
16:1 Palmitoleic	0.50 (0.0094)	0.50 (0.0094)	-0.00052 (0.0038)	-0.0087, 0.0077	0.894	0.39, 0.70
	(0.45 - 0.55)	(0.45 - 0.54)	(-0.024 - 0.024)	10° 20° 60° 60		(0.44 - 0.67)
		S	of to to	its of		
18:0 Stearic	2.52 (0.058)	2.47 (0.058)	0.045 (0.036)	-0.032, 0.12	0.228	1.98, 2.95
	(2.16 - 2.93)	(2.15 2.76)	(-0.24 - 0.26)	it as		(1.98 - 2.97)
	× ,	B. M		nº x''		
18:1 Oleic	15.05 (0.26)	14.96 (0.26)	0.094 (0.070)	-0 055 0 24	0 196	11.38, 20.64
	(14.05 - 16.29)	(14.06 - 16.44)	(-0.54 - 1.00)		0.170	(13.71 - 18.39)
	(11100 1012))			<u> </u>		(10.71 10.05)
18:2 Linoleic	55.84 (0.39)	56.15 (0.40)	-0.31 (0.16)	-0.032, 0.12 -0.055, 0.24 -0.64, 0.023	0.065	47.49, 63.18
16.2 Emolete	(54.22 - 58.48)	SA 62- 57 93	(-1.65_0.73)	-0.04, 0.023	0.005	(49.78 - 59.61)
	(34.22, 50.40)	(54.04 - 5(.55)				(4).70 - 59.01)
18:3 Linolenic	0.18 (0.022)	0.17 (0.022)	0.013 (0.0068)	0.0017.0.027	0.078	0.060.0.24
18.5 Linolenic	(0.11, 0.22)	0.17(0.022)		-0.0017, 0.027	0.078	0.060, 0.24
C)	(0.11 - 0.38)	(0.12 0.30)	(-0.032 - 0.11)			(0.10 - 0.29)
800						
20:0 Arachidic	0.29 (0.0086)	0.28 (0.0087)	0.0044 (0.0047)	-0.0057, 0.015	0.365	0.17, 0.38
(II. dlo	(0.23 = 0.32)	0 (0.23 - 0.32)	(-0.049 - 0.042)			(0.20 - 0.36)
3/12/17	0, 110 00 Jus	$\cdot \alpha \cdot \cdot \alpha \cdot \alpha$				
1×1	opy there due ine	offin d				
C	FUTTO RECOMMENDE	2 2 DI.				
	SP ithe out of the control	No.xeO				
	Cont with					
	SPX therm uener					
	ppthemousephine					
Monsanto Company	10°C	e per and vie	12-CT-244U			445 of 620

Control (continued)					dill. Co	
			Difference (I	MON 88701 minus C	ontrol)	
	MON 88701 ²	Control ⁴			ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% Confidence Interval -0.0074, 0.0053	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			, BI.	9, 2, 6, 2		
22:0 Behenic	0.15 (0.0051)	0.15 (0.0051)	-0.0010 (0.0029)	-0.0074, 0.0053	0.730	0.070, 0.21
	(0.12 - 0.17)	(0.13 - 0.21)	(-0.057 - 0.027)	-0.0074, 0.0053	<u> </u>	(0.051 - 0.19)
		S	or vol			
Mineral		- KK	1 2 1 1 1 2 °	dill or the		
Calcium (% dw)	0.15 (0.0093)	0.13 (0.0093)	0.019 (0.0022)		< 0.001	0.058, 0.21
~ /	(0.10 - 0.21)	(0.081 - 0.19)	(0.0037 - 0.039)	nº th		(0.081 - 0.18)
	· · · · ·	i o' interio				
Copper (mg/kg dw)	8.94 (0.70)	8.93 (0.70)	0.015 (0.16)	0.014, 0.024	0.925	2.97, 12.86
	(5.02 - 12.15)	(5.40 - 11.92)	(-2.19 - 1.72)	٥. <i>٥</i> . <i>٥</i> . <i>٥</i> .	0.920	(4.46 - 11.62)
	(0.02 12.10) (0.			n ^e .		(
Iron (mg/kg dw)	72.43 (4.40)	71,33 (4.48)	a.10 (2.74)	-4.74, 6.94	0.693	47.30, 97.12
non (mg/kg dw)	(41.73-109.70)	(45.03 - 95.10)	(-20.63 - 27.89)	-1.71, 0.71	0.075	(39.49 - 114.34)
	(+1,75-10,70)	(43.05 2 33.10)				(57.+) - 114.54)
		0.38 (0.0084)	0.022 (0.0032) (-0.015 - 0.055)	0.01(0.020	<0.001	0 2 0 0 47
Magnesium (% dw)	0.40 (0.0083)	0.38 (0.0084) (0.33 - 0.44)	(0.022(0.0032))	0.016, 0.028	< 0.001	0.28, 0.47
800	(0.35 - 0.45)	(0.33 - 0.44)	(-0.015 - 0.055)			(0.31 - 0.46)
Manganese (mg/kg dw)	13.63 (0.47)	11,73 (0.48)	1.89 (0.28)	1.29, 2.50	< 0.001	9.07, 17.33
AL A	(10,59 - 10.47)	(8.61 -14.10	(-0.84 - 5.26)			(9.07 - 17.14)
	or of we of	o all d				
C.	Funtine Conne	2° 21.				
	En Us Oli A	.x0				
	Cont with					
	FUTTIONSCOPPT					
	N, 6,					
Monsanto Company	1000	e Ped and	-CT-244U			446 of 620

Control (continued)				-		
			Difference (M	ON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴			103	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range) 🔥	Confidence Interval	(p-Value)	(Range)
Mineral			2	, Q, , Q, , Q,	2	
Phosphorus (% dw)	0.71 (0.031)	0.72 (0.031)	-0.0035 (0.0067)	-0.017 0.0099	Ø 0.605	0.49, 0.87
	(0.58 - 0.87)	(0.54 - 0.87)	(-0.078 - 0.072)	0.017,0.0099)`	(0.48 - 0.87)
		G	of xol	its of		
Potassium (% dw)	1.13 (0.028)	1.07 (0.028)	0.059 (0.020)	0.015, 0.10	0.012	0.92, 1.21
	(0.99 - 1.32)	(0.79 + 1.27)	(-0.13 - 0.31)	and and		(0.90 - 1.26)
	((())) = (())	A le				(0.0 0 0.00)
Sodium (% dw)	0.026 (0.0095)	0.029 (0.0096)	-0.0035 (0.0046)	0.013, 0.0064	0.466	0, 0.066
Sourian (70 aw)	(0.0053 - 0.082)	(0.0053 0.10)	(-0.085 - 0.026)	0.015, 0.0001	0.100	(0.0054 - 0.077)
	(0.0033 - 0.002)	(0.0033/50.10)0	(0.003 - 0.020)	<.		(0.0054 - 0.077)
	27.91 (2.01)		-2.33 (0.77)	200 0 (7	0.000	27.27 44.05
Zinc (mg/kg dw)	37.81 (2.01)	40.14 (2.02)		-3.99, -0.67	0.009	27.27, 44.95
	(27.60 - 46.04)	(28.22 - 52.95)	(-13.50 - 1.99)			(25.07 - 48.49)
	ALE STILLE	et en ion				
Vitamin (mg/kg dw)	Chills the	Me Me Sp S	N 19			
Vitamin E	139.01 (9.87)	[31.33 (9.88)	7.68 (2.07)	3.26, 12.09	0.002	41.91, 205.89
200	(87.22 - 184.47)	(91.78 - 162.98)	(-7.82 - 32.93)			(84.07 - 162.76)
· S · 4	S. S. O. HUIZ	A, 10, 0,	<i>`</i> 11;			

 ¹dw = dry weight; fw = fresh weight; FA ⇒ fatty acid.

 ²Test refers to MON 88701 (Not Treated). These plants were not treated with dicamba or glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 447 of

					\circ \circ	
			Difference (N	AON 88701 minus 🕻	ontrol	
	MON 88701 ²	Control ⁴			ins.	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Aci	d (% Total FA)		, DI		2	
Dihydrosterculic Acid	0.15 (0.0034)	0.14 (0.0037)	0.017 (0.0044)	0.0086, 0.026	<i>©</i> ≪0.001	0.078, 0.25
	(0.12 - 0.19)	(0.11 - 0.17)	(-0.011, 0.058)		% <0.001	(0.038 - 0.23)
		S	der vol	its of		
Malvalic Acid	0.39 (0.015)	0.37 (0.016)	0.019 (0.015)	-0.011, 0.048	0.210	0.23, 0.54
	(0.24 - 0.50)	(0.26 - 0.49)	(-0.11 - 0.19)			(0.11 - 0.59)
	× , ,	Boy Me		no th		
Sterculic Acid	0.22 (0.0067)	0.21 (0.0072)	0.0099 (0.0081)	-0.0064, 0.026	0.229	0.17, 0.27
	(0.12 - 0.27)	(0.17 - 0.27)	(-0.075 - 0.093)	JI 0.000 ., 0.020	0>	(0.061 - 0.34)
				<u>.</u>		(((((((((((((((((((((((((((((((((((((((
Gossypol (% dw)	orvis	, cut hill fr		C ^O .		
Free Gossypol	0.93 (0.037)	× 0 89 00 037	0.041 (0.020)	-0.0031, 0.084	0.065	0.099, 1.57
The Gossypor	(0.76 - 1.40)	(0.68 - 1.20)	(-0.14 - 0.27)	0.0001, 0.001	0.005	(0.50 - 1.41)
	(0.10 - 1.10)		(-0.4 - 0.24)			(0.50 - 1.41)
Total Coccurrel		107 (0 (27)	0.061 (0.017)	0.026.0.006	<0.001	0.064 1.76
Total Gossypol	1.09 (0.097)	0.97 0.037		0.026, 0.096	< 0.001	0.064, 1.76
20°	(0.84 - 0.52)	$(0, x_{\rm H}^{\rm H} - 1.00)$	(-0.028 - 0.44)			(0.56 - 1.61)
.5	0 0° 0° 101	A . No . O.	11			

 Table E-21. Statistical Summary of Combined-Site Cottonseed Anti-nutrients for MON 88701 (Not Treated) vs. Conventional Control

 ¹dw = dry weight; FA = fatty acid.

 ²Test refers to MON 88701 (Not Treated). These plants were not treated with dicamba or glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 448 of

	Cottonseed Tissue Components ¹	Literature Range ²	ILSI Range ³
	Cottonseed Nutrients	Enterneur e runge	iLoi itainge
	Proximates (% dw)		
	Ash	$3.87 - 5.29^{a}; 3.7 - 4.2^{d}$	3.761 - 5.342
	Carbohydrates by calculation	45.28 - 53.62 ^a	39.0 - 53.6
	Calories by calculation	471.34 - 506.95 ^a	Not available
	(Kcal/100g)		i tot u tunuoie
	Moisture (% fw)	$2.25 - 7.49^{a}$	2.3 - 9.9 0
	Protein	24.54 - 30.83 ^a ; 21.2 - 25.9 ^b	21.48 - 32.97
	Total Fat	$17.37 - 25.16^{a}; 14.4 - 16.9^{d}$	17.201 - 27.292
	Fiber (% dw)		
	Acid Detergent Fiber	$21.10 - 34.8^{a}$; $37.6 - 40.5^{d}$	19.74 38.95
	Neutral Detergent Fiber	32.92 - 45.83 ^a ; 50.0 - 53.6 ^d	25,56 - 51.87
	Crude Fiber	13.85 – 17.94 ^a	13.86 - 23.10
	Total Dietary Fiber	not available	33.69 - 47.55
		liot available	55,09 - 49:55
	Amino Acids	(% total AA)	(% dw)
	Alanine	4.16 4.41 ^a ; 3.6 4.2 ^b	0.80 - 1.22
	Arginine	11.28 – 12.51 ^a ; 10.9 – 12.3 ^b	2.06 - 3.72
	Aspartic acid	9.73 - 9.99 ³ 8.8 - 9.5 ^b	1.82 - 2.94
	Cystine/Cysteine	1.60 - 1.92 ^a ; 2.3 - 3.4 ^b	0.35 - 0.56
	Glutamic acid	2076-21.61 °; 20.5-22.4 b	3.91 - 6.72
	Glycine X	4.44 4.58 ^a ; 3.8 4.5 ^b	0.83 - 1.32
	Histidine	3.00 - 3.12 ° 2.6 - 2.8 °	0.57 - 0.91
	Isoleucine	3.10 3.67 ^a , 3.0 - 3.4 ^b	0.62 - 1.05
		$627 - 6.65^{a}; 5.5 - 6.4^{b}$	1.14 - 1.86
	Leucine Lysine Methionine Phenylalanine Proline	4.85 - 5.37 ^a 4.2 - 4.6 ^b	0.94 - 1.46
	Methionine	$1.46 - 1.88^{a}; 1.3 - 1.8^{b}$	0.30 - 0.47
	Phenylalanine Proline Serine Threonine	5.56 + 5.77 °C.0 – 5.6 ^b	1.02 - 1.72
	Rfoline A A A	4,06 - 4,28°; 3.1 - 4.0°	0.75 - 1.23
	Serine	4.45 - 4.86 ^a ; 3.9 - 4.4 ^b	0.91 - 1.35
200	Threonine	$3.26 - 3.59^{a}$; $2.8 - 3.2^{b}$	0.55 - 0.92
	Tryptophan	○ 0.97 – 1.21 ^a ; 1.0 – 1.4 ^b	0.194 - 0.319
×1/1, 10,	Tyrosine	2.65 − 2.92 ^a ; 2.8 − 3.3 ^b	0.53 - 0.84
1, 20,	Valine	4.76 – 5.14 ^a ; 4.3 – 4.7 ^b	0.87 - 1.49
This doci			
	Fatty Acids (% total FA)		
C	8:0 Caprylic	not available	not available
	10:0 Capric	not available	not available
		not available	not available
	14:0 Myristic	$0.55 - 2.40^{a}; 0.6 - 1.5^{b}$	0.455 - 2.400
	14:1 Myristoleic	not available	not available
	15:0 Pentadecanoic	$0.050 - 0.17^{a}$	0.103 - 0.481
	15:1 Pentadecenoic	not available	not available
	16:0 Palmitic	21.23 – 27.9 ^a ; 17.6 – 24.8 ^b	15.11 - 27.90
	16:1 Palmitoleic	0.55 – 1.16 ^a	0.464 - 1.190
	17:0 Heptadecanoic	not available	0.092 - 0.119

 Table E-22
 Literature and ILSI Ranges for Components in Cottonseed

Cottonseed Tissue Components		ILSI Range ³
17:1 Heptadecenoic	not available	not available
18:0 Stearic	$1.99 - 3.11^{a}$; $2.0 - 2.5^{b}$	0.20 - 3.11
18:1 Oleic	13.90 – 20.10 ^a ; 15.0 – 20.7 ^b	12.8 - 25.3
18:2 Linoleic	46.00 - 56.88 ^a	46.0 - 59.4
18:3 Gamma Linolenic	$0.050 - 0.25^{a}$	0.097 - 0.232
18:3 Linolenic	$0.050 - 0.25^{a}$	0.11 - 0.35
20:0 Arachidic	$0.25 - 0.33^{a}$	0.186 - 0.414
20:1 Eicosenoic	not available	0.095 - 0.098
20:2 Eicosadienoic	not available	not available
20:3 Eicosatrienoic	not available	not available
20:4 Arachidonic	not available	not available
22:0 Behenic	$0.13 - 0.17^{a}$	0.104 - 0.295
		C' iSt
Vitamins	(mg/kg fw)	(mg/kg dw)
Vitamin E	99 – 224°	70.825 197.243
		10° ×0° .0
Minerals (% dw)		N. 01. 401
Calcium	$0.02 - 0.33^{a}$	0.10323-0.32581
Copper (mg/kg dw)	354 - 11.14ª	3.13 – 24.57
Iron (mg/kg dw)	40.58 – 56 54 ^a C	36.71 - 318.38
Magnesium	0.37 – 0.46 ^a	0.34709 - 0.49312
Manganese (mg/kg dw)	11.06 - 18.31	10.69 - 21.96
Phosphorus O	0.60-0.84 ^a	0.48254 - 0.99157
Potassium	0.98-1.24ª	0.98345 - 1.44835
Sodium	0.0054 - 0.74 ^a	0.01118 - 0.73548
Zinc (mg/kg dw)	30.21 47.75	27.0 - 59.5
Y. 5. 5. X	1 N the O' the M	
Cottonseed Anti-Nutrients	CO. Siz Co C. Co	
Gossypol, Total (% dw)	$0.57 - 1.42^{\circ}, 0.55 - 0.77^{\circ}$	0.547 - 1.522
Gossypol, Free (% dw)	0.53 - 0.20ª	0.454 - 1.399
a the the start and the		
Cyclopropenoid Fatty Acids	A A A A A A A A A A A A A A A A A A A	
(% totalFA)	XD , XV , XV	
Dihydrosterculic	$0.13 - 0.24^{a}$	0.075 - 0.310
Malvalic	$\begin{array}{c} 0.13 - 0.24 \\ 0.33 - 0.58^{a} \\ 0.21 - 0.56^{a} \end{array}$	0.229 - 0.759
Cyclopropenoid Fatty Acids (% total FA) Dihydrosterculic Malvalic Sterculic	0.21 – 0.56 ^a	0.190 - 0.556
1 10 all all all	, NY	
	0	
² Literature range references: ^a (Hamil	ton, et al., 2004); ^b (Lawhon, et al., 1977); ^c (Smi	th and Creelman, 2001)
d(Bertrand, et al., 2005).		

Table E-22. Literature and ILSI Ranges for Components in Cottonseed (continued)

fw=fresh weight; dw=dry weight ²Literature range references; ³(Hamilton, et al., 2004); ^b(Lawhon, et al., 1977); ^c(Smith and Creelman, 2001); ^d(Bertrand, et al., 2005). ³(ILSI, 2011).

Table E-25. Statistical	i Summary of Site	ANTI Cottoniseeu I		(MON 88701 minus Co		citional Control
	MON 88701 ²	Control ⁴			ins	Commercial
Analytical Component		Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Proximate (% dw)			0	2 x y an	_	
Ash	4.71 (0.087)	4.74 (0.12)	-0.030 (0.15)	-0.45, 0.39	0.850	3.42, 4.65
	(4.58 - 4.88)	(4.49 - 5.00)	(-0.42 - 0.39)	A she co el)	(3.18 - 4.68)
		S		D' A THE ME		
Calories (Kcal/100g)	499.07 (3.00)	488.30 (3.88)	010.76 (3.90)	-0.069, 21.59	0.050	457.61, 527.56
	(493.81 - 501.81)	(487.70 494.60)	(7.21 - 13.11)	p di da		(466.09 - 509.91)
		Bor allo	C. S. OT	-0.069, 21.59		× / /
Carbohydrates	44.29 (0.58)	46.35 (0.81) ×	2.06 (0.96)	-4 72 0 60	0.097	40.26, 56.45
	(43.36 - 45.15)	(45.03 - 47.37)	(-2.981.67)	(J),,	0.037	(43.28 - 54.90)
	(10.00 10.10)					(10120 0 1130)
Moisture (% fw)	7.08 (0.27)	5 (7 63 K) 35)	-0.55 (0.35)	-0.45, 0.39 -0.45, 0.39 -0.069, 21.59 -1.51, 0.41	0.184	4.79, 9.92
Wolsture (70 Tw)	(6.14 - 7.86)	(7.39-7.40)	(1.26 -0.37)	-1.51, 0.+1	0.104	(6.05 - 10.50)
			- (- <u>1.20</u> - 0.3 E)			(0.05 - 10.50)
Protein	27 20 (0 24)	N 27 04 (0.33)	025 (091)	-0.79, 1.48	0.442	22 20 20 41
Protein	27.39 (0.24)	27 04 (0.33)	0.35 (0.41)	-0.79, 1.48	0.442	22.30, 29.41
Ċ	(26.65 - 28.02)	(26.97-27.10)	(-0.32 - 0.91)			(20.58 - 29.28)
200	and all it is		NO I			
Total Fat	23.62 (0.59)	21.50 (0.78)	2.12 (0.81)	-0.12, 4.36	0.058	15.01, 28.51
ZII. Ollo	(22.57 - 24.08)	(21.15 - 22.89)	(1.18 - 2.93)			(16.58 - 25.25)
al a	10. (10) (0) (1)					
14	op rel we	Sto offind				
(Contra Contra	8 8 B				
	FUTTO SCOTT	Se. *60.				
	FUTTO ASCOMMEN					
	SI HO	2/1				
	2/1, 6,					
Monsanto Company	<i>V</i> 0	recterning the rected and the philothed and the	2-CT-244U			451 of 620

 Table E-23. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control

 Difference (MON 88701 minus Control)

Control (continued)						
			Difference (1	MON 88701 minus Cor	ntrol)	
	MON 88701 ²	Control ⁴		xi ^O	ins.	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fiber (% dw)			01		-	
Acid Detergent Fiber	25.07 (0.32)	27.53 (0.45)	-2.45 (0.55)	-3.97, -0.94	Ø 0.010	22.24, 31.96
	(24.53 - 25.48)	(26.57 - 28.49)	(-3.340-1.42)	95% Confidence Interval -3.97, -0.94 -5.97, 1.03		(23.42 - 31.62)
		S		it's not		
Crude Fiber	17.00 (0.90)	19.47 (1.20)	2.47 (1.26) °	-\$97, 1.03	0.121	16.93, 22.68
	(14.54 - 18.91)	(19.33 19.85)	(-2.180.94)	, off do,		(16.92 - 23.32)
		the alle	G. A OT	nº n'		
Neutral Detergent Fiber	31.02 (0.79)	32.89 (1.06) ×	2 2.86 (1.13)	-5.01, 1.28	0.175	27.03, 42.49
C	(29.94 - 32.82)	(30.67 - 34.42)	3.04 0.79	~)\\		(29.27 - 40.63)
	68	6. 3	1 JIII HAIS 20	as.		
Total Dietary Fiber	39.70 (1.06)	41.67 (1.50)	-1.97 (1.83) (4.27 - 4.04)	-7.06, 3.12	0.343	34.52, 52.58
	(36.22 - 42.86)	(40.50 - 42.84)	(4.27 4.04)	·····		(37.29 - 48.60)
			A VI SIL			()
Amino Acid (% dw)	all's a to	1.02 (0.018)	0.0099 (0.017) (0.0033 - 0.028)			
	1.03 (0.015)	02/0018	-0.0099(0.017)	-0.037, 0.057	0.591	0.86, 1.11
	41 00 01 050	0.02(0.018) (0.99 - 1.05)	(0.0033 - 0.028)	0.007, 0.007	0.071	(0.83 - 1.22)
80			()			(0.00 1.22)
Arginine This dor	93 (19052)	3,92 (0,073)	-0.086 (0.084)	-0.32, 0.15	0.362	2.38, 3.47
	(2.82 - 3.03)	2.89=3.130	(-0.21 - 0.068)	0.52, 0.15	0.502	(2.30 - 3.55)
, o. , (C.	(2102 (2.03)	Che Chi Ir	(0.21 0.000)			(2.30 5.35)
	26, × ue. ap ue	or allo				
0	FURTIERONNE	6 × 0.0.				
	Futtre edb me	CIT				
	with or)				
Monsanto Company	NO X	nipited and	2-CT-244U			452 of 620
wonsanto Company	\checkmark	12	2-01-2440			432 01 020

Control (continued)					<u> 2/11. 00</u>	
			Difference (N	<u>10N 88701 minus Co</u>	ntrol)	
	MON 88701 ²	Control ⁴			IUS	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)				* A A A L X O	8. 0. 700	1 0 4 0 57
Aspartic Acid	2.30 (0.045)	2.32 (0.060)	-0.024 (0.065)	-0.20, 0.16	0.729	1.94, 2.57
	(2.23 - 2.36)	(2.19 - 2.42)	(-0.085-0.077)	95% Confidence Interval -0.20, 0.16 -0.032, 0.064 -0.46, 0.47		(1.79 - 2.72)
Cystine	0.38 (0.010)	0.37 (0.014)	0.016 (0.017)	-0.032, 0.064	0.406	0.31, 0.45
	(0.36 - 0.40)	(0.35 - 0.39)	(0.0017 - 0.039)	en no		(0.29 - 0.47)
Glutamic Acid	4.52 (0.099)	4.51 (0.14)	0.0076 (0.17)	-0.46. 0.47	0.965	3.74, 5.28
	(4.29 - 4.73)	(4.34 - 4.67)	0.057-0.19	<i>N</i>		(3.39 - 5.45)
	1.07 (0.020)		-0.0049 (0.028)	-0.084, 0.074	0.072	0.00 1.14
Glycine	1.07 (0.020)	£08 (0.026)	(-0.0049(0.028)) (-0.01500.029)	-0.084, 0.074	0.872	0.90, 1.14
	(1.04 - 1.10)		(-0.015-0.029)			(0.85 - 1.23)
Histidine	0.71 (0.016)	0.74 (0.023) (0.71 - 0.77)	-0.021 (0.026)	-0.094, 0.053	0.474	0.59, 0.81
CU2	(0.66 - 0.74)	(0.71 0.77)	-0.021 (0.026) (-0.042 - 0.034)			(0.57 - 0.84)
Isoleucine	$\sim \sim $	0.91 (0.024)	-0.029 (0.025)	-0.098, 0.040	0.304	0.75, 0.96
< KIII2/101	(0.82 - 0.93)	0.88 - 0.93)	(-0.054 - 0.0021)	,		(0.72 - 1.03)
	<u> 10, 0, 113</u>	cian niss ilon				
CC CC	Futue on the	loon allo				
	Furthern conne					
	Cont nould	(101)				
	SP THE CONSCORT	e Perland The				
Monsanto Company	Pro Pro		12-CT-244U			453 of 620

 Table E-23. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Control (co	ntinued)					a_{μ}	
				Difference (N	<u>/ION 88701 minus Co</u>	ntrol)	
		MON 88701 ²	Control ⁴		xil ^O	ILS I	Commercial
Analytical	Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	XU AN	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid	(% dw)			01			
Leucine		1.48 (0.027)	1.50 (0.037)	-0.017 (0.042)	-0.13, 0.098	0.700	1.25, 1.62
		(1.41 - 1.55)	(1.44 - 1.55)	(-0.071 - 0.045)	1 ans of the	,	(1.20 - 1.72)
Lysine		1.20 (0.044)	1.23 (0.058)	-0.032 (0.062)	95% Confidence Interval -0.13, 0.098 -0.21, 0.14 -0.043, 0.097 -0.15, 0.10	0.633	1.01, 1.30
		(1.04 - 1.31)	(1.19, 1.26)	(-0.0160.0053)	on't no?		(0.99 - 1.44)
Methionine		0.38 (0.015)	0.35 (0.021)	0.027 (0.025)	0.043, 0.097	0.347	0.32, 0.38
		(0.36 - 0.40)	(0.35 - 0.36)	(0.036 - 0.050)			(0.29 - 0.49)
Phenylalanin	2	1.39 (0.027)	£41 (0.038)	0.072 (0.045)	-0.15, 0.10	0 649	1.12, 1.58
Thenyhulululu		(1.34 - 1.43)	(1,34 - 1,48)	-0.022 (0.045) (-0.10 - 0.067) -0.023 (0.030)	0.12, 0.10	0.019	(1.10 - 1.63)
Proline		0.97 (0.021)	1.00 (0.028)	0022 (0020)	-0.11, 0.061	0.490	0.83, 1.08
TIOIIIIC	- Marine - M	(0.89 - 1.03)	1.00 (0.028) (0.98 1.02)	(-0.044 - 0.0082)	-0.11, 0.001	0.490	(0.79 - 1.17)
Serine	This doct	1.05 (0.022)		0.022 (0.038)	-0.083, 0.13	0.500	0.92 1.21
Serme	This yor	(1.02 - 1.07)	1.03 (0.031) (0.99 - 1.06)	(0.011 - 0.078)	-0.085, 0.15	0.590	0.83, 1.21 (0.81 - 1.24)
	3h and	A HOLOOL HA					
	CC CC	Pyther out the	le per and				
		Further control					
		Furthern connet	(10)				
		Furthernologitation	repertand we				
Monsanto Con	npany	05		12-CT-244U			454 of 620

Control (continued)					JII. CO	
		<u> </u>	Difference (N	10N 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		xi ^O ix	ILS	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			0		-	
Threonine	0.85 (0.012)	0.85 (0.017)	-0.00041 (0.021)	0.058, 0.057	0.985	0.72, 0.89
	(0.82 - 0.86)	(0.82 - 0.88)	(-0.028 - 0.040)	95% Confidence Interval -0.058, 0.057 -0.038, 0.021 -0.071, 0.074 -0.11, 0.039	,	(0.67 - 0.96)
Tryptophan	0.41 (0.0062)	0.42 (0.0087)	-0.0085 (0.011)	-0.038, 0.021	0.468	0.34, 0.42
	(0.41 - 0.42)	(0.40 0.44)	(-0.033 - 0.012)	leur lug,		(0.31 - 0.46)
Tyrosine	0.80 (0.015)	0.79 (0.021)	0.0015 (0.026)	0.071, 0.074	0.957	0.67, 0.84
5	(0.76 - 0.83)	(0.76 - 0.82)	(-0.034 - 0.043)			(0.63 - 0.91)
Valine	1.17 (0.02 ¹)	E21 (0.027)	-0.034 (0.026)	-0.11, 0.039	0.263	1.00, 1.28
v unne	(1.12 1.23)	(1.17-1.24)	(-0.0590.0050)	0.11, 0.057	0.205	(0.97 - 1.36)
Eatter A and (0/ Tatal EA)	is all in its	0.78 (0.012)	d al sh			
Fatty Acid (% Total FA) 14:0 Myristic	0.78 (0.0085)	0.78 (0.012)	-0,0013 (0.013) (-0.0043 - 0.0026)	-0.037, 0.035	0.927	0.16, 1.37
14.0 Myristic	(0.76-0.80)	0.78 (0.012) (0.77 - 0.78)	(-0.0043 - 0.0026)	-0.037, 0.033	0.927	(0.45 - 1.04)
			(-0.0043 - 0.0020)			(0.45 - 1.04)
16:0 Palmitic 16:0 Palmitic	25.06 (0.10)	24,98 (0.04)	0.075 (0.18)	-0.41, 0.56	0.692	16.54, 30.55
16:0 Palmitic This dior	(24.85 - 25.45)	(24.92 = 25.05)	(0.012 - 0.41)			(19.11 - 26.73)
¥`,	OT Chi No ci	erin di				
C	FUITH CONSCOUNTS	e Pedano itoited and				
	with pro	*				
Monsanto Company	<i>V</i> [°]	12	2-CT-244U			455 of 620

 Table E-23. Statistical Summary of Site ARTI Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Control (continued)					JII. 00	
			Difference (N	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		xiO'x	Ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			2			
16:1 Palmitoleic	0.54 (0.0052)	0.52 (0.0073)	0.018 (0.0089)	-0.0064, 0.043	0.107	0.39, 0.70
	(0.52 - 0.55)	(0.52 - 0.52)	(0.016\20.024)	95% Confidence Interval -0:0064, 0.043 0.015, 0.26 -0.33, 0.60		(0.44 - 0.67)
18:0 Stearic	2.65 (0.026)	2.51 (0.036)	0.14 (0.045)	0.015, 0.26	0.035	1.98, 2.95
	(2.59 - 2.71)	(2.45 - 2.57)	(0.10 - 0.26)	long his,		(1.98 - 2.97)
18:1 Oleic	14.82 (0.11)	14.68 (0.15)	0.13 (0.17)	-0.33, 0.60	0.475	11.38, 20.64
	(14.65 - 14.99)	(14.58 - 14.70)	(-0.050 - 0.37)			(13.71 - 18.39)
18:2 Linoleic	54.83 (0.22)	55.31 (0.31)		-1.52, 0.55	0.263	47.49, 63.18
	(54.28-55.22)	(55,26-55,38)	(-4.090.074)			(49.78 - 59.61)
18:3 Linolenic	0.14 (0.0021)	0.13 (0.0630)	0,012 (0,0025)	0.0030, 0.023	0.022	0.060, 0.24
cì	(0.14 - 0.14)	(0.12 0.14)	(0.0051 - 0.019)	·····, ··· -		(0.10 - 0.29)
20:0 Arachidic	0.31 (0.0079) (1 ⁻	a 29200110	0.015 (0.011)	-0.017, 0.046	0.266	0.17, 0.38
This dio	(0.28 - 0.32)	(0.27 - 0.31)	(0.0037 - 0.012)	0.017, 0.010	0.200	(0.20 - 0.36)
- all a	<u>3, (10, 10, 11)</u>	cial miss into				
Ċ	opy the light of the optime	Cel Mu				
	op it the optime	le teo				
	opy the mouth of the second the s	e per and me				
Monsanto Company	100 F	1	2-CT-244U			456 of 620

Control (continued)						
			Difference (N	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		×101×	IUS	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)	/		D.			
22:0 Behenic	0.14 (0.0026)	0.15 (0.0033)	-0.010 (0.0031)	-0.019, -0.0016	0.029	0.070, 0.21
	(0.14 - 0.15)	(0.15 - 0.16)	(-0.018 -0.0043)	-0.019, -0.0016 0.013, 0.047 -0.88, 1.21	,	(0.051 - 0.19)
		A	19 ¹ 2 ¹ 01	ON THE HO		
Mineral		, ex	NUCH ANICAL			
Calcium (% dw)	0.15 (0.0035)	0.12 (0.0050)	0.030 (0.0061)	0.013, 0.047	0.007	0.058, 0.21
	(0.14 - 0.16)	(0.12 - 0.13)	(0.024 - 0.039)			(0.081 - 0.18)
	×	10 in K		ine		
Copper (mg/kg dw)	9.81 (0.34)	9.64 (0,41)	0.17(0.38)	-0.88, 1.21	0.680	2.97, 12.86
	(9.20 - 10.96)	(8.79 - 9.79)	(-0.45 - 0.41)	er.		(4.46 - 11.62)
	e Pies	SU thing 1				
Iron (mg/kg dw)	86.87 (5.63)	80.76 (7.78)	6.11 (8.79)	-18.31, 30.53	0.525	47.30, 97.12
	(72.55-103.10)	(72.89 - 87.72)	(0.83 - 10.40)			(39.49 - 114.34)
	en is to	le lle still s	NIL'S OF			
Magnesium (% dw)	0.43 (0.0076)	0.40 (0.010) (0.38 - 0.41)	0.028 (0.011) (0.013 - 0.037)	-0.0019, 0.058	0.059	0.28, 0.47
2000	(0.41 0.45)	(0.38 - 0.41)	(0.013 - 0.037)			(0.31 - 0.46)
.9.4	St St Ot KNIS	7,70.0.	Nº			
Manganese (mg/kg dw)	14.86 (0.63)	11,50 (0.89)	3.36 (1.06)	0.41, 6.32	0.034	9.07, 17.33
all a	(13.28 - 17.47)	(11.34 - 11,55)	(2.51 - 3.29)			(9.07 - 17.14)
	of other lot of					
C	of the control	Q 20				
	FURTINECOMMENT	(C				
	CO A SI	1011				
	Furthe edu me					
	Nr. 61					
Monsanto Company	10°	e Pedano	2-CT-244U			457 of 620

Control (con	tinued)					di di	
				Difference (N	/ION 88701 minus Co	ontrol)	
		MON 88701 ²	Control ⁴		×101 ×	ill's	Commercial
Analytical	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral				, DI	X X X X	¢	
Phosphorus (%	dw)	0.84 (0.012)	0.84 (0.016)	-0.0071 (0.018)	0.058, 0.044	S [©] 0.717	0.49, 0.87
		(0.80 - 0.87)	(0.82 - 0.87)	(-0.027 - 0.012)	10° ANO CO. AL)	(0.48 - 0.87)
			S	of to to	it's of		
Potassium (% o	dw)	1.22 (0.029)	1.11 (0.040)	0.12 (0.047)	-0.013, 0.25	0.067	0.92, 1.21
× ×	,	(1.16 - 1.32)	(1.06 1.15)	(0.092 - 091)			(0.90 - 1.26)
					nº th		
Sodium (% dw	y)	0.017 (0.0038)	in in	or cor co	unent n.	ND^{6}	0, 0.066
)	(0.0054 - 0.030)	(0.013 - 0.013)	n_0, n_1, θ_0		1.2	(0.0054 - 0.077)
		(0.0051 0.050)	(0.013 0.012)	10 JUL MIS 20	<u></u>		(0.0031 0.077)
Zina (ma/ka di		39.24 (1.65)	40 81 (2 03)	-1.56 (1.87)	-6.76, 3.63	0.449	27 27 11 05
Zinc (mg/kg dv	w)			\mathcal{O} \mathcal{O} \mathcal{O}	-0.70, 5.05	0.449	27.27, 44.95
		(35.79 - 45.91)	(38,63 - 40.71)	(2.84 -2.25)			(25.07 - 48.49)
.		at a strong	COL COL XION	n_{0} n_{0} o_{1}			
Vitamin (mg/l	kg dw)	C. Harris	N. Willing of	ON SE		0.001	
Vitamin E	Ġ	141.82 (2,44)		5.27 (4.23)	-6.49, 17.02	0.281	41.91, 205.89
	200	(132.11 146.82)	(133.79 - 139.31)	(-7.20 - 12.36)			(84.07 - 162.76)
	· 5 ~	··· 0' *///	3 30 0	11			

 1 dw = dry weight; fw = fresh weight; FA \cong fatty acid.

² MON 88701 plants were not treated with dicamba or glufosinate.

 3 Mean (S.E.) = least-square mean (standard error).

⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero. ⁶Not determined due to insufficient number of observations for the control. and hour of

Control		ntrol)				
	MON 88701 ²	Control ⁴		MON 88701 minus Co		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.) 🔊		Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Aci	d (% Total FA)		(th)	to do to	Ø	
Dihydrosterculic Acid	0.15 (0.0073)	0.15 (0.010)	0.0079 (0.013)	-0,927, 0.943	0.567	0.078, 0.25
	(0.14 - 0.18)	(0.14 - 0.15)	(-0.011 - 0.0068)	-0.027, 0.043 -0.058, 0.081 -0.035, 0.094		(0.038 - 0.23)
		d'Y	al al alla	Ctill of J till		
Malvalic Acid	0.37 (0.016)	0.36 (0.023)	0.011 (0.025)	-0.058, 0.081	0.674	0.23, 0.54
	(0.33 - 0.43)	(033 - 0.37)	(-0.0096 - 0.012)	nº at l'		(0.11 - 0.59)
			iles let let cr			
Sterculic Acid	0.23 (0.014)	0.20 (0.020)	0.030 (0.023)	-0.035, 0.094	0.272	0.17, 0.27
	(0.17 - 0.27)	(0.19 - 0.20)	(-0.013 - 0.022)	à.		(0.061 - 0.34)
	Pless	\cdot	will of the	ILIO		
Gossypol (% dw)	×10	to do do,	SIS SO AT SO			
Free Gossypol	0.84 (0.035)	0.82 (0.049) (0.80 - 0.84)	0.020 (0.060)	-0.15, 0.19	0.749	0.099, 1.57
	(0.78 - 0.92)	(0.80 - 0.84)	(-0.0210.0027)			(0.50 - 1.41)
4	Me the che of	a cullinge of	ON MES			
Total Gossypol	0.93 (0.034)	0.93 (0.044)	0.0038 (0.044)	-0.12, 0.13	0.934	0.064, 1.76
	0.87 - 1.04)	(0.94 - 0.98)	(-0.0059 - 0.063)			(0.56 - 1.61)
×1/13/101	Nº XS CIN	all the of x	2 V			
1 dw = dry weight; FA = fatt	y acid	·				
² MON 88701 plants were n						
3 Mean (S.E.) = least-square	mean (standard erro	r). 00 , 10				
⁴ Control refers to the non-b	iotechnology derived	l, conventional cont	rol (Coker 130).			• •
⁵ With 95% confidence, inte	rval contains 99% of	the values expresse	ed in the population of	commercial substance	es. Negative l	imits set to zero.
	rval contains 99% of					
	MIL PI					
Monsanto Company	Po .		12-CT-244U			459 of 620
1 2						

Table E-24. Statistical Summary of Site ARTI Cottonseed Anti-nutrients for MON 88701 (Not Treated) vs. Conventional Control \mathcal{O}

		Difference (MON 88701 minus Control)				ventional Control	
		MON 88701 ²	Control ⁴		1º	S C C	Commercial
Analytical	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)		Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Proximate (% dw)			5		2	
Ash		4.39 (0.044)	4.21 (0.047)	0.18 (0.034)	0.095, 0.27	0.003	3.42, 4.65
		(4.24 - 4.50)	(4.12 - 4.23)	(0.12 - 0.25)	0.095, 0.27 0.095, 0.27	^C	(3.18 - 4.68)
				aper.	a or all cor al)`	
Calories (Kc	al/100g)	501.28 (2.28)	496.55 (2.63)	4.73 (3.48)	4.23, 13.69	0.232	457.61, 527.56
[*]	C,	(498.88 - 503.43)	(494.57 - 498.27)	(2.32 - 6.61)	Ctill or inth		(466.09 - 509.91)
		· · · · · · · · · · · · · · · · · · ·	aler	10 00 d	ne at an		
Carbohydrat	es	44.81 (0.59)	45.84 (0.68)	-1.03(0.91)	3.36, 1.30	0.306	40.26, 56.45
- ··· · · · · · · · · · · · · · · · · ·		(44.28 - 45.20)	(44.64 - 47.09)	2 (-12890.36)	N. OI		(43.28 - 54.90)
			the sight	100 00, 90	cull.		· · · · · ·
Moisture (%	fw)	6.39 (0.15)	7.23 (0.18)	-0.84 (0.23)	×-1 43 -0 24	0.015	4.79, 9.92
() ()	1)	(6.19 - 6.64)		(-0.970.57)		0.010	(6.05 - 10.50)
			(6.99 - 7.48)		2		(0.00 10.00)
Protein		27.03 (0.33)	27.30 (0.37)	-0,27 (0.37) (-1.020.63) 1.10 (0.70)	-1.21, 0.67	0.493	22.30, 29.41
Trotein		(26.24 - 28.02)	(26.45 - 28.21)	(1.02 - 0.63)	1.21, 0.07	0.175	(20.58 - 29.28)
		a site a	N (2010 2021) 0	01.026 0.05)			(20.30 29.20)
Total Fat	-C)	23.77 (0.46)	22.67 (0.53)	1.10 (0.70) (0.40 - 1.47)	-0.71, 2.91	0.180	15.01, 28.51
Total Pat	90	(23 23 24 21)	(27.07, (0.03))	$(0.40 \ 1.47)$	-0./1, 2.91	0.180	(16.58 - 25.25)
	in in in	(23,35 - 24,21)	24.20(-23.02) *	(0.40 - 1.47)			(10.38 - 23.23)
	7, 01	at the register					
	3. 4	opy the more due not	Clar Mis VIO				
	15	opy the cure ine	SI ON NO				
	C	opy theritiqueline	OX X'O'				
		and out	in in its in the interview of the interv				
		opy right of contraction of any internet).				
14		1° ok					
Monsanto Con	mpany	$\mathbf{\nabla}$	12	2-CT-244U			460 of 620

Control (continued)				- C	JII. CO	
			Difference ()	MON 88701 minus Cor	ntrol)	
	MON 88701 ²	Control ⁴		xil ^O	In s	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fiber (% dw)			1 31	Par Partie		
Acid Detergent Fiber	26.12 (0.52)	27.52 (0.60)	-1.40 (0.79)	-3.43, 0.63	0.136	22.24, 31.96
	(24.62 - 27.38)	(26.81 - 28.13)	(-3.010 0.58)	95% Confidence Interval -3.43, 0.63 -3.60, 1.53	*	(23.42 - 31.62)
		S	OT NO	it's port		
Crude Fiber	18.88 (0.68)	19.92 (0.78)	0-1.04 (1.00) ⁰	-3.60, 1.53	0.346	16.93, 22.68
	(17.57 - 19.90)	(18.70-21.18)	(-2.85 - 1.20)	, all all ,		(16.92 - 23.32)
			G. 2 0	m dt		
Neutral Detergent Fiber	32.42 (0.90)	33.92 (1.04)	×1.49 (1.38)	-5.03, 2.05	0.327	27.03, 42.49
C	(30.60 - 34.01)	(32.79 - 35.89)				(29.27 - 40.63)
		6, 75	Julie Klis 90	d.		``````````````````````````````````````
Total Dietary Fiber	39.71 (0.86)	41.11 (1.00)	-1.39 (1.32) (-3.36-0.94)	-4.79, 2.00	0.339	34.52, 52.58
j i i j i i i j	(37.96 - 42.04)	(39.89 - 42.04)	(-3.36-0.94)			(37.29 - 48.60)
	S All in	and the second				· · · · · · · · · · · · · · · · · · ·
Amino Acid (% dw)	of 5 0 0	nermentationar	is Mue Coi			
Alanine	1,06 (0.019)	1.10 (0.022)	-0.034(0.025)	-0.098, 0.030	0.234	0.86, 1.11
CU CU	(1.02 01.10)	0.10 (0.022) (1.06 - 1.07)	-0.034 (0.025) (-0.076 - 0.029)	,		(0.83 - 1.22)
	all SU AT IS		C.			(*****)
Arginine This dor	3.06 (0.061)	3,21 (0.067)	-0.16 (0.064)	-0.32, 0.0098	0.060	2.38, 3.47
	(2.96 - 308)	(3.07-3.46)	(-0.280.062)	0.52, 0.0090	0.000	(2.30 - 3.55)
Arginine Alt all		C_{1}, C_{1}, C_{1}	(0.20 0.002)			(2.20 5.20)
	26, Ke. and Co					
0	FUTTINGORMAN	0 <u> </u>				
	FUTTO SCOTT					
	SPY the outerne					
Monsanto Company	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	te per and tibited and	-CT-244U			461 of 620
inonsumo compuny	*	12	012110			101 01 020

Control (continued)					<u>dii.</u> 0	
			Difference (N	10N 88701 minus Co	ontrol)	
	MON 88701 ²	Control ⁴		xil ^O	ins	Commercial
Analytical Compone		Mean (S.E.)	Mean (S.E.)	95% CL	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			01		_	
Aspartic Acid	2.39 (0.043)	2.45 (0.047)	-0.066 (0.044)	-0.18, 0.047	0.192	1.94, 2.57
	(2.30 - 2.49)	(2.36 - 2.60)	(-0.11 - 0.00069)	and construction		(1.79 - 2.72)
Cystine	0.41 (0.012)	0.40 (0.013)	0.0020 (0.018)	95% Confidence Interval -0.18, 0.047 -0.043, 0.047 -0.52, -0.016	0.913	0.31, 0.45
	(0.38 - 0.43)	(0.38-0.43)	(-0.032 - 0.050)	rent mas		(0.29 - 0.47)
Glutamic Acid	4.69 (0.098)	4.96 (0.11)	+0.27 (0.099)	-0.52, -0.016	0.041	3.74, 5.28
	(4.51 - 4.98)	(4.77 -5:21)	(-0.260.23)			(3.39 - 5.45)
Glycine	1.11 (0.020)	£13 (0.023)	0.012(0.026)	-0.083, 0.050	0.559	0.90, 1.14
	(1.06-1.14)	(1.09 - 1.20)	(-0.055_0.033)	,		(0.85 - 1.23)
Histidine	0.76 (0.013)	0.76 (0.014) (0.75 - 0.78)	0.00082 (0.012)	-0.033, 0.031	0.949	0.59, 0.81
	(0.73 - 0.78)	(0.75 0.78)	(=0,018 - 0.0081)			(0.57 - 0.84)
Isoleucine		0 94 10 0120	0.00070 (0.014)	-0.035, 0.036	0.961	0.75, 0.96
< his a	(0.91 - 0.97)	(0.92 - 0.97)	(-0.012 - 0.011)	0.020, 0.020	0.901	(0.72 - 1.03)
	and tight on the	cian niss vilon				
	Further control	, per and				
	Kr. ous coll th	e teo				
	Further control to any thought of the providence	e per and ne				
Monsanto Company	"DO T		12-CT-244U			462 of 620

Control (continued	l)			0	011.00	
			Difference (1	MON 88701 minus Co	ontroly	
	MON 88701 ²	Control ⁴		xil ^O	illes	Commercial
Analytical Compo	,	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			D.			
Leucine	1.56 (0.022)	1.58 (0.024)	-0.019 (0.021)	0.074, 0.037	0.425	1.25, 1.62
	(1.51 - 1.60)	(1.52 - 1.65)	(-0.049 \core 0.0079)	N all so dell		(1.20 - 1.72)
Lysine	1.26 (0.018)	1.23 (0.020)	0.029 (0.024)	95% Confidence Interval 0.074, 0.037 -0.033, 0.091	0.286	1.01, 1.30
	(1.19 - 1.29)	(1.22, 1.25)	, (-0.040 - <u>0</u> .062)	Colly Maria		(0.99 - 1.44)
Methionine	0.40 (0.017)	0.42 (0.019)	-0.019 (0.024)	-0.080, 0.042	0.464	0.32, 0.38
	(0.38 - 0.42)	(0.37 - 0.46)	(-0.081 - 0.035)			(0.29 - 0.49)
Phenylalanine	1.45 (0.030)	£49 (0.033)	× 10 0/0 (0.032)	-0.12, 0.041	0.259	1.12, 1.58
5	(1.41 - 1.49)	(1.41 - 1.61)	(-0.12 - 0.0089)			(1.10 - 1.63)
Proline	1.03 (0.020)	1.05 (0.022)		-0.078, 0.036	0.393	0.83, 1.08
	(0.97 - 1.10)	(1.03 1.09)	-0.021 (0.022) (-0.065 - 0.010)			(0.79 - 1.17)
Serine	1.08 (0.031)	112200350	-0.040 (0.039)	-0.14, 0.061	0.357	0.83, 1.21
(his	(1.02 - 1.14)	(1908 - 1.20)	(-0.055 - 0.023)	,	0.0007	(0.81 - 1.24)
7	10. 10 10 10 10 11	Cial Miss viole				
	tt copy there are conne	COL BIO				
	FU ON COLL	No. 160				
	the copy the month of the providence of the prov	Te permis due				
Monsanto Company	, Po ,		12-CT-244U			463 of 620

Control (continued)					JII. 00	
		-	Difference (1	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴			IUS	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			0	6, 16 M	/	
Threonine	0.88 (0.015)	0.90 (0.017)	-0.017 (0.018)	0.063, 0.029	0.395	0.72, 0.89
	(0.85 - 0.91)	(0.87 - 0.95)	(-0.040- 0.016)	A Stor CO. FO		(0.67 - 0.96)
Fryptophan	0.41 (0.011)	0.42 (0.013)	-0.016 (0.017)	95% Confidence Interval -0.063, 0.029 -0.061, 0.028 -0.034, 0.032	0.389	0.34, 0.42
	(0.39 - 0.42)	(0.39, 0.44)	(-0.042 - 0.030)	on mas		(0.31 - 0.46)
Γyrosine	0.84 (0.011)	0.84 (0.013)	2-0.0011 (6013)	0 034 0 032	0 936	0.67, 0.84
	(0.82 - 0.85)	(0.81 - 0.89)	(-0.036 - 0.027)	JUN 0.05 1, 0.052	0.900	(0.63 - 0.91)
Valine	1.24 (0.018)	E 76 (0 010)		-0.059, 0.018	0.235	1.00, 1.28
vanne	(1.19 - 1.28)	(1.29-1.32)	(-0.040 - 0.011)	-0.059, 0.010	0.255	(0.97 - 1.36)
Fatty A aid (0/ Tatal EA)	is all in	0.77 (0.0079) (0.76 - 0.78)	O O X			
Fatty Acid (% Total FA) 4:0 Myristic	0.77 (0.0068)		0,000 (0,010)	-0.030, 0.023	0.745	0.16, 1.37
14.0 Myristic	(0.76 0.79)	0.77 (0.0079) (0.76 - 0.78)	-0.0036 (0.010) (-0.026 - 0.022)	-0.030, 0.023	0.743	(0.45 - 1.04)
in the second	SILLES OF THIS	·	ile and the second seco			
6:0 Palmitic	24.27 (0.14)	24,12 (0,06)	0.15 (0.20)	-0.37, 0.67	0.494	16.54, 30.55
16:0 Palmitic $4hi^{5}allot$	0 (24.04 - 24.70)	(23.78 924:45)	(-0.20 - 0.26)			(19.11 - 26.73)
	ob x her all all all					
	Futtre conne					
	Stuttle stutter					
	PUTTONSCOULE CONTRACTOR	ne pertind t				
Monsanto Company	Pe (12	2-CT-244U			464 of 620

Control (continued)					JII. 00	
			Difference (N	10N 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴			illes .	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)	0.51 (0.0050)				0.000	
16:1 Palmitoleic	0.51 (0.0058)	0.51 (0.0067)	-0.0013 (0.0089)	0.024, 0.022	0.886	0.39, 0.70
	(0.50 - 0.52)	(0.50 - 0.52)	(-0.0059-0.013)	95% Confidence Interval 0.024, 0.022 -0.050, 0.19 -0.20, 0.45		(0.44 - 0.67)
18:0 Stearic	2.50 (0.032)	2.43 (0.037)	0.070 (0.046)	-0.050, 0.19	0.193	1.98, 2.95
	(2.45 - 2.54)	(2.37 2.46)	(0.039 - 0.16)	Cell' M'a		(1.98 - 2.97)
18:1 Oleic	14.51 (0.098)	14.39 (0.11)	× × × × × × × × × × × × × × × × × × ×	-0.20, 0.45	0.374	11.38, 20.64
	(14.39 - 14.63)	(14.06 - 14.61)	(0.00041 - 0,47)			(13.71 - 18.39)
18:2 Linoleic	56.07 (0.24)	56.59 (0.28)	-0.52 (0.35)	-1.41, 0.38	0.197	47.49, 63.18
10.2 Elliotete	(55.90 - 56.24)	(56.02 - 57.32)	(4.16 -0.12)	-1.+1, 0.36	0.177	(49.78 - 59.61)
	is affinition	er en ion				
18:3 Linolenic	0.14 (0.0066) (0.11 - 0.15)	0.15 (0.0076)	-0.0076 (0.010) (-0.0064 - 0.0089)	-0.033, 0.018	0.485	0.060, 0.24 (0.10 - 0.29)
20CL		(0.14) 0.15)	0,			(0.10 0.2))
20:0 Arachidic	0.29 (0.0098)	0.28 (0.011)	0.015 (0.013)	-0.019, 0.049	0.309	0.17, 0.38
11. All	(0.26 - 0.30)	(0.26 - 0.29)	(0.0032 - 0.042)			(0.20 - 0.36)
14	polythern all all all all all all all all all al	Con Ching the				
Ċ	SPY them uether	10 2 3 3 N				
	CONTONI	il ^{ite}				
	portention of the provident of the provi	ie per and vie				
Monsanto Company	, he		12-CT-244U			465 of 620

Control (continued)					dill. Co	
			Difference (N	MON 88701 minus Co	ontrol)	
	MON 88701 ²	Control ⁴		xil ^O	ill's	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95% CL	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			2		,	
22:0 Behenic	0.15 (0.0026)	0.14 (0.0030)	0.0075 (0.0037)	-0.0021, 0.017	0.100	0.070, 0.21
	(0.14 - 0.16)	(0.14 - 0.15)	(0.0012) 0.013)	1 str co et		(0.051 - 0.19)
		S	PIC to	-0.0021, 0.015 0.014, 0.026		
Mineral		of t	Wall allia	Chin OI N		
Calcium (% dw)	0.13 (0.0015)	0.11 (0.0018)	0.020 (0.0023)	0.014, 0.026	< 0.001	0.058, 0.21
	(0.13 - 0.13)	(0.11 - 0.11)	(0.016 - 0.024)	n di		(0.081 - 0.18)
		10. int i		. no.		
Copper (mg/kg dw)	8.67 (0.26)	8.21 (0.30)	0.46 (0.39)	-0.54, 1.47	0.288	2.97, 12.86
	(8.13 - 9.20)	(7.48 - 8.64)	(0.055 - (1.72)	of .		(4.46 - 11.62)
	Q'S	SU this 10	trip of this w			
Iron (mg/kg dw)	74.17 (3.80)	78.00 (4.39)	-3.83 (5.81)	-18.76, 11.10	0.539	47.30, 97.12
	(59.77 - 87.01)	(75.01 - 80.40)	(-20.630.99)			(39.49 - 114.34)
	all xo xo	no no still s	NR SO.			
Magnesium (% dw)	0.41 (0.0052)	0.38 (0.0054)	0.032 (0.0034) (0.026 - 0.034)	0.023, 0.040	< 0.001	0.28, 0.47
NOCO.	(0.40 0.43)	(0.37 - 0.39)	(0.026 - 0.034)			(0.31 - 0.46)
	SILLES OF MIS	7,10,0,	ine			
Manganese (mg/kg dw)	14.26 (0.31)	11,51 (034)	2.75 (0.37)	1.80, 3.70	< 0.001	9.07, 17.33
	(13.82 - 15.04)	(10.81 - 11.75)	(2.07 - 3.10)	,		(9.07 - 17.14)
	at all lot at		``´´			
G	Ditte dr. Us	R AL				
Ŭ.,	Furth contraction of the second the second the second test of test	0.0				
		:0				
	30°.0°.0					
	FUTTORS CONTRE					
Monsanto Company	V [®]	e Pedand *	2-CT-244U			466 of 620
1 5						

Control (continued)				-	α	
			Difference (M	10N 88701 minus Co	ntrol	
	MON 88701 ²	Control ⁴			il in s	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)		Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral			, DI.	6, 6, 6, 6,		
Phosphorus (% dw)	0.78 (0.011)	0.76 (0.012)	0.012 (0.0082)	-0:0088, 0.034	o.192 🖉	0.49, 0.87
	(0.75 - 0.81)	(0.75 - 0.79)	(0.00079 - 0.021)	0, 10, 00, 40)*	(0.48 - 0.87)
		Ġ	of xor	its of		
Potassium (% dw)	1.22 (0.012)	1.12 (0.013)	0.098 (0.010)	0.072, 0.12	< 0.001	0.92, 1.21
	(1.18 - 1.24)	(1.10 1.13)	(0.087 - 0.11)	and and		(0.90 - 1.26)
		A le		CO AL		
Sodium (% dw)	0.022 (0.0045)	0.017 (0.0052)	0.0051 (0.0069)	0.013, 0.023	0.497	0, 0.066
Sourdani (70 d.w.)	(0.0053 - 0.039)	(0.013 - 0.022)	(-0.0019 - 0.026)	-0.015, 0.025	0.477	(0.0054 - 0.077)
	(0.0033 - 0.037)	(0.013 - 0.022)	(-0.0019 - 0.020)) 		(0.003 + 0.077)
	28 (2 (0 (2))		-0.93 (0.83)	2 0 (1 20	0.211	27.27.44.05
Zinc (mg/kg dw)	38.62 (0.67)	39.55 (0.75)		-3.06, 1.20	0.311	27.27, 44.95
	(37.11 - 40.86)	(38,49 - 40.84)	(2.50 1.19)			(25.07 - 48.49)
	ALE ALL AL					
Vitamin (mg/kg dw)	Col its to	Mu Mu Spi S	N N S			
Vitamin E	149.29 (2,27)	140.12 (2.63)	9.17 (3.47)	0.24, 18.10	0.046	41.91, 205.89
200	(142.84 0153.55)	(133.64 - 145.15)	(-2.30 - 15.25)			(84.07 - 162.76)
	N' S' S' N	7,10,0	<i>'1</i> /*			

 ¹dw = dry weight; fw = fresh weight; FA = fatty acid.

