Clyphosate

DOCUMENT M-CA, Section 8

ECOTOXICOLOGICAE STUDIES ON THE ACTIVE SUBSTANCE ACTIVE To be the state of

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by one or more of the member companies of the European Glyphosate Renewal Group (GRG) with the members Bayer Agriculture BV, Barclay Chemicals Manufacturing Ltd., CIECH Sarzyna S.A., Albaugh Europe SARL, Nufarm SmbH & Co KG, SINON Corporation, Industrias Afrasa S.A., Syngenta Crop Protection AG and/or affiliated

entities.

The summaries and evaluations contained in this document are based on unpublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or renew a registration on the basis of the summaries and evaluation of unpublished proprietary data contained in this document unless they have received the data on which the • From Bayer Agriculture BV or respective affiliate; or
• From Barclay Chemicals Manufacturing Ltd. or respective affiliate; or
• From CIECH Sarzyna S.A. or respective affiliate; or
• From Albaugh Europe SARL or respective

- affiliate steotions of the steet of the stee All the state of t
- From Syngenta Crop Protection AG or respective affiliate; or
 From other applicants once the period of data protection has

	Annex to Regulation 283/2	2013	Glyphosate	M-CA, Section 8 Page 3 of 847
	Version histor	$\mathbf{y}^{_1}$, se
	Date	Data points containing	g amendments or additions	S Document identifier and version number
	22 nd July 2020	CA 8.2.5.3 Update of C	Chironomus riparius report	Doc ID: 110054- MCA& GRG_Rev 1 Jul_2020 Replaces the Doc ID 110054- MCA& GRG_Jun_2020— Changes are given in vellow
	SANCO/10180/2013 C	hapter 4 How to revise an As	ach to showing revisions and versions sessment Report	
# 6 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Glyphosate Renewal Grou	p AIR 5 – July 2020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Table of Contents

	CA 8	ECOTOXICOLOGICAL STUDIES ON THE ACTIVE SUBSTANCE Effects on Birds and Other Terrestrial Vertebrates Effect on birds Acute oral toxicity to birds Sub-chronic and reproductive toxicity to birds Effects on terrestrial vertebrates other than birds Acute oral toxicity to mammals Long-term and reproductive toxicity to mammals Effects of active substance bioconcentration in previous birds and mammals	6
	CA 8.1	Effects on Birds and Other Terrestrial Vertebrates	&
	CA 8.1.1	Effect on birds	Š 8
	CA 8.1.1.1	Acute oral toxicity to birds	8
	CA 8.1.1.2	Short-term dietary toxicity to birds	39
	CA 8.1.1.3	Sub-chronic and reproductive toxicity to birds	39
	CA 8.1.2	Effects on terrestrial vertebrates other than birds	56
	CA 8.1.2.1	Acute oral toxicity to mammals	56
	CA 8.1.2.2	Long-term and reproductive toxicity to mammals.	57
	CA 8.1.3	Effects of active substance bioconcentration in previous birds and mamma	ıls . 58
	CA 8.1.4	Effects on terrestrial vertebrate wildlife (birds, mammals, reptiles and amphibians) Endocrine disrupting properties Effects on Aquatic Organisms Acute toxicity to fish Long-term and chronic toxicity to fish Fish early life stage toxicity test Bioconcentration in fish	
	CA 8.1.5	Endocrine disrupting properties	59
	CA 8.2	Effects on Aquatic Organisms	59
	CA 8.2.1	Acute toxicity to fish	60
	CA 8.2.2	Long-term and chronic toxicity to fish	131
	CA 8.2.2.1	Fish early life stage toxicity test	131
	CA 8.2.2.2	Fish full life cycle test	162
	CA 8.2.2.3	Bioconcentration in fish	167
	CA 8.2.3	Endocrine disrupting properties	172
	CA 8.2.4	Acute toxicity to aquatic invertebrates	190
	CA 8.2.4.1	Acute toxicity to Daphnia magna	193
	CA 8.2.4.2	Acute toxicity to an additional aquatic invertebrate species	234
	CA 8.2.5	Long term and chronic toxicity to aquatic invertebrates	250
	CA 8.2.5.1	Reproductive and development toxicity to Daphnia magna	252
	CA 8.2.5.2	Reproductive and development toxicity to an additional aquatic inverteb	
	CA 8.2.5.4 CA 8.2.5.4 CA 8.2.6.7 CA 8.2.6.1	Bevelopment and emergence in Chironomus riparius	287
	CA 8.2.5.4 5	Sediment dwelling organisms	292
	CA 8,26	Effects on algal growth	292
	CA 8.2.6.1	Effects on growth of green algae	292
	CA 8.2.6.2	Effects on growth of an additional algal species	362
c)	EA 8.2.7	Effects on aquatic macrophytes	402
	CA 8.2.8	Further testing on aquatic organisms	455
	CA 8.3	Effects on Arthropods	458
Selection of the select	Glyphosate Renewal	Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG	_Rev 1

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

CA 8.3.1	Effects on bees	158
CA 8.3.1.1	Acute toxicity to bees	
CA 8.3.1.1/1	·	
CA 8.3.1.1/1	Acute oral toxicity Acute contact toxicity	484
CA 8.3.1.2	Chronic toxicity to bees	203
CA 8.3.1.3	Effects on honorhoo development and other honorhoo life stages	\$ 2512
	Chronic toxicity to bees	% 517
CA 8.3.2	Fiffects on non-target arthropods other than bees	523
CA 8.3.2.1	Effects on Aphidius rhondosinhi	524
CA 8.3.2.2	Effects on non-target arthropods other than bees Effects on Aphidius rhopalosiphi Effects on Typhlodromus pyri Effects on Non-Target Soil Meso- and Macrofauna Earthworms – sub-lethal effects Effects on non-target soil meso- and macrofauna (other than earthwork procied level testing)	524
CA 8.4	Effects on Non-Target Soil Meso- and Macrofauna	524
CA 8.4.1	Farthworms – sub-lethal effects	524
CA 8.4.2	Effects on non-target soil meso- and macrofauna (ather than earthwor	ms) 553
CA 8.4.2.1	Species level testing	553
CA 8.5	Effects on Nitrogen Transformation	577
CA 8.6	Effects on non-target soil meso- and macrofauna (other than earthwor Species level testing	605
CA 8.6.1	Effects on Terrestrial Non-Target Higher Plants Summary of screening data Testing on non-target plants	605
CA 8.6.2	Testing on non-target plants	605
CA 8.7	Effects on Other Terrestrial Organisms (Flora and Fauna)	616
CA 8.8	Effects on Biological Methods for Sewage Treatment	
CA 8.9	Monitoring Data	623
	8-01: PUBLIC LITERATURE RAR 2015	
	(7.6.7)	lian
	Risk Assessment	834
Sold Sold Sold Sold Sold Sold Sold Sold	8-02: Endpoint Selection Considerations for Refinement of the Mamma Risk Assessment Assessment Considerations for Refinement of the Mamma Risk Assessment Consideration for Refinement C	
Glyphosate Renewal	Group AIR 5 – July 2020 Doc ID: 110054-MCA8_G	RG_Rev 1_Jul_

CA 8 ECOTOXICOLOGICAL STUDIES ON THE ACTIVE SUBSTANCE

Commission Directive 2001/99/EC included glyphosate as an active substance in Annex I to Council Directive 91/414/EEC. Following a peer review organised by the European Commission, glyphosate was included in Annex I of Council Directive 91/414/EEC with Commission Directive 2001/99/EC entering into force on 01st July 2002. According to Regulation (EU) No 540/2011, glyphosate was deemed for approval under Regulation (EC) No 1107/2009 as well.

In agreement with Article 4 of Regulation (EC) No 1141/2010 Monsanto Europe S.A.W.V. (now Bayer Agriculture BV) on behalf of the then European Glyphosate Task Force submitted an application to Germany as RMS and Slovakia as Co-RMS notifying the intention to renew the existing approval of glyphosate on 24th March 2011 during the AIR 2 process. A collective supplementary dossier from the Glyphosate Task Force comprising 24 applicants was submitted on 25th May 2012.

On 12th November 2015, the European Food Safety Authority (EFSA) published its conclusions on the peer review of the pesticide risk assessment of the active substance glyphosate on the framework of the renewal of the approval under Commission Regulation (EU) No 1141/2019 (EFSA Journal 2015;13(11):4302)¹.

EFSA was requested by the European Commission (EC) to consider available information on the potential endocrine activity of the pesticide active substance glyphosate in accordance with Article 31 of Regulation (EC) No 178/2002. The assessment concluded that the weight of evidence indicates glyphosate does not possess endocrine disrupting properties via estrogen, and regen, thyroid or steroidogenesis modes of action based on a comprehensive database available in the toxicology area.

On 17th March 2016, the rapporteur Member State, Germany, submitted a dossier to the European Chemical Agency for harmonised classification and labelling of the substance glyphosate. The proposal document was prepared in accordance with Article 37 of Regulation (EC) No 1272/2008 of the European Parliament and of the Council.

The Committee for Risk Assessment (RAC) assessed the hazards presented by glyphosate against the criteria in the Classification, Labelling and Packaging Regulation². The RAC concluded that the available scientific evidence did not meet the criteria in the CLP Regulation and that glyphosate would not be classified as possessing STOT (specific target organ toxicity), carcinogenicity, mutagenicity or reproductive toxicity.

The AIR 2 process at EU level, concluded that it has been established with respect to one or more representative uses of at least one plant protection product containing the active substance glyphosate that the approval criteria provided for in Article 4 of Regulation (EC) No 1107/2009 are satisfied. Thus, the approval criteria of demonstrating a safe use were deemed to be satisfied. It was therefore appropriate to renew the active substance glyphosate³. Glyphosate was renewed (date of approval) on 16th December 2017 with the expiration of approval set up for 15th December 2022.

Bayer Agriculture BVBA⁴ submits the dossier on behalf of the Glyphosate Renewal Group (GRG) for the AIR 5 process.

THE HOLD THE

¹ Conclusion on the peer review of the pesticide risk assessment of the active substance glyphosate in the framework of the renewal of the approval under Commission Regulation (EU) No 1141/2010; EFSA Journal 2015;13(11):4302, 107 pp; doi:10.2903/j.efsa.2015.4302.

RAC Opinion proposing harmonised classification and labelling at EU level of glyphosate (ISO); N (phosphono-methyl)glycine. CLH-O-0000001412-86-149/F. Adopted 15 Mar 2017.

³ COMMISSION IMPLEMENTING REGULATION (EU) 2017/2324.

⁴ Due to the Bayer-Monsanto acquisition in 2018, the legal entity name Monsanto Europe S.A. / N.V. has been changed to Bayer Agriculture BVBA.

In the frame of the pre-submission meeting held between the GRG and the Assessment Group on Glyphosate (AGG) on 27th September 2019, the AGG provided a reference document to GRG on the process to be considered when summarizing studies from past submissions in the June 2020 renewal dossier⁵.

In 1995, glyphosate active substance dossiers were submitted by both task force and individual companies comprising a total of 19 applicants. The majority of applicants of the 1995 submissions did not join the 2012 Glyphosate Task Force (GTF) nor the GRG submitting the AIR 5 dossier in 2020. The GRG was not able to get access to a total of 46 study reports from three companies that were part of the submissions in 1995 (for details please refer to the Document B, Doc ID: 110054-B-GRG_Jun_2020), because some of the companies involved in the submissions in 1995 have subsequently been acquired by merged with other companies or have since exited the market. Therefore, the GRG contacted Germany as the former RMS for glyphosate to discuss options available in order for AGG to get access to all said 46 study reports. A list of all these studies was sent to BVL (letter from 03rd March 2020). BVL replies to this request on 24th March 2020, advising the AGG to send a "request for administrative assistance (Art 39 of Regulation (EC) No. 1107/2009)" to the BVL. Then, BVL will forward the respective studies directly to the AGG. In the present AIR 5 Dossier, information on those inaccessible studies has been summarised based on the 2000 monograph documents and are identified (as Category 4a and 4b) in the present AIR 5 dossier. In these cases, GRG was unable to provide updated Appendix E summaries due to lack of access to these studies.

A number of new regulatory studies, generated after the previous EU renewal process and/or not previously submitted at EU level, are presented as part of the data package of this AIR 5 dossier. To date, those new studies have not been peer-reviewed at EU level (please refer to the Application document Rev 2 Dated May 2020 – Document F, Doc ID: 110054-F-GRG Jun 2020).

A literature search for the active substance glyphosate and metabolites was performed in accordance with the provisions of the EFSA Guidance "Submission of scientific peer-reviewed open literature for the approval of pesticide active substances under Regulation (EC) 1107/2009" and according to the updated Appendix to this Guidance document. The cientific literature review was performed for the period of 01st January 2010 until 31st December 2019, and total of 10 relevant and reliable articles were identified across sections of toxicology, ecotoxicology, residue and environmental fate. The identified relevant and reliable articles are presented as appendix E summaries in the specific M-CA sections. For further detailed information on the Literature Review Report (LRR) and the corresponding evaluation, please refer to M-CA Section 9 "Literature". In the frame of the pre-submission meeting held on 27th September 2019, the AGG provided a reference document to GRG on the process to be considered when presenting literature in the June 2020 submission dossier.

During the former EU processes, public literature data was evaluated, listed and reported by the RMS. An appendix, containing information about all previously submitted and/or included public literature articles from the former EU process is presented, for sake of completeness, as Annex to this M-CA section (See Annex M-CA 8-Q4).

Ecotoxicological studies have been carried out with the active substance glyphosate, glyphosate acid, glyphosate salts and its metabolites. All studies are presented in tabular form at the beginning of each relevant section and their full study summaries are provided for each organism groups. If reports were not available, short summaries to include endpoints are also provided. Endpoints from valid studies are

Glyphosate Renewal Group AIR 5 – July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

⁵ AGG Advice to GTF2_Literature search_Final Oct 2019 "HOW TO SUMMARISE STUDIES IN DOSSIERS FROM 1998 AND 2012 IN THE DOSSIER TO BE SUBMITTED JUNE 2020"

⁶ Monograph and Addendum to the monograph EU 2001: Glyphosate monograph

In the AIR 5 dossier, in each M document, a category has been assigned to each regulatory study included in the AIR 5 dossier (for details please refer to the Doc ID: 110054-B-GRG Jun 2020).

^{8'} Administrative guidance on submission of dossiers and assessment reports for the peer-review of pesticide active substances approved 27 March 2019 (doi: 10.2903/sp.efsa.2019.EN-1612)

⁹ AGG Advice to GTF2_Literature search_Final Oct 2019 "ADVICE TO GTF2: HOW TO PRESENT THE LITERATURE SEARCH IN THE DOSSIER TO BE SUBMITTED JUNE 2020"

presented in endpoint tables for each section. Irrespective of the test item, all presented endpoints for glyphosate are given in glyphosate acid equivalents (i.e. recalculated to acid equivalents).

An overview of the batches used in ecotoxicological studies is provided in document J-CA (see Doc ID: 110054-JCA GRG Jun 2020).

Metabolites of the active substance

The metabolites which require ecotoxicological assessment according to the EFSA Guidance Documents are given in the following table.

The occurrence and risk from potentially ecotoxicological relevant metabolites has been considered and is discussed in M-CA Section 6 and 7 and M-CP Section 8 and 9. These major metabolites, to which non-Table 8-1: Maximum occurrence of glyphosate and metabolites in relevant compartments target organisms could be exposed, are presented in the table below.

0,000

Metabolite	Chemical structure	Molar mass	Maximum occurrence in compartments
AMPA (Aminomethylphosphonic acid)	H ₂ N CH ₂ POHO	The grinol	Soil: 63.0 % Water: 42.7 % Sediment: 18.7 %
HMPA (Hydroxymethylphosphonic acid)	HO CH ₂ P OH S H L L L L L L L L L L L L L L L L L	112 g/mol	Water: 10 %

AMPA is ecotoxicologically relevant for the compartments soil, water and sediment.

HMPA is only ecotoxicologically relevant for the compartment water. 'UjiX , To o

Effects on Birds and Other Terrestrial Vertebrates **CA 8.1**

Studies on effects of the active substance glyphosate on birds and other terrestrial vertebrates to fulfil the data requirements according to EP Regulation No 283/2013 are presented in the following.

Effect on birds CA 8.1.1

An extensive regulatory axian toxicology database has been summarised to evaluate acute and long-term toxicity of glyphosate, gryphosate salts and the glyphosate metabolite AMPA. The results of these studies demonstrate that glyphosate, glyphosate salts and AMPA are of low acute and long-term toxicity to birds.

CA 8.1.1.1 Acute oral toxicity to birds

Studies considering the acute toxicity to birds were assessed for their validity to current and relevant guidelines for glyphosate, glyphosate salts and the metabolite AMPA and are presented in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in STATE OF THE STATE this assessment. Study summaries for all studies are presented in this section below.

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

	1					
Annex point	Study	Study type	Test species	Substance(s)	Status	Remark
CA 8.1.1.1/001	2003	Acute oral	Colinus virginianus	Glyphosate K- salt (MON 78623)	Valid	- 4. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
CA 8.1.1.1/002	1997	Acute oral	Colinus virginianus	Glyphosate acid	Valid S	Sy o
CA 8.1.1.1/003	, 1991	Acute oral	Colinus virginianus	Glyphosate technical	Naugz.	-
CA 8.1.1.1/004	, 1999	Acute oral	Coturnix coturnix japonica	Glyphosate technical	Walid	non GLP
CA 8.1.1.1/005	1996	Acute oral	Coturnix coturnix japonica	Glyphosate of technical	Valid	-
CA 8.1.1.1/006	1996	Acute oral		technical	Valid	-
CA 8.1.1.1/007	1992	Acute oral	Anas platyrhynehos	Glophosate technical	Valid	-
CA 8.1.1.1/008	1983	Acute oral	Pigeon & &	Glyphosate technical	Unknown	Study report not available, invalid in RAR (2015)
CA 8.1.1.1/009	1991	Acute oral	Colinus virginianus	AMPA	Valid	-

There are no literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate or its relevant metabolites on birds. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is available in Annex M-CA 8-01 to this document.

Endpoints of studies considered valid are shown in the table below. Glyphosate is an acid molecule, so it is often formulated as a salt. Ecotoxicological studies have been conducted with various forms of glyphosate, namely PA salt, K-salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate or glyphosate technical are automatically expressed as acid equivalent.

Table 8.1.1.1-2: Endpoints: Acute oral toxicity of glyphosate to birds

Reference	Test item	Species	Test design/	LD ₅₀
Reference	1 est item	Species	GLP	
2003CA 8.1.1.1/001	Glyphosate K- salt	Colinus virginianus	Acute oral	> 2241
1997 CA 8.1.1.1/002	Glyphosate acid	Colinus virginianus	Acute oral	> 2000
, 1991 CA 8.1.1.1/003	Glyphosate technical	Colinus virginianus	Acute oral	3-0 %
, 1999 CA 8.1.1.1/004	Glyphosate technical	Coturnix coturnix japonica	GLP GOOD	§ 2000
, 1996 CA 8.1.1.1/005	Glyphosate technical	Coturnix coturnix japonica	20 7 6	> 2000
, 1996 CA 8.1.1.1/006	Glyphosate technical	Anas platyrhynchos	S C	> 2000
1992 CA 8.1.1.1/007	Glyphosate technical	Anas S S S S platyrhynghas	Acute oral	> 2000
Proposed endpoint for risk				
Extrapolated	Glyphosate acid	Pinet.	Acute, 14 days ≥ 20 birds per limit/maximum dose group without effects	43341

A large number of acute studies in birds without any mortality at a limit dose/maximum dose of 2000 mg a.e./kg bw are submitted EFSA Journal 7(12): 1438 (2009)¹⁰ indicates that "it is permissible to extrapolate an LD₅₀ value in cases where there is no mortality or a single mortality at a limit dose in an acute avian toxicity study". Therefore an acute LD₅₀ for risk assessment of 2000 × 2.167 = 4334 mg a.e./kg bw is proposed.

A study considering the acute toxicity of the metabolite AMPA to birds is available and reported in the following table. This study was assessed to be valid according to current and relevant guidelines and the corresponding study summary is available below. This acute study with the metabolite AMPA shows equally low acute toxicity as the parent, glyphosate.