 ² MON 88701 plants were not treated with dicamba or glutosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U

 467 of

Control				(
			Difference (N	MON 88701 minus 🚱	ntrol	
	MON 88701 ²	Control ⁴		ن، ^^	Ins.	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Aci	d (% Total FA)		, all	Q1 Q Q	2	
Dihydrosterculic Acid	0.16 (0.0067)	0.12 (0.0077)	0.039 (0.010)	0.012, 0.065	Ø 0.012	0.078, 0.25
	(0.14 - 0.17)	(0.11 - 0.13)	(0.020-0.058)	100 x10. con \$0	0.012	(0.038 - 0.23)
		S	010 ×01			
Malvalic Acid	0.41 (0.027)	0.32 (0.031)	0.087 (0.038)	-0:011, 0.19	0.072	0.23, 0.54
	(0.36 - 0.43)	(0.31 - 0.34)	(0.085 - @.11)			(0.11 - 0.59)
	· · · · · ·	Bor Me		no th		
Sterculic Acid	0.23 (0.011)	0.18 (0.013)	0.045 (0.015)	0.0071, 0.082	0.028	0.17, 0.27
	(0.20 - 0.24)	(0.18 - 0.20)	(0.039 - 0.059)			(0.061 - 0.34)
				<u>.</u>		(0.000 0.000)
Gossypol (% dw)	orvis	Shipilo 40	i ill'attices i	Co.		
Free Gossypol	0.91 (0.017)	0 86 00 0199	0.044 (0.020)	-0.0089, 0.096	0.085	0.099, 1.57
	(0.85 - 0.95)	(0.85 - 0.90)	(0.036 - 0.091)	0.0009, 0.090	0.000	(0.50 - 1.41)
						(0.50 1.11)
Total Gassymal			0.024 (0.017)	-0.020, 0.068	0.221	0.064, 1.76
Total Gossypol		0.90 0.0200		-0.020, 0.008	0.221	<i>,</i>
200	40.93 DD.030	(0.30 - 0.89)	(-0.010 - 0.061)			(0.56 - 1.61)
	0 5 0' KI	<u> </u>	11			

Table E-26. Statistical Summary of Site GACH Cottonseed Anti-nutrients for MON 88701 (Not Treated) vs. Conventional 6 92 Control

 1 dw = dry weight; FA = fatty acid.

 ¹dw = dry weight; FA = fatty acid.

 ² MON 88701 plants were not treated with dicamba or glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-brotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 468 of

Ø

	~~~~~~~~	Difference (MON 88701 mi					
Analytical (Units) ¹	Component	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
Proximate (%	dw)	(Runge)	(Runge)	(Runge)		(p value)	(Runge)
Ash	, awy	4.46 (0.063) (4.40 - 4.55)	4.29 (0.071) (4.21 - 4.33)	0.16 (0.078)	-0.038, 0.37	0.091	3.42, 4.65 (3.18 - 4.68)
			(4.21 - 4.33)	(0.071-0.25)	dat and conteror		(3.18 - 4.08)
Calories (Kcal	/100g)	500.94 (2.75)	495.83 (3.16)	5.N (3.87)	-4.84, 15.06	0.244	457.61, 527.56
		(494.73 - 507.94)	(492.30 - 504.10)	(0.76 - 15.41)	John Chan I		(466.09 - 509.91)
Carbohydrates	1	44.42 (0.71)	44.23 (0.82)	0.19(1.09)	2.62, 2.99	0.870	40.26, 56.45
		(42.57 - 46.25)	44.23 (0.82) (42.53 - 45.14)	(-0.94 - 0.041)	CULLE!		(43.28 - 54.90)
Moisture (% f	w)	7.08 (0.17)	7.36 (0.19)	-0.29 (0.20)	-0.81, 0.23	0.213	4.79, 9.92
× ×	,	(6.51 - 7,47)	(7.17 - 7.62)	(-0.85 - 0.13)	-0.038, 0.37 -0.038, 0.37 -0.038, 0.37 -2.62, 2.99 -3.86, 0.93		(6.05 - 10.50)
Protein		27.36 (0.62)	28.82 (0.72)	-1.47 (0.93)	-3.86, 0.93	0.176	22.30, 29.41
		(26.05 - 28.45)	(28,58 - 29,04)	-1.47 (0.93) (-2.53 -0.58)	,		(20.58 - 29.28)
Total Fat	, oci	23.76 (0.55)	22.62 (0.64)	1.13 (0.81)	-0.96, 3.22	0.222	15.01, 28.51
	This do	0(22,48 - 25.18)	(21.87-24.18)	1.13 (0.81) (0.42 - 3.21)			(16.58 - 25.25)
	SE C	and the	21,21,87,24,18) 21,21,87,24,18) 21,101,000,000 21,101,000,000 21,101,000,000 21,101,000,000 21,101,000,000 21,101,000,000 21,101,000,000 21,101,000,000 21,101,000,000 21,101,000,000 21,101,000,000 21,101,000,000 21,101,000,000 21,101,000,000 21,101,000,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,000 21,100,0000 21,100,000 21,100,000 21,100,				
Monsanto Comj	pany	Will pr	12	-CT-244U			469 of 620

Control (continued)						
			Difference ()	MON 88701 minus C	ontrol)	
	MON 88701 ²	Control ⁴		× ON V	ins	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fiber (% dw)			01		~	
Acid Detergent Fiber	24.37 (0.55)	24.01 (0.61)	0.36 (0.65)	-1.31, 2.03	0.601	22.24, 31.96
	(23.30 - 25.67)	(22.08 - 25.22)	(-0.26 1.22)	N all so ret		(23.42 - 31.62)
Crude Fiber	16.71 (0.24)	17.67 (0.28)	0.96 (0.37)	95% Confidence Interval -1.31, 2.03 -1.91, -0.015 -4.66, 1.57	0.047	16.93, 22.68
	(16.10 - 17.37)	(17.49 17.88)	(-1.54 - 0.51)	on hor		(16.92 - 23.32)
			S. S. B. C.	In ent		
Neutral Detergent Fiber	28.65 (0.88)	30.20 (1.01)	4.54 (1.21)	-4.66, 1.57	0.259	27.03, 42.49
	(28.05 - 29.04)	(28.87 - 32.60)	(-3.720.82)			(29.27 - 40.63)
Total Dietary Fiber	38.55 (0.42)	40.14 (0.49)		-3.22, 0.044	0.054	34.52, 52.58
	(37.44 - 39.47)	(39.32 - 41.35)	(2.29 - 1.13)	•		(37.29 - 48.60)
	tis atting		O O S			
Amino Acid (% dw)	OF IS X YO	101 (0.012) 0.06 (0.012)	-0.035 (0.014) (-0.061 - 0.0081)			
Alanine	1.03 (0.011)	1.06 (0.012) (1.02 - 1.10)	-0.035 (0.014)	-0.071, 0.00096	0.054	0.86, 1.11
2001		(1.02 - 1.10)	(-0.061 - 0.0081)			(0.83 - 1.22)
Arginine This dor	3.00 (0.053)	3,28 (0.060)	-0.28 (0.069)	-0.45, -0.10	0.009	2.38, 3.47
Arginine	(2.88 - 3.05)	(3.10 = 3.43)	(-0.370.059)	-0.43, -0.10	0.009	(2.30 - 3.55)
	(2:00 - 2:03)	$C \land A \land A \land$	(-0.370.037)			(2.30 - 5.35)
Č	FUTTONSCOMMENT	6 6 36				
	SP3, the content	te per and the period				
Monsanto Company	V [©]	12	-CT-244U			470 of 620

Control (continued)					J <u>II. 00</u>	
			Difference (N	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴			ILS	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			3	a di di alla		
Aspartic Acid	2.35 (0.037)	2.50 (0.043)	-0.15 (0.053)	0.28, -0.012	0.038	1.94, 2.57
	(2.32 - 2.37)	(2.39 - 2.64)	(-0.27 -0.047)	95% Confidence Interval 0.28, -0.012 -0.073, 0.0083 -0.86, 0.062 -0.12, 0.023		(1.79 - 2.72)
Cystine	0.39 (0.010)	0.42 (0.012)	-0.032 (0.016)	-0.073, 0.0083	0.096	0.31, 0.45
	(0.36 - 0.42)	(0.41, 0.43)	<u>, (-0.074 - 0.011)</u>	all't n'a		(0.29 - 0.47)
Glutamic Acid	4.68 (0.12)	5.07 (0.14)	<b>0.40 (0.18)</b>	-0.86, 0.062	0.076	3.74, 5.28
	(4.63 - 4.71)	(4.86 - 5.43)	(-0.720.18)			(3.39 - 5.45)
Glycine	1.07 (0.018)	611 (0.021)	-0.047 (0.027)	-0.12, 0.023	0.144	0.90, 1.14
5	(1.05 - 1.08)	(1.07-1.18)	-0.047 (0.027) (-0.11 -0.016) -0.050 (0.011)	- <b>,</b>		(0.85 - 1.23)
Histidine	0.73 (0.013)	0.77 (0.014) (0.74 - 0.80)	-0.050 (0.011)	-0.078, -0.022	0.006	0.59, 0.81
CU ²	(0.69 - 0.76)	(0.74 0.80)	(-0.0690.031)			(0.57 - 0.84)
Isoleucine	S. W. C.	0.95 (0.015)	-0.049 (0.014)	-0.085, -0.013	0.017	0.75, 0.96
(HI2/10)	(0.88 - 0.94)	(0.91 - 0.98)	(-0.0740.017)	0.000, 0.015	0.017	(0.72 - 1.03)
310.42	<u> </u>	$\cdot \circ \cdot \circ \cdot \circ$				
	Further connet					
•	FU ONS COLLET	le teo				
	Furthermolenter Furthermolenter anyithout the	e per and the				
Monsanto Company	Ver	]	12-CT-244U			471 of 620

 Table E-27. Statistical Summary of Site KSLA Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Control (co	ontinued)					dill. do	
				Difference (N	10N 88701 minus Co	ontroly	
		MON 88701 ²	Control ⁴		XION	illes	Commercial
Analytical	Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid	l (% dw)			DI DI	29. K 26	~	
Leucine		1.51 (0.020)	1.58 (0.022)	-0.074 (0.021)	0.13, -0.020	0.017	1.25, 1.62
		(1.47 - 1.55)	(1.52 - 1.65)	(-0.095 -0.013)	J an contin	)	(1.20 - 1.72)
Lysine		1.19 (0.017)	1.25 (0.019)	Difference (N         Mean (S.E.) (Range)         -0.074 (0.021)         (-0.0950.013)         -0.065 (0.021)         (-0.0840.024)         0.0063 (0.019)         (-0.053 - 0.049)	-0.02, -0.010	0.028	1.01, 1.30
		(1.16 - 1.22)	(1.19, 1.30)	(-0.0840.024)	Cont mos		(0.99 - 1.44)
Methionine		0.39 (0.015)	0.39 (0.017)	0.0063 (0.019)	0.041, 0.054	0.747	0.32, 0.38
		(0.38 - 0.41)	(0.34 - 0.44)	(-0.053 - 0.049)			(0.29 - 0.49)
Phenylalanir	ne	1.42 (0.022)	£53 (0.025)		-0.18, -0.031	0.014	1.12, 1.58
5		(1.37 - 1.45)	(1.45 - 1.58)	(-0.14 - 0.013)			(1.10 - 1.63)
Proline		(0.018)	1.07 (0.020) (1.03 - 1.12)	0.065 (0.027)	-0.13, 0.0039	0.059	0.83, 1.08
1101110	ريار	(0.96 - 1.03)	(1.03 1.12)	(-0.0940.00058)		0.003	(0.79 - 1.17)
Serine	200		1.11(0.034)	-0.044 (0.045)	-0.16, 0.071	0.373	0.83, 1.21
Serine	This dor	(1.05 - 1.07)	(1.06 - 1.20)	(-0.14 - 0.017)	0.10, 0.071	0.075	(0.81 - 1.24)
	310, 13	<u>10, 0, 113</u>	$\cdot \circ \cdot \circ$				
		Further connet	Per and				
	4	KN ON CON W	No. 100				
		SP HIS NO CHINE	te per and vie				
Monsanto Co	mpany	, por		12-CT-244U			472 of 620

Control (continu	ed)						
				Difference (I	MON 88701 minus Co	ontrol)	
	Μ	ION 88701 ²	Control ⁴		xil ^O	ILS	Commercial
-	ponent N	fean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dy	,			01			
Threonine		.84 (0.013)	0.88 (0.015)	-0.036 (0.019)	0.086, 0.014	0.121	0.72, 0.89
	()	0.82 - 0.86)	(0.83 - 0.92)	(-0.062 0.021)	95% Confidence Interval -0.029, 0.014 -0.029, 0.017	)	(0.67 - 0.96)
Tryptophan	0.	42 (0.0061)	0.42 (0.0070)	-0.0058 (0.0090)	-0.029, 0.017	0.551	0.34, 0.42
	()	0.40 - 0.44)	(0.42, 0.43)	(-0.024 - 0.012)	all'i Mo		(0.31 - 0.46)
Tyrosine	0	.79 (0.014)	0.84 (0.016)	-0.050 (0.019)	-0.098, -0.0013	0.045	0.67, 0.84
	()	0.76 - 0.80)	(0.79 - 0.87)	(-0.0760,0034)			(0.63 - 0.91)
Valine	1	.20 (0.017)	E26 (0.019)	-0.038 (0.023)	-0.12, 0.00007	0.050	1.00, 1.28
	(	1.15 - 1.23)	(1.21-1.30)				(0.97 - 1.36)
Fatty Acid (% Tot		the attraction	0.72 (0.0096) (0.71 - 0.73)	nd mel of the			
14:0 Myristic	0.	69 (0.0087)	0.72 (0.0096)	-0.033 (0.0090)	-0.056, -0.010	0.013	0.16, 1.37
-	2000 nt	0.66 0.70)	0 (0.71 - 0.73)	-0.033 (0.0090) (-0.0500.020)	,		(0.45 - 1.04)
16:0 Palmitic	and no (2)	2.54 (0.089)	22,73 (0,00)	-0.19 (0.13)	-0.52, 0.15	0.208	16.54, 30.55
6	2 (2)	2.30 - 22.75)	(22.69 - 22.78)	(-0.48 - 0.057)			(19.11 - 26.73)
		the dry de					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	in conne	NO TO				
	(the eque ne	te eri and t				
Monsanto Company		P _C	1	2-CT-244U			473 of 620

 Table E-27. Statistical Summary of Site KSLA Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Control (continued)						
			Difference (N	MON 88701 minus C	ontrol)	
	MON 88701 ²	Control ⁴		×10 ¹	ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			and Dr		<i>.</i>	
16:1 Palmitoleic	0.48 (0.0057)	0.49 (0.0062)	-0.0079 (0.0059)	-0.023, 0.0073	0.239	0.39, 0.70
	(0.47 - 0.50)	(0.49 - 0.50)	(-0.015 0.0026)	-0:023\0.0073		(0.44 - 0.67)
18:0 Stearic	2.25 (0.031)	2.20 (0.036)	0.048 (0.047)	-0.023, 0.0073 -0.074, 0.17 -0.62, 0.27	0.356	1.98, 2.95
	(2.16 - 2.34)	(2.15 2.28)	<u>, (-0.066 -0.16)</u>	en no		(1.98 - 2.97)
18:1 Oleic	14.65 (0.11)	14.83 (0.13)	618 (017)	-0.62 0.27	0.356	11.38, 20.64
	(14.23 - 14.99)	(14.74 - 14.99)	(-0.54) - 0,0051)	JUL 0.02, 0.27	0.520	(13.71 - 18.39)
	108-	101.10	Al JUL HALL do	-0.43, 1.04		
18:2 Linoleic	58.08 (0,19)	57.78 (0.22)	\times 0 30 (0.29)	-0.43, 1.04	0.335	47.49, 63.18
	(57.39 - 58.48)	(57.65 - 57.93)	(-0.26_0.73)			(49.78 - 59.61)
18:3 Linolenic	0.18 (0.0027)	0.17(0.0030)	0.0014 (0.0033)	-0.0070, 0.0099	0.684	0.060, 0.24
	(0.17 - 0.18)	(0.17 0.18)	(-0.0031 - 0.0059)	,	0.000	(0.10 - 0.29)
200						
20:0 Arachidic	0.23 (0.0029)	0.24 (0.0034)	0.0038 (0.0045)	-0.015, 0.0077	0.435	0.17, 0.38
TINGIO	(0.23 = 0.24)	(0,23 - 0,24)	(-0.011 - 0.0067)			(0.20 - 0.36)
	2Py there due the	Con Main of Ma				
C	SPY their que ne	10 9 - 2 31.				
	SP HIS MUCHTING	e per and vie				
Monsanto Company	Ve ,		12-CT-244U			474 of 620

 Table E-27. Statistical Summary of Site KSLA Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Control (continued)					on lic	
			Difference (N	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		xil ^O	Ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			DI DI	2 Ci al Cint		
22:0 Behenic	0.13 (0.0030)	0.13 (0.0035)	-0.0068 (0.0046)	0.019 0.0049	0.196	0.070, 0.21
	(0.12 - 0.14)	(0.13 - 0.14)	(-0.019\0.0086)	-0.019\0.0049 0.0022, 0.034	,	(0.051 - 0.19)
		S	PIC to	ion its not		
Mineral		. OX	Wall allow	out of Att		
Calcium (% dw)	0.20 (0.0060)	0.18 (0.0065)	0.018 (0.0061)	0.0022, 0.034	0.032	0.058, 0.21
	(0.18 - 0.21)	(0.17 - 0.19)	(0.0037 - 0.021)	n di		(0.081 - 0.18)
		JO. int xi		me		
Copper (mg/kg dw)	10.86 (0.54)	11.01 (0.61)	-0.15 (0.71)	-1.97, 1.67	0.842	2.97, 12.86
	(9.15 - 12.15)	(10.09 - 11.33)	(-2.19 - 1.26)	es.		(4.46 - 11.62)
	Q' S	SU think is	the of the h	<u>[</u>]		
Iron (mg/kg dw)	90.85 (5.50)	74.39 (6.35)	46.46 (8.40)	-5.13, 38.05	0.107	47.30, 97.12
	(74,66 - 109.70)	(72.65 - 76.27)	(1.19 - 27.33)			(39.49 - 114.34)
	of xo xo	no mo still si	NRSO			
Magnesium (% dw)	0.42 (0.0033)	0.40 (0.0038)	0.023 (0.0046) (0.015 - 0.026)	0.011, 0.035	0.004	0.28, 0.47
20CL	(0.41 0.43)	(0.39 - 0.40)	(0.015 - 0.026)			(0.31 - 0.46)
	SILLES OF THIS	y, %, 0,	ille .			
Manganese (mg/kg dw)	14.18 (0.29)	0 12,56 (033)	1.62 (0.44)	0.50, 2.74	0.013	9.07, 17.33
allo	(13.48 - 14.84)	(11.96 - 13.28)	(0.20 - 2.14)			(9.07 - 17.14)
	N' off lol of	C. Mr. 9 1.				
G	Strange and					
	FURTICEONNE					
		ipil				
	FURTINS COMMENT					
	Mr. PI					
Monsanto Company	Furthern any ithout the pe prot	12	2-CT-244U			475 of 620

Control (continued)					3 <u>11 0</u>	
			Difference (M	ON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴			IL S	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)		Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range) 👌 C	Confidence Interval	(p-Value)	(Range)
Mineral			, DI.	6, 16 M		
Phosphorus (% dw)	0.76 (0.0090)	0.78 (0.010)	-0.014 (0.011)	0.042, 0.014	0.251	0.49, 0.87
	(0.75 - 0.78)	(0.77 - 0.79)	(-0.020 -0.0075))*	(0.48 - 0.87)
		S	of to to	n its old		
Potassium (% dw)	1.11 (0.010)	1.08 (0.012)	0.029 (0.015)	-0.0087, 0.067	0.104	0.92, 1.21
	(1.08 - 1.12)	(1.05 1.10)	(0.020 - 0.030)	ant nas		(0.90 - 1.26)
	· · · ·	B. M.				
Sodium (% dw)	0.015 (0.0028)	0.0080 (0.0032)	0.0070 (0.0042)	-0.0039, 0.018	0.159	0, 0.066
	(0.0054 - 0.022)	(0.0054 - 0.013)	(0.0062 - 0.016)	0.0000, 0.010	01103	(0.0054 - 0.077)
	(0.000 1 0.012)			<u> </u>		(0.000 . 0.077)
Zinc (mg/kg dw)	40.63 (1.18)	42 00 (1 37)	-1.37 (1.81)	-6.01, 3.27	0.482	27.27, 44.95
Zine (ing/kg dw)	(36.90 - 42.39)	42.00 (1.37)	(-6.60_0.49)	-0.01, 5.27	0.462	(25.07 - 48.49)
	(30.90 - 42.39)	(40.09 - 45.50)	(-0.00 0.49)			(23.07 - 46.49)
	the shirt					
Vitamin (mg/kg dw)		N' ablatication (O'L S TI		0.556	41 01 005 00
Vitamin E	94.05 (2,67)	92.34 (2.91)	1.71 (2.71)	-5.26, 8.67	0.556	41.91, 205.89
200	(87.22 - 99.35)	(91.78 - 95.85)	(-2.10 - 7.57)			(84.07 - 162.76)
. 6 .	. ~ ~ ~ O, ~ W.	2.000	11/			

 ¹dw = dry weight; fw = fresh weight; FA = fatty acid.

 ² MON 88701 plants were not treated with dicamba or glutosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U

 476 of

Control					Q_{i} , Q_{i}	
			Difference (I	MON 88701 minus 🕻	ontrol)	
	MON 88701 ²	Control ⁴			ins.	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)		Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Acie	d (% Total FA)		. SI		2	
Dihydrosterculic Acid	0.14 (0.010)	0.12 (0.012)	0.017 (0.014)	-0.020, 0.054	0.296	0.078, 0.25
	(0.13 - 0.15)	(0.12 - 0.13)	(0.00032 - 0.031)	10° allo coi alc)`	(0.038 - 0.23)
		S	of to to		0.296	
Malvalic Acid	0.41 (0.030)	0.37 (0.034)	0.044 (0.039)	-0.056, 0.15	0.308	0.23, 0.54
	(0.35 - 0.45)	(0.33 - 0.39)	(-0.012 - 0.094)	and an		(0.11 - 0.59)
	· · · · · ·	Box M		nº x''		
Sterculic Acid	0.21 (0.014)	0.20 (0.016)	0.012 (0.019)	0.036, 0.060	0.552	0.17, 0.27
	(0.19 - 0.22)	(0.19 - 0.21)	(-0.019 - 0.030)	JI IIII		(0.061 - 0.34)
				<u>.</u>		(*******)
Gossypol (% dw)	orvis	· cut the fe	i ill' fi is	n ^o .		
Free Gossypol	1.00 (0.027)	0 95 00 030	0.055 (0.033)	-0.029, 0.14	0.151	0.099, 1.57
	(0.96 - 1.03)	(0.86 - 1.05)	(-0.030 - 0.13)	0.029, 0.11	0.101	(0.50 - 1.41)
						(0.00 1.11)
Total Gossypol		1.01 (0.928)	0.075 (0.047)	-0.046, 0.20	0.172	0.064, 1.76
Total Cossypol	(0.033)	(1.00 1.02)	(0.073 - 0.11)	-0.040, 0.20	0.172	
200	AT.05 D.120	(1.00 - 1.02)	(0.075 - 0.11)			(0.56 - 1.61)
<u> </u>	1/1, 10 E 0	A 10 0	14			

 Table E-28. Statistical Summary of Site KSLA Cottonseed Anti-nutrients for MON 88701 (Not Treated) vs. Conventional

 Control

 1 dw = dry weight; FA = fatty acid.

 ¹dw = dry weight; FA = fatty acid.

 ² MON 88701 plants were not treated with dicamba or glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-brotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 477 of

Ø

					din do	
		-	Difference	(MON 88701 minus Co	ontrol	
	MON 88701 ²	Control ⁴			in ^{es}	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Proximate (% dw)			, all	6, 6, 6, 6,	2	
Ash	4.27 (0.047)	4.12 (0.047)	0.16 (0.066)	-0.0069, 0.32	0.057	3.42, 4.65
	(4.14 - 4.40)	(4.06 - 4.15)	(0.081, 0.25)	100 all con fl)`	(3.18 - 4.68)
		Ġ	NOV XC	of the second		
Calories (Kcal/100g dw)	498.08 (3.01)	494.75 (3.01)	3.33 (4.19)	-6.92, 13,58	0.457	457.61, 527.56
	(493.35 - 504.84)	(490.27 498.67)	(-3.41 - 14.57)	No de as		(466.09 - 509.91)
	(all the second s		()
Carbohydrates	45.34 (0.79)	47.84 (0.79)		Confidence Interval 0.0069, 0.32 -6.92, 13.58 -5.22, 0.23 -1.43, 0.35	0.066	40.26, 56.45
Carbonydiates	(44.46 - 46.08)	(46.77 - 50.30)		-5.22, 0.25	0.000	(43.28 - 54.90)
	(++.+0 - +0.00)	(+0.77 +20.50)	J(-5.051,25)			(+5.20 - 54.90)
Maisture (0/ free)	6.44 (0,26)			-1.43, 0.35	0.100	4 70 0 02
Moisture (% fw)		6.98 (0.26)	-0.54 (0.36)	-1.43, 0.33	0.190	4.79, 9.92
	(5.81 - 7.10)	(0.12-7,40)	(-1:45 - 0.11)	,		(6.05 - 10.50)
	A B AN A					
Protein	27.41 (0.56)	25.80 (0.56)	1.62 (0.80)	-0.33, 3.56	0.088	22.30, 29.41
	(26.70 - 28.07) O	(23.53 - 27.85)	(-1.15 - 4.39)			(20.58 - 29.28)
2001	all all the	OC ONE HOUNT				
Total Fat	22.96 (0.64)	22.25 (0.64)	0.71 (0.90)	-1.49, 2.90	0.462	15.01, 28.51
<10, 10,	(22.01 - 24.43)	(21,29-23,02)	(-0.67 - 3.15)			(16.58 - 25.25)
all a	RIV 10, 10, 10, 18					
1×1	al all let	lon aller 9 4				
	op the edue me					
	Fuithe du ne	6.0				
	Printer any introvie	10 m				
	polyther contraction of the second	J				
Monsanto Company	"ve t	ne permit and the ship and the ship ited and the	2-CT-244U			478 of 620
wonsanto Company	¥	12	2-01-2440			478 01 020

Control (continued)				10	.0.	
			Difference (MON 88701 minus Cor	ntrol)	_
	MON 88701 ²	Control ⁴		ect ist		Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	
(Units) ¹	(Range)	(Range)	(Range) 🔗	Confidence Interval	(p-Value)	(Range)
Fiber (% dw)			and a second	sto do die d	Ø	
Acid Detergent Fiber	25.94 (0.45)	28.35 (0.45)	-2.41 (0.63)	-3.96, -0.86	0.008	22.24, 31.96
	(25.56 - 26.33)	(27.81 - 29.58)	(-4.021.48)	-3,96, -0.86		(23.42 - 31.62)
		.05	USI - Ulia	Chi OI WI		
Crude Fiber	17.47 (0.66)	19.62 (0.66)	-2.15 (0.93)	~ 1.429012	0.059	16.93, 22.68
	(14.96 - 19.14)	(18.46 - 20.54)	(-5.57-0.12)			(16.92 - 23.32)
	x	in the		ine		
Neutral Detergent Fiber	32.12 (0.65)	34.05 (0.65)	-1.93 (0.42)	-2.96, -0.89	0.003	27.03, 42.49
	(30.20 - 33.94)	(32.61 - 35.84)	(-2.42 - (1.25)	-3.94, -0.58		(29.27 - 40.63)
	0, ° × 63	i contration	the of this w	N.		
Total Dietary Fiber	41.09 (0.49)	43.35 (0.49)	-2.26 (0.69)	-3.94, -0.58	0.016	34.52, 52.58
	(39.95 - 42.26)	(42.33 - 44.37)	(-4.410.26)			(37.29 - 48.60)
	1.06 (0.018) (1.02 - 1.07) 3.00 (0.073)	(42.33 44.37) 1,03 (0.018)	0.028 (0.014)			
Amino Acid (% dw)	01 10 0					
Alanine	1.06 (0.018)	1.03 (0.018)	0.028 (0.014)	-0.0052, 0.062	0.084	0.86, 1.11
is is	0 (1.02 - 1.07)	(1.00-1.06)	(0.012 - 0.047)			(0.83 - 1.22)
The dio	y mis with	of go go			0.0 0 .0	• • • • • •
Arginine	3.00 (0.073)	2.98 (0.0730)	0.018 (0.084)	-0.19, 0.22	0.836	2.38, 3.47
N.	(2.92+3.09)	(2,89 - 3,13)	(-0.13 - 0.16)			(2.30 - 3.55)
C		<u>er ron</u>				
	AN COULD	N. KO				
	any nous					
)				
Monsanto Company	~~~ ~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(2.89 - 3.13) (2.89 - 3.13)	-CT-244U			479 of 620

 Table E-29. Statistical Summary of Site LACH Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Control (continued)					<u> </u>	
			Difference (N	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴				Commercial
Analytical Component	()	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)	2 20 (0.050)	0.00 (0.050)		X ROTY COARCE	R 0 0 0	1.04.0.57
Aspartic Acid	2.38 (0.050)	2.30 (0.050)	0.075 (0.062)	~0.0%6, 0.23	0.269	1.94, 2.57
	(2.35 - 2.45)	(2.25 - 2.40)	(-0.040- 0.18)	MON 88701 minus Co 95% Confidence Interval -0.076, 0.23 -0.054, 0.041 -0.25, 0.55		(1.79 - 2.72)
Cystine	0.38 (0.016)	0.38 (0.016)	-0.0067 (0.019)	-0.054, 0.041	0.741	0.31, 0.45
	(0.35 - 0.40)	(0.36 0.44)	C (-0.038 - 0.031)	on his		(0.29 - 0.47)
Glutamic Acid	4.67 (0.13)	4.52 (0.13)	0.15 (0.16)	-0.25, 0.55	0.384	3.74, 5.28
	(4.57 - 4.83)	(4.37 - 4.75)		1-		(3.39 - 5.45)
Glycine	1.10 (0.020)	1:06 (0.020)		-0.022, 0.099	0.168	0.90, 1.14
Gryenie	(1.07 - 1.12)	(1.04 - 1.09)	(0.012 0.076)	0.022, 0.077	0.100	(0.85 - 1.23)
TT' (' 1'				0.022.0.044	0 477	0.50, 0.01
Histidine	0.73 (0.020) (0.68 - 0.77)	0.72 (0.020) (0.67 - 0.76)	0.010 (0.014) (-0.015 - 0.062)	-0.023, 0.044	0.477	0.59, 0.81 (0.57 - 0.84)
80 ^C	and while the s	1, 10, 10, 10, 10, 10	0.029 (0.020)			
Isoleucine	0.91 (0.018)	0.88(0.018)	0.029 (0.020) (0.017 - 0.056)	-0.019, 0.077	0.186	0.75, 0.96 (0.72 - 1.03)
Isoleucine	137 (0.90 = 0.90) 137 (19 (0.90)		(0.017 - 0.030)			(0.72 - 1.03)
	optiment out of the	C. Star 9				
C	opy them used of the second the s	6 6 6 m				
	Puttien of contraction of the co					
Monsanto Company	V ^e	e per and the	2-CT-244U			480 of 620

Control (co	ontinued)				~	<i>jil.</i> 0	
				Difference (1	MON 88701 minus Co	ntrol)	
		MON 88701 ²	Control ⁴		xi ^O ix	il s	Commercial
Analytical	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid	l (% dw)			DI DI			
Leucine		1.52 (0.026)	1.48 (0.026)	0.045 (0.028)	-0.024, 0.14	0.158	1.25, 1.62
		(1.50 - 1.54)	(1.44 - 1.52)	(0.013 \color0.079)	95% Confidence Interval -0.024, 0.11 0.0069, 0.14		(1.20 - 1.72)
Lysine		1.25 (0.024)	1.18 (0,024)	0.074 (0.027)	0.0069, 0.14	0.035	1.01, 1.30
-		(1.23 - 1.27)	(1.12-1.23)	(0.023 - 0.14)	on ho		(0.99 - 1.44)
Methionine		0.40 (0.017)	0.38 (0.017)	0.028 (0.013)	0036 0 060	0.073	0.32, 0.38
Wieumonnie		(0.38 - 0.42)	(0.32 - 0.42)	(-0.0027 - 0.064)	JUN 0.0030, 0.000	0.075	(0.29 - 0.49)
		108	y on Bu		-0.043, 0.12		
Phenylalanir	ne	1.43 (0.027)	£39 (0.027)	0.038 (0.033)	-0.043, 0.12	0.296	1.12, 1.58
		(1.41-1.46)		(-0.0091-0.090)			(1.10 - 1.63)
Proline		1.03 (0.015)	0.98 (0.015) (0.95 - 1.02)	0.045 (0.022)	-0.0079, 0.099	0.082	0.83, 1.08
	U ₂	(1.02 - 1.05)	(0.95 - 1.02)	0.045 (0.022) (0.0012 - 0.10)			(0.79 - 1.17)
Serine	This doct	1.06 (0.022)		0.025 (0.030)	-0.049, 0.099	0.445	0.83, 1.21
5	This dioi	(1.04 - 1.08)	1.03 (0.022) (1.01 - 1.06)	(0.0023 - 0.049)			(0.81 - 1.24)
	310,03	<u>, 10. 0. 111</u>	(α)				
		Furtheric que inter	el ano				
	-	Kniele Coli A	N. KO				
		Further Consecond					
		Spythernoluenner Furthernoluenner Shythoneron	e per and the				
Monsanto Co	mpany	100		12-CT-244U			481 of 620

		Difference (I	MON 88701 minus Co	ntrol)	
MON 88701 ²			il ^O lit	illes.	Commercial
. ,			XU SOL	0	
(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
		0.		0	
· /		0.023 (0.012)	-0.0073, 0.053	0.112	0.72, 0.89
(0.83 - 0.89)	(0.82 - 0.86)	(0.0022 - 0.034)	A all so dele		(0.67 - 0.96)
0.40 (0.014)	0.39 (0.014)	0.0098 (0.018)	-0.035, 0.054	0.610	0.34, 0.42
(0.39 - 0.43)	(0.38 0.43)	<u>(-0.033 - 0.041)</u>	out has		(0.31 - 0.46)
0.81 (0.018)	0 79 (0 018)	6 0 0 3 (0 021) V	-0.029 0.075	0 320	0.67, 0.84
(0.81 - 0.82)	(0.76 - 0.81)	(-0.0051 - 0.050)	JUN 0.025, 0.072	0.520	(0.63 - 0.91)
			Cet. 0.000.0.10	0.150	1.00.1.00
	×9(1 + 9 1 + 18)	(0.0063 - 0.080)	-0.023, 0.12	0.152	1.00, 1.28 (0.97 - 1.36)
		d'all stills			
ON IS X YO W	le lle sp s	N N 15			
0.73 (0.013)	0.75 (0.013)	-0.020 (0.018)	-0.065, 0.024	0.312	0.16, 1.37
(0.69 - 0.77)	(0.73 - 0.78)	(-0.087 - 0.041)			(0.45 - 1.04)
24.26 (0.091)	24.04 (0.091)	0.21 (0.13)	-0.099, 0.53	0.145	16.54, 30.55
(23.95 - 24.55)	(23.92 - 24.16)	(-0.13 - 0.63)			(19.11 - 26.73)
or all we al	er di				
inthinger on th	0 4 6 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
anythout					
1 POP	1	2-CT-244U			482 of 620
	Mean (S.E.) ³ (Range) 0.87 (0.016) (0.83 - 0.89) 0.40 (0.014) (0.39 - 0.43) 0.81 (0.018) (0.81 - 0.82) 1.23 (0.024) (1.20 - 1.26) 0.73 (0.013) (0.69 - 0.77) 24.26 (0.091) (23.95 - 24.55)	Mean $(S.E.)^3$ (Range)Mean $(S.E.)$ (Range) $0.87 (0.016)$ $(0.83 - 0.89)$ $0.84 (0.016)$ $(0.82 - 0.86)$ $0.40 (0.014)$ $(0.39 - 0.43)$ $0.39 (0.014)$ $(0.38 - 0.43)$ $0.40 (0.014)$ $(0.39 - 0.43)$ $0.39 (0.014)$ $(0.38 - 0.43)$ $0.81 (0.018)$ $(0.81 - 0.82)$ $0.79 (0.018)$ $(0.76 - 0.81)$ $1.23 (0.024)$ $(1.20 - 1.26)$ $E18 (0.024)$ $(1.47 - 1.19)$ $0.73 (0.013)$ $(0.69 - 0.77)$ $0.75 (0.013)$ $(0.73 - 0.78)$ $24.26 (0.091)$ $(23.95 - 24.55)$ $24.04 (0.091)$ $(23.92 - 24.16)$	MON 88701^2 Mean (S.E.)³ (Range)Control ⁴ Mean (S.E.) (Range)Mean (S.E.) (Range)0.87 (0.016) (0.83 - 0.89)0.84 (0.016) (0.82 - 0.86)0.023 (0.012) (0.0022 - 0.034)0.40 (0.014) (0.39 - 0.43)0.39 (0.014) (0.38 - 0.43)0.0098 (0.018) (-0.033 - 0.041)0.81 (0.018) (0.81 - 0.82)0.79 (0.018) (0.76 - 0.81)0.023 (0.021) (-0.0051 - 0.050)1.23 (0.024) (1.20 - 1.26)18 (0.024) (1.17 - 1.19)0.047 (0.029) (0.0063 - 0.080)0.73 (0.013) (0.69 - 0.77)0.75 (0.013) (0.73 - 0.78)-0.020 (0.018) (-0.087 - 0.041)24.26 (0.091) (23.95 - 24.55)24.04 (0.091) (23.92 - 24.16)0.21 (0.13) (-0.13 - 0.63)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean (S.E.) (Range)Mean (S.E.) (Range)Mean (S.E.) (Range)95% (Confidence IntervalSignificance (p-Value) 0.87 (0.016) (0.83 - 0.89) 0.84 (0.016) (0.82 - 0.86) 0.023 (0.012) (0.0022 - 0.034) -0.0073 , 0.053 (0.0022 - 0.034) 0.112 0.40 (0.014) (0.39 - 0.43) 0.39 (0.014) (0.38 - 0.43) 0.0098 (0.018) (-0.033 - 0.041) -0.035 , 0.054 (0.022) 0.610 (-0.033 - 0.041) 0.81 (0.018) (0.81 - 0.82) 0.79 (0.018) (0.76 - 0.81) 0.023 (0.021) (-0.0051 - 0.050) 0.029 , 0.075 (-0.023, 0.12) 0.320 1.23 (0.024) (1.20 - 1.26) $E18$ (0.024) (1.47 - 1.49) 0.047 (0.029) (-0.020 (0.018) (-6.087 - 0.041) -0.065 , 0.024 (-0.033 - 0.024) 0.152 0.73 (0.0913) (0.673 - 0.78) -0.020 (0.018) (-6.087 - 0.041) -0.065 , 0.024 (-0.033 - 0.034) 0.312 24.26 (0.091) (23.92 - 24.16) 0.21 (0.13) (-0.13 - 0.63) -0.099 , 0.53 (-0.099, 0.53 0.145

Control (continued)					31 0°	
			Difference (N	MON 88701 minus Co	ntrol	
	MON 88701 ²	Control ⁴		xiOl x	Ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			01			
16:1 Palmitoleic	0.50 (0.0035)	0.50 (0.0035)	0.00039 (0.0049)	0.012, 0.012	0.939	0.39, 0.70
	(0.50 - 0.51)	(0.49 - 0.51)	(-0.0110 0.012)	A SUSCONTE		(0.44 - 0.67)
18:0 Stearic	2.61 (0.018)	2.52 (0.018)	0.089 (0.026)	0.025, 0.15	0.014	1.98, 2.95
	(2.58 - 2.64)	(2.49 2.57)	(0.026 - 0.15)	on ha		(1.98 - 2.97)
18:1 Oleic	14.46 (0.095)	94.29 (0.095)	(C) (017 (013) ~	-0.16.0.50	0 252	11.38, 20.64
	(14.26 - 14.65)	(14.13 - 14.53)	(-0.27 - 0.52)	95% Confidence Interval 0.012, 0.012 0.025, 0.15 -0.16, 0.50	0.202	(13.71 - 18.39)
18:2 Linoleic	56.04 (0.14)	56.63 (0.14)		-1.08, -0.092	0.027	47.49, 63.18
10.2 Emolete	(55.71 - 56.35)	(56,52 - 56.72)	(-0.91 -0.30)	1.00, 0.092	0.027	(49.78 - 59.61)
18:3 Linolenic	0.15 (0.0042)	0.15 (0.0042)	0.0015(0.0050)	-0.013, 0.016	0.802	0.060, 0.24
	(0.14 - 0.16)	(0.13 0.15)	(-0.012 - 0.014)	-0.015, 0.010	0.002	(0.10 - 0.29)
20:0 Arachidic	0,29 (0.0054)	0.29 (0.0054)	0.0028 (0.0071)	-0.015, 0.020	0.710	0.17, 0.38
<10, 10.	(0.27-0.31)	(0.29 - 0.30)	(-0.022 - 0.024)	-0.013, 0.020	0.710	(0.20 - 0.36)
3112 113	×1,00,00, 117					
	Pyther out the	per and				
	Futhe control	NO CO				
	Furthernout the providence	le per and me				
Monsanto Company	2 PO P		12-CT-244U			483 of 620

<u>Control (continued)</u>				-(3/1 0°	
			Difference (1	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		xi ⁰	IUS	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			01			
22:0 Behenic	0.15 (0.0039)	0.14 (0.0039)	0.0070 (0.0055)	-0:0064, 0.020	0.247	0.070, 0.21
	(0.13 - 0.16)	(0.14 - 0.15)	(-0.0068 - 0.027)	1 she co di	,	(0.051 - 0.19)
		S	Pro to	-0:0064, 0.020 -0:0064, 0.020 -0:0030, 0.021		
Mineral		of t	Wall allion	Chi O J		
Calcium (% dw)	0.13 (0.0039)	0.12 (0.0039)	0.0092 (0.0050)	-0.0030, 0.021	0.115	0.058, 0.21
	(0.12 - 0.14)	(0.12 - 0.12)	(0.0045 - 0.017)	in the		(0.081 - 0.18)
		10' intri		5 ¹¹¹⁰ -1.51, 0.57		
Copper (mg/kg dw)	8.24 (0.30)	8.70 (0.30)	-0.47 (0.42)	-1.51, 0.57	0.311	2.97, 12.86
	(7.69 - 8.79)	(8.11 - 9.14)	(-1.27 - 0.086)	of ·		(4.46 - 11.62)
	QL S.	SUL HUN VIC	till of this n	NC S		
Iron (mg/kg dw)	77.97 (4.19)	68.59 (4.19)	9.38 (4.72)	-2.16, 20.93	0.093	47.30, 97.12
	(69.22 - 98.27)	(66.28 - 70.38)	(-0.024 - 27.89)			(39.49 - 114.34)
	of 1, 5' 10' 1	no no still a				
Magnesium (% dw)	0.41 (0.0065)	0.39 (0.0065)	0.020 (0.0093)	-0.0022, 0.043	0.068	0.28, 0.47
	(0.41 0.42)	(0.38 - 0.41)	0.020 (0.0093) (0.0091 - 0.029)			(0.31 - 0.46)
	ALL SU ALLANS	A 4 101 01	the			
Manganese (mg/kg dw)	13.87 (0.37)	0 12,87 (037)	0.99 (0.52)	-0.29, 2.28	0.106	9.07, 17.33
	(13.02 - 14.71)	(12.31 - 13.87)	(-0.84 - 2.08)			(9.07 - 17.14)
	d'all let al	$(\mathbf{r} \cdot \mathbf{A}) = \mathbf{A}$	``´´´			
, co	NIC OUNCE	P. Mi				
Ŭ	Furth second	0 0				
		10:				
	30,10,0					
	Futto solution					
Monsanto Company	V [®]		2-CT-244U			484 of 620

Control (C	ontinuea)					$\mathcal{O}_{\mathcal{O}}$	
				Difference (M	ION 88701 minus Co	ontrol	
		MON 88701 ²	Control ⁴		; 0	ill's	Commercial
Analytical	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral				, OI	X X Y	¢	
Phosphorus	(% dw)	0.72 (0.014)	0.71 (0.014)	0.0034 (0.019)	0.044, 0.051	S [©] 0.867	0.49, 0.87
		(0.68 - 0.73)	(0.69 - 0.73)	(-0.0110 0.021)	Or all CO. Al)*	(0.48 - 0.87)
			S	of to to	it's of		
Potassium (9	% dw)	1.15 (0.022)	1.17 (0.022)	20.023 (0.029)	-0.093, 0.048	0.461	0.92, 1.21
	· · · · · · · · · · · · · · · · · · ·	(1.13 - 1.18)	(1.12 + 1.27)	(-0.13 - 0.026)			(0.90 - 1.26)
					CO AL		
Sodium (% o	dw)	0.023 (0.0043)	0.015 (0.0043)	0.0074 (0.0060)	0.0072, 0.022	0.261	0, 0.066
Sourann (70 G	uw)	(0.0054 - 0.029)	(0.0053 - 0.027)	(-0.0081 - 0.024)	0.0072, 0.022	0.201	(0.0054 - 0.077)
		(0.0051 0.025)	(0.0033 0.027)	(0.0001 0.02 I)	<u> </u>		(0.0051 0.077)
Time (mec/lea	- deve)	24.21 (0.02) 6	74 002	-1.54 (1.32)	475 1 69	0 297	27 27 44 05
Zinc (mg/kg	(dw)	34.21 (0.93)	30.74 (0.93)		-4.75, 1.68	0.287	27.27, 44.95
		(32.91 - 35.63)	(35.10-37.09)	(-2.57 -1.04)			(25.07 - 48.49)
		the still the	er en ion	no no di			
Vitamin (m	g/kg dw)	Chits at W	I MAR AND	a' m's			
Vitamin E		167.00 (2,48)	[49.96 (2.48)	17.04 (3.48)	8.52, 25.55	0.002	41.91, 205.89
	200	(158.95 0173.30)	(148.96 - 152.67)	(9.99 - 20.70)			(84.07 - 162.76)
	.9.4	a. S. O. Huis	y, %, 0,	W.			

 1 dw = dry weight; fw = fresh weight; FA \ominus fatty acid. These plants ²Test refers to MON 88701 (Not) Treated). glufosinate. with dicamba 0 treated were not or

 Inest refers to MION \$8 /UL(NOT)
 Freated).
 These oplants were not treated with dicamba or glufosin

 ³Mean (S.E.) = least-square mean (standard error).
 ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 485 of

Control	v			<u> </u>	din di	
			Difference (N	AON 88701 minus Co	ontrol	
	MON 88701 ²	Control ⁴		xil ^O	Ins	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Acid			0		_	
Dihydrosterculic Acid	0.16 (0.011)	0.13 (0.011)	0.030 (0.016)	-0.0078, 0.069	0.099	0.078, 0.25
	(0.14 - 0.19)	(0.12 - 0.14)	(-0.0041 - 0.055)	1 all co. el)	(0.038 - 0.23)
		S	or to	it's of		
Malvalic Acid	0.41 (0.035)	0.35 (0.035)	0.059 (0.049)	-0.062, 0.18	0.278	0.23, 0.54
	(0.36 - 0.50)	(0.31 - 0.38)	(0.011 - 0.19)	and and		(0.11 - 0.59)
				nº x''		. ,
Sterculic Acid	0.23 (0.016)	0.20 (0.016)	0.029 (0.023)	0 028 0 085	0 260	0.17, 0.27
	(0.21 - 0.27)	(0.17 - 0.21)	(0.0031 - 0.093)	JI 0.020, 0.000	0.200	(0.061 - 0.34)
				<u></u>		
Gossypol (% dw)	office	. culting f		C ^O		
Free Gossypol	0.84 (0.026)	0.81 (0.026)	0,029 (0.023) (-0.0031 - 0.093) 0,031 (0.036) (-0.046 - 0.12)	95% <u>Confidence Interval</u> -0.0078, 0.069 -0.062, 0.18 -0.028, 0.085	0.420	0.099, 1.57
The dossypor	(0.76 - 0.90)	(0.78 - 0.84)	(-0.046 - 0.12)	-0.037, 0.12	0.420	(0.50 - 1.41)
		0.7820.04	(-0.040 - 0.12)			(0.30 - 1.41)
		0.90 (0.025)	0.035 (0.036)	0.050.010	0.272	0.0(4.1.7(
Total Gossypol	0.93 (0.025)	0.90 (0.025)	0.035 (0.036)	-0.052, 0.12	0.363	0.064, 1.76
200	(0.89 0.010	(0.82 - 0.94)	(-0.028 - 0.18)			(0.56 - 1.61)
	2. 2. 0, W	<u> </u>	<u></u>			
1 dw = dry weight; FA = fatty	vaeid.	0. et :0 , 2	0			
² MON 88701 plants were n	ot treated with dica	mba or glufosinate.				
³ Mean (S.E.) = least-square	mean (standard erro	in the g				
⁴ Control refers to the non-bi	otechnology derive	d, conventional contr	rol (Coker 130).	• • • •		• •, .,
With 95% confidence, inter	val contains 99% o	t the values expresse	ed in the population of	commercial substance	es. Negative l	imits set to zero.
	CO(1)					
	ALL'HOU	Ulr				
	with of					
⁵ With 95% confidence, inter Monsanto Company	. ⁰ 0		12-CT-244U			486 of 620
Monsulto Company	▼		12 01-2440			+00 01 020

Table E-30. Statistical Summary of Site LACH Cottonseed Anti-nutrients for MON 88701 (Not Treated) vs. Conventional

		۲. ۲		Difference	ntrol)		
Analytical	Component	MON 88701 ² Mean (S.E.) ³	Control ⁴ Mean (S.E.)	Mean (S.E.)	95%	Significance	Commercial Tolerance Interval ⁵
(Units) ¹	1	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Proximate ((% dw)	· • •	· • •	5		· · · · · · · · · · · · · · · · · · ·	· • •
Ash		4.33 (0.057)	4.14 (0.064)	0.19 (0.070)	0.0083, 0.37	0.043	3.42, 4.65
		(4.20 - 4.48)	(3.94 - 4.26)	(0.038 - 0.36)	a data no conter	^S [©]	(3.18 - 4.68)
Calories (Ko	cal/100g)	498.21 (1.61)	491.80 (1.86)	6.41 (2.46)	0.078, 12,75	0.048	457.61, 527.56
		(496.22 - 499.62)	(488.93 - 494.48)	(3.24 - 10.35)	uction or anything		(466.09 - 509.91)
Carbohydrat	tes	43.25 (0.59)	44.36 (0.68)	-1.10(0.87)	3.36, 1.13	0.259	40.26, 56.45
2		(41.07 - 44.88)	(43.65 - 45.15)	(-3.08 - 1.23)	Confidence Interval 0.0083, 0.37 0.078, 12, 75 -0.76, 0.19		(43.28 - 54.90)
Moisture (%	fw)	8.67 (0.22)	8.96 (0.23)	-0.29 (0.19)	-0.76, 0.19	0.184	4.79, 9.92
			(8.59 - 9.19)	(-0.61)0.010)	nno		(6.05 - 10.50)
Protein		29.35 (0.61)	29.84 (0.70)	-0.49 (0.85)	-2.68, 1.70	0.592	22.30, 29.41
		(27.82 - 31.29)	(29,62 - 30,42) 21,59 (0,34)	-0.49 (0.85) (-2.050.88) 1.49 (0.46)			(20.58 - 29.28)
Total Fat	200	23.08 (0.30)	21,59 (0,34)	1.49 (0.46) (0.72 - 2.17)	0.32, 2.66	0.022	15.01, 28.51
	Thisdlor	(22,78 - 23.39)	(21.03-22.21)	(0.72 - 2.17)			(16.58 - 25.25)
	SIL C	an tight of the and th	a (21.03 22.21) a (21.				
Monsanto Co	mpany	MIL PH	- 12	2-CT-244U			487 of 620

Table E-31. Statistical Summary of Site NCBD Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control

Control (continued)							
			Difference (N	MON 88701 minus Co	ontrol)		
	MON 88701 ²	Control ⁴		95% Confidence Interval 4.50, 4.30 -0.094, 1.88	ill's	Commercial	
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵	
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)	
Fiber (% dw)			01.	9° 19° 1			
Acid Detergent Fiber	26.21 (1.12)	26.31 (1.29)	-0.10 (1(71)	4.50, 4.30	0.955	22.24, 31.96	
	(23.72 - 30.43)	(24.72 - 28.08)	(-2.57 - 5.70)	-0.0094, 1.88)`	(23.42 - 31.62)	
		Ś	of to to				
Crude Fiber	17.82 (0.29)	16.93 (0.33)	0.90 (0.38)	-0.094.1.88	0.067	16.93, 22.68	
	(17.57 - 18.04)	(16.30 17.90)	(-0.33 - 1.52)			(16.92 - 23.32)	
	()			al the		()	
Neutral Detergent Fiber	32.76 (1.03)	31.14 (1.19)	161 (158)	-2 44 5 67	0 353	27.03, 42.49	
Redduil Detergent 1 loei	(31.18 - 37.27)	(30 85 - 37 49)			0.555	(29.27 - 40.63)	
	(31.10 37.27)	(50.05 (31.1))				(2).27 10.05)	
Total Dietary Fiber	38.49 (0.55)	39.52 (0.64)	-1.03 (0.85) (-2.58 -1.10)	-3.21, 1.14	0.277	21 52 52 59	
Total Dietaly Floel	(37.06 - 40.31)	39.32 (0.04)	(259 + 1.10)	-3.21, 1.14	0.277	34.52, 52.58 (37.29 - 48.60)	
		(39.09-39.00)	(2.38 - 1.10)			(37.29 - 48.00)	
	ALL SIL	10 (0.023)					
Amino Acid (% dw)		Mining in St.	Nº S		0.440		
Alanine	1,13 (0.020)	0.10 (0.023) (1.05 - 1.14)	0.027 (0.031) (-0.075 - 0.11)	-0.052, 0.11	0.418	0.86, 1.11	
200	$\Delta $ $\Delta $ $\Delta $ $\Delta $	(1.05 - 1.14)	(-0.075 - 0.11)			(0.83 - 1.22)	
is is	0. 0° 01 HU		S.				
Arginine This dor	3.10 (0.052)	3,20 (0,060)	-0.10 (0.080)	-0.31, 0.10	0.253	2.38, 3.47	
all a	(2.92 - 3.22)	(3.11 3.27)	(-0.30 - 0.011)			(2.30 - 3.55)	
	of elliner	10. M. 9 2					
C	Son the contre	6 34					
	Futtheon out	No co					
	Co a an						
	SP HILE SOUTH	SC.					
	SPY TREI QUE ME	-					
Monsanto Company	Ve ·	ne per and the shift of the shi	·CT-244U			488 of 620	
· ·							

Control (continued)					dill. Co	
			Difference (N	MON 88701 minus Co	ontrol)	
	MON 88701 ²	Control ⁴			ILS	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			0		_	
Aspartic Acid	2.56 (0.053)	2.55 (0.061)	0.013 (0.081)	-0.19, 0.22	0.876	1.94, 2.57
	(2.35 - 2.67)	(2.46 - 2.63)	(-0.28 0.14)	Jan and constr)	(1.79 - 2.72)
Cystine	0.42 (0.018)	0.42 (0.021)	0.0075 (0.028)	95% Confidence Interval -0.19, 0.22 -0.064, 0.079 -0.69, 0.33	0.798	0.31, 0.45
	(0.38 - 0.49)	(0.39 - 0.46)	Ç (-0.073 - 0.086)	Cent mas		(0.29 - 0.47)
Glutamic Acid	4.90 (0.13)	5.08 (0.15)	0.18 (0.20)	-0.69, 0.33	0.405	3.74, 5.28
	(4.39 - 5.18)	(4.85 - 5.40)	(-1.01 - 0.18)			(3.39 - 5.45)
Glycine	1.13 (0.019)	ET1 (0.022)	0.020 (0.029)	-0.054, 0.093	0.522	0.90, 1.14
	(1.07 - 1.17)	(1.08-1.14)	(-0.063_0.062)	· · · · · · · · · · · · · · · · · · ·		(0.85 - 1.23)
Histidine	0.77 (0.013)	0.76 (0.015) (0.74 - 0.79)		-0.034, 0.064	0.466	0.59, 0.81
	(0.75 - 0.80)	(0.74 0.79)	0.015 (0.019) (0.0060 - 0.024)			(0.57 - 0.84)
Isoleucine	0.95 (0.018) ://	0.96 (0.020)	0.0094 (0.020)	-0.061, 0.043	0.661	0.75, 0.96
Thisdlol	(0.91 - 1.00)	(0.93 - 0.97)	(-0.028 - 0.022)	0.001, 0.015	0.001	(0.72 - 1.03)
<u></u>	<u> </u>	\mathcal{O}				
	Furthericque ine	Col all				
	KN OLS COL TH	le teo				
	PUTTONSCOMMENTS	e per and me				
Monsanto Company	Ve F	1	2-CT-244U			489 of 620

 Table E-31. Statistical Summary of Site NCBD Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Control (co	ontinued)					dill' do	
					MON 88701 minus Co		
		MON 88701 ²	Control ⁴		xil ^O	ins	Commercial
Analytical	Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid	l (% dw)			DI DI			
Leucine		1.63 (0.023)	1.60 (0.027)	0.024 (0.035)	-0.067, 0.11	0.533	1.25, 1.62
		(1.56 - 1.68)	(1.55 - 1.63)	(-0.065 0.088)	N ans constit)	(1.20 - 1.72)
Lysine		1.32 (0.029)	1.26 (0.033)	0.057 (0.043)	95% Confidence Interval -0.067, 0.14 -0.054, 0.17 -0.028, 0.046	0.243	1.01, 1.30
		(1.27 - 1.37)	(1.22 1.29)	(-0.00850.086)	Cell' Mas		(0.99 - 1.44)
Methionine		0.42 (0.0093)	0.41 (0.011)	0.0089 (0.014)	-0.028, 0.046	0.557	0.32, 0.38
		(0.39 - 0.44)	(0.40 - 0.42)	(-0.0049 - 0.019)			(0.29 - 0.49)
Phenylalanir	ne	1.49 (0.027)	E52.(0.031)	-0.026 (0.041)	-0.13, 0.079	0.548	1.12, 1.58
- j	-	(1.42 - 1.55)	(1,45-1,56)	-0.026 (0.041) (-0.14 - 0.055) -0.013 (0.029)	,,,		(1.10 - 1.63)
Proline		1.08 (0.022)	1.09 (0.025) (1.07 - 1.12)	-0.013(0.029)	-0.088, 0.063	0.684	0.83, 1.08
1101110	ري	(1.06 - 1.13)	(1.07 1.12)	-0.013 (0.029) (-0.057 - 0.032)	0.000, 0.002	0.001	(0.79 - 1.17)
Serine	800	Nº VU CO		0.032 (0.042)	-0.076, 0.14	0.483	0.83, 1.21
Serine	Thisdor	(1.05-1.22)	1.13 (0.032) (1.09 - 1.09)	(-0.14 - 0.13)	0.070, 0.11	0.105	(0.81 - 1.24)
	SUC 13	<u>, 10, 0, 11, 11, 11, 11, 11, 11, 11, 11,</u>					
		Putter of the officer	Perl and				
	Ŭ	FUTTO AS COMME	N. LO				
		and nound	ilo,				
		SP HIS NO CHINE	e per and the				
Monsanto Con	mpany	V)		12-CT-244U			490 of 620

 Table E-31. Statistical Summary of Site NCBD Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Control (co	ontinued)								
				Difference (]	MON 88701 minus Co	ntrol)			
		MON 88701 ²	Control ⁴			lles -	Commercial		
Analytical	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵		
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)		
Amino Acid	l (% dw)			0	6, 1, 6 - M				
Threonine		0.92 (0.014)	0.89 (0.016)	0.029 (0.021)	0.026, 0.083	0.237	0.72, 0.89		
		(0.87 - 0.95)	(0.86 - 0.92)	(-0.050 - 0.079)	A She correct		(0.67 - 0.96)		
Tryptophan		0.44 (0.021)	0.45 (0.024)	-0.016 (0.032)	95% Confidence Interval -0.026, 0.083 -0.099, 0.067 -0.036, 0.055	0.642	0.34, 0.42		
V		(0.41 - 0.50)	(0.39 0.52)	(-0.099 -0.11)	Celli Mas		(0.31 - 0.46)		
Tyrosine		0.85 (0.012)	0.84 (0.014)	0.0095 (0.018)	-0.036. 0.055	0.618	0.67, 0.84		
-)		(0.83 - 0.87)	(0.82 - 0.87)	(-0.0099 - 0.043)	3 ¹ /1		(0.63 - 0.91)		
Valine		1.26 (0.025)	130 (0.027)	-0.036 (0.021)	-0.090, 0.017	0.140	1.00, 1.28		
v anne		(1.21 - 1.32)	(1.24 - 1.32)	(-0.0740.0017)	-0.070, 0.017	0.140	(0.97 - 1.36)		
F ((A · L)		The all in the	0.75 (0.0086) (0.74 - 0.76)	O O O					
-	(% Total FA)	0.71 (0.0074)	0.75 (0.0086)	-0.036 (0.011)	0.065 0.0060	0.024	0 16 1 27		
14:0 Myristi	ic cui	0.60 0 73	0.75 (0.0086) (0.74 - 0.76)	(-0.0650.013)	-0.065, -0.0069	0.024	0.16, 1.37 (0.45 - 1.04)		
				(-0.0030.013)			(0.45 - 1.04)		
16:0 Palmiti	c <1/1,2/101	23.40 (0.12)	23,10 (0.04)	0.30 (0.18)	-0.16, 0.76	0.152	16.54, 30.55		
	e this dor	(23.11 - 23.69)	(23.07=23.15)	(0.26 - 0.62)			(19.11 - 26.73)		
	14	or en vere	i chi di						
	C.	Futthe any connection	6 6 8						
		CONCOUNT	il ⁱ le						
		FUTTORSCOMMENT	ie entrol t e Pedano nibited and t						
Monsanto Co	mpany	"ve '	12	2-CT-244U			491 of 620		

Control (continued)					JII. CO	
			Difference (N	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴			ILS	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)		Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)	/	/	0.	a di di di di di		
16:1 Palmitoleic	0.47 (0.0047)	0.48 (0.0053)	-0.0094 (0.0055)	-0:023, 0.0047	0.147	0.39, 0.70
	(0.46 - 0.48)	(0.47 - 0.49)	(-0.024 \crosslareq 0.0016)	A all so dele		(0.44 - 0.67)
18:0 Stearic	2.53 (0.037)	2.34 (0.043)	20.19 (0.057)	Confidence Interval 0.023 0.0047 0.041, 0.33 0.11, 1.08	0.021	1.98, 2.95
	(2.49 - 2.57)	(2.32 2.38)	(0.11 - 0.26)	non't mo		(1.98 - 2.97)
18:1 Oleic	15.29 (0.12)	14.70 (0.14)	0.59 (0.19)	0.11, 1.08	0.026	11.38, 20.64
	(15.01 - 15.50)	(14.51 - 14.83)	(0.18-1.00)			(13.71 - 18.39)
18:2 Linoleic	56.04 (0.23)	57.19 (0.26)	1 15 (0.35)	-2.04, -0.25	0.021	47.49, 63.18
	(55.76 - 56.31)	(57,01 - 57,46)	(-1.65 -0.71)	,		(49.78 - 59.61)
18:3 Linolenic	0.36 (0.012)	0.29 (0.014) (0.27 - 0.30)	0.074 (0.018)	0.028, 0.12	0.008	0.060, 0.24
10.5 Emotenie	(0.34 - 0.38)	(0.27-0.30)	(0.048 - 0.11)	0.020, 0.12	0.000	(0.10 - 0.29)
20:0 Arachidic	0,30 (0.0065) (15	0.28 (0.0075)	0.023 (0.0099)	-0.0021, 0.049	0.065	0.17, 0.38
	(0.29 - 0.30)	(0.27 - 0.28)	(0.013 - 0.031)	-0.0021, 0.049	0.005	(0.20 - 0.36)
	82, 10, 00, 4113	cial niss viole				
	50 ⁷ Heren en alle alle alle alle alle alle alle	oel allo				
	FUTTO SCOTT	(e				
	ppy the molecular of the second t	e per and the				
Monsanto Company	Mr. C. C.	1	2-CT-244U			492 of 620
J	Ŧ	-	-			

Control (continued)						
			Difference (N	MON 88701 minus Cor	ntrol)	
	MON 88701 ²	Control ⁴		xi ^O ix	il s	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	20.013, 0.031 0.0072, 0.018	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			2			
22:0 Behenic	0.16 (0.0056)	0.15 (0.0065)	0.0093 (0.0086)	,0.013, 0.031	0.327	0.070, 0.21
	(0.16 - 0.17)	(0.15 - 0.16)	(-0.00007 - 0.015)	1 21 00 000		(0.051 - 0.19)
		S	Q1 , 20	ion its inco		
Mineral		, ex	NOI ANIC I	Cr X OI W		
Calcium (% dw)	0.15 (0.0014)	0.14 (0.0017)	0.013 (0.0022)	0.0072, 0.018	0.002	0.058, 0.21
	(0.15 - 0.15)	(0.14 - 0.14)	(0.0067 - 0.018)	n' n'		(0.081 - 0.18)
	5°	10 in k	10° 20° 10 20°	ine		
Copper (mg/kg dw)	6.59 (0.36)	6.91 (0.41)	-0.31 (0.54)	-1.71, 1.08	0.587	2.97, 12.86
	(5.37 - 7.35)	(6.64 - 7.19)	(-0.067 - 0.19)	er.		(4.46 - 11.62)
	e. 9°. e.s.	SU HIN A	still OI this w			
Iron (mg/kg dw)	44.35 (1.00)	48.04 (1.15)	3.69 (1.53)	-7.62, 0.23	0.060	47.30, 97.12
	(41.73 - 46.45)	(45.03 - 50.87)	(-9.140.44)			(39.49 - 114.34)
	8 1, 19 × 10	N . Ch . Ch . 2	NI WILLSO			
Magnesium (% dw)	0.41 (0.010)	0.40 (0.012)	0.010 (0.016)	-0.031, 0.051	0.545	0.28, 0.47
20 ^{CC}	(0.40 - 0.42)	(0.37 - 0.44)	0.010 (0.016) (-0.015 - 0.055)			(0.31 - 0.46)
	an so or this	y 10, 01	the			
Manganese (mg/kg dw)	14.78 (0.36)	13,83 (0.42)	0.95 (0.56)	-0.48, 2.38	0.148	9.07, 17.33
AL A	(13.36 - 15.70)	(13.65 - 14:10)	(0.97 - 1.97)			(9.07 - 17.14)
N. N	of all lot of					
<u> </u>	N'AN COL	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	FURTI Sea Mit					
	Contonit	ipili				
	Futtonseque port					
	Mr. Pl					
Monsanto Company	pe	e Ped and	2-CT-244U			493 of 620

Control (continued)				<u>di 00</u>	
			Difference (M	ION 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴			il in s	Commercial
Analytical Compor	nent Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Mineral			01			
Phosphorus (% dw)	0.64 (0.020)	0.66 (0.023)	-0.021 (0.031)	0.10,0.058	0.521	0.49, 0.87
	(0.60 - 0.66)	(0.59 - 0.71)	(-0.078 - 0.072)	0, 10, 00, 40)*	(0.48 - 0.87)
		S	of xor	n its of		
Potassium (% dw)	1.04 (0.019)	1.08 (0.022)	-0.045 (0.029)	-012, 0.030	0.183	0.92, 1.21
	(1.03 - 1.06)	(1.03 1.16)	(-0.130.0056)	all and		(0.90 - 1.26)
		B.C.		no x''		
Sodium (% dw)	0.074 (0.0084)	0.099 (0.0096)	-0.026 (0.011)	-0.055, 0.0031	0.069	0, 0.066
	(0.061 - 0.082)	(0.094 - 0.10)	(-0.0380.020)	0.000, 0.0001	0.009	(0.0054 - 0.077)
	(0.001 0.002)	(0.0511,0.10)		<u>.</u>		(0.0051 0.077)
Zina (ma/ka dw)	41.50 (1.30)	10 5 4 11 50	-8.04 (1.98)	12 12 2 05	0.000	27 27 44 05
Zinc (mg/kg dw)		49.34 (1.30)	S	-13.13, -2.95	0.009	27.27, 44.95
	(39.45 - 43.05)	(44.04 - 52.95)	(-43.502.09)			(25.07 - 48.49)
	ALL STING	er en ion i				
Vitamin (mg/kg dw)		M. M. Spills	N' 19			
Vitamin E	174.64 (3,66)	(4.23)	0 17 65 (5.60)	3.27, 32.04	0.025	41.91, 205.89
2	(165.41, 0184.47)	(151.55 - 162.98)	(7.48 - 32.93)			(84.07 - 162.76)
.6	2. 1 S. 2. 0, 1/1.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	×C-			

Table E-31. Statistical Summary of Site NCBD Cottonseed Nutrients for MON 88701 (Not Treated) ws. Conventional $\mathcal{S}(\mathcal{D})$ Control (continued)

 ¹dw = dry weight; fw = fresh weight; FA = fatty acid.

 ² MON 88701 plants were not treated with dicamba or glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴ Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵ With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 494 of

Control						
			Difference (N	10N 88701 minus 🛠	ontrol	
	MON 88701 ²	Control ⁴			ill's	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Acie	d (% Total FA)		, all		2	
Dihydrosterculic Acid	0.15 (0.0093)	0.13 (0.011)	0.023 (0.014)	-0.013, 0.059	0.167	0.078, 0.25
	(0.12 - 0.18)	(0.12 - 0.14)	(-0.0060 - 0.032))`	(0.038 - 0.23)
		S	or vor	6.013, 0.059 0.013, 0.059		
Malvalic Acid	0.36 (0.040)	0.37 (0.046)	-0.018 (0.056)	-016, 0.13	0.760	0.23, 0.54
	(0.26 - 0.45)	(0.36 - 0.41)	(-0.11 - 0.039)			(0.11 - 0.59)
	``´´	B.C.		no th		
Sterculic Acid	0.23 (0.024)	0.22 (0.028)	0.010 (0.037)	-0.085, 0.11	0.791	0.17, 0.27
	(0.16 - 0.27)	(0.21 - 0.23)	(-0.055 - 0.044)			(0.061 - 0.34)
			I VIII HIS YOU	<u>.</u>		(*******)
Gossypol (% dw)	oroid	Supering the	i di si	n ^{o.}		
Free Gossypol	0.94 (0.026)	0 98 0 038	0.044 (0.039)	-0.057, 0.14	0.314	0.099, 1.57
	(0.88 - 0.99)	(0.81 - 0.95)	(-0.00010 - 0.18)	0.007, 0.11	0.511	(0.50 - 1.41)
						(0.00 1.11)
Total Gossypol		1 00 (0 077)	0.12 (0.10)	-0.14, 0.38	0.287	0.064, 1.76
	$(1.05 \ 1.52)$			-0.14, 0.30	0.207	,
800	1.05-01.520	(1.00 - 1.00)	(0.021 - 0.44)			(0.56 - 1.61)
	0 <u>0</u> <u>0</u>	<u> </u>				

 Table E-32. Statistical Summary of Site NCBD Cottonseed Anti-nutrients for MON 88701 (Not Treated) vs. Conventional Control

 1 dw = dry weight; FA = fatty acid.

 ¹dw = dry weight; FA = fatty acid.

 ² MON 88701 plants were not treated with dicamba or glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-brotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 495 of

Ø

	. Suusuu	Summing of Site		Difference (
		MON 88701 ²	Control ⁴	,	_ <u> </u>		Commercial
Analytical	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Proximate ((% dw)			6		2	
Ash		4.31 (0.087)	4.27 (0.10)	0.042 (0.13)	-0.29, 0.38	0.761	3.42, 4.65
		(4.25 - 4.38)	(4.20 - 4.39)	(-0.0052 - 0.087)	to do de	S.	(3.18 - 4.68)
				2º	10° allo coi al)`	
Calories (Ko	cal/100g)	495.87 (2.64)	492.81 (3.05)	3.06 (4.04)	7.32, 13.45	0.482	457.61, 527.56
	C,	(487.62 - 499.09)	(490.52 - 494.31)	(-5.97 - 7.23)	Cill of the		(466.09 - 509.91)
			aller	in the	-0.29, 0.38 -0.29, 0.38 -0.29, 0.38 -0.29, 0.38 -7.32, F3, 45 -7.32, F3, 45 -1.08, 0.58		. , , , , , , , , , , , , , , , , , , ,
Carbohydrat	tes	42.30 (0.46)	42.60 (0.53)	-0.30 (0.70)	2.10, 1.50	0.688	40.26, 56.45
; j		(41.59 - 43.70)	(42.14 - 43.05)	(-0.90 - 1.56) C			(43.28 - 54.90)
			the side	n_0 n_1 δ_0	III,		()
Moisture (%	(fw)	7.03 (0.25)	7.28 (0.28)	0.25 (0.32)	→ -1 08 0 58	0 471	4.79, 9.92
11015tare (70		(6.78 - 7,42)	(6.63 - 7.75)	(-0.92 - 0.15)	1.00, 0.00	0.171	(6.05 - 10.50)
			(6.63 - 7.75)	Still Still O	1.08, 0.58		(0.02 10.20)
Protein		30.79 (0.13)	0110/015	-0.39 (0.19) (-0.590.31)	-0.89, 0.11	0.103	22.30, 29.41
Tiotem		(30.68 - 30.89)	(31.00 - 31.27)	(-0.590.31)	0.09, 0.11	0.105	(20.58 - 29.28)
		(20.00 - 50.0x)		(0.3) (0.31)			(20.30 2).20)
Total Fat	C)	22.62 (0.54)	21,95 (0.62)	0.67 (0.83)	-1.46, 2.79	0.455	15.01, 28.51
Total Pat	90	(20.02 (0.04))		(-1.21 - 1.54)	-1.40, 2.79	0.455	(16.58 - 25.25)
	in line	(20,7) - <u>2</u> 3.27)	24. TZ (-22.22)	(-1.21 - 1.34)			(10.56 - 25.25)
	<u> </u>	A Children and a chil					
	S. C	opy the the open the	Clar Mis Ji				
	12	opy theritiqueline	si cli no				
	C	Juli se mi	or you				
		and our					
		opy right of contractions)`				
		Jo V					
Monsanto Co	mpany	Ŷ	1	2-CT-244U			496 of 620

Control (continued)					JII. CO	
			Difference (MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		xil ^{Ol} ix	ll s	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fiber (% dw)			1 21	P & P and	/	
Acid Detergent Fiber	26.43 (0.51)	26.40 (0.59)	0.030 (0.79)	-1.99, 2.05	0.971	22.24, 31.96
	(25.17 - 27.78)	(25.76 - 27.10)	(-0.16) 1.44)	95% Confidence Interval -1.99, 2.05 -2.39, 2.47 -5.36, 1.44		(23.42 - 31.62)
		S		1. It's port		
Crude Fiber	17.75 (0.74)	17.71 (0.84)	0.040 (0.94)	-239, 2,47	0.967	16.93, 22.68
	(16.63 - 18.67)	(16.06 20.78)	(-2.11 - 2.09)	2 AL AN		(16.92 - 23.32)
	``````````````````````````````````````		a a of	in at 1		· · · · · ·
Neutral Detergent Fiber	30.87 (0.87)	32.83 (1.00)	×P96 (1.32)	-5.36. 1.44	0.199	27.03, 42.49
	(29.16 - 32.29)	(31.58 - 34.49)	(-4 66 - 0 72)		••••	(29.27 - 40.63)
		6. 3	Support of the second	No.		( )
Total Dietary Fiber	38.30 (0.7P)	41.10 (0.75)	-2.81 (0.55)	-4.22, -1.39	0.003	34.52, 52.58
Total Dietary Tiber	(37.12-39.32)	(39.09 - 43.00)	(4.03 -1.98)	1.22, 1.37	0.005	(37.29 - 48.60)
		(33.03 (3.00) ()	(9.05 0.1.5eg			(37.2) 10.00)
Amino Acid (% dw)	N CONTRACT	Met 10 (0.013)	-0.019 (0.014) (-0.044 - 0.023)			
Alanine Acid (76 dw)	1.41 (0.041)	0.13 (0.013)		-0.054, 0.015	0.211	0.86, 1.11
Alalinic	(1.09 01.13)	0.13 (0.013) (1.09 - 1.17)	(-0.044 - 0.023)	-0.034, 0.013	0.211	(0.83 - 1.22)
80			(0.023)			(0.03 - 1.22)
Arginine This dor	351 100 400	2 7+20 (52) ×0		0.22 0.075	0.009	2 2 2 2 47
Arginine	3.51 (0.049)	3.71 (0.053)	-0.20 (0.048)	-0.32, -0.075	0.008	2.38, 3.47
and	(5,94 - 5,02)	(3.67=3.77)	(-0.230.12)			(2.30 - 3.55)
//	2 the the the	st ell d				
G	FURTIERCOMM	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	Y ON COL					
	FUTTONSCOMME	do.				
	S. illing	)`				
	Nº 64					
Monsanto Company	Ŷ	ne per and the	-CT-244U			497 of 620

Control (continued)					3 <u>11. 00</u>	
			Difference (I	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴			ILS	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)	/		D.		0	
Aspartic Acid	2.63 (0.033)	2.66 (0.037)	-0.033 (0.043)	-0.14 0.076	0.469	1.94, 2.57
	(2.52 - 2.69)	(2.58 - 2.74)	(-0.091 0.069)	A all co del	,	(1.79 - 2.72)
Cystine	0.43 (0.013)	0.44 (0.015)	-0.0077 (0.020)	95% Confidence Interval -0.14, 0.076 -0.058, 0.043 -0.058, 0.043	0.713	0.31, 0.45
	(0.41 - 0.46)	(0.43 0.45)	(-0.022 - 0.0095)	Cont Mas		(0.29 - 0.47)
Glutamic Acid	5.31 (0.087)	5.46 (0.10)	<b>6</b> 15 (0.13)	-0.49, 0.19	0.309	3.74, 5.28
	(5.08 - 5.57)	(5.29 - 5.70)	(-0.59 - 0.18)			(3.39 - 5.45)
Glycine	1.16 (0.014)	E18 (0.015)	-0.018 (0.016)	-0.060, 0.023	0.309	0.90, 1.14
	(1.11-1.19)	(1.17-1.20)	(-0.023 -0.0094)	· · · · · · · · · · · · ·		(0.85 - 1.23)
Histidine	0.82 (0.010)	0.83 (0.012) (0.83 - 0.84)		-0.048, 0.027	0.510	0.59, 0.81
11	(0.79 - 0.84)	(0.83 0.84)	-0.010 (0.015) (-0.026 - 0.014)			(0.57 - 0.84)
Isoleucine	0.97 (0.017)	0 08 10 0180	(0.018)	-0.032, 0.028	0.885	0.75, 0.96
Khis Hor	(0.94 - 1.01)	(0.94 - 1.03)	(-0.014 - 0.017)	0.002, 0.020	0.000	(0.72 - 1.03)
310.113	<u>, 10, 0, 11, 11, 11, 11, 11, 11, 11, 11,</u>	cian miss vion				
	N ^{then} consecond the					
<		le teo				
	2 the moule the provision of the provisi	e per and the				
Monsanto Company	"ver		2-CT-244U			498 of 620

 Table E-33. Statistical Summary of Site NMLC Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

				011 00	
		Difference ()	MON 88701 minus Co	ontrol)	
MON 88701 ²	Control ⁴		xil ^O	ins.	Commercial
Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
		, DI	2 x 2 x 1		
1.64 (0.021)	1.66 (0.023)	-0.015 (0.022)	0.071, 0.041	0.519	1.25, 1.62
(1.57 - 1.67)	(1.63 - 1.69)	(-0.024 - 0.035)	y ale co. let		(1.20 - 1.72)
1 31 (0 019)	1 36 (0.022)	20 045 (0 0228		0.097	1.01, 1.30
(1.29 - 1.33)	(1.32 - 1.39)	(-0.0570.0086)		0.097	(0.99 - 1.44)
			Incent		
· · · · · · · · · · · · · · · · · · ·		0.021 (0.018)	-0.026, 0.069	0.295	0.32, 0.38
(0.39 - 0.44)	(0.38 - 0.41)	(-0.016 - 0.048)			(0.29 - 0.49)
1.58 (0.026)	1.61 (0.028)	-0.026 (0.022)	-0.083, 0.030	0.287	1.12, 1.58
(1.50 - 1.63)		(-0.034-0.013)	*		(1.10 - 1.63)
12.00 027		-0.05740.039)	-0 16 0 043	0 200	0.83, 1.08
(1.07 - 1.16)	(1.10-1.25)	(-0.13 - 0.055)			(0.79 - 1.17)
N 100 m			0.11.0.007	0.972	0.92 1.21
(1.11 - 1.28)	(1.16 - 1.24)	(-0.055 - 0.063)	-0.11, 0.097	0.872	0.83, 1.21 (0.81 - 1.24)
y ild working	1 2 . S . NO	,			
5, her the le	ernind				
FUIL RECOMMEND	6 7 8 °C				
	ililie				
SI MITTO TO					
, he		12-CT-244U			499 of 620
	Mean (S.E.) ³ (Range) 1.64 (0.021) (1.57 - 1.67) 1.31 (0.019) (1.29 - 1.33) 0.42 (0.012) (0.39 - 0.44) 1.58 (0.026) (1.50 - 1.63) 1.12 (0.027) (1.07 - 1.16) 1.20 (0.026) (1.11 - 1.28)	Mean $(S.E.)^3$ (Range)Mean $(S.E.)$ (Range)1.64 $(0.021)$ $(1.57 - 1.67)$ 1.66 $(0.023)$ $(1.63 - 1.69)$ 1.31 $(0.019)$ $(1.29 - 1.33)$ 1.36 $(0.022)$ $(1.32 - 1.39)$ 0.42 $(0.012)$ $(0.39 - 0.44)$ 0.40 $(0.014)$ $(0.38 - 0.41)$ 1.58 $(0.026)$ $(1.50 - 1.63)$ E.61 $(0.028)$ $(1.60 - 1.66)$ 1.12 $(0.027)$ $(1.07 - 1.16)$ 1.18 $(0.031)$ $(1.10 - 1.25)$ 1.20 $(0.026)$ $(1.11 - 1.28)$ 1.20 $(0.030)$ $(1.16 - 1.24)$	MON $88701^2$ Mean (S.E.)³ (Range)Control ⁴ Mean (S.E.) (Range)Mean (S.E.) (Range)1.64 (0.021) (1.57 - 1.67)1.66 (0.023) (1.63 - 1.69)-0.015 (0.022) (-0.024 - 0.035)1.31 (0.019) (1.29 - 1.33)1.36 (0.022) (1.32 - 1.39)-0.045 (0.022) (-0.057 - 0.0086)0.42 (0.012) (0.39 - 0.44)0.40 (0.014) (0.38 - 0.41)0.021 (0.018) (-0.016 - 0.048)1.58 (0.026) (1.50 - 1.63)1.61 (0.028) (1.60 - 1.66)-0.026 (0.022) (-0.034 - 0.013)1.12 (0.027) (1.07 - 1.16)1.18 (0.031) (1.10 - 1.25)-0.057 (0.039) (-0.13 - 0.055)1.20 (0.026) (1.11 - 1.28)1.20 (0.030) (1.16 - 1.24)-0.0068 (0.040) (-0.055 - 0.063)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean $(S.E.)^3$ (Range)Mean $(S.E.)$ (Range)Mean $(S.E.)$ (Range)95% (Confidence Interval (p-Value) $1.64$ (0.021) ( $1.57 - 1.67$ ) $1.66$ ( $0.023$ ) ( $1.63 - 1.69$ ) $-0.015$ ( $0.022$ ) ( $-0.024 + 0.035$ ) $0.071, 0.041$ ( $-0.024 + 0.035$ ) $0.519$ $1.31$ ( $0.019$ ) ( $1.29 - 1.33$ ) $1.36$ ( $0.022$ ) ( $1.32 - 1.39$ ) $0.045$ ( $0.022$ ) ( $-0.057 - 0.0086$ ) $-0.10, 0.012$ ( $-0.016 - 0.048$ ) $0.097$ $0.42$ ( $0.012$ ) ( $0.39 - 0.44$ ) $0.40$ ( $0.014$ ) ( $0.38 - 0.41$ ) $0.021$ ( $0.018$ ) ( $-0.016 - 0.048$ ) $-0.026, 0.069$ ( $-0.034 - 0.013$ ) $0.295$ $1.58$ ( $0.026$ ) ( $1.50 - 1.63$ ) $1.66$ ( $0.028$ ) ( $1.60 - 1.66$ ) $-0.026$ ( $0.022$ ) ( $-0.13 - 0.055$ ) $-0.16, 0.043$ ( $-0.014$ ) $0.200$ $1.20$ ( $0.026$ ) ( $1.10 - 1.28$ ) $1.20$ ( $0.030$ ) ( $1.16 - 1.24$ ) $-0.0068$ ( $0.040$ ) ( $-0.055 - 0.063$ ) $-0.11, 0.097$ $0.872$

Control (continued)					J. Co	
			Difference (N	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴			iles -	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			0		_	
Threonine	0.92 (0.015)	0.93 (0.017)	-0.0029 (0.021)	0.058, 0.052	0.896	0.72, 0.89
	(0.86 - 0.95)	(0.91 - 0.94)	(-0.00072 - 0.037)	A She conte		(0.67 - 0.96)
Tryptophan	0.44 (0.014)	0.44 (0.016)	-0.0052 (0.020)	95% Confidence Interval 0.058, 0.052 -0.057, 0.046 -0.054, 0.018	0.803	0.34, 0.42
	(0.43 - 0.44)	(0.43 0.45)	(-0.020 - 0.0087)	Coll Ma		(0.31 - 0.46)
Tyrosine	0.87 (0.014)	0.89 (0.015)	-0,018 (0.014)	0 054 0 018	0 250	0.67, 0.84
	(0.84 - 0.88)	(0.86 - 0.91)	(-0.029 - 0.011)		0.200	(0.63 - 0.91)
Valine	1.29 (0.024)	1-34 (0.026)		-0.093, 0.0056	0.071	1.00, 1.28
v anne	(1.25 - 1.32)	(1.31 - 1.40)	(-0.078 -0.019)	-0.095, 0.0050	0.071	(0.97 - 1.36)
	ALIS SHILL HO	0.98 (0.0054)	0 0 4			
Fatty Acid (% Total FA)	Contractor of	0.98 (0.0054)		0.040 0.012	0.000	0.16 1.27
14:0 Myristic	0.95 (0.0046)	0.98 (0.0054) (0.97 - 0.98)	-0.030 (0.0071) (-0.0320.026)	-0.048, -0.012	0.008	0.16, 1.37
600 2	(0.94, 0.95)	7 10, 01	J/x			(0.45 - 1.04)
16:0 Palmitic This diot	24.15 (0.088)	24,11 (0,00)	0.044 (0.13)	-0.30, 0.39	0.757	16.54, 30.55
SUL NO	(24.06 - 24.37)	(23.89 - 24.34)	(-0.23 - 0.47)			(19.11 - 26.73)
CO CO	O'HO CONTROL	C N C				
<	Futtre control	Ne teo				
	Further on the providence	ie entrand t				
Monsanto Company	Nº OOK	1	2-CT-244U			500 of 620

 Table E-33. Statistical Summary of Site NMLC Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Table E-33. Statistical SControl (continued)	Summary of Site	NIVILC Cottonsee	u Nutrients for Mic	JN 88701 (NUL I Fea	aleujovs.	Conventional
			Difference (1	MON 88701 minus C	ontrol)	
Analytical Component (Units) ¹ Fatty Acid (% Total FA)	MON 88701 ² Mean (S.E.) ³ (Range)	Control ⁴ Mean (S.E.) (Range)	Mean (S.E.) (Range)	95% Confidence Interval	Significance (p-Value)	Commercial Tolerance Interval ⁵ (Range)
16:1 Palmitoleic	0.53 (0.0022) (0.53 - 0.53)	0.54 (0.0025) (0.53 - 0.54)	-0.0080 (0.0033) (-0.0140.0036)	-0.017, 0.00054	SC 0.060	0.39, 0.70 (0.44 - 0.67)
18:0 Stearic	2.52 (0.020) (2.49 - 2.56)	2.64 (0.021) (2.61 2.70)	0.12 (0.016) (-0.140.12)	Confidence Interval -0.017, 0.00054 -0.07, -0.082	<0.001	1.98, 2.95 (1.98 - 2.97)
18:1 Oleic	16.13 (0.067) (16.01 - 16.29)	16.21 (0.076) (16.10 - 16.35)	-0.085 (0.088) (-0.23 - 0.072)	540 ^{e-0.31} , 0.14	0.382	11.38, 20.64 (13.71 - 18.39)
18:2 Linoleic	54.43 (0.084) (54.22 - 54.63)	54.29 (0.097) (54.04 - 54.50)	0.14(0.13) (-0.11_0.59)	-0.19, 0.47	0.326	47.49, 63.18 (49.78 - 59.61)
18:3 Linolenic	(0.16 (0.0019) (0.15 - 0.16)	0.14 (0.0622) (0.14 0.15)	0.014 (0.0029) (0.0032 - 0.020)	0.0065, 0.021	0.004	0.060, 0.24 (0.10 - 0.29)
20:0 Arachidic	0.30 (0.0052) (0.29 - 0.31)	0.31 (0.0060) (0.28 - 0.32)	-0.0075 (0.0080) (-0.026 - 0.022)	-0.028, 0.013	0.389	0.17, 0.38 (0.20 - 0.36)
	ppy the mouth of the second the s	ne permis no				
Monsanto Company	Ve Y		12-CT-244U			501 of 620

<b>Control (continued)</b>						
			Difference (N	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		xil ^O	ILS	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)	/		S.			
22:0 Behenic	0.17 (0.0065)	0.19 (0.0075)	-0.020 (0.0099)	-0:046, 0.0053	0.097	0.070, 0.21
	(0.16 - 0.17)	(0.17 - 0.21)	(-0.057 -0.00078)	-0.046\0.0053		(0.051 - 0.19)
		A S	(Q) (X)	ON THE HO		
Mineral		.05	Wai allo			
Calcium (% dw)	0.15 (0.0029)	0.13 (0.0034)	0.019 (0.0042)	0.0082, 0.030	0.006	0.058, 0.21
	(0.14 - 0.15)	(0.12 - 0.13)	(0.015 - 0.024)	and i		(0.081 - 0.18)
		in in in	No Yor Ko Yor	into		
Copper (mg/kg dw)	11.38 (0.15)	11.75 (0.17)	-0.37 (0.22) (-0.77 + 0.018)	-0.95, 0.20	0.157	2.97, 12.86
	(11.09 - 11.56)	(11.46 - 11.92)	(-0.77 - 0.018)	-9.74. 16.39		(4.46 - 11.62)
	Q Q S	SV think is	strip of with w	<u></u>		
Iron (mg/kg dw)	67.95 (3.33)	64.62 (3.84)		-9.74, 16.39	0.541	47.30, 97.12
	(61.15 - 83.28)	(63.58 - 66.45)				(39.49 - 114.34)
	of the to the	( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (				
Magnesium (% dw)	0.38 (0.0053)	0.37 (0.0061)	-0.0076(0.0081)	-0.013, 0.028	0.386	0.28, 0.47
	(0.37 0.39)	(0.36 - 0.38)	(-0.0069 - 0.021)			(0.31 - 0.46)
	SILLES OF THIS	14 101° 01	ille anti-			
Manganese (mg/kg dw)	13.23 (0.23)	0 12.90 (0.26)	0.33 (0.34)	-0.55, 1.22	0.377	9.07, 17.33
	(12.92 - 13.61)	(12.00 - 13,47)	(-0.55 - 1.20)	,		(9.07 - 17.14)
	A all of a					
	2 the dr ale	C AC				
0	FUTTINE COMMENT	0 0				
	$CO. CO. V_{CO}$					
	FUTTO SCOTT	UL				
	SPY HEL OUS COMMENTS					
Monsanto Company	Ve .	ie entradi e Pedano nibited and	2-CT-244U			502 of 620
1 2						

Control (continue	d)				$q_{\mu} q_{\nu}$	
			Difference (M	ON 88701 minus Co	ontrol)	
	MON 88701 ²	Control ⁴			Il S	Commercial
Analytical Comp	onent Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range) 👌 🤇	Confidence Interval	(p-Value)	(Range)
Mineral			, Dr.	6, 6, 6, 6,		
Phosphorus (% dw)	0.76 (0.010)	0.79 (0.012)	-0.031 (0.016)	-0.071, 0.0099	0.109	0.49, 0.87
	(0.75 - 0.78)	(0.78 - 0.80)	(-0.046 -0.0099)		)`	(0.48 - 0.87)
		S		on its of		
Potassium (% dw)	1.11 (0.016)	1.11 (0.018)	-0.00071 (0.017)	-0.045, 0.043	0.968	0.92, 1.21
	(1.09 - 1.12)	(1.07 1.14)	(-0.044 - 0.029)	and and		(0.90 - 1.26)
		Bar		NO ALL		
Sodium (% dw)	0.017 (0.0034)	0.013 (0.0039)	0,0041 (0.0052)	0.0092, 0.017	0.465	0, 0.066
	(0.0054 - 0.023)	(0.0054 - 0.023)	(-0.0019 - 0.018)	,,	01100	(0.0054 - 0.077)
	(0.000 1 0.0020)			×.		(0.000 . 0.077)
Zinc (mg/kg dw)	44.99 (0.60)	49 43 (0 69)	-4.44 (0.92)	-6.80, -2.08	0.004	27.27, 44.95
Zinc (ing/kg uw)	(44.56 - 46.04)	(47.66 - 50.87)	(-6.30 -3.03)	-0.00, -2.00	0.004	(25.07 - 48.49)
	(++.30 ++0.0+0	(47.00 - 30.07)	5 (-9.30 0-3.03)			(23.07 - 40.49)
X7.4	ALL STOR	Col Col illo	$n_0$ $n_0$ $o_1$			
Vitamin (mg/kg dw		M the level 2 cm		4 20 11 72	0.295	41 01 205 90
Vitamin E			372 (3.12)	-4.29, 11.73	0.285	41.91, 205.89
	(143.71, 019.14)	(107.02 - 115.99)	(0.18 - 7.09)			(84.07 - 162.76)
· C			11.			

 ¹dw = dry weight; fw = fresh weight; FA = fatty acid.

 ² MON 88701 plants were not treated with dicamba or glutosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U

 503 of

Control						
			Difference (1	MON 88701 minus Co	ontroly	
	MON 88701 ²	Control ⁴		95% Confidence Interval -0.0097, 0.053 -0.050, 0.13 -0.061, 0.077 0.063, 0.27 -0.019, 0.19	ILS	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Acie	d (% Total FA)		01	Q' ( Q' ()	9	
Dihydrosterculic Acid	0.16 (0.0079)	0.14 (0.0092)	0.022 (0.012)	-0.0097, 0.053	0.136	0.078, 0.25
	(0.14 - 0.18)	(0.12 - 0.15)	(-0.0016 - 0.056)		)`	(0.038 - 0.23)
		G	No xor	its of		
Malvalic Acid	0.33 (0.023)	0.29 (0.026)	0.039 (0.035)	-0.050, 0.13	0.308	0.23, 0.54
	(0.24 - 0.38)	(0.26 - 0.31)	(-0.070 - 913)	South and		(0.11 - 0.59)
	(0.2.1 0.000)			all'at the		(0.11 0.03)
Sterculic Acid	0.19 (0.018)	0 18 (0.020)	6 0 0070 (0 027) G	0.061 0.077	0.780	0.17, 0.27
Stereune Acid	(0.12 - 0.24)	0.18 (0.020) (0.17 - 0.19)	(0.075, 0.079)	+0.001, 0.077	0.780	(0.061 - 0.34)
	(0.12 - 0.24)	(0.17 -0.19)	(6,0,0-2,0,0,0)			(0.001 - 0.34)
	NOY	UCI III S	All to the state of the second	COL.		
Gossypol (% dw)	0.86 (0.026)	0.69 (0.030)				
Free Gossypol	0.86 (0.026)	0.69 (0.030)	0,47 (0.040)	0.063, 0.27	0.008	0.099, 1.57
	(0.76 - 0.95)	(0.68 0.70)	(0.12 - 0.27)			(0.50 - 1.41)
	of the to	0.80 (0.030)	al wites			
Total Gossypol	0.88 (0.026)	0.80 (0.030)	0.083 (0.040)	-0.019, 0.19	0.091	0.064, 1.76
	(0.84 - 0.92)	(0.74 - 0.87)	0.083 (0.040) (-0.028 - 0.18)			(0.56 - 1.61)
		2 4 4 101° 01	the			
1 dw = dry weight; FA = fatt	v aeid	2 10, Xto X	2 V			
² MON 88701 plants were n	ot treated with dica	mba or glufosinate.				
3 Mean (S.E.) = least-square	mean (standard erro	m l l l l l l l l l l l l l l l l l l l				
⁴ Control refers to the non-hi	otechnology derive	d conventional cont	rol (Coker 130).			
⁵ With 95% confidence, inter	rval contains 99% o	f the values expresse	ed in the population of	commercial substance	es. Negative l	imits set to zero.
		J KO				
	C CH ON	nill.				
	in the second	)`				
⁵ With 95% confidence, inter Monsanto Company	Nº - CY					
Monsanto Company	Ŷ.		12-CT-244U			504 of 620