Glyphosate Renewal Group AIR 5 – July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

a.e.: acid equivalents

1 Extrapolated with a factor of 2.167 as recommended by EFSA guidance document 1438/2009 and as described above.

¹⁰ European Food Safety Authority (2009): Guidance Document on Risk Assessment for Birds & Mammals on request from EFSA. EFSA Journal; 7(12): 1438, doi: 10.2903/j.efsa.2009.1438.

Table 8.1.1.1-3: Endpoints: Acute oral toxicity of AMPA to birds

Reference	Test item	Species	Test design/ GLP	LD ₅₀ (mg/kg bw)	ido di
1991 CA 8.1.1.1/009	AMPA	Colinus virginianus	Acute oral	>2250	118 5 4 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Study summaries are provided below.

1. Information on the study

Data point	CA 8.1.1.1/001
Report author	5 20 0 C
Report year	2003
Report title	MON 78623: An acute oral toxicity study with the Northern
	Bobwhite State Sta
Report No	139-461
Document No	
Guidelines followed in study	US EPA Guideline, FIFRA subdivision E, section 71-1. OPPTS
	850.2100
Deviations from current test	Deviation compared with OECD 223 – none.
guideline	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing	Yes Ross
facilities	
Acceptability/Reliability	Valido 6
Category study in AIR 5 dossier	Category 2a
(L docs)	\$\langle \text{5'} \text{5'}

2. **Full summary**

Executive Summary

A laboratory study was performed to determine the acute oral toxicity of glyphosate K-salt (MON 78623) to bobwhite quail (Colinus virginianus). Ten quails (5 male, 5 female) per dose rate received nominal dietary doses of 291, 484, 80% 1344 and 2241 mg glyphosate acid equivalent/kg bw (mg a.e./kg bw) by oral gavage. The control group was administered an equivalent volume of the diluent (deionised water). Birds were individually observed for mortality, clinical signs of toxicity and abnormal behaviour twice daily for 8 days after study initiation. Body weights were measured at study initiation and after 3, 7 and 14 d. Food consumption for each cage of animals was measured per time interval covering day 0-3, 4-7and 8 - 14.

No mortalities were observed at any dose tested and in control treatments. A number of birds showed a ruffled appearance at doses of 484 and higher. At 1344 and 2241 mg a.e./kg bw some birds were lethargic. A treatment related loss of body weight was observed at 2241 mg a.e./kg bw, while no effects on feed

All validity criteria according to the current guideline OECD 223 were fulfilled.

... according to the current guideline OEC

LD₅₀ for Northern bobwhite exposed to glypho
glyphosate acid equivalent/kg bw (nominal). The NOEC v
equivalent/kg bw (nominal). This study is considered valid. The acute LD₅₀ for Northern bobwhite exposed to glyphosate K-salt was determined to be > 2241 mg glyphosate acid equivalent/kg bw (nominal). The NOEC was determined to be 484 mg glyphosate acid

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: MON 78623 Yellow liquid Description:

GLP-0108-11688-F Lot/Batch #:

> Purity: 47.7 % glyphosate acid

2. Vehicle and/or Vehicle: Deionised water Positive control: None positive control:

3. Test organisms:

Species: Northern bobwhite, Bobwhite quail (Colinus virginianus)

Age: Young adults, 30 weeks

Sex 5 male, 5 female per treatment/ control group.

Weight 176 - 248 g (at test initiation)

Source:

Diet/Food:

Game bird ration, ad libitum during acclimation and during the test, 18 h

fasting prior to test start.

Birds were given water soluble antibiotic in their drinking water for seven

days after arrival in the laboratory.

Acclimation period: Approx. 4 months

> 18 hours prior to desing Fasting

4. Environmental conditions:

Temperature:

Relative humidity:

Photoperiod: 8 h light 16 h dark

5. Dates of

2002-10-15 to 2002-10-29

Experimental treatments
In an acute oral toxication In an acute oral toxicity less, bobwhite quail were given nominal doses of 291, 484, 807, 1344 and 2241 mg glyphosate acid equivalent/kg bw by oral gavage and observed the following 14 d for mortality, clinical signs of toxicity, abnormal behaviour, body weight change and feed consumption. Ten quails (5 male, 5 female) were assessed per dose and control group. The control group was given diluent only.

Observations &

and state of each group for day 0-3, 4-7 and 4-7 and each group for day 0-3, 4-7 and After test initiation, birds were observed twice daily for mortality, clinical signs of toxicity and abnormal behaviour. Body weights were measured at study initiation and after 3, 7 and 14 d. Average feed consumption was determined by pen for each group for day 0-3, 4-7 and 8-14, by measuring the weight

Since the mortality was <50 %, no statistical calculation of LC₅₀ values was possible. The NOEC was

II. RESULTS AND DISCUSSION

A. FINDINGS

The LD₅₀ and NOEL values are given below based on nominal doses:

Table 8.1.1.1-4: Endpoints

Endpoints	Glyphosate K-salt [mg a.e/kg bw]
LD ₅₀	>2241
NOEL	484

Table 8.1.1.1-5: Effects of glyphosate K-salt on body weight, food consumption of Northern bobwhite quail

				0,0,0				
Glyphosate K-salt [mg a.e./kg bw]	Control	291	484	\$ 807	1344	2241		
Mortality is the second of the								
Day 14	0	0	0 11 16 0 15 16	0	0	0		
	Clinical signs							
Ruffled appearance	0	0 ,ã	ON SU	4	5	2		
Lethargy	0	0 %	illier 0	0	1	1		
	Me	an body weigh	t [g] (male/fer	male)				
Day 0	224/197	221/208	222/207	219/206	219/221	225/212		
Day 14	221/201	2247209	223/210	221/209	221/226	223/216		
	Fee	d consumption	n [g] (male/fer	nale)				
Day 0 - 3	31/15	28/21	27/26	18/23	21/15	17/23		
Day 4 - 7	28/21	29/22	23/26	20/24	23/23	25/28		
Day 8 - 14	25/16,5	24/17	19/20	21/20	20/18	17/18		

¹ Not considered to be treatment related due to the timing and isolated nature of the signs noted.

B. OBSERVATIONS There was no treatment-related mortality observed. One control male suffered a leg injury during body weight procedures and lost weight afterwards.

Numerous birds developed foot injuries during the study, which were not treatment related. At 2241 mg a.e./kg bw one male received a foot injury. One male and one female in the 484 mg a.e./kg bw group got foot lesions with associated lameness and/or ruffled appearance. This was considered to be incidental to the treatment. At 807, 1344 and 2241 mg a.e./kg bw a number of birds showed a ruffled appearance. At 807 and \$344 mg a.e./kg groups all bird (except one male in 1344 mg a.e./kg group) had recovered by the two highest test concity signs was noted. morning of Day 11 of the test and were normal in appearance and behaviour for the remainder of the test. Af the two highest test concentrations also lethargy was observed. No dose-response related increase of

When compared to the control group, no treatment related effects on body weight were noted except for the highest test concentration of 2241 mg a.e./kg bw. No treatment related effect on feed consumption was observed.

All validity criteria according to OECD 223 were fulfilled, as no non-incidental death was observed in the control groups.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

The acute LD₅₀ for northern bobwhite exposed to glyphosate K-salt was determined to be 2241 mg glyphosate acid equivalent/kg bw (nominal). The NOEC was determined to be 484 mg glyphosate acid equivalent/kg bw (nominal).

This study is considered valid and the acute oral LD₅₀ for northern bobwhite exposed to glyphosate K-salt was determined to be > 2241 mg a.e./kg bw (nominal) and can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.1.1.1/002 6 6
Report author	
Report year	1997 & & &
Report title	Glyphosate acid. Acute oral toxicity (LD ₅₀) to Bobwhite quail
Report No	ISN 400/963858
Document No	- 66.6
Guidelines followed in study	US EPA Guideline, FIFRA subdivision E, section 71-1. Avian
	single dose LD ₅₀ test (1982)
Deviations from current test	Deviation compared with OECD 223 – none.
guideline	<u>3</u>
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing	Yes
facilities & Solution of the second of the s	
Acceptability/Reliability;	Valid
Category study in AIR & dossier	Category 2a
(L docs)	

2. Full summary

Executive Summary

A laboratory study with the Bobwhite quail (*Colinus virginianus*) was conducted. After an acclimation period of Padays, birds received a single dose of the test substance glyphosate acid diluted in methylcelfulose (1% w/v) by oral gavage. The test consisted of three dosage groups and a control group. Nominal dosages used in the study were 500, 1000 and 2000 mg a.s./kg bw. The control birds received a corresponding volume of methylcellulose only.

During the test all mortalities and health of the birds were observed daily. Body weights were measured individually 15 and 7 days prior to test start, at the initiation of the test (immediately prior to dosing) and con days 7, and 14 of the test. Feed consumption was determined by cage of each dosage group and the control group 15, 8, 7 and 1 day(s) prior to test start and on days 1 to 7 and 8 to 14 of the test.

Post mortem examination was carried out on all ten control birds and all ten birds from the highest dose group.

There were no mortalities. All birds remained in good health following dosing, and no clinical signs of so toxicity were observed. No treatment-related effects were recorded on body weight and food consumptions No abnormalities were detected in any birds during post mortem examination at termination of the study. All validity criteria according to the current guideline OECD 223 were fulfilled.

Under the conditions of this study, the acute oral LD₅₀ of glyphosate acid to Bobwhite quail was found to be > 2000 mg a.s./kg. The NOEL in the study was determined to be 2000 mg a.s./kg. This study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate acid

Description: White crystalline powder

Lot/Batch #:

Purity: 95.6 %

Vehicle: Methylcellulose (1 % w/v) 2. Vehicle and/or

positive control:

3. Test organisms:

Species:

Bobwhite quail (Colinus virgintamus) Young adults, approximately 45 6 month old on arrival

Weight: 175 - 213 g (15 days prior to test initiation)

Commercial supplier Source:

Standard HRC layer diet in pellet form obtained from Parker Brothers Ltd. Diet/Food:

> (Lark Mills, Milderhall, Suffolk, UK). Food was offered ad libitum, with the exception of an overhight starvation period of approximately 21 hours prior to

dosing. Water was available at all times.

Acclimatisation: 15 days &

4. Environmental

conditions:

Temperature:

Relative humidity: Photoperiod:

10 hours light / 14 hours darkness

5. Dates of

experimental 1996-12-17 to 1996-12-31

work:

B. STUDY DESIGN

Experimental treatments

Consisted of three dosage groups and a control group. Nominal dosages used in the study were 500, 1000 and 2000 mg a.s./kg bw (dosage concentrations: 5 %, 10 % and 20 % w/v). A constant dose volume of 10

mL/kg bodyweight was used for all treatment groups. The control birds received an equivalent volume of methylcellulose only.

Observations

Observations

During the test all mortalities, bird health and clinical signs of the birds were observed daily. Body weights were measured individually 15 and 7 days prior to test start, at the initiation of the test (immediately prior to dosing) and on days 7, and 14 of the test. Feed consumption was determined by cage of each dosage group and the control group 15, 8, 7 and 1 day(s) prior to test start and on days 1 to 7 and 8 to 14 of the

Post mortem examination was carried out on all ten control birds and all ten birds from the highest dose

Statistical calculations

Since no mortality was reported, no statistical calculation of LD₅₀ values was possible. The NOEC was determined by visual interpretation of the mortality and observation data. act of the property of the pro

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

II. RESULTS AND DISCUSSION

A. FINDINGS

A. FINDINGS Table 8.1.1.1-6: Eff quail Glyphosate acid [mg.	fects of glyp	hosate acid	l on body weig	ht and food co	nsumption of I	Bobwhite 1
Glyphosate acid [mg/	/kg bw]		Control	500	1000	£ 2000
	A	verage body	weight per ani	mal [g] (± SD)	S	% X2000
	Day -15	male	192 ± 5.9	195 ± 5.9	192 ±3.70	195 ± 4.9
	Day -13	female	191 ± 11.4	191 ± 15.6	192 \ 3.7\\\ 191\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	190 ± 8.9
	Day -7	male	196 ± 5.7	196 ± 6.5	V-30 -0.1	198 ± 5.6
	Day -/	female	190 ± 10.2	190 ± 18.2	5° 492°± 7.8	189 ± 11.6
Dada waidat	Day 0	male	194 ± 4.7	197 ± 6.9	193 ± 4.8	198 ± 5.9
Body weight	Day 0	female	190 ± 9.1	189 ± 17.1%	© 192 ± 10.6	186 ± 10.5
	Day 7	male	198 ± 2.5	199 🕭 69	196 ± 4.3	198 ± 8.8
		female	192 ± 13.0	192 ±189	197 ± 13.3	191 ± 9.7
	Day 14	male	200 ± 2.3	5199±4.9	196 ± 3.8	196 ± 7.0
		female	192 ± 8.6	3194 ± 17.0	198 ± 10.6	189 ± 9.5
Body weight change	Days 0-14	male	6.0 ± 2.4	2.0 ± 2.0	3.0 ± 1.0	-2.0± 1.1
Body weight change	Days 0-14	female	2.0 ± 0.5	5.0 ± 0.1	6.0 ± 0.0	3.0 ± 1.0
	Mea	n food cons	umption per ani	imal [g/bird/day]	
	Day -15	male	61 83 M	13	12	13
	to -8	female	\$ 15 × 13	13	12	13
	Day -7 to	male	13 n	13	12	13
Food consumption	-1	female	ili 13	13	13	13
	D 1. 7	male	14	15	14	13
	Day 1 to 7	female	16	15	15	15
	Day 8 to	male	14	14	14	13
	14.00	female	15	13	14	14
Crown moon	Day 1-14	male	14	14.5	14	13
Group mean	Day 4-19	female	15.5	14	14.5	14.5

B. OBSERVATIONS There were no mortalities observed in any treatment. All control and test birds remained in good health following dosing and no clinical signs of toxicity were observed. Body weight changes were similar in all groups and there was no evidence of any treatment-related effects. Group mean food consumption was similar in all groups and there was no evidence of any treatment-related effects. No abnormalities were detected in any birds during *post mortem* examination at termination of the study.

All control co All validity criteria according to OECD 223 were fulfilled, as no non-incidental death was observed in the control groups.

III. CONCLUSION

3. Assessment and conclusion

Assessment and conclusion by applicant:

The acute oral LD₅₀ for Bobwhite quail exposed to glyphosate acid was determined to be > 2000 mg a.s./kg bw. The NOEL in the study was determined to be 2000 mg a.s./kg bw.

This study is considered valid and the acute oral LD₅₀ for Bobwhite quail exposed to glyphosate acid of > 2000 mg a.s./kg bw can be used in risk accessment of > 2000 mg a.s./kg bw can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

	12 0 E
	y State
1. Information on the stud	y Figure 1
Data point:	CA 8.1.1.1/003
Report author	
Report year	1991
Report title	Glyphosate technical. Acute oral toxicity (LD50) to the bobwhite quail
Report No	CHV 48/91266 & & & & & & & & & & & & & & & & & &
Document No	- [] [] []
Guidelines followed in study	FIFRA subdivision E, section 71-1
Deviations from current test guideline	Deviation compared with OECD 223 – none.
Previous evaluation	Yes accepted in RAR (2015).
GLP/Officially recognised testing facilities	Xex in
Acceptability/Reliability:	Valid
Category study in AIR 5 6 6 6 dossier (L docs)	Category 2a

Executive Summary
A laboratory study
period of 21 A laboratory study with the Bobwhite quail (Colinus virginianus) was conducted. After an acclimation period of 21 days, birds received a single dose of the test substance glyphosate diluted in methylcellulose (1 % w/v) by oral gavage. The test consisted of three dosage groups and a control group. Nominal dosages used in the study were 500, 1000 and 2000 mg a.s./kg bw. The control birds received a corresponding volume of methylcellulose only.

During the test all mortalities, bird health and clinical signs of the birds were observed daily. Body weights prior to de group and of the test. were measured individually 21, 13, 6 and 0 days prior to test start, at the initiation of the test (immediately Sprior to dosing) and on days 7, and 14 of the test. Feed consumption was determined by cage of each dosage Froup and the control group 21 to 14, 13 to 7, 6 to 1 day(s) prior to test start and on days 1 to 7 and 8 to 14

Post mortem examination was carried out on all ten birds from the highest dose group.

There were no mortalities. All birds remained in good health following dosing, and no clinical signs of so toxicity were observed groups. No treatment-related effects were recorded on body weight and food consumption. No abnormalities were detected in any birds during post mortem examination at termination of the study. All validity criteria according to the current guideline OECD 223 were fulfilled. Under the conditions of this study the acute oral LD₅₀ of glyphosate technical to bobwhite quail was found to be > 2000 mg a.s./kg bw. The NOEL in the study was 2000 mg a.s./kg bw. This study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate technical

Description: White solid Lot/Batch #: 206-JAK-119-1

> Purity: 97.5 % Density: Not stated

Vehicle: Methylcellulose (1% www) in distilled water 2. Vehicle and/or

positive control: Positive control: None

3. Test organisms:

s:
Species: Bobwhite quail (Colinus virginianus)

Age: Young adults, approximately 16 weeks old on arrival

Source: Commercial supplier

Standard HRC layer diet in pellet form obtained from Parker Brothers Ltd. Diet/Food:

> (Lark Mills, Mildenhall, Suffolk, UK). This diet, though not analysed for contaminants was known to contain no added antibiotic or other growth promoter Food was offered ad libitum, with the exception of an overnight starvation period of approximately 17 hours on day -7 and prior to dosing. The starvation on day -7 was carried out in anticipation of dosing birds the ofollowing day. Due to an inadequate formulation of test material, however,

dosing was delayed for a further week. Water was available at all times.

Acclimatisation 21 days

Body weight of the 180 g - 237 g at test start

.canimats

4. Environmental conditions:

Temperature: 14 - 17 °C Relative humidity:

> 10 hours light / 14 hours darkness Photoperiod:

5. Dates of experimental

November 29th, 1990 to January 3rd, 1991 work

B. STUDY DESIGN

Experimental treatments

The dose level was based on the results of a range-finding test where no mortalities occur at 2000 mg a.s./kg bw. Young bobwhite quail (5 adult males and 5 adult females per treatment) received a single dose of the test substance or vehicle by oral intubation using a disposable syringe and a Ch 10 Nelaton plastic catheter. The test consisted of three dosage groups and a control group. Nominal dosages used in the study were 500\$\infty\$ 1000 and 2000 mg/kg bw (dosage concentrations: 5 %, 10 % and 20 % w/v). A constant dose volumes of 10 mL/kg bodyweight was used for all treatment groups. The control birds received a corresponding volume of methylcellulose in distilled water only. For macroscopic post mortem examination the following assues were examined: digestive tract, liver, kidneys, heart, spleen, muscle and subcutaneous fat.

Observations

During the test all mortalities, bird health and clinical signs of the birds were observed dails? Body weights were measured individually 21, 13, 6 and 0 days prior to test start, at the initiation of the test (immediately prior to dosing) and on days 7, and 14 of the test. Feed consumption was determined by cage of each dosage group and the control group 21 to 14, 13 to 7, 6 to 1 day(s) prior to test start and on Ay's 1 to 7 and 8 to 14 of the test. Post mortem examination was carried out on all ten birds from the highest dose group.

Statistical calculations
Since no mortality was reported, no statistical calculation of LD₅₀ values was possible. The NOEL was determined by visual interpretation of the mortality and observation data.

II. RESULTS AND DISCUSSION

A. FINDINGS

Determination of the glyphosate concentration in each of the dose formulations, physical stability and chemical stability of the 1% methylcellulose formulations were performed.

Table 8.1.1.1-7: Concentrations of glyphosate technical in dose formulations

	Glyphosate	Anal	ysed concentrations [9	/- xy/y]	
	technical	Aliai	ysed concentrations [Relative Mean
	[% w/v]	Analysis 1	ysed concentrations [9	Mean	Error [%]
	0	ND NO	(ND	-
	5	4.80	5.37	5.09	+1.8
	10	10.9	11.0	10.9	+9.0
	20	20.78 20	19.3	20.0	+0.0
	ND = Not detected (4.80 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Glyphosate Renewal Gro	oup AIR 5 – July 2020		Doc ID: 110054-M	CA8_GRG_Rev 1_Jul_2020

Table 8.1.1.1-8: Effects of glyphosate technical on body weight and food consumption of bobwhite quail

Glyphosate technical [mg/kg bw]			Control	500	1000	2000
Average body weigl	ht per anima	l [g]				27,504
	D 0	male	207	211	206	207
	Day 0	female	187	186	(JE 182
D a dry sval alst	Day 7	male	212	219	210	213
Body weight	Day 7	female	190	191	193	188
	Day 14	male	213	222	15213°6	216
		female	191	194	% % % % % % % % % % % % % % % % % % %	191
Mean food consump	Mean food consumption per animal [g/bird/day]					
	Day 0.7	male	19	20 0	8 18	18
Food consumption	Day 0-7	female	17	180 60 60	17	18
	Day 7 14	male	19	\$ 1983 X	18	18
Day 7-14		female	19	jul 31860	18	18

B. OBSERVATIONS

Analytical results: Mean results were within 9% of the nominal concentrations.

<u>Clinical observations and mortalities</u>: All birds remained in good health throughout the study and there were no mortalities observed.

Body weight and feed consumption: Body weight changes were variable in all groups and there was no evidence of any treatment-related effect. With the exception of reduced consumption in group 3 over days -21 and -17, food consumption was similar in all groups with no evidence of any treatment-related effect.

<u>Macroscopic post mortem</u> examination: No abnormalities were detected in any birds during post mortem examination at termination of the study.

All validity criteria according to QECD 223 were fulfilled, as no non-incidental death was observed in the control groups.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

The acute oral LD_{50} of glyphosate technical to bobwhite quail was determined to be > 2000 mg a.s./kg bw. The NOEE in the study was 2000 mg a.s./kg bw.

This study is considered valid and the acute oral LD_{50} for bobwhite quail exposed to glyphosate technical of $\gtrsim 2000$ mg a.e./kg bw can be used in risk assessment.

Assessment and conclusion by RMS:

Page 22 of 847

1. Information on the study

Data point:	CA 8.1.1.1/004
Report author	
Report year	1999
Report title	Avian Single-Dose Acute Oral Toxicity Test in Japanese Quail
_	with the chemical product Glifosate Técnico Nufarm
Report No	D8.1–382/99
Document No	- 2.5
Guidelines followed in study	Not stated
Deviations from current test guideline	Deviation compared with OECD 223 – none, or so
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing	No GLP stated in report
facilities	80, 10, 24,
Acceptability/Reliability:	Valid STATE
Category study in AIR 5 dossier	Category 2a
(L docs)	

2. Full summary

Executive Summary

A laboratory study was performed to determine the acute or all toxicity of glyphosate acid to Japanese quail (Coturnix coturnix japonica). Twenty animals were randomly allocated to two groups, one treatment item group and one control, each comprising five males and five females. On Day 0, a single oral dose of 2000 mg glyphosate acid/kg bw was administered enclosed in gelatin capsules. A control group received empty capsules.

Birds were observed for clinical signs of toxicity, behaviour, body weight effects, food consumption and mortality for 15 days after dosing. Birds were weighed at the beginning and at the end of test.

There were no mortalities observed in any treatment group and all birds remained in good health following dosing, with no clinical signs of toxicity were observed. All validity criteria according to the current guideline OECD 223 were fulfilled & Society

The acute oral LD₅₀ for Japanese qual exposed to glyphosate acid was determined to be > 2000 mg a.s./kg bw. The NOEL in the study was determined to be 2000 mg a.s./kg bw. This study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate acid

Description: powder Lot/Batch #: 037-919-113 Purity: 95 % (nominal)

954.9 g/kg acid equivalent (measured)

esticle and/or positive control:

3. Test organisms: Vehicle: Gelatin capsules Positive control: None

Japanese Quail (Coturnix coturnix japonica) Species:

Age: Young adults, at least 16 weeks old

B. STUDY DESIGN

Experimental treatments

Young adult Japanese quails (5 males and 5 females per treatment) regerved a single limit dose of 2000 mg as.x/kg bw of the test substance, enclosed in gelatin capsuless A control group received empty capsules by ral gavage.

bservations

ring the 15 days of the test, mortality, behaviour, clinical symptoms and anatomopathologics ring the 15 days of the mortality and observation on mortality was reported, no statistical calculations

no mortality was reported, no statistical calculation of LDso values vined by visual interpretation of the mortality and observation date.

II. RESULTS AND DIST

INGS

1.1.1-9: Effects of glyphosar

acid mg/kg/

	Glyphosate acid [mg/kg bw]			Control	2000
	Average body weight per animal [g] (± SD)				
	71,5	S J	male	109 ± 9.3	123 ± 5.3
	8,0	ODay 0	female	121 ± 5.8	122 ± 10.3
	Dada waisht &	Day 7	male	113 ± 11.1	119 ± 6.6
	Body weight	Day /	female	122 ± 9.6	114 ± 9.9
	75,70	D 14	male	119 ± 9.5	126 ± 6.9
	130°.10°	Day 14	female	130 ± 9.6	124 ± 7.6
	Dody waight abongs	Dava 0 14	male	10.2 ± 5.0	3.4 ± 5.5
%	Body weight change Days 0-14		female	8.8 ± 7.4	1.8 ± 13.6
\$ 5	561				
18 8					
:0 0 0					
en light					
4 A A A A A A A A A A A A A A A A A A A	Body weight Body weight Body weight Change	IR 5 – July 2020			Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020
٠σ					

Table 8.1.1.1-9: Effects of glyphosate acid on body weight and food consumption of Japanese quail

Glyphosate acid [mg/kg bw]			Control	2000	2
Mean food consumption per animal [g/bird/day]					0
East communica	Day 0-7		111.3	99.4	
Food consumption	Day 7-14		77.2	99.6	
Group mean	Day 0-14	mean	94.25	99.5	

B. OBSERVATIONS

There were no mortalities observed in any treatment. All control and test birds remained in good health following dosing, and no clinical signs of toxicity were observed. Body weight changes were similar in all groups and there was no evidence of any treatment-related effects. Group mean food consumption was similar in all groups and there was no evidence of any treatment-related effects. No abnormalities were detected in any birds during *post mortem* examination at termination of the study.

All validity criteria according to OECD 223 were fulfilled, as no non-incidental death was observed in the control groups.

III. CONCLUSION

3. Assessment and conclusion

Assessment and conclusion by applicant:

100 The acute oral LD₅₀ for Japanese quail exposed to glyphosate acid was determined to be >2000 mg a.s./kg bw. The NOEL in the study was determined to be 2000 mg a.s./kg bw.

This study is considered valid and the acute oral LD₅₀ for Japanese quail exposed to glyphosate acid of >2000 mg a.s./kg bw can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.1.1.1/005
-	CA 6.1.1.1/003
Report author	
Report year	1996 Glyphosate: Acute Oral Toxicity to Japanese Quail
Report title	Glyphosate: Acute Oral Toxicity to Japanese Quail
Report No	1413/4-1011
Document No	-
Guidelines followed in study	US EPA Guideline, FIFRA subdivision E, section A Avian
	single dose LD ₅₀ test (1982)
Deviations from current test guideline	Deviation compared with OECD 223 – none
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing	Yes
facilities	
Acceptability/Reliability:	Valid San Andrews
Category study in AIR 5 dossier	Category 2a
(L docs)	

2. Full summary

Executive Summary

A study was performed to determine the acute oral toxicity of glyphosate acid to Japanese quail (Coturnix coturnix japonica). As no mortalities were observed in a range finder study at a maximum dose of 2000 mg a.s./kg bw, only this dose level was used for the definitive study. Twenty animals were randomly allocated to two groups, one treatment item group and one control, each comprising five males and five females. On Day 0, a single oral dose was administered by direct intubation of 2000 mg a.s./kg bw to the treatment item group. The control group was treated with vehicle only (0.5 % w/w CMC solution).

Birds were observed for clinical signs of toxicity, behaviour, body weight effects, food consumption and mortality for 14 days after dosing. Body weights were measured individually at test initiation (day 0), on day 3, 7 and 14 after test initiation. Food consumption for each cage of animals was measured per time interval covering day 0-7, and day 744.

No treatment related mortality was observed, except for one bird found dead due to trauma of reproductive tract. Furthermore, there were no effects observed on body weight or food intake, and no abnormal findings at necropsy. All validity criteria according to the current OECD guideline 223 were fulfilled.

The acute oral LD₅₀ for Japanese quail exposed to technical glyphosate was determined to be > 2000 mg a.s./kg bw. This study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate acid

Description: White/off-white crystalline powder

Lot/Batch #: H95 D161A Purity: 95.3%

Deso Lot/B

A Vehicle and/or positive control: Vehicle: 0.5% carboxymethyl cellulose (CMC)

Positive control: None

3. Test organisms:

Species: Japanese quail (Coturnix coturnix japonica)

Age: Young adults, approx. 23 weeks old

Weight: 202 - 300 g (at test initiation)

Source:

Diet/Food: Proprietary avian food, ad libitum

Acclimation period: 5 weeks prior to dosing

Fasting 16 to 17 hours prior to dosing

4. Environmental

conditions:

Temperature: $15 - 20^{\circ}$ C Humidity: 40 - 78%

Photoperiod: 8 hours light / 16 hours dark

5. Dates of

1996-01-09 to 1996-01-23

experimental work:

B. STUDY DESIGN

Experimental treatments

Based on the results of a range finder study, an acute grad toxicity test was performed by administering a single limit dose of 2000 mg a.s./kg bw (glyphosate acid dissolved in 0.5 % carboxymethyl cellulose) by oral intubation to ten adult Japanese quails (5 males and 5 females) in one treatment group. In addition, one control group was administered an equivalent volume of the vehicle (CMC) only as the test groups, at a dose rate of 2 mL/kg bw. After dosing, birds where fed ad libitum throughout the study.

Observations

Birds were caged and observed continuously for signs of toxicity, abnormal behaviour and mortality for one hour after dosing, then at intervals throughout day 0 and twice daily thereafter. Food consumption was measured covering day 0-7, and day 3-14. Each animal was weighed at least on day 0, 3, 7 and 14. On day 14, all surviving animals were sacrificed, and a gross macroscopic examination was carried out. The necropsy comprised a general inspection of major visceral organs.

Statistical calculations Since the mortality was \$50 %, no statistical calculation of LC50 values was possible. The NOEC was determined by visual interpretation of the mortality and observation data.

II. RESULTS AND DISCUSSION

A. FINDINGS

No analytical verification was performed.

The state of the s

Glyphosate

Clyphosoto goid [mg	2000			
	Glyphosate acid [mg/kg bw] Average body weight per animal [g] (± SD)			
Average body weigh	t per animai [gj (± SD)		Street Street
	Day 0	male	249 ± 27.1	228 ± 22.3
	Day 0	female	257 ± 15.3	260 ± 28.0
	Day 3	male	270 ± 31.4	231 ± 22.2
Body weight	Day 3	female	268 ± 18.5	2 72±36.1
Body weight	Day 7	male	275 ± 31.8	€ 239± 17.3
	Day 7	female	271 ± 18.5	271 ± 32.8
	Day 14	male	276 ± 33.5	243 ± 18.5
		female	276 ± 18.2	288 ± 28.7
Body weight change	Days 0-14	male	26 ± 12	15 ± 5.7
Body weight change	Days 0-14	female	19 ± 13.6	23 ± 3.0
Mean food consumpt	tion per anim	al [g/bird/d		
	Day 0. 7	male	64.5 5 6	39.9
Essa sansumentian	Day 0-7	female	26 1 N 60 N	60.9
Food consumption	Day 7-14	male	5 450.05	41.8
		female	5 5 5 58.0	67.9
Group mean	Day 0-14	mean	57.2	52.0

B. OBSERVATIONS

There was no treatment-related mortality observed, except for one bird in treatment group found dead due to trauma of the reproductive tracts Furthermore, there were no adverse effects were observed on bodyweight or food intake. No findings at necropsy, considered to be treatment-related.

All validity criteria according to OECD 223 were fulfilled, as no non-incidental death was observed in the control groups.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

The acute ora LD₅₀ for Japanese quail exposed to glyphosate acid was determined to be > 2000 mg/a.s./kg bw. The NOEL in the study was determined to be 2000 mg a.s./kg bw.

> 2000 mg a.s./kg bw can be used in risk assessment. This study is considered valid and the acute oral LD₅₀ for Japanese quail exposed to glyphosate acid of

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.1.1.1/006
Report author	
Report year	1996
Report title	Glyphosate: Acute Oral Toxicity to Mallard Duck
Report No	1413/5-1011
Document No	-
Guidelines followed in study	US EPA Guideline, FIFRA subdivision E, section 71-1. Avian
	single dose LD ₅₀ test (1982)
Deviations from current test	Deviation compared with OECD 223 & none
guideline	Deviation compared with OECD 223 & hones
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing	Yes
facilities	0 8 9
Acceptability/Reliability:	Valid St.
Category study in AIR 5 dossier	Category 2a
(L docs)	\$ \(\rho_{\text{s}}, \frac{1}{2}\).

2. Full summary

Executive Summary

A study was performed to determine the acute oral toxicity of glyphosate technical to Mallard duck (Anas platyrhynchos). As no mortality was observed in a range finder study at a maximum dose of 2000 mg a.s./kg bw, only this dose level was used for the definitive stricks. Twenty animals were randomly allocated to two groups, one treatment item group and one control, each comprising five males and five females. On Day 0, a single oral dose of glyphosate technical was administered by direct intubation of 2000 mg a.s./kg bw to the treatment item group. The control group was treated with vehicle only (0.5 % w/w CMC solution).

Birds were observed for clinical signs of toxicity, behaviour, body weight effects, food consumption and mortality for 14 days after dosing. Body weights were measured individually at test initiation (day 0), and on day 5, 11 and 14 after test initiation. Food consumption for each cage of animals was measured per time interval, covering days 0-7, and days 7-14.

No mortalities and no post-dosing signs of toxicity were observed. Furthermore, the body weight was not affected by the treatment. There were equally no treatment-related effects on food consumption and no abnormalities were detected at necropsy of the animals 14 days after treatment.

All validity criteria according to the OECD guideline 223 were fulfilled.

The acute oral LD₅₀ for Mallard duck exposed to technical glyphosate was determined to be >2000 mg a.s./kg bw. The NOEL was determined to be 2000 mg a.s./kg bw. This study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate technical

Description: White / off-white crystalline powder

Lot/Batch #: H95 D161A Purity: 95.3 % w/w

Page 29 of 847

Vehicle: 0.5 % carboxymethyl cellulose (CMC) 2. Vehicle and/or positive control: Positive control:

3. Test organisms:

Species: Mallard duck (*Anas platyrhynchos*)

Age:

Sex Males and females

Weight 903 - 1114 g (at test initiation)

Source:

Loading Approx. 4.5 m² for 5 birds

Diet/Food: Proprietary avian food, ad libitum

Acclimation period: 5 weeks prior to dosing

Fasting 16 to 17 hours prior to dosing

4. Environmental conditions:

> Temperature: 15 - 22 °C Humidity:

Photoperiod:

5. Dates of experimental

work:

Jor to dosing

Jor to

B. STUDY DESIGN

Experimental treatments

Based on the results of a range finding study, an acute oral toxicity test was performed as a limit test by administering a single limit dose of 2000 mg a.s./kg bw (technical glyphosate dissolved in 0.5 % carboxymethyl cellulose) by direct intubation to ten juvenile Mallard ducks (5 males and 5 females) in one treatment group. In addition, one control group comprising 5 males and 5 females was administered an equivalent volume of the vehicle (CMC) only, at a dose rate of 2 mL/kg bw. After dosing, birds where fed ad libitum throughout the study.

Observations
Birds were caged and observed for signs of toxicity, abnormal behaviour and mortality continuously for one hour after dowing then at intervals throughout day 0 and twice daily thereafter. Food consumption was measured per time interval, covering day 0-7, and day 7-14. Each animal was weighed at least on day 0, 5, 11 and 14. On day 14, all surviving animals were sacrificed and a gross macroscopic examination was carried out. The recropsy comprised a general inspection of major visceral organs.

Statistical calculations

Since no mortality was reported, no statistical calculation of LD₅₀ values was possible. The NOEL was determined by visual interpretation of the mortality and observation data.

II. RESULTS AND DISCUSSION

A. FINDINGS

The LD₅₀ and NOEL values are given below based on nominal doses

Table 8.1.1.1-11: Endpoints

Endpoints	Glyphosate technical [mg a.s/kg bw]	
LD ₅₀	> 2000	of Significants
NOEL	2000	9. 12

Table 8.1.1.1-12: Effects of glyphosate technical on body weight and food consumption of Mallard duck

Glyphosate technical [mg a.s./kg bw]			Control	€ 2000		
	Average body weight per animal [g] (± SD)					
	Day 0	male	1011 ± 41.5	1012 ± 76.4		
	Day 0	female	1072 ± 128.4	1018 ± 81.1		
	Day 5	male	1101 ± 33.5	1048 ± 49.6		
Dader weight	Day 5	female	1170 ± 160,0°	1082 ± 60.8		
Body weight	Day 11	male	1170 ± 160.0° 1096 ± 54.8° 1191 € 1.85.0°	1052 ± 69.6		
	Day 11	female	1191 € 1,55.0	1175 ± 41.4		
	Day 14	male	1,104,4 51.8	1053 ± 65.9		
		female	(1)191, € 122.6	1156 ± 66.5		
Body weight change	Days 0-14	male	5 95 ± 30.9	42 ± 12.2		
Body weight change	Days 0-14	female	5 1 1 99 ± 86.0	138 ± 110.8		
	Mea	~ 4	umption per animal [g/bird	/day]		
	Day 0-7	male	jili 79	80		
Food consumption	Day 0-7	female	131	121		
	5 71.8	male	72	76		
	Day 7-14	female	130	138		

B. OBSERVATIONS

No mortalities and no post-dosing signs of toxicity were observed in any treatment and all animals remained in good health throughout the study. Furthermore, the body weight was not affected adversely by the treatment. There were equally no treatment-related effects on food consumption and no abnormalities were detected at necropsy of the animals 14 days after treatment.

groups:
groups All validity criteria according to OECD 223 were fulfilled, as no non-incidental death was observed in the control groups.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

The acute oral LD₅₀ for Mallard duck exposed to glyphosate technical was determined to be >2000 mg

a.s./kg bw. The NOEL was determined to be 2000 mg a.s./kg bw.

This study is considered valid and the acute oral LD₅₀ for Mallard duck exposed to glyphosate technical was determined to be > 2000 mg a.g./kg bw.grd. acute or all LD₅₀ for Mallard duck exposed to glyphosate technical was determined to be > 2000 mg a.e./kg bw and can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.1.1.1/007
Report author	
Report year	1992
Report title	Glyphosate technical. Acute oral toxicity (LD50) to mallard duck
Report No	CHV 49/91843 () CHV 49/91843
Document No	AVS94-00229 8 8 8
Guidelines followed in study	FIFRA subdivisión E, section 71-1
Deviations from current test guideline	Deviation compared with OECD 223 – none.
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing facilities	Yes To
Acceptability/Reliability:	Valid
Category study in AIR 5 Consider (L docs)	Category 2a

2. Full summary

Executive Summary

An acute oral laboratory study with the mallard duck (Anas platyrhynchos) was conducted. After an acclimation period of 15 days, birds received a single dose of the test substance glyphosate technical diluted in methylcellurose (1% w/v) by oral gavage. The test consisted of three dosage groups and a control group. Nominal dosages used in the study were 500, 1000 and 2000 mg a.s./kg bw body weight. The control birds received a corresponding volume of methylcellulose only.

During the test mortality, bird health and clinical signs of the birds were observed daily. Body weights were measured individually 15 and 7 days prior to test start, at the initiation of the test (immediately prior to to sing) and on days 7, and 14 of the test. Feed consumption was determined by cage of each dosage group Sand the control group over days 15 to 8 and 7 to 1 prior to test start and on days 1 to 7 and 8 to 14 of after Reatment. Post mortem examination was carried out on any bird which died during the study an on twenty birds from the highest dose groups in which there were survivors.