Table E-34. Statistical Summary of Site NMLC Cottonseed Anti-nutrients for MON 88701 (Not Treated) vs. Conventional 6 min Control

		~~~~~	SCER Cottonseeu I	Difference			
		MON 88701 ²	Control ⁴		10	N. C.	Commercial
Analytical	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Proximate (	(% dw)			5			
Ash		4.10 (0.095)	3.74 (0.095)	0.36 (0.10)	0.02, 0.61	0.011	3.42, 4.65
		(3.91 - 4.23)	(3.38 - 3.98)	(0.20 - 0.79)	to do to	Ś	(3.18 - 4.68)
				2º	10° 20° 60° 600	)*	
Calories (Kc	cal/100g)	508.96 (2.44)	503.38 (2.44)	5.58 (3.45)	-2.87, 14.02	0.157	457.61, 527.56
,	C,	(506.18 - 511.92)	(499.09 - 512.65)	(-4.16 - 9.98)			(466.09 - 509.91)
			all all	10. 00 d	Confidence Interval 0.12, 0.64 -2.87, 14,02 -3.36, 0.32 -1.52, 0.89		· · · · · · · · · · · · · · · · · · ·
Carbohydrat	tes	47.15 (0.54)	48.67 (0.54)	-1.52 (0.75)	-3.36, 0.32	0.090	40.26, 56.45
j		(46.17 - 48.81)	(47.50 - 49.59)	(-3270.78)			(43.28 - 54.90)
		( ,	the state	100-10, 90	cull.		(
Moisture (%	(fw)	6.48 (0.17)	7.08 (0.17)	-060 (019)	× -1 07 -0 14	0.019	4.79, 9.92
moisture (70	,,	(6.16 - 6.98)	(6,63 - 7,37)	(-1.040.17)		0.017	(6.05 - 10.50)
			(6.63 - 7.37)		2		(0.05 10.50)
Protein		23.61 (0,42)	23.92 (0.42)	-0.31 (0.49) (1.23- 0.78)	-1.52, 0.89	0.547	22.30, 29.41
riotem		(22.49 - 24.37)	(23,56 - 24,61)	(122, 078)	-1.32, 0.89	0.547	(20.58 - 29.28)
		(ZZ.+3,52+.57)	N (23,50 - 24,61)	(41.25-0.78)			(20.38 - 29.28)
T ( 1 T (	- C	25.13 (0.44)	23.65 (0.44)	1.48 (0.63) (-0.15 - 2.28)		0.057	15 01 20 51
Total Fat	205	25.13 (0.44)			-0.061, 3.02	0.057	15.01, 28.51
	in Pint	(24.62 - 23.54)	(22.92~25.20)	(-0.15 - 2.28)			(16.58 - 25.25)
	<u> </u>	10 mis 10, 11	OF GIO DIO				
	SI C	opy themore out	CISI CISZ JION				
		opy the cure ine	el el d				
	C	opy needlet internet	a de la del				
		K. U. O. K					
		Co do m	illi				
		opy right of the offer the offer the offer of the offer	<i>S</i> / .				
		N, 6,	a (22.92 + 25.20) a (22.92 + 25				
Monsanto Co	mpany	00	12	-CT-244U			505 of 620

Control (continued)					JII. 00	
		_	Difference (1	MON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴			ILS	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fiber (% dw)			01		-	
Acid Detergent Fiber	25.58 (0.44)	27.04 (0.44)	-1.46 (0.60)	2.93, 0.0044	0.050	22.24, 31.96
	(24.19 - 26.37)	(26.24 - 27.74)	(-3.49 0.082)	N and conten		(23.42 - 31.62)
Crude Fiber	19.49 (0.80)	19.13 (0.80)	0.36 (1.13)	MON 88701 minus Co 95% Confidence Interval 2.93, 0.0044 -2.41, 3,12 -3.04, 1.59	0.763	16.93, 22.68
	(18.47 - 20.73)	(16.91, 21.70)	(-3.23 - 3.82)	non't n'o'		(16.92 - 23.32)
Neutral Detergent Fiber	32.88 (0.67)	33.60 (0.67)	0.73 (0.95)	-3.04, 1.59	0.472	27.03, 42.49
	(31.85 - 34.31)	(32.74 - 35.52)				(29.27 - 40.63)
Total Dietary Fiber	41.46 (0.62)	41.87 (0.62)	-0.40 (0.88) (-3.26 - 2.04)	-2.55, 1.74	0.661	34.52, 52.58
	(40.03 - 43.22)	(40,16-43.29)	(-3.26-2.04)	\$ 		(37.29 - 48.60)
Amino Acid (% dw)	ant is all to ris	0.94 (0.022)	O NO OT			
Alanine	0.93 (0.022)	0.94 (0.022) (0.88 - 0.97)	-0.011 (0.029)	-0.083, 0.061	0.724	0.86, 1.11
8000		0.94 (0.022) (0.88 - 0.97)	-0.011 (0.029) (-0.059 - 0.10)			(0.83 - 1.22)
Arginine This do	2.51 (0.088)	2,59 (0.088)	-0.075 (0.10)	-0.32, 0.17	0.482	2.38, 3.47
SUC. M	(2.31 - 2.67)	(2.41, 52.710)	(-0.20 - 0.26)			(2.30 - 3.55)
C	20 the and					
	FURINGEO MIL	le leo				
	FURTHE CONTENTS	te pertind t				
Monsanto Company	Po .	12	-CT-244U			506 of 620

Control (continued)					JII. 00	
			Difference (N	ION 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		xil ^{Oh} ini	ll s	Commercial
Analytical Componen		Mean (S.E.)	Mean (S.E.)	95% CL	Significance	
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dw)			01			
Aspartic Acid	2.03 (0.054)	2.07 (0.054)	-0.037 (0.070)	-0.21, 0.13	0.610	1.94, 2.57
	(1.95 - 2.12)	(1.92 - 2.18)	(-0.173 0.20)	A ALL COLO		(1.79 - 2.72)
Cystine	0.36 (0.017)	0.35 (0.017)	0.0031 (0.018)	95% Confidence Interval -0.21, 0.13 -0.041, 0.047 -0.57, 0.30	0.868	0.31, 0.45
	(0.33 - 0.38)	(0.31 - 0.39)	<u>(-0.026 - 0.066)</u>	ner no.		(0.29 - 0.47)
Glutamic Acid	3.96 (0.13)	4.10 (0.13)	0.14 (0.18) CV	-0.57, 0.30	0.473	3.74, 5.28
	(3.79 - 4.14)	(3.66 - 4.40)	(-0.61 - 0.47)			(3.39 - 5.45)
Glycine	0.96 (0.022)	0.98 (0.022)		-0.10, 0.054	0.494	0.90, 1.14
	(0.92 - 1.00)	(0.91 - 1.02)	(-0.087_0.088)			(0.85 - 1.23)
Histidine	0.64 (0.021)	0.64 (0.021)	-0.00060 (0.025)	-0.062, 0.061	0.981	0.59, 0.81
	(0.58 - 0.68)	(0.61- 0.66)	(-0.058 - 0.064)			(0.57 - 0.84)
Isoleucine		0.82 (0.023)	-0.0090 (0.030)	-0.082, 0.064	0.774	0.75, 0.96
Isoleucine	(0.76 - 0.85)	0.77-0.83)	(-0.067 - 0.074)			(0.72 - 1.03)
	Contraction of the contraction o	Cito Mais Allo				
	COPY the miller of the comments of the consecution	6 9 3 11				
	Y COLL COLLE					
	COPY HEROULENTE	e Per and the				
Monsanto Company	, be		12-CT-244U			507 of 620

 Table E-35. Statistical Summary of Site SCEK Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Control (co	ontinued)					dill'a	
				Difference (	MON 88701 minus Co	ontrol)	
		MON 88701 ²	Control ⁴		XION Y	ILS	Commercial
Analytical	Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid	l (% dw)			Sector and Sector		0	
Leucine		1.34 (0.034)	1.36 (0.034)	-0.014 (0.046)	~0.13,\0.099	<u>6</u> 0.770	1.25, 1.62
		(1.28 - 1.42)	(1.28 - 1.40)	(-0.070-0.14)	95% Confidence Interval -0.13, 0.099 -0.092, 0.031	/	(1.20 - 1.72)
Lysine		1.08 (0.027)	1.11 (0.027)	-0.031 (0.025)	-0.092, 0.031	0.269	1.01, 1.30
		(1.03 - 1.12)	(1.06 , 1.17)	(-0.066 - 0.049)	Cell Mar		(0.99 - 1.44)
Methionine		0.36 (0.016)	0.33 (0.016)	0.030 (0.020)	-0.020, 0.080	0.188	0.32, 0.38
		(0.33 - 0.41)	(0.32 - 0.35)				(0.29 - 0.49)
Phenylalanir	ne	1.20 (0.033)	623 (0.033)	0.079 (0.039)	-0.12, 0.066	0.480	1.12, 1.58
1 nony lalam		(1.13 - 1.25)	(1.15 - 1.27)	-0.029 (0.039) (40.10 - 0.098) -0.012 (0.026)	0.12, 0.000	0.100	(1.10 - 1.63)
Proline		0.86 (0.026)	0.87 (0.026)	0012-0026	-0.074, 0.051	0.665	0.83, 1.08
rionne		(0.78 - 0.89)	0.87 (0.026) (0.81 - 0.93)	-0.012 (0.026) (-0.080 - 0.077)	-0.074, 0.051	0.005	(0.79 - 1.17)
<b>a</b> .	2000	Ny JOL IN	y, so, so, so			0 510	0.02.1.21
Serine	This lor	0.94 (0.028)	0.96 (0.028) (0.86 - 1.03)	-0.013 (0.033) (-0.11 - 0.098)	-0.094, 0.068	0.710	0.83, 1.21 (0.81 - 1.24)
	This dor	His non lon k					, , , , , , , , , , , , , , , , , , ,
		FURTHER CONTRE	o or ind				
	0	Futhe due not to	e Xe				
		Controller	il ⁰¹				
		SPATHON CONTROL SPATHON STATIS	e per and the				
Monsanto Cor	mpany	pe	1	2-CT-244U			508 of 620

Control (co	ontinued)							
			_	Difference (	MON 88701 minus Co	ntrol)		
		MON 88701 ²	Control ⁴			ins.	Commercial	
Analytical	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵	
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)	
Amino Acid	l (% dw)			01	Confidence Interval	<i>*</i>		
Threonine		0.78 (0.019)	0.77 (0.019)	0.0049 (0.023)	0.052, 0.062	0.840	0.72, 0.89	
		(0.73 - 0.82)	(0.73 - 0.81)	(-0.028 - 0.086)	Confidence Interval -0.052, 0.062 -0.040, 0.0015 -0.068, 0.056 -0.11, 0.082		(0.67 - 0.96)	
Tryptophan		0.36 (0.0093)	0.38 (0.0093)	-0.019 (0.0085)	-0.040, 0.0015	0.063	0.34, 0.42	
•••		(0.34 - 0.38)	(0.37, 0.40)	(-0.038 - 0.010)	on ma		(0.31 - 0.46)	
Tyrosine		0.71 (0.020)	0.71 (0.020)	2-0.0059 (0.025)	0 068 0 056	0 822	0.67, 0.84	
1 91051110		(0.68 - 0.74)	(0.67 - 0.74)	(-0.035 - 0.073)		0.022	(0.63 - 0.91)	
Valine		1.05 (0.029)	£07 (0.029)	-0.013 (0.039)	-0.11, 0.082	0.751	1.00, 1.28	
v anne		(0.98 - 1.11)	(1.00 - 1.10)	(-0.10 0.11)	-0.11, 0.082	0.751	(0.97 - 1.36)	
		tis attin in		-0.013 (0.012) (-0.033 - 0.013)				
•	(% Total FA)		0.73 (0.011) (0.72 - 0.75)	On ordina 10	0.040.0015	0.205	0.16 1.27	
14:0 Myristi	ic J	0,71 (0.011) (0.69 0.74)	0.73 (0.011) (0.72 - 0.75)		-0.042, 0.015	0.305	0.16, 1.37	
	800		0 (0.72 - 0.75)	(-0.033 - 0.013)			(0.45 - 1.04)	
16:0 Palmiti	e this dor	24.54 (0.086)	24,39 (0.086)	0.15 (0.12)	-0.15, 0.44	0.278	16.54, 30.55	
	3/1-112	(24.37 - 24.64)	(24.07 - 24.59)	(-0.12 - 0.56)			(19.11 - 26.73)	
	50	o, the charter						
		Futtorseann	Ne jeo					
		FUTTO SCOMMENT	te en and					
Monsanto Co	mpany	1 per	12	2-CT-244U			509 of 620	

Control (continued)							
			Difference (1	MON 88701 minus Co	ontrol)		
	MON 88701 ²	Control ⁴			ILS	Commercial	
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵	
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)	
Fatty Acid (% Total FA)				X Day of a vol	0.0.00		
16:1 Palmitoleic	0.49 (0.0056)	0.48 (0.0056)	0.0028 (0.0076)	-0.016, 0.021	0.726	0.39, 0.70	
	(0.47 - 0.50)	(0.47 - 0.49)	(-0.016- 0.024)	N all control	, ,	(0.44 - 0.67)	
18:0 Stearic	2.79 (0.036)	2.67 (0.036)	0.12 (0.050)	MON 88701 minus Co 95% Confidence Interval -0.016, 0.021 -0.0034, 0.24 -0.39, 0.35 -0.86, 0.37	0.054	1.98, 2.95	
	(2.72 - 2.93)	(2.58 2.76)	(0.033 - 0.24)	COLT MO.		(1.98 - 2.97)	
18:1 Oleic	14.44 (0.11)	14.46 (0.11)	-00019 (0.15)	-0.39, 0.35	0.901	11.38, 20.64	
	(14.05 - 14.68)	(14.42 - 14.49)	(-0.49 - 0.20)			(13.71 - 18.39)	
18:2 Linoleic	55.63 (0,18)	55 07 10 10	-0.25 (0.25)	-0.86, 0.37	0.366	47.49, 63.18	
18.2 Linolete	(55.18 - 56.00)	55.87 (0.18) (55.61 - 56.29)	(-0.66 0.24)	-0.80, 0.57	0.300	(49.78 - 59.61)	
	tis fillingio		d'er sills				
18:3 Linolenic	0.16 (0.0017) (0.15 - 0.16)	0.15 (0.0617)	0.0098 (0.0023)	0.0042, 0.015	0.005	0.060, 0.24	
رنی ا	(0.15 - 0.16)	(0.14 0.15)	(0.0036 - 0.014)			(0.10 - 0.29)	
20:0 Arachidic	0,31 (0.0070)	0.30 (0.0070)	0.012 (0.0099)	-0.013, 0.036	0.281	0.17, 0.38	
×1012×101	(0.30 - 0.31)	(0,29 - 0,30)	(0.00039 - 0.024)	0.012, 0.020	0.201	(0.20 - 0.36)	
310.03	82, 10, 00, 4113						
	SPY there used in the second to second	per and					
0	FUTTORS COULT	NO. 20					
	Controli						
	SP HIS NO ONIT	reperand we					
Monsanto Company	V [®]		2-CT-244U			510 of 620	

Control (continued)					SIII. CO	
		_	Difference (N	10N 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		<u>40N 88701 minus Co</u> 95% Confidence Interval 0.012, 0.010 0.0058, 0.033	Ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			0	Pirk Parti	/	
22:0 Behenic	0.14 (0.0033)	0.14 (0.0033)	-0.0010 (0.0046)	0.012, 0.010	0.836	0.070, 0.21
	(0.13 - 0.15)	(0.13 - 0.14)	(-0.015 0.015)		).	(0.051 - 0.19)
		S	or to	it's pol		
Mineral		d'r				
Calcium (% dw)	0.11 (0.0040)	0.091 (0.0040)	0.020 (0.0056)	0.0058, 0.033	0.013	0.058, 0.21
	(0.10 - 0.12)	(0.081 - 0.095)	(0.0064 - 0.030)	nº this		(0.081 - 0.18)
			S OL LOL CU	C C C		· · · · · ·
Copper (mg/kg dw)	5.65 (0.24)	5.64 (0.24)	0.015 (0.32)	-0.78, 0.80	0.965	2.97, 12.86
	(5.02 - 6.58)	(5.40 - 5.85)	(-0.43 - 0.73)	۵., e, e.ee	0.500	(4.46 - 11.62)
	(0.02 0.00,0 %			n ^e .		(1.10 11.02)
Iron (mg/kg dw)	67.74 (4.68)	73.46 (4.68)	-5.73 (4.30)	-16.25, 4.80	0.231	47.30, 97.12
fion (mg/kg uw)	(60.53 - 81.81)	(63.01 - 89.93)	(-14.73 - 3.89)	-10.23, 4.00	0.231	(39.49 - 114.34)
	(00.33 - 01.01)	(63.01 - 89.93)	(-14)0-2.07)			(57.7) - 117.57)
		0.36 (0.0090)	0.026 (0.0080)	0.00(2.0.045	0.017	0 20 0 47
Magnesium (% dw)	0.38 (0.0090)	0.36 (0.0090) (0.34 - 0.37)	0.026(0.0080)	0.0063, 0.045	0.017	0.28, 0.47
800	(0.30 - 0.4.1)	(0.34 - 0.37)	(-0.00067 - 0.046)			(0.31 - 0.46)
Manganese (mg/kg dw)	92.44 (0.51)	9,72 (0,51)	2.73 (0.72)	0.97, 4.48	0.008	9.07, 17.33
Sh do	(10.59 - 13.87)	(8.61 - 11.03)	(-0.44 - 5.26)			(9.07 - 17.14)
1 Alexandress of the second se	or en verer	o alli d				
0	Futto any connet	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
<		× 00				
	Co do an					
	0, 01, 10					
	Funtine Consecution					
Monsanto Company	10°C	ie period t	2-CT-244U			511 of 620

Control (continued)					di do	
			Difference (M	ON 88701 minus Co	ontrol)	
	MON 88701 ²	Control ⁴			illes	Commercial
Analytical Componen	t Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range) 🔥 (	Confidence Interval	(p-Value)	(Range)
Mineral			, DI.	9° 19° 1		
Phosphorus (% dw)	0.64 (0.022)	0.63 (0.022)	0.0061 (0.018)	0.039, 0.051	0.751	0.49, 0.87
	(0.59 - 0.72)	(0.58 - 0.68)	(-0.040- 0.054)	Or all CO. El	)`	(0.48 - 0.87)
		S		6.039, 0.051		
Potassium (% dw)	1.14 (0.031)	1.02 (0.031)	0.12 (0.043)	0.0015, 0.23	0.031	0.92, 1.21
	(1.11 - 1.19)	(0.88 1.08)	(0.027 - 0.31)	all and		(0.90 - 1.26)
		B.C.				· · · · ·
Sodium (% dw)	0.018 (0.0033)	0.015 (0.0033)	0.0028 (0.0046)	-0.0085, 0.014	0.562	0, 0.066
Sourum (/o uw)	(0.0054 - 0.025)	(0.012 - 0.023)	(-0.018 - 0.013)	0.0000, 0.011	0.202	(0.0054 - 0.077)
	(0.0001 0.020)	(0.012 0.025)		~		(0.0001 0.077)
Zina (ma/ka duy)	29.14 (0.82)	20 00 00 00	-0.94 (0.82)	-2.96, 1.08	0.297	27 27 44 05
Zinc (mg/kg dw)			-0.94(0.02)	-2.90, 1.08	0.297	27.27, 44.95
	(27.60 - 30.85)	(28,22-31,14)	(-2.60) 1.99)			(25.07 - 48.49)
	ALL SIL (	et et ion	(0, (0), (0), (0))			
Vitamin (mg/kg dw)		M. Mailer Com	N' S			
Vitamin E	159.04 (4,77)	158.20 (1.77)	0.84 (2.50)	-5.29, 6.97	0.749	41.91, 205.89
20	(154.81 0162.27)	(153.15 - 162.63)	(-7.82 - 7.76)			(84.07 - 162.76)
. 6	10. 2° 0, 10.	A , 20. 0,	11/2			

 ¹dw = dry weight; fw = fresh weight; FA = fatty acid.

 ² MON 88701 plants were not treated with dicamba or glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 512 of

Control						
			Difference (I	MON 88701 minus 🕻o	ntrol)	
	MON 88701 ²	Control ⁴			Il's	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)		Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Acie	d (% Total FA)		, DI		2	
Dihydrosterculic Acid	0.15 (0.0087)	0.15 (0.0087)	0.0062 (0.012)	-0.024, 0.036	0.632	0.078, 0.25
	(0.15 - 0.16)	(0.14 - 0.15)	(-0.0031) - 0.012)	10° 100 001 10	0.632	(0.038 - 0.23)
		S	, of , of			
Malvalic Acid	0.43 (0.029)	0.43 (0.029)	-0.0044 (0.041)	-0.10, 0.096	0.918	0.23, 0.54
	(0.40 - 0.48)	(0.39 - 0.46)	(-0.026 - 0.015)	and and		(0.11 - 0.59)
		Box M		nº x'		
Sterculic Acid	0.23 (0.014)	0.24 (0.014)	-0.011 (0.020)	0.060, 0.038	0.596	0.17, 0.27
	(0.21 - 0.25)	(0.22 - 0.25)	(-0.0200.0016)			(0.061 - 0.34)
			1 W III NIS 20	<u>.</u>		(*******)
Gossypol (% dw)	ore	. cu will fe	i ill' il il il	n ^{o.}		
Free Gossypol	1.06 (0.029)	1 13 00 0299	-0.064 (0.027)	-0.13, 0.0010	0.052	0.099, 1.57
	(1.03 - 1.10)	(1.06 - 1.20)	(-0.14 - 0.012)	0.12, 0.0010	0.002	(0.50 - 1.41)
						(0.50 1.11)
Total Gossypol		1.07 (0.925)	0.069 (0.031)	-0.0076, 0.15	0.069	0.064, 1.76
	(0.020)	(1.05 1.40)	(-0.00076 - 0.18)	-0.0070, 0.13	0.009	(0.56 - 1.61)
200	Q1.00 OD.250		(-0.00070-0.18)			(0.30 - 1.01)
	0' v 0' v	0000	11.			

 Table E-36. Statistical Summary of Site SCEK Cottonseed Anti-nutrients for MON 88701 (Not Treated) vs. Conventional Control

 1 dw = dry weight; FA = fatty acid.

 ¹dw = dry weight; FA = fatty acid.

 ² MON 88701 plants were not treated with dicamba or glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-brotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 513 of

Ø

			Difference	(MON 88701 minus C	ontrol	
	MON 88701 ²	Control ⁴		.;0 ⁽¹ )	ins	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Proximate (% dw)			, D)		(P)	
Ash	3.84 (0.051)	3.46 (0.051)	0.38 (0.072)	0.20, 0.56	0.001	3.42, 4.65
	(3.76 - 3.98)	(3.34 - 3.61)	(0.20-0.63)	95% Confidence Interval 0.20, 0.56 -2.35, 14.63	0`	(3.18 - 4.68)
Calories (Kcal/100g)	500.56 (2.54)	494.42 (2.54)	6.14 (3.47)	-2,35, 14.63	0.127	457.61, 527.56
	(499.03 - 501.60)	(489.10 - 500.98)	(-0.76 - 1243)	Jugent may		(466.09 - 509.91)
Carbohydrates	44.20 (0.48)	46.39 (0.48)	-218 (0.64)	5 ¹¹ m ^{e-3.75} , -0.62	0.014	40.26, 56.45
-	(43.36 - 44.54)	(45.65 - 47.07)	(-3.71 -1.24)	CUI		(43.28 - 54.90)
loisture (% fw)	6.86 (0.21)	a.47 (0.21)	-0 61 (0.29)	-1.32, 0.099	0.079	4.79, 9.92
	(6.30 7.24)	(7.1P-7.79) H	(-0.890.29)	<u></u>		(6.05 - 10.50)
rotein	28.77 (0.24)	28-48 (0.24)	0.30 (0.29)	-0.42, 1.01	0.348	22.30, 29.41
	(28.28 - 29.48)	(28.09 - 28.77)	(-0,49 - 0.74)	,		(20.58 - 29.28)
otal Fat	23.19 (0.48)	21.70(0.48)	1.49 (0.65)	-0.097, 3.09	0.061	15.01, 28.51
Thisdlor	(22.75 - 23.37)	~(20,71 - 22,88) ~ [©]	(0.36 - 2.63)	,		(16.58 - 25.25)
	ppy there due the straight of	ne permit and the state of a stat				
	SPV them due to the second	hibites				
Monsanto Company	2 per	12	-CT-244U			514 of 62

Control (continued)			$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
			Difference (	MON 88701 minus Co	ntrol)		
	MON 88701 ²	Control ⁴		xil ^O	IUS	Commercial	
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵	
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)	
Fiber (% dw)			2				
Acid Detergent Fiber	24.53 (0.37)	25.53 (0.37)	-1.00 (0.41)	2.01, 0.0086	0.051	22.24, 31.96	
	(23.82 - 25.07)	(24.51 - 26.91)	(-2.23 - 0.13)	-2.01, 0.0086 -2.07, 0.11 -2.07, 0.11 -2.84, 0.0015		(23.42 - 31.62)	
		S	PI to	in the second			
Crude Fiber	17.12 (0.38)	18.10 (0.38)	0.98 (0.45)	C -207, 0.11	0.070	16.93, 22.68	
	(16.76 - 17.54)	(17.35 19.63)	(-2.090.10)	on nor		(16.92 - 23.32)	
		the tolle	S 0 . 0	Ma di			
Neutral Detergent Fiber	30.70 (0.41)	32.12 (0.41)	£.42 (0.58)	-2.84, 0.0015	0.050	27.03, 42.49	
	(30.40 - 31.02)	(30.49 - 33.05)	(-2.03 - 0.031)	C S S S S S S S S S S S S S S S S S S S		(29.27 - 40.63)	
	,02		Philip ge	er.			
Total Dietary Fiber	40.66 (0.62)	40.47 (0.62)	0.19 (0.72)	-1.57, 1.95	0.797	34.52, 52.58	
	(38.95 - 42.48)	(39,15 - 42.09)	(-1.42 1.70)	-1.57, 1.95		(37.29 - 48.60)	
	is all in	Nuer ment ation at	d'er fills				
Amino Acid (% dw)	of the xto	0.05(0.019) (0.97 - 1.10)	WI *S				
Alanine	1.05 (0.019)			-0.061, 0.067	0.920	0.86, 1.11	
2000	(1.04 0.019)	0 (0.97 - 1.10)	0.0027 (0.026) (-0.061 - 0.069)			(0.83 - 1.22)	
· S ~ (	SI SS OI WI	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	lle l				
Arginine (	3.15 (0.074)	3,25 (0,074)	-0.10 (0.10)	-0.36, 0.15	0.355	2.38, 3.47	
Arginine This dor	(3,90 - 3,24)	(2.94 3.49)	(-0.37 - 0.18)			(2.30 - 3.55)	
and the	of elline	(0. Kl. 9 2					
G	Fultreenne	6, 31					
	Kr. Us ou H	Nº.x0					
	Co do ni	iloli					
	SP the out of the only of the						
	2/1. 6,						
Monsanto Company	$\rho_{\rm S}$	ne per and the period of the p	-CT-244U			515 of 620	

Control (continu	led)					JII. 00	
				Difference (I	MON 88701 minus Co	ntrol	
		MON 88701 ²	Control ⁴		xil ^O	ll s	Commercial
2	ponent	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (% dy	w)			1 31		-	
Aspartic Acid		2.47 (0.047)	2.45 (0.047)	0.027 (0.067)	-0.14, 0.19	0.702	1.94, 2.57
		(2.42 - 2.55)	(2.26 - 2.62)	(-0.20- 0.19)	95% Confidence Interval -0.14, 0.19 -0.035, 0.046		(1.79 - 2.72)
Cystine		0.41 (0.015)	0.40 (0.015)	0.0059 (0.017)	-0.035, 0.046	0.734	0.31, 0.45
		(0.39 - 0.44)	(0.36 - 0.45)	<u>,</u> (-0.019 - 0.050)	Cont Mo		(0.29 - 0.47)
Glutamic Acid		4.95 (0.13)	5.02 (0.13)	-0.068 (0.19)	-0.53, 0.39	0.728	3.74, 5.28
		(4.85 - 5.11)	(4.41 - 5.32)	(-0.48 - 0.57)			(3.39 - 5.45)
Glycine		1.11 (0.022)	EI1 (0.022)	0.0010 (0.021)	-0.081, 0.071	0.886	0.90, 1.14
5		(1.08 - 1.14)	(1,03-1,19)	(-0.086_0.050)			(0.85 - 1.23)
Histidine		0.74 (0.018)	0.76 (0.018)	-0.013(0.026)	-0.075, 0.050	0.635	0.59, 0.81
	اللى	(0.70 - 0.77)	(0.71-0.82)	(-0.047 - 0.034)	,		(0.57 - 0.84)
Isoleucine	2002	0.92 (0.013)	0 93 (0013)	-0.010 (0.017)	-0.051, 0.031	0.569	0.75, 0.96
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and no	(0.89 - 0.94)	(0.89 - 0.97)	(-0.058 - 0.022)			(0.72 - 1.03)
		<u>A an lenin</u>	Ciandis ville				
	it co	R'ithe out on the	e Per alle				
			.10 ¹				
		Puttiencedue nine Futtiencedue nine Futtiencedue nine Sittiencedue	ie per and and				
Monsanto Company		, be	1	2-CT-244U			516 of 620

 Table E-37. Statistical Summary of Site TXPL Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Control (cor	ntinued)					dill'a	
				Difference (N	MON 88701 minus Co	ontrol)	
		MON 88701 ²	Control ⁴		xiO'x	INS	Commercial
-	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid (	(% dw)			DI DI			
Leucine		1.55 (0.026)	1.55 (0.026)	0.00049 (0.037)	0.091, 0.092	0.989	1.25, 1.62
		(1.52 - 1.58)	(1.45 - 1.64)	(-0.090 - 0.10)	<u>40N 88701 minus Co</u> 95% Confidence Interval -0.091, 0.092 -0.11, 0.075	/	(1.20 - 1.72)
			S	PI AO	in its not		
Lysine		1.22 (0.026)	1.24 (0.026)	-0.016 (0.037)	-0011, 0.075	0.680	1.01, 1.30
		(1.17 - 1.26)	(1.19 1.33)	(-0.066 - 0.018)	en no		(0.99 - 1.44)
			KO KON	S. A RUN	n' n'		
Methionine		0.37 (0.021)	0.39 (0.021)	-0,018 (0.029)	0.090, 0.053	0.553	0.32, 0.38
		(0.33 - 0.40)	(0.32 - 0.44)	(-0.068 - 0.051)			(0.29 - 0.49)
		402		10 . The structure of	er.		
Phenylalanine	e	1.48 (0.034)	1.48 (0.034)	0.00099 (0.048) (-0.13_0.11)	-0.12, 0.12	0.984	1.12, 1.58
		(1.47 - 1.52)	(1.36 - 1.61)	0.00099 (0.048) (-0.13_0.11) 0.012 (0.033)			(1.10 - 1.63)
		is all in		d of the			
Proline		1.05 (0.024)	1.04 (0.024) (1.01 1.11)	0.012 (0.033)	-0.069, 0.094	0.724	0.83, 1.08
	76.	(1.02 - 1.08)	(1.01) 1.110 (1.01) 1.110	0.012 (0.033) (-0.074 - 0.076)			(0.79 - 1.17)
	2001			- V)			
Serine	is it	1,12 (0.031)	1.11 (0.031)	0.0077 (0.044)	-0.10, 0.12	0.867	0.83, 1.21
	LU. glo	(1.07 - 1.17)	(0.97 - 107)	(-0.11 - 0.14)			(0.81 - 1.24)
	This dor?	1, 10, 00, 411	$\cdot \circ \cdot \circ$				
	×	or strange of	o offind				
	CO CO	Puttons on the	a Q ani				
	<	Futhe control	N. KO				
		C A OUL	ilon				
		Further Consecontine					
		Further control to any the providence	e per and vie				
Monsanto Com	ipany	Ŷ		12-CT-244U			517 of 620

Control (co	ontinued)					JII. 00	
			_	Difference (	MON 88701 minus Co	ntrol)	
		MON 88701 ²	Control ⁴		xi ^O ix	Ins	Commercial
Analytical	Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹		(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Amino Acid	l (% dw)			0		-	
Threonine		0.88 (0.016)	0.86 (0.016)	0.020 (0.022)	0.034, 0.073	0.407	0.72, 0.89
		(0.87 - 0.90)	(0.80 - 0.91)	(-0.042) 0.075)	A and control		(0.67 - 0.96)
Tryptophan		0.41 (0.013)	0.43 (0.013)	-0.013 (0.018)	95% Confidence Interval -0.034, 0.073 -0.058, 0.032	0.502	0.34, 0.42
		(0.39 - 0.43)	(0.38 0.47)	(-0.079 - 0.051)	Cell' Ma,		(0.31 - 0.46)
Tyrosine		0.82 (0.017)	0.81 (0.018)	0.015 (0.024)	0.043. 0.074	0.546	0.67, 0.84
5		(0.81 - 0.85)	(0.74 - 0.87)	(-0.042 - 0.074)	CUN.		(0.63 - 0.91)
Valine		1.26 (0.030)	E23 (0.030)			0.513	1.00, 1.28
v unne		(1.19 - 1.38)	(1,16-1.29)	(-0.072 - 0.15)	0.071, 0.15	0.015	(0.97 - 1.36)
Fotty Aoid	(% Total FA)	ALL SALLY	0.84 (0.010)	10 ner of 10			
14:0 Myristi	· /	0.83 (0.010)	0.84 10 010	0 013 (0 013)	-0.046, 0.020	0.358	0.16, 1.37
14.0 1/191150		(0.81 - 0.85)	0.84 (0.010) (0.81 - 0.87)	-0.013 (0.013) (-0.063 - 0.019)	-0.040, 0.020	0.338	(0.45 - 1.04)
	is it		, 4, %, °, '				
16:0 Palmiti	c 1, 9/0</td <td>23.24 (0.14)</td> <td>23,01 (0.04)</td> <td>0.22 (0.16)</td> <td>-0.18, 0.62</td> <td>0.219</td> <td>16.54, 30.55</td>	23.24 (0.14)	23,01 (0.04)	0.22 (0.16)	-0.18, 0.62	0.219	16.54, 30.55
	c this dor	(22,99 - 23.40)	(22.86 = 23.25)	(0.045 - 0.54)			(19.11 - 26.73)
		o the and the					
		Furthe connet					
		Futthe any control	(10) ·				
		Further oute on the second strain of the second str	ie entrol t				
Monsanto Co	mpany	$\mathcal{O}_{\mathcal{O}}$	12	2-CT-244U			518 of 620

Control (continued)					dill' do	
			Difference (N	MON 88701 minus Co	ontrol)	
	MON 88701 ²	Control ⁴			ILS	Commercial
Analytical Component	Mean $(S.E.)^3$	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)	0.47 (0.0050)	0.46 (0.0050)	0.0042 (0.0072)	X Data Graze	8 0 575	0.20 0.70
16:1 Palmitoleic	0.47 (0.0058)	0.46 (0.0058)	0.0043 (0.0072)	-0.013, 0.022	0.575	0.39, 0.70
	(0.45 - 0.48)	(0.45 - 0.47)	(-0.017; 0.019)	95% Confidence Interval -0.22, -0.083		(0.44 - 0.67)
18:0 Stearic	2.31 (0.025)	2.46 (0.025)	0.15 (0.028)	-0.22, -0.083	0.001	1.98, 2.95
	(2.26 - 2.34)	(2.40 - 2.52)	(-0.240.090)	en no		(1.98 - 2.97)
18:1 Oleic	16.14 (0.078)	96.16 (0.078)		0 20 0 25	0.852	11.38, 20.64
18.1 Oleic	(16.04 - 16.22)	(15.86 - 16.44)	-0.021(0.11)	-0.29, 0.23	0.832	(13.71 - 18.39)
	(10.04 - 10.22)	(13.80 - 40.44)				(15.71 - 16.57)
18:2 Linoleic	55.63 (0.21)	55.58 (0.21)	(0.050 (0.29))	-0.67, 0.77	0.868	47.49, 63.18
	(55.38 - 55.91)	(55.18-56.13)	(9.74-0.44)			(49.78 - 59.61)
	tis still il	Set of of				
18:3 Linolenic	0.16 (0.0056)	0.17 (0.0056)	-0.0030 (0.0079)	-0.022, 0.016	0.714	0.060, 0.24
c.V	(0.14 - 0.18)	(0.16-0.17)	(-0.032 - 0.012)			(0.10 - 0.29)
800	AN AN CALL			0.007 0.000(1	0.055	0.15.0.00
20:0 Arachidic	0,26 (0.0055)	0.28 (0.0055)	-0.018 (0.0078)	-0.037, 0.00061	0.055	0.17, 0.38
1. and	(0.24 = 0.28)	(0,28 - 0,29)	<i>(</i> -0.0490.0036)			(0.20 - 0.36)
141	SPATHON SCONTER	e per and the				
C	Futher connections	e P D'				
	X COLL COLL					
	217,400,0	CIIP				
	When Pla					
Monsanto Company	<i>b</i> ₂		12-CT-244U			519 of 620

 Table E-37. Statistical Summary of Site TXPL Cottonseed Nutrients for MON 88701 (Not Treated) vs. Conventional Control (continued)

Control (continued)	-				dill'ad	
			Difference (N	AON 88701 minus Co	ontrol)	
	MON 88701 ²	Control ⁴		xil ^O	ins.	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Fatty Acid (% Total FA)			DI DI	2 2 x 2 an	~	
22:0 Behenic	0.16 (0.0015)	0.16 (0.0015)	0.0019 (0.0020)	-0.0030, 0.0067	0.385	0.070, 0.21
	(0.15 - 0.16)	(0.16 - 0.16)	(-0.0028 - 0.0060)	-0.0030, 0.0067	)	(0.051 - 0.19)
		S	OL TO	it's pol		
Mineral		as y	all all all a	othe of still		
Calcium (% dw)	0.16 (0.0016)	0.14 (0.0016)	0.024 (0.0023)	0.019, 0.030	< 0.001	0.058, 0.21
	(0.16 - 0.17)	(0.13 - 0.14)	(0.018 - 0.033)	no de		(0.081 - 0.18)
		in in in	les let let co	C C		
Copper (mg/kg dw)	10.33 (0.15)	9.98 (0,15)	0.35 (0.22)	-0.18, 0.88	0.156	2.97, 12.86
	(9.96 - 10.53)	(9.58-10.41)	(-0.45 - 0.83)	Ś		(4.46 - 11.62)
	pro-S.	SUL HUIL	till of the st	( ⁶		· · · · · ·
Iron (mg/kg dw)	69.52 (5.67)	79.02 (5.67)	9.50 (7.06)	-26.76, 7.77	0.227	47.30, 97.12
	(59.77 - 92.17)		(-14,732.93)	20.70, 7.77	0.227	(39.49 - 114.34)
		(67.45 - 95.10)	(1° 16° 0.			
Magnesium (% dw)	0.36 (0.0045)	0.34 (0.0045)	0.025 (0.0040)	0.015, 0.035	< 0.001	0.28, 0.47
		0.34 (0.0045) (0.33 - 0.34)	(0.015 - 0.032)	0.015, 0.055	<0.001	(0.31 - 0.46)
80	20.551-0.50	C (0.50 - 0.51) ? (	0.015 - 0.052)			(0.51 - 0.40)
Manganaga (mg/bg/dur)	91.38(0.34)	9.04 (0.34)	2.34 (0.48)	1.17, 3.51	0.002	9.07, 17.33
Manganese (mg/kg dw)	10.72 10.22	9.04 (0.34)	· /	1.17, 5.51	0.002	
S. C.	(10,45 - 12.85)	(8.83 - 9.34)	(1.35 - 4.00)			(9.07 - 17.14)
	10, 10, 10 C	<u>en d</u>				
G	Furthinged on the	er roi				
	K OU CO X	. KO				
	C A OUL					
	S. HILLO					
	FUTTORSCOTT	e Ped and				
Monsanto Company	Ŷ	1	2-CT-244U			520 of 620

Control (continued)					011 00	
			Difference (M	ON 88701 minus Co	ntrol)	
	MON 88701 ²	Control ⁴		; O	IL S	Commercial
Analytical Componen	t Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range) 👌 🤇	Confidence Interval	(p-Value)	(Range)
Mineral			, OL	6, 6, 6, 6, 6,		
Phosphorus (% dw)	0.58 (0.0099)	0.57 (0.0099)	0.0062 (0.011)	0.020, 0.032	0.582	0.49, 0.87
	(0.58 - 0.59)	(0.54 - 0.60)	(-0.020 0.032)		)	(0.48 - 0.87)
		S		on its pol		
Potassium (% dw)	1.03 (0.023)	0.87 (0.023)	0.16 (0.033)	0.079, 0.24	0.002	0.92, 1.21
	(0.99 - 1.09)	(0.79-0.93)	(0.061 - 0.30)	and and		(0.90 - 1.26)
		Borr	a al al ul			
Sodium (% dw)	0.018 (0.010)	0.047 (0.010)	-0.029 (0.014)	0.063, 0.0062	0.091	0, 0.066
	(0.0054 - 0.024)	(0.019 - 0.090)	(-0.085 - 0.0040)			(0.0054 - 0.077)
			Wille Mis 200	<u>.</u>		()
Zinc (mg/kg dw)	34.14 (0.45)	34.96 (0.45)	-0.82 (0.64)	-2.39, 0.76	0.250	27.27, 44.95
Zine (ing/kg uw)	(33.08-35.14)	(33.70-35.89)	(358-054)	2.39, 0.70	0.230	(25.07 - 48.49)
	(55.00-55.14)	(33.00 - 35.07)				(25.07 - 40.47)
Vitamin (malka dur)		inel religion	10 10° 01			
<b>Vitamin (mg/kg dw)</b> Vitamin E	110.33 (2,75)	103.66 (2.75)	6.67 (3.90)	2.86 16.20	0.137	41.91, 205.89
v Italiili E		(93.92 - 109.90)		-2.86, 16.20	0.137	,
90	(103.52 014.05)	109:90)	(-6.38 - 20.14)			(84.07 - 162.76)
. 6						

 ¹dw = dry weight; fw = fresh weight; FA = fatty acid.

 ² MON 88701 plants were not treated with dicamba or glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴ Control refers to the non-biotechnology derived, conventional control (Coker 130).

 ⁵ With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 521 of

Control					$Q_{i}$ , $Q_{i}$	
			Difference (N	MON 88701 minus 🕻	ntrol)	
	MON 88701 ²	Control ⁴			ILS	Commercial
Analytical Component	Mean (S.E.) ³	Mean (S.E.)	Mean (S.E.)	95%	Significance	Tolerance Interval ⁵
(Units) ¹	(Range)	(Range)	(Range)	Confidence Interval	(p-Value)	(Range)
Cyclopropenoid Fatty Aci	d (% Total FA)		21		0	
Dihydrosterculic Acid	0.16 (0.0047)	0.16 (0.0047)	-0.0020 (0.0066)	-0.018, 0.014	o.777 🖉	0.078, 0.25
	(0.16 - 0.17)	(0.15 - 0.17)	(-0.0083 - 0.0048)	100 Lor Cor HC	0.777	(0.038 - 0.23)
		S	or vor			
Malvalic Acid	0.42 (0.020)	0.47 (0.020)	-0.046 (0.029)	-0.12, 0.025	0.161	0.23, 0.54
	(0.40 - 0.44)	(0.44 - 0.49)	(-0.0720.018)			(0.11 - 0.59)
	× , ,			al the		
Sterculic Acid	0.23 (0.013)	0.26 (0.013)	-0.025 (0.018)	0.068, 0.019	0.216	0.17, 0.27
	(0.21 - 0.25)	(0.25 - 0.27)	(-0.043 - 0.0078)		0.210	(0.061 - 0.34)
				<u>.</u>		(0.000 0.000)
Gossypol (% dw)	orvie	, culture 1		C ^O		
Free Gossypol	0.98 (0.024)	0 93 0 024	0.052 (0.033)	-0.030, 0.13	0.170	0.099, 1.57
The dossypor	(0.94 - 1.05)	(0.91 - 0.95)	(0.0089 - 0.14)	-0.050, 0.15	0.170	(0.50 - 1.41)
	(0.24 - 1.05)		(0.000) - (0.14)			(0.50 - 1.41)
Total Casarmal			0.081 (0.022)	0.029.0.12	0.000	0.064 1.76
Total Gossypol	1.09(0.024)	0.07 1.05		0.028, 0.13	0.009	0.064, 1.76
200	AI.03 C. 10	0 (0.50 - 1.05)	(0.053 - 0.11)			(0.56 - 1.61)
	0 5 01 HU	3.90.0.	111			

 Table E-38. Statistical Summary of Site TXPL Cottonseed Anti-nutrients for MON 88701 (Not Treated) vs. Conventional

 Control

 1 dw = dry weight; FA = fatty acid.

 ¹dw = dry weight; FA = fatty acid.

 ² MON 88701 plants were not treated with dicamba or glufosinate.

 ³Mean (S.E.) = least-square mean (standard error).

 ⁴Control refers to the non-brotechnology derived, conventional control (Coker 130).

 ⁵With 95% confidence, interval contains 99% of the values expressed in the population of commercial substances. Negative limits set to zero.

 Monsanto Company
 12-CT-244U
 522 of

Ø

#### **References for Appendix E**

AACC. 1999. Official method 32-20. American Association of Cereal Chemists, St. Paul, Minnesota.

AOAC. 2011a. AOAC official method 988.15: Tryptophan in foods and food and feed ingredients. Official Methods of Analysis of AOAC International, Association of Analytical Communities International, Gaithersburg, Maryland.

AOAC. 2011b. AOAC official method 923.03: Ash of flour. Official Methods of Analysis of AOAC International, Association of Analytical Communities International, Gaithersburg, Maryland.

AOAC. 2011c. AOAC official method 962.09: Fiber (crude) in animal feed and pet food. Association of Analytical Communities International, Gaithersburg, Maryland.

AOAC. 2011d. AOAC official method 948.22: Fat (crude) in nuts and nut products. Official Methods of Analysis of AOAC International, Association of Analytical Communities International, Gaithersburg, Maryland.

AOAC. 2011e. AOAC official method 960.39 Fat (crude) or other extract in meat. Official Methods of Analysis of AOAC International, Association of Analytical Communities International, Gaithersburg, Maryland.

AOAC. 2011f. AOAC official method 984,27? Calcium, copper, iron, magnesium, manganese, phosphorus, potassium, sodium, and zinc in infant formula. Official Methods of Analysis of AOAC International, Association of Analytical Communities International, Gaithersburg, Maryland.

AOAC. 2011b. AOAC official method 985.01: Metals and other elements in plants and AOAC. 2011b. AOAC official method 005.55 AOAC, 2011g. AOAC official method 985.01: Metals and other elements in plants and

AQAC. 2011h. AQAC official method 925.09: Solids (total) and loss on drying Analytical Communities International, Gaithersburg, Maryland. (moisture) in flour. Official Methods of Analysis of AOAC International, Association of

AQAC. 2011i AOAC official method 926.08: Loss on drying (moisture) in cheese. Association of Analytical Communities International, Gaithersburg, Maryland.

AOAC 2011. AOAC official method 955.04: Nitrogen (total) in fertilizers. Official Methods of Analysis of AOAC International, Association of Analytical Communities International, Gaithersburg, Maryland.

AOAC. 2011k. AOAC official method 979.09: Protein in grains. Official Methods of Analysis of AOAC International, Association of Analytical Communities International, Gaithersburg, Maryland.

AOCS. 1997. Preparation of methyl esters of fatty acids. Method Ce 2-66, American Oil Chemists' Society, Champaign, Illinois.

AOCS. 2001. Determination of fatty acids in edible oils and fats by capillary GLC. Method Ce 1e-91, American Oil Chemists' Society, Champaign, Illinois.

AOCS. 2009a. Official Methods and Recommended Practices of the American Oil Chemists' Society. Method Ce 1i-07, American Oil Chemists' Society, Champaign, Illinois.

AOCS. 2009b. Nitrogen-ammonia-protein modified Kjeldahl method titanium dioxide + copper sulfate catalyst. Official Methods and Recommended Practices of the American Oil Chemists' Society, 5th Edition. Method Ac 4-91, American Oil Chemists' Society, Champaign, Illinois.

AOCS. 2009c. Direct methylation of lipids in foods for the determination of total fat, saturated, *cis*-monounsaturated, *cis*-polyunsaturated, and *trans* fatty acids by gas chromatography. Method Ce 1k-09, American Oil Chemists' Society, Champaign, Illinois.

AOCS. 2011a. Total gossypol. Method Ba 8-78, American Oil Chemists' Society, Champaign, Illinois.

AOCS. 2011b. Free gossypol. Method Ba 7-58. American Oil Chemists' Society, Champaign, Illinois.

Barkholt, V. and A.L. Jensen. 1989. Amino acid analysis determination of cysteine plus half-cystine in proteins after hydrochloric acid hydrolysis with a disulfide compound as additive. Analytical Biochemistry 177.318-322.

Bertrand, J.A., T.Q. Sudduth, A. Condon, TC. Jenkins and M.C. Calhoun. 2005. Nutrient content of whole cottonseed. Journal of Dairy Science 88:1470-1477.

Cort, W., T.S. Vicente, E.H. Waysek and B.D. Williams. 1983. Vitamin E content of feedstuffs determined by high-performance liquid chromatographic fluorescence. Journal of Agriculture and Food Chemistry 31:1330-1333.

Hamilton, K.A., P.D. Pyla, M. Breeze, T. Olson, M. Li, E. Robinson, S.P. Gallagher, R. Sorbet and Y. Chen 2004. Bollgard II cotton: Compositional analysis and feeding studies of cottonseed from insect-protected cotton (*Gossypium hirsutum* L.) producing the Cry1Ac and Cry2Ab2 proteins. Journal of Agricultural and Food Chemistry 52: 6969-6976.

Henderson, J.W. and A. Brooks. 2010. Improved amino acid methods using Agilent ZORBAX Eclipse Plus C18 columns for a variety of Agilent LC instrumentation and separation goals. Agilent Technologies, Inc., Wilmington, Delaware.

and

2000. Rapid,

accurate, sensitive, and reproducible HPLC analysis of amino acids. Agilent Technologies, Inc., Wilmington, Delaware.

ILSI. 2011. Crop Composition Database, Version 4.2. International Life Sciences Institute, Washington, D.C. http://www.cropcomposition.org/.

Komarek, A.R., J.B. Robertson and P.J. Van Soest. 1993. A comparison of methods for determining ADF using the Filter Bag Technique versus conventional filtration. Journal of Animal Science 72:114.

Komarek, A.R., J.B. Robertson and P.J. Van Soest. 1994. Comparison of the filter bag technique to conventional filtration in the Van Soest NDF analysis of 21 foods. National Conference on Forage Quality, Evaluation, and Utilization, American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Society of America, Inc., Madison, Wisonsin.

Lawhon, J.T., C.M. Cater and K.F. Mattil. 1977. Evaluation of the food use potential of sixteen varieties of cottonseed. Journal of the American Oil Chemists' Society 54:75-80.

McMurray, C.H., W.J. Blanchflower and D.A. Rice. 1980. Influence of extraction techniques on determination of  $\alpha$ -Tocopherol in animal feedstuffs. Journal of the Association of Official Analytical Chemists 63:1258-1261.

Schuster, R. 1988. Determination of amino acids in biological pharmaceutical plant and food samples by automated precolumn derivatization and high-performance liquid

Smith, C.W. and R.A. Creelman. 2001. Vitamin E concentration in upland cotton seeds. Crop Science 41:577-579.

Speek, A.J. J. de Schrijver and W.H.P. Schreurs. 1985. Vitamin E composition of some seed oils as determined by high-performance liquid chromatography with fluorometric detection. Journal of Food Science 50:121-124 detection. Journal of Food Science 50:121-124.

USDA 1970. Forage fiber analyses (apparatus, reagents, procedures, and some applications). Agricultural Handbook No. 379. U.S. Department of Agriculture, Washington, DC.

USDA. 1973. Energy value of foods: Basis and derivation. Agricultural Handbook No. 74. US Department of Agriculture, Agricultural Research Service, Washington, D.C.

Wood, R. 1986. High-performance liquid chromatography analysis of cyclopropene fattyacids. Biochemical Archives 2:63-72.

#### Appendix F: Materials, Methods, and Individual Site Results for Seed **Dormancy and Germination Assessment of MON 88701**

#### F.1. Materials

Seed dormancy and germination characteristics were assessed on seed from MON 88701, the conventional control, and commercial reference varieties produced in 2010 field trials at the following sites: Crittenden County, Arkansas (ARPR); Caswell County, North Carolina (NCME); and Hale County, Texas (TXPL) in 2010 (Table VII-3). The field trial at each site was established in a randomized complete block design with four replications. The seed from MON 88701, the conventional control, and the commercial reference varieties were harvested from all four replicated plots at each of the three field sites.

### Table F-1. Starting Seed of MON 88701, Conventional Control and Commercial IL PL Cotton Reference Varieties Used in Dormancy Assessment

KX

_					
	Site ¹	Material	Material Type	Phanottena all	Sample ID
-	Sile	Iviaterial	Waterial Type	Phenotype	
		C 1 120		all'a cille ol	110(0100
	ARPR	Coker 130	Control	Conventional	11268128
	ARPR	MON 88701	Test	DGT Cotton ¹	11268129
	ARPR	SG 125	Reference	Conventional	11266155
	ARPR	DP 565	Reference	Conventional	11266764
	ARPR	ST 474	Reference	Conventional	11266156
_	ARPR	DP 5415	Reference	Conventional	11266157
	NCME	Coker 130	Control	Conventional	11268128
	NCME	MON 88701	Test is a s	DGT Cotton	11268129
	NCME	DP 435	Reference	Conventional	11266762
		Delta Opal	Reference	Conventional	11266158
	NCME	SG 125	Reference N	Conventional	11266155
3	NCME	FM 989	Reference	Conventional	10001810
200	TXPL	Coker 130	Control	Conventional	11268128
	TXPL	MON 88701	Test	DGT Cotton	11268129
(11,2/0)	TXPL	Atlas ?	Reference	Conventional	11266765
	TXPL	DP 435	Reference	Conventional	11266762
	TXPL	SG 125	Reference	Conventional	11266155
1	TXPL	NM 1517-99	Reference	Conventional	11268233
G					

DGT Cotton Dicamba and glufosinate-tolerant cotton.

#### **F.2.** Characterization of the Materials

For the MON 88701, the parental conventional control, and the commercial reference varieties starting seed lots, the presence or absence of the MON 88701 insert was confirmed by event-specific polymerase chain reaction analyses.

#### **F.3.** Germination Testing Facility and Experimental Methods

Seed dormancy and germination evaluations were conducted at BioDiagnostics, Inc. in River Falls, WI. The principal investigator was qualified to conduct seed dormancy and germination testing consistent with the standards established by the Association of Official Seed Analysts (AOSA), a seed trade association (AOSA, 2010a; b; AOSA/SCST, 2010).

Seed lots of MON 88701, the conventional control, and four commercial reference varieties were produced from each of three field sites and tested under six different temperature regimes. Each temperature regime constituted a different experiment (*i.e.*, no comparisons were made between temperature regimes). Six germination chambers were maintained dark under one of the following temperature regimes: constant temperature of approximately 10, 20, or 30 °C, or alternating temperatures of approximately 10/20, 10/30, or 20/30 °C. The alternating temperature regimes were maintained at the lower temperature for 16 hours and the higher temperature for eight hours. The temperature inside each germination chamber was monitored and recorded every 15 minutes throughout the duration of the assessment. Prior to the study, the starting seed were treated uniformly with the commercial seed treatment fungicides mefenoxam and fludioxonil at labeled rates. Approximately 100 cottonseeds were placed on the germination towels using a vacuum planting system. Two additional premoistened germination towels were placed on top of the cottonseed. The set was rolled each of the six starting cottonseed entries from each individual site, all of which were placed into a single bucket. A bucket was prepared for each site and replicator for of 12 buckets per temperature regime germination chambers.

A description of each germination characteristic evaluated and the timing of evaluations are presented in Table VII-1. The types of data collected depended on the temperature regime. Each rolled germination towel in the AOSA-recommended temperature regime (*i.e.*, 20/30°C) was evaluated periodically during the study for normal germinated, abnormal germinated, viable hard, dead, and viable firm-swollen seed as defined by AOSA guidelines (AOSA, 2010a; b; AOSA/SCST, 2010). AOSA only provides guidelines (AOSA, 2010a) for testing seed under optimal temperatures (20/30°C); however, additional temperature regimes were included to test a range of temperature conditions. Each rolled germination towel in the additional temperature regimes (*i.e.*, 10, 20, 30, 10/20, and 10/30°C) was evaluated periodically for germinated, viable hard, dead, and viable firm-swollen seed. Emergence and/or development of essential structures of seedlings that otherwise would be categorized as "normal germinated" under optimal temperature conditions may not be so at non-optimal temperatures. Therefore, for the additional temperature regimes, no distinction was made between normal and abnormal germinated seed.

#### F.4. Statistical Analysis

An analysis of variance was conducted using SAS[®] Version 9.2 (SAS, 2008) according to a split-plot design with four replications. MON 88701 was compared to the conventional control for dormancy and germination characteristics of cottonseed produced within each site (*i.e.*, individual site analysis) and in a combined-site analysis in which the data were pooled across all three sites. The seed germination characteristics analyzed included percent germinated seed, percent viable hard seed, percent dead seed, and percent viable firm-swollen seed. The percent germinated seed were categorized as either normal germinated or abnormal germinated for the AOSA temperature regime. The level of statistical significance was predetermined to be 5% ( $\alpha$ =0.05). MON 88701 was not statistically compared to the reference varieties, nor were comparisons made across temperature regimes. The minimum and maximum mean values were determined from the reference materials across all sites to provide a range of values (*i.e.*, reference range) representative of commercial cotton varieties. Results from the combined-site analysis are presented in Table VII-2.

# F.5. Individual Site Seed Dormancy and Germination Analyses

In the individual site analyses, no statistically significant differences were detected between MON 88701 and the parental conventional control for any of the measured characteristics (*i.e.*, percent germinated, viable hard, dead, or viable firm-swollen seed) in any temperature regime for seed produced at the ARPR and NCME sites. Three statistically significant differences in total were detected between MON 88701 and the conventional control for extronseed produced at the TXPL site (Table F-2). At TXPL, MON 88701 had fewer dead seed than the conventional control at 10/20°C (4.5% vs. 9.5%); MON 88701 had more germinated seed than the conventional control at 20/30°C (92.5% vs. 84.0%); and MON 88701 had fewer abnormal germinated seed than the conventional control at 20/30°C (2.5% vs. 7.3%). Statistically significant differences between MON 88701 and the conventional control for germination characteristics in the individual site analyses were not consistently detected across temperature regimes or the individual site. While some statistically significant differences were detected in the combined site analysis, these statistical differences were within the range of values expected for the commercial reference varieties. Thus, MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control. (See Figure VII-1, *Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods*, step 3, answer "no").

[®] SAS is a registered trademark of SAS Institute, Inc.

		iii shekara a shekara			(0 ⁰ ).	SUL	
		ARPR ¹		NCME ¹	Phis Pois	TXPL ¹	
Temperature	Germination	Mean % (S.E	$(1.)^2$	Mean % (S	£.) ²	Mean % (	$(S.E.)^2$
Regime	Category	MON 88701	Control	MON 88701	Control ³	MON 88701	Control
			all a	y sto die	nte re		
10 °C	Germinated	49.5 (13.5)	41.8 (112)	22.0 (7.2)	24.7 (4.2)	27.0 (7.6)	35.5 (5.5)
	Viable Hard	0.0 (0.0)	0.3 (0.3)		0.7 (0.7)	0.0 (0.0)	0.0 (0.0)
	Dead	16.0 (5.0)	15.0 (3.6)	32.0 (6.5)	26.7 (3.9)	20.5 (6.9)	25.8 (7.3)
	Viable Firm Swollen	34.5 (15.7)	43.0 (13.7)	46.0 (12.2)	48.0 (5.8)	52.5 (11.8)	38.8 (10.3)
20 °C	Germinated	96.0 (0.7)	96.8 (0.5)	94.5 (1.6)	97.3 (0.9)	96.5 (1.5)	92.3 (3.0)
	Viable Hard	0.0 (0.0)	0.0 (0.0)		0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
	Dead	S. S. 40 (0.7)	3.3 (0.5)	0.0 (0.0) 5.5 (1.6) 0.0 (0.0)	2.7 (0.9)	3.5 (1.5)	7.8 (3.0)
	Viable Firm Swollen	96.0 (0.7) 0.0 (0.0) 4.0 (0.7) 0.0 (0.0) 99.0 (0.7)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
30 °C	Germinated	99.0 (0.7)	0 97.0(0.9)	95.8 (1.7)	93.7 (1.9)	95.2 (1.2)	92.3 (2.5)
	Viable Hard	(0.0) 0.0.	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
	Dead	0.0 (0.0) 99.0 (0.7) 0.0 (0.0) 1.0 (0.7) 0.0 (0.0)	3.0 (0.9)	4.3 (1.7)	6.3 (1.9)	4.8 (1.2)	7.8 (2.5)
	Viable Firm Swollen		0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
	at the further any the p						
-	$\checkmark$						

# Table F-2. Comparison of MON 88701 to the Conventional Control for Dormancy and Germination Characteristics of Cottonseed Produced at Each of Three Sites

						2	
		ARPR ¹		NCME ¹	tio' cill	TXPL ¹	
Temperature	Germination	Mean % $(S.E.)^2$		Mean % $(S.E.)^2$	te jilsi	Mean % $(S.E.)^2$	
Regime	Category	MON 88701	Control	MON 88701	Control ³	MON 88701	Control
				the to	90.3 (3.9)		
10/20 °C	Germinated	98.0 (0.7)	95.3 (1.1)	90.3 (2.5)	90.3 (3.9)	95.0 (1.2)	90.0 (2.1)
	Viable Hard	0.0 (0.0)	0.3 (0.3)	0.0 (0.0)	9.0 (0.0)	0.0 (0.0)	0.0 (0.0)
	Dead	2.0 (0.7)	4.3 (0.9)	6.5 (0.6)	6.0 (2.5)	4.5 (0.9)*	9.5 (2.1)
	Viable Firm Swollen	0.0 (0.0)	0.3 (0.3)	3.3(2.9)	3.7 (1.5)	0.5 (0.5)	0.5 (0.3)
10/30 °C	Germinated	973 (0.8)	97.8 (0.9)	93.8 (2.7)	96.7 (0.9)	96.0 (1.4)	91.3 (3.5)
	Viable Hard	0.0 (0.0)	0.0 (0.0)	0.8(0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
	Dead	2.8 (0.8)	2.3 (0.9)	6.3 (27)	3.3 (0.9)	4.0 (1.4)	8.8 (3.5)
	Viable Firm Swollen	5 · 0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
20/30 °C	Normal Germinated	92.0 (4.9)	94.5 (0,3)	84.2 (4.6)	84.7 (3.1)	92.5 (1.3)*	84.0 (7.2)
(AOSA)	Abnormal Germinated	3.8 (1.4)	2.5 (0.3)	8.0 (2.6)	9.0 (3.0)	2.5 (0.9)*	7.3 (2.2)
	Viable Hard	N 0.0 (0.0) 0.0 V	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
	Dead	43 (1.50 10	3.0 (0.6)	7.5 (2.0)	6.3 (0.9)	5.0 (0.7)	8.8 (5.5)
	Viable Firm Swollen	S 0.0 (0.0)	0.0 (0.0)	0.3 (0.3)	0.0 (0.0)	0.0 (0.0)	0.0 (0.0)
	the set of the		- O				

Table F-2. Comparison of MON 88701 to the Conventional Control for Dormancy and Germination Characteristics of **Cottonseed Produced at Each of Three Sites (continued)** S. M

Note: The experimental design for the germination test was a split-plot with four replications and statistical analysis consisted of an analysis of variance (ANOVA) model. 0

*Statistically significant differences detected (a = 0.05) between MON 88701 and the conventional control (n = 11).

¹ In some instances, the total percentage of MON 88701 or the control did not equal 100% due to numerical rounding of the means.

² SE = Standard Error. ³Control – The NCME site only had 3 reps across all temperature regimes compared to 4 reps for other sites and treatments

#### **References for Appendix F**

AOSA. 2010. AOSA Rules for testing seeds Vol. 1: Principles and procedures. Association of Official Seed Analysts, Ithaca, New York.

AOSA. 2010. AOSA Rules for testing seeds Vol. 4: Seedling evaluation. Association of Official Seed Analysts, Ithaca, New York.

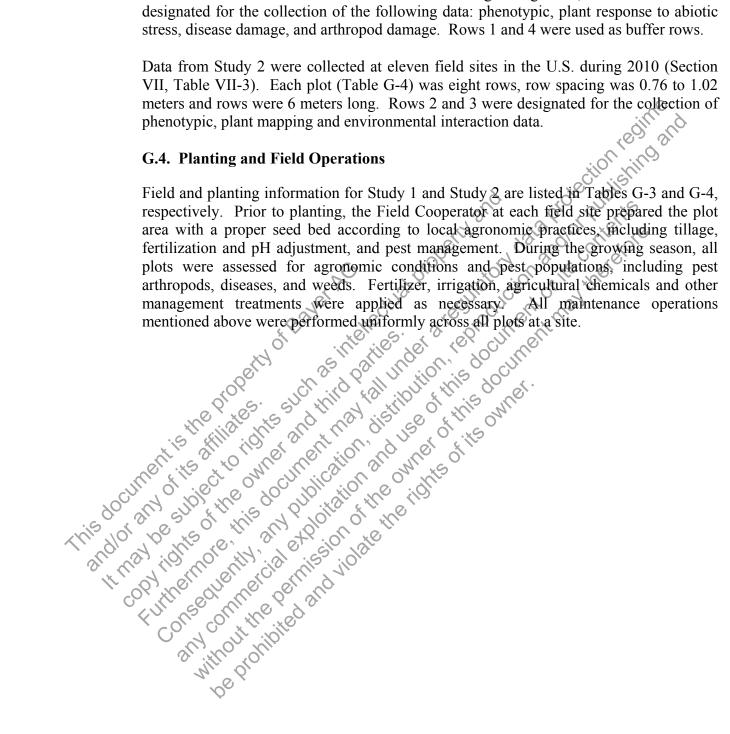
AOSA/SCST. 2010. Tetrazolium testing handbook. Association of Official Seed Analysts

Al Seed A. d Ana and or any of its affiliates, such as intellectual property and and or any of its affiliates, and third parties. -Consequently and publication of the owner of this document may there on the owner of this document may there of the owner of this document in a second contract of the owner of this document in a second contract of the owner of this document in a second contract of the owner of this document in a second contract of the owner of this document in a second contract of the owner of this document in a second contract of the owner of this document in a second contract of the owner of this document in a second contract of the owner of this document in a second contract of the owner owner of the owner o any connectation and violate the indits of this document, may there is the owner. This document is the property of Bayer AG A may be subject to home and thing parties interior and thing parties in the parties of the owner and thing parties in the parties of the owner incent may have a subject to partie and the parties of the owner incent may have a subject to partie and the parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subject to parties of the owner incent may have a subj without the permission of the owner of this documer. 

#### Appendix G: Materials, Methods, Dicamba and Glufosinate Treated Results, and Individual Site Results from the Phenotypic, Agronomic, Plant Mapping, and Environmental Interaction Assessment of MON 88701 under Field Conditions

### G.1. Materials

Data were collected from two different studies during 2010 to evaluate phenotypic, agronomic, and environmental interaction characteristics. In Study 1, MON 88701 not treated with dicamba or glufosinate herbicides was evaluated against the conventional control (Table G-1). In Study 2, MON 88701 not treated with dicamba or glufosinate herbicides and MON 88701 treated with dicamba- and glufosinate herbicides were both evaluated against the conventional control (Table G-2). Assessments were conducted on the agronomic system that includes MON 88701 treated with dicamba and glufosinate herbicides to support the assessment of MON 88701. In Study 1, a total of 11 cotton reference varieties were evaluated among the sites (Table G-1). Seven of the commercial varieties were conventional and four of the commercial varieties were tolerant to glyphosate herbicide. Three conventional reference varieties and one glyphosate-tolerant reference variety were grown at each location. In Study 2, a total of 8 commercial conventional reference varieties were evaluated among the sites. Four commercial conventional reference varieties were planted per site (Table G-2) repro