There were no mortalities, except of one male bird of one of the control groups. All birds remained in good & health following dosing, and no clinical signs of toxicity were observed groups. No treatment-related effects were recorded on body weight and food consumption. No treatment-related abnormalities were detected in any birds during post mortem examination at termination of the study. All validity criteria according to the current guideline OECD 223 were fulfilled.

Under the conditions of this study the acute oral LD₅₀ of glyphosate technical to mallard duck was found to be >2000 mg a.s./kg bw. The NOEL in the study was 2000 mg a.s./kg bw. This study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate technical

Description: White solid Lot/Batch #: 206-JAK-119-1

Purity: 97.5 %

Vehicle: Methylcellulose (1% w/v) in distilled water 2. Vehicle and/or

positive control: Positive control: None

3. Test organisms:

Species: Mallard duck (Anas platy hynchos)

Age: Approximately 22 month old at test start

Source: Commercial supplier

Diet/Food: Standard HRC layer diet in pellet form obtained from Parker Brothers Ltd.

(Lark Mills, Mildenhall, Suffolk, UK). Food was offered ad libitum, with the exception of approximately 19 hours

prior to dosing. Water was available at all times.

15 days Acclimatisation:

Body weight of the

animals

4. Environmental conditions:

Temperature 1 1 - 'ive humin' 1 - ' - 16 °C

Relative humidity.

10 hours light / 14 hours darkness Photoperiod:

May 7th, 1991 to June 05th, 1991 5. Experimental dates:

B. STUDY DESIGN

Experimental treatments

The dose level was based on the results of a range-finding test. Mallard duck (5 males and 5 females per John Intubation using a disposable and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a control group.

John Interest consisted of three dosage groups and a cont

Observations

Birds were observed daily during the study and at frequent intervals during the post-treatment period. Mortalities, bird health and clinical signs were recorded at each observation. Individual body weights were measured individually 15 and 7 days prior to test start, at the initiation of the test (immediately grief to dosing) and on days 7, and 14 of the test. Group mean food consumption was determined over days 15 to 8 and 7 to 1 prior to test start and on days 1 to 7 and 8 to 14 days after treatment. Post mortem examination was carried out on any bird which died during the study an on twenty birds from the highest dose groups in which there were survivors.

Statistical calculations: Descriptive statistics.

II. RESULTS AND DISCUSSION

A. FINDINGS

Determination of the glyphosate concentration in each of the dose formulations, physical stability and chemical stability of the 1 % methylcellulose formulations were performed. chemical stability of the 1 % methylcellulose formulations were performed.

Table 8.1.1.1-13: Concentrations of glyphosate technical in dose formulations

Glyphosate	Ana	Relative Mean		
technical [% w/v]	Analysis 1	Analysis 2	Mean	Error [%]
0	ND	90-15 of	ND	-
10	11.0	S 986 %	10.1	+1.0
20	25.4	2 2 18.5	22.0	+10.0
40	39.1	£ & \$7.5	38.3	-4.3

ND = Not detected (<0.015% w/v)

Table 8.1.1.1-14: Effects of glyphosate technical on body weight and food consumption of mallard duck

	Glyphosate technical [mg a.s, Ag bw]		Control	500	1000	2000	
	Average body weight per animal [g]						
		Day o	male	1036	1033	1066	1038
		S. Pay o	female	1034	990	971	981
	Body weight Day 7		male	1098	1103	1142	1119
			female	1090	1079	1010	1042
	Mean food consumption per ani	male	1189	1129	1156	1132	
	SEL SE	Day 14	female	1092	1075	1012	1036
	Mean food consum	ption per ani	mal [g/bird	l/day]			
	\$ 10 A	Day 1-7	male	88	91	103	117
			female	103	100	89	97
	Food consumption	Day 8-14	male	100	114	114	111
ess			female	91	80	86	89
10 1511	Glyphosate Renewal Group	AIR 5 _ Iuly 20	20		Doc	ID: 110054-MCA8 (GRG Rev 1 Jul 2020
41000	Styphosate Renewar Group	7111C 5 5419 20.			Doc.	ib. 11005+MCA0_C	31.5_1.67 1_341_2020
Ť							

B. OBSERVATIONS

Analytical results: Mean results were within 10% of the nominal concentrations.

Mortalities: On day 6 one male bird of one control group was found dead. This was possibly associated with the aggressive behaviour of one other male bird observed (as described below). There were no other mortalities in any treatment group.

Bird health and clinical observations: All birds remained in good health throughout the study and there were no clinical signs of toxicity. One male bird in one of the control groups became aggressive towards other birds in the group on day 7. This bird was removed from the pen and housed separately until the end of the study.

Body weight and feed consumption: Body weight changes were variable in all groups and there was no evidence of any treatment-related effect.

Macroscopic post mortem examination: One male bird of the highest treatment group (glyphosate technical: 2000 mg a.s./L) was found to have a fluid-filled body cavity, and one lobe of the fluid was bulbous and had a fibrous coating. This was not considered to be treatment-related. No other abnormalities were detected in any other bird examined.

No non-incidental death was observed in the control groups. In contrast to guideline OECD 223, the total number of control birds used in the test was ten instead of five. Therefore, although one bird died incidentally, all validity criteria according to OECD 223 were fulfilled.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

Under the conditions of this study the acute oral ED of glyphosate technical to mallard duck was found to be >2000 mg a.s./kg bw. The NOEL in the study was 2000 mg a.s./kg bw.

ò

This study is considered valid and the acute or at LD_{50} for mallard duck exposed to glyphosate technical was determined to be >2000 mg a.e./kg by and can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point	CA 8.1.1.1/008
Report author No.	
Report year &	1983
Report title & &	Report of the acute oral toxicity (MLD) to pigeon with glyphosate (tech) of
Report No.	AVS 95-00214
Document No	-
Guidelines followed in study	No information mentioned in the Monograph 2001.
ELP .	No (information from the reference list of the Monograph 2001)
Previous evaluation	Not accepted in RAR (2015).

Short description of study design and observations	Acute oral toxicity of glyphosate (tech) to pigeon.
Short description of results	No information mentioned in the Monograph.
Reasons for why the study is not considered relevant/reliable or not considered as key study	No study report available and no information mentioned in the Monograph 2001.
Reasons why the study report is not available for submission	The notifier has not access to this study report. Since the study was part of the earlier data package available to the former RMS of the active substance glyphosate, the AGG would have to send a "request for administrative assistance (Art. 39 of Regulation (EC) No. 1107/2009) to the BVL.
Category study in AIR 5 dossier (L docs)	Category 4b

1. Information on the study

D 4	CA 9 1 1 1/000
Data point	CA 8.1.1.1/009
Report author	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Report year	1991
Report title	AMPA: An Acute Oral Toxicity Study with the Northern Bobwhite
Report No	139-277
Document No	
Guidelines followed in study	FIFRA Guideline 71-1
Deviations from current test	Deviation compared with OECD 223 – none.
guideline	1,0,0 1,0 ×
Previous evaluation	Yes accepted in RAR (2015).
GLP/Officially recognised	Negalit
testing facilities	
Acceptability/Reliability	Valid
Category study in AIR 5	Category 2a
dossier (L docs)	

2. Full summary

Executive Summary

In an acute or at the xicity study, AMPA was administered by oral gavage to fasted Northern bobwhite quail (Colinus virginianus). Ten birds (five males and five females) per dose received single oral nominal doses of AMPA of 0, 292, 486, 810, 1350 and 2250 mg/kg body weight at a dose volume of 6 mL/kg bw in corn

re observed for clinical are observed for clinical and days 3, 7 and 14. Average esting control for days 0-3, 4-7 and 8-14.

Results showed no mortalities at an and behaviour throughout the tesions due to pen-wear Birds were observed for clinical signs of toxicity, behaviour, body weight effects, food consumption and mortality for 14 days after dosing. Body weights were measured individually at test initiation and by group on days 3, 7 and 14. Average estimated feed consumption was determined for each dosage group and the

Results showed no mortalities at any of the dosages tested. In addition, birds were normal in appearance and behaviour throughout the test period, although one male at 810 mg/kg body weight was noted with foot lesions due to pen-wear on day 13 and 14.

When compared to the controls, there did not appear to be any notable effect on body weight or feed so consumption at any of the dosages tested. All validity criteria according to the OECD guideline 223 were fulfilled.

The acute oral LD₅₀ for northern bobwhite quail exposed to AMPA as a single oral dosage was >2250 mg/kg bw. The NOEL was 1350 mg/kg bw. This study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: AMPA

PIT-9008-2407T

Purity: 97 % (nominal), 87.8 % (measured)

Vehile: Corn oil (diluent)

Poitive Description: Lot/Batch #:

2. Vehicle and/or positive control:

3. Test organisms:

Northern bobwhite quaif (Colinus virginianus) Species:

18 weeks old_co Age: Males and females

164 – 220 g (at test initiation) Weight:

Source:

Approx. 0.4 m² for 5 specimens Loading:

Diet/Food: Came bird ration, ad libitum during acclimation and during the

Acclimation periods

Fasting: At least 15 hours prior to dosing

4. Environmental conditions:

Temperature: 21 ± 1 °C Humidity: $41 \pm 15 \%$

Photoperiod: 8 hours light / 16 hours dark (approx.. 130 lux)

5. Experimental dates: October 19th, 1990 to November 2nd, 1990

B. STUDY DESIGN

Experimental treatments

After a fasting period of at least 15 hours, five male and five female quails were assigned separately to each of the treatment groups and the control group, i. e. there were five birds/pen and two pens/dose. The acute oral toxicity test was performed administering AMPA a geometric series of 5 nominal test doses, encompassing 292, 486, 810, 1350 and 2250 mg/kg bw, dissolved in corn oil by oral gavage. In addition, a control group was dosed with the diluent only. TO To lot

Observations

abnormal behaviour. Body weights were measured individually at initiation of the test and by group on days 3, 7 and 14. Average estimated feed consumation was 14. days 3, 7 and 14. Average estimated feed consumption was determined for each dosage group and the control for days 0-3, 4-7 and 8-14.

Statistical calculations: Descriptive statistics

II. RESULTS AND DISCUSSION

A. FINDINGS

No analytical verification was performed.

The LD₅₀ and NOEL values are given below based on nominal doses.

Table 8.1.1.1-15: Endpoints

Endpoints	AMPA [mg/kg bw]
LD ₅₀	> 2250
NOEL	1350 6 6 6

Table 8.1.1.1-16: Cumulative mortality and clinical signs of to the control bowhite quail exposed AMPA AMPA mg/kg bw Control 3292 486 810 1350 2250	NO Table 8.1.1	EL					1350	١ .	92.9	, 62.					
Table 8.1.1.1-16: Cumulative mortality and clinical signs of toxicity observed in Northern bobwhite quail exposed AMPA Main	Table 8.1.1							-/-	1.00	4					
Man cumulative mortality on day 14 [%] 0 0 0 0 0 0 0 0 0	bobwhite o	.1-16: Cumulat _[uail exposed A]	ive mortality MPA	and cli	nical si	gns o	of too	Sighty Sighty Sighty	obse	erved	l in N	North	iern		
Mean cumulative mortality on day 14 [%]	AMPA [mg	/kg bw]		Con	itrol	S 29	2 5	48	86	81	.0	135	50	225	50
Mean cumulative mortality on day 14 [%] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				M	F	N.	F	M	F	M	F	M	F	M	F
Appeared normal 1	Mean cumul	ative mortality on	day 14 [%]	0	00	2000	0	0	0	0	0	0	0	0	0
Reduced reaction	Appeared no	rmal ¹		5	305 Ki	:25	5	5	5	5	5	5	5	0	3
Ruffled appearance	Reduced rea	ction 1		- %	1 11 10 1	-	-	-	-	-				4	2
Lower limb weakness 1	Ruffled appo	earance 1		To ic	0 0 <u>7</u>			-	-	-	-	-	-	4	2
Clinical signs of toxicity were only noted on the world of the world o	Lower limb	weakness 1		10,00	-	-	-	-	-	-	1	1	-	2	-
Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202	M = male, F	= females	y 2020	uay gen				D	oc ID:	11005-2	4-MCA	8_GR	G_Re	v 1_Jul	_2020

¹Clinical signs of toxicity were only noted on day 0 only

Table 8.1.1.1-17: Effects of AMPA on body weight and food consumption of bobwhite quail

AMPA	\ [mg/kg bv	w]	Control	292	486	810	1350	2250
Average body	weight per	r animal [g	g]					il Carrie
	Day 0	male	188	181	187	195	187	7480
	Day 0	female	181	184	181	173	182	√2.488 √2.488
Dada maiala	Day 7	male	197	188	194	204	191	187
Body weight	Day 7	female	189	192	190	177	191 S	93
	Day 14	male	200	192	200	203	195°	191
	Day 14	female	192	197	196	183	ji 190	201
Mean food co	nsumption	per anima	ıl [g/bird/day	<u>'</u>]		W io	, _Q	
	Day 0.2	male	23	23	16	256 3	16	18
	Day 0-3	female	18	16	17	37,316	16	19
Food	D 4.7	male	25	26	19	23	23	20
consumption	Imption Day 4-7	female	21	21	22	20	18	22
	Day 8-	male	22	24	(210 0	24	24	20
	14	female	21	19	6 324 ii	22	18	19

B. OBSERVATIONS

There were no mortalities at any of the dosages tested. In addition, birds were normal in appearance and behaviour throughout the test period, although one male at 810 mg/kg bw was noted with foot lesions due to pen-wear on day 13 and 14.

At a dosage 2250 mg/kg bw, signs of toxicity were first noted approximately fifty-five minutes after dosing and persisted through the afternoon of day 0. By the morning of day 1, all birds were noted as normal in appearance and behaviour and remained so until study termination.

Signs of toxicity characteristic of intoxication with AMPA included lower limb weakness, a ruffled appearance, and reduced reaction to external stimuli (sound and movement). When compared to the controls, no notable effect on body weight or feed consumption was observed at any of the dosages tested. All validity criteria according to DECD 223 were fulfilled, as no non-incidental death was observed in the control groups.

III. CONCLUSION

3. Assessment and conclusion

Assessment and conclusion by applicant:

The acute oral IgD_{50} for northern bobwhite quail exposed to AMPA as a single oral dosage was > 2250 mg/kg bw. The NOEL was 1350 mg/kg bw.

This study is considered valid and the acute oral LD_{50} for northern bobwhite quail exposed to AMPA as a single oral dosage was > 2250 mg/kg bw and can be used in risk assessment.

Assessment and conclusion by RMS:

CA 8.1.1.2 Short-term dietary toxicity to birds

The assessment of short term dietary toxicity data for birds is not considered to be necessary following the guidance document on Risk Assessment for Birds and Mammals (EFSA Journal 2009; 7(12): 1438 in particular if there are no indications that the dietary LD₅₀ will be lower than the LD₅₀ based on an acute oral study.

During the previous EU evaluations of glyphosate, the assessment of dietary toxicity studies have indicated that the 5-day dietary toxicity studies with glyphosate and AMPA are both higher than the acute endpoints. Thus, the dietary studies are not considered in this assessment.

CA 8.1.1.3 Sub-chronic and reproductive toxicity to birds

Studies considering the reproductive toxicity to birds were assessed for their validity to current and relevant guidelines for glyphosate and glyphosate salts are presented in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are presented in this section below.

Table 8.1.1.3-1: Studies on reproductive toxicity of glyphosate to birds

Annex point	Study	Study type	Test species	Substance(s)	Status	Remark
CA 8.1.1.3/001	1999	Reproduction	Colinus & S	Glyphosate acid	Valid	Control mortality exceeds 10 %.
CA 8.1.1.3/002	2013	Position paper	\$ 5 15 16 16 16 16 16 16 16 16 16 16 16 16 16			Letter regarding control mortality in Frey <i>et al</i> study CA 8.1.1.3/001
CA 8.1.1.3/003	1978	Reproduction	Colinus Virginianus	Glyphosate technical	Valid	-
CA 8.1.1.3/004	1999	Reproduction	Anas platyrhynchos	Glyphosate acid	Valid	-
CA 8.1.1.3/005	1978	Reproduction	Anas platyrhynchos	Glyphosate technical	Valid	-

There are no literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate or its relevant metabolites on birds. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01.

Endpoints of studies considered valid are shown in the table below.

Table 8.1.1.3.2 Endpoints: Reproductive toxicity of glyphosate to birds

Reference	Test item	Species	Test design	NOAEL (mg a.e./kg feed)	NOAEL (mg a.e./kg bw/d)
1999 CA 8.1.1.3/001	Glyphosate acid	Colinus virginianus	20 weeks reproduction	2250	201.0
, 1978 CA 8.1.1.3/003	Glyphosate technical	Colinus virginianus	17 weeks reproduction	1000	96.3
1999	Glyphosate	Anas	21 weeks	2250	300

Reference	Test item	Species	Test design	NOAEL (mg a.e./kg feed)	NOAEL (mg a.e./kg bw/d)
CA 8.1.1.3/004	acid	platyrhynchos	reproduction		81.15
1978 CA 8.1.1.3/005	Glyphosate technical	Anas platyrhynchos	17 weeks reproduction	1000	12 5 :30

1. Information on the study

CA 8.1.1.3/005	technical	platyrhynchos	reproduction	1000	129:35		
a.e.: acid equivalents Endpoint in bold is used for risk assessment.							
CA 8.1.1.3/005 CA 8.1.1.3/005 Ands platyrhynchos reproduction 1. Information on the study CA 8.1.1.3/001							
1. Information on the	study		, K	*00 G			
Data point:		CA 8.1.1.3/001	% 76	0,0			
Report author				5			
Report year		1999	8 9 7 N				
Report title		Glyphosate Acid	: A Reproduction	Study with the	Northern		
		Bobwhite (Colina	us virginianus).				
Report No		123-186	TE III HE				
Document No		-					
Guidelines followed i	n study	FIFRA Guideline	×7,1×4				
		OECD Guideline	206				
Deviations from curr	ent test	OECD Guideline	206 – none.				
guideline		0.500					
Previous evaluation		Yes, accepted in	RAR (2015).				
GLP/Officially recog	nised testing	Yest of					
facilities							
Acceptability/Reliabi	lity:	Valid					
Category study in AI	R 5 dossier 💇 🧷	Category 2a					
(L docs)	20,25	<u>ji</u>					

2. Full summary

Executive Summary

In a reproductive toxicity, study, glyphosate acid was fed for 20 weeks to Bobwhite quail (Colinus virginianus). Thirty-two adult quails (1 male and 1 female per pen and 16 pens per test dose and control) per dosage and control received nominal dietary doses of 500, 1000 and 2250 mg glyphosate acid/kg bw. Birds were allowed to lay eggs for approximately 10 weeks. Eggs were collected, incubated and allowed to hatch. During egg deposition period, incubation and post hatching period, eggs and hatchlings were observed for different reproductive parameters, encompassing total egg production, number of eggs cracked, eggshell hickness, embryo viability, embryo survival, number of hatchlings, body weight of new hatchlings, body weight of 14 days-old hatchlings and 14 day survivorship.