### G.2. Characterization of the Materials

docum

The presence of absence of the MON 88701 insert in the starting seed of MON 88701 and the conventional control were confirmed by event-specific polymerase chain reaction analyses.
G.3. Field Sites and Plot Design
Field sites in both studies (Table VII-3) are representative of commercial cotton growing areas and are distributed across a geographical area to include a variety of agronomic practices, soils and climatic factors. The researchers at each first. study were planted at each site in a randomized complete-block design with four replications. exci

> Data from Study 1 were collected at fifteen field sites in the U.S. during 2010 (Table VII-3). Each plot (Table G-3) at the ARAU (Arkansas), ARPR (Arkansas), GACH (Georgia), LABU (Louisiana), and SCEK (South Carolina) consisted of 12 rows on 0.91 to 1.02 meter centers and rows were 9.1 meters long. In general, rows 2 and 3 were designated for the collection of following data: phenotypic, plant response to abiotic stress, disease damage, and arthropod damage. Rows 5 and 7 were designated for the collection of arthropod samples. Rows 9 and 10 were designated for the collection of damage data from thrips and heliothine spp. Rows 1, 4, 6, 8, 11, and 12 were used as buffer rows.

Each plot (Table G-3) at the ARTI (Arkansas), GAJE (Georgia), KSLA (Kansas), LACH (Louisiana), NCBD (North Carolina), NCME (North Carolina), NMGA (New Mexico), NMLC (New Mexico), TXPL (Texas), and TXPO (Texas) was 4 rows, row spacing of 0.76 to 1.02 meters and rows were 6.1 meters long. In general, rows 2 and 3 were designated for the collection of the following data: phenotypic, plant response to abiotic stress, disease damage, and arthropod damage. Rows 1 and 4 were used as buffer rows.



с.	. 1		<b>DI</b> (2)	Regulatory
51	te ¹	Material Name	Phenotype ²	Lot Number
A	11	MON 88701	DGT	11268129
A	11	Coker 130	Control	11268128
A	RTI	Phytogen Phy315RF	Glyphosate-Tolerant	11266967
A	RTI	Delta Opal	Conventional	11266158
	RTI	DP435	Conventional	11266762
	RTI	ST474	Conventional	11266156
L	ABU	Bayer FM9058F	Glyphosate-Tolerant	11266968
L	ABU	DP565	Conventional	11266764
L	ABU	SG125	Conventional	11266155
L	ABU	ST474	Conventional	11266156
N	CME	Nex Gen NG3410RF	Glyphosate-Tolerant Conventional	11266969
Ν	CME	DP5415	Conventional	11266157
N	CME	Delta Opal		£1266158
Ν	CME	DP435	Conventional Conventional Conventional Glyphosate-Tolerant Conventional Conventional Conventional	11266762
G	AJE	Bayer FM9058F	Glyphosate-Tolerant	11266968
G	AJE	DP493	Conventional	11266763
G	AJE	DP565	Conventiona	11266764
G	AJE	SG125	Conventional Conventional	11266155
N	CBD	Phytogen Phy315RF ST474 DP5415	way phosale-holerant	11266967
Ν	CBD	ST474 DP5415 Delta Opal	Conventional	11266156
N	CBD	DP5415	Conventional	11266157
Ν	CBD	Delta Opal	Conventional	11266158
T	XPO 6	DP5415 Delta Opal Bayer FM9058F DP435 DP493 DP565 All tex patriotRF SG125 ST474 DP5415	Glyphosate-Tolerant	11266968
T	XPO XPO	DP435 0 2 5 6	Conventional	11266762
	XPO XPO XPO XPO	DP493	Conventional	11266763
T	XPO AN (	DP565	Conventional	11266764
		All tex patriotRF SG125 ST474 DP5415	Glyphosate-Tolerant	11266966
	XPL	SG125	Conventional	11266155
JOC A	XPL OF TO	ST474	Conventional	11266156
ू े, ले	XPL S XPL C XPL C XPL C	DP5415	Conventional	11266157
A	RPR×9 ~.~	Nex Gen NG3410RP	Glyphosate-Tolerant	11266969
A	RPR	ST474	Conventional	11266156
A	RPR	DP493	Conventional	11266763
Ro	RPR	SG125	Conventional	11266155
GA	RAU	Phytogen Phy315RF	Glyphosate-Tolerant	11266967
A	RAD	Delta opal	Conventional	11266158
A	RAU	DP435	Conventional	11266762
A	RAU	ST474	Conventional	11266156
	CEK N Q	Bayer FM9058F	Glyphosate-Tolerant	11266968
S	CEK 🗸	SG125	Conventional	11266155
S	CEK	ST474	Conventional	11266156
	CEK	DP5415	Conventional	11266157

### Table G-1. Starting Seed for Study 1

			Regulatory
Site ¹	Material Name	Phenotype ²	Lot Number
510	Waterial Name	Тиспотуре	
GACH	Nex Gen NG3410RF	Glyphosate-Tolerant	11266969
GACH	Delta opal	Conventional	11266158
GACH	DP435	Conventional	11266762
GACH	DP493	Conventional	11266763
LACH	Phytogen Phy315RF	Glyphosate-Tolerant	11266967
LACH	DP5415	Conventional	11266157
LACH	ST474	Conventional	11266156
LACH	DP435	Conventional	11266762
KSLA	All tex patriotRF	Glyphosate-Tolerant	011266966
KSLA	Delta opal	Conventional	11266158
KSLA	DP435	Conventional	11266762
KSLA	DP493	Conventional	11266763
NMLC	Nex Gen NG3410RF	Glyphosate-Tolerant	11266969
NMLC	DP565	Conventional Conventional	11266764
NMLC	SG125	Conventional	11266155
NMLC	ST474	Conventional	11266156
NMGA	All tex patriotRF	Glyphosate-Tolerant Conventional	11266966
NMGA	DD5/15	Conventional	11266157
NMGA	Delta opal	Conventional	11266158
NMGA	All tex patriotRF DP5415 Delta opal DP435	Conventional	11266762
	DP3413 Delta opal DP435	in the second	

 Table G-1. Starting Seed for Study 1 (continued)

¹ Sites - ARTI = Desha County, Arkansas; LABU = Rapides County, Louisiana; NCME = Caswell County, North Carolina; GAJE = Twiggs County, Georgia; NCBD = Perquimans County, North Carolina; TXPO = San Patricio County, Texas; TXPL = Hale County, Texas; ARPR = Crittenden County, Arkansas; ARAU = Jackson County, Arkansas; SCEK = Barnwell County, South Carolina; GACH = Tift County, Georgia; LACH = Rapides County, Louisiana; KSLA = Pawnee County, Kansa Mexico; NMGA = Dona Ana County, New Mexico. Phenotype abbreviations: DGT = dicamba and glufosinate-tolerant. LACH = Rapides County, Louisiana; KSLA = Pawnee County, Kansas; NMLC = Dona Ana County, New

				Regulatory Lot
	Site ¹	Material Name ²	Phenotype ³	Number
	All	Coker 130	Conventional	11268128
	ARPR	SG125	Conventional	11266155
	ARPR	DP 565	Conventional	11266764
	ARPR	ST 474	Conventional	11266156
	ARPR	DP 5415	Conventional	11266157
	ARTI	SG125	Conventional	11266155
	ARTI	DP 5415	Conventional	11266157
	ARTI	DP 435	Conventional	11266762
	ARTI	FM 989	Conventional	C \$0001810
	GACH	DP 565	Conventional Conventional Conventional Conventional Conventional Conventional	11266764 11266156 10001810 11266158 11266155
	GACH	ST 474	Conventional	11266156
	GACH	FM 989	Conventional	10001810
	GACH	Delta Opal	Conventional	41266158
	GAJE	SG125	Conventional	11266155
	GAJE	SG125 ST 4742	Conventional Conventional	11266156
	GAJE	DP 5415	Conventional	11266157
	GAJE	DP 435	Conventional	11266762
	KSLA	DP 565	Conventional	11242914
	KSLA	DP 5415	Conventional	11266157
	KSLA K	S. Atlas milling the fill	Conventional	11266765
	KSLA	NM 1517-99	Conventional Conventional Conventional Conventional Conventional Conventional	11268233
		O DP 565	Conventional	11266764
	(ACH)	ST 474	Conventional	11266156
	LACH	DP 565 ST 474 DP 5415	Conventional	11266157
, e doci	LACH	Anas NM 1517-99 DP 565 ST 474 DP 5415 FM 989 SGI 25	Conventional Conventional Conventional Conventional Conventional	10001810
. 60	NEBD		Conventional	11266155
~~ \\	NCDA	ST 474	Conventional	11266156
all'	NCBD	DP 435	Conventional	11266762
andle		Delta Opal	Conventional	11266158
ÌC	NCME	\$G125	Conventional	11266155
	< NCME	DB 435	Conventional	11266762
	NCME	FM 989	Conventional	10001810
	NCME	Delta Opal	Conventional	11266158
		×		

 Table G-2.
 Starting Seed for Study 2

				Regulatory				
	Site ¹	Material Name ²	Phenotype ³	Lot Number				
	NMLC	DP 565	Conventional	11266764				
	NMLC	ST 474	Conventional	11266156				
	NMLC	Atlas	Conventional	11266765				
	NMLC	NM 1517-99	Conventional	11268233				
	SCEK	SG125	Conventional	11266155				
	SCEK	ST 474	Conventional	11266156				
	SCEK	Delta Opal	Conventional	11266158				
	SCEK	Atlas	Conventional	11266765 11266762 11266762 11266765 11268233				
	TXPL	SG125	Conventional	11266155				
	TXPL	DP 435	Conventional	11266762				
	TXPL	Atlas	Conventional	011266765				
	TXPL	NM 1517-99	Conventional	11266155 11266762 11266765 10268233 11268129 11268129				
	All	MON 88701 (U)	DGT of	11268129				
	All	MON 88701 (S)	DGT JOL HIO	11268129				
		N° c	in all all all	and and a second second				
	1 ARPR= Critt GAJE = Twigg NCBD = Perqu	enden County, Arkansas; ARTI s County, Georgia; KSLA = Pa iimans County, North Carolina;	- Desila County, Alkalisas,	GACH – The County, Get				
	Ana County, N 2 U = unspraye	TXPL       NM 1517-99       Conventional       10268233         All       MON 88701 (U)       DGT       11268129         All       MON 88701 (S)       DGT       N268129 ¹ ARPR= Crittenden County, Arkansas; ARTI = Desha County, Arkansas, GACH = Tift County, Gec       GAJE = Twiggs County, Georgia; KSLA = Pawnee County, Kansas; LACH = Rapides County, Louis         NCBD = Perquimans County, North Carolina; NCME = Caswell County, North Carolina; NMLC = I         Ana County, New Mexico; SCEK = Barnwell County, South, Carolina; TXPL = Hale County, Texas. ² U = unsprayed, S = sprayed ³ DGT = dicamba and glufosinate tolerant.						
	$^{\circ}DGI = dicam$	DGI = dicamba and glutosinate tolerant. $Given be a first of the second secon$						
		No office all of the or	US OLITS					
	ant is all	to the relation of	s mer of					
	in cites of	N CUILLICO	ONTRES					
	C. 7 10/ 10/ x	ne do un atil the	(10)					
	S. S. S. S.	THIS A POIL OF T	ne					
(his)	10, 10, 15,	a at of to						
all		the all issingly						
~	the of selling	St. Stor Star 9						
	COL HILL COL	alle by Shi						
	Ky on of	N' the to						
		· / · · · / · · · / ·						

ansas, L ansas, L well County Juth Carolina; T. ¹ ARPR= Crittenden County, Arkansas; ARTI = Desha County, Arkansas; GACH = Tift County, Georgia; GAJE = Twiggs County, Georgia; KSLA = Pawnee County, Kansas; LACH = Rapides County, Louisiana; County South CME = Ci COUNTY South ant all of the county South ant all of the county South and distributor and distri NCBD = Perquimans County, North Carolina; NCME = Caswell County, North Carolina; NMLC = Dona Ana County, New Mexico; SCEK = Barnwell County, South Carolina; TXPL = Hale County, Texas. The superior of the owner owne 

		Planting Rate					
Site	Planting Date ¹	(seeds/m)	Plot Size $(m \times m)^2$	Rows/plot	Soil Texture	% Organic Matter	2009 Cropping History
ARAU	5/25/2010	16	9.1 × 0.97	12	soil Texture sandy loam silt loam loamy sand loamy sand loam silt loam		Soybean
ARPR	5/19/2010	16	$9.1 \times 0.97$ 9.1 × 0.91	12	cilt loam	1.0	Corn
ARTI	5/24/2010	16	$6.1 \times 0.97$	4	silt loam	1.0 9.9 2.2 4.0 0.8 2.1 0.6	Cotton
GACH	6/03/2010	16	$9.1 \times 0.91$	12	loamy sand		Corn
GAJE	6/25/2010	16	$61 \times 0.91$	4	loamy sand	0 408	Fallow
KSLA	6/02/2010	16	$61 \times 0.76$	4	Joam	2.1	Corn
LABU	5/20/2010	16	$9.1 \times 1.02$	120	silt loam	0.6	Cotton
LACH	5/22/2010	16	$6.1 \times 1.02$	4	very fine sandy	0.8	Soybean
NCBD	5/21/2010	16	$61 \times 0.97$	4	loamy sand	16	Cotton
NCME	6/15/2010	16	6.0×0.76	4	loamy sand	0.9	Soybean
MGA	5/20/2010	16	6.1 × 0.97	4	sandy loam	1.0	Cotton
MLC	5/19/2010	16	6.1 × 0.97	AND AND	loam	1.0	Cotton
SCEK	5/22/2010	16	$9.1 \times 1.02$	×12 . 0	S loamy sand	1.5	Corn
TXPL	5/25/2010	16	$6.1 \times 1.02$	4 JU X	Clay loam	0.5	Corn
ГХРО	5/21/2010	16 0	6.1×0.76	XA S	sandy clay loam	1.1	Corn
		NO XC		191,0 x	the off		
Month-day Length × v	vidth. vidth. This docume and of an and of an thomas the copy	A CONSCONT	9.1 $\times$ 1.02 6.1 $\times$ 1.02 6.1 $\times$ 1.02 6.1 $\times$ 0.97 6.1 $\times$ 0.97 6.1 $\times$ 0.97 6.1 $\times$ 0.97 9.1 $\times$ 1.02 6.1 $\times$ 1.02 6.1 $\times$ 1.02 6.1 $\times$ 0.76 6.1 $\times$ 0.76 6.1 $\times$ 0.97 9.1 $\times$ 1.02 6.1 $\times$ 0.76 6.1 $\times$ 0.97 9.1 $\times$ 1.02 6.1 $\times$ 0.97 9.1 $\times$ 1.02 6.1 $\times$ 0.97 9.1 $\times$ 1.02 6.1 $\times$ 0.97 9.1 $\times$ 1.02 6.1 $\times$ 0.97 6.1 $\times$ 0.97 9.1 $\times$ 1.02 6.1 $\times$ 0.97 6.1 $\times$ 0.97 6.1 $\times$ 0.97 6.1 $\times$ 0.97 6.1 $\times$ 0.97 6.1 $\times$ 0.97 6.1 $\times$ 0.97 6.1 $\times$ 0.97 6.1 $\times$ 0.97 6	and uner and the indication of	sandy loam silt loam loamy sand loamy sand loam silt loam very fine sandy loamy sand sandy loam loam sand sandy loam sandy olay loam		

Table C 3 Study 1 Field and Planting Information

Table G-4	Study 2 Field a	and Planting ]	Information			dime.d	
		Planting Rate		D (1)	Soil Texture Clay Silt loam Loamy sand Loamy sand		
Site Code	Planting Date ¹	(seeds/m)	Plot Size $(m \times m)^2$	Rows/plot	Soil Texture	% Organic Matter	2009 Cropping History
ARPR	5/25/2010	16	6 × 0.91	8	Soil Texture Clay Silt loam Loamy sand Loamy sand Silt loam Loam Loam	1.3	Milo
ARTI	5/24/2010	16	6  imes 0.97	8	Silt loam	0 ¹¹ × 1.6	Cotton
GACH	5/26/2010	16	$6 \times 0.91$	8	Loamy sand	1.0	Soybean
GAJE	6/25/2010	16	6 × 0.91	8	Loamy sand	0.8	Fallow
KSLA	6/02/2010	16	6 × 0.76	8	Loam	3.1	Soybean
LACH	5/21/2010	16	6 x 1.02 🚫	80	Silt loam	0.6	Cotton
NCBD	5/27/2010	16	6 x 0.97	8	Loam O	2.2	Cotton
NCME	6/11/2010	16	6 x 0.76	8	Loamy sand	1.0	Soybean
NMLC	5/17/2010	16	6×0.97	8	Sandy loam	1.0	Cotton
SCEK	5/19/2010	16	6 x 1.02	8	C Loamy sand	1.3	Corn
TXPL	5/25/2010	16	6 x 1.02	ALL ROOM	Clay Ioam	0.5	Corn
² Length × w	6/11/2010 5/17/2010 5/19/2010 5/25/2010 year. idth.	16 16 16 16 16 16 16 16 16 16	$\frac{6 \times 0.97}{6 \times 0.76}$ $\frac{6 \times 0.97}{6 \times 1.02}$ $\frac{6 \times 1.02}{6 \times 1.02}$	districe of and use of and use of and use of and use of a state of	Soil Texture Clay Silt loam Loamy sand Loamy sand Loamy sand Clay loam Clay loam		
Monsanto Co	mnany	<i>b</i> e		12-CT-244U			539 of 62

Table C 4 Study 2 Field and Planting Informatic

#### G.5. Phenotypic Observations

In both Study 1 and Study 2, the description of the characteristics measured and the designated developmental stages when observations occurred are listed in Table VII-1.

#### G.6. Environmental Observations

In both Study 1 and Study 2, environmental interactions (*i.e.*, interactions between crop plants and their receiving environment) were used to characterize MON 88701 by evaluating plant response to abiotic stress, disease damage, and arthropod-related damage using qualitative methods described in section G.7. In addition, pest damage and pestand beneficial-arthropod abundance were evaluated in Study 1 using the quantitative methods described in the following sections (G.7 and G.8).

### G.7. Plant Response to Abiotic Stress, Disease Damage, and Arthropod-Related Damage

In Study 1 and Study 2, plots containing MON 88701 not treated with dicamba and glufosinate herbicides and the conventional control were evaluated qualitatively at all sites for differences in plant response to abiotic stress, disease damage, and arthropodrelated damage. Three abiotic stressors, three diseases, and three arthropod pests were evaluated four times during the growing season at the following intervals:

Observation 1: approximately 30 days after planting (DAP) Observation 2: approximately 60 DAP of this owner Observation 2: approximately 60 DAP Observation 3) approximately 90 DAP Observation 4: approximately 120 DAP

Method used for selecting stressors at each field site:

- This docury. Prior to each data collection, cotton was surveyed in proximity to the study area or the border rows of the study for abiotic stressors (*e.g.*, drought), diseases (*e.g.*, Alternaria black spot) and arthropod damagete a thria black spot), and arthropod damage (e.g., thrips).
  - 2. Cooperators chose three abiotic stressors, three diseases, and three arthropod species that are actively causing damage for subsequent evaluation in the study plots. Cooperators were requested to select additional stressors if present.
  - 3. If fewer than three abjotic stressors, diseases, or arthropod species were present, the cooperator chose additional abiotic stressors, diseases, and arthropod species that are known to commonly occur in that geographical region and cause damage at the study site at that time.
    - 4. All plots at a site were rated for the same abiotic stressors, diseases, and arthropod pests at a given observation, even if that selected stressor was not present in some or all of the plots.
    - 5. If a selected stressor was not present, the cooperator recorded the rating as "0" (= none).

As indicated above, the researcher at each field site chose abiotic stressors, diseases, and arthropod pests that were either actively causing plant injury in the study area or were likely to occur in cotton during the given observation period. Therefore, abiotic stressors, diseases, and arthropod pests assessed often varied between observations at a site and between sites. Qualitative plant response to abiotic stress and disease damage and arthropod-related damage observations were collected from each plot using a continuous 0 - 9 scale of increasing severity (in Study 2, qualitative abiotic and biotic stressor were not evaluated on plots with MON 88701 treated with dicamba and glufosinate herbicides). Data were collected numerically and then placed into one of the following categories for reporting purposes:

Rating	Severity of plant damage
0	none (no symptoms observed)
1 – 3	slight (symptoms not damaging to plant development)
4 - 6	moderate (intermediate between slight and severe)
7 - 9	severe (symptoms damaging to plant development)
	17 2 10 10 10

In Study 1, a quantitative assessment for differences in thrips and heliothine damage on MON 88701 and the conventional control plants was conducted at ARAU, ARPR, GACH, LABU, and SCEK,

GACH, LABU, and SCEK. Thrips damage was assessed quantitatively from rows 9 and 10 of each plot from 10 randomly selected plants using the arthropod-specific 0 – 5 rating scales of increasing severity listed below. Damage was rated at approximately 14, 21, and 28 DAP.

-		
	Rating	Severity of plant damage
	O S S	No Thrips or damage visible
	6	Few thrips present; no brownish tinge along the edges of leaves and silvering
200	1, 5,	on the underside of leaves
is i	25	Numerous thrips present; newest leaves show only a slight brownish tinge
(U. Olo.	No di	along the edges of leaves and some silvering on the underside of some leaves
S. C.	3	Numerous thrips present; newest leaves show considerable browning along
/~ G	p? the	the edges of leaves and some silvering on the underside of most leaves
_	< 4 ~	Numerous thrips present; extensive silvering of leaves with some curling of
	C a	leaves
	5 %	Numerous thrips present; extensive silvering of leaves, leaves often curl
	~	upwards and the plant is generally ragged in appearance
		<u> </u>

Heliothine damage was assessed from rows 9 and 10 of each plot. Visual observations were conducted at 45, 60, 75 and 90 DAP to record total number of fruiting bodies (flower buds, flowers and bolls), number of damaged fruiting bodies and number live larvae on the top 7 nodes from 10 randomly selected plants.

#### G.8. Arthropod Abundance

Pest and beneficial arthropods were collected at the ARAU, ARPR, GACH, LABU, and SCEK sites four times during the growing season at the following intervals:

Collection 1: 30 DAP Collection 2: 60 DAP Collection 3: 90 DAP Collection 4: 120 DAP

Arthropods were collected using a vertical beat sheet sampling method (Drees and Rice, 1985). The beat sheet was approximately  $0.91 \times 0.91$  m, constructed of a stiff material and had a collection trough at the bottom. The sheet was placed in a designated row and the collecting trough was positioned near the base of the plants. Plants were shaken vigorously along the length of the beat sheet to dislodge arthropods from the plants. This sample constituted a subsample. Two subsamples were collected form both rows 5 and 7 for a total of 4 subsamples per plot. The subsamples collected within the same row were at least 1.5 m apart. The four sub-samples were combined into one pre-labeled container and placed on freezer ice packs and sent to a laboratory to be enumerated.

A maximum of the five pest and five beneficial arthropods were enumerated for each collection. For each individual collection (e.g., Collection 1, ARPR site), four randomly selected samples were examined to determine presence and relative abundance of up to five pest- and beneficial-arthropods to be enumerated for that particular collection and site. Thus, the suite of pest- and beneficial-arthropods assessed often varied between collections from a site and between sites due to differences in temporal activity and (nts of its geographical distribution of arthropod taxa. on and owner

## G.9. Data Assessment

Experienced scientists familiar with the experimental design and evaluation criteria were involved in all components of data collection, summarization, and analysis. Study personnel assessed that measurements were taken properly, data were consistent with expectations based on experience with the crop, and the experiment was carefully monitored. Prior to analysis, the overall dataset was evaluated for evidence of biologically relevant changes and for possible evidence of an unexpected plant response. Any unexpected observations or issues during the trials that would impact the trial objectives were noted. Data were then subjected to categorical or statistical analysis as indicated G.10 (categorical analysis) and G.11 (statistical analysis).

#### G.10. Environmental Interactions Evaluation Criteria for Qualitative Data

The following data were categorical and not statistically analyzed: plant vigor at 14 DAP, plant vigor at 30 DAP, plant response to abiotic stress, disease damage and arthropod damage. MON 88701 and the conventional control were considered different in plant response rating if the range of vigor or stressor values did not overlap between the

MON 88701 and the conventional control across all four replications. Any observed differences between the MON 88701 and the conventional control were assessed for biological significance in the context of the range of the commercial reference materials, and for consistency in other observation times and sites. Differences that are not consistently observed at other times and sites are considered not biologically meaningful in terms of plant pest potential or an adverse environmental impact.

#### G.11. Statistical Analysis

Analysis of variance was conducted on the quantitative data according to a randomized complete block design using SAS[®] Version 9.2 (SAS, 2008). The level of significance was predetermined to be  $\alpha$ =0.05. In separate analysis, MON 88701 not treated with dicamba or glufosinate herbicides from Study 1, MON 88701 not treated with dicamba or glufosinate herbicides from Study 2, and MON 88701 treated with dicamba and glufosinate herbicides were each compared to the conventional control within each site (individual site analysis) and in a combined-site analysis. In both Study 1 and Study 2, no statistical comparisons were made between MON 88701 and the reference varieties. The reference range for each characteristic analyzed across sites was determined from the minimum and maximum mean values from the reference cotton varieties planted among the sites, within a study.

MON 88701 not treated with dicamba or glufosinate herbicides from Study 1 was statistically compared to the conventional control within each site (individual site analysis) and in a combined-site analysis, in which the following data were pooled across sites: stand count at 14 DAP, stand count at 30 DAP final stand count at harvest, plant height at 30 DAP, plant height at harvest, nodes above white flower (3 observations), seed cotton yield, seed index, total seed per boll, total mature seed per boll, total immature seed per boll, boll weight, fiber micronaire, fiber elongation, fiber strength, fiber uniformity, fiber length, thrips damage and percent heliothine damaged fruiting bodies and number of five heliothine larvae. Pest and beneficial arthropod abundance data were statistically analyzed only within individual observations/ collections and sites due to the variation in temporal activity and geographical distribution of the taxa. The reference range for pest- and beneficial-arthropod abundance and damage of each arthropod evaluated from a given collection/observation and site was determined from the minimum and maximum mean abundance or damage values collected from the reference varieties at the site. Data excluded from Study 1 (Table G-5) and the reasons for their exclusion are listed in the study file. Exclusion of these data did not adversely affect the quality of the study.

MON 88701 not treated with dicamba or glufosinate herbicide and MON 88701 treated with dicamba and glufosinate herbicides from Study 2 were each compared to the conventional control within each site (individual site analysis) and in a combined-site analysis, in which the following data were pooled across sites: stand count at 14 DAP, stand count at 30 DAP, final stand count, plant height at 30 DAP, plant height at harvest,

[®] SAS is a registered trademark of the SAS Institute.

nodes above white flower (3 observations), seed cotton yield, number of mainstem nodes per plant, number of nodes to first fruiting branch, total number of bolls per plant, total number of first-position bolls per plant, total number of vegetative bolls per plant, percent retention of first-position bolls, percent first-position bolls of total bolls per plant, seed index, total seed per boll, total mature seed per boll, total immature seed per boll, weight per boll, fiber micronaire, fiber elongation, fiber strength, fiber uniformity, and fiber length. Data excluded from Study 2 (Table G-6) and the reasons for their exclusion are listed in the study file. Exclusion of these data did not adversely affect the quality of the study.

#### G.12. Phenotypic Results from 2010 - Results and Discussion

The individual site data will be reported in three separate comparisons: Study 1 - MON 88701 not treated with dicamba or glufosinate herbicides vs. the conventional control; Study 2 - MON 88701 not treated with dicamba or glufosinate herbicides vs. the conventional control; and, Study 2 - MON 88701 treated with dicamba and glufosinate herbicides vs. the conventional control. The agronomic system that includes MON 88701 treated with dicamba and glufosinate herbicides was assessed to support the assessment of MON 88701.

### G.12.1. Individual Phenotypic Characteristics - Results and Discussion for Study 1 - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides

In the individual site analysis of MON 88701 data, a total of 59 statistically significant differences were detected out of a total of 285 comparisons made between MON 88701 and the conventional control (Tables G-7, G-8 and G-9). At LACH (Table G-7), MON 88701 had a lower stand count (plants per plot) than the conventional control at 14 DAP (100.8 vs. 127.8), 30 DAP (001.8 vs. 125.0) and at harvest (63.3 vs. 73.5). At DAP at LACH (12.4 vs. 14.5), NCBD (20.0 vs. 24.5) and NMLC (6.7 vs. 8.3). Plants of MON 88701 were shorter (cm) than the conventional control at 30 MON 88701 were shorter (cm) than the control at harvest at GAJE (87 1 vs. 0° C) were (129.9 vs. 142.0), LACH (120.5 vs. 140.5). NOBT 48.4). Plants of MON 88701 had more nodes above white flower at observation 1 at KSLA (50 vs. 4.4), NMLC (8.4 vs. 7.4) and TXPL (5.0 vs. 4.5). Plants of MON 88701 had more nodes above white flower at observation 2 at ARPR (7.1 vs. 6.6) and KSLA (4.2 vs. 3.2). Plants of MON 88701 had more nodes above white flower at observation 3 at KSLA (4.6 vs. 3.5), SCEK (5.2 vs. 4.6) and TXPO (6.4 vs. 5.7). Plants of MON 88701 a higher seedcotton yield (Kg/ha) than the conventional control at ARAU (2912.9 vs. 2166.8) and at GAJE (2320.4 vs. 1843.1). Plants of MON 88701 (Table G-8) had a lower seed index (grams of 100 fuzzy seed) than the conventional control ARPR (9.4 vs. 10.3), ARTI (10.1 vs. 10.9), GAJE (8.3 vs. 9.8), KSLA (11.8 vs. 12.5), LABU (9.4 vs. 10.5), LACH (8.8 vs. 9.8), NCBD (9.0 vs. 9.8), NCME (9.7 vs. 10.6), and NMGA (10.6 vs. 11.4). Plants of MON 88701 had more total seed per boll than the conventional control at ARAU (31.6 vs. 29.6), ARPR (29.4 vs. 27.3), KSLA (31.2 vs. 28.1), NCME (31.7 vs. 27.5), NMGA (34.4 vs. 30.3) and NMLC (31.0 vs. 25.9). Plants of MON 88701 had more mature seed per boll than the control at ARPR (27.3 vs. 21.7), ARTI (20.2 vs. 17.6),

KSLA (29.9 vs. 26.6), NCME (28.4 vs. 22.1), NMGA (32.9 vs. 28.8), and NMLC (26.5 vs. 21.6). Plants of MON 88701 had fewer immature seed per boll than the conventional control at ARPR (2.1 vs. 5.7), ARTI (5.7 vs. 9.0), and SCEK (6.5 vs. 11.1). Plants of MON 88701 (Table G-9) had lower boll weight (grams per boll) than the conventional control at ARTI (4.1 vs. 4.8) and GACH (4.2 vs. 4.5) and a higher boll weight at NMLC (5.1 vs. 4.6). Plants of MON 88701 had higher fiber micronaire (mic units) than the conventional control at NMGA (5.1 vs. 4.9) and TXPL (4.9 vs. 4.5). Plants of MON 88701 had greater fiber elongation (%) than the conventional control at ARAU (6.8 vs. 6.2) and lower fiber elongation at NCBD (5.7 vs. 6.6). Plants of MON 88701 had greater fiber strength (g/tex) than the conventional control at KSLA (31.5 vs. 30.3), NCBD (32.6 vs. 30.9), NMLC (31.2 vs. 30.0), and TXPL (34.1 vs. 32.2). Plants of MON 88701 had greater fiber uniformity than the conventional control at TXPL (85.4 vs. 84.1%) and shorter cotton fiber at the NCME (2.8 vs. 2.9 cm).

The statistical differences detected in the individual site analyses for stand count at 14 DAP, stand count at 30 DAP, final stand count at harvest, nodes above white flower at observation 1, seedcotton yield, immature seed per boll, boll weight, micronaire, fiber elongation, fiber uniformity, and fiber length were not detected in the combined-site analysis. Therefore, the differences between MON 88701 and the conventional control were not indicative of a consistent plant response and MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Figure VII-1, Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods, step 2, answer "no"). While statistical differences were detected in the combined-site analysis for plant height at 30 DAP at three sites, plant height at harvest at five sites, nodes above white flower observation 2 at two sites, and nodes above white flower observation 3 at three sites, seed index at nine sites, total seed per boll at six sites, and mature seed per boll at six sites and fiber strength at four sites, the assessed phenotypic value of MON 88701 for these phenotypic characteristics were within their respective reference range. Therefore, the differences plant response and MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Figure VII-1, Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods, step 3, answer "no").

#### G.12.2. Individual Phenotypic Characteristics - Results and Discussion for Study 2 - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides

In the individual site analysis for MON 88701 data, 43 statistically significant differences were detected out of 209 comparisons between MON 88701 and the conventional control (Table G-10, G-11 and G-12). At 30 DAP, plants of MON 88701 were shorter (cm) than the conventional control at KSLA (15.7 vs. 18.3), LACH (13.5 vs. 15.9), and NCME (17.2 vs. 19.7 cm). At harvest, plants of MON 88701 were shorter (cm) than the conventional control at GAJE (77.4 vs. 92.6), KSLA (113.5 vs. 127.0 cm), LACH (154.4 vs. 180.0), and NCME (71.4 vs. 85.0). Plants of MON 88701 had more nodes above white flower than the conventional control at observation 1 at GACH (5.9 vs. 5.3), at

observation 2 at NCBD (4.8 vs. 3.9) and TXPL (5.5 vs. 5.1) and at observation 3 at GACH (4.1 vs. 3.6) and KSLA (3.7 vs. 2.5). Plants of MON 88701 had higher seedcotton yield than the conventional control at KSLA (4,487.0 vs. 3,726.5 kg/ha) and NMLC (1,938.4 vs. 1,479.3 kg/ha). Plants of MON 88701 had a lower seed index (gram of 100 seed) than the conventional control at ARPR (8.8 vs. 10.0), ARTI (9.9 vs. 12.0), GAJE (8.5 vs. 10.4), KSLA (11.7 vs. 12.8), LACH (9.4 vs. 10.3), NCBD (8.8 vs. 10.5), NCME (8.8 vs. 10.2), SCEK (8.5 vs. 9.8), and TXPL (9.9 vs. 11.0). Plants of MON 88701 had more total seed per boll than the conventional control at ARPR (26.8 vs. 23.9), KSLA (28.4 vs. 24.9), and NMLC (33.8 vs. 30.7). Plants of MON 88701 had more mature seed per boll than the conventional control at ARPR (24.2 vs. 15.9), ARTI (23.7 vs. 18.0), GAJE (15.0 vs. 11.6), and KSLA (25.9 vs. 22.7). Plants of MON 88701 had fewer immature seed per boll than the conventional control at ARPR (2.6 vs. 8.0) and ARTI (4.6 vs. 8.9). Plants of MON 88701 had greater weight per boll than the conventional control at KSLA (5.8 vs. 5.3 g/boll) and NMLC (5.7 vs. 5.1 g/boll). Plants of MON 88701 had higher fiber micronaire than the conventional control at NMLC (4.9 vs. 4.7 mic units), lower fiber elongation at ARPR (5.0 vs. 5.7%), higher fiber strength (g/tex) at KSLA (30.4 vs. 29.4), NMLC (30.1 vs. 27.3), and TXPL (32.0 vs. 31.0). Plants of MON 88701 had higher fiber uniformity (%) than the conventional control at KSLA (84.2 vs. 83.3) and NMLC (834 vs. 81.1 %) and shorter fiber length (cm) at ARPR (2.8 vs. 2.9) and NCBD (2.8 vs. 2.9).

The statistical differences detected in the individual site analysis for nodes above white flower (observations) and 3), seedcotton yield, immature seed per boll, weight per boll, fiber micronaire, fiber elongation, fiber uniformity, and fiber length were not detected in the combined-site analysis. Therefore, the differences between MON 88701 and the conventional control were not indicative of a consistent plant response and MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control See Figure VII-1, Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods, step 2, answer "no"). Although statistical differences were detected for plant height at 30 DAP at three sites, plant height at harvest at four sites, nodes above white flower observation 2 at two sites, seed index at nine sites, total seed per boll at three sites, and mature seed per boll at four sites and fiber strength at three sites, the assessed values of MON 88701 for the combined-site analysis were within their respective reference range. Therefore, the differences between MON 88701 and the conventional control were not indicative of a consistent plant response and MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Figure VII-1, Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods, step 3, answer "no").

## G.12.3. Combined-site and Individual Site Phenotypic Characteristics - Results and Discussion for Study 2 - MON 88701 Treated with Dicamba and Glufosinate Herbicides

To support the assessment of MON 88701, these assessments were also conducted on the agronomic system that includes MON 88701 treated with dicamba and glufosinate

In the combined-site analysis (Table G-13), no statistically significant herbicides. differences were detected between MON 88701 treated with dicamba and glufosinate herbicides and the conventional control for stand count at 14 DAP, stand count at 30 DAP, stand count at harvest, number of nodes above white flower observation 3, seedcotton vield, immature seed per boll, weight per boll, fiber micronaire, fiber elongation, fiber uniformity and fiber length. Therefore, the lack of differences in the above characteristics supports a conclusion that MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Figure VII-1, Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods, step 2, answer "no"). The following statistically significant differences were detected in the combined-site analysis. Plants of MON 88701 were shorter (cm) than the conventional control at 30 DAP (18.1 vs. 19.2) and at harvest (98.4 vs. 105.0). Plants of MON 88701 had a higher number of nodes above white flower at observation 1 (6.7 vs. 6.4) and at observation 2 (5.6 vs. 5.2), lower seed index (9.5 vs. 10.7 g per 100 fuzzy seed), more seed per boll (28.5 vs. 27.0), more mature seed per boll (22.8 vs. 20.1), and, increased fiber strength (31.2 vs. 30.2 g/tex). However, the mean values for the above characteristics were within the reference range. Thus, MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control.

In the individual site analysis for MON 88701 plant growth and development data (Table G-14 - G-16), a total of 41 statistically significant differences were detected out of a total of 209 comparisons made between treated MON 88701 and the conventional control. Plants of MON 88701 were shorter than the conventional control at 30 DAP at GAJE (23.2 vs. 26.0 cm). Plants of MON 88701 were shorter (cm) than the conventional control at harvest at GAJE (81.7 vs. 92.6), KSLA (113.6 vs. 127.0), LACH (164.8 vs.180.0) and NCME (75.7 vs. 85.0). Plants of MON 88701 had more nodes above white flower at observation 1 than the conventional control at LACH (8.6 vs. 7.6) and TXPL vs. 5.1). Plants of MON 88701 had lower and 3.0), Plants of MON 88701 had lower and 3.0), Plants of MON 88701 had lower and MO Plants of MON 88701 had a lower seed index (g/100 fuzzy seed) than the conventional control at ARPR (9.1 vs. 10.0). ARTL (9.6 vs. 12.0). CALCULUSE (10,4), LACH (9.5 vs. 10.3), NCBD (9.2 vs. 10.5), NCME (8.9 vs. 10.2), SCEK (8.5 vs. (9.8), and TXPL (9.9 vs 11.0). Plants of MON 88701 had more total seed per boll than the conventional control at the ARPR (26.1 vs. 23.9) and GACH (29.7 vs. 27.4). Plants of MON 88701 had more mature seed per boll than the conventional control at ARPR (23.2 vs. 15.9) ARTI (22.5 vs. 18.0) and GACH (27.2 vs. 23.4). Plants of MON 88701 had fewer inimature seed per boll than the conventional control at ARPR (2.9 vs. 8.0) and ARTI (5.3 vs. 8.9). Plants of MON 88701 had higher fiber micronaire than the control at NMLC (4.9 vs. 4.7 mic units) and higher fiber strength (g/tex) at GACH (31.0 vs. 29.5), KSLA (30.7 vs. 29.4), LACH (31.3 vs. 29.9), NMLC (29.3 vs. 27.3), SCEK (30.7 vs. 30.0) and the TXPL (33.0 vs. 31.0). Plants of MON 88701 had higher fiber uniformity

(%) than the conventional control at KSLA (84.3 vs. 83.3) and lower at SCEK (82.5 vs. 83.9). Plants of MON 88701 had shorter fiber length (cm) at SCEK (2.7 vs. 2.8).

The statistical differences detected in the individual site analysis for nodes above white flower observations 3 at three locations, seedcotton yield at two locations, immature seed per boll at two locations, fiber micronaire at one location, fiber uniformity at two locations and fiber length at one location were not detected in the combined-site analysis (Table G-13). Therefore, the differences between MON 88701 and the conventional control were not indicative of a consistent plant response and MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control. (See Figure VII-1, Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods, step 3, answer "no"). Although statistical differences were detected for plant height at 30 DAP at one site, plant height at harvest at four sites, nodes above white flower observation 1 at two sites, nodes above white flower observation 2 at three sites, seed index at nine sites, total seed per bolk at two sites, and mature seed per boll at three sites and fiber strength index at 6 sites, the assessed values of MON 88701 for the combined-site analysis were within their respective reference range. Therefore, the differences between MON 8870 and the conventional control were not indicative of a consistent plant response and MQN 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Figure VII-1, Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods, step 3, answer "no") 90c1

## G.13. Plant Mapping Results and DiscussionG.13.1. Individual Site Plant Mapping Results for MON 88701 Not Treated with Dicamba or Glufosinate Herbicides - Results and Discussion.

(20.9 vs. 19.8) and a fewer number of nodes to the first fruiting branch at GACUL (27.9) and GAJE (5.0 vs. 5.8). Plants of MON 2000 and GAJE (5.0 vs. 5.8). NCME (6.8 vs. 4.2) and NMLC (6.7 vs. 4.5). Plants of MON 88701 had more first-position bolls pet plant compared to the same compared to the conventional control at KSLA (19.1 vs. 20.6) and more total bolls at position bolls per plant compared to the conventional control at NCME (3.5 vs. 2.5), NMLC (4.4 vs. 3.0) and TXPL (7.8 vs. 7.1) and more vegetative bolls per plant at NCME (1.0 vs. 0.1). Plants of MON 88701 retained a higher percentage (%) of firstposition bolls per plant compared to the conventional control at the NCME (35.6 vs. 23.9) and NMLC (30.1 vs. 21.3) and a higher percent of first-position bolls per plant relative to total bolls per plant at GAJE (67.4 vs. 61.8) and SCEK (73.2 vs. 65.7).

> The statistical differences (Table G-17) detected between MON 88701 and the control in the individual site analysis for total mainstem nodes per plant at one location, the number of nodes per plant to the first fruiting branch at two sites, total bolls per plant at three sites, total vegetative bolls per plant at one site, percent first-position boll retention per plant at two sites and percent first-position bolls per plant relative to total bolls per plant

at two sites were not detected in the combined-site analysis (Table VII-6). Therefore, the differences between MON 88701 and the conventional control were not indicative of a consistent plant response and MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Figure VII-1, *Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods*, step 2, answer "no"). Although statistical differences were detected between the MON 88701 and the conventional control for total first-position bolls at three sites (Table G-17), the assessed values of MON 88701 for the combined-site analysis were within their respective reference range. Therefore, the differences between MON 88701 and the conventional control were not indicative of a consistent plant response and MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Figure VII-1, *Schematic Diagram of Agronomic and Phenotypic Data Interpretation MON 88701* and the conventional control were not indicative of a consistent plant response and MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Figure VII-1, *Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods*, step 3, answer "no").

### G.13.2. Combined-site and Individual Site Plant Mapping Results for MON 88701 Treated with Dicamba and Glufosinate Herbicides - Results and Discussion.

To support the assessment of MON 88701, plant mapping assessments were also conducted on the agronomic system that includes MON 88701 treated with dicamba and glufosinate herbicides. In the combined-site analysis (Table Gel8) of plant mapping parameters, no statistically significant differences were detected between MON 88701 and the conventional control for total mainstem nodes per plant, the number of nodes per plant to the first fruiting branch, total bolls per plant, total vegetative bolls per plant, percent first-position boll retention per plant and percent first-position bolls per plant relative to total bolls per plant. Therefore, the lack of differences in the above characteristics supports a conclusion that MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional higher number of first-position bolls per plant compared to the conventional control (5.2 vs. 4.6). However, the mean values of MON 88701 were within the reference. Thus, MON 88701 is unlikely to have environmental impact compared to the conventional control. Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods, step 3, answer "no²} (See Figure VII-1. answer "no"). Ó

In the individual site analysis, 15 statistically significant differences were detected out of 77 comparisons between MON 88701 treated with dicamba and glufosinate herbicides compared to the conventional (Table G-19). Plants of MON 88701 had more mainstem nodes per plant compared to the conventional control at NCBD (16.5 vs. 14.8) and a fewer number of nodes to the first fruiting branch at GACH (6.5 vs. 7.9) and GAJE (5.1 vs. 5.8). Plants of MON 88701 had a higher number of total bolls per plant compared to the conventional control at NCME (7.1 vs. 4.2), NMLC (7.7 vs. 4.5) and TXPL (14.3 vs. 11.3) and a higher number of first-position bolls per plant at NCBD (6.5 vs. 5.5), NCME (3.4 vs. 2.5), NMLC (4.7 vs. 3.0) and TXPL (8.1 vs. 7.1). Plants of MON 88701 had

more vegetative bolls per plant compared to the convention control at NCME (1.1 vs. 0.1) and less at SCEK (0.3 vs. 0.7). Plants of MON 88701 retained a higher percent of first-position bolls compared to the control at NCME (33.7 vs. 23.9) and NMLC (32.2 vs. 21.3) and had a higher percentage of first-position bolls per plant relative to total bolls per plant at the GACH (45.4 vs. 36.6).

The statistical differences detected in the individual site analysis (Table G-19) for total mainstem nodes per plant, the number of nodes per plant to the first fruiting branch, total bolls per plant, total vegetative bolls per plant, percent first-position boll retention per plant and percent first-position bolls per plant relative to total bolls per plant were not detected in the combined-site analysis (Table G-18). Therefore, the differences between MON 88701 and the conventional control were not indicative of a consistent plant response and MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Figure VII-1, Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods, step 2, answer "no"). Although statistical differences were detected for the total number of firstposition bolls at four sites (Table G-19), the assessed values of MON 88701 for the combined-site analysis were within their respective reference range. Therefore, the differences between MON 88701 and the conventional control were not indicative of a consistent plant response and MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Figure VII-1, Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods, step 3, answer "no"). 20 2º

### G.14. Individual Site Environmental Interactions - Results and Discussion

G.14.1. Individual Site Environmental Interactions - Results and Discussion -MQN 88701 Not Treated with Dicamba or Glufosinate Herbicides - Study 1

(Qualitative Data Assessment) In an individual site assessment, no differences were observed between MON 88701 and the conventional control for any 45 discussed by the second seco stressors, including compaction, drought/dry, flood, hail, heat, nutrient deficiency, wet soil/excess precipitation and wind damage (Table C 20)

> In an individual site assessment, no differences were observed between MON 88701 and the control for any of the 170 comparisons for the assessed diseases, including anthracnose, Ascochyta leaf blight, bacterial blight, boll rot, cotton leaf rust, damping off, Fusarium wilt deaf spots, Pythium, reniform nematode, Rhizoctonia, root-knot nematode, *Thielaviopsis*, and *Verticillium* wilt (Table G-21)

> In an individual site assessment, no differences were observed between MON 88701 and the control for any of the 159 comparisons for the assessed arthropod stressors, including aphids, beet armyworms, cut worms, fall armyworms, fleahoppers,

grasshoppers, heliothines, southern corn rootworm beetles, soybean loopers, spider mites, stink bugs, tarnished plant bugs, thrips, and white flies (Table G-22).

#### (Quantitative Data Assessment)

#### Thrips Damage

A total of 15 thrips damage comparisons (three observation events  $\times$  5 sites) were made between MON 88701 and the conventional control in the individual site analysis (Table Of these comparisons, no numerical differences were observed for 10 G-23). comparisons for which p-values could not be generated due to lack of variability in the Four of the remaining five comparisons were not significantly different. data. MON 88701 had significantly less damage from thrips in observation 3 at the ARPR site (0.1 vs. 0.3). However, there was no significant difference between MON 88701 and the conventional control for Observation 3 in the combined-site analysis (Table VII-8). Therefore, the lack of difference for 14 comparisons and the one site/observation difference between MON 88701 and the conventional control were not indicative of a consistent plant response and MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Figure VII-1, Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods, step 2, answer "no"). Heliothines Damage A total of 40 heliothine damage comparisons (4 observations × 5 sites) were made

between MON 88701 and the conventional control in the individual site analysis (Table G-24). Of these comparisons, no numerical differences were observed for three comparisons for which p-values could not be generated due to lack of variability in the data. For the remaining 37 comparisons, no statistically significant differences were detected between MON 88701 and the control for 35 out of 37 comparisons (Table G-24) Two statistically significant differences were detected between MON 88701 and the parental control. Plants of MON88701 had fewer heliothine damage fruiting bodies compared to the conventional control in Observation 4 at ARAU (8.7 vs. 15.1%), and more live larvae Observation 1 at GACH (0.5 vs. 0.1). Although the above statistical differences were detected, the assessed values of MON 88701 were not significantly different than the control in the combined-site analysis (Table VII-9). Therefore, the lack of difference for 38 comparisons and the two site/observation differences between MON 88700 and the conventional control were not indicative of a consistent plant response, and MON 88701 is unlikely to have increased plant pest/weed potential or an adverse environmental impact compared to the conventional control (See Figure VII-1, Schematic Diagram of Agronomic and Phenotypic Data Interpretation Methods, step 2, answer "no".

Arthropod Abundance

A total of 178 comparisons were made between MON 88701 and the conventional control for arthropod abundance involving the following pest- and beneficial-arthropods: aphids, cabbage loopers, fall armyworms, fleahoppers, heliothines, southern armyworms, stink bugs, tarnished plant bugs, thrips, white flies, big eyed bugs, braconids, Damsel bugs, lacewings, ladybird beetles, *Orius* spp and Araneae (spiders) (Tables G-25 and G-26). No statistically significant differences were detected between MON 88701 and the conventional control for 173 out of 178 comparisons, including 89 pest arthropod comparisons and 89 beneficial arthropod comparisons. The five differences for pest arthropods and three differences for beneficial arthropods.

At collection 4 at LABU, the abundance of stink bugs per plot in MON 88701 was lower compared to the conventional control (0.3 vs. 1.8 per plot) and lower for tarnished plant bugs (0.5 vs. 2.0). For tarnished plant bugs, the mean abundance value for MON 88701 was within the reference ranges for the differences detected. For stink bugs, the mean abundance value for MON 88701 was outside the reference range for the difference detected. Since the two differences mentioned above were not consistently detected in multiple environments, these data support a conclusion that the differences are considered not biologically meaningful in terms of plant pest potential or an adverse environmental impact (See Section VII.B.1.1), Interpretation of Environmental Interactions Data).

The abundance of Damsel bugs per plot MON 88701 was higher compared to the conventional control in Collection 2 at GACH (6.0 vs, 2.3) and lower for *Orius* spp. in Collection 2 (0.0 vs. 1.5 per plot) and collection 3 (0.5 vs. 2.8 per plot) at the ARAU site. The mean abundance value for MON 88701 was within the reference range for the difference detected for Damsel bugs. The mean abundance values for *Orius* spp. in Collection 2 and collection 3 at the ARAU site were outside their respective reference range. However, the differences detected for *Orius* spp. were not consistently detected across collections or sites (Table G-26). Thus, the detected differences in beneficial arthropod abundance were not indicative of a consistent response associated with MON 88701 and are not considered biologically meaningful in terms of an adverse environmental impact of MON 88701 compared to conventional cotton (See Section VILB.1.1., Interpretation of Environmental Interactions Data).

## G.14.2. Individual Site Environmental Interactions - Results and Discussion – MON 88701 Not Treated with Dicamba or Glufosinate Herbicides – Study 2

In an individual site assessment, no differences were observed between MON 88701 and the control for any of the 127 comparisons for the assessed abiotic stressors, including compaction, drought, dry, flood, hail damage, heat, nutrient deficiency, wet soil, excess precipitation, and wind damage (Table G-27).

In an individual site assessment, no differences were observed between MON 88701 and the control for any of the 129 comparisons for the assessed diseases, including anthracnose, *Ascochyta* leaf blight, bacterial blight, boll rot, cotton leaf rust, damping

off, Fusarium wilt, leaf spots, Pythium, reniform nematode, Rhizoctonia, root-knot nematode, Thielaviopsis, and Verticillium wilt (Table G-28).

In an individual site assessment, no differences were observed between MON 88701 and the control for any of the 129 comparisons for the assessed arthropod stressors, including aphids, beet armyworms, cabbage loopers, cut worms, fall armyworms, fleahoppers, grasshoppers, heliothines, southern corn rootworm beetle, soybean loopers, spider mites, stink bugs, tarnished plant bugs, thrips, and white flies (Table G-29).

These results support a conclusion that MON 88701 would not confer a plant pest risk or

When this document and is the of this document of the of t These results support a conclusion that MON 88701 would not confer a plant pest risk or significant environmental impact compared to conventional cotton (See Section VII.B.1.1., Interpretation of Environmental Interactions Data). the c iteraction. Consequently and publication of the owned of this document may therefore owned of this document may there owned of this document may therefore owned of this document may there owned owned of the owned of this document may there owned on the owned of this document may there owned on the owned of the owned of this document may there owned on the owned of t any commercial empirision and use of this document, may there of the owner. without the permission of the owner of this documer.

AllAllAllNodes above cracked boll observations I 2, and 3Nodes above cracked boll observations I 2, and 3Nodes above cracked boll observations I 2, and 3Nodes above white the were data were sufficient in providing growth and development Urend relevant for showing crop advancement towards eutout.NRAU and ABUAllAllAllArthropod collection 1Neonate soybean looper identification was questionable because of the size.ABUAllAllAllArthropod collection 3Beneficial species from collection 2 were recorded for collection 3 as there were no beneficial insects in collection 3ABUAllAllAllId D stand countsStand countsKSLAAllAllAllId D ptant vigorStand count were closen for data collection. Vigor was taken at 6/16 and 6/23 but 6/23 data were dropped because it was taken 21 days after planting.NCBDCoker 130Control403Final stand countStand count was poor in these plots as couple feet in the plot were destroyed by the lightning strike.NCMEDP 5415Reference206 305 406Stand count at 30 DAP and final stand countStand count was poor in these plots because of poor germplasm.NCMEDP 5415Reference406Stead count yieldYield was very low due to poor stand count.	Site	Material name	Material type	Plots	Characteristics	Reason for exclusion
Nodes above cracked Nodes above white flower data were sufficient in providing	AZME	All	All	All	All	maintenance, and non-reliable data collection by the
ARAU and ABUAllAllAllArthropod collection 1Negnate soybean looper identification was questionable because of the size.ABUAllAllAllArthropod collection 3Beneficial species from collection 2 were recorded for collection 3 as there were no beneficial insects in collection 3ABUAllAllAllArthropod collection 3Stad counts taken on 6/16 were dropped due to low count and vere taken again on 6/23 from all four rows of each plot. The rows with good count were chosen for data collection.CSLAAllAllAllI4D plant vigorNigor was taken at 6/16 and 6/23 but 6/23 data were dropped because it was taken 21 days after planting.CSDCoker 130Control403Final stand countStand count were destroyed by the lightning strike.CBDCoker 130Control406Steed count or yieldA couple feet in the plot were destroyed by a lightening strike.CMEDP 435' and DR 5415Reference206 305, 406Stand count and final stand countStand count was poor in these plots because of poor germplasm.XPLAllAllAllAllAllNodes above cracked boll observations 4This was extra collection and not needed.	A11	All	All	All	1 11 1 1 10	Nodes above white flower data were sufficient in providing
ABUAllAllAllAlthropod collection 3Beneficial species from collection 2 were recorded for collection 3 as there were no beneficial insects in collection 3SLAAllAllAllId D stand countsStand counts taken on 6/16 were dropped due to low count and were taken again on 6/23 from all four rows of each plot. Ther rows with good count were chosen for data collection.SLAAllAllId D plant vigorWegor was taken at 6/16 and 6/23 but 6/23 data were dropped because it was taken 21 days after planting.SLAAllAllId D plant vigorWegor was taken at 6/16 and 6/23 but 6/23 data were dropped because it was taken 21 days after planting.SLDDCoker 130ControlId 03Enal stand countStand count were destroyed by the lightning strike.ICMEDP 435 and DP 5415Reference206 305, 406Stand count and final stand countStand count was poor in these plots because of poor germplasm.ICMEDP 5415Reference406Seed cotton yieldYield was very low due to poor stand count.XPLAllAllAllAllNodes above cracked boll observations 4This was extra collection and not needed.	ARAU and LABU	All	All	All	Arthropod collection 1	Neonate soybean looper identification was questionable because of the size.
KSLAAllAllId D stand countsStand counts taken on 6/16 were dropped due to low count and were taken again on 6/23 from all four rows of each plot. Their rows with good count were chosen for data collection.KSLAAllAllAllId D plant vigorWere taken again on 6/23 from all four rows of each plot. Their rows with good count were chosen for data collection.KSLAAllAllId D plant vigorWere taken again on 6/23 but 6/23 data were dropped because it was taken 21 days after planting.KCBDCoker 130Control403Final stand countStand count was poor in these plots as couple feet in the plot were destroyed by the lightning strike.KCBDCoker 130Control403Stand count at 30 DAPA couple feet in the plot were destroyed by a lightening strike.KCMEDP 435 and DP 5415Reference206, 305, 406Stand count at 30 DAPStand count was poor in these plots because of poor germplasm.KCMEDP 5415Reference406Seed cotton yieldYield was very low due to poor stand count.XPLAllAllAllAllNodes above cracked boll observations 4This was extra collection and not needed.	LABU	All	All	Allo	Arthropod collection 3	Beneficial species from collection 2 were recorded for collection 3 as there were no beneficial insects in collection 3
KSLAAllAllAllAllAllPant vigorVigor was taken at 6/16 and 6/23 but 6/23 data were dropped because it was taken 21 days after planting.VCBDCoker 130Control403Final stand countStand count was poor in these plots as couple feet in the plot were destroyed by the lightning strike.VCBDCoker 130Control403Seed cotton yieldA couple feet in the plot were destroyed by a lightening strikeVCMEDP 435 and DP 5415Reference206, 305, 406Stand count at 30 DAP 	KSLA	All	All	perty All	14D stand counts	Stand counts taken on 6/16 were dropped due to low count and were taken again on 6/23 from all four rows of each plot. The rows with good count were chosen for data collection.
NCBDCoker 130Control403Final stand countStand count was poor in these plots as couple feet in the plot were destroyed by the lightning strike.NCBDCoker 130Control403Seed cotton yieldA couple feet in the plot were destroyed by a lightening strikeNCMEDP 435 and DP 5415Reference206, 305, 406Stand count at 30 DAP and final stand countStand count was poor in these plots because of poor germplasm.NCMEDP 5415Reference406Seed cotton yieldYield was very low due to poor stand count.XPLAllAllAllNodes above cracked boll observations 4This was extra collection and not needed.	KSLA	All	All	es call	14D plant vigor	Vigor was taken at 6/16 and 6/23 but 6/23 data were dropped Obecause it was taken 21 days after planting.
NCBDCoker 130Control403Seed cotton yieldA couple feet in the plot were destroyed by a lightening strikeNCMEDP 435 and DP 5415Reference206, 305, 406Stand count at 30 DAP and final stand countStand count was poor in these plots because of poor germplasm.NCMEDP 5415Reference406Seed cotton yieldYield was very low due to poor stand count.NCMEAllAllAllNodes above cracked 	ICBD	Coker 130	Control	403	Einal stand count	Stand count was poor in these plots as couple feet in the plot were destroyed by the lightning strike.
VCMEDP 435 and DP 5415Reference206, 305, 406Stand count at 30 DAP and final stand countStand count was poor in these plots because of poor germplasm.VCMEDP 5415Reference406Seedcotton yieldYield was very low due to poor stand count.VCMEAllAllNodes above cracked boll observations 4This was extra collection and not needed.	VCBD	Coker 130	Control	0 ^{1/1} 403 0	Seed cotton yield	A couple feet in the plot were destroyed by a lightening strike
NCME       DP 5415       Reference       406       Seedcotton yield       Yield was very low due to poor stand count.         XPL       All       All       Nodes above cracked boll observations 4       This was extra collection and not needed.	ICME	DP 435 and DP 5415	Reference	206, 305, 406	Stand count at 30 DAP and final stand count	Stand count was poor in these plots because of poor germplasm.
XPL All All All All Nodes above cracked boll observations 4 This was extra collection and not needed.	NCME	DP 5415	Reference	117 406	Seedcotton yield	Yield was very low due to poor stand count.
	TXPL	All	RUTAN SECTO	ner All a	Nodes above cracked boll observations 4	This was extra collection and not needed.

Table G-5. Study 1 Data Missing or Excluded from Analy	able G-5.	. Study 1 D	ata Missing	or Excluded	from Analysi
--------------------------------------------------------	-----------	-------------	-------------	-------------	--------------

Site	Material name	Material type	Plots	Characteristics	Reason for exclusion
					dion hims
ARTI	SG125	Reference	106	Plant mapping	Plant mapping data sheet was misplaced after collection.
ТХРО	All	All	All	All	Plant mapping data sheet was misplaced after collection. Plot area was destroyed by lightning.
ALL	All	All	All	Nodes above crack and days of plannir first cracked boll da	ed boll g to ate at a solution of summary would how and development trends relevant for showing crop advancement towards cutout. Repetition of summary would how have added any value.
ALL	All	All	E ARIVE	Days of planting to flower date	first Data on three observations on nodes above white flower was sufficient in proving data on crop growth and development.
ARTI GACH LACH NCME	FM 989	Reference	All of All of All	ALL UN TO THE	Due to poor germination and stand establishment, reference FM 989 will be excluded from all phenotypic data analysis and reporting. Germination ranged from 9.5 to 40.5 % of the target stand counts.
	This docur and of a and the co	All All Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Property Reference Reference Property Reference Property Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Reference Referenc	And Current Contract of the Contract of Co	ation and user of a latter of the strong the	<ul> <li>Plot area was destroyed by lightning.</li> <li>Plot area was destroyed by lightning.</li> <li>Nodes above white flower data were sufficient in providing growth and development trends relevant for showing crop advancement towards cutout. Repetition of summary would not have added any value.</li> <li>Tirst Data on three observations on nodes above white flower was sufficient in proving data on crop growth and development. Repetition of summary would not have added any value. Due to poor germination and stand establishment, reference PM 989 will be excluded from all phenotypic data analysis and reporting. Germination ranged from 9.5 to 40.5 % of the arget stand counts.</li> </ul>
Monsanto		<i>b</i> c		12-CT-244U	555 of 620

Table G-6.    Study	2 Data Missin	g or Excluded	from Analysis
---------------------	---------------	---------------	---------------

							~			
							Protection,	<u>nillis</u>		
				Pho	enotypic Chara	cteristics	ote jon	6		
		t at 14 DAP ~6 m)		nt at 30 DAP r ~6 m)	Final st	and count		t ADAP ¹	Plant vigor a	t 30 DAP ²
Site	MON 88701 (SE) ³	Control (SE)	MON 88701 (SE)	Control (SE)	MON 88701 (SE)	Control (SE)	$\sim$ $0^{-}$	Control	MON 88701	Control
ARAU	165.7 (10.0)	182.2 (12.0)	159.3 (7.3)	174.0 (11.1)	154.2 (9.0)		3.0-4.0	2.0-3.0	2.0-3.0	2.0-3.0
ARPR	179.8 (3.2)	185.3 (4.1)	179.7 (3.2)	183.5 (4.7)	178.3 (3.5)	181.8 (4.7)	5.0-6.0	6.0-6.0	4.0-4.0	2.0-3.0
ARTI	173.0 (6.5)	175.5 (5.0)	171.5 (6.4)	173.5 (5.3)	171.0 (6.4)	(172.5 (4.9)	1.0-1.0	1.0-1.0	1.0-1.0	1.0-1.0
GACH	170.7 (2.7)	171.7 (4.0)	168.8 (2.3)	167.7 (3.9)	166.8 (2.9)	168.5 (3.6)	3.0-4.0	3.0-4.0	2.0-5.0	2.0-4.0
GAJE	178.8 (3.3)	182.8 (5.8)	168.5 (4.9)	160.8 (3.3)	167.5 (1.8)*	156.3 (4.9)	1.0-2.0	1.0-1.0	2.0-2.0	2.0-2.0
KSLA	127.8 (2.8)	141.5 (3.2)	74.5 (2.5)	74.0(0.7)	70,3 (2.3)	70.3 (0.8)	2.0-2.0	2.0-2.0	2.0-2.0	2.0-2.0
LABU	147.5 (1.0)	155.7 (3.3)	146.2 (1.3)	160 0 (4 1)	012(10)	918(07)	1.0-3.0	2.0-3.0	1.0-2.0	1.0-2.0
LACH	100.8 (3.0)*	127.8 (1,1)	140.2 (1.3) 101.8 (2.6)* 106.8 (5.0) 90.5 (23.0)	125.0 (2.6)	63.3 (0.9)*	73.5 (4.7)	2.0-3.0	2.0-3.0	2.0-2.0	1.0-2.0
NCBD	117.3 (2.3)	125.3 (6.8)	106.8 (5.0)	116.5 (7.5)	106.5 (2.7)	115.3 (8.8)	3.0-3.0	2.0-3.0	3.0-4.0	2.0-3.0
NCME	95.8 (22.8)	105.0 (11.8)	90.5 (23.0)	099.8 (12.3)	90.5 (21.6)	97.0 (12.2)	3.0-6.0	3.0-6.0	3.0-5.0	3.0-5.0
NMGA	116.5 (17.3)	-1160(128)	70.000	-700(0.00)	(70.3, (0.5))	70.8 (0.6)	1.0-2.0	2.0-2.0	1.0-1.0	1.0-1.0
NMLC	122.5 (6.7)	116.0 (18.8)	70.0 (0,9)	70.0 (0.0)	70.8 (0.9)	71.8 (1.0)	2.0-2.0	1.0-2.0	1.0-1.0	1.0-1.0
SCEK	182.7 (4.3)	188.2 (3.2)	183.3 (3.4)	189.3 (3,1)		181.3 (3.1)	2.0-3.0	2.0-3.0	2.0-4.0	2.0-3.0
ГХPL	163.0 (3.8)	151.0 (15.9)	142.8 (8,3)	(9.5)	157.8 (1.9)	146.8 (13.9)	1.0-1.0	1.0-1.0	3.0-3.0	3.0-3.0
ТХРО	147.8 (13.3)	162.3 (12.1)	(143.3 (9.1)	145.5 (13.0)	137.0 (6.1)	151.0 (5.4)	1.0-1.0	1.0-1.0	1.0-1.0	1.0-1.0
	<u> </u>	<u>-0, 6, 1</u>	Chi Chi d	$\frac{0}{0}$						
	C	116.0 (12.8) 116.0 (18.8) 188.2 (3.2) 151.0 (15.9) 162.3 (12.1)	143.3 (9.1) 143.3 (9.1)	all						
		X Coll C		<i>,</i>						
		S	no, ohis							
		J,	0,9							
		N	$\diamond$							

 Table G-7. Study 1 - Individual Site Phenotypic Comparison – Growth and Development Characteristics - of MON 88701 Not

 Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

					Phenotypic	Characteristic	s	ion for hing of		
	Plant height	at 30 DAP	Plant height	before harvest	t Nodes above	whiteflower	Nodes abox	e white flower	Nodes above	e white flower
	(cr		(	cm)	(ob	5.1)	(0	bs. 2)		s. 3)
	MON 88701	Control	MON 8870	1	MON 88701	s, s	MON 8870	10,00	MON 88701	
Site	(SE)	(SE)	(SE)	Control (SE)	(SE)	Control (SE)	(SE) (	Control (SE)	(SE)	Control (SE)
ARAU	30.9 (0.5)	33.7 (1.2)	159.3 (2.9)	168.8 (8.8)	7.7 (0.1)	7.6 (0.2)	7.1 (0.3)	7.1 (0.1)	6.7 (0.5)	6.5 (0.2)
ARPR	29.1 (1.5)	31.8 (2.6)	126.9 (3.6)	134.4 (3.1)	77 (0.2)	7.2 (0.2)	7. <b>O</b> (0.1)*	6.6 (0.2)	6.1 (0.3)	5.5 (0.2)
ARTI	29.5 (0.6)	29.4 (0.3)	131.9 (2.9)	139.2 (4.8)	8.5 (0.1)	8.4 (0.1)	7.5 (0.2)	7.1 (0.2)	4.7 (0.1)	4.8 (0.1)
GACH	28.2 (0.4)	29.7 (1.4)	84.6 (2.6)	88.1 (2.0)	5.2 (0.1)	<u>0 (0.2)</u> *	3.4 (0.2)	3.1 (0.3)	1.7 (0.1)	1.3 (0.2)
GAJE	27.0 (0.8)	27.9 (0.7)	87.1 (3.7)*	98.6 (5.3)	7.3 (0.6)	7,7 (0.5)	6.0 (0.2)	5.9 (0.1)	3.9 (0.0)	4.0 (0.1)
KSLA	17.5 (1.4)	19.4 (0.8)	129.9 (3.5)*	142.0 (5.5)	5.1 (0,2)*	4.4 (0.2)	4.2 (0.5)*	3.2 (0.2)	4.6 (0.5)*	3.5 (0.2)
LABU	15.8 (0.8)	17.2 (0.7)	150.2 (3.7)	161.2 (6.4)	7.5 (0.2)	7.6 (0.4)	7.0 (0.2)	6.6 (0.2)	7.5 (0.1)	7.5 (0.2)
LACH	12.4 (0.6)*	14.5 (0.6)	120.5 (3.2)*	140(5 (9.8)	8.2 (0.2)	8.5 (0.1)	7.8 (0.1)	7.6 (0.1)	6.9 (0.1)	7.0 (0.1)
NCBD	20.0 (1.8)*	24.5 (1.0)	104.8 (9.5)*	D1.0 (10.5)	6.2 (0.5)	5.6 (0.5)	4.0 (0.4)	3.7 (0.6)	2.9 (0.5)	2.4 (0.6)
NCME	16.2 (1.1)	15.7 (0.3)	903 (4.4)	94.7 (2.1)	4.8(0.1)	4.8 (0.1)	3.1 (0.1)	2.9 (0.1)	2.7 (0.3)	2.2 (0.3)
NMGA	5.0 (0.2)	5.2 (0.4)	92.3 (3.0)	96.6 (3.8)	8.6 (0.4)	8.4 (0.5)	8.7 (0.2)	8.5 (0.3)	5.9 (0.9)	6.1 (0.9)
NMLC	6.7 (0.7)*	8.3 (0.6)	96.0 (4.6)	946 (2.1)	8,4 (0.5)*	7.4 (0.3)	8.2 (0.3)	8.0 (0.2)	6.5 (0.4)	6.2 (0.3)
SCEK	8.0 (0.9)	$O$ $\Lambda$ $(1 < 1)$	me o veni	07 9 15 0	5.3 (0.2)	5.0 (0.3)	5.4 (0.4)	4.9 (0.3)	5.2 (0.3)*	4.6 (0.1)
TXPL	8.0 (0.4)	8.1 (0.3)	44.9 (0.7)*	48.4 (0.8)	5.0 (0.1)*	4.5 (0.2)	4.4 (0.2)	3.9 (0.2)	2.0 (0.1)	1.8 (0.1)
ТХРО	19.9 (0.8)	22.6 (0.8)	129.7 (1.2)	129.9 (0.9)	X	8.5 (0.3)	7.0 (0.2)	6.6 (0.1)	6.4 (0.3)*	5.7 (0.2)
	The diller		2, , , , , , , , , , , , , , , , , , ,	129.9 (0.9)						
	IT NO. OF	Unthermonic	entry clare	48.4 (0.8) 129.9 (0.9)						
			<del>.</del>							

Table G-7. Study 1 - Individual Site Phenotypic Comparison – Growth and Development Characteristics - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control (continued)

	Phenotypic C	haracteristics on yield ha) Control (SE) 2166.8 (250.2) 3309.7 (155.9) 3488.7 (87.3) 2875.6 (101.1) 1843.1 (256.8) 4341.9(365.1) 1719.4 (67.8) 1736.0 (87.4) 4112.1 (299.2) 1296.3 (140.9) 3498.9 (165.2) 4522.5 (158.1) 3901.9 (143.5) 3689.3 (29.6) 856.8 (41.5)
	Seed cott (Kg/	Influctoristics           on yield           ha)           Control (SE)           2166.8 (250.2)           3309.7 (155.9)           3488.7 (87.3)           2875.6 (101.1)           1843.1 (256.8)           4341.9(365.1)           1719.4 (67.8)           1736.0 (87.4)           4112.1 (299.2)           1296.3 (140.9)           3498.9 (165.2)           4522.5 (158.1)           3901.9 (143.5)           3689.3 (29.6)           856.8 (41.5)
Site	MON 88701 (SE)	Control (SE)
ARAU	2912.9 (231.8)*	2166.8 (250.2)
ARPR	3452.4 (202.0)	3309.7 (155.9)
ARTI	3444.8 (90.4)	2166.8 (250.2) 3309.7 (155.9) 3488.7 (87.3) 2875.6 (101.1) 1843.1 (256.8) 4341.9(365.1) 1719.4 (67.8) 1736.0 (87.4) 4112.1 (299.2) 1296.3 (140.9) 3498.9 (165.2) 4522.5 (158.1) 3901.9 (143.5) 3689.3 (29.6)
GACH	2880.8 (97.8)	2875.6 (101.1)
GAJE	2320.4 (42.3)*	1843.1 (256.8)
KSLA	4330.4 (184.1)	4341.9(365.1)
LABU	1534.1 (153.7)	1719.4 (67.8)
LACH	1464.1 (245.0)	1736.0 (87.4)
NCBD	3990.5 (375.5)	4112,1 (299.2)
NCME	1324.7 (110.5)	1296.3 (140.9)
NMGA	3459.6 (211.1)	3498.9 (165.2)
NMLC	4771.7 (199.9)	4522.5 (158.1)
SCEK	3625.0 (125.2)	3901.9 (143.5)
TXPL	3638.4 (114.1)	3689.3 (29.6)
ТХРО	916.3 (1,1,5.9)	856.8 (41.5)

Table G-7. Study 1 - Individual Site Phenotypic Comparison – Growth and Development Characteristics - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control (continued)

* Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and conventional control (n = 4).

¹Plant vigor score range (minimum-maximum). The range of plant vigor score at 14 DAP for the references is as follows: ARAU 3-5; ARPR 3-6; ARTI 1-2; GACH 3-7; GAJE 1-3; KSLA 2-4; LABU 2-5; ACH 2-5; ACBD 3-4; NCME 3-6; NMGA 1-3; NMLC 2-3; SCEK 2-4; TXPL 1-1; TXPO 1-1. Plant vigor was rated per plot using a rating scale of 1-9 where: 1-3 is excellent vigor, 4-6 is average vigor, and 7-9 is poor vigor.

.m) The JJ 2=3, LACH 1 21 Vithout of the Without of the ²Plant vigor score range (minimum-maximum). The range of plant vigor score at 30 DAP for the references is as follows: ARAU 3-5; ARPR 4-7; ARTI 1-1; GACH 3-7; GAJE 2-2; KSLA 2-3; LABU 2-3; LACH 1-4; NCBD 2-4; NCME 3-7; NMGA 1-5; NMLC 1-5; SCEK 3-4; TXPL 3-3; TXPO 1-1.

 3 SE = Standard error

	Seed inc (g per 100 fuz		Total seed p (# per b		Mature seed (# per b		Jimmature seed (# per bo	-
Site	MON 88701 (SE) ¹	Control (SE)	MON 88701 (SE)	Control (SE)	MON 88701 (SE)	Control (SE)	MON 88701 (SE)	Control (SE)
ARAU	10.6 (0.4)	10.6 (0.2)	31.6 (0.3)*	29.6 (1.0)	20.5 (1.2)	019.2 (0.9)	11.1 (1.4)	10.4 (0.8)
ARPR	9.4 (0.2)*	10.3 (0.1)	29.4 (0.3)*	27.3 (0.9)	27.3 (0.6)*	2107 (0.70	2.1 (0.3)*	5.7 (1.0)
ARTI	10.1 (0.2)*	10.9 (0.1)	26.0 (0.7)	26.6 (0,5)	20.2 (1.0)*	17.6 (0.4)	5.7 (1.2)*	9.0 (0.5)
GACH	10.3 (0.6)	10.4 (0.5)	28.0 (0.9)	27.6 (0.7)	17.4 (0.5)	17.0 (0.8)	10.6 (1.3)	10.6 (1.3)
GAJE	8.3 (0.4)*	9.8 (0.2)	25.8 (0.9)	26.3 (1.3)	15.6 (0.8)	(2.0)	10.2 (0.2)	11.1 (0.7)
KSLA	11.8 (0.2)*	12.5 (0.2)	312 (1.1)*	28.1 (0.4)	29.9 (1.1)*	26.6 (0.4)	1.3 (0.1)	1.5 (0.1)
LABU	9.4 (0.2)*	10.5 (0.1)	29.5 (0.4)	27,9 (0,7)	21.2 (0.8)	18.9 (1.1)	8.4 (1.0)	9.0 (1.4)
LACH	8.8 (0.3)*	9.8 (0.3)	28.4 (0.8)	28.3 (0.7)	3.5 (1,2)	16.0 (0.7)	12.9 (0.8)	12.4 (0.5)
NCBD	9.0 (0.1)*	9.8 (0.3)	30.1 (1.5)	27.8 (1.7)	21(1)(3.5)	16.2 (2.1)	9.0 (2.5)	11.6 (1.0)
NCME	9.7 (0.2)*	10.6 (0.1)	31.7 (2.0)*	27.5 (0.8)	. 28.4 (1.0)*	22.1 (0.7)	3.4 (1.0)	5.4 (1.0)
NMGA	10.6 (0.2)*	11.4 (0.2)	34.4 (0.4)*	30.3 (0.8)	32.9 (0.6)*	28.8 (0.6)	1.6 (0.3)	1.5 (0.3)
NMLC	10.5 (1.0)	10.5 (0.6)	31.0 (0.7)*	25.9 (1.5)		21.6 (1.3)	4.5 (0.6)	4.3 (0.5)
SCEK	8.5 (0.2)	9.3 (0.2)	27.1 (0.9)	27.1 (0.8)	20.5 (0.8)	16.0 (2.1)	6.5 (0.5)*	11.1 (2.1)
TXPL	11.5 (0.3)	11.5 (0.6)	28.3 (0.6)	28.0 (0.8)	25.4 (0.7)	24.5 (0.8)	2.9 (0.6)	3.5 (0.8)
ТХРО	9.0 (0.2)	9.6(0.4)	23.3 (0.2)	22.7 (0.7)	16.8 (0.8)	14.7 (0.9)	6.6 (0.7)	8.0 (0.6)

Table G-8. Study 1 - Individual Site Phenotypic Comparison - Seed Characteristics - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control. edil and

* Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and conventional control (n = 4). ¹SE = Standard error ¹SE = Standard error ¹OF UNCERPTONE CONTROL OF CONT

	Boll weigh	t (g/boll)	Micronaire (1	nic units) ¹	Elongatio	on (%)	Strength	(g/tex)	Uniform	) ity (%)	Length	(cm)
	MON 88701	Control	MON 88701	Control	MON 88701	Control	MON 88701	Control	MON 88701	Control	MON 88701	Control
Site	$(SE)^2$	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)	(SE)
ARAU	4.9 (0.1)	4.9 (0.2)	3.8 (0.0)	3.6 (0.1)	6.8 (0.2)*	6.2 (0.1)	33.2 (0.5)	32,3 (0,2)	85.3 (0.1)	84.4 (0.3)	3.0 (0.0)	3.0 (0.0)
ARPR	4.8 (0.1)	4.6 (0.2)	5.2 (0.1)	5.0 (0.2)	5.4 (0.2)	5.2 (0.4)	29.8 (0.3)	29.8 (0.6)	83.0 (0,4)	82.4 (0.4)	2.7 (0.0)	2.7 (0.1)
ARTI	4.1 (0.1)*	4.8 (0.1)	4.5 (0.1)	4.7 (0.0)	5.2 (02)	5.5 (0.3)	32.1 (0.1)	31.0 (0.5)	84.4 (0.4)	83.6 (0.1)	2.9 (0.0)	2.8 (0.0)
GACH	4.2 (0.1)*	4.5 (0.1)	4.6 (0.0)	4.6 (0.1)	7.1 (0.1)	6.8 (0.3)	30.8 (0.5)	30.6 (0.5)	83.8 (0.2)	84.1 (0.5)	2.8 (0.0)	2.9 (0.0)
GAJE	3.6 (0.1)	4.0 (0.3)	3.9 (0.1)	3.7 (0.1)		6.7 (0.3)	32.2 (0.7)	32.1 (0.2)	84.0 (0.2)	83.8 (0.2)	2.8 (0.0)	2.9 (0.0)
KSLA	6.7 (0.2)	6.3 (0.1)	4.5 (0.0)	4.5 (0.1)	5.8 (0.3)	5.6 (0.4)	31.5 (0.4)*	30.3 (0.3)	84.1 (0.5)	83.4 (0.3)	3.0 (0.0)	3.0 (0.0)
LABU	4.5 (0.1)	4.7 (0.1)	4.7 (0.1)	4.7(0.1)	5.0 (0.3)	5.4 (0.3)	32.3 (0.6)	31.2 (0.3)	84.1 (0.1)	84.1 (0.2)	2.8 (0.1)	2.9 (0.0)
LACH	4.1 (0.2)	4.5 (0.2)	4.4 (0.0)	4.5 (0.0)	55 (0.2)	6.0 (0.4)	30.5 (0.2)	29.9 (0.2)	83.7 (0.3)	83.3 (0.4)	2.8 (0.0)	2.8 (0.0)
NCBD	5.4 (0.2)	5.1 (0.4)	4.7 (0.0)	4.5 (0.5)	5.7 (0.3)*	6.6 (0.4)	32.6 (1.1)*	30,9 (0.8)	85.1 (0.4)	84.7 (0.4)	2.9 (0.1)	2.9 (0.1)
NCME	5.7 (0.3)	5.3 (0.1)	5.0 (0.0)	4.8 (0.1)	6.2 (0.1)	6.4 (0.3)	32.6 (0.2)	\$1.8 (0.3)	84.1 (0.4)	84.2 (0.3)	2.8 (0.0)*	2.9 (0.0)
NMGA	5.9 (0.1)	5.8 (0.1)	5.1 (0.1)*	4.9 (0.0)	5.9 (0.2)	6.0 (0.2)	30.9 (0.2)	31.2 (0.4)	82.3 (0.8)	83.7 (0.2)	2.8 (0.0)	2.9 (0.0)
NMLC	5.1 (0.1)*	4.6 (0.3)	4.7 (0.1)	4.6 (0.1)	7.1 (0.2)	6.8 (0.2)	31.2 (0.3)*	30.0 (0.2)	83.5 (0.3)	83.0 (0.4)	2.9 (0.0)	2.9 (0.0)
SCEK	4.1 (0.2)	4.4 (0.2)	4.72(0.1)	4,7((0.1)	⊘ 5.1 (0.1)	S.2 (0.1)	32.1 (0.5)	31.2 (0.3)	83.3 (0.2)	83.7 (0.1)	2.8 (0.0)	2.8 (0.0)
TXPL	5.8 (0.1)	6.0 (0.1)	4.9 (0.1)*	4.5 (0.1)	7.2 (0.1)	7.3 (0.3)	\$34.1(0.1)*	32.2 (0.5)	85.4 (0.4)*	84.1 (0.4)	2.9 (0.0)	2.9 (0.0)
TXPO	3.3 (0.1)	3.2 (0.2)	4.6 (0.1)	4.5 (0.1)	5.0 (0.4)	(4.8 (0.1)	31.0 (0.6)	31.2 (0.2)	83.8 (0.6)	83.2 (0.2)	2.7 (0.0)	2.8 (0.0)
	X	6, 7	Nº M	5,0	S. M. C. K.	0						

Table G-9. Study 1 - Individual Site Phenotypic Comparison – Boll and Fiber Characteristics - of MON 88701 Not Treated regim + and with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

* Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and conventional control (n = 4). ¹ Measure of fiber fineness and maturity (expressed in dimensionless micronaire units). ² SE = Standard error,

. shing tion Phenotypic Characteristic (units) Plant Height at 30 DAP Final Stand Count at Stand count 14 DAP¹ Stand count at 30 DAP Plant Height (cm) (# per plot) harvest 🔗 before harvest (cm) (# per plot) MON 88701 MON 88701 MON 88701 MON 88701 Control Control MON 88701 Control Control Control Mean  $(SE)^2$ Mean (SE) Mean (SE) Mean (SE) Site Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE) Mean (SE) 179.8 (2.3) 179.5 (2.9) 178.0 (0.4) 177.5 (3.5) 20.5 (0.6) 73.5 (5.1) ARPR 185.5 (1.9) 180.3 (0.9) 21.1(0.5)71.7 (5.0) 163,8 (7.2) 33.0 (0.2) 164.3 (7.1) 153.3 (6.5) ARTI 155.3 (5.9) 164.8 (7.2) 153.8 (6.3) 32.8 (0.2) 128.1 (3.0) 126.9 (3.1) 128.5 (9.4) 129.5 (9.1) 25,1 (1.0) 132.8 (8.0) 129.0 (8.0) 127.8 (10.3) 131.3 (8.4) 100.2 (4.5) 110.2 (8.7) GACH 25.8 (0.8) 166.0 (2.3) 164.0 (3.0) 162.3 (6.0) 157.3 (8.4) 23.6(1.1) 26.0 (0.7) 77.4 (4.4)* GAJE 179.8 (4.4) 181.3 (2.7) 92.6 (7.9) 150.0 (6.7) 154.8 (7.4) 158.5 (5.3) 15.7 (0.6)* **KSLA** 156.5 (7.4) 162.5 (5.9) 150.5 (7.0) 18.3 (1.2) 113.5 (3.0)* 127.0 (3.3) 92.3 (1.1) 94.8 (2.9) 98.8 (3.1) 110.3 (5.4) 13.5 (0.1)* 15.9 (0.8) 154.4 (5.7)* 180.0 (3.1) LACH 101.0 (3.1) 112.5 (7.6) 140.3 (3.6) 132.5 (2.5) 134.3 (2.3) 17.8 (0.9) NCBD 141.8 (2.3) 140.3 (3.2) 140.8 (2.2) 19.4 (0.7) 84.7 (4.8) 80.3 (2.1) 148.0 (19.5) NCME 132.0 (8.2) 17.2 (0.7)* 19.7 (0.9) 71.4 (5.2)* 85.0 (3.4) 168.8 (11.9) 154.5 (7.3) 164.0 (2.4) 157.5 (7.5) 7.0 (0.2) 96.7 (2.4) 102.7 (1.9) NMLC 7.2 (0.2) SCEK 186.3 (3.7) 191.5 (4.6) 16.7 (1.1) 17.9 (1.3) 104.7 (3.6) 111.7 (1.4) 125.0 (10.4) 122.3 (7.4) 119.0 (8.8) TXPL 130.8 (3.3) 7.8 (0.6) 58.6 (1.0) 60.9 (1.3) 7.4 (0.5) This docum Ht may be subjec copy rights of the

Table G-10. Study 2 - Individual Site Phenotypic Comparison – Growth and Development Characteristics - of MON 88701 sug Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

			Pher	notynic Chai	acteristic (units)	dill chi		
					Nodes above	white flower	Nodes above	white flower
	1st Vigor ^{3,4}	rating	2 nd Vigor ^{3,5}	rating	(obs	. 1) 0 0 0 0	(obs	. 2)
	MON 88701	Control	MON 88701	Control	MON 88701	Control Mean (SE)	(005 MON 88701 Mean (SE)	Control
Site	Range	Range	Range	Range	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)
ARPR	4 - 6	3 - 4	4 - 5	3 - 5	5.5 (0.1)	5.7 (0.2)	3.7 (0.2)	3.6 (0.2)
ARTI	2 - 3	2 - 3	2 - 2	2 - 2	8.9 (0.3)	8.5 (0.2)	6.9 (0.3)	6.5 (0.2)
GACH	3 - 4	2 - 5	3 - 5	4 - 6	5,9 (0.2)*	5.3 (0.2)	4.7 (0.1)	4.1 (0.4)
GAJE	1 - 2	1 - 1	2 - 2	2 2	6.3 (0.3)	6.6 (0.5)	5.9 (0.1)	5.7 (0.2)
KSLA	2 - 5	2 - 3	2-3	2-20	6 4.8 (0.3)	4.6 (0.2)	4.4 (0.7)	4.2 (0.6)
LACH	4 - 7	3 - 5	2-3	102	7.9 (0.2)	7.6 (0.1)	8.2 (0.2)	8.4 (0.1)
NCBD	2 - 2	2 - 3	8 3 - 3	8-3-2	7.2 (0.1)	• 7.1 (0.5)	4.8 (0.2)*	3.9 (0.2)
NCME	2 - 5	1 - 5 🛇	S. 263 X	2-3	5.1 (03)	5.2 (0.2)	3.2 (0.1)	3.3 (0.2)
NMLC	1 – 3	2 2	×° ×9 - 2,0°	~1-X	0.3)	7.1 (0.2)	8.1 (0.1)	8.1 (0.3)
SCEK	2 - 4	3-6	2-3	3-3	7.5 (0.2)	7.4 (0.2)	4.8 (0.1)	4.5 (0.1)
ГХРL	1 -1	1 - 1	9-30	×1103-290	5.9(0.2)	5.7 (0.1)	5.5 (0.2)*	5.1 (0.1)
	2-2 $2-5$ $1-3$ $2-4$ $1-1$ $-1$		3 - 5 = 2 2 - 3 = 3 2 - 3 = 3 = 3 2 - 3 = 3 = 3 3 - 3	<u>ation of or</u>		Mean (SE) 5.7 (0.2) 8.5 (0.2) 5.3 (0.2) 6.6 (0.5) 4.6 (0.2) 7.6 (0.1) 7.1 (0.5) 5.2 (0.2) 7.1 (0.2) 7.4 (0.2) 5.7 (0.1)		
	20° 30	A SUN, H	this a pulli	is of the				
	1/113 9101 V	pents e	alete	onster				
	SU. U.S.	1119.100	ATTA CIAL MISS	JIOIS				
	12 606	the due	Me per she	>				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	JI NS ON	in the teg					
		Contro	Jul Allon					
		Nill'	Qru.					
		PE	,					560 66

# Table G-10. Study 2 - Individual Site Phenotypic Comparison – Growth and Development Characteristics - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control (continued)

Table G-10. Study 2 - Individual Site Phenotypic Comparison – Growth and Development Characteristics - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control (continued)

	Ph	enotypic char	acteristics (units)	
	Nodes above			ton yield
	(obs	/	. · ·	(/ha)
	MON 88701	Control	MON 88701	Control
Site	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)
ARPR	2.3 (0.2)	2.4 (0.4)	2,561.6 (191.4)	2,301.7 (173.4)
ARTI	4.8 (0.1)	4.7 (0.1)	3,864.4 (250.8)	3,869.0 (112.9)
GACH	4.1 (0.1)*	3.6 (0.3)	4,424.4 (74.0)	4,471.5 (99.5)
GAJE	3.9 (0.1)	3.8 (0.0)	1,750.1 (261.1)	1,548.4 (342.4)
KSLA	3.7 (0.4)*	2.5 (0.4)	4,487.0 (294.6)*	3,726.5 (81.7)
LACH	5.8 (0.1)	5.7 (0.1)	1,956.0 (173.0)	2,046.9 (210.4)
NCBD	3.4 (0.3)	3.0 (0.3)	4,224.0 (326.0)	3,792.7 (283.0)
NCME	2.0 (0.2)	1.9 (0.1)	1,508.4 (112.7)	1,610.6 (206.9)
NMLC	7.5 (0.2)	7.1 (0.2)	1,938.4 (22.1)*	1,479.3 (65.6)
SCEK	3.8 (0.3)	3.5 (0.1)	5,219.8 (236.4)	5,424.3 (148.4)
TXPL	3.6 (0.1)	3.5 (0,3)	4,741.3 (165.8)	4,534.5 (215.6)

* Indicates a statistically significant difference ( $\alpha \neq 0.05$ ) between MON 8870 and control (n = 4). Ne

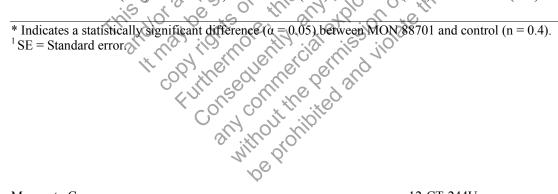
20

 1  DAP = Days after planting.

 2 SE = Standard error.

 2 SE = Standard error. ³Plant vigor was rated per plot using a rating scale of 1-9 where: 1-3 is excellent vigor, 4-6 is average vigor, and 7-9 is poor vigor.

⁴ First plant vigor score range (minimum-maximum). The range of plant vigor score at 14 DAP for the references is as follows: ARPR 3-6; ARTI 2-3; GACH 4-6; GAJE 1-3; KSLA 2-5; LACH 4-7; NCBD 3-3; NCME 1-6; NMLC 2-5; SCEK 4-6; TXPL 1-1.


0

⁵ Plant vigor score range (minimum-maximum). The range of plant vigor score at 30 DAP for the references is as follows: ARPR 4-6; ARTI 2-2; GACH 3-6;

GAJE 2-2; KSLA 2-3; LACH 2-3; NCBD 3-3; NCME 2-3; NMLC 1-3; SCEK 2-3; TXPL 3-3.

			Seed Chara	acteristics			ins		
	Seed in	ndex	Total seed	per boll	Mature see	d per boll	Immature s	re seed per boll	
	(g per 100	) seed)	(# per	boll)	(# per	boll)	<b>9</b> (# per	r boll)	
	MON 88701	Control	MON 88701	Control	MON 88701	¿ Control	MON 88701	Control	
Site	Mean (SE) ¹	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	
ARPR	8.8 (0.2)* 1	10.0 (0.4)	26.8 (0.4)*	23.9 (0,7)	24.2 (0,4)*	15.9 (0.6)	2.6 (0.2)*	8.0 (0.6)	
ARTI	9.9 (0.3)* 1	12.0 (1.0)	28.4 (0.3)	26.8 (0.7)	23,7 (0.7)*	18.0 (0.6)	4.6 (0.6)*	8.9 (1.2)	
GACH	9.1 (0.3)	9.7 (0.3)	29.4 (0.7)	27.4 (1.1)	24.9 (1.0)	23.4 (1.1)	4.5 (1.4)	4.0 (0.6)	
GAJE	8.5 (0.4)* 1	10.4 (0.5)	26.6 (1.1)	24.6 (0.7)	015.0 (0.5)*	11.6 (0.1)	11.6 (0.8)	13.0 (0.8)	
KSLA	11.7 (0.2)* 1	12.8 (0.3)	28.4 (1.7)*	24.9 (0.4)	25.9 (1.9)*	22.7 (1.0)	2.5 (0.6)	2.2 (0.6)	
LACH	9.4 (0.2)* 1	10.3 (0.2)	31.4 (0.4)	28,7 (1.2)	20.7 (1.6)	17.5 (1.9)	10.7 (1.8)	11.2 (0.8)	
NCBD	8.8 (0.2)* 1	10.5 (0.2)	27.0 (0.8)	25.7 (1.3)	08.4 (1.2)	18.2 (0.9)	8.6 (0.6)	7.5 (0.5)	
NCME	8.8 (0.1)* 1	10.2 (0.1)	28.3 (0.5)	27.6 (1.7)	25,8 (0.6)	23.0 (1.7)	2.5 (0.7)	4.6 (0.2)	
NMLC	10.3 (0.2)	10.9 (0.2)	33.8 (2.0)*	30.7 (1.1)	30.7 (2.2)	28.1 (1.4)	3.2 (1.0)	2.6 (0.4)	
SCEK	8.5 (0.2)*	9.8 (0.2)	28.9 (2.0)	27.3 (1.3)	20.8 (1.4)	19.1 (1.4)	8.1 (2.0)	8.2 (1.2)	
TXPL	9.9 (0.3)* 1	11.0 (0.3)	31,4 (0.6)	30.1 (0.9)	26.7 (0.8)	25.7 (0.7)	4.7 (0.8)	4.4 (1.1)	
	is line	0.0	11. C. O						

Table G-11. Study 2 - Individual Site Phenotypic Comparison – Seed Characteristics - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control egin and



							tion wing	
	Weight p		Fiber Mic				ill'ille	
	(g/bo	,	(mic u		Fiber Elong			ngth (g/tex)
	MON 88701	Control	MON 88701	Control	MON 88701	Control	MON 88701	Control
Site	Mean (SE) ¹	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)
ARPR	4.3 (0.1)	4.1 (0.2)	5.0 (0.1)	4.9 (0.1)	5.0 (0.3)*	5.7 (0.2)	30.8 (0.4)	30.5 (0.4)
ARTI	4.5 (0.0)	4.4 (0.1)	5.0 (0.2)	4.8 (0.1)		5.4 (0.2)	29.7 (0.3)	28.8 (0.4)
GACH	5.0 (0.2)	4.9 (0.1)	4.8 (0.1)		5.9 (0.1)		30.4 (0.4)	29.5 (0.5)
GAJE	3.6 (0.2)	3.7 (0.1)	39(00)	3600	5.9 (01) 7,5 (0,5) 6.3 (0.2) 55 (0,3)	6.3 (0.3) 7.0 (0.3)	31.1 (0.6)	31.5 (0.5)
KSLA	59(02)*	52(01)	42(0,0)	44(01)	(62(00))	(6, 200, 2)	30.4 (0.1)*	29.4 (0.3)
LACH	5.4 (0.1)	5.4 (0.3)	4.7 (0.1)	4.6 (0.1)	6.3 (0.2) 5.5 (0.3) 5.9 (0.1) 6.0 (0.3) 6.2 (0.1) 7.0 (0.2)	6.2 (0.3) 5.9 (0.3) 6.0 (0.2)	30.7 (0.6)	29.9 (0.2)
NCBD	4.6 (0.3)	47(02)		43 (0 1)	39(01)	6.0.(0.2)	32.6 (0.9)	32.7 (0.4)
NCME	4.9 (0.1)	5.0 (0.3)	4.9 (0.1)	4.9 (0.1)	6.0 (0.3)	5.9 (0.4)	31.8 (0.2)	31.2 (0.3)
NMLC	5.7 (0.3)*	5.1(0.3)	4.9 (0.0)*	4.7 (0.1)	0.6.2 (0.1)	6.4 (0.2)	30.1 (0.3)*	27.3 (0.5)
SCEK	4.6 (0.3)	4.4(0.4)	4.9 (0.0)	4.9 (0.0)	7.9 (0.2)	6.9 (0.2)	29.9 (0.4)	30.0 (0.4)
TXPL	5.6 (0.1)	5.7(0.1)	4.6(0.1)	4.6(0.1)	6.6 (0.2)	6.5 (0.2)	32.0 (0.3)*	31.0 (0.3)
		01.15 1	S WA M	and an a	NYS	( )	( )	
	5.6 (0.1)		http://www.cumered.org/	itation the the state of the st	5.5 (0.2) 5.5 (0.3) 5.9 (0.1) 6.0 (0.3) 6.2 (0.1) 7.0 (0.2) 6.6 (0.2)			
		$\bigtriangledown$						

 Table G-12. Study 2 - Individual Site Phenotypic Comparison – Boll and Fiber Characteristics - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

	Fiber Unif	formity (%)	Fiber Ler	ngth (cm)
	MON 88701	Control	MON 88701	Control
Site	Mean (SE)	Mean (SE)	Mean (SE)	ngth (cm) Control Mean (SE) 2.9 (0.0) 2.8 (0.0) 2.8 (0.0) 2.8 (0.1) 3.0 (0.0) 2.8 (0.0) 2.9 (0.0) 2.9 (0.0) 2.8 (0.1) 2.7 (0.1) 2.8 (0.0) 2.8 (0.0) 2.8 (0.0) 2.8 (0.0) 2.8 (0.0)
ARPR	83.9 (0.2)	84.6 (0.1)	2.8 (0.0)*	2.9 (0.0)
ARTI	83.6 (0.4)	83.6 (0.1)	2.7 (0.0)	2.8 (0.0)
GACH	83.6 (0.4)	83.4 (0.4)	2.8 (0.0)	2.8 (0.0)
GAJE	82.6 (0.9)	82.5 (0.6)	2.8 (0.1)	2.8 (0.1)
KSLA	84.2 (0.2)*	83.3 (0.1)	3.1 (0.0)	(0.0)
LACH	84.1 (0.3)	83.4 (0.4)	2.8 (0.0)	2.8 (0.0)
NCBD	84.8 (0.2)	84.8 (0.6)	2.8 (0.0)*	2.9 (0.0)
NCME	82.6 (0.5)	83.2 (0.6)	2.7 (0.0)	2.8(0.1)
NMLC	83.4 (0.6)*	81.1 (0.7)	2.8 (0.0)	2.7 (0.1)
SCEK	83.1 (0.2)	83.9 (0.1)	2.7 (0.0)	28 (0.0)
TXPL	83.5 (0.3)	83,9 (0,3) 	2.8 (0.0)	10 ^{2.8} (0.0)
¹ SE = Standar ² Measure of fi	Mean (SE) 83.9 (0.2) 83.6 (0.4) 83.6 (0.4) 82.6 (0.9) 84.2 (0.2)* 84.1 (0.3) 84.8 (0.2) 82.6 (0.5) 83.4 (0.6)* 83.1 (0.2) 83.5 (0.3) tatistically signific d error.			s micronaire unit
Monsanto Cor		Ý,		12_CT_24

 Table G-12. Study 2 - Individual Site Phenotypic Comparison – Boll and Fiber Characteristics - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control (continued)

		4		
	MON 88701	Control	Referenc	e Range ¹
Phenotypic Characteristic (units)	Mean (SE) ²	Mean (SE)	Minimum	Maximum
Stand Count at 14 DAP ³ (# per plot)	152.5 (4.9)	155.0 (4.4)	<u>s</u> 108.4	135.8
Stand Count at 30 DAP (# per plot)	151.1 (4.8)	152.8(4.0)	105.8 110.5 11.4 85.2	134.1
Final Stand Count at harvest (# per plot)	147.7 (5.0)	150.5 (4.3)	110.5	137.7
Plant Height at 30 DAP (cm)	18.1 (1.1)*	(19.2 (1.1)	11.4	20.7
Plant Height at harvest (cm)	98.4(4.4)*	105.0 (4.9)	85.2	121.9
Nodes Above White Flower: (# of nodes at observation (9)	6.7 (0.2)*0	6,4 (0.2)	6.0	7.3
(# of nodes at observation 2)	5.6 (0.3)*	5.2 (0.3)	4.8	5.7
(# of nodes at observation 3)	Ø 4.0 (0.2) Ø ∠	3.8 (0.2)	3.2	4.6
Seedcotton Yield (kg/ha)	3,295.5 (191.0)	3,164.1 (210.8)	2,181.7	3,970.8
Seed Index (g per 100 seed)	9.5 (0.2)*	10.7 (0.2)	9.4	12.4
Total Seed per Boll (# per boll)	28.5 (0.4)*	27.0 (0.4)	26.1	30.7
Total Seed per Boll (# per boll) Mature Seed per Boll (# per boll)	22.8 (0.7)*	20.1 (0.8)	14.6	27.0
Immature Seed per Boll (# per boll)	5.7 (0.6)	6.9 (0.6)	2.7	14.4
Weight per Boll (g)	4.7 (0.1)	4.8 (0.1)	4.5	5.9
Fiber Elongation (%) Fiber Strength (g/tex)	4.6 (0.1)	4.6 (0.1)	4.2	5.0
Fiber Elongation (%)	6.0 (0.1)	6.2 (0.1)	5.6	8.1
Fiber Strength (g/tex)	31.2 (0.2)*	30.2 (0.2)	30.7	34.0
Fiber Strength (g/tex)	83.5 (0.2)	83.4 (0.2)	82.8	84.3
Immature Seed per Boll (# per boll)         Weight per Boll (g)         Fiber Micronaire (mic units) ⁴ Fiber Elongation (%)         Fiber Strength (g/tex)         Fiber Length (cm)	2.8 (0.0)	2.8 (0.0)	2.7	3.1

#### Table G-13. Study 2 - Combined-Site Phenotypic Comparison - Growth and Development Characteristics - of MON 88701 sug Treated with Dicamba and Glufosinate Herbicides Compared to the Conventional Control

* Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and the conventional control (n = 44). ¹ Reference range = Minimum and maximum mean values across all 11 sites and nine references from the Study 2 field trial.

 3 DAP = days after planting.  4 Measure of fiber fineness and maturity (expressed in dimensionless micronaire units).

ve

				-				(0°) (N)		
				Phe	notypic Charac	cteristic (units	.) PlantHeight	i ching		
	Stand count	t at 14 DAP ¹	Stand count		* *	d Count at	Plant Height	at 30 DAP	Plant Height before	
	(# per		(# per			vest 🔊	(cn	n)	harv	
	MON 88701	Control	MON 88701	Control	MON 88701	Control	MON 88701	Control	MON 88701	Control
Site	Mean $(SE)^2$	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)		Mean (SE)	Mean (SE)	Mean (SE)
				S		177.5 (3.5)	20.7 (0.7)			
ARPR	182.0 (4.4)	179.8 (2.3)	178.8 (4.8)	179.5 (2.9)	177.0 (5.0)	177.5 (3.5)	20.7 (0.7)	21.1 (0.5)	66.8 (2.0)	73.5 (5.1)
ARTI	169.3 (8.3)	164.8 (7.2)	167.5 (8.0)	164.3 (7.1)	166.5 (8.0)	(163.8 (7.2))	33.2 (0.2)	32.8 (0.2)	122.2 (2.2)	126.9 (3.1)
GACH	128.0 (15.7)				123.5 (16.9)	129.5 (9.1)	23.9 (0.6)	25.8 (0.8)	103.5 (6.5)	110.2 (8.7)
GAJE	186.0 (2.3)	181.3 (2.7)	170.0 (2.1)	164.0 (3.0)	171.0 (2.8)	157.3 (8.4)	23.2 (1.0)*		81.7 (2.4)*	92.6 (7.9)
KSLA	170.0 (1.1)	162.5 (5.9)	167.5 (3.4)	158.5 (3.3)	0162.0 (2.8)	150.0 (6.7)	16.6 (0.81)	. ,	113.6 (1.5)*	127.0 (3.3)
LACH	109.0 (6.4)	110.3 (5.4)	108.5 (5.7)	112.5 (76)	91.3 (2.7)	94.8 (2.9)		15.9 (0.8)	164.8 (3.6)*	180.0 (3.1)
NCBD	141.8 (2.5)	140.3 (3.2)	141.8 (2.2)	140.3 (3.6)	136.8 (3.6)	134.3 (2.3)	17.8 (0.5)	19.4 (0.7)	87.4 (3.6)	84.7 (4.8)
NCME	133.5 (8.3)	148.0 (19.5)	152,5 (3.4)	160.3 (9.7)	155.0 (7.0)	166.3 (8.3)	18.6 (0.6)	19.7 (0.9)	75.7 (2.0)*	85.0 (3.4)
NMLC	166.8 (4.6)	168.8 (11.9)	168.8 (3.4)	164.0 (2.4)	160.0 (3.1)	163.3 (5.8)	7.4 (0.1)	7.2 (0.2)	98.3 (2.2)	102.7 (1.9)
SCEK	183.5 (3.3)	191.5 (4.6)	182.8 (3.1)	190.3 (3.9)	180.3 (3.3)	Q88.8 (3.8)	15.6 (1.2)	17.9 (1.3)	107.0 (2.0)	111.7 (1.4)
TXPL	107.8 (19.8)	125.0 (10.4)	98.0 (19.1)	119.0 (8.8)	101 8 (20.0)	130.0 (11.3)	7.8 (0.4)	7.4 (0.5)	60.9 (1.8)	60.9 (1.3)
	This dr	or ve sur may right ruay right	108-5 (5.7) 141.8 (2.2) 152.5 (3.4) 168.8 (3.4) 182.8 (3.4) 98.0 (19.1) 98.0 (19.1)	et and viol	the ins					
Managar	C		*		10 CT 04411					

 Table G-14.
 Study 2 - Individual Site Phenotypic Comparison – Growth and Development Characteristics - of MON 88701

 Treated with Dicamba and Glufosinate Herbicides Compared to the Conventional Control

						<0 (0	· · · · ·	
			P	Phenotypic Cl	haracteristic (unit	s) ior i	ing.	
		2.4	-1 24	-		hite flower	Nodes above	
	1st Vigor ³		2 nd Vigor ^{3,4}	[°] rating	obs.		(obs	5. 2)
	MON 88701	Control	MON 88701	Control	MON 88701	Control	MON 88701	Control
Site	Range	Range	Range	Range	Mean (SE) 5.6 (0.0) 8.8 (0.1) 5.8 (0.2) 6.3 (0.4) 4.4 (0.3) 8.6 (0.2)*	Mean (SE)	Mean (SE)	Mean (SE)
				~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SUL CO SU		
ARPR	3 – 5	3 - 4	4-5	2 3 - 5	5.6 (0.0)	5.7 (0.2)	3.7 (0.2)	3.6 (0.2)
ARTI	2 - 3	2 - 3	2-4	2 - 20	8.8 (0.1)	8.5 (0.2)	6.6 (0.2)	6.5 (0.2)
GACH	4 – 5	2 - 5	4-6	4-6	5.8 (0.2)	5.3 (0.2)	4.7 (0.3)	4.1 (0.4)
GAJE	1 - 1	1 - 1	23	2 - 2	6.3 (0.4)	6.6 (0.5)	6.1 (0.2)*	5.7 (0.2)
KSLA	1 – 3	2 - 3	02-3	202	4.4 (0,3)	4.6 (0.2)	4.1 (0.4)	4.2 (0.6)
LACH	3 - 6	3 - 5	1-2 5	01-2	8.6 (0.2)*	7.6 (0.1)	8.2 (0.0)	8.4 (0.1)
NCBD	2 - 2	2 - 3	3-3000	3-3 5	7.5 (0.2)	7.1 (0.5)	5.7 (0.3)*	3.9 (0.2)
NCME	3 – 5	1 - 50	S. 23 W	2-30	4.9 (0.2)	5.2 (0.2)	3.6 (0.3)	3.3 (0.2)
NMLC	1 - 2	22	5 1-10 ×	2 1 SI SI	7.9 (00)	7.1 (0.2)	8.0 (0.2)	8.1 (0.3)
SCEK	3 - 4	- 53 - 6	23	3-3	7.7 (0.3)	7.4 (0.2)	5.1 (0.4)	4.5 (0.1)
TXPL	1 - 1	~14 vo	03-30	3-3	6.2 (0.3)*	5.7 (0.1)	5.7 (0.0)*	5.1 (0.1)
	ne		Wi culli ilicat	a on x	15			
	2-2 3-5 1-2 3-4 1-1 This document	0,00,00	4-6 4-6 2-3 2-3 1-2 3-30 2-3 3-30 2-3 3-30 2-3 3-30 2-3 3-30 2-3 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30 3-30	0, 00, 00, 0	5.6 (0.0) 8.8 (0.1) 5.8 (0.2) 6.3 (0.4) 4.4 (0.3) 8.6 (0.2)* 7.5 (0.2) 4.9 (0.2) 7.9 (0.1) 7.7 (0.3) 6.2 (0.3)*			
	90 20	She fill	is JP oil	on the				
	vill, lot v		, sc, to, c	X O				
	J' non at		N' 20' 5510	Jar				
	Si Mon	the the sh	CHO MIS J	Q				
	1/2 023	, nor dife	ler er do					
	60.	Mi Sola	NOX NO					
	X	CO(1) $CO(2)$						
		(1) (1) (1)						
		'O' it'	KO.					
		N° O	<					
		Ŷ						560 66

 Table G-14.
 Study 2 - Individual Site Phenotypic Comparison – Growth and Development Characteristics - of MON 88701

 Treated with Dicamba and Glufosinate Herbicides Compared to the Conventional Control (continued)

Table G-14. Study 2 - Individual Site Phenotypic Comparison – Growth and Development Characteristics - of MON 88701 Treated with Dicamba and Glufosinate Herbicides Compared to the Conventional Control (continued)

	Phe	notypic charac	cteristics (units)	
	Nodes above (obs			ton yield /ha)
	MON 88701	Control	MON 88701	Control
Site	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)
				Ca
ARPR	2.3 (0.2)	2.4 (0.4)	2,705.9 (124.4)	2,301.7 (173.4)
ARTI	4.9 (0.0)*	4.7 (0.1)	4,109.3 (266.9)	3,869.0 (112.9)
GACH	4.0 (0.1)	3.6 (0.3)	4,107.9 (42.0)*	4,471.5 (99.5)
GAJE	3.8 (0.0)	3.8 (0.0)	1,977.6 (341.5)	1,548.4 (342.4)
KSLA	3.4 (0.1)*	2.5 (0.4)	4,182.0 (329.6)	3,726.5 (81.7)
LACH	5.7 (0.1)	5.7 (0.1)	1,940.4 (182.3)	2,046.9 (210.4)
NCBD	3.8 (0.3)*	3.0 (0.3)	4,025.4 (189.5)	3,792.7 (283.0)
NCME	2.1 (0.2)	1.9 (0.1)	1,785,4 (181-0)	1,610.6 (206.9)
NMLC	7.0 (0.7)	7.1 (0.2)	2,048.0 (74.4)*	1,479.3 (65.6)
SCEK	3.8 (0.3)	3.5 (0.1)	5,264.2 (106.1)	5,424.3 (148,4)
TXPL	3.7 (0.2)	3.5 (0.3)	4,307.3 (109.1)	4,534.5 (215.6)
		1 2 m	i de di	

* Indicates a statistically significant difference (n = 0.05) between MON 88701 and control (n = 44). ,ploit inis

S

 1  DAP = Days after planting.

 2 SE = Standard error 9

 2  SE = Standard error  3  Plant vigor was rated per plot using a rating scale of 1-9 where: 1-3 is excellent vigor, 4-6 is average vigor, and 7-9 is poor vigor.

Ô

⁴ First plant vigor score range (minimum-maximum). The range of plant vigor score at 14 DAP for the references is as follows: ARPR 3-6; ARTI 2-3; GACH 4-6; GAJE 1-3; KSLA 2-5; LACH 4-7; NCBD 3-3; NCME 1-6, NMLC 2-5; SCEK 4-6; TXPL 1-1.

⁵ Plant vigor score range (minimum-maximum). The range of plant vigor score at 30 DAP for the references is as follows: ARPR 4-6; ARTI 2-2; GACH 3-6; GAJE 2-2; KSLA 2-3; LACH 2-3; NCBD 3-3; NCME 2-3; NMLC 1-3; SCEK 2-3; TXPL 3-3.

						¹ 0 ₁₁	in ^s				
			Seed Char	acteristics	C ^{CL} iS						
	Seed	index	Total seed per boll		Mature see	d per boll	رج Immature s	eed per boll			
	(g per 10	00 seed)	(# per	boll)	(# per	boll	(# pe	r boll)			
	MON 88701	Control	MON 88701	Control	MON 88701	Control	MON 88701	Control			
				( A	60, 00,	N. CON					
Site	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)			
ARPR	9.1 (0.2)*	10.0 (0.4)	26.1 (0.8)*	23.9 (0.7)	23.2 (1.5)*	15.9 (0.6)	2.9 (0.9)*	8.0 (0.6)			
ARTI	9.6 (0.1)*	12.0 (1.0)	27.7 (0.3)	26.8 (0.7)	22.5 (1.0)*	18.0 (0.6)	5.3 (1.0)*	8.9 (1.2)			
GACH	9.0 (0.3)*	9.7 (0.3)	29.7 (0.7)*	27.4 (1.1)	27.2 (1.4)*	23.4 (1.1)	2.5 (0.7)	4.0 (0.6)			
GAJE	8.1 (0.4)*	10.4 (0.5)	25.4 (1.8)	24.6 (0.7)	12.6 (0.7)	11.6 (0.1)	12.8 (1.7)	13.0 (0.8)			
KSLA	12.3 (0.3)	12.8 (0.3)	25.8 (0.5)	24.9 (0.4)	23.7 (0.3)	22.7 (1.0)	2.1 (0.8)	2.2 (0.6)			
LACH	9.5 (0.3)*	10.3 (0.2)	29.8 (1.0)	28.7 (1.2)	21.6 (2.2)	17.5 (1.9)	8.3 (1.8)	11.2 (0.8)			
NCBD	9.2 (0.2)*	10.5 (0.2)	28.0 (0.7)	25.7 (1.3)	19.7 (0.6)	18.2 (0.9)	8.3 (1.2)	7.5 (0.5)			
NCME	8.9 (0.2)*	10.2 (0.1)	29.0 (0.4)	27.6 (1.7)	23.1 (1.4)	23.0 (1.7)	5.9 (1.4)	4.6 (0.2)			
NMLC	10.2 (0.1)	10.9 (0.2)	31.8 (0.8)	307 (14)	29.6(1.4)	28.1 (1.4)	2.2 (0.7)	2.6 (0.4)			
SCEK	8.5 (0.2)*	9.8 (0.2)	27.9 (1.3)	27.3 (1.3)	21.4 (1.5)	19.1 (1.4)	6.5 (1.9)	8.2 (1.2)			
TXPL	9.9 (0.4)*	P1.0 (0.3)	32.2 (0.9)	30.1 (0.9)	26.5 (0.8)	25.7 (0.7)	5.8 (1.1)	4.4 (1.1)			
	20		N. 6 . 9	NO XNO							

# Table G-15. Study 2 - Individual Site Phenotypic Comparison – Seed Characteristics - of MON 88701 Treated with Dicamba and Glufosinate Herbicides Compared to the Conventional Control

* Indicates a statistically significant difference between MON 88701 and control ( $p \le 0.05$ ).

	Fiber Boll (g/bo	weight	Fiber Mic (mic ur	cronaire	Fiber Elon	gation (%)	Fiber Str	ength (g/tex)
	MON 88701	Control	MON 88701	Control	MON 88701	Control	MON 88701	Control
Site	Mean (SE ² )	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)
					(C)	20 210	Nº 10	
ARPR	4.1 (0.2)	4.1 (0.2)	5.0 (0.0)	4.9 (0.1)	5.3 (0.1)	5.7 (0.2)	30.3 (0.7)	30.5 (0.4)
ARTI	4.4 (0.1)	4.4 (0.1)	4.8 (0.0)	4.8 (0.1)	5.1 (0.1)	5.4 (0.2)	29.2 (0.4)	28.8 (0.4)
GACH	4.8 (0.1)	4.9 (0.1)	4.8 (0.1)	4.7 (0.1)	5.8 (0,3)	6.3 (0.3)	31.0 (0.4)*	29.5 (0.5)
GAJE	3.3 (0.2)	3.7 (0.1)	3.7 (0.2)	3.6 (0.1)	7.5 (0.1)	7.0 (0.3)	31.5 (0.2)	31.5 (0.5)
KSLA	5.4 (0.2)	5.3 (0.1)	4.4 (0.0)	4,4 (0.1)	<u>6.1 (01)</u>	6.2 (0.3)	30.7 (0.3)*	29.4 (0.3)
LACH	5.0 (0.2)	5.4 (0.3)	4.7 (0.2)	4.6 (0.1)	5.4 (0.1)	5.9 (0.3)	31.3 (0.3)*	29.9 (0.2)
NCBD	4.7 (0.1)	4.7 (0.2)	4.3 (0.1)	4.3 (0.1)	6.2 (0.2)	6.0 (0.2)	33.9 (0.2)	32.7 (0.4)
NCME	4.8 (0.1)	5.0 (0.3)	4.8 (0,1)	4.9 (0.1)	5,9 (0.2)	5.9 (0.4)	32.2 (0.7)	31.2 (0.3)
NMLC	5.3 (0.2)	5.1 (0.3)	· 4.9 (0.1)*	4.7 (0.1)	6.1 (0.2)	6.4 (0.2)	29.3 (0.3)*	27.3 (0.5)
SCEK	4.3 (0.2)	4.4 (0.4)	49(0.0)	4.9 (0.0)	6.7 (0.2)	6.9 (0.2)	30.7 (0.3)*	30.0 (0.4)
TXPL	5.8 (0.1)	.5.7 (0.1)	4.8 (0.1)	4.6 (0.1)	6.4 (0.3)	6.5 (0.2)	33.0 (0.4)*	31.0 (0.3)
		A CONTRACTION OF THE	incon con	till and	<u>(6 0)</u>			
	4.8 (0.1) 5.3 (0.2) 4.3 (0.2) 5.8 (0.1) 5.8 (0.1)	OT BOL	ON CUI DIC		Fiber Elon         MON 88701         Mean (SE)         5.3 (0.1)         5.1 (0.1)         5.8 (0.3)         7.5 (0.1)         6.1 (0.1)         5.9 (0.2)         6.1 (0.2)         6.7 (0.2)         6.4 (0.3)			
	200	4 76, 44	SOU DUI	OL HING				
	is is in		Nº (7) 6/0	O. All				
	This glo a	C C C C C	o et à					
	all do	10. 00 C		ilon				
	14 0	y our ner	of other	>				
	CO)	Will CO M	6 8.					
	<	Colles Coll	the teo					
		Miji IS	(O).					
		N. O	2					
		-Q						

 Table G-16. Study 2 - Individual Site Phenotypic Comparison – Boll and Fiber Characteristics - of MON 88701 Treated with

 Dicamba and Glufosinate Herbicides Compared to the Conventional Control

Fiber Uniformity (%)         Fiber Length (cm)           MON 88701         Control         MON 88701         Control           te         Mean (SE)         Mean (SE)         Mean (SE)         Mean (SE)           RPR         83.9 (0.5)         84.6 (0.1)         2.8 (0.0)         2.9 (0.0)           RTI         83.5 (0.2)         83.6 (0.1)         2.8 (0.0)         2.9 (0.0)           ACH         84.3 (0.6)         83.4 (0.4)         2.8 (0.1)         2.8 (0.0)           ALE         82.6 (1.1)         82.5 (0.6)         2.8 (0.0)         2.8 (0.1)           SLA         84.3 (0.3)*         83.3 (0.1)         3.1 (0.0)         3.0 (0.0)           ACH         83.7 (0.3)         83.4 (0.4)         2.8 (0.0)         2.8 (0.0)           CBD         84.4 (0.4)         84.8 (0.6)         2.8 (0.0)         2.9 (0.0)           CME         83.6 (0.2)         83.2 (0.6)         2.7 (0.0)         2.8 (0.1)           CME         83.6 (0.2)         83.9 (0.3)         2.8 (0.1)         2.8 (0.0)           CME         83.6 (0.2)         83.9 (0.3)         2.8 (0.1)         2.8 (0.0)           CMLC         81.4 (0.6)         81.1 (0.7)         2.7 (0.0)         2.8 (0.0)           KPL
teMean (SE)Mean (SE)Mean (SE)Mean (SE)RPR $83.9 (0.5)$ $84.6 (0.1)$ $2.8 (0.0)$ $2.9 (0.0)$ RTI $83.5 (0.2)$ $83.6 (0.1)$ $2.8 (0.0)$ $2.8 (0.0)$ ACH $84.3 (0.6)$ $83.4 (0.4)$ $2.8 (0.1)$ $2.8 (0.0)$ AJE $82.6 (1.1)$ $82.5 (0.6)$ $2.8 (0.0)$ $2.8 (0.1)$ SLA $84.3 (0.3)^*$ $83.3 (0.1)$ $3.1 (0.0)$ $3.0 (0.0)$ ACH $83.7 (0.3)$ $83.4 (0.4)$ $2.8 (0.0)$ $2.8 (0.0)$ CBD $84.4 (0.4)$ $84.8 (0.6)$ $2.8 (0.0)$ $2.8 (0.0)$ CME $83.6 (0.2)$ $83.2 (0.6)$ $2.7 (0.0)$ $2.8 (0.1)$ MLC $81.4 (0.6)$ $81.1 (0.7)$ $2.7 (0.0)$ $2.8 (0.0)$ CEK $82.5 (0.5)^*$ $83.9 (0.3)$ $2.8 (0.1)$ $2.8 (0.0)$ Reasure of fiber fineness and maturity (expressed in dimensionless interonaire under of fiber fineness and maturity (expressed in dimensionless interonaire under of fiber fineness and maturity (expressed in dimensionless interonaire under of fiber fineness and maturity (expressed in dimensionless interonaire under of fiber fineness and maturity (expressed in dimensionless interonaire under of fiber fineness and maturity (expressed in dimensionless interonaire under of fiber fineness and maturity (expressed in dimensionless interonaire under of fiber fineness and maturity (expressed in dimensionless interonaire under of fiber fineness and maturity (expressed in dimensionless interonaire under of fiber fineness and maturity (expressed in dimensionless interonaire under of fiber fineness and maturity (expressed in dimensionless interonaire under of fiber fiber fiber fiber fiber fiber fiber fib