Based on the results of this study, the NOEL for Bobwhite quail exposed to glyphosate acid in a seproduction study was determined to be 2250 mg glyphosate acid/kg bw. This study is considered valid. Results showed no treatment-related mortalities, overt symptoms of toxicity or treatment effects upon body weight of feed consumption at any of the dietary doses tested. In addition, no treatment-related effects upon any of the reproductive parameters measured at any of the test doses were observed. Some validity criteria

Based on the results of this study, the NOEL for Bobwhite quail exposed to glyphosate acid in a

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate acid Description: White powder

Lot/Batch #: P24

Purity: 95.6 %

Vehicle: None 2. Vehicle and/or positive

control: Positve control: None

3. Test organisms:

Species: Bobwhite quail (Colinus virginianus)

Age: Young adults, 30 weeks (at test initiation)

Sex Males and females

Weight 196 to 250 g (at test initiation)

Source:

Loading Approx. 0.138 m² for 2 birds (1 males and 1 female per pen)

Feed/Diet: Game bird ration, addibition

Acclimation period: 0 weeks

4. Environmental conditions:

 23.1 ± 1.8 C (adults); 27.3 ± 1.2 °C (hatchling) Temperature:

38°C (brooding compartment)

nght / 7 hours da
1998-05-29 to 1998-11-23 $66 \pm 12\%$ (adults); $40 \pm 17\%$ (hatchling) Humidity:

17 hours light / 7 hours dark, (approx. 265 lux) Photoperiod:

5. Dates of experimental

work:

B. STUDY DESIGN

Experimental treatments

A reproductive toxicity study was performed by feeding adult bobwhite quail ad libitum on a series of 3 nominal dietary doses, encompassing 500, 1000 and 2250 mg/kg feed. Sixteen replicates (1 male and 1 female per pen) were used for each treatment group and control. The birds were exposed to the treated diets for approximately 20 weeks and were evaluated for treatment-related effects upon bird health and reproduction, Eggs were collected daily and stored at 13.6 ± 0.6 °C and 82 ± 8 % relative humidity. All eggs laid within a week were considered as one lot and incubated in a Petersime Incubator. On day 21 of incubation, eggs were placed in a Petersime Hatcher and allowed to hatch. The hatchlings were maintained on untreated diet until 14 days of age. Homogeneity of the test substance in treated diets was evaluated by collecting 6 samples of each treatment group on day 0 of week 1. During weeks 2, 3, 4, 8, 12, 16 and 20 of the lest, a single sample was collected from the control diet and an additional duplicate sample was collected from treatment group diet, to measure and/ or verify test concentrations.

Observations

Adult birds were observed daily for signs of toxicity and abnormal behaviour throughout the study. Adult body weight was measured at study initiation and termination, in addition to on weeks 2, 4, 6, and 8. For each pen, food consumption was measured weekly throughout the study except for the last interval, where food consumption was measured over a 6 day period. At the end of each week, all collected eggs were counted and a single egg was randomly selected for eggshell thickness measurements. The remaining eggs were candled to detect egg shell cracks or abnormal eggs before incubation. During the incubation period, eggs were candled again on day 11 or 12 to evaluate embryo viability and on day 21 to determine embryo survival. During the study, total egg production, number of eggs cracked, eggshell thickness, embryo viability, embryo survival, number of hatchlings, body weight of new hatchlings, body weight of 14 day old hatchlings and survivorship of 14 day old hatchlings were determined.

Statistical calculations

An analysis of variance (ANOVA) was used to determine significant differences among the groups followed by Dunnett's multiple comparison procedure as the post-hoc test.

A. FINDINGS

II. RESULTS AND DISCUSSION

A. FINDINGS

Table 8.1.1.3-3: Effects of glyphosate acid on reproductive performance of bobwhite quail over 10 weeks.

Glyphosate acid [mg a.s./kg feed]	Control	500	1000	2250
Reproductive performance	OF AND THE			
Number of eggs laid per female [mean]	15 4P.76	42.2	39.0	44.0
Eggs laid/maximum laid [%]	5 5 30 5 4 5	62	57	65
Eggs cracked/egg laid [%]	5 34 5	4	11	5
Viable embryos/egg set [%]	81	91	94	92
Live 3-week embryos/viable embryos [%]	99	98	98	98
Hatchlings/live 3-week embryos [%]	95	95	95	97
Live 3-week embryos/viable embryos [%] Hatchlings/live 3-week embryos [%] 14-day-old survivors/hatchlings [%]	93	96	95	96
Hatchlings/egg set [%]	75	85	88	88
14-day-old survivors/egg set (%)	70	82	83	85
Hatchlings/maximum set 1%	50	51	44	54
14-day-old survivors/ maximum set [%]	46	49	43	52
Eggshell thickness				
Mean shell thickness [mm]	0.220	0.228	0.222	0.216
Body weight of hatchling	•			•
Mean body weight [g]	6	6	7	6
Body weight of 14-day old survivors				
Mean body weight [g]	26	28	28	27

Table 8.1.1.3-4: Effects of glyphosate acid on adult bodyweight and feed consumption of adult bobwhite quail.

Glyphosate acid [mg a	Control	500	1000	2250	
Average body weight [g]					
Test initiation	M	215	223	216	214

Table 8.1.1.3-4: Effects of glyphosate acid on adult bodyweight and feed consumption of adult bobwhite quail.

Glyphosate acid [mg	a.s./kg feed]	Control	500	1000	2250		
	F	219	219	216	218 10		
Test termination	M	219	229	219	215		
Test termination	F	250	248	238	6 ² 239		
Body weight change	M	4	6	3	2		
(test start - test end)	F	31	29	215. 0	23		
Average feed consumption [g/bird/day]							
Week 1	M + F	12	12	47.5120	12		
Week 5	M + F	12	12	F 60 112	13		
Week 10	M + F	19	18	9 d 19	20		
Week 15	M + F	26	26,000	26	28		
Week 20	M + F	25	326 jo 100	25	26		

M = male, F = female

B. OBSERVATIONS

No treatment-related mortality of parental birds exposed to glyphosate acid was observed. No overt symptoms of toxicity or treatment related effects upon body weight or feed consumption were observed at any dietary dose tested. In addition, no treatment related effects of reproductive parameters were observed at any dose tested.

Analysis of samples resulted in measured concentrations of 100 %, 99 % and 96 % of the nominal test doses of 500, 1000 and 2250 mg glyphosate acid/kg feed, respectively.

All validity criteria according to OECD 200 were not fulfilled, as the mortality of the control exceed 10 % at the end of the test (actual value; 6 of the 32 birds were found dead). But the average number of 14-dayold survivors per hen in the control was greater than 12. Also, the average egg shell thickness for the control group was greater than 0.19 and the lowest treatment level did not result in compound-related mortality or observable toxic effects.

III. CONCLUSION

3. Assessment and conclusion

Assessment and conclusion by applicant:

The NOEL for bobwhite quail exposed to glyphosate acid in a reproduction study was determined to be 2250 mg glyphosate acid/kg feed (based on nominal doses).

The NOEE for bobwhite quail exposed to glyphosate acid in a reproduction study was determined to be 2250 mg/kg feed (201 mg kg bw/d) and can be used in risk assessment.

Although the control mortality exceeded 10% at the end of the test, the study is still considered valid. A letter (CA 8.1.1.3/002) from Wildlife International Ltd where this study was conducted, provides additional justification regarding the observed mortalities. It is indicated that a 'hysteria attack' occurred and the birds obtained serious injuries due to this and were not treatment related. The control performance from this study were compared with historical control data (from 21 studies) from the laboratory which shows that there was no significant difference.

The cage size used in this bobwhite study has been previously criticised and is also addressed in this letter from the laboratory. The cage size is acceptable based on the fact that the reproductive performance

of the studies are good and that both control and treated birds are housed in the same way without high mortality levels and therefore this is not a potential contributing factor for the control mortality observed in this study.

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.1.1.3/002
Report author	
Report year	2013
Report title	Letter concerning the study; Glyphosate Acid. A Reproduction
	Study with the Northern Bobwhite (Colinus virginianus). Study
	report 123-186.
Report No	letter regarding 123-186
Document No	- 28 28
Guidelines followed in study	
Deviations from current test	- & & & & & & & & & & & & & & & & & & &
guideline	
Previous evaluation	- 8 6 6
GLP/Officially recognised testing	No, not applicable &
facilities	12° 12° 18° 18° 18° 18° 18° 18° 18° 18° 18° 18
Acceptability/Reliability:	Yes Original Yes

Summary of a letter provided by study director at the performing laboratory concerning the study; Glyphosate Acid: A Reproduction Study with the Northern Bobwhite (Colinus virginianus). Study report

123-186.

Although the control mortality exceeded 10% at the end of the test, the study is still considered valid. It is indicated that a 'hysteria attack' occurred and the birds obtained serious injuries due to this and were not treatment related. The control performance from this study were compared with historical control data (from 21 studies) from the laboratory which shows that there was no significant difference.

The cage size used in this believe that the study has been previously criticised and is also addressed in this letter from the laboratory. The case size is acceptable based on the fact that the reproductive performance of the natebo.
chis isenot
chis iseno studies are good and that both control and treated birds are housed in the same way without high mortality levels and therefore this is not a potential contributing factor for the control mortality observed in this study.

1. Information on the study

Data point	CA 8.1.1.3/003
Report author	
Report year	1978
Report title	One-Generation Reproduction Study – Bobwhite Quail;
	Glyphosate Technical.
Report No	139-141
Document No	- 3:5
Guidelines followed in study	Non-stated
Deviations from current test	OECD guideline 206 Major: - none
guideline	Major:
	- none
	Minor:
	- Parental mortality data was not reported.
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing	No, GLP was not compulsory at the time the study was
facilities	performed
Acceptability/Reliability	Valid & State
Category study in AIR 5 dossier	Category 2a
(L docs)	

2. Full summary

Executive Summary
In a 17 week reproductive toxicity study, technical glyphosate was fed to Bobwhite quail (Colinus virginianus). Three adult quails per pen (1 male and 2 female) in 12 replicates treatment received three nominal dietary doses of 50, 200 and 1000 mg technical glyphosate/kg diet.

Birds were fed on the treated diet for 9 weeks prior to egg deposition and were allowed to lay eggs for 8 weeks. Eggs were collected, incubated and allowed to hatch. During the egg deposition period, incubation and post hatching period, eggs and hatchlings were observed for different parameters encompassing total egg production, number of eggs cracked embryo viability, embryo survival, number of hatchlings, body weight of new hatchlings, body weight of 14 day-old hatchlings, 14 day survivorship, egg weight and "Dailing" eggshell thickness.

Results showed significant reduction in egg weight occurring at the highest test item dose of 1000 mg technical glyphosate/kg diet However, no further effects on reproduction were observed at this dose level. Therefore, the reduction in egg weight was not considered to be biologically relevant. A high incidence of eggshell cracks was noted during the course of this reproduction study, which can be attributed to the fact that the specimens were madvertently not debeaked prior to study initiation.

The validity of the present study according to OECD guideline 206 is questionable, since parental mortality data were not reported.

and.

and.

and.

and.

A. MATERIALS

1. Test material: Based on the results of this study, the NOEL for the Bobwhite quail exposed to technical glyphosate in a one-generation reproduction study was determined to be 1000 mg technical glyphosate/kg diet. This study

Test item:	Glyphosate acid				
Description:	White powder with a slight odour				
Lot/Batch #:	XHI 162				
Purity:	83 % (measured)				
2. Vehicle and/or positive control:	Vehicle: Corn oil				
2. Venicie and/or positive control.	Positive control: None				
3. Test organisms:	83 % (measured) Vehicle: Corn oil Positive control: None Bobwhite quail (<i>Colinus virginianus</i>) 5 months old (young adults) Males and females				
Species:	Bobwhite quail (Colinus virginianus)				
Age:	Bobwhite quail (Colinus virginianus) 5 months old (young adults)				
Sex	Males and females				
Weight	Males and females Not stated In-house production flock				
Source:	In-house production flock				
Loading	1 males and 2 females per pen 3				
Diet/Diet:	Game bird breeder ration, and libitum				
Acclimation period:	Not stated State				
4. Environmental conditions:					
Tommountum	21.1 – 26.7 °C (research facility)				
Temperature:	15.6 °C (eggs storage), 37.4 - 37.6 °C (eggs incubation)				
Humidity:	55 % (eggs storage)				
Dh atamania di	9 hours light / 15 hours dark (first 6 weeks)				
Photoperiod:	17 hours light / 7 hours dark (following 16 weeks)				
5. Dates of experimental work:	1978±93-01 to 1978-08-01				

B. STUDY DESIGN

Experimental treatments: A reproductive toxicity study was performed by feeding three adult Bobwhite quails (1 male and 2 females per pen) per replicate ad libitum on a series of 3 nominal dietary doses, encompassing 50, 200 and 5000 mg glyphosate acid/kg diet. The diet was prepared by incorporating appropriate concentrations of the test item and corn oil into the aliquots of basal diet. Twelve replicates were exposed per treatment group and control. The birds were exposed for nine weeks to the treated diet prior to egg deposition and for additional eight weeks during egg collection. Eggs were collected daily, stored at 15.6 °C and 55 % relative humidity and were cleaned weekly. The eggs were then incubated at 37.5 ± 0.06 °C. Or day 19 of incubation, the eggs were placed in a Humidaire hatcher and allowed to hatch. All hatchlings were housed according to the appropriate parental grouping and maintained on control diet until 14 days of age.

Observations: Body weights were recorded at study initiation, 5 weeks after study initiation prior to onset of egg deposition and at termination of the study. Food consumption was recorded every second week measure embryo survival. Weekly neasurement. During the study total egg production, number of eggs crac wability, embryo survival, number of hatchlings, body weight of new hatchlings, body weight and eggshell thickness were determined. throughout the study. All eggs were candled on day 0 of incubation for eggshell cracks, on day 14 to measure embryo viability, and on day 19 to measure embryo survival. Weekly throughout the egg deposition period, one egg of each pen in each group was randomly selected for egg weight and eggshell thickness measurement. During the study total egg production, number of eggs cracked, egg set, embryo viability, embryo survival, number of hatchlings, body weight of new hatchlings, body weight of 14 daysStatistical calculations: To evaluate differences between reproductive parameters, Student's t-test was used.

II. RESULTS AND DISCUSSION

A. FINDINGS

The NOEL value is given below based on nominal doses:

Table 8.1.1.3-5: Endpoints

Endpoints	Glyphosate acid [mg a.s./kg_feed]			
NOEL reproduction	1000			

	1, 1, 1,		
ductive paran	eters of bob	white quail	
Control	© E 50	200	1000
NE IN IN	O. C.		
31,9%	28.0	28.0	32.5
5 59.78	7.6	9.2	6.3
99.3	80.7	91.7	87.0
97.3	97.2	97.5	96.5
81.5	70.3	73.4	74.4
95.5	93.1	95.7	93.5
18.7	12.3	14.8	16.7
10.3	9.9	10.2	9.4 ²
0.214	0.204	0.211	0.224
6.8	6.9	6.9	6.7
22.0	22.2	22.6	22.0
	Control 31.9 97.3 97.3 97.5 18.7 10.3 0.214	Control 31.9 28.0 97.3 80.7 97.3 97.2 81.5 70.3 95.5 93.1 18.7 12.3 10.3 9.9 0.214 0.204 6.8 6.9	31.9 28.0 28.0 91.3 80.7 91.7 97.3 97.2 97.5 81.5 70.3 73.4 95.5 93.1 95.7 18.7 12.3 14.8 10.3 9.9 10.2 6.8 6.9 6.9 6.8 6.9 6.9

¹ based on 24 hens

B. OBSERVATIONS

mun one exception. A small reduction in egg weight at 1000 mg/kg feed there was not a hatchling body weight, egg shell thickness and hatchling survival. Egg weight is not a standard endpoint in guideline avian reproduction studies, it is not included in OECD 206, and was a carryover from poultry performance studies. A high incidence of eggshell cracks was noted during the course of the study. This can be attributed to the fact that the bobwhite quail utilized for this study were inadvertently not debeaked prior to study initiation. In fact, caged quail have a natural propensity to peck at their and the study of the study initiation. There were no statistically significant impacts on any reproductive parameters with one exception. A

² Statistically significant compared to control (Student's t-test)

All current validity criteria were fulfilled, as the mortality of the control did not exceed 10 % at the end of the test and the average number of 14-day-old survivors per hen in the control was ≥ 14. Also, the average egg shell thickness for the control group was ≥ 0.34 mm and the lowest treatment level did not results in compound-related mortality or observable toxic effects.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

Based on the overall results of this study, the NOEL for bobwhite quail exposed to glyphosate acid in a one-generation reproduction study was determined to be 1000 mg glyphosite acid/kg diet.

This study is considered valid and the NOEL for bobwhite quail exposed to glyphosate acid in a onegeneration reproduction study was determined to be 1000 mg/kg diet (96.3 mg/kg bw/d) and can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.1.1.3/\004
Report author	
Report year	19998
Report title	Glyphosate Acid: A Reproduction Study with the Mallard (Anas
	platyrhynchos)
Report No	123-187
Document No	<i>Q</i> -
Guidelines followed in study	FIFRA Guideline 71-4
Guidelines followed in study	OECD Guideline 206
Deviations from current test	OECD Guideline 206 - none
guideline	
Previous evaluation ()	Yes, accepted in RAR (2015).
GLP/Officially recognised testing	Yes
facilities \(\sigma_{\infty}^{\infty}\sigma_{\infty}^{\infty}\)	
Acceptability/Reliability:	Valid
Category study in AIR 5 dossier	Category 2a
(L docs)	

duration of 21 weeks. Thirty-two adult ducks (1 male and 1 female per pen and 16 pens per test dose and control) per dosage and control received nominal dietary doses of 500, 1000 and 2250 mg glyphosate acid/kg bw.

Glyphore

Birds fed on the treated diet were allowed to lay eggs for approximately 11 weeks. Eggs were collected, washed and incubated and allowed to hatch. During egg deposition period, incubation and post hatching period, eggs and hatchlings were observed for different reproductive parameters, encompassing the total egg production, number of eggs cracked, eggshell thickness, embryo viability, embryo survival, number of hatchlings, body weight of new hatchlings, body weight of 14 day old hatchlings and survivorship of 14 day-old hatchlings.

Results showed no treatment-related mortalities, overt symptoms of toxicity or treatment effects upon body weight or feed consumption at any of the dietary doses tested. In addition, no treatment-related effects upon any of the reproductive parameters measured at any of the test doses were observed. All validity criteria according to the OECD guideline 206 were fulfilled.

Based on the results of this study, the NOEL for Mallard duck exposed to glyphosate acid in a reproduction study was determined to be 2250 mg a.s./kg bw. This study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Glyphosate acid Test item:

Description: White powder

Lot/Batch #:

Purity:

Vehicle: None

2. Vehicle and/or positive control: Positive control: None

3. Test organisms:

Mallard duck (Anas platyrhynchos)

21 weeks (at test initiation)

Males and females

868 to 1259 g (at test initiation)

Approx. 0.675 m² for 2 birds (1 males and 1 female per pen)

Game bird ration, ad libitum

Source:
Loading:
Feed/Diet: 6 weeks

4. Environmental conditions:

Temperature: 22.4 ± 0.9 °C (adults); 29 °C (hatchling);

38°C (brooding compartment)

Humidity: $69 \pm 13 \%$ (adults); $61 \pm 15 \%$ (hatchling)

Photoperiod: 17 hours light / 7 hours dark, (approx. 292 Lux)

5. Dates of experimental work: 1998-05-29 to 1998-12-03

B. STUDY DESIGN

Experimental treatments

A reproductive toxicity study was performed by feeding young adult mallard ducks ad libitum on a series

of 3 nominal dietary doses encompassing 500, 1000, and 2250 mg a.s./kg feed. Sixteen replicates (1 male and 1 female per pen, 16 pen per treatment group) were used for each treatment group and control. The birds were exposed to the treated diets for approximately 21 weeks, and were evaluated for treatment related effects on bird health and reproduction. Eggs were collected daily, washed and stored in a cold from at 13.6 ± 0.6 °C and 82 ± 8 % relative humidity. All eggs laid within a week were considered as one locally were incubated in a Petersime incubator. On day 24 of incubation, eggs were placed in a Petersime hatcher and were allowed to hatch. The hatchlings were maintained on untreated diet until 14 days of age. Homogeneity of the test substance in treated diet was evaluated by collecting 6 samples from accurrentment group on day 0 of week 1. During weeks 2, 3, 4, 8, 12, 16 and 20 of the test, a single sample was collected from the control diet and an additional duplicate sample was collected from treatment group diet, to measure and/ or verify test concentrations.

Observations

Parental birds were observed daily throughout the study for signs of toxicity and abnormal behaviour. Adult body weights were measured at study initiation and termination in addition to on weeks 2, 4, 6, and 8 of the adult in-life period. For each pen, feed consumption was measured weekly. At the end of each week, all eggs collected were counted and selected by indiscriminate draw for eggshell thickness measurement. The remaining eggs were candled to detect egg shell cracks or abnormal eggs before incubation. During the incubation period, eggs were candled again on day 14 to investigate embryo viability and on day 21 to determine embryo survival.

During the study, total egg production, number of eggs cracked eggshell thickness, embryo viability, embryo survival, number of hatchlings, body weight of new hatchlings, body weight of 14 day old hatchlings and survivorship of hatchlings after 14 days were determined.

Statistical calculations

An analysis of variance (ANOVA) was used to determine significant differences among the groups and Dunnett's multiple comparison procedure was used as post-hoc test.

High Ro

II. RESULTS AND DISCUSSION

A. FINDINGS

Verification of Glyphosate Acid concentrations in avian diets were performed. Glyphosate acid concentrations in control were < 20 ppm throughout the study.

Table 8.1.1.3-7: Concentrations of glyphosate acid in diets

Nominal concentration of						
glyphosate acid [mg 500			10	00	22	50
a.s./kg feed]						
Day 0 (% of nominal)	520 ((104)	1010	(101)	2250	(100)
Day 2 (% of nominal)	481 (96)	476 (95)	927 (93)	945 (95)	1990 (88)	2210 (98)
Day 3 (% of nominal)	465 (93)	455 (91)	947 (95)	973 (97)	2040 (91)	2130 (95)
Day 4 (%of frominal)	465 (93)	473 (95)	935 (94)	957 (96)	1990 (88)	2220 (99)
Day 8 (% of nominal)	478 (96)	469 (94)	938 (94)	848 (85)	2010 (89)	2040 (91)
Day 12 (% of nominal)	523 (105)	568 (114)	1030 (103)	1040 (104)	2220 (98)	2230 (99)
Day 16 (% of nominal)	586 (117)	544 (109)	1090 (109)	1190 (119)	2510 (112)	2220 (99)
Day 20 (% of nominal)	523 (105)	512 (102)	1000 (100)	999 (100)	2190 (97)	2200 (98)

Glyphosate acid [mg a.s./kg feed]	Control	500	1000	2250
Reproductive performance				Zilot.
Number of eggs laid per female [mean]	43.6	40.1	40.2	44,31
Eggs laid/maximum laid [%]	61	56	56	13 62
Eggs cracked/eggs laid [%]	2	1	1 1	Kill 2
Viable embryo/egg set [%]	73	68	93 55 50	81
Live 3-week embryos/viable embryos [%]	98	99	7000 XV	99
Hatchlings/live 3-week embryos [%]	91	89	(6) 6184 M	88
14-day-old survivors/hatchlings [%]	100	91 🖔	15 6 98	99
Hatchlings/egg set [%]	66	606	78 Till 78	72
14-day-old survivors/egg set [%]	65	3580	76	71
Hatchlings/maximum set [%]	34	6,4316	43	42
14-day-old survivors/ maximum set [%]	34	§ 30	42	42
Eggshell thickness		(o)		
Number of eggs measured	58 5 5	59	61	65
Mean shell thickness [mm]	20.388g	0.374	0.373	0.376
Body weight of hatchling	7 7 10 10 10 10 10 10 10 10 10 10 10 10 10			
Number of juvenile ducks weighted	329	302	414	440
Mean body weight [g]	36 36	34	35	34

¹ values represent pen means for experimental groups.

Table 8.1.1.3-9: Effects of glyphosate acid on adult bodyweight and feed consumption of adult mallard duck.

Glyphosate acid [mg a.s.	/kg feed	Control	500	1000	2250		
Avorage body weight [g]							
Totalistis is is	male	1091	1103	1106	1107		
Test initiation	female	1024	1021	1019	999		
14 1 8 8 8	male	1075	1079	1097	1078		
14-day	female	1002	1011	998	983		
Test termination	male	1161	1105	1134	1088		
lest termination	female	1114	1104	1112	1080		
Body weight change	male	68	0	27	-19		
(test start - test end)	female	99	76	90	81		
Average feed consumption [g/b	ird/day]	•					
Week 1		89	102	86	93		
Week 5		95	93	92	101		
Week 1 Week 5 Week 10		137	125	117	127		
Week 15		193	193	168	198		
Week 21		169	167	170	173		

B. OBSERVATIONS

<u>Analytical results:</u> Analytical recovery of the test item ranged from 85 to 119 % throughout the study. Therefore, calculated endpoints will be based on nominal concentrations.

All validity criteria according to OECD 206 were fulfilled, as the mortality of the control group did not exceed 10 % at the end of the test and the average number of 14-day-old survivors per her in the control was greater than 14. Also, the average egg shell thickness for the control group was greater than 0.34 and the lowest treatment level did not result in compound-related mortality or observable toxic effects.

There were no treatment related mortalities at any of the concentrations. However, three incidental adult mortalities occurred during the course of the study. One incidental mortality occurred in the control group and in both the 500 and 1000 mg a.s./kg feed treatment groups. Except for incidental clinical findings, all birds appeared normal throughout the study. Clinical signs as lameness and wing droop were observed and frequently were associated with the incidental injuries.

There were no treatment related effects upon reproductive performance at any of the concentrations tested. However, offspring in the 2250 ppm treatment group did show a slight, but statistically significant (p<0.05) reduction in the mean body weight of 14-day old survivors when compared to the control. The mean body weight value for 14 day old survivors in the control group was 262 ± 32 g while mean values for the 500, 1000 and 2250 mg a.s./kg feed treatment groups were 236 ± 35 g, 260 g ± 16 g, 235 g ± 23 g, respectively. As especially the parameters concerning hatchling weight were affected at 2250 mg a.s./kg feed, it cannot be excluded that the observed changes in hatchling weight do not represent a population relevant adverse effect. Therefore, this endpoint will be considered as a CAEL of 1000 mg a.s./kg feed, corresponding to 116 mg a.s./kg/bw/d.

III CONCLUSION

3. Assessment and conclusion

Assessment and conclusion by applicant:

The NOEL for mallard duck exposed to glyphosate acid in a reproduction study was determined to be 2250 mg a.s./kg feed (based on nominal doses).

This study is considered valid and the NOEL for mallard duck exposed to glyphosate acid in a reproduction study was determined to be 2250 mg a.s./kg feed (300 mg a.s./kg bw/day), and can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.1.1.3/005
Report author	
Report year	1978
Report title	One-Generation Reproduction Study - Mallard Duck;
	Glyphosate technical.
Report No	139-143
Document No	
Guidelines followed in study	Non-stated
Deviations from current test	OECD guideline 206 – none.
guideline	(8) 8
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing	No, GLP was not compulsory at the time the study was
facilities	performed go go go go go
Acceptability/Reliability:	Valid
Category study in AIR 5 dossier	Category 2a
(L docs)	160 160 180°

right of the state 2. Full summary

Executive Summary
In a reproductive toxicity study, technical glyphosate was feed to Mallard ducks (Anas platyrhynchos) for 17 weeks. Five replicates per dose, containing seven adoit ducks (2 males and 5 females per pen) each were treated with nominal dietary doses of 50, 200 and 1000 mg glyphosate technical/kg diet for nine weeks. Reproductive parameters were measured for a further eight weeks beginning at the onset of egg laying. Eggs were collected, incubated and allowed to hatch During the egg deposition period, incubation and post hatching period, eggs and hatchlings were observed for different reproductive parameters, encompassing the total egg production, the number of egg cracked, embryos viability, embryos survival, number of hatchlings, body weight of representative rewhatchlings, body weight of representative 14 days-old hatchlings, 14 day-old survivorship, egg weight and the eggshell thickness.

No symptoms of toxicity or behavioural abnormalities at any of the dietary doses tested and in control were observed for the entire test duration for the parental birds exposed to glyphosate. In addition, no mortality was observed in control and treatments groups, except at the highest test item concentration, where a single mortality was observed on week 12 after study initiation. This death was however considered incidental and not compound related. The evaluation of reproductive data and statistical analysis of the above mentioned reproductive parameters demonstrated that glyphosate caused no reproductive impairment at the dose levels tested. All validity criteria according to the OECD guideline 206 were fulfilled.

Based on the results of this study, the NOEL for the Mallard duck exposed to glyphosate technical in a onegeneration reproduction study was determined to be 1000 mg a.s./kg diet. This study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate technical

White powder with a slight odour Description:

Lot/Batch #: XHI 162 (Assay of batch as of 6-16-78)

Purity: 83 % a.s.

Vehicle: Corn oil 2. Vehicle and/or positive control: Positive control: None

3. Test organisms:

Mallard duck (Anas platyrhynchos) Species:

6 months old (adults, at test initiation) Age:

Males and females Sex

Weight 1047 - 1257 g (at test initiation) In-house production flock
Approx. 8.2 m² for 7 specimens (2 males and 5 females per Source:

Loading

pen)

Game bird breeder ration, ad libitum Diet/Diet:

4. Environmental conditions:

Temperature: 37.4 - 37.6 °C (eggs incubation) \circ

Humidity: 55 % (eggs storage)

Photoperiod: outdoor (natural daylight photoperiod)

1978-03-01 to 1978-08-01 5. Dates of experimental work:

B. STUDY DESIGN

Experimental treatments

A reproductive toxicity study was performed by feeding adult mallard ducks (2 males and 5 females per replicate) ad libitum, on a series of 3 nominal dictary closes of glyphosate technical encompassing 50, 200 and 1000 mg a.s./kg diet. The diet was prepared by incorporating appropriate concentrations of the test item and corn oil into the aliquots of basal diet. Five replicates were used for each treatment group and the control. The birds were exposed to the treated det for 9 weeks prior to egg deposition and for additional 8 weeks during egg collection. Eggs were collected daily and stored at 15.6 °C and 55 % relative humidity and were cleaned weekly. The clean eggs were then incubated at 37.5 ± 0.06 °C. On day22 or 23 of incubation, the eggs were allowed to hatch. The hatchlings were housed according to the appropriate parental grouping and maintained on control diet until 14 days of age.

Observations
Body weights were recorded at Study initiation, 5 weeks after study initiation, prior to the onset of egg deposition, and at termination of the study. Food consumption was recorded bi-weekly throughout the study. All eggs were candled on day 0 of incubation for eggshell cracks, on day 14 to measure embryo viability and to remove any *E coli*-contaminated eggs, and on day 21 to measure embryo survival. Weekly throughout egg deposition period, one egg from each pen in each experimental group and the controls was randomly selected for egg weight and eggshell thickness measurement. During the study, the total egg production, the number of eggs cracked, embryos viability, embryos survival, number of hatchlings, body weight of representative new hatchling, body weight of representative 14 days-old hatchlings, 14 day-old survivorship, egg weight and the eggshell thickness were determined.

Statistical calculations

A. FINDINGS
The NOEL v To evaluate the differences between each of the above-mentioned reproductive parameters, Student's t-

II. RESULTS AND DISCUSSION

The NOEL value is given below based on nominal doses:

Table 8.1.1.3-10: Endpoints

Endpoints	Glyphosate technical [mg a.s./kg feed]	;.co
NOEL reproduction	1000	30,16
		16 %

Glyphosate technical [mg a.s./kg diet]	Control	50	کی 200	1000
Reproductive success			200 5	
Number of eggs laid per hen in 8 weeks	28	23	, S (28°)	29
Number of eggs cracked [%]	3	5	, in 18	6
Viable embryos of egg set	90	93 80 8	85	86
Live 3-week embryos of viable embryos [%]	96	93 70	95	95
Hatchlings of live 3-week embryos [%]	74		77	81
14-day-old survivors of normal hatchlings [%]	97		98	96
14- day-old survivors per hen ¹	16	ूर्ज् र ो4	15	16
Egg weight				
Number of eggs analysed	38 40 0	38	38	39
Mean egg weight[g]	5.75.3;k	58.3	56.3	58.9
Eggshell thickness	E ROLL			
Number of eggs analysed	1 6 JU 38	38	38	39
Mean shell thickness [mm]	Ö 0.394	0.375	0.372	0.375
Body weight of representative hatchling	S.			
Number of ducklings analysed	72	73	72	73
Mean body weight[g]	33	33	32	34
Body weight of representative 14-day old survivo	rs			
Number of ducklings analysed	72	72	72	73
Mean body weight[g]	217	206	208	205

¹ based on 25 hens

Glyphosate Renewal Group AIR 5 – July 2020

B. OBSERVATIONS OF THE PROPERTY OF THE PARENTS OF T For the parental birds exposed to glyphosate, there no symptoms of toxicity or behavioural abnormalities were recorded at any of the dietary doses tested or the control treatments for the entire test duration. In addition, no mortality was observed in control and treatments groups, except for the highest test dose, at which a single nortality was observed on week 12 after study initiation. This death was however considered incidental, and not compound related. The evaluation of the reproductive data and statistical analysis of above-mentioned reproductive parameters demonstrate that glyphosate caused no reproductive impairment at the dose evels tested. All validity criteria according to current guidelines were fulfilled, as the mortality of the control did not exceed 10 % at the end of the test and the average number of 14-day-old survivors pelands per her in the control was ≥ 14 . Also, the average egg shell thickness for the control group was ≥ 0.34 mm and the lowest treatment level did not result in compound-related mortality or observable toxic effects.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

Based on the results of this study, the NOEL for Mallard duck exposed to glyphosate technical in a one-generation reproduction study was determined to be 1000 mg a.s./kg diet.

This study is considered valid and the NOEL for Mallard duck exposed to glyphosate technical in a one-generation reproduction study was determined to be 1000 mg a.e./kg diet (1253 mg a.e/kg bw/day) and can be used in risk assessment.

Assessment and conclusion by RMS:

Effects on terrestrial vertebrates other than birds CA 8.1.2

An extensive regulatory toxicology database has been summarised to evaluate acute and long-term toxicity of glyphosate and relevant metabolites to mammals.

CA 8.1.2.1 Acute oral toxicity to mammals were assessed for their validity to current and relevant

guidelines for glyphosate and the metabolite AMPA and are summarised in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are presented in document M-CA Section 5. A detailed evaluation is provided in Annex M-CA 8-02 to this document which outlines the selection of endpoints and the discussion surrounding those relevant to the environmental assessment.

Endpoints of studies considered salid are shown in the table below.

Table 8.1.2.1-1: Endpoints: Acute oral toxicity of glyphosate to mammals

Reference	Test item	Species	Test design/ GLP	LD ₅₀ (mg a.e./kg bw)
Lowest endpoint CA 5.2.1/001 to CA 5.2.1/039.	Glyphosate	Rat	Acute oral	>2000
21 relevant studies CA 5.2.1/001 CA 5.2.1/039.	Glyphosate	Rat	Acute oral	Geometric mean: 3578.9
Six relevant studies. CA 5.237/001 to CA 5.2.1/039	Glyphosate	Mice	Acute oral	Geometric mean: 3809.4
Proposed endpoint for ris	k assessment			
Extrapolated	Glyphosate acid	Rat/Mice	Acute, overall geometric mean	3694.11

a.e.: acid equivalents

¹ Discussed in Annex M-CA 8-02 on this document.

A study considering the acute toxicity of the metabolite AMPA to mammals is available and reported in the following table. This study was assessed to be valid according to current and relevant guidelines and the corresponding study summary is presented in document M-CA Section 5. This acute study with the metabolite AMPA shows equally low acute toxicity as the parent, glyphosate.

Table 8.1.2.1-2: Endpoints: Acute oral toxicity of AMPA to mammals

Reference	Test item	Species	Test design	LD _{50.} S S S (mg/kg bw)
CA Section 5	AMPA	Mouse	Acute toxicity	\$ 5000

There are no literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate or its relevant metabolites on mammals. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01.

Long-term and reproductive toxicity to mammals CA 8.1.2.2

Studies considering long-term developmental and reproductive toxicity of glyphosate and AMPA to mammals, assessed for validity according to current and relevant test guidelines, are presented in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries including validity assessments, for all studies are presented in document M-CA Section 5.

A detailed evaluation is provided in Annex M-GA 8-02 to this document which outlines the selection of endpoints and the discussion surrounding those relevant to the environmental assessment.

Endpoints of studies considered valid are shown in the table below.

Table 8.1.2.2-1: Endpoints: Reproductive toxicity of glyphosate to mammals

		68			
	Reference	Test frem	Species	Test design	NOAEL (mg a.e./kg bw/d)
	CA Section 5	Slyphosate acid	Rabbit	Developmental toxicity (long-term)	Screening Step / Tier 1: 50
	\(\rho\) \(\	Glyphosate acid	Rabbit	Developmental toxicity (long-term)	Tier 2: 100
	CA Section 5	Glyphosate acid	Rat	Developmental toxicity (long-term)	Tier 3: 300
	CA Section 5	AMPA	Rat	13 week oral	> 1000
CA Section 5 AMPA Rat 13 week oral > 1000 a.g. acid equivalents Endpoint in bold is used for risk assessment. Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020					
10 10 10 11 11 11 11 11 11 11 11 11 11 1	Glyphosate Renewal Group	AIR 5 – July 2020			Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

CA 8.1.3 Effects of active substance bioconcentration in prey of birds and mammals

According to the data requirements for active substances (EU) No 283/2013, if a substance has a octanol water partition coefficient (Log Pow) that is greater than 3 and is stable (>90 % remaining after 24 hours via hydrolysis) then the bioconcentration of the substance shall be assessed.

via hydrolysis) then the bioconcentration of the substance shall be assessed.

In the bird and mammal guidance document (EFSA/2009/1438), it states for organic substances with a log Pow ≥3, indicates a potential for bioaccumulation. Where this is the case then the potential for dietary exposure of birds and mammals to these substances should be assessed considering bioaccumulation and food chain behavior. The EFSA /2009/1438 describes three issues that should be considered. These are a) Food chain from earthworm to earthworm – eating birds and mammals; b) Food chain from fish to fish – eating birds and mammals; and c) Biomagnification in terrestrial food chains.

eating birds and mammals; and c) Biomagnification in terrestrial food chains. Glyphosate acid is stable in water and does not rapidly hydrolyse. Glyphosate has a very low log P_{OW} value of <-3.2. Similarly, the main metabolite AMPA is also stable in water and also has a very low log P_{OW} value of -2.47. Therefore, as the log P_{OW} values for both glyphosate and AMPA are substantially lower than EFSA/2009/1438 trigger value (Log $P_{OW} \ge 3$) the potential for bioaccumulation is considered to be low to negligible. Further consideration of the bioaccumulation potential and foodchain behaviour of glyphosate and AMPA is not therefore considered necessary.

This conclusion is supported by the results of a fish bioconcentration study, conducted with bluegill sunfish that achieved a bioconcentration factor (BCF) of 1.1 ± 0.61 , which is far below the Annex VI BCF trigger value of 1000. Therefore, a study is not necessary to determine bioaccumulation in aquatic non-target organisms.

In accordance with the bioaccumulation criteria as stated in the Regulation (EC) No 1107/2009, glyphosate does not fulfill the criteria as the BCF is substantially lower than the criterion trigger BCF of 1000.

Bioconcentration factor (BCF)

BCF = 1.1 ± 0.61 ; steady state after 120 ± 59 d log P_{ow} of glyphosate acid and its metabolites was < 3, accumulation potential in aquatic non-target organisms is hence considered to be low

Annex VI Trigger for the bioconcentration factor

Clearance time

To a considered to be low

Not relevant

Not relevant

CA 8.1.4 Effects on terrestrial vertebrate wildlife (birds, mammals, reptiles and amphibians)

A consideration of the potential effects of glyphosate and glyphosate products on amphibians was part of the previous Annex I renewal of glyphosate in the EU (Glyphosate RAR 11 Vol. 3 CA-CP_B9, 2015). This is discussed in document M-CP Section 10.1.3. An amphibian publication was identified as relevant and reliable and is presented in CA 8.2.8.

Furthermore, a report has been prepared to address the impact on biodiversity, namely 'Glyphosate: Indirect & effects via trophic interaction - A Practical Approach to Biodiversity Assessment¹¹'. The purpose of this report is two-fold: (1) provide a biodiversity assessment that principally informs on indirect effects through trophic interactions and (2) to inform risk assessors and managers on risk mitigation options that are protective of aquatic and terrestrial biodiversity. The outcome of the present biodiversity assessment for glyphosate is summarized for the different environmental compartments and taxa where appropriate in the document M-CP Section 10.