RPR $83.9 (0.5)$ $84.6 (0.1)$ $2.8 (0.0)$ $2.9 (0.0)$ RTI $83.5 (0.2)$ $83.6 (0.1)$ $2.8 (0.0)$ $2.8 (0.0)$ ACH $84.3 (0.6)$ $83.4 (0.4)$ $2.8 (0.1)$ $2.8 (0.0)$ AJE $82.6 (1.1)$ $82.5 (0.6)$ $2.8 (0.0)$ $2.8 (0.1)$ SLA $84.3 (0.3)^*$ $83.3 (0.1)$ $3.1 (0.0)$ $3.0 (0.0)$ ACH $83.7 (0.3)$ $83.4 (0.4)$ $2.8 (0.0)$ $2.8 (0.0)$ CBD $84.4 (0.4)$ $84.8 (0.6)$ $2.8 (0.0)$ $2.8 (0.0)$ CME $83.6 (0.2)$ $83.2 (0.6)$ $2.7 (0.0)$ $2.8 (0.1)$ CME $83.6 (0.2)$ $83.2 (0.6)$ $2.7 (0.0)$ $2.8 (0.1)$ CME $83.6 (0.2)$ $83.2 (0.6)$ $2.7 (0.0)$ $2.8 (0.0)$ CME $83.6 (0.2)$ $83.2 (0.6)$ $2.7 (0.0)$ $2.8 (0.0)$ CME $83.6 (0.2)$ $83.2 (0.6)$ $2.7 (0.0)$ $2.8 (0.0)$ CME $83.6 (0.2)$ $83.2 (0.6)$ $2.7 (0.0)$ $2.8 (0.0)$ CME $83.6 (0.2)$ $83.9 (0.3)$ $2.8 (0.1)$ $2.8 (0.0)$ CEK $82.5 (0.5)^*$ $83.9 (0.3)$ $2.8 (0.1)$ $2.8 (0.0)$ CH $84.2 (0.4)$ $83.9 (0.3)$ $2.8 (0.1)$ $2.8 (0.0)$ CH $84.2 (0.4)$ $83.9 (0.3)$ $2.8 (0.1)$ $2.8 (0.0)$ CH $84.2 (0.4)$ $83.9 (0.3)$ $2.8 (0.1)$ $2.8 (0.0)$ CH $84.2 (0.4)$ $83.9 (0.3)$ $2.8 (0.1)$ $2.8 (0.0)$ CH $84.2 (0.4)$ $84.9 (0.6)$ $84.6 (0.6)$ <t< td=""></t<>
RTI83.5 (0.2)83.6 (0.1)2.8 (0.0)2.8 (0.0)ACH84.3 (0.6)83.4 (0.4)2.8 (0.1)2.8 (0.0)AJE82.6 (1.1)82.5 (0.6)2.8 (0.0)2.8 (0.1)SLA84.3 (0.3)*83.3 (0.1)3.1 (0.0)3.0 (0.0)ACH83.7 (0.3)83.4 (0.4)2.8 (0.0)2.8 (0.0)CBD84.4 (0.4)84.8 (0.6)2.8 (0.0)2.9 (0.0)CME83.6 (0.2)83.2 (0.6)2.7 (0.0)2.7 (0.0)CME83.6 (0.2)83.2 (0.6)2.7 (0.0)2.7 (0.1)CEK82.5 (0.5)*83.9 (0.1)2.8 (0.1)2.8 (0.0)CEK82.5 (0.5)*83.9 (0.3)2.8 (0.1)2.8 (0.0)CEK84.2 (0.4)83.9 (0.3)2.8 (0.1)2.8 (0.0)CE84.2 (0.4)84.9 (0.3)2.8 (0.1)2.8 (0.0)CE84.9 (0.4)84.9 (0.3)2.8 (0.1)2.8 (0.0)CE84.2 (0.4)84.9 (0.3)2.8 (0.1)2.8 (0.1)CE84.9 (0.4)84.9 (0.3)2.8 (0.1)2.8 (0.1)CE84.9 (0.4)84.9 (0.4)84.9 (0.4)84.9 (0.4)CE84.9 (0.4)84.9 (0.4
ACH 84.3 (0.6) 83.4 (0.4) 2.8 (0.1) 2.8 (0.0) AJE 82.6 (1.1) 82.5 (0.6) 2.8 (0.0) 2.8 (0.1) SLA 84.3 (0.3)* 83.3 (0.1) 3.1 (0.0) 3.0 (0.0) ACH 83.7 (0.3) 83.4 (0.4) 2.8 (0.0) 2.8 (0.0) CBD 84.4 (0.4) 84.8 (0.6) 2.8 (0.0) 2.9 (0.0) CME 83.6 (0.2) 83.2 (0.6) 2.7 (0.0) 2.8 (0.1) MLC 81.4 (0.6) 81.1 (0.7) 2.7 (0.0) 2.7 (0.1) CEK 82.5 (0.5)* 83.9 (0.1) 2.7 (0.0) 2.8 (0.0) CME 84.2 (0.4) 83.9 (0.3) 2.8 (0.1) 2.8 (0.0) Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and Measure of fiber fineness and maturity (expressed in dimensionless thicronaire und BE = Standard error.
AJE 82.6 (1.1) 82.5 (0.6) 2.8 (0.0) 2.8 (0.1) SLA 84.3 (0.3)* 83.3 (0.1) 3.1 (0.0) 3.0 (0.0) ACH 83.7 (0.3) 83.4 (0.4) 2.8 (0.0) 2.8 (0.0) CBD 84.4 (0.4) 84.8 (0.6) 2.8 (0.0) 2.9 (0.0) CME 83.6 (0.2) 83.2 (0.6) 2.7 (0.0) 2.8 (0.1) MLC 81.4 (0.6) 81.1 (0.7) 2.7 (0.0) 2.7 (0.1) CEK 82.5 (0.5)* 83.9 (0.1) 2.7 (0.0)* 2.8 (0.0) KPL 84.2 (0.4) 83.9 (0.3) 2.8 (0.1) 2.8 (0.0) Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 an Measure of fiber fineness and maturity (expressed in dimensionless micronaire un SE = Standard error.
SLA 84.3 (0.3)* 83.3 (0.1) 3.1 (0.0) 3.0 (0.0) ACH 83.7 (0.3) 83.4 (0.4) 2.8 (0.0) 2.8 (0.0) CBD 84.4 (0.4) 84.8 (0.6) 2.8 (0.0) 2.9 (0.0) CME 83.6 (0.2) 83.2 (0.6) 2.7 (0.0) 2.8 (0.1) MLC 81.4 (0.6) 81.1 (0.7) 2.7 (0.0) 2.7 (0.1) CEK 82.5 (0.5)* 83.9 (0.1) 2.7 (0.0)* 2.8 (0.0) KPL 84.2 (0.4) 83.9 (0.3) 2.8 (0.1) 2.8 (0.0) Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 an Measure of fiber fineness and maturity (expressed in dimensionless nucronaire un SE = Standard error.
ACH 83.7 (0.3) 83.4 (0.4) 2.8 (0.0) 2.8 (0.0) CBD 84.4 (0.4) 84.8 (0.6) 2.8 (0.0) 2.9 (0.0) CME 83.6 (0.2) 83.2 (0.6) 2.7 (0.0) 2.8 (0.1) MLC 81.4 (0.6) 81.1 (0.7) 2.7 (0.0) 2.7 (0.1) CEK 82.5 (0.5)* 83.9 (0.1) 2.7 (0.0)* 2.8 (0.0) KPL 84.2 (0.4) 83.9 (0.3) 2.8 (0.1) 2.8 (0.0) Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 an Measure of fiber fineness and maturity (expressed in dimensionless micronaire un SE = Standard error.
CBD $84.4 (0.4)$ $84.8 (0.6)$ $2.8 (0.0)$ $2.9 (0.0)$ CME $83.6 (0.2)$ $83.2 (0.6)$ $2.7 (0.0)$ $2.8 (0.1)$ MLC $81.4 (0.6)$ $81.1 (0.7)$ $2.7 (0.0)$ $2.7 (0.1)$ CEK $82.5 (0.5)^*$ $83.9 (0.4)$ $2.7 (0.0)^*$ $2.8 (0.0)^*$ CEK $82.5 (0.5)^*$ $83.9 (0.3)$ $2.8 (0.1)^*$ $2.8 (0.0)^*$ CEK $84.2 (0.4)^*$ $83.9 (0.3)^*$ $2.8 (0.1)^*$ $2.8 (0.0)^*$ MIDIC $84.2 (0.4)^*$ $83.9 (0.3)^*$ $2.8 (0.1)^*$ $2.8 (0.0)^*$ Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and Measure of fiber fineness and maturity (expressed in dimensionless thicronaire under error.         SE = Standard error.       SE = Standard error.       SE = Standard error.
CME       83.6 (0.2)       83.2 (0.6)       2.7 (0.0)       2.8 (0.1)         MLC       81.4 (0.6)       81.1 (0.7)       2.7 (0.0)       2.7 (0.1)         CEK       82.5 (0.5)*       83.9 (0.1)       2.7 (0.0)*       2.8 (0.0)         XPL       84.2 (0.4)       83.9 (0.3)       2.8 (0.1)       2.8 (0.0)         Indicates a statistically significant difference ( $\alpha = 0.05$ ).between MON 88701 an Measure of fiber fineness and maturity (expressed in dimensionless micronaire un SE = Standard error.
MLC 81.4 (0.6) 81.1 (0.7) 2.7 (0.0) 2.7 (0.1) CEK 82.5 (0.5)* 83.9 (0.1) 2.7 (0.0)* 2.8 (0.0) KPL 84.2 (0.4) 83.9 (0.3) 2.8 (0.1) 2.8 (0.0) Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and Measure of fiber fineness and maturity (expressed in dimensionless micronaire un SE = Standard error.
DEK $82.5 (0.5)^*$ $83.9 (0.4)$ $2.7 (0.0)^*$ $2.8 (0.0)$ XPL $84.2 (0.4)$ $83.9 (0.3)$ $2.8 (0.1)$ $2.8 (0.0)$ Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and Measure of fiber fineness and maturity (expressed in dimensionless micronaire under SE = Standard error.SE = Standard error.
KPL $84.2 (0.4)$ $83.9 (0.3)$ $2.8 (0.1)$ $2.8 (0.0)$ Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and Measure of fiber fineness and maturity (expressed in dimensionless micronaire un SE = Standard error.SE = Standard error.
Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and Measure of fiber fineness and maturity (expressed in dimensionless micronaire un SE = Standard error.
Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and Measure of fiber fineness and maturity (expressed in dimensionless micronaire un SE = Standard error.
SE = Standard error. This do the standard er
<i>Q</i>

 Table G-16. Study 2 - Individual Site Phenotypic Comparison – Boll and Fiber Characteristics - of MON 88701 Treated with

 Dicamba and Glufosinate Herbicides Compared to the Conventional Control (continued)

								10° 0'		
				Phe	enotypic Chara	cteristic (un	its) Total first-po	shing		
	Total Mains	stem Nodes	Nodes to fi		Total l	olls ¹	Total first-po	sition bolls	Vegetati	ve bolls
	(#		branc	-	(# per	olant	(# per p	olant)	(# per	
	MON 88701	Control	MON 88701	Control	MON 88701	1.51	MON 88701		MON 88701	Control
Site	Mean $(SE)^2$	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	/	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)
				Š	. 01	101	33 (0.1)			
ARPR	16.4 (0.4)	16.9 (0.5)	6.1 (0.1)	6.3 (0.2)	6.2 (0.4)	59(0.6)	3.3(0.1)	3.1 (0.3)	1.1 (0.3)	1.0 (0.3)
ARTI	20.9 (0.7)*	19.8 (0.2)	5.4 (0.1)	5.4 (0.2)	(1.3 (1.2)	o 9.7 (0.9)	7.2 (1.0)	6.1 (0.4)	0.0 (0.0)	0.1 (0.1)
GACH	21.6 (0.6)	20.9 (0.4)	6.5 (0.5)* \$	7.9 (0.5)	9.9 (0.4)		4.1 (0.5)	3.2 (0.5)	2.4 (0.5)	3.5 (0.9)
GAJE	17.7 (0.4)	17.5 (0.7)	5.0 (0.2)* ^C	7.9 (0.5) 5.8 (0.2)	9.0 (0.6)	10.1 (0.6)	5.8 (0.2)	5.9 (0.3)	0.2 (0.1)	0.3 (0.2)
KSLA	18.9 (0.4)	19.4 (0.6)	3.8 (0.1)	4.0 (0.3)	19.1 (0.2)*	20.6 (0.3)	4.7 (0.4)	5.2 (0.3)	13.5 (0.4)	13.9 (0.6)
LACH	20.9 (0.4)	22.8 (1.4)	7.1 (0.6)	6.9 (0.4)	7.1 (0.8)	4.9 (1.2)	2.9 (0.5)	2.8 (0.6)	1.8 (0.5)	0.4 (0.3)
NCBD	150(04)	14 8 (0 6)	42(0.1)	(-4302)	98(04)	89(05)	6.3 (0.5)	5.5 (0.3)	0.6 (0.2)	0.3 (0.1)
NCME	14.5 (0.5)	15.2 (0.2)	× 4 5 M 1 × S	$-46(0.1)^{0}$	88 (17)*5	4202	3.5 (0.3)*	2.5 (0.1)	1.0 (0.2)*	0.1 (0.1)
NMLC	19.6 (0.2)	18.9 (0.3)	4.8 (0.5)	5.0 (0.4)	6.7 (0.7)*	4.5 (0.5)	4.4 (0.3)*	3.0 (0.4)	0.4 (0.1)	0.0 (0.0)
SCEK	15.8 (0.2)	15.8 (0.2)	4.6(0.2)	$4.6(0.1)^{\circ}$	9.7 (0.4)	010.0 (0.6)	6.9 (0.3)	6.3 (0.3)	0.3 (0.1)	0.7 (0.2)
TXPL	18.3 (0.2)	18.2 (0.3)	<b>5</b> .7 (0,1)	5.9 (0.2)	12.4 (0.5)	11.3 (0.4)	7.8 (0.2)*	7.1 (0.1)	1.0 (0.3)	0.8 (0.2)
		CD1 - 1 - X	10 x 0 20	JOI ALLO	10; ON					
	This of		4.5 (0.1) 4.5 (0.1) 4.8 (0.5) 4.6 (0.2) 5.7 (0.1) 6 5.7 (0.1) 6 6 6 6 6 6 6 7 7 10 10 10 10 10 10 10 10 10 10	ethission ethission	te the					
Monsant	o Company		Q.		12-CT-244U					574 of 620

 Table G-17. Study 2 - Individual Site Phenotypic Comparison – Plant Mapping - of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

	Phenotypic Characteristic (units)				
	% First-position boll retention		I Site Phenotypic Compared to the Conventional Control         aracteristic (units)         % First-position bolls over total bolls         MON 88701       Control         Mean (SE)       Mean (SE)         56.6 (3.6)       56.0 (4.4)         63.9 (2.1)       66.8 (2.9)         42.7 (5.0)       36.6 (3.2)         67.4 (2.3)*       61.8 (1.9)         24.8 (1.9)       24.9 (1.3)         48.8 (L0)       55.8 (1.9)         66.5 (4.5)       64.5 (4.0)         53.9 (2.7)       58.4 (1.7)         69.5 (3.0)       65.8 (2.8)         73.2 (3.5)*       65.7 (1.9)         65.8 (2.0)       64.9 (2.2)		
	MON 88701	Control	MON 88701	Control	
Site	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	
				6	
ARPR	33.0 (1.9)	30.3 (3.7)	56.6 (3.6)	56.0 (4.4)	
ARTI	45.4 (4.9)	42.3 (2.8)	63.9 (2.1)	66.8 (2.9)	
GACH	26.8 (2.0)	23.0 (2.6)	42.7 (5.0)	366(3.2)	
GAJE	45.1 (1.5)	52.6 (4.9)	67.4 (2.3)*	61.8 (1.9)	
KSLA	32.2 (2.0)	34.0 (2.4)	24.8 (1.9)	24.9 (1.3)	
LACH	20.9 (2.8)	18.4 (4.8)	48.8 (10)	55.8 (1.9)	
NCBD	58.8 (4.3)	52.5 (0.9)	66.5(4.5)	64.5 (4.0)	
NCME	35.6 (3.3)*	23.9 (0.8)	53.9 (2.7)	>58.4 (1.7)	
NMLC	30.1 (2.1)*	21.3 (3.3)		65.8 (2.8)	
SCEK	62.2 (2.6)	57.0 (2.5)	73.2 (3.5)*	65.7(1.9)	
TXPL	72.5 (1.4)	69.6 (1.7)	65.8 (2.0)	64.9 (2.2)	

Table G-17. Study 2 - Individual Site Phenotypic Comparison – Plant Mapping - of MON 88701 Not Treated with Dicamba or **Glufosinate Herbicides Compared to the Conventional Control (continued)** 

* Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and conventional control (n = 4). ¹ Total bolls = number of first-position bolls + number of second-position bolls + number of vegetative bolls. ² SE = Standard error.

		<	0,0	
	MON 88701	Control	Reference Range ¹	
Phenotypic Characteristic (units)	Mean $(SE)^2$	Mean (SE)	Minimum	Maximum
		no rot up	×S	
Mainstem Nodes (# per plant)	18.3 (0.3)	18.2 (0,4)	16.0	21.6
Nodes to First Fruiting Branch (# per plant)	5.2 (0.1)	5,5(1.1)	<b>4</b> .2	7.6
Total Bolls (# per plant) ³	10.1 (0.6)	9.0 (0.7)	8.6	13.4
Total First-Position Bolls (# per plant)	5.2 (0.3)*	4.6 (0.3)	2.9	6.3
Total Vegetative Bolls (# per plant)	2.1 (0.6)	1.9 (0.6)	0.7	5.0
% Retention First-Position Bolls (per plant)	41.7 (2.3)	38.6 (2.6)	21.2	53.5
% First-Position Bolls of Total Bolls (per plant)	a6.7 (2.1) o	56.5 (2.1)	36.0	59.6
Ex.	Shatting de mind	o un		

#### Table G-18. Study 2 – Combined-Site Phenotypic Comparison – Plant Mapping - of MON 88701 Treated with Dicamba or ojn'nd **Glufosinate Herbicides Compared to the Conventional Control**

*Indicates a statistically significant difference ( $\alpha = 0.05$ ). between the test and control (n = 44).

¹ Reference range = Minimum and maximum mean values among the commercial conventional reference varieties.

Monsanto Company 12 CT 2441

							<	0,0		
				Phe	enotypic Chara	acteristic (unit	s) ; 0	ing		
	Total Mains	stem Nodes	Nodes to fin	rst fruiting	Total	bolls ¹	Total first-po		Vegetati	ve bolls
	(#	<b>#</b> )	branc		(# per	plant)	(# per ]	plant)	(# per )	plant)
	MON 88701	Control	MON 88701	Control	MON 88701	Control	MON 88701	Control	MON 88701	Control
Site	Mean $(SE)^2$	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)
				Ca	,00	-d	21, 60, 60			
ARPR	16.3 (0.4)	16.9 (0.5)	6.0 (0.0)	6.3 (0.2)	5.7 (0.3)	5.9 (0.6)	3.4 (0.4) 6.8 (0.3) 3.8 (0.8) 5.5 (0.4) 4.8 (0.3)	3.1 (0.3)	0.7 (0.1)	1.0 (0.3)
ARTI	19.7 (0.1)	19.8 (0.2)	5.2 (0.1)	5.4 (0.2)	11.0 (0.3)	9.7 (0.9)	6.8 (0.3)	6.1 (0.4)	0.3 (0.1)	0.1 (0.1)
GACH	21.2 (0.9)	20.9 (0.4)	6.5 (0.5)*	7.9 (0.5)	8.7 (1.6)	9.4 (1.3)	3.8 (0.8)	3.2 (0.5)	2.0 (0.6)	3.5 (0.9)
GAJE	17.0 (0.2)	17.5 (0.7)	5.1 (0.1)* 3.7 (0.1)	5.8 (0.2)	9.5 (1.1)	9.4 (1.3) 10.1 (0.6) 20.6 (0.3) 4.9 (1.2)	5.5 (0.4)	5.9 (0.3)	0.7 (0.3)	0.3 (0.2)
KSLA	19.6 (0.7)	19.4 (0.6)	3.7 (0.1)	4.0 (0.3)	20.1 (0.7)	20.6 (0.3)	4.8 (0.3)	5.2 (0.3)	14.3 (0.7)	13.9 (0.6)
LACH	21.4 (0.8)	22.8 (1.4)	6.4 (0.4)	6.9 (0.4)	\$.3 (10)	. 4.9 (1.2)	3.8 (0.5)	2.8 (0.6)	1.0 (0.4)	0.4 (0.3)
NCBD	16.5 (0.7)*	14.8 (0.6)	4.5 (0.2)			8.9 (0.5)	6.5 (0.4)*	5.5 (0.3)	0.4 (0.3)	0.3 (0.1)
NCME	15.1 (0.3)	15.2 (0.2)	4.8 (0.1)	4.6 (0.1)	7.1 (0.4)*	4.2 (0.2)	3.4 (0.3)*	2.5 (0.1)	1.1 (0.1)*	0.1 (0.1)
NMLC	19.4 (0.2)	18.9 (0.3)	4.8 (0.4)	5.0 (0.4)	7.7 (0.6)*	4.5 (0.5)	4.7 (0.2)*	3.0 (0.4)	0.3 (0.2)	0.0 (0.0)
SCEK	16.1 (0.4)	15.8 (0.2)	4.6 (0.1)	4.6 (0.1)	9.4 (0.3)	10.0 (0.6)	6.5 (0.3)	6.3 (0.3)	0.3 (0.0)*	0.7 (0.2)
TXPL	18.5 (0.7)	18.2 (0.3)	53 (0.2)	5.9 (0.2)	14.3 (1.8)*	<b>11.3</b> (0.4)	8.1 (0.2)*	7.1 (0.1)	1.8 (0.9)	0.8 (0.2)
		In Shi	CL ON C	J' HCC OF	ON MILS					
	16.1 (0.2) 16.1 (0.4) 18.5 (0.7)	15.8 (0.2) 18.2 (0.3) 18.2 (0.3) 19.2 (	$\begin{array}{c}       4.5 (0.2) \\       4.8 (0.1) \\       4.8 (0.4) \\       4.8 (0.4) \\       4.8 (0.4) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\       5.3 (0.2) \\      $	PUL OTATION	ine ris					
Monconto	Company		$\checkmark$		12 CT 244U					577 of 620

 Table G-19. Study 2 - Individual Site Phenotypic Comparison – Plant Mapping - of MON 88701 Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

	Pł	nenotypic Cha	aracteristic (uni	ts)
	% Retent		% First-posi	
	position boll	s (per plant)	total bolls (	per plant) ²
	MON 88701	Control	MON 88701	Control
Site	Mean (SE)	Mean (SE)	Mean (SE)	Mean (SE)
				$(\land$
ARPR	33.5 (3.7)	30.3 (3.7)	61.4 (2.6)	56.0 (4.4)
ARTI	46.7 (2.0)	42.3 (2.8)	61.6 (1.5)	66.8 (2.9)
GACH	25.2 (4.2)	23.0 (2.6)	45.4 (3.7)*	36.6 (3.2)
GAJE	45.6 (2.8)	52.6 (4.9)	61.4 (2.0)	61.8 (1.9)
KSLA	32.0 (2.8)	34.0 (2.4)	24.5 (1.6)	24.9 (1.3)
LACH	25.5 (2.0)	18.4 (4.8)	57.5 (5.2)	55.8 (1.9)
NCBD	54.5 (1.4)	52.5 (0.9)	65.2 (3.1)	64.5 (4.0)
NCME	33.7 (2.4)*	23.9 (0.8)	50.5 (3.3)	58.4 (1.7)
NMLC	32.2 (1.5)*	21.3 (3.3)	64.8 (4.6)	65.8 (2.8)
SCEK	57.5 (3.0)	57.0 (2.5)	70.0 (2.7)	65.7 (1.9)
TXPL	72.1 (2.3)	69.6 (1.7)	61.0 (6.3)	64.9 (2,2)

Table G-19. Study 2 - Individual Site Phenotypic Comparison – Plant Mapping - of MON 88701 Treated with Dicamba or dinind **Glufosinate Herbicides Compared to the Conventional Control (continued)** 

 IAL
  $72.1(2.3)^{-1}$  09.0(1.7)
  $01.0(0.03)^{-1}$  04.9(2.2)

 * Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and conventional control (n = 4).

 ¹ Total bolls = number of first-position bolls + number of second-position bolls + number of vegetative bolls.

 ² SE = Standard error.

Abiotic Stressor	Number of observations across all sites	Number of observations where no differences were observed between MON88701 and the conventional control
Total	169	169
Compaction	4	4 00000
Drought/ Dry	40	40
Flood	1	
Hail	6	ACC DE
Heat	46 200	Q 46
Nutrient deficiency	22	22,0
Wet soil/excess precipitation Wind damage	500 101 101 101 101 101 101 101 101 101	lon of its the 33

Table G-20 Study 1 – Qualitative Assessment of Plant Response to Abiotic Stressors- MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared tothe Conventional Control

Note 1: The experimental design was a randomized complete block with four replications. Data were not subjected to statistical analysis. No differences were observed between MON 88701 and the conventional control during any observation of plan response to abiotic stressors.

Monsanto Company

#### Table G-21. Study 1 – Qualitative Assessment of Disease Damage - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

Disease	Number of observations across all sites	Number observations where no differences were observed between MON 88701 and the conventional control
Total	170	$\frac{170}{2}$
Anthracnose	2	2
Ascochyta leaf blight	2	
Bacterial blight	23	23
Boll rot	26	26 ctill shi
Cotton leaf rust	13	S B S
Damping off	1	AN A
Fusarium wilt	14	AT AT AT A
Leaf spots ¹	G 43	0° 31 43 0 101
Pythium	P 11 29	
Reniform nematode	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the stand
Rhizoctonia	16	16 NO NO X 16
Root-knot nematode	inte gesier	rev cui rei 6
Thielaviopsis	S SI N	
Verticillium with		(1) 0° 5' 11
Q' 5. 5V	White I will a	on with the sine is

Note 1: The experimental design was a randomized complete block with four replications. Data were not subjected to statistical analysis. No differences were observed between MON 88701 and the conventional control during any observation of plant response to abiotic stressors.

n with .e I: The experimental c .ot subjected to statistical and conventional control during a. Includes Septoria was a randomized cu sis. No differences wer any observation of plant rest.

		Number observations
	Number of	where no differences were observed between
Anthropod		MON 88701 and the
Arthropod	across all sites	conventional control
ArthropodTotalAphids (Aphididae)Beet armyworms (Spodoptera exigua)Cut worms (Noctuidae)Fall armyworms (Spodoptera frugiperda)Fleahoppers (Pseudatomoscelis seriatus)Grasshoppers (Acrididae)Heliothines (Helicoverpa zea and Heliothis virescens)Southern corn rootworm beetles (Diabrotica undecimpunctata howardi)Soybean loopers (Pseudoplusia inclunes)Spider mites (Tetranychus spp.) Stink bugs (Pentatomidae)Tarnished plant bugs (Lygus lineolaris) 	159	159 mend
Aphids (Aphididae)	31	31
Beet armyworms (Spodoptera exigua)	2	x101,21103
Cut worms (Noctuidae)	1	×د ^ر آ ^ر ان
Fall armyworms (Spodoptera frugiperda)	) 40	C JUL 4
Fleahoppers (Pseudatomoscelis seriatus)	4	× × × × × 4
Grasshoppers (Acrididae)	8 20	de nie 80
Heliothines (Helicoverpa zea and	09 1	
Heliothis virescens)	250	25
est unit	ALL CLICK	0, 2, 1
Southern corn rootworm beetles	Co dr all	, no.
(Diabrotica undecimpunctata howardi)	3 03 110	3
01 101 102 102	yer rei ou ne	•
Soybean loopers (Pseudoplusia inclunes)	(1)	2
	Utile this good.	
Spider mites ( <i>Tetranychus</i> spp.)	N Clivite M	9
Stink bugs (Pentatomidae)	28	28
is fill of a think of		
Tarnished plant bugs (Lygus lineolaris)	10 0 21	21
Thrips (Thripidae)	16	16
White flies (Bemisia spp.)	<u>i</u> 5	5
White flies ( <i>Bemisia</i> spp.) Note 1: The experimental design was a randomiz not subjected to statistical analysis. No difference		
Note 1: The experimental design was a randomiz	zed complete block with f	our replications. Data were
not subjected to statistical analysis, No difference	es were observed between	n MON 88701 and the
Conventional control during any observation of n	lant response to abiotic st	ressors

# Table G-22. Study 1 – Qualitative Assessment of Arthropod-related Damage - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

Note 1: The experimental design was a randomized complete block with four replications. Data were not subjected to statistical analysis. No differences were observed between MON 88701 and the conventional control during any observation of plant response to abiotic stressors.

Table G-23.         Study 1 - Individual Site Analysis:         Quantitative Assessment of Thrips
Damage - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides
Compared to the Conventional Control

Rating ¹	Site	MON 88701 (SE) ²	Control (SE)	
	ARAU	$0.0~(0.0)^{\dagger}$	0.0 (0.0)	
	ARPR	0.9 (0.1)	0.8 (0.1)	
1	GACH	$0.0\ (0.0)^{\dagger}$	0.0 (0.0)	
	LABU	$0.0~(0.0)^{\dagger}$	0.0 (0.0)	
	SCEK	1.5 (0.2)	1.4 (0.2)	dillo
	ARAU	0.1 (0.0)	0.1 (0.0)	a protection regime
	ARPR	0.3 (0.1)	0.2 (0.1)	$\eta_{i}, \eta_{0}$
2	GACH	$0.0\ (0.0)^{\dagger}$	0.0 (0.0)	CU iSI
	LABU	$0.0~(0.0)^{\dagger}$	0.0 (0.0)	Ote IDI
	SCEK	$0.0~(0.0)^{\dagger}$	0.0 (0.0)	61, 6° 4, 18
	ARAU	$0.0~(0.0)^{\dagger}$	0.0 (0.0)	0, 10, 70, 0
	ARPR	0.1 (0.0)*	0,3 (0.1)	10° 0° 40°
3	GACH	0.0 (0.0) [†]	0.0 (0.0)	
	LABU	$0.0(0.0)^{\dagger}$	0.0 (0.0)	and or publices
	SCEK	0.0 (0.0)	0.0 (0.0)	i al
		223 10	100,00,01	

* Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and conventional control (n = 4)

* Indicates a statistically significant difference (α = 0.05) between MON 88701 and conventional control (n = 4). ¹ No p-values were generated due to fack of variability in the data. ¹ Thrips damage observation # K was inade at approximately 14 DAP and the two subsequent observations at approximately seven day intervals thereafter. ² SE = Standard error. re gener, age observatis ately seven day in standard error. Jupy Huttermore, this and mining the second 

				105 B.	
		Percent Damaged Fru	iting Bodies	# of Live I	Larvae
Observation ¹	Site	MON 88701 (SE) ²	Control (SE)	MON 88701 (SE)	Control (SE)
			6		
	ARAU	3.8 (1.0)	2.0 (0.7)	0.0 (0.0)	0.0 (0.0)
	ARPR	0.0 (0.0)	0.1 (0.1)		0.0 (0.0)
1	GACH	9.2 (2.0)	6.8 (2.5)	0.0 (0.0)	0.1 (0.0)
	LABU	1.0 (0.6)	0.3 (0.3)	0.0 (0.0)	0.0 (0.0)
	SCEK	0.0 (0.0)	0.0 (0.0)		0.0 (0.0)
	ARAU	0.2 (0.2)	0.6 (0.6)	0.0 [†] (0.0)	0.0 (0.0)
	ARPR	1.6 (03)	2.2 (0.4)	0.1 (0.1)	0.2 (0.1)
2	GACH	0.8 (0.5)	0.4 (0.4)	0.0 (0.0)	0.1 (0.1)
	LABU	0.8 (0.5) 0.8 (0.5) 2.9 (1.7) 21.2 (13.3)	2,6 (0.9)	0.1 (0.1)	0.0 (0.0)
	SCEK	21.2 (13.3)	$\begin{array}{c} 0.0 (0.0) \\ \hline 0.6 (0.6) \\ 2.2 (0.4) \\ 0.4 (0.4) \\ 2.6 (0.9) \\ \hline 26.0 (9.2) \\ \hline 1.4 (0.6) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.3 (0.1)
	ARAU	21.2 (13.3) 2.5 (1.0) 4.9 (0.6) 4.1 (2.9)	14 (0.6)	0.0 (0.0)	0.1 (0.1)
	ARPR	Q 49(0.6)	9 (1.4) A.9 (1.4)	0.3 (0.1)	0.2 (0.1)
3	GACH	4.1 (2-9)	3.3(1.4)	0.1 (0.0)	0.1 (0.0)
	LABU	4.7 (1.1)	2.9 (0.9)	0.1 (0.1)	0.2 (0.1)
	SCEK	2.3 (2.3)	$\begin{array}{c} 26.0 (9.2) \\ 1.4 (0.6) \\ 4.9 (1.4) \\ 3.3 (1.4) \\ 2.9 (0.9) \\ 0.6 (0.6) \end{array}$	0.0 (0.0)	0.0 (0.0)
	ARAU	87(1.5)	05.1 (2.4)	0.0 (0.0)	0.1 (0.1)
	ARPR	$0.0^{\dagger}$ (0.0)	0.0 (0.0)	$0.0^{\dagger}$ $(0.0)$	0.0 (0.0)
1	GACHO	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.6(0.6) 05.1 (2.4) 0.0 (0.0) 2.8 (1.3) 16.4 (2.4) 0.4 (0.4)	0.0 (0.0)	0.0 (0.0)
	LABU	20.0 (3.8)	16.4 (2.4)	0.4 (0.1)	0.3 (0.1)
	SCEK (10)		0.4 (0.4)	0.0 (0.0)	0.0 (0.0)
	the to the				

Table G-24. Study 1 - Individual Site Analysis: Quantitative Assessment of Heliothine Damage MON 88701 Not Treated snd with Dicamba or Glufosinate Herbicides Compared to the Conventional Control 0

* Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and the conventional control (n = 4). ¹ Heliothine damage observation 1 was made at approximately 45 DAP and the two subsequent observations at approximately 15 day intervals thereafter. ² SE = Standard Error.

								(0- 'O'		
					Pest Art					
			Aphids (Aphididae	)	6	opers (Trich		Fall armyworn	ns (Spodopter	a frugiperda
Coll. ¹	Site	MON 88701	Control		MON 88701	Control	Referencer	MON 88701	Control	Reference
COII.	Site	$(SE)^2$	(SE)	Reference range	(SE)	(SE)	ange	(SE)	(SE)	ange
					X	4	ange 0,8 - 1.8 - 0.5 - 1.8	ON ON		
	ARAU	_	-	_	2.0 (0.9)	2.3 (0.5)	0.8-1.8	×01-	—	-
	ARPR	0.0 (0.0)	0.0 (0.0)	0.0 - 0.5	-02	-73	<u></u>	<u>(</u> 0` –	—	-
1	GACH	3358.0 (656.5)	1971.8 (419.3)	1193.5 – 5796.0	~ <i>6</i> ,		N. A. We	_	—	-
	LABU	0.0 (0.0)	0.0 (0.0)	0.0 - 0.3	0.6)	2.0 (0.4)	0.5 - 1.8	-	_	-
	SCEK	27.3 (8.2)	20.0 (6.4)	10.3 - 31.3	0 - 0	2.0 (0.4)	Co. A.	_	_	-
	ARAU	36.8 (8.4)	30.0 (4.6)	30.0 - 144.3	60	0,-11,-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_	_	-
	ARPR	24.3 (10.0)	17.3 (5.6)	16.0 - 30.3	1,32(0.6)	1.0 (0.4)	0.5 – 1.5	_	_	_
2	GACH	6.8 (1.6)	2.5 (0.9)	2.5 4.5		0-0	_	_	_	_
	LABU	54.3 (12.1)	51.0 (201)	70.0 - 156.0	$0 \rightarrow -+- 0$	300 <u>-</u> CN	• -	_	_	_
	SCEK	4713.3 (1424.1)	7440.0 (1117.1)	994.0 6840.0		:19 -11°	_	_	_	_
	ARAU	6.0 (1.7)	10.3 (3.7)	8.0-23.0	5,3(2.3)	3.0(1.1)	1.8 - 6.0	_	_	_
	ARPR	15.8 (8.8)	G 19.0 (10.5)	012.3-15.3	0.0 (0.0)	0.3 (0.3)	0.0 - 0.0	_	_	_
3	GACH	19.3 (6.5)	19.3 (6,6)	83-103	3.8 (1.6) 0		1.3 - 3.8	1.5 (1.5)	1.0 (0.6)	0.3 - 0.8
	LABU	4.8 (1.1)	10.0 (3.2)	3.8 - 18.0	0.3 (0.3)	0.3 (0.3)	0.0 - 0.8	_	_	_
	SCEK	6.3 (3.0)	8.5 (1-9)	100	(0, 0, 0, 0, 0, 5)	2.0 (1.2)	0.5 - 2.5	_	_	_
	ARAU	4.8 (1.3)	5.8 (1.5)	015:415.84	0.8 (0.3)	0.8 (0.5)	0.0 - 0.5	_	_	
	ARPR	3.5 (0.9)	\$.5 (1.2)	3 4 - 5-0		-	_	_	_	_
4	GACH	2.0 (1.3)	4,3(2.3)	08-95	<u> </u>	_	_	_	_	_
т	LABU	1959.3 (303.3)	1993.8 (492.9)	795.3 - 2218.5	_	_	_	_	_	_
	SCEK	130.0 (15.9)	145 5 (38 0)	70.0 183.8	_	_	_	_	_	_
	SCER	130 0 (13.57)	145.5 (38.0)	70.0 - 183.8						
		<u> </u>	any without the	-0 -0						
		X	onse onn the	it ^{oc}						
		0	in vo kn	Ċ.						
			S. Here O							
			2. 6.							
			any he provide							

 Table G-25. Study 1 - Abundance of Pest Arthropods - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides

 Compared to the Conventional Control

								(05 N.		
					Pest Ar	thropod		Cin ^o		-
							pa zea and	Southern A	rmyworms (S	podoptera
			rs (Pseudatomosco	elis seriatus)		iothis viresce	ens)	1,	eridania)	
Coll.	Site	MON 88701 (SE)	Control (SE)	Reference range	MON 88701 (SE)	Control (SE)	Reference	MON 88701	Control (SE)	Reference
		(SE)	(SE)		(SE)		Tange	(SE)	(SE)	range
	ARAU	_	_	_	- 00		Reference range 0.0 - 0.3 - - 0.3 - 1.0	×101 -	_	_
	ARPR	_	_	- 0	A V	×⊖C	n <del>x</del> s c	-	_	_
l	GACH	0.5 (0.3)	0.5 (0.5)	0.0 - 0.5	0.3 (0.3)	0.8 (0.5)	0.0 - 0.3	_	_	_
	LABU	_	_	10-	civi -	y his	N. A	0.3 (0.3)	0.5 (0.3)	0.8 - 2.0
	SCEK	_	_	$0.0 \leftarrow 0.5$ - - $0.3 \leftarrow 0.5$ - $0.3 \leftarrow 0.8$ - $0.3 \leftarrow 0.8$ - $0.8 \leftarrow 0.8$ - $0.9 \leftarrow 0.00$ - $0.9 \leftarrow -0.00$ - $0.9 \leftarrow -0.00$ - $0.9 \leftarrow -0.00$ - $0.9 \leftarrow -0.00$ - $0.9 \leftarrow -0.00$ - $0.9 \leftarrow -0.00$ - $0.9 \leftarrow -0.00$ - - $0.9 \leftarrow -0.00$ - - - - - - - -	- ~	NO- Ne		_	_	_
	ARAU	_	-	0 - 0	0.8 (0.5)	0.5(0.3)	0.3 - 1.0	_	_	-
	ARPR	_	- ~	s al	2.5 (1.0)	2.0 (0.9)	1.3 – 3.5	_	_	_
2	GACH	_	001	$\frac{\sqrt{2}}{2}$	2.5 (1.0) 0.3 (0.3)	0.3 (0.3)	0.0 - 1.3	_	_	_
	LABU	0.5 (0.5)	0.0 (0.0)	0.3-0.8	1.3 (0.6)	0.8 (0.5)	0.3 – 1.5	_	_	_
	SCEK	3.3 (1.0)	4.8 (3.0)	S 15-4.5	S 11.8 (4.6)	6.5 (2.7)	9.5 - 18.8	_	_	_
	ARAU	-	Chi sitte	<u> </u>	0.8 (0.5)	2.0 (0.9)	0.3 - 2.3	_	_	_
	ARPR	- 🔨	is the list	er e ^{r_} ; 01)	0.3 (0.3)	0.8 (0.5)	0.3 - 2.5	_	_	-
3	GACH	- 0	W Sty Sty		0.5 (0.5)	1.3 (1.3)	0.0 - 0.5	-	_	-
	LABU	0 1105			⊘ 1.5(0.5)	0.8 (0.5)	0.5 - 1.8	-	_	-
	SCEK	6.0(1.8)	6.0 (1.6)	2.8-9.5	1.3 (0.5)	0.8 (0.3)	0.5 - 1.5	_	_	_
	ARAU	11115 0 0 00 0.3 (Q3) 11	2 01-HU12	9.9 <u>0.</u> 0.	1.0 (0.7)	0.5 (0.3)	0.0 - 0.5	_	_	-
	ARPR /	( <u>, )</u> , <u>,</u> ,	Nº O	i et zoi ze	ý _	-	-	_	—	-
1	GACH			0.0-0.0	_	-	-	_	—	-
	LABU	12 01	er i er	, <u>(</u> , <u></u> , <u></u> , <u></u> , .	0.0 (0.0)	0.3 (0.3)	0.0 - 0.8	_	—	_
	SCEK	2.5 (0.9)	2.3 (0.0)	<b>b</b> 0-4.8	0.3 (0.3)	0.0 (0.0)	0.0 - 0.3	_	—	_
		- Eni	no on in							
		`C		$\frac{5 + 0.3 + 0.8}{5 - 4.5}$						
			31°,40°,61							
			Mr. OI							
			100							
Inna	nto Compo			1	2 CT 244U					595 of 67

 Table G-25. Study 1 - Abundance of Pest Arthropods - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides

 Compared to the Conventional Control (continued)

								100 01		
					Pe	st Arthropod		On ing		
			t bugs (Pentatomi	(		ant bugs (Lygus	lineolaris)	TI	hrips ( <i>Thripidae</i>	/
Coll.	Site	MON 88701	Control	Reference	MON 88701	Control	Reference	MON 88701 (SE)	Control	Reference
C011.	Site	(SE)	(SE)	range	(SE)	(SE)	range	(SE)	(SE)	range
	ARAU	_	_	_	_	0.5 (0.3)	range 0.0-1.0 0.0-1.0 0.0-1.0	4.3 (1.7)	3.8 (2.3)	0.8 - 2.5
	ARPR	_	_	_	2.5 (0.9)	-0.5(0.3)	0.021.00	968(319)	56.8 (17.6)	51.3 - 78.5
1	GACH	_	_		$O_{-}^{2.5(0.5)}$	- ×O		50(16)	3.5 (1.3)	2.3 - 4.8
L	LABU	_	_			Lan &	10. 21. 4	0.3(0.3)	0.3 (0.3)	0.0 - 0.3
	SCEK	_	_	- 201	ÉN.	<u>dr</u> hu	at and	43 (1.7) 96.8 (31.9) 5.0 (1.6) 0.3 (0.3) -	-	- 0.0
	ARAU	0.8 (0.5)	0.3 (0.3)	0.0 1.5	1.0 (0.4) 1.8 (0.8) 0.3 (0.3) 1.3 (0.6) - 0.5 (0.5)	0.8 (0.5)	0.0 - 1.5	_	_	_
	ARPR	_	- -	0 -	1.8(0.8)	3.3 (1.1)	0.0 - 1.5 2.0 - 4.0 0.5 - 1.0	24.0 (6.4)	25.3 (14.0)	17.5 - 32.5
2	GACH	_	_	(1) - 5	0.3 (0.3)	1.5 (0.7)	0.5 – 1.0	1.3 (0.5)	1.3 (0.3)	0.8 - 2.8
	LADII	_	0	->>	1.3 (0.6)	1.5 (0.7) 0.8 (0.3)	< 0.5 − 0.8	1.0 (0.7)	1.5 (1.2)	0.5 - 1.5
	SCEK	- - - - - - 1.8 (0.9) 0.5 (0.3) 0.3 (0.3) *	- 50	in the second	10 <u>10</u>		0.5 - 1.0 0.5 - 0.8	13.8 (2.8)	16.5 (5.3)	15.0 - 30.5
	ARAU	_	NO XO	x9-0	0.5(0.5)	(1.8 (0.9)	0.3 - 0.5	_	_	_
	ARPR	_	<u> </u>	all's all all	0.0 (0.0)	0.3 (0.3)	0.3 - 2.0	2.8 (2.1)	1.0 (0.7)	1.3 – 2.3
3	GACH		1 - ON - (1		101, 40 UG		_	24.0 (8.8)	19.5 (5.6)	10.5 - 25.0
	LABU	- ~		Mr. Hi 3	i <u>o-</u> n	×9 –	_	1.0 (0.4)	0.8 (0.3)	0.3 - 2.8
	SCEK	- 111,-	O Se C	20 ^C - 10 ^{IIC}		-	_	3.5 (1.8)	2.5 (0.9)	2.3 - 5.3
	ARAU	1.8 (0.9)	13 (0.6)	0.3 Q 1.5	<u> </u>	_	_	2.0 (1.4)	0.8 (0.3)	0.8-1.8
	ARPR	0.5 (0.3)	0.3 (0.3)	0.5-1.3	1.3 (1.3)	0.3 (0.3)	0.8 - 1.5	8.3 (1.7)	9.0 (2.7)	9.3 - 18.5
1	GACH	<10. 40. 10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	or of io	~~	_	_	1.3 (1.0)	0.5 (0.3)	0.0 - 0.8
	LABU	0,3 (0.3)*	1.8 (0.5)	0.5 - 1.0	0.5 (0.5)*	2.0 (0.6)	0.5 - 2.0	1.5 (1.2)	1.3 (0.8)	1.5 - 10.0
	SCEK	6 71		all'all'id	7. –	_	_	11.0 (3.5)	6.0 (1.8)	11.3 - 20.0
		COX .	the de al	of all						
			$\frac{-}{-} 000000000000000000000000000000000$	he the ted						
Manaa	nto Comp		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		12 CT 24/	IT T				596 of 67

 Table G-25. Study 1 - Abundance of Pest Arthropods - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides

 Compared to the Conventional Control (continued)

	•		× ×	$\begin{array}{c} - \\ 0.0 - 0.5 \\ 0.0 - 0.3 \\ \hline \\ 0.5 - 1.5 \\ - \\ 1.3 - 2.3 \\ \hline \\ 0.0 - 0.5 \\ \hline \\ 0.0 - 0.8 \\ \hline \\ 0.9 - 0.8 \\ \hline \\ $
		W	hite flies (Bemisia s	op.)
Coll.	Site	MON 88701 (SE)	Control (SE)	Reference range
	ARAU	-	-	-
	ARPR	0.0 (0.0)	0.3 (0.3)	0.0 - 0.5
1	GACH	0.0 (0.0)	0.0 (0.0)	0.0 - 0.3
	LABU	-	_	- ČA
	SCEK	-	_	No.
	ARAU	0.5 (0.3)	0.3 (0.3)	0.5 – 1.5
	ARPR	-	-	- CC
2	GACH	1.3 (0.3)	0.5 (0.3)	1.3-2,3
	LABU	_	- , 0`	COIX CAI
	SCEK	0.5 (0.5)	0.5 (0.5)	0.0 - 0.5
	ARAU	0.0 (0.0)	0.3 (0.3)	0.0-0.5
	ARPR	-	0 ¹ 6. d	$\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcalY}}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}_{\mathcal{Y}}_{\mathcal{Y}_{\mathcalY}}}}}}}}}}$
3	GACH	-	NO X TO XS	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	LABU		in all a line	$\mathcal{S}_{\mathcal{L}} \times \mathcal{L}_{\mathcal{L}} \to \mathcal{O}_{\mathcal{L}}$
	SCEK	- **	1 - 1 S	
	ARAU		S N S	Mr. 31- S.
	ARPR	2.0 (0.7)	3.0 (1.4)	0.8-3.0
4	GACH	1.5(0.7)	0.3 (0.3)	0.3-1.0
4	LABU	<u> </u>	K The to	× 101, -01 1/16
	SCEK	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.5 (0.3)	80-0.0
		10: 63 :07	h (the To	SSI NO.
Note: A	A dash (-)	indicates arthropod not	t evaluated.	Mr. Mr
[*] Indica	tes a statis	tically significant diffe	erence ( $\alpha = 0.05$ ) bet	ween MON 88701 an
¹ Arthro	pod colled	ction 1 was made at ap	proximately 30 DAI	and the three subseq
2 SE = S	Standard er	rror.		20
		0.	d'un illi	
		G	10, 011; 15	
			2, 6,	
		rror.	Ve .	

 Table G-25
 Study 1 - Abundance of Pest Arthropods - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides

 Compared to the Conventional Control (continued)
 Image: Conventional Control (continued)

								1000	2,	
					В	eneficial Arthrop	od	ion ins		
		Big eye	d bugs (Geocor	ris spp.)	Brac	onids (Braconida	le)	C C Dams	sel bugs ( <i>Nabis</i> sp	
Coll. ¹	Site	MON 88701 (SE) ²	Control (SE)	Reference range	MON 88701 (SE)	Control (SE)	Reference range	MON 88701 (SE)	Control (SE)	Reference range
	ARAU	_	_	_	_	etty	data dio	(1.3 (0.5)	1.0 (0.7)	0.0 - 1.8
	ARPR	2.3 (0.6)	0.5 (0.5)	0.8 - 2.3	_	~~~~ ·	7 - 2	0.5 (0.5)	1.3 (0.6)	0.3 - 0.8
1	GACH	_	_	_	S-	Q - XO		0.8 (0.5)	0.5 (0.3)	0.0 - 0.5
	LABU	_	—	-	× 0.0 (0.0)	0.0 (0.0)	0.0 - 0.3	~ -	_	_
	SCEK	0.3 (0.3)	0.0 (0.0)	0.3 - 1.0		16 CB	, Cr Co	. –	_	_
	ARAU	0.3 (0.3)	0.0 (0.0)	0.0 + 1.3	atte co	8- 5°	n-it	_	_	_
	ARPR	1.0 (0.4)	1.5 (0.5)	0.300.8	· (1)-, (0)	$e^{\sqrt{2}} + e^{\sqrt{2}} e^{\sqrt{2}}$	). ⁽ ()	_	_	_
2	GACH	10.5 (1.3)	11.8 (1.9)	6.8 - 16.5	S. All I	2 6 20	- 110	6.0 (2.0)*	2.3 (0.8)	2.5-7.3
	LABU	1.5 (0.7)	2.3 (1.3)	0.5 - 3.3	······································	W Sir Uti		0.5 (0.3)	0.0 (0.0)	0.0 - 0.5
	SCEK	0.8 (0.5)	1.3 (0.5)	1.0-3.3	Visi ^{Sez} , Vis,		"^©`_	_	_	_
	ARAU	0.0 (0.0)	0.3 (0.3)	0.0-1.3	21,50	. 0 <del>1/ 0</del>	_	_	_	
	ARPR	_			$\times$ $(, -0, 3)$		_	_	_	_
3	GACH	1.0 (0.4)	2.5 (09)	1.50 4.5 0	$O_{1} = O_{1}$	No on	_	3.3 (1.0)	1.5 (0.9)	1.5 - 3.0
	LABU	- ~	11 <u>9 (1</u> 1	M-M	and the second	1.5	_	_	_	_
	SCEK	7.0 (0,7)	6.0 (2.0)	5.0-13.00	10-0	- 10;	_	_	_	_
	ARAU	1.5 (0.5)	2.5 (0.7)		No 5 the	_	_	1.8 (0.5)	3.0 (0.7)	0.8 - 2.5
	ARPR	75 (3.0)	4.0 (0.7)	3.0-7.5	<u>(), '0,</u> '(),	_	_	_	_	-
1	GACH	5.0 (1.6)	5.5 (3.0)0	1.3 - 8.5		_	_	3.3 (0.8)	4.8 (1.9)	1.3 - 4.0
	LABU	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(0) -0' d		0.5 (0.5)	2.0 (1.4)	3.0 - 8.8	_	_	-
	SCEK	27.8 (9.4)	35.0 (4.8)	16.5 - 44.3	8 ⁻¹ -	_	_	_	_	_
			the do	no o d	<u>,</u>					
		~	Sur Mitho	oronioited						
			<i>b</i> c			04411				500 0

 Table G-26.
 Study 1 - Abundance of Beneficial Arthropods - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

								(°, °,		
					Bene	ficial Arthropod		Phi N		
		Lacewings (C	<i>Chrysopa</i> spp.and <i>I</i>	Hemerobius			CIL	isti		
			spp.)			l Beetles (Cocci		011	Orius spp.	
Coll.	Site	MON 88701 (SE)	Control (SE)	Reference range	MON 88701 (SE)	Control (SE)	Reference range	MON 88701 (SE)	Control (SE)	Reference range
		· · ·		-	<u> </u>	e.C.		N 10		
	ARAU	_	_	_	0.5 (0.3)	0.5 (0.3)	0.3 - 0.8	0.0(0.0)	0.3 (0.3)	0.0 - 0.3
	ARPR	-	-	- ~	2.3 (0.5)	3.3 (1.10	0.3 - 0.8	1.8 (1.1)	0.5 (0.3)	0.0 - 2.8
l	GACH	0.8 (0.8)	0.3 (0.3)	0.3 – 0.5	14.3 (4.6)	12.3 (3.9)	$\sim 60 - 438$	0.8 (0.5)	0.0 (0.0)	0.3 - 0.8
	LABU	_	_		0.5 (0.5)	0,3(0.3)		_	_	-
	SCEK	_	_		0.5 (0.3)	0.8 (0.3)	0.3 - 1.3	_	_	-
	ARAU	3.0 (0.4)	3.5 (0.9)	2.3 - 5.0	1,0 (0.4)	1.0 (0.7)	0.0 - 2.0	0.0 (0.0)*	1.5 (0.7)	0.3 - 0.8
	ARPR	2.5 (0.7)	3.0 (1.3)	3 1.8 - 4.05	9.0 (2.5)	4.8 (0.3)	5.5 – 8.5	1.0 (0.6)	1.0 (0.4)	0.5 - 1.8
2	GACH	0.3 (0.3)	1.0 (0.4)	1.0 - 2.0	10.8 (2.3)	10.0 (1.4)	3.3 - 12.3 3.0 - 12.5	_	_	-
	LABU	_	-010	lin to .	8.5 (1.4)	J.J.(2.7)	8.0 – 12.5	0.3 (0.3)	0.0 (0.0)	0.0 - 0.5
	SCEK	3.3 (0.8)	2.5(1.0)	1.0 - 2.0 1.8 - 3.5	34.8 (6.5)	46.3 (10.8)	18.3 - 36.3	8.5 (3.1)	6.3 (1.9)	5.3 – 9.5
	ARAU	2.8 (1.3)	4.0 (0.7)	1.8-3.5	7.3 (3.2)	0.3 (2.7)	9.3 - 18.3	0.5 (0.3)*	2.8 (1.2)	0.8 - 3.3
	ARPR	1.0 (0.4)	1.5 (0.9)	0.5 - 0.5	7.3 (3.2) 6.5 (1.0) 12.0 (3.2)	6.0 (1.8)	5.5 - 8.0	0.3 (0.3)	1.0 (0.6)	0.0 - 0.5
3	GACH	3.0 (1.8)	4.0 (1.2)	2,0-5.5	12.0 (3.2)	11.0 (2.4)	4.8 - 10.3	_	_	-
	LABU	- JII		20 ^{CC} 70//C		-	-	_	_	-
	SCEK	0.3 (0.3)	P.0 (04)	0.3-0.8	7.8(0.9)	5.0 (0.7)	6.3 - 8.3	2.0 (1.7)	3.5 (0.9)	1.5 - 5.0
	ARAU	43 (1.6)	2.5(0.5)	1.8-3.5		12.0 (1.7)	9.3 - 13.0	_	-	_
	ARPR	3.3(1.1)	3.8 (13)	0.5-4.3	6.5 (1.6)	5.3 (1.0)	2.0 - 4.0	0.0 (0.0)	0.0 (0.0)	0.0 - 0.8
ŀ	GACH		0.0(0.0)	0.3 - 0.5	1.3 (0.6)	2.0 (1.1)	3.3 - 7.0	_	_	_
	LABU	0.3 (0.3)	0.3 (03)	0.5 - 2.3	6.3 (3.3)	3.5 (1.3)	4.0 - 8.0	3.8 (3.1)	3.3 (2.0)	2.8 - 10.3
	SCEK	1.0 (0.4)	0.6 (0.0) 0.3 (0.3) 0.3 (0.3)	0.5 - 0.5	7.5 (0.3)	5.0 (2.4)	5.0 - 10.8	3.8 (0.5)	4.0 (0.8)	3.0 - 10.3
		$\langle \rangle$	11 10 m	<u> </u>						
		(	any in period	ipit						
			S. Will NO							
			Nº00 Y							
for se	nta Camara		*		12 CT 24	17 1				500 af (

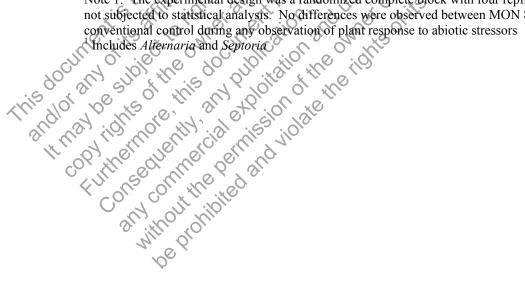
 Table G-26.
 Study 1 - Abundance of Beneficial Arthropods - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control (continued)

			Spiders (Araneae)	
Coll.	Site	MON 88701 (SE)	Control (SE)	Al Arthropods - $\begin{bmatrix} 1 \\ ntrol (continued) \\ \hline \\ $
				0.3 - 1.3 $0.3 - 1.3$ $0.3 - 1.3$ $0.3 - 2.0$ $0.3 - 1.3$ $0.5 - 1.0$ $0.3 - 2.0$ $2.5 - 5.8$ $4.3 - 6.8$ $2.8 - 5.3$ $1.8 - 4.3$ $0.8 - 1.8$ $0.0 - 0.5$ $3.8 - 4.3$ $3.5 - 7.8$ $3.5 - 7.3$ $0.3 - 1.8$ $3.5 - 6.0$ $0.3 - 1.5$ $8.0 - 12.5$
	ARAU	1.0 (0.4)	1.0 (0.4)	0.3 – 1.3
	ARPR	1.5 (0.5)	1.0 (0.7)	0.8 - 1.8
1	GACH	1.5 (0.9)	2.5 (0.7)	0.3 - 2.0
	LABU	0.3 (0.3)	1.0 (1.0)	0.3 - 1.3
	SCEK	0.5 (0.5)	0.8 (0.3)	0.5 - 1.0
	ARAU	1.0 (0.4)	1.3 (0.5)	0.3 - 2.0
	ARPR	6.0 (1.3)	4.0 (0.4)	2.5 - 5.8
2	GACH	4.5 (0.3)	6.0 (1.2) ^O	4.3 6.8
	LABU	5.3 (1.5)	3.0 (1.3)	2.8-5.3
	SCEK	2.8 (0.5)	4.3 (0.3)	1.8 4.3
	ARAU	2.0 (0.4)	2.0 (1.1)	0.8-1.8
	ARPR	0.3 (0.3)		0.0-20.5
3	GACH	4.0 (0.4)	2.8(0.5)	3.8-4.3
	LABU	- *	SIN - MESS	On How How
	SCEK	4.3 (1.0)	2.8 (0.9)	35-7.8
	ARAU	3.3 (1.9)	. 3.5 (0.9)	3.5 7.3 0
	ARPR	1,5(0.3)	20(1.0)	03-1.8
4	GACH	3.0 (0.8)	20(1.0)	
4	LABU	0.8 (0.5)	0.8 (0.5)	+ 03-150
	SCEK	6.5 (1.3)	0.8 (0.5) 0.8 (0.5) 6.0 (0.8)	8.0-12.5
		10. Al.	in all all	and the

Table G-26. Study 1 - Abundance of Beneficial Arthropods - MON 88701 Not Treated with Dicambaor Glufosinate Herbicides Compared to the Conventional Control (continued)

Note: A dash (-) indicates arthropod not evaluated *Indicates a statistically significant difference ( $\alpha = 0.05$ ) between MON 88701 and the conventional control (n = 4).

¹Arthropod collection 1 was made at approximately 30 DAP and the three subsequent collections at approximately 30 day intervals thereafter  ${}^{2}SE = Standard error.$ 


#### Table G-27 Study 2 – Qualitative Assessment of Plant Response to Abiotic Stressors - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

Abiotic Stressor	Number of observations across all sites	Number of observations where no differences were observed between MON 88701 and the control
Total	127	127
Compaction	4	4
Drought/ Dry	30	30 201 200
Flood	1	
Hail Damage	6	
Heat	30	
Nutrient deficiency	10	A 10 10 0
Wet soil/excess precipitation	17 50	, and the second
Wind damage	C 29 0104	4 30 10 10 10 10 10 10 10 10 10 1
not subjected to statistical analysis conventional control during any of opening any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the property of the statistical analysis conventional control during any of the statistical analysis conventional convention of the st	ation and uner of	tes owner.

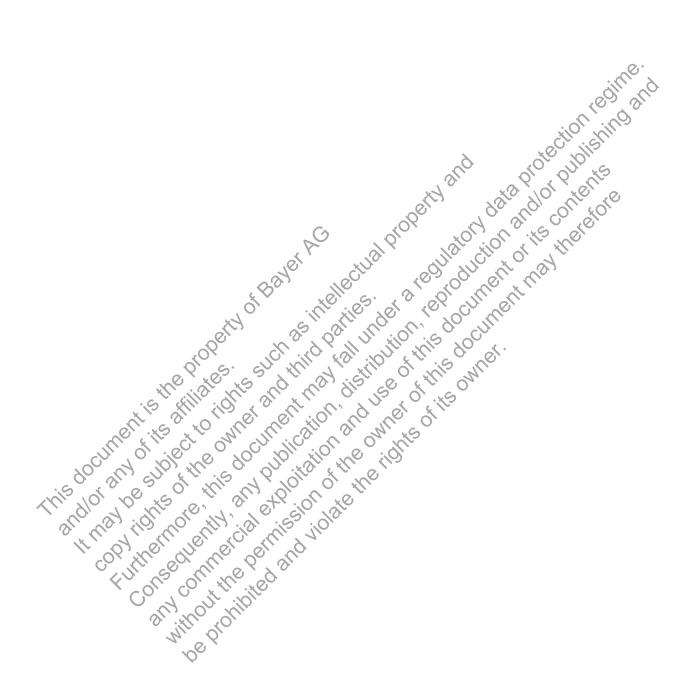
Disease	Number of observations across all sites	Number of observations where no differences were observed between MON 88701 and the control
Total	129	129
Anthracnose	3	3
Ascochyta leaf blight	3	3 00 200
Bacterial blight	14	1400
Boll rot	15	03 iSh
Cotton leaf rust	7	d cote zion s
Damping off	1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	an all all all a
<i>Fusarium</i> wilt	11 6	dar de brizone
Leaf spots ¹	G 36 (OV	36,0
Pythium	9	A SHOLE AND
Reniform nematode	Bayer A 9 Ethal pice	AN AT AN I
Rhizoctonia	12 A	12 No 11 12
Root-knot nematode	Mi to you to	6
Thielaviopsis	25, p? 1 JN , ON , S	
Verticillium wilt		$\begin{array}{c} 3 \\ 3 \\ 3 \\ 401 \\ 1401 \\ 1401 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100$

Table G-28. Study 2 – Qualitative Assessment of Disease Damage of MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the **Conventional Control** 

Note 1: The experimental design was a randomized complete block with four replications. Data were not subjected to statistical analysis. No differences were observed between MON 88701 and the



		Number of
		observations where no
		differences were
	Number of	observed between
	observations	MON 88701 and the
Arthropod	across all sites	control
		dill'and
Total	129	(129)
Aphids (Aphididae)	24	× (0 , 24
Beet armyworms (Spodoptera exigua)	1	* e ^{Ct} ii ^S 1
	no	10° JU xS
Cabbage loopers (Trichoplusia ni)	1 N	
Cut worms (Noctuidae)	3 200	de ne ra
Fall armyworms (Spodoptera frugiperda		<u> </u>
Fleahoppers (Pseudatomoscelis seriatus)	$\mathcal{O}$	113 110 2
Grasshoppers (Acrididae)		6
Heliothines (Helicoverpa zea and	d very or and	nou
Heliothis virescens)	23	23
solitarille of		
Southern corn rootworm beetles	xiol is co	
(Diabrotica undecimpunctata howardi)	St. W. 2 of	2
Pies still at still	OI this will	
Soybean loopers (Pseudoplusia inclunes		1
the second se	of the	
Spider mites (Tetranychus spp.)	9	9
Stink bugs (Pentatomidae)	21	21
Nor of the go on the street		
Tarnished plant bugs (Lygus lineolaris)	14	14
ArthropodTotalAphids (Aphididae)Beet armyworms (Spodoptera exigua)Cabbage loopers (Trichoplusia ni)Cut worms (Noctuidae)Fall armyworms (Spodoptera frugiperdatFleahoppers (Pseudatomoscelis seriatus)Grasshoppers (Acrididae)Heliothines (Helicoverpa zea and Heliothis virescens)Southern corn footworm beetles (Diabrotica undecimpunctata howardi)Soybean loopers (Pseudoplusia inclunes)Spider mites (Tetranychus spp.)Stink bugs (Pentatomidae)Tarmshed plant bugs (Lygus lineolaris) Thrips (Thripidae)White flies (Bemisia spp.)Note (The experimental design was a randomize not subjected to statistical analysis. No difference	16	17
White flies (Bemisia spp.)	2	2
the share of the share		


# Table G-29. Study 2 – Qualitative Assessment of Arthropod-related Damage - MON 88701 Not Treated with Dicamba or Glufosinate Herbicides Compared to the Conventional Control

Note 1: The experimental design was a randomized complete block with four replications. Data were not subjected to statistical analysis. No differences were observed between MON 88701 and the conventional control during any observation of plant response to abiotic stressors.

#### **References for Appendix G**

Drees, B.M. and M.E. Rice. 1985. The vertical beat sheet: A new device for sampling soybeans insects. Journal of Economic Entomology 78:1507-1510.

SAS. 2008. SAS/STAT software version 9.2. SAS Institute, Inc., Cary, North Carolina.



#### **Appendix H:** Materials and Methods for Pollen Morphology and Viability Assessment

#### H.1. Plant Production

MON 88701, the conventional control, and four commercial reference varieties were grown under similar agronomic conditions in a field trial in Crittenden County, Arkansas (Table G-1; ARPR site). The trial was arranged in a randomized complete-block design with four replications. Each plot consisted of eight rows approximately 6 m in length.

#### **H.2.** Flower Collection and Sample Preparation

Five flowers, each open less than 24 hours at the time of collection, were collected from each plot. The pollen obtained from an individual flower comprised a subsample of the plot and was placed in a uniquely labeled, clean container. Six hundred µl of Alexander's stain (Alexander, 1980) diluted 1:5 with distilled water was added to each container, and the container contents were thoroughly mixed. Containers were placed on wet (water) ice within 10 minutes of pollen collection. After transport to the performing laboratory, the pollen in the containers was allowed to stain at ambient temperatures for tellectural a regulation of may at least 20 hours.

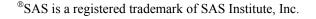
### H.3. Data Collection

Pollen subsamples were assessed for pollen viability, diameter, and general morphology. Slides were prepared by aliquoting 30 ul of suspended pollen/stain solution onto a slide. The slides were viewed under an Olympus BX51TRF light/fluorescence microscope with an Olympus DP70 digital color camera. The associated PC computer had imaging software for diameter measurement (I-Pro Phys version 6.2.1.491© 1993-2007, Media Cybernetics, Inc.) and camera software (DP Controller 1. 2. 1.108 © 2001-2003, Olympus Optical Co., Ltd. and DP Manager version 1, 2, 1, 107 © 2001-2003, Olympus 90C) Optical Co., Ltd.). v joita

# H.3.1. Pollen Viability

To assess pollen viability, 37 or more pollen grains were evaluated under the 40X ocular lens (400X total magnification) for each subsample. When exposed to the staining solution, viable poller grains stained purple because of the presence of vital cytoplasmic content, while dead pollen grains stained clear to light blue-green. In addition, viable pollen grains appeared round, whereas non-viable pollen grains appeared round to collapsed depending on the degree of hydration.

#### H.3.2. Pollen Diameter


Pollen diameter was measured under the 40X ocular lens (400X total magnification) using software (Image-Pro Plus version 6.2.1.491[©] 1993-2007 Media Cybernetics, Inc.) to view digital images. For each replication, pollen diameter was measured along two perpendicular axes for ten representative viable pollen grains.

#### H.3.3. General Pollen Morphology

General morphology of the pollen was observed for each subsample of MON 88701, the conventional control, and the commercial reference varieties during determination of pollen viability.

#### H.4. Statistical Analysis

Monsanto Statistics Technology Center performed the statistical analysis. An analysis of variance was conducted according to a randomized complete block design using SAS[®] Version 9.2 (SAS, 2008) with a significance level of 5% ( $p \le 0.05$ ). MON 88701 was fi compa. c was dete. commercial re no statistical analy commercial re no statistical compared to the conventional control for percent viable pollen and pollen grain diameter. MON 88701 was not statistically compared to the reference varieties. A reference range for each measured characteristic was determined from the minimum and maximum mean under a required of this document in a solution of this document in a solution and use of this document is a solution of thi any commercial endited and violate the rights of this owner. values from among the four commercial reference varieties. General pollen morphology was qualitative; therefore, no statistical analysis was conducted on these observations.



without the permission of the owner of this documer.

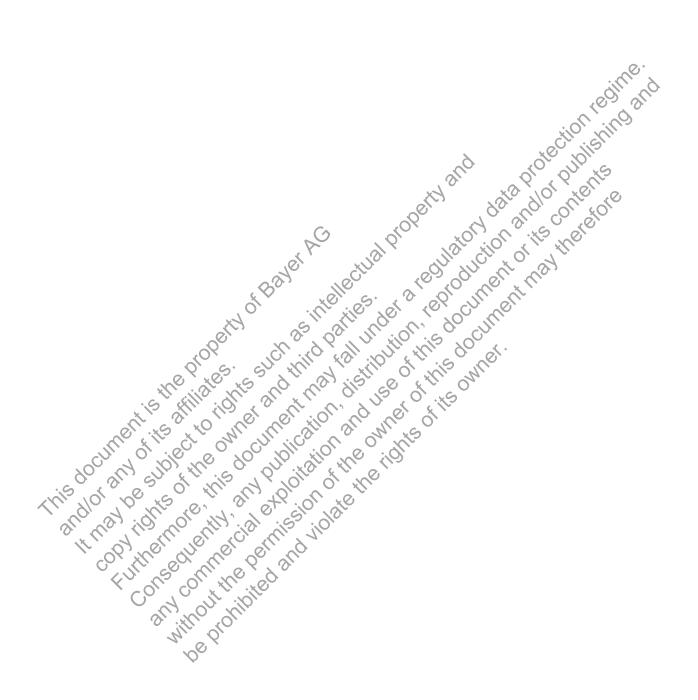

Material	Phenotype	Monsanto ID
Coker 130	Conventional	11268128
Nex Gen NG3410RF	Glyphosate-tolerant	11266969
ST474	Conventional	11266156
DP 493	Conventional	11266763
SG125	Conventional	11266155
MON 88701	Dicamba and glufosinate-tolerant	11268129
s document is the property of the open	Glyphosate-tolerant Conventional Conventional Dicamba and glufosinate-tolerant Dicamba and dicamba and di	in all so there will be a series of the seri

 Table H-1. Starting Seed for Pollen Morphology and Viability Assessment

#### **References for Appendix H**

Alexander, M.P. 1980. A versatile stain for pollen fungi, yeast and bacteria. Stain Technology 55:13-18.

SAS. 2008. SAS/STAT software version 9.2. SAS Institute, Inc., Cary, North Carolina.



#### Appendix I: Herbicide Resistance

#### I.1. Introduction

Based upon theory of natural selection, plant populations can develop resistance to an herbicide due to the selection of individuals that carry specific genes that can render those individuals unaffected by the typical lethal effects of an herbicide. The application of an herbicide to the plant does not, itself, cause a mutation in subsequent generations. Rather, over time, those few plant biotypes containing resistant gene(s) become dominant in the population with repeated use of the herbicide in the absence of other control methods, such as use of other herbicides and/or use of cultural control methods. The development of resistant populations is a possibility for all herbicides. The probability for resistance to develop is a function of: frequency of resistant allele(s)⁸, mechanism of resistance, dominance or recessive nature of the resistant allele(s), relative fitness of the resistant biotype, and frequency or duration of herbicide use in the absence of other control methods (Beckie, 2006; Jasieniuk, et al., 1996; Sammons et al., 2007). The probability of resistance is not the same for all herbicides with some herbicides (e.g., ALS and ACCase classes) exhibiting resistance more quickly than other herbicides (e.g. auxin class, glyphosate, dinitroanilines class?

Herbicide resistance can become a limiting factor in crop production if the resistant weed population cannot be controlled with other herbicides or cultural practices. In general, this has not been the case for any herbicide. In most crops, there are multiple herbicide options for growers to use. However, good management practices to delay the development of herbicide resistance have been identified and are being actively promoted by the public and private sectors (HRAC, 2010) and are being implemented by growers.

Monsanto considers product stewardship to be a fundamental component of customer service and business practices. Stewardship of the dicamba and glufosinate herbicides to preserve their usefulness for growers is an important aspect of Monsanto's stewardship commitment. Although herbicide resistance may eventually occur in weed species when any herbicide is widely used, resistance can be postponed, contained, and managed through research, education, and good management practices. These are the key elements of Monsanto's approach to providing stewardship of dicamba and glufosinate used on MON 88701 integrated into the glyphosate-tolerant cotton systems. Monsanto will invest in research, and grower/retailer education and training programs to provide information on best practices to manage dicamba and glufosinate weed resistance in cotton production. This appendix provides an overview of Monsanto's approach to the development of best management practices to mitigate dicamba and glufosinate weed resistance. Monsanto works closely with weed scientists in academia and with other companies to research and develop best management practices and to uniformly communicate such practices to growers. Evidence of this cooperative effort is the recent development and posting of herbicide-resistant training modules on the WSSA website

⁸ An allele is any of several forms of a gene, usually arising through mutation, that are responsible for hereditary variation.

(<u>www.wssa.net</u>) and the publication of guidelines by the Herbicide Resistance Action Committee (HRAC) on their website (<u>www.hracglobal.com</u>).