CA 8.1.5 **Endocrine disrupting properties**

According to the endocrine disrupting (ED) criteria laid down in Regulation (ED) 2018/605, endocrine mediated adversity as well as activity and the biological link between those two must be apparent to identify a substance as an endocrine disruptor. A detailed evaluation of endocrine disrupting properties has been made according to EFSA Journal 2018;16(6):5311 incorporating relevant regulatory studies and reliable literature articles. The results are summarised below, see report CA 5.8.37010 for full details.

Concerning the ED assessment of mammals, potential effects of glyphosate on the HPT and HPG axis were addressed in several repeated dose toxicity studies of subacute to chronic exposure also considering different life stages (level 4 and 5 studies of the OECD conceptual framework). In addition, in vitro and in silico information are available and considered for the ED assessment of glyphosate. With regard to EATSmediated adversity, a review of the available mammalian guideline studies in four species (dog, mouse, rabbit, rat), conducted with glyphosate over different exposure periods and considering different life stages (in rat), did not show carcinogenicity or any other EATS mediated adverse effects based on a sufficient dataset as required in the ECHA/EFSA ED Guidance Potential EATS-related activity was investigated in the male and female pubertal assay, where hormone measurements were performed, as well as the Uterotrophic and Hershberger Assay providing in vivo mechanistic data. Neither the described in vivo assays nor in vitro and in silico information provide any indication on EATS-related endocrine activity of glyphosate.

Hence, the ED criteria for glyphosate with regards to human health and mammals are not met, since neither EATS-mediated adversity nor endocrine activity has been observed.

In conclusion, glyphosate does not induce EATS-mediated adversity and no EATS-related endocrine activity was observed in silico, in sites, and in vivo for humans and mammals as well as for non-target organisms. This conclusion is a concordance with the current Peer review of the pesticide risk assessment of the potential endocrine disrupting properties of glyphosate (EFSA Journal 2017; 15(9): 4979) as well as with the conclusion of EPA on the Endocrine Screening Program (EDSP) Tier I (US EPA, 2015).

Since glyphosate has not been shown to induce EATS-mediated adversity or endocrine activity, it is concluded that the ED criteria with regard to EATS-modalities in humans and mammals as well as nontarget organisms are not met for glyphosate.

Effects on Aquatic Organisms **CA 8.2**

Studies on the effects of the active substance glyphosate and its relevant metabolites on aquatic organisms to fulfil the data requirements according to EU Regulation No 283/2013 are presented in the following.

An extensive regulatory fish toxicology database has been summarised to evaluate acute and long-term demon. de fish. toxisity of glyphosate, glyphosate salts and the metabolites AMPA and HMPA. The results of these studies ¿demonstrate that glyphosate, glyphosate salts, AMPA and HMPA are of low acute and long-term toxicity

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

M-CA, Section 8 Page 59 of 847

⁽²⁰²⁰⁾ Glyphosate: Indirect effects via trophic interaction - A Practical Approach to Biodiversity Assessment (TRR0000305).

Studies considering the effects of glyphosate on fish were assessed for their validity to current and relevant guidelines for glyphosate and are presented in the following table. Studies previously evaluated in cital studies are presented in the following table. studies are presented in this section below.

Studies on acute toxicity of glyphosate and metabolites to fish **Table 8.2.1-1:**

Annex point	Study	Study type	Test species	Substance(s)	Status	Remark
CA 8.2.1/001	2003	Acute / static	Oncorhynchus mykiss	Glyphosate K-salt	valid	© -
CA 8.2.1/002	1995	Acute / static	Oncorhynchus mykiss	Glyphosate acid	valid	-
CA 8.2.1/003	, 1995	Acute / static	Oncorhynchus mykiss	13.0	valid Valid	-
CA 8.2.1/004	, 1993	Acute/ static	Oncorhynchus mykiss	Glyphosate & GIPA-sate	valid	-
CA 8.2.1/005	, 1990	Acute / static	Oncorhynchus mykiss	Glyphosate technical	valid	-
CA 8.2.1/006	1981	Acute / static	mykiss) 6	Glyphosate IPA-salt	supportive	No analytical test verifications, exposure cannot be confirmed
CA 8.2.1/007	1978	Acute / static	Salmo Signament Salmo Signament Sign	Glyphosate technical	supportive	No analytical test verifications, exposure cannot be confirmed
CA 8.2.1/008	1972	Acute & J	Oncorhynchus mykiss Lepomis macrochirus	Glyphosate acid (CP 65573)	invalid	Glyphosate acid is mentioned in the RAR. No information in the report.
CA 8.2.1/009	1995	Acute / static	Lepomis macrochirus	Glyphosate acid	valid	-
CA 8.2.1/010	19910	Acute / static	Lepomis macrochirus	Glyphosate technical	valid	-
CA 8.2.1/011 6		Acute / static	Lepomis macrochirus	Glyphosate IPA-salt	invalid	No analytical test verifications, exposure cannot be confirmed and some validity criteria not met
EA 8.2.1/012	1978	Acute / static	Lepomis macrochirus	Glyphosate acid	supportive	No analytical test verifications, exposure cannot be confirmed

M-CA, Section 8 Page 60 of 847

Table 8.2.1-1: Studies on acute toxicity of glyphosate and metabolites to fish

Annex point	Study	Study type	Test species	Substance(s)	Status	Remark 5
CA 8.2.1/013	2006	Acute / semi-static	Cyprinus carpio	Glyphosate technical	valid	- 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CA 8.2.1/014	1973	Acute / static	Cyprinus carpio	Glyphosate acid	valid	Error in the RAR on the Authors name
CA 8.2.1/015	, 2000	Acute / semi-static	Brachydanio rerio (Danio rerio)	Glyphosate technical	supportive Salid	Insufficient analytical test verifications, exposure cannot be confirmed
CA 8.2.1/016	1993	Acute / static	Leuciscus idus	Glyphosate IPA-salt	valid	-
CA 8.2.1/017	1998	Acute / static	Oncorhynchus mykiss	AMPA	valid	-
CA 8.2.1/018	Anonymous, 1994	Acute / static	Oncorhynchus mykiss	AMPA AMPA AMPA	invalid	The notifier has no access to this study report.
CA 8.2.1/019	1991	Acute / static	Oncorpynonis mykiss 5 6	AMPA	valid	32 mg/L based on report and RAR. This is based on irrelevant 3 h time point.
CA 8.2.1/020	1991	Acute / static	Oncorhynchus mykiss	AMPA	valid	-

Literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the acute impact of glyphosate on fish are summarised in the table below. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer the aryeis on existing the desire of the aryeis of the ary reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. Each literature article summary is presented below according to the respective annex point. For discussions of literature regarding toxicity to fish, please refer to document M-CP Section 10.2.

Glyphosate Renewal Group AIR 5 – July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Annex point	Study	Study type	Substance(s)	Status	Remark
CA 8.2.1/021	Antunes et al., 2017. Gender-specific histopathological response in guppies Poecilia reticulata exposed to glyphosate or its metabolite aminomethylphosphonic acid	Acute, fish	Glyphosate and AMPA	Reliable with restrictions.	The acute 96 hour-LC ₅₀ values for male and female guppies <i>P. reticulata</i> after exposure to glyphosate were 68.78 mg/L and 70.87 mg/L, respectively. The acute 96 hour-LC ₅₀ values for AMPA for male and female guppies were 180 mg/L and 164.3 mg/L, respectively.
CA 8.2.1/022 CA 8.2.1/023	Gholami et al., 2013. Toxicity evaluation of Malathion, Carbaryle and Glyphosate in common carp fingerlings (Cyprinus carpio, Linnaeus, 1758).	Acute, fish	glyphosate	with	The acute 96 hours- LC ₅₀ for common carp fingerlings was determined to be 6.75 mg/L by static exposure to glyphosate at 5 test concentrations between 5.5 and 9.5 mg/L.

Endpoints of studies considered valid for glyphosate are shown in the table below. Studies have been conducted with various forms of glyphosate, namely IPA salt, K-salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate technical are automatically expressed as acid equivalent.

Table 8.2.1-3: Endpoints: Acute toxicity of glyphosate to fish

Reference	Test item	Species	Test design/ GLP	LC ₅₀ (mg a.e./L)	NOEC (mg a.e./L)
2003 CA 8.2.1/001	Glyphosate K2	Oncorhynchus mykiss	Acute, 96 h, static	> 1193 (nom)	149
1995 CA 8.2.1/002	Glyphösate	Oncorhynchus mykiss	Acute, 96 h, static	130 (nom)	32
1995 CA 8.2.1/003	Glyphosate technical	Oncorhynchus mykiss	Acute, 96 h, static	> 100 (nom)	≥ 100
CA 8.2.1/003 1993 CA 8.2.1/004 1990	Glyphosate IPA-salt	Oncorhynchus mykiss	Acute, 96 h, static	1001 (nom)	236
CA 8.2.1.005	Glyphosate technical	Oncorhynchus mykiss	Acute, 96 h, static	87.7 - 135 (gm)	87.7
1995 CA-8.2.1/009	Glyphosate acid	Lepomis macrochirus	Acute, 96 h, static	47 (nom)	32
1991 CA 8.2.1/010	Glyphosate technical	Lepomis macrochirus	Acute, 96 h, static	119 - 173 (gm)	119

Table 8.2.1-3: Endpoints: Acute toxicity of glyphosate to fish

Reference	Test item	Species	Test design/ GLP	LC ₅₀ (mg a.e./L)	NOEC (mg a.e./L)
, 2006 CA 8.2.1/013	Glyphosate technical	Cyprinus carpio	Acute, 96 h, semi-static	> 100 (nom)	≥ 100 × 100
1973 CA 8.2.1/014	Glyphosate acid	Cyprinus carpio	Acute, 96 h, static	115	17. 01. 01. 01. 01. 01. 01. 01. 01. 01. 01
, 1993 CA 8.2.1/016	Glyphosate IPA-salt	Leuciscus idus	Acute, 96 h, static	> 2282 (nom)	≥ 3080

	CA 8.2.1/016	IPA-salt	Leuciscus iuus	static	> 2205 (Holls)	≥ 3000
	a.e.: acid equivalents nom: nominal, gm: geon Endpoint in bold is used	netric mean measured for risk assessment	d	EN S		
	CA 8.2.1/016 a.e.: acid equivalents nom: nominal, gm: geom Endpoint in bold is used Endpoints of studies c Table 8.2.1-4: Endp Reference (Data owner) , 1998 CA 8.2.1/017	onsidered valid f	for AMPA are show	on in the table be	Elow.	
	Reference (Data owner)	Test item	Species	Test design/	LC ₅₀ (mg/L)	NOEC (mg/L)
	, 1998 CA 8.2.1/017	AMPA	Oncorhynchus 5	Acute, 96 h, static	> 100 (nom)	≥ 100
	1991 CA 8.2.1/019	AMPA	Oncorhynchus mykiss	Acute, 96 h, static	520 (nom)	100
	1991 CA 8.2.1/020	AMPA	Oncorhynchus mykiss	Acute, 96 h, static	> 180 (nom)	18
	nom: nominal Endpoint in bold is used Study summaries are p	for risk assessment				
	Study summaries are p	provided below.				
	Study summaries are provided below. Study summaries are provided below. Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_20.					
100 CC C	Glyphosate Renewal Group A	IR 5 – July 2020		Doc	: ID: 110054-MCA8_	GRG_Rev 1_Jul_2020

1. Information on the study

Data point	CA 8.2.1/001
Report author	
Report year	2003
Report title	MON 78623: A 96-hour Static Acute Toxicity Test with the
	Rainbow Trout (Oncorhynchus mykiss)
Report No	139A-310C
Document No	- 3.5
Guidelines followed in study	OECD Guideline 203
	OPPTS 850.1075
Deviations from current test	Deviation compared with OECD 203: Major: - none Minor:
guideline	Major:
	- none
	Minor:
	The temperature was lower than recommended (12.2 – 12.7 °C
	instead of the recommended 13 7°C), since it has been found
	to be an acceptable temperature to maintain healthy rainbow
	trout.
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing	Yes in the second
facilities	
Acceptability/Reliability	Valid S.
Category study in AIR 5 dossier	Category 2a Colored Co
(L docs)	0, E, E.

2. Full summary

Executive Summary

The toxicity of glyphosate potassium (K) salt on rainbow trout (Oncorhynchus mykiss) was determined in a 96-hour static (without media renewal) toxicity test conducted at nominal test concentrations of 156, 313, 625, 1250 and 2500 glyphosate K-sattle, corresponding to 74.4, 149, 298, 596 and 1193 mg glyphosate acid/L (mg a.e./L). A negative control group (dilution water only) was also prepared. Duplicate vessels were prepared for the control and each test item level, with 10 fish added to each vessel.

Observations for sub-lethal effects and mortality were performed at 4, 24, 48, 72 and 96 hours after the start of the test (fish addition). The pH-value and oxygen saturation of the test solutions were measured at test initiation and at dark intervals. Temperature was measured at test initiation and termination. Samples of test media were taken at the start (before fish addition), and after 48 and 96 hours for the analysis of glyphosate K salt using an HPLC method of analysis. Overall mean measured glyphosate K-salt concentrations were 159, 329, 646, 1302 and 2573 mg a.s./L. Glyphosate K-salt was not detected in the control group. Measured concentrations ranged from 99.8 to 109 % of nominal concentrations. Toxicity evaluations were based on nominal concentrations.

There was no mortality in the control, 156, 313 and 625 mg a.s./L treatment groups. In the 1250 and sub-lethal effects active in the 625, 1250 and 2500 mg a.s./L instruction. Test media pH was negatively correlated with test with test energy correlated with test energy 2573 mg a.s./L treatment groups, there was 5 and 15%, respectively, with significant sub-lethal effects audition. Test media pH was Julieria according to the guideline OECD 203 w LC50 for rainbow trout (Oncorhynchus mykiss) exposed to gly to be > 2500 mg a.s./L, equivalent to >1193 mg a.e./L. The 96 hour 313 mg a.s./L, equivalent to 149 mg a.e./L. This study is considered valid.

I. MATERIALS AND METHODS

1. Test material:

MON 78623 (Glyphosate K-salt) Test item:

vellow liquid Description:

Lot/Batch #:

Purity:

Vehicle: dechlorinated and filtered tap water of the Positive control: none 2. Vehicle and/or positive control:

3. Test organism:

Rainbow trout (Oncorhynchus mykiss) Species:

Juvenile Age:

43 mm (38 - 56 mm)Size (mean standard length): 0.94 g (0.59 - 1.3 g)Weight (mean wet weight):

> Loading: 0.47 g fish/L

Source:

5 weeks prior to the test initiation Acclimation period:

4. Environmental conditions:

Temperature:

16 h light, with a 30 min transition period Photoperiod:

> Control (start -96 h): 8.2 - 8.0pH:

156 mg/L (start – 96 h): 7.5 – 8.1

313 mg/L (start -96 h): 7.1 - 8.0

625 mg/L (start – 96 h): 6.7 – 7.9

1250 mg/L(start – 96 h): 6.2 – 7.1

2500 mg/L (start -96 h): 5.7 - 5.8

Dissolved oxygen: 5 7.3 mg/L (≥ 67 % saturation)

Conductivity: 280 uS/cm

Hardness: 144 mg CaCO₃/L.

184 mg CaCO₃/L Alkalinity:

21th February to 25th February 2003 5. Dates of experimental work:

B. STUDY DESIGN

Experimental treatments: A definitive toxicity test was performed using nominal concentrations of 156, 313, 625, 1250 and 2500 mg a.s./L (mean measured: 159, 329, 646, 1302 and 2573 mg a.s./L) in a static test setup, based on the results of a range finding test,. A negative control group (dilution water only) was prepared in parallel. Duplicate vessels (38 L glass vessels containing 20-L control water or test medium) were prepared for the control and treatment groups, each containing ten fish (20 fish per treatment).

Observations: Observations for sub-lethal effects and mortality were performed at 4, 24, 48, 72 and 96 hours after test initiation (fish addition). The pH-value and oxygen saturation of the test solutions were measured at test initiation and on each observation date. Temperature was measured at test initiation and Stermination. Hardness, alkalinity and specific conductivity of the test water were measured at the start of The test only. Fish wet weights and total lengths were measured in the control. Samples of control or test media from all vessels was taken at 0 (before fish addition) 48 and 96 hours and analysed to determine the to measure glyphosate K salt concentration.

Page 66 of 847

Statistical calculations: Since the mortality was <50 %, no statistical calculation of LC50 values was possible. The NOEC was determined by visual interpretation of the mortality and observation data.

II. RESULTS AND DISCUSSION

A. FINDINGS

Analytical data: Chemical analyses were performed on samples of the test solutions to quantify glyphosate concentrations in the test solution. Measured concentrations were to the solution of the test solution. confirming the stability of the test substance in the test system. The ecotoxicological endpoints are based on the nominal concentrations of 156, 313, 625, 1250 and 2500 mg glyphosate K-salt & The limit of quantitation (LOQ) was 10.5 mg/L (5.0 mg a.e./L).

Table 8.2.1-5: Analytical results

Nominal concentrations Glyphosate K-salt [mg a.s./L]	Mean measured concentration Glyphosate K-salt [mg a.s./L]	% of nominal	Mean measured concentration Glyphosate acid equivalent [mg a.e./L]
Control	< LOQ	50 10 110	-
156	159	1026	74.4
313	329	6 J. 105	149
625	646	103	298
1250	1302	5 104	596
2500	2573	103	1193

The 96 hour LC₅₀ and NOEC values for rainbow trout (Oncorhynchus mykiss) exposure to glyphosate Ksalt based on nominal concentrations are given below.

Table 8.2.1-6: Endpoints

Endpoints	Expres	ssed as Glyphosate K-salt [mg a.s./L]	Expressed as Glyphosate acid [mg a.e./L]
96 h LC ₅₀		> 2500	1193
96 h NOEC	is no of	313	149

B. OBSERVATIONS

There was no mortality or sub-lethal effects in the negative control and at the mean measured concentrations of 156 and 313 ng glyphosate K salt/L. At 1250, 625 and 2500 mg glyphosate K-salt/L, 0, 5 and 15 % mortality were observed respectively.

At the three highest test concentrations, sub-lethal effects were noted within 15 minutes after test initiation (including surfacing, laying on the bottom of test chamber, erratic swimming, loss of equilibrium).

The severity of effect generally increased with increasing concentration, which correlated to the concentration-responsive decrease in pH. The pH at 0 h decreased from 8.2 for the controls to 5.7 at the highest test concentration. All surviving fish in 625 and 1250 mg a.s./L appeared normal by 24 h and appeared normal for the remainder of the test. Effects were still evident in three of the 17 surviving fish in 2500 mg test item/L at test termination. The pH remained below 6 in the highest test concentration throughout the test.

Page 67 of 847

The biological results achieved during the fish acute toxicity test are presented below:

Table 8.2.1-7: Lethal effects of glyphosate K-salt to rainbow trout (Oncorhynchus mykiss)

Glyphosate K-salt	* -		Number of dead fish / number of fish with intoxication symptoms and observed symptoms					
[mg a.s./L]	[mg a.e./L]	0 h	4 h	24 h	48 h	72 h	∌6 h	
Cor	ntrol	0 / 0	0 / 0	0 / 0	0 / 0	0/0	0/0	
156	74.4	0 / 0	0 / 0	0 / 0	0 / 0	0/000	0/0	
313	149	0 / 0	0 / 0	0 / 0	0 / 0	30 6.0 je	0 / 0	
625	298	0 / 0	0 / 20 A	0 / 11 A	0/0	6 0 0 0 10 0 0 0	0 / 0	
1250	596	0 / 3 R / 17 E,N	1 / 17 A / 2R	1 / 0	1/05	1/0	1/0	
2500	1193	0 / 8 R / 12 E,N	0 / 7 R / 13 A,E,N	0 / 6 R / 4 A / 2 E,N	\$3,00°	3 / 3 R / 1 C	3 / 3 R	

A = surfacing; R= laying at bottom of test chamber; E = erratic swimming, N = loss of equilibrium

All validity criteria according to OECD 203 were fulfilled as mortality in control group did not exceed 10 % (or one fish if less than ten are used), dissolved oxygen concentration was ≥ 60% of air saturation and constant exposure conditions have been maintained.