#### I.2. The Herbicide Dicamba

Dicamba (3,6-dichloro-2-methoxybenzoic acid) is classified as a benzoic acid herbicide belonging to the synthetic auxin group of herbicides (HRAC, 2010). The herbicides in this group act as growth regulators similar to endogenous indole acetic acid (IAA) but are structurally diverse. The synthetic auxin group includes five chemical families (benzoic acid, pyridine-carboxylic acid, quinoline carboxylic acid, phenoxy-carboxylic acid and a separate class which includes one herbicide, benazolin ethyl). The specific site of action among the different synthetic auxin chemical families may be different. An addition to dicamba, specific herbicides in this group include 2,4-D, 2,4-DB, mecoprop, MCPA, clopyralid, picloram, quinclorac and several other active ingredients. Dicamba and other synthetic auxin herbicides are classified in Herbicide Group 4 by the Weed Science Society of America (HRAC, 2009). Most herbicides in this group are active on broadleaf weeds only, but a few have significant activity on grasses, e.g., quinclorae, Dicamba provides preemergence and postemergence control of over 95 annual and biennial broadleaf weed species and control or suppression of over 100 perennial broadleaf and woody species (BASF, 2008). Dicamba is not active on grass weeds and is often used in combination with other herbicides to provide broad spectrum weed control.

Dicamba herbicide was commercialized in the U.S. for agricultural use in 1967 and is currently labeled for preemergence and/or postemergence weed control in corn, soybean, cotton, sorghum, small grains (wheat, barley and oats), millet, pasture, rangeland, asparagus, sugarcane, turf, grass grown for seed, conservation reserve program land, and fallow cropland, and for non-crop uses (U.S. EPA, 2009). Dicamba is sold as standalone formulation which can be tank-mixed with one or more active ingredients depending upon the crop and the weed spectrum. Dicamba is also sold as a premix formulation with other herbicides.

Dicamba acts in plants by minicking naturally-occurring plant growth hormones called auxins, thereby destroying tissue through uncontrolled cell division and growth (Ahrens, 1994). Ahrens (1994) further states that dicamba has been found to affect cell wall integrity and nucleic acid metabolism whereas in other cases it has been found to increase cell wall permeability, leading to cell enlargement. At low concentrations, dicamba has been found to increase synthesis of DNA, RNA, and proteins, resulting in altered cell division and growth. At high concentrations, inhibition of cell division and growth occur. In general, dicamba and other synthetic auxin herbicides have been found to affect multiple plant physiological systems. Grossmann (2010), in a review of auxin herbicides, outlined a proposed mechanism and mode-of-action for auxin herbicides and IAA at supraoptimal endogenous concentrations in dicot plant species. The proposal was based upon recent identification of receptors for auxins and hormone interaction in signaling between auxin, ethylene, and the upregulations of abscisic acid biosynthesis which would account for a large part of the various auxin-herbicide-mediated responses that are seen in sensitive dicots. In addition, research has indicated that there is a high level of redundancy in auxin receptors which may account for the lack of development of widespread resistance to this herbicide group (Walsh et al., 2006).

Dicamba is taken up by plants through the roots, stems, and foliage (Ahrens, 1994; NPIC, 2002). Dicamba translocates to all plant tissues but accumulates in growing tissues. Translocation of dicamba is typically slower in tolerant plants such as grasses compared to broadleaf plants.

#### I.3. The Herbicide Glufosinate

Glufosinate [2-Amino-4-(hydroxymethylphosphinyl) butanoic acid] is classified as a phosphinic acid herbicide belonging to the glutamine synthetase inhibitor group of herbicides (HRAC, 2010). Bialaphos is the only other active ingredient belonging to the phosphinic acid chemical family. Glufosinate and bialaphos are classified in Herbicide Group 10 by the Weed Science Society of America (HRAC, 2010) Glutosinate provides postemergence control of over 90 annual grass and broadleaf weed species and 25 101 biennial and perennial grass and broadleaf weed species.

Glufosinate was first approved for use in the U.S. in 1994 (U.S. EPA, 2008) and is currently labeled for non-crop uses, preplant burndown to glufosinate-tolerant and nontolerant crops and/or in-crop postemergence weed control in glufosinate-tolerant canola, corn, cotton, and soybean, (Bayer GropScience, 2011). Glufosinate is sold as standalone formulation which can be tank mixed with one or more active ingredients depending nde 20 upon the crop and the weed spectrum.

Glufosinate acts in plants by inhibiting the enzyme glutamine synthase, causing a toxic buildup of ammonia within the treated plant (Bayer, 2010). Glufosinate is a nonselective herbicide and has no residual activity. This herbicide has a different mode-of-action than

**1.4. Herbicide-Resistant Weeds and Resistance Management Strategies** The development of herbicide-resistant wood The development of herbicide-resistant weeds is not a new phenomenon and resistance is spreading dayflower biotype resistant to 2,4-D, was identified in Hawaii (Heap, 2012a). See Table VIII-4 for scientific names of weeds martine 1 November 2011, there are approximately 80 individual weed species with known herbicide-resistant biotypes to one or more herbicides in the U.S. For example, there are 45 weed species resistant to ALS herbicides, 16 to ACCase inhibitors, 24 to photosystem II inhibitors and 13 to glycine herbicides (Heap, 2012b). Growers have been managing herbicide-resistant weeds for decades with the use of alternative herbicides and/or cultural methods such as tillage or crop rotation.

> The occurrence of an herbicide-resistant weed biotype does not end the useful lifespan or preclude the effective use of the herbicide as part of an overall diversified weed management system. The three herbicide classes with the highest number of resistant species, ALS, ACCase and triazine herbicides, are still effectively used by growers today.

It is important to distinguish herbicide resistance from herbicide tolerance. A herbicide resistant weed is one in which there is an inherited ability of a plant to survive and reproduce following exposure to a dose of herbicide normally lethal to the wild type (WSSA, 2012). A herbicide-tolerant weed species is one that is naturally tolerant to a herbicide, for example a grass species is not killed by the application of a broadleaf herbicide (WSSA, 2012). Furthermore, certain weed species, while neither resistant nor tolerant, are inherently difficult to control with a particular herbicide, requiring more careful herbicide use and weed management practices.

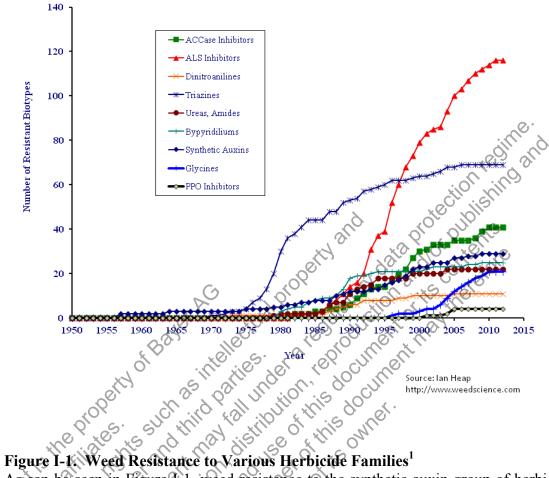
Since the first confirmed cases of herbicide resistance, research has been directed at determining which practices are best for managing existing resistance situations and how best to reduce the development of herbicide resistance. Resistance management practices most often recommended by University/Cooperative Extension Service (CES) and industry are: 1) use of multiple herbicide modes-of-action in mixture, sequence, or in rotation; 2) crop rotation; 3) use of cultural control measures such as tillage and time of planting; and 4) use of the labeled herbicide rate at the recommended timing of application (Gressel and Segel, 1990; Beckie, 2006). Recent research by Beckie and Reboud (2009) indicates that in some cases herbicide mixtures offer a better management option than rotating herbicides. Simultaneously using two herbicides with different modes-of-action, each effective on the same weed species, significantly reduce the probability of weeds developing resistance to either or both herbicides (Beckie and Reboud, 2009). Crop rotation is also an effective method for resistance management due to the fact that it fosters the use of additional herbicide modes-of-action and, potentially, use of additional cultural practices to manage weeds over time. The use of multiple methods of weed control in a single location is the technical basis for management programs to delay the development of resistance. This general concept has been referred to as applying "diversity" within a crop or across a crop rotation (Beckie, 2006; Powles, 2008).

It is generally accepted that conservation tillage practices (minimum-till and no-till) create environments where herbicide resistance is more likely to develop (Beckie, 2006). This is primarily due to selection pressure put on weeds by herbicide use due to the absence of tillage as a cultural weed management practice to supplement herbicide use. However, this is not always the case. Legere et al. (2000) found that an increase in the use of ACCase inhibitors in a conservation tillage system (*e.g.*, aryloxyphenoxy propionates and phenylpyrazolines herbicide families) did not result in an increased incidence of wild oat populations resistant to ACCase inhibitors. In conclusion, conservation tillage practices should not be considered a primary contributing factor to the development of resistance in all cases.

#### I.5. Characteristics of Herbicides and Herbicide Use Influencing Resistance

While the incidence of weed resistance is often associated with repeated applications of an herbicide, the actual probability for the development of resistant populations is related, in part, to the specific herbicide active ingredient, chemical family and the herbicide group. Some herbicides are more prone to the development of resistance than others (Heap, 2012c). The graph in Figure I-1 illustrates the global instances of weed resistance to various herbicide groups. The different slopes of observed resistance are largely due to the factors described above, which relate to the specific herbicide active ingredient as well as to the group and herbicide family and its function.

on the monor and this patience a teored date protection and the patience of th Tutternore, this document of and use of this document of the content of the projection and use of this document of the content of the projection and use of this document of the content of the projection and use of this document of the content of the projection and use of this document of the content of the projection and use of this document of the content of the projection and use of this document of the projection and use of the projectio


-Consequently and publication of the owner of this document may there on the owner of this document may there of the owner of this document in a state of the owner of this document in a state of the owner of this document in a state of the owner of this document in a state of the owner of this document in a state of the owner of this document in a state of the owner o any connectation and use of this document, may there of the owner.

without the permission of the owner of this documer.

and/or any of its affiliates, such as intellectual property and and/or any of its affiliates, such as intellectual property and and/or any of its affiliates, and third parties.

A may be subject to home and thing parties.

This document is the property of Bayer AG



As can be seen in Figure 4-1, weed resistance to the synthetic auxin group of herbicides has been slower to develop than for other herbicide groups even though these were the first synthetic herbicides discovered and used commercially. Possible reasons for this are discussed below S

Global number of resistant biotypes

### 1.6. Mechanisms of Resistance and Inheritance of Resistance

To date, the three known basic mechanisms by which weed species develop resistance to a herbicide have been identified: 1) target site alteration (target site), 2) enhanced metabolism of the herbicides (metabolism), and 3) reduced absorption and/or translocation of the herbicide such that the herbicide does not get to the site of action within the plant cell (exclusion) (Sammons et al., 2007).

Herbicide resistance via target site alteration is the most common resistance mechanism among the various herbicide groups and chemical families. It has been found that a target site mechanism is the most common mechanism for ALS inhibitors, ACCase inhibitors,

and triazines, but is less common for other herbicide groups, such as glyphosate (Powles and Yu, 2010). The most common type of target site alteration is one where amino acid substitution(s) occur in the protein that is the target of the herbicide such that the alteration prevents the binding of the herbicide to the protein and as a result the activity of the targeted protein is not altered and the plant grows normally.

In the case of synthetic auxin herbicides, resistance has been speculated to be due to mutation(s) in genes encoding an auxin-binding protein causing reduced herbicide binding (Zheng and Hall, 2001; Goss and Dyer, 2003). In several studies, differential herbicide absorption, translocation, and metabolism were ruled out as possible mechanisms of resistance in kochia (Cranston et al., 2001) and in wild mustard (Zheng and Hall, 2001). However, current research has not presented convincing evidence for a single mechanism of resistance and this inability to elucidate the mechanism of resistance may be due to a lack of thorough understanding of the mechanism (mode) of action of auxin herbicides (Jasieniuk et al., 1996). Walsh et al. (2006) identified seven alleles at two distinct genetic loci that conferred significant resistance to picolinate auxins (picloram) in *Arabidopsis*, yet had minimal cross-resistance to 2,4-D and IAA, a naturally occurring plant growth regulator.

Multiple mechanisms for inheritance of dicamba resistance have been reported in the literature. Jasieniuk et al. (1995) reported results indicating that inheritance of dicamba resistance in wild mustard is determined by a single, completely dominant nuclear allele. However, Cranston et al. (2001) reported results indicating that dicamba resistance in kochia is determined by a quantitative trait (two or more genes). The slow development of weed resistance to synthetic auxin herbicides may in part be due to their proposed multiple sites of physiological action in plants (Jasieniuk et al., 1996) and to the possibility that inheritance, at least in some species, is determined by a quantitative trait (Cranston et al., 2001).

Little is known about the resistance mechanisms in glufosinate-resistant biotypes. Avila-Garcia and Mallory-Smith (2011) conducted an initial set of experiments to understand the mechanism of resistance in the ryegrass population that was also resistant to glyphosate. They found that resistance was not due to an insensitive or altered target site and hypothesized that reduced translocation is responsible for the resistance to both glyphosate and glufosinate in these populations.

### N.7. Weeds Resistant to Dicamba and Glufosinate

As noted earlier, like other herbicides, the use of dicamba may lead to the development of dicamba-resistant weed species. To date, there are four species with known resistant biotypes to dicamba in the U.S./Canada after over 40 years of use: common hempnettle, kochia, prickly lettuce, and wild mustard (Heap, 2012a). Additionally, a population of common lambsquarters has been confirmed to be resistant in New Zealand, for a total of five species worldwide with confirmed resistant biotypes to dicamba. For the synthetic auxin group of herbicides there exist a total of 29 species globally with biotypes having confirmed resistance to at least one member of this group, but only nine species in the U.S. and four species in Canada (Heap, 2012a). All of these populations are, except for

two (wild carrot in OH and MI, and waterhemp in NE), found in western states or western Canadian provinces. In some weed species, cross-resistance between different herbicides within the auxin group has been confirmed (plant cross-resistance to another herbicide as a result of exposure to a similarly acting herbicide). Therefore, consideration has to be given to the possibility that dicamba resistance could extend to some of the other broadleaf species listed as resistant to other synthetic auxin herbicides (Cranston et al., 2001; Jasieniuk et al., 1995; Miller et al., 2001). However, because of differences in sites of action among the chemistry families within this group (*i.e.*, benzoic acids compared to pyridine-carboxylic acids) cross resistance between the herbicide groups is not a certainty (Monaco et al., 2002).

With the introduction of MON 88701 into glyphosate-tolerant cotton systems, where dicamba will be applied in combination with glyphosate and glufosinate, it is important to note that kochia is the only broadleaf species with resistant biotypes to either synthetic auxins or glyphosate. However, there are no known kochia biotypes resistant to both of these herbicides or resistant to glufosinate. In addition, the evolution of a dicamba-glyphosate resistant biotype is unlikely because dicamba, glyphosate, and/or glufosinate, each with a distinct mode-of-action, will likely be applied in the same season to MON 88701 in the glyphosate-tolerant cotton systems. If populations with resistance to both glyphosate and dicamba herbicides were to occur, there are other herbicide options for managing the weed in cotton (*e.g.*, glufosinate, clomazone and flumioxazin) and in its rotational crops (*e.g.*, atrazine and isoxaflutole in corn) (Table I-1). The glyphosate-resistant kochia biotype may be found in western cotton growing areas of Texas and Oklahoma.

To date there are two weed species with confirmed resistance to glufosinate: goosegrass in Malaysia and Italian ryegress in Oregon, U.S. (Heap, 2012d). In the case of goosegrass, the resistant populations evolved due to use of glufosinate in a rubber plantation (Seng et al, 2010). In the case of Italian ryegrass, the resistance was actually discovered in populations exposed to gluphosate that evolved resistance to gluphosate and which had not been exposed to glufosinate; exemplifying a case of cross-resistance (Avila-Garcia and Mallory-Smith, 2011). No resistance in a broadleaf species has been found to date.

Italian ryegrass may require special consideration when designing appropriate management programs because of the potential for cross resistance between glyphosate and glufosinate to exist. Avila-Garcia and Mallory-Smith (2011) demonstrated the only case of glufosinate cross resistance, which developed when the populations evolved resistance to glyphosate. It is not known if the reverse is true, though it is possible. Where there are known glyphosate resistant ryegrass populations Monsanto will recommend not to use glufosinate to control these populations. Likewise, dicamba will not be an option, since it does not control grasses such as ryegrass. Other herbicides such as those in the ACCase or ALS classes will be recommended. It is important to note that ryegrass is generally a weed target in preplant burndown applications and not in the cotton crop itself because of the biology of the species.

## **I.8.** Sustainable Use of Dicamba and Glufosinate as a Weed Management Option in Cotton

MON 88701 will be sold only in cotton varieties that also contain other herbicide-tolerant traits, including glyphosate-tolerance. Cotton varieties containing both MON 88701 and a glyphosate-tolerant system will enable dicamba and glufosinate to be applied with glyphosate and/or other cotton herbicides in an integrated weed management program. Dicamba primarily will be used in mixtures with either glyphosate or glufosinate or in sequence with glyphosate or glufosinate to control a broad spectrum of grass and broadleaf weed species. Glyphosate and glufosinate will not be used in mixtures due to antagonism (*i.e.*, glufosinate damages the leaf tissue before glyphosate gets into the plant and/or can be translocated to growing parts of the plant) and reduced efficacy of glyphosate on susceptible weed species. Dicamba and glufosinate applications on MON 88701 will provide effective control of glyphosate-resistant broadleaf weeds and improve the control of annual and perennial broadleaf weed species, some of which are difficult to control with glyphosate. Dicamba and glufosinate will also help delay development and/or combat existing weed resistance issues that can limit the use of the PPO- and ALS-inhibiting herbicide groups by providing additional modes-of-action for management of certain broadleaf species known to be prone to resistance to many of the current herbicide options for weed management (i.e. Amarathus spp.). Likewise, dicamba will help to mediate potential evolution of resistance to glufosinate in broadleaf species and glufosinate will do the same for the potential evolution of resistant broadleaf species to dicamba. Cultivation of a combined MON 88701 and glyphosate-tolerance trait product will foster the adoption of Integrated Pest Management (IPM) practices in cotton by allowing growers to continue to primarily focus on postemergence in-crop weed control, as they have practiced with the glyphosate-tolerant cotton systems. This will allow growers to delay some herbicide treatments until field scouting indicates a need for additional postemergence weed control which is consistent with the principles of where consistency of postemergence herbicides has generally been greater than that of soil active residual products, which have greater degree of inconsistent weed court in the adoption of court Upon the integration of MONDATE

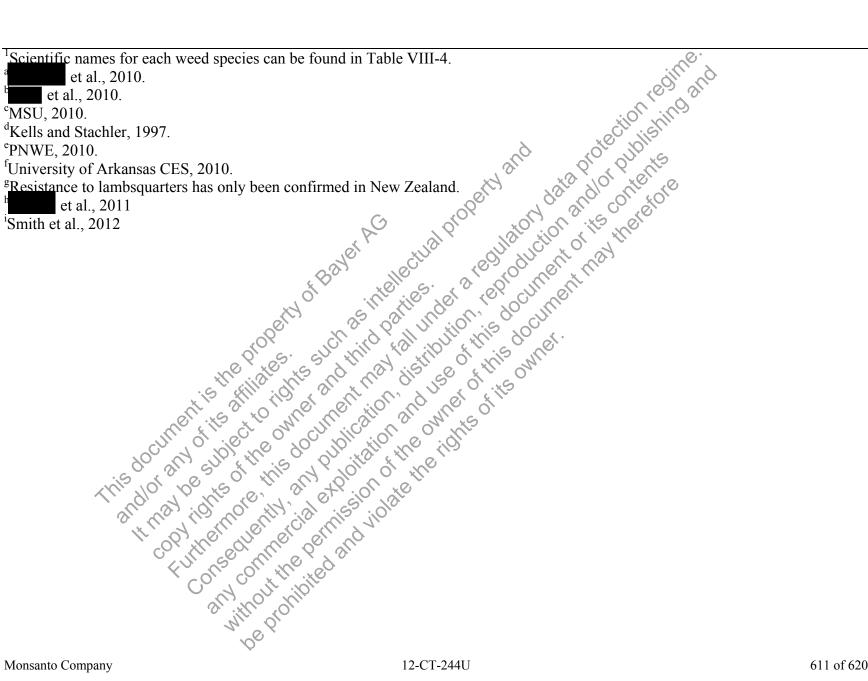
Upon the integration of MON 88701 into the glyphosate-tolerant cotton systems and pending approval of the use of dicamba on MON 88701 by the U.S. EPA, preplant/preemergence applications of dicamba can be made up to 1.0 lb a.e./acre up through crop emergence (cracking) and in-crop postemergence applications up to 0.5 lb a.e./acre could be applied through 7 days preharvest, with the combined total not to exceed 2.0 lbs a.e. dicamba per year for all applications. Residual herbicides also will be recommended for use, to provide early season weed control and to supplement dicamba and glufosinate activity on certain hard-to-control and glyphosate-resistant weed biotypes, such as glyphosate-resistant Palmer amaranth where weed populations can be very substantial. See section I.8.1 for specific weed management recommendations.

Dicamba and glufosinate, as complementary herbicides to glyphosate, will provide new weed control options in cotton that strengthen the utility and sustainability of glyphosate

as a weed control tool in the glyphosate-tolerant cotton systems. Likewise, glyphosate, as a complementary herbicide to dicamba and glufosinate, would strengthen the utility and sustainability of dicamba and glufosinate as weed control tools for the combined MON 88701 glyphosate-tolerance trait product.

In the event there is known or suspected presence of a dicamba-resistant or glufosinateare , and pc. .t or may , erops grown , erop resistant weed biotype, other options for managing the resistant biotypes are available to the grower. There are multiple preemergence (including soil residuals) and postemergent herbicide options for managing weed populations that are resistant or may potentially develop resistance to dicamba or glufosinate in cotton, as well for crops grown in rotation This document is the property of Bayer A.G. and parties. Dealer and parties. This document is affiliates. and third parties. This document is affiliates international parties. This document is affiliates international parties. This document is affiliates of the owner and third parties. This document is affiliate owner and third parties. This document is affiliate owner and third parties.

Consequently and publication of the owner of this document may there for any publication of the owner of this document may there for the owner of this document may there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any there for the owner of this document in any the document is any the owner of the owner owner of the owner own any connectation and violate the indits of this document, may there of the owner.


without the permission of the owner of this documer.

<b>Resistant W</b>	eeds							
1	Herbicide Resistant	Primary			tational Crops			
Weed Species ¹	Biotypes	Crop Cotton	Corn	Sorghum	Soybeans	Wheat		
			Atrazine ^a	Atrazine ^a	Saflufenacil ^a	Saflufenacil ^a		
	dicamba, fluroxpyr (populations also	Clomazone ^a	Saflufenacil ^a	Saflufenacil ^a	Clomazone ^a	Glyphosate ^a		
Kochia		Flumioxazin ⁱ	Isoxaflutole ^a	Isoxaflutole ^a	Elumioxazin ^a	Bromoxynil/MCPA ^a		
	resistant to glyphosate)	Glyphosate ⁱ	Mesotrione ^a	Isoxaflutole ^a Mesotrione ^a	Glyphosate ^a			
		Paraquat ⁱ	Glyphosate ^a	Glyphosate ^a	Paraquat ^a			
		Glyphosate ⁱ	Saflufenacil ^a	Saflufenacila	Saflufenacil ^a	Saflufenacil ^a		
	Dicamba, 2,4 D,	Paraquat ⁱ	Atrazine	Atrazine	Chlorimuron/metribuzin ^a	Triasulfuron ^a		
Prickly Lettuce	MCPA	orol a such	Carfentrazone + atrazine ^a Isoxaflutole +	Glyphosate ^a Saflufenacil ^a Atrazine ^a Carfentrazone + atrazine ^a Isoxaflutole +	Glyphosate + imazethapyr ^a	Metsulfuron + thifensulfuron ^a		
Wild mustard	Dicamba , 2,4 D,MCPA, pictoram, dichlorprop, mecoprop	Glyphosate ⁱ Paraquat ⁱ Glyphosate ⁱ Paraquat ⁱ Flumioxazin ⁱ	atrazine ^a Glyphosate ^c Atrazine ^c Primisulfuron ^c Nicosulfuron ^d Halosulfuron ^d	atrazine ^a Glyphosate ^c Atrazine ^c Primisulfuron ^c Nicosulfuron ^d Halosulfuron ^d	Glyphosate ^c Chlorimuron ^c Chlorimuron/metribuzin ^c			
Field Bindweed	2,4 D nd ^t n ²⁰ ^{ti}	Glyphosate Paraquat Flumioxazin	Glyphosate ^a Glyphosate + imazethapyr ^a Glyphosate + Imazamox ^a	Glyphosate ^a Glyphosate + imazethapyr ^a Glyphosate + Imazamox ^a	Glyphosate ^a	Glyphosate ^a		
Yellow Starthistle ^e	Picloram	N CO THINGTONIO						
Monsanto Com		2 POK	12-CT-244I			609 of 620		

Table I-1. Management Recommendations for Control of Dicamba-, Glufosinate- and Other Selected Synthetic Auxin-Resistant Weeds

					10 ° 0.	
	Herbicide	Primary		R		
Weed Species ¹	Resistant Biotypes	Crop Cotton	Corn	Sorghum	otational Crops Soybeans	Wheat
Spreading Dayflower	2,4 D			erty and data	prote pullints	Bentazon halosulfuron penoxsulam bispyribac ^f
Lambsquarters ^g	Dicamba	Paraquat ⁱ Flumioxazin ⁱ	ar AC lectual pr	Isoxaflutole ^a Atrazine ^a Saflufenacil ^a Mesotrione ^a Bromoxynil ^b	Metribuzin ^b	Bromoxynil ^a Chlorsulfuron/Metsulfuron Glyphosate ^a
		Glyphosateb	25 inteller	Mesotrione ^a	Imazamox ^b	Saflufenacil ^a
		ett)	as all your	Bromoxynil ^b	Glyphosate ^b	
Goosegrass	Glufosinate	Clethodim ^h Glyphosate ^h pendimethalin ^h trifluralin ^h	Glyphosate ⁿ	Glyphosate ⁿ	Clethodim ^h Glyphosate ^h pendimethalin ^h trifluralin ^h	Glyphosate ^h
Italian ryegrass	Glufosinate (populations also	Metolachlor (fall applied) ^h Clethodim ^h	Metolachlor (fall applied) ^h	Metolachlor (fall applied) ^h	Metolachlor (fall applied) ^h Clethodim ^h	
	resistant to glyphosate)	Glyphosate ^h Paraquat	Glyphosate ^h	Glyphosate ^h	Glyphosate ^h	Glyphosate ^h
	43.00 43.00	pendimethalin ^h trifluralin ^h Metolachlor (fall applied) ^h Clethodim ^h Glyphosate ^h Paraquat				
Monsanto Comp	any	â.	12-CT-244	U		610 of 620

#### Table I-1. Management Recommendations for Control of Dicamba-, Glufosinate- and Other Selected Synthetic Auxinegin and **Resistant Weeds (continued)**



#### I.9. Stewardship of Dicamba and Glufosinate Use on MON 88701

In order to steward the use of agricultural herbicides and herbicide-tolerant cropping systems such as the combined trait MON 88701 and glyphosate-tolerant cotton product, Monsanto has conducted investigations and worked extensively with academics and other herbicide manufacturers to understand and recommend best practices to manage herbicide resistance. These investigations have demonstrated that one of the major factors contributing to the development of resistant weed biotypes has been poor weed control management practices. The primary reasons for lack of adequate management includes: 1) application of herbicides at rates below those indicated on the product label for the weed species, and 2) sole reliance on a particular herbicide for weed control without the use of other herbicides or cultural control methods (Beckie, 2006; et

al., 2007). **I.9.1. Weed Control Recommendations** The proposed label for dicamba use on MON 88701 is based on the maximum allowable use rates and patterns. Prior to launch of MON 88701 in glyphosate-tolerant cotton systems, Monsanto, in cooperation with academics, will conduct trials to confirm the optimum rate and timing for dicamba, glufosinate and glyphosate, alone and in combination, and other herbicides. Recommendations to growers will be developed from this information and will be provided in herbicide product labels, Monsanto's Technology Use Guide (TUG), and in other education and training materials to be broadly distributed. Specifically, current research conducted by Monsanto to define the optimum weed management systems support use recommendations that include the a soil residual will be recommended (see Section VIII.G.4 for additional details) These recommendations will ensure more than targeted species application of dicamba and glyphosate for preemergence on conservation tillage acres and early postemergence in-crop applications. In some situations, a second in-crop application of either dicamba tank-mixed with glyphosate or glufosinate, with or without

These recommendations will ensure more than one mechanism of action against the management program. These management systems, which include the use of multiple effective herbicide modes-of-action. will reduce the potential of a development to glyphosate, dicamba, and glufosinate, as well as other critical cotton herbicides. Furthermore, the preplant weed spectrum is generally different from the incrop weed spectrum therefore multiple applications of glyphosate and dicamba are not expected to increase selection pressure on either herbicide.

#### **I.9.2.** Dispersal of Technical and Stewardship Information

Monsanto will use multiple methods to distribute technical and stewardship information to growers, academics and grower advisors. Monsanto's TUG will set forth the requirements and best practices for the cultivation of MON 88701 including recommendations on weed resistance management practices. Growers who purchase

varieties containing MON 88701 will be required to enter into a limited use license with Monsanto and must sign and comply with the Monsanto Technology Stewardship Agreement (MTSA), which requires the grower to follow the TUG.

The weed resistance management practices that will be articulated in the TUG will also be broadly communicated to growers and retailers in order to minimize the potential for the development of resistant weeds. These practices will be communicated through a variety of means, including direct mailings to each grower purchasing a cotton variety containing MON 88701, a public website⁹, and reports in farm media publications. The overall weed resistance management program will be reinforced through collaborations with U.S. academics, who will provide their recommendations for appropriate stewardship of dicamba and glufosinate in cotton production, as well as by collaboration with crop commodity groups who have launched web-based weed resistance educational modules. Finally, Monsanto will urge growers to report any incidence of repeated nonperformance of dicamba or glufosinate on weeds in fields planted with MON 88701, and Monsanto will investigate cases of unsatisfactory weed control to determine the cause as defined in I.9.

The EPA is the U.S. federal regulatory agency that administers the federal law governing pesticide sale and use under the Federal Insecticide, Fungicide and Rodenticide Act (FIFRA). EPA encourages pesticide manufacturers to provide growers with information regarding an herbicide's mode-of-action to aid growers in planning herbicide use practices and to foster the adoption of effective weed resistance management practices as specified by EPA in Pesticide Registration (PR) Notice 2001-5 (U.S. EPA, 2001). In that document EPA states that "this approach to resistance management is sound and would be highly beneficial to pesticide manufacturers and pesticide users." EPA approves all pesticide label use instructions based on its evaluation of supporting data supplied by the product will not cause unreasonable adverse effects to the environment when used in accordance with the label's directions. After EPA approves a pesticide label, it is a violation of federal law to use the pesticide for a use or in a manner not in accordance with the label directions. Monsanto incorporates EPA's guidelines for pesticide resistance management labeling on its agricultural herbicide labels, and will continue to do so in the future. Monsanto will adopt a similar approach to pesticide resistance management guidance on its dicamba product labels.

In summary, Monsanto will require weed resistance management practices through the MTSA and TUG for its biotechnology-derived herbicide-tolerant products, such as MON 88701 integrated into the glyphosate-tolerant cotton systems, and to promote these practices through product labeling and educational outreach efforts as an effective means to manage weed resistance development for both dicamba, glufosinate, and glyphosate.

⁹ http://www.monsanto.com/weedmanagement/Pages/default.aspx

#### I.9.3. Weed Resistance Management Practices

Monsanto will provide information to growers and grower advisors on best management practices to delay the development of resistance to dicamba and glufosinate. The weed resistance management recommendations for the use of dicamba and glufosinate in conjunction with cotton varieties containing MON 88701 will be consistent with the Herbicide Resistance Action Committee's guidelines for prevention and management of herbicide resistance (HRAC, 2010)¹⁰. These guidelines recommend an integrated approach to weed resistance management, including crop management (*i.e.*, cover crops, crop rotation, etc.), cultivation techniques, and the use of multiple herbicide modes-of-action to manage a weed population.

In cases where resistance is confirmed for dicamba or glufosinate in cotton producing areas, Monsanto and University/Cooperative Extension Service (CES) personnel will provide recommendations for alternative herbicide control methods to growers. These recommendations would be made available through Monsanto supplemental labels, Monsanto and university publications, and internet sites to growers, consultants, retailers and distributors. For all existing cases of dicamba-resistant and glufosinate-resistant weeds in the U.S. and globally today, alternative herbicides and cultural methods are available to growers to effectively control these biotypes. Examples of recommended alternative herbicides from University/CES personnel that are applicable to weed species known to be resistant to glufosinate, dicamba and other synthetic auxin herbicides are found in Table I-1. However, these examples in Table I-1 are only a subset of product combinations of available cotton herbicides.

## I.10. Monsanto Weed Performance Evaluation and Weed Resistance Management Plan

An important part of a weed resistance management plan is the timely acquisition of information regarding product performance. Monsanto has an extensive technical, sales and marketing presence in the cotton markets where MON 88701 will be grown. Through our relationships with farm advisors, key University/CES personnel, and growers using our seeds and traits products, Monsanto will acquire important and timely information regarding product performance. This will allow the timely recognition of performance issues that could arise related to weed resistance or other means. Field employees and hired consultants are trained and provided processes for responding to product performance inquiries. Individual performance issues that could be related to potential resistance are promptly handled. In addition performance inquiries are periodically reviewed by Monsanto for trends that could indicate the need for follow up action on a broad scale.

If dicamba or glufosinate resistance is confirmed, the scientific and grower communities will be notified and a weed resistance mitigation plan will be implemented by Monsanto

¹⁰ The Herbicide Resistance Action Committee (HRAC) is an international body founded by the agrochemical industry for the purpose of supporting a cooperative approach to the management of herbicide resistance and the establishment of a worldwide herbicide resistance database.

in cooperation with the University/CES and/or the appropriate herbicide producer. The mitigation plan will be designed to manage the resistant biotype through effective and economical weed management recommendations implemented by the grower. The scope and level of intensity of the mitigation plan may vary depending on a combination of the following factors: 1) biology and field characteristics of the weed (seed shed, seed dormancy, etc.), 2) importance of the weed in the agricultural system, 3) resistance status of the weed to other herbicides with alternate modes-of-action, and 4) availability of alternative control options. These factors are analyzed by Monsanto and University/CES personnel in combination with economic and practical management considerations to develop a tailored mitigation strategy. The plan considers what is technically appropriate for the particular weed and incorporates practical management strategies that can be implemented by the grower.

After a mitigation plan is developed, Monsanto communicates the plan to the grower community through the use of supplemental herbicide labeling (labeling which includes newly approved use directions, or other instructions)^N, informational fact sheets, retailer training programs, agriculture media and/or other means, as appropriate.

In addition to the grower inquiry initiated process, Monsanto, alone and/or in cooperation with University/CES, will conduct field studies to understand the potential for weed resistance and weed shifts as the result of various weed management programs implemented for MON 88701 integrated into glyphosate-tolerant cotton systems. These uner this do studies will allow researchers to better track specific factors that can influence the ar a. ipution - docum development of resistance to specific weeds.

### I.11. Summary

Development of weed resistance is a complex process that can be difficult to accurately predict. Multiple methods for managing weed resistance are available and no single option is best for all farming situations. No single agronomic practice will mitigate resistance for all herbicides or all weeds. As a result, weed resistance needs to be managed on a case-by-case basis, tailored for the particular herbicide and weed species, and utilize an integrated system approach to meet grower needs. Using good weed application rate, choice of cultural practices, and appropriate companion weed control products will allow dicamba and glufosinate herbigides to control In cases where weed populations have evolved or developed resistance to dicamba and/or glufosinate, effective management options are available and experience has shown that growers will continue to find value in using dicamba and glufosinate in their weed control programs.

The key principles for effective stewardship of dicamba and glufosinate use, including the integration of MON 88701 in the glyphosate-tolerant cotton systems, comprise:

¹¹ Monsanto will communicate information broadly so registrants are aware of when Monsanto is not the registrant or provider of the chemistry,.

1) basing weed management and weed resistance management practices on local needs and using the tools necessary to optimize crop yield, 2) using proper rate and timing of application, 3) not relying solely on one herbicide weed control option across a cropping system, 4) responding rapidly to instances of unsatisfactory weed control, and 5) providing up-to-date weed management and weed resistance management training.

Overall, there is a low potential for dicamba-resistant broadleaf weed populations to arise from the use of dicamba applied to MON 88701 integrated into glyphosate-tolerant cotton systems. The reasons are as follows:

- Dicamba will be used in combination with glyphosate and/or glufosinate in a • majority of cropping situations, and weed recommendations will also include the concurrent use of residual herbicides for complementary weed control and different modes-of-action. These use patterns mean that there will be multiple modes-of-action against the major broadleaf species present in cotton production. This is a primary way to delay the development of resistance.
- The development of resistance to auxin herbicides has been found to be relatively • slow. This observation is hypothesized to be due to multiple sites of action within plants and evidence suggesting that resistance is determined by multiple genes (quantitative traits), at least in some species. Ū
- Only four broadleaf weed species have been confirmed to be resistant to dicamba • in the U.S., and relatively low numbers of broadleaf species have been confirmed to be resistant to synthetic auxin herbicides even though dicamba has been widely in use for over 40 years.
- Known resistant broadleaf populations to dieamba and other auxin herbicides are primarily found in the western U.S. and, thus are not present in the major cotton S geographies. In addition, the known dicamba-resistant biotypes are not major weed species present in the U.S. cotton crop.

of glufosinate use in the MON88701 system is considered to be low because: Likewise, the probability for weed species to evolve resistance to glufosinate as a result

Two species have been confirmed to be resistant to glufosinate worldwide and one (ryegrass) in the US. This suggests that the frequency for resistant alleles in native weed populations is fairly low.

• Known resistant populations to glufosinate herbicide within the U.S. are only found in Oregon, and thus, are not present in the major cotton geographies.

In the MON 88701 system, glufosinate will likely be used in combination with • dicamba and in sequence with glyphosate. Residual herbicides will also be recommended and likely used in this cropping system. As noted above, these use patterns mean that there will be multiple modes-of-action against the major broadleaf species present in sovbean production. This is a primary way to delay the development of resistance.

1×ma

copy

#### **References for Appendix I**

Ahrens, W.H. 1994. Dicamba. 3,6-dichloro-2-methoxybenzoic acid. Pages 91-94 in Herbicide Handbook. Seventh Edition. Weed Science Society of America, Champaign, Illinois.

Avila-Garcia, W.V. and C. Mallory-Smith. 2011. Glyphosate-resistant Italian ryegrass (*Lolium perenne*) populations also exhibit resistance to glufosinate. Weed Science 59:305-309.

BASF. 2008. Clarity herbicide label. BASF Corporation, Research Triangle Park, North Carolina.

Bayer CropScience. 2011. Liberty herbicide label. Bayer CropScience LP, Research Triangle Park, North Carolina.

Beckie, H.J., and X. Reboud. 2009. Selecting for weed resistance: Herbicide rotation and mixture. Weed Technology 23(363-370.

Beckie, H.J. 2006. Herbicide-resistant weeds: Management factics and practices. Weed Technology 20:793-814.

and

. 2010. Guide for weed management in Nebraska (EC130). University of Nebraska Extension, Lincoln, Nebraska

Cranston, H. J., A. J. Kern, J. L. Hackett, E. D. Maxwell, B. D. Maxwell, and W. E. Dyer. 2001. Dicamba resistance in kochia. Weed Science 49:164-170.

Goss, G.A., and W. E. Dyer. 2003. Physiological characterization of auxinic herbicideresistant biotypes of Kochia (*Kochia scoparia*). Weed Science 51:839-844.

Gressel, J. and L. A. Segel. 1990. Modelling the effectiveness of herbicide rotations and mixtures as strategies to delay or preclude resistance. Weed Technology 4:186-198.

Grossmann, K. 2010. Auxin herbicides: current status of mechanism and mode of action. Pest Management Science 66:113-120.

Heap, I. 2010. International survey of herbicide resistant weeds. WeedScience.com, International Survey of Herbicide Resistant Weeds, Corvallis, Oregon. http://www.weedscience.org/in.asp [Accessed July 1, 2010]

Heap, I. 2011. Herbicide resistant weeds summary table. WeedScience.com, International Survey of Herbicide Resistant Weeds, Corvallis, Oregon.

http://www.weedscience.org/summary/MOASummary.asp [Accessed May 26, 2011].

Heap, I. 2012a. Herbicide resistant weeds - Synthetic auxins (O/4) resistant weeds. WeedScience.org, International Survey of Herbicide Resistant Weeds, Corvallis, Oregon. http://www.weedscience.org/summary/MOASummary.asp [Accessed June 11, 2012].

Heap, I. 2012b. U.S. Herbicide resistant weeds summary table. WeedScience.org, International Survey of Herbicide Resistant Weeds, Corvallis, Oregon. http://www.weedscience.org/summary/MOASummary.asp [Accessed June 25, 2012].

Heap, I. 2012c. Herbicide resistant weeds summary table. WeedScience.org, International Survey of Herbicide Resistant Weeds, Corvallis, Oregon. http://www.weedscience.org/summary/MOASummary.asp [Accessed June 15 2012].

Heap, I. 2012d. Herbicide resistant weeds - Glutamine synthase inbibitors (H/10) resistant weeds by species and country. WeedScience.org, International Survey of Herbicide Resistant Weeds, Corvallis, Oregon. http://www.weedscience.org/summary/MOASummary.asp [Accessed June 11, 2012].

HRAC. 2009. Classification of herbicides according to mode of action. Herbicide Resistance Action Committee, Corvallis, Oregon. 0 http://www.hracglobal.com/Publications/ClassificationofHerbieideModeofAction/tabid/2 22/Default.aspx Accessed June 29, 2009.

HRAC. 2010. Guideline to the management of herbicide resistance. Herbicide Resistance Action Committee, Calgary, Alberta. http://www.hraeglobal.com Accessed April 1, 2010.

Jasieniuk, M., P.N., Morrison, and A.L. Brûlé-Babet. 1995. Inheritance of dicamba resistance in wild mustard (Brassica kaber). Weed Science 43:192-195.

Jasieniuk, M. A.L. Brûle-Babel, and I.N. Morrison. 1996. The evolution and genetics of

Kells, J.J. and J.M. Stachler 1007 Kells, J.J. and J.M. Stachler, 1997. Controlling wild carrot. Michigan State University Extension, East Lansing, Michigan. http://web1.msue.msu.edu/imp/mods1/fact9707.html [Accessed May 19, 2010].

Legere, A., H.J. Beckle, F.C. Stevenson, and A.G. Thomas. 2000. Survey of management practices affecting the occurrence of wild oat (Avena fatua) resistant to acetyl-coA carboxylase inhibitors. Weed Technology 14:366-376.

and

2010. Weed control guide for Ohio and Indiana. Bulletin 789. Purdue University and Ohio State University Extension, West Lafayette, Indiana.

MSU. 2010. Controlling wild carrot. Mississippi State University Extension Service, Mississippi State, Mississippi.

http://fieldcrop.msu.edu/documents/controlling%20wild%20carrot.pdf [Accessed May 19, 2010].

Miller, T.W., S.L. Shinn, and D.C. Thill. 2001. Cross-resistance in and chemical control of auxinic herbicide-resistant yellow starthistle (*Centaurea solstitialis*). Weed Technology 15:293-299.

Monaco, T.J., S.C. Weller and F.M. Ashton. 2002. Growth regulator herbicides. Pages 291-310 in Weed Science: Principles and Practices. Fourth Edition. John Wiley & Sons, Inc., New York, New York.

NPIC. 2002. Dicamba technical fact sheet. National Pesticide Information Center, Corvallis, Oregon. http://npic.orst.edu/factsheets/dicamba_tech.pdf [Accessed April 30, 2010]

PNWE. 2010. Control of problem weeds - Starthistle, Pacific Northwest weed management handbook. Pacific Northwest Extension Service, Portland, Oregon. http://uspest.org/pnw/weeds [Accessed May 25, 2010]

and and 2007. Glyphosate stewardship. MF-2767. Kansas State University Agricultural Experiment Station and Cooperative Extension Service, Manhattan, Kansas.

Powles, S.B. 2008. Evolved glyphosate-resistant weeds around the world: Lessons to be learnt. Pest Management Science 64:360-365.

Powles, S.B. and Qin Yu. 2010. Evolution in action: Plants resistant to herbicides. Annual Review of Plant Biology 61:317-347.

Sammons, R.D., D.C. Heering, N. DiNicola, H. Glick, and G.A. Elmore. 2007. Sustainability and stewardship of glyphosate and glyphosate-resistant crops. Weed Technology 21:347-354.

Seng, C.T., D. Van Lun, C.T. San and I. Bin Sahid. 2010. Initial report of glufosinate and paraquat multiple resistance that evolved in a biotype of goosegrass (*Eleusine indica*) in Malaysia. Weed Biology and Management 10:229-233.

Smith, K. 2012 Recommended chemicals for weed and brush control. University of Arkansas, Cooperative Extension Service, Division of Agriculture, Fayetteville, Arkansas. http://www.uaex.edu/Other_Areas/publications/HTML/MP-44.asp [Accessed June 22, 2012]

Steckel, L.E. 2011. Weed control manual for Tennessee. University of Tennessee Institute of Agriculture, Knoxville, Tennessee. <u>http://weeds.utk.edu/</u> [Accessed June 22, 2012]

U.S. EPA. 2001. Pesticide Registration (PR) Notice 2001-5, Guidance for Pesticide Registrants on Pesticide Resistance Management Labeling. http://www.epa.gov/opppmsd1/PR_Notices/pr2001-5.pdf.

U.S. EPA. 2008. Glufosinate summary document registration review: Initial docket, March, 2008. U.S. Environmental Protection Agency, Washington, D.C.

U.S. EPA. 2009. Reregistration Eligibility Decision (RED) for Dicamba and Associated Salts. Case No. 0065. U.S. Environmental Protection Agency Office of Prevention, Pesticides and Toxic Substances, Special Review and Reregistration Division, Washington, D.C.

University of Arkansas. 2011. Recommended chemicals for weed and brush control. University of Arkansas, Cooperative Extension Service, Division of Agriculture, Fayetteville, Arkansas.

Walsh, T.A., R. Neal, A.O. Merlo, M. Honma, G.R. Hicks, K. Wolff, W. Matsumura, and J.P. Davies. 2006. Mutations in an auxin receptor homolog AFB5 and in SGT1b confer resistance to synthetic picolinate auxins and not to 2,4-dichlorophenoxyacetic acid or indole-3-acetic acid in *Arabidopsis*. Plant Physiology 142:542-552.

WSSA. 2012. WSSA lesson module: Herbicide resistant weeds. Weed Science Society of America, Champaign, Illinois. http://www.wssa.net/LessonModules/herbicide-resistant-weeds/index.htm [Accessed June 23, 2012].

Zheng, H. and J.C. Half. 2001. Understanding auxinic herbicide resistance in wild mustard: physiological, biochemical, and molecular genetic approaches. Weed Science 49:276-281