III. CONCLUSIONS inis

3. Assessment and conclusion

Assessment and conclusion by applicant:

The 96 hour LC₅₀ for rainbow trout (Oncorhynchus mykiss) exposed to the glyphosate K-salt was determined to be > 2500 mg a.s./L (nominal), corresponding to >1193 mg a.e./L. The 96 hour NOEC was determined to be 313 mg a.s./L. corresponding to 149 mg a.e./L.

This study is considered valid and the acute LC₅₀ for for rainbow trout exposed to glyphosate K-salt was determined >1193 mg ac. (Cominal) and can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.2.1/002
Report author	
Report year	1995
Report title	Glyphosate acid: Acute Toxicity to rainbow trout
	(Oncorhynchus mykiss)
Report No	AB0503/D
Document No	<i>B</i> . <i>B</i>
Guidelines followed in study	US EPA Guideline, FIFRA subdivision E, section 78-1.
Deviations from current test	Deviations from the current OECD 203 guideline (2019): None.
guideline	
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing	Yes
facilities	80 60 81
Acceptability/Reliability	Valid
Category study in AIR 5 dossier	Category 2a
(L docs)	:(0,10,0)

2. Full summary
Executive Summary
The acute effects of glyphosate acid to rainbow trout (Oncorny chus mykiss) was evaluated in a 96-hour static toxicity test conducted at nominal test concentrations of 32, 56, 100, 180, 320 and 560 mg glyphosate acid/L. A dilution water only control was also included in the test. Ten fish were exposed in the control and in each treatment. All fish were observed at daily intervals over the 96 hour study duration, with mortality and sub-lethal signs of toxicity recorded.

Dissolved oxygen, pH and temperature were measured daily in each test vessel. Samples of control and test media were analysed for glyphosate acid at 0 hours (before fish addition) and after 48 and 96 hours. Glyphosate acid was not detected in the control group. The overall mean measured concentrations of glyphosate acid in the treatment groups ranged from 91 to 100 % of nominal concentrations.

There were no fish mortalities or sublethal effects in the control group. At the 32, 56 and 100 mg a.s./L treatments, there were also no fish mortalities but there were transient sublethal effects including dark dicolouration and loss of balance, observed in the 56 and 100 mg a.s./L treatments. All fish in these three groups appeared normal at 96 hours, whilst in the 180, 320 and 560 mg a.s./L there was 100 % mortality. All validity criteria according to the guideline OECD 203 were fulfilled.

The 96-hour LC₅₀ value for fairbow trout exposed to glyphosate acid was determined to be 130 mg a.s./L (nominal) with a 95 % confidence interval of 100 to 180 mg a.s./L. The 96-hour NOEC value was 32 mg a.s./L. This study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material?

Test item: Glyphosate acid

Description: White solid

P24 Lot/Batch #:

> Purity: 95.6 %

Vehicle: dechlorinated and filtered tap water Vehicle and/or positive control:

Positive control: none

3. Test organism:

Species: Rainbow trout (*Oncorhynchus mykiss*) Age: Juvenile

Size: Length: 40 - 71 mm (mean: 57 mm)

Body weight of the animals: 1.16 - 4.56 g/fish (mean: 2.68 g)

Loading: 0.89 g fish/L (10 fish per 30 litres of test medium)

Source:

Diet/Food: no feeding for 48 hours prior to test and during the total test

period

Acclimation period: 32 days

4. Environmental conditions:

Temperature: 11.5 - 12.6 °C

Photoperiod: 16 hours

Du. 16 hours

pH: Control (start – 96 h): 7.7 - 7.0

32 mg/L (start – 96 h): 6.4

56 mg/L (start – 96 h): 100 mg/T

180 mg/L(start - 24 h): 3.5

320 mg/L (start = 24 h): 3.0

560 mg/L (start - 24 h): 2.8 - 2.7

 $6.2 - 10.4 \text{ mg} \, \text{O}_{2} / \text{E}^{3}$ Dissolved oxygen:

> 281 μS/cm³ in the dilution water Conductivity:

Hardness: 56.3 mg CaCO₃/L

September 11th to September 15th 1995 5. Dates of experimental work:

B. STUDY DESIGN
Experimental treatments: The toxicity rest was performed at nominal concentrations of 32, 56, 100, 180, 320 and 560 mg a.s./L prepared using filtered and dechlorinated tap water treated with ultra violet steriliser. The test was conducted under static test conditions. A negative control (dilution water only) was also prepared. A single replicate vessel was prepared for the control and at each treatment level, each containing ten fish (added to 40 L glass aquariums containing 30 L test medium).

Observations: Fish in all vessels were observed for sublethal effects and mortality after 24, 48, 72 and 96 hours. Temperature, pH-value and oxygen saturation of test solutions were measured on a daily basis. Hardness and conductivity of the test water was measured at test initiation. At test termination, the ten fish from the dilution water control were weighed and measured. Analytical measurements were performed by HPLC analysis at test initiation and after 48 and 96 hours.

Analytical procedures: Samples were taken from the centre of the test solutions. Glyphosate acid concentrations in the test solutions were determined at 0, 48 and 96 hours by high performance liquid chromatography method using a fluorescence detector. The samples were quantified against standards of glyphosate acid. Prior to analysis, samples and standards were derivatised using flourenylmethyl chlorformate, to prepare a fluorescing derivate.

Statistical calculations: The LC₅₀ values and their 95 % confidence intervals were calculated using nonlinear interpolation. The NOEC was determined by visual interpretation of the mortality and observation 1º09/ data.

II. RESULTS AND DISCUSSION

A. FINDINGS

Analytical data: The mean measured concentrations of glyphosate acid ranged from 91 to 100%. As the measured concentrations of glyphosate were between 80 and 120% of nominal, the ecotoxicological

Page 70 of 847

endpoints were evaluated using nominal concentrations of the test item. The limit of detection was 0.004 mg/L.

Table 8.2.1-8: Analytical results

Nominal concentration Glyphosate acid [mg a.s./L]	Measured concentration Glyphosate acid at 48 hours [mg a.s./L]	Measured concentration Glyphosate acid at 96 hours [mg a.s./L]	% of nominal
Dilution water control	< 0.004	< 0.004	8 % -
32	29	29	<u></u> 91
56	54 ¹	551	96
100	91	94 435 8	93
180	170	-8 6 3	100
320	320	EN 20 40	100
560	540	2, 4 - 0	98

Not sampled, 100 % mortality on previous sampling occasion

The 96 hour LC₅₀ and NOEC values are presented below.

Table 8.2.1-9: Endpoints

Endpoints Endpoints	Glyphosate acid [mg a.s./L]
LC ₅₀ (95% C.L.) (96 h)	130 (100 – 180)
NOEC (96 h)	32

B. OBSERVATIONS
Until 100 mg a.s./L no mortality occurred, but all fish died at the test concentrations of 180 mg a.s./L and higher. Transient sublethal effects of dark discolouration and loss of balance were observed at 56 and 100 mg a.s./L respectively. All surviving fish in the study appeared normal at the end of test.

All measured water quality parameters were within the specifications recommended by the OECD 203 test guideline, except phowere the levels of pH declined with increasing concentration of the test item. At 180 mg a.s./L, the pH was 3.5 and lower.

A observed to the second of th The biological observations recorded during the test are presented below.

¹ mean of triplicate analysis

Table 8.2.1-10: Effects of glyphosate acid to rainbow trout

Nominal concentration of	Number of dead fish / number of fish with intoxication symptoms ¹ and observed symptoms			
glyphosate acid [mg a.s./L]	24 h	48 h	72 h	96 killing
Control	0 / 0	0 / 0	0 / 0	0F 00
32	0 / 0	0 / 0	0 / 0	6 Q O
56	0 / 0	0 / 0 DC	0 / 0 DC	6 10 0 / 0
100	0 / 0 DC	0 / 0 DC, LB	0/08 36	0/0
180	2	2		2
320	2	2	.50° 15° 15°	2
560	2	2	(5) to 62	2

Dead fish are added to the sum of fish with symptoms

All fish dead

DC Dark colouration; LB: Loss of balance

All validity criteria according to OECD 203 were fulfilled as mortality in control group did not exceed

10% (or one fish if less than top are year) discolved as were fulfilled. 10% (or one fish if less than ten are used), dissolved oxygen concentration was ≥60 % of air saturation and constant exposure conditions have been maintained.

3. Assessment and conclusion

Assessment and conclusion by applicants

The 96 hour LC₅₀ value for rainbow trout (Oncorhynchus mykiss) exposed to glyphosate acid was calculated to be 130 mg a.s./L (nominal) with 95% confidence interval of 100 to 180 mg a.s./L. The NOEC after 96 h was 32 mg a.s. E.

This study is considered valid and the acute LC₅₀ value for rainbow trout exposed to glyphosate acid was determined to be 130 mg a.s/L (nominal) and can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

0, 0,	
Data point &	CA 8.2.1/003
Report author	
Report year	1995
Report litle	The acute toxicity of glyphosate to Rainbow trout (<i>Oncorhynchus mykiss</i>)
Report No	710/21
Document No	-
Guidelines followed in study	Information mentioned in the Monograph:

	The data presented below were generated in accordance with OECD-or equivalent guidelines.	
GLP	Yes	
Previous evaluation	Yes, accepted in RAR (2015)	
Short description of study design and observations:	Toxicity of technical glyphosate (purity >94 %) to aquatic organisms (Oncorhynchus mykiss) in a 96 hours static test	
Short description of results:	LC ₅₀ >100 mg a.e./L and NOEC >100 mg a.e./L	
Reasons for why the study is not considered relevant/reliable or not considered as key study	The full study report is not available to the applicant. However these data were provided in the Monograph 2001 and relied upon in the previous evaluation, RAR (2015).	
Reasons why the study report is not available for submission	The notifier has no access to this study report. Since the study was part of the earlier data package available to the former RMS of the active substance glyphosate, the AGG would have to send a "request for administrative assistance (Art. 30 of Regulation (EC) No. 1107/2009) to the BVL.	
Category study in AIR 5 dossier (L docs)	Category 4a	

1. Information on the study

Data point:	CA 8.2.1/0045 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Report author	
Report year	1993 5 6 6
Report title	Acute Toxicity Testing in Fish Test Article: 'Glyphosate isopropylamine salt'
Report No	80,91-2328-03-93
Document No	
Guidelines followed in study	©ECD Guideline 203; EEC Directive 92/69
Deviations from current test of guideline	Deviations from the current OECD 203 guideline (2019): None
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes
Acceptability/Reliability	Valid
Category study in AIR 5 dossier (Laroes)	Category 2a

The effects of glyphosate isopropylamine salt on rainbow trout (*Oncorhynchus mykiss*) were evaluated in 26-hour static toxicity test. The toxicity test was performed using nominal concentrations of 107, 235, 317, 1136 and 2500 mg test item/L, corresponding to 65.9, 145, 318, 700 and 1540 mg glyphosate isopropylamine salt/L (mg a.s./L) or 48.8, 107, 236, 519 and 1141 mg glyphosate/L (mg a.e./L). Further a dechlorinated and deionised tap water control was tested. Ten fish were exposed to each treatment level.

Mortality was recorded after 2-4, 24, 48, 72 and 96 hours after the start of the test. Records on visible abnormalities were equally made. At termination of the test, all animals were weighed and measured.

At the nominal concentration of 1136 and 2500 mg test item/L, after 24 h of exposure the fish showed reduced activity and a tendency of staying at the bottom of the test vessels. In comparison to the control group, no obvious abnormal effects were seen at or below the concentration of 517 mg test item. All validity criteria according to the guideline OECD 203 were fulfilled.

In a static acute toxicity study of glyphosate isopropylamine salt, the LC₅₀ (96 h) for rainbow rout exposed to glyphosate isopropylamine salt was determined to be 2192 mg test item/L, corresponding to 1350 mg a.s./L or 1001 mg a.e./L (nominal). The NOEC was determined to be 51₱ mg test item/L, corresponding to 318 mg a.s./L or 236 mg a.e./L (nominal). This study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate isopropylamine salt

Description: Viscous liquid

01/06/93 Lot/Batch #:

Purity: 61.6% Glyphosate isopropylamine salt

1.23 g/cm³⁰ at 20°C Density:

> 10, Ó

Vehicle: decklorinated and deionised tap water

2. Vehicle and/or positive control: Positive control: none

3. Test organism:

Rainbow trout (Oncorhynchus mykiss)

Not stated

Size: Length: 6.70 cm (mean of 10 representative individuals)

10 L for 5 fish

Source: Commercial supplier (

Acclimation period: ≥ 48 h in a 250 L glass aquarium under general test conditions

Body weight of the animals: 1.92 g (mean body weight of 100 individuals)

4. Environmental conditions:

14.5 − 16.3 °C Temperature:

Photoperiod: 16 hours light / 8 hours dark, 600 - 800 lux

> pH: 7.5 - 8.5

Dissolved oxygen: $8.2 - 10.2 \text{ mg O}_2/\text{L}$)

Conductivity: Not stated

Hardness: 14° dH (1dH= 10 mg CaO/L)

Experimental treatments: Based on the results of a range finding test, definitive toxicity test was performed using nominal concentrations of 107, 235, 517, 1136 and 2500 mg test item/L in a static test

setup. In addition a control group was exposed to dechlorinated and deionised tap water only. There were two vessels per treatment, each containing five fish (12 L glass containing 10 L test medium)

Observations: Assessment of effects and mortality of test fish after 2-4, 24, 48, 72 and 96 hours was conducted. Temperature, pH-value and oxygen saturation (% air saturation value [% ASV]) of the test solutions were measured on a daily basis. Hardness of the test water was measured at the start of the test.

Mortality was recorded on each observation date. Records on visible abnormalities were equally made. At start and termination of the test, all animals were weighed and measured.

Analytical control measurements of the actual concentrations of the test item were performed by mean of HPLC analysis. Glyphosate isopropylamine salt levels were determined based on the concentrations of glyphosate. Three representative concentrations (107, 517 and 2500 mg test item/L, corresponding to 65.9, 318 and 1540 mg a.s./L or 48.8, 236 and 1141 mg a.e./L) were analysed at 24 hintervals.

Statistical calculations: 24 h, 48 h, and 72 h LC₅₀ values were determined directly from the raw data. The 96 h LC₅₀ value was calculated by Probit analysis according to Finney (1971s).

II. RESULTS AND DISCUSSION

A. FINDINGS

The LC₅₀ values are given below based on nominal concentrations.

Table 8.2.1-11: Endpoints

Endpoints (96 h)	Test item	Glyphosate isopropylamine salt [mg a.s./L]	Glyphosate [mg a.e./L]
LC ₅₀ (95% C.L.))	2192 (1501-19088)	1350	1001
NOEC	€ 51.7 ° S	318	236
LOEC	3 36	700	519

Analytical data: Analytical control measurements were performed on three representative concentration levels of glyphosate isopropylamine salt, at 107 mg test item/L, corresponding to 48.8 mg a.e./L, 517 mg test item/L, corresponding to 236 mg a.e./L and at the highest concentration tested, 2500 mg test item/L, corresponding to 1141 mg a.g./L. Before introduction of the fish 99.2 %, 102.7 % and 95.1 % of glyphosate were recovered at 107, \$17 and 2500 mg test item/L, respectively. In the aged test media 95.2 %, 90.3 % and 85.1 % of the normal concentration were recovered. Consequently, during the test period of 96 hours the fish were exposed to a mean concentration of 90.2% (average for test concentrations of 107, 517 and 2500 mg test item/L, respectively) of nominal concentration.

As the mean measured content of the test item always ranged between 80 and 120 % of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

Table 8.2.1-12: Analytical results

Nominal concentration of test item [mg/L]	Nominal concentration of glyphosate [mg a.e./L]	Time (hours)	Measured concentration of glyphosate [mg a.e./L]	% of nominal (
107	48.8	0	48.44	399.2
		48	47.79	3 7.9
		96	46.50	5 5 95.2
517	236	0	242.45	102.7
		48	215.31	91.2
		96	213.09	90.3
2500	1141	0	1085.45	95.1
		48	1046,00	91.7
		96	5 5 99 1.45	85.1

B. OBSERVATIONS

Clinical observations:

At the nominal concentration of 1136 and 2500 mg test item. Lethe fish showed reduced activity and showed a tendency of staying at the bottom of the test aquarium after 24 h.

In comparison to the control group, no abnormal effects were seen at or below the concentration of 517 mg test item/L.

Table 8.2.1-13: Lethal effects of glyphosate isopropylamine salt to rainbow trout

Control							
Test item [mg/L]	1	107	235	517	1136	2500	
Glyphosate isopropylamine salt [mg/a,s:/La	ı	65.9	145	318	700	1540	
Glyphosate [mg a.e./L]	-	48.8	107	236	519	1141	
Mortality (2-4 h) [%]	0	0	0	0	0	0	
Mortality (24 h) [%]	0	0	0	0	0	0	
Mortality (48 h) [%]	0	0	0	0	0	20	
Mortality (72 h) [%]	0	0	0	0	0	40	
Mortality (96 h) [%] 5 5	0	0	0	0	10	60	

All validity criteria according to OECD 203 were fulfilled, as mortality in control group did not exceed stantexp 10 % (or one fish if less than ten are used), dissolved oxygen concentration was ≥ 60 % of air saturation and constant exposure conditions have been maintained.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

In a static acute toxicity study of glyphosate isopropylamine salt, the LC₅₀ (96 h) for rainbow trout exposed to glyphosate isopropylamine salt was determined to be 2192 mg test item/L, corresponding to 1350 mg glyphosate isopropylamine salt/L (mg a.s./L) or 1001 mg glyphosate/L (mg a.e./L @nominal). The NOEC was determined to be 517 mg test item/L, corresponding to glyphosate isopropylamine salt/L (mg a.s./L) or 236 mg glyphosate/L (mg a.e./L) (nominal).

This study is considered valid and the acute LC₅₀ value for rainbow trout exposed to glyphosate isopropylamine salt was determined to be >1001 mg a.e./L (nominal) and can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point	CA 8.2.1/005
Report author	
Report year	1990
Report title	Glyphosate technical: 96-hour Acute Toxicity Study (LC ₅₀) in the Rainbow Trout
Report No	271631
Document No	- 18 18 20
Guidelines followed in study	OECD Guideline 203 (1983)
Deviations from current test	Deviation according to the current guideline OECD 203:
guideline Durvious avaluation	Yes accepted in RAR (2015)
Previous evaluation	rescaccepted in KAR (2013)
GLP/Officially recognised testing facilities	Yes o
	Nalid
Category study in AIRS dossier (L docs)	Category 2a

2. Full summary Executive Summary

The effects of glyphosate technical on rainbow trout (Oncorhynchus mykiss) were evaluated in a 96-hour static toxicity test. Groups of ten fish each were exposed to glyphosate technical at concentrations of 95, 171, 309, 556, and 1000 mg a.s./L (nominal concentrations), corresponding to 87.7, 135, 188, 497 and 1019 mg as/Lsbased on geometric mean measured concentrations. The number of surviving organisms and the occurrence of sub-lethal effects, as well as the measurement of dissolved oxygen, pH and water temperature were determined and recorded after 2, 24, 48, 72 and 96 hours after starting the exposure

Increasing the exposure and 2, 48 mortality within the 96 hour duration of the study. Increasing the mean measured test concentration by a factor of about 1.5 to 135 mg a.s./L the mortality resulted in 100 % within the first 48 h of exposure. All validity criteria according to the guideline OECD 203 were fulfilled.

The 96-h LC₅₀ for *Oncorhynchus mykiss* exposed to glyphosate technical was estimated.

and 135 mg a.s./L based on (geometric) mean measured concentration. The NOEC after 96 h was 87.7 mg a.s./L. This study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate technical

Description: Solid

Lot/Batch #: 229-Jak-5-1

Purity: 98.9 %

2. Vehicle and/or positive control:

3. Test organism:

Glyphosate technical
Solid
229-Jak-5-1
98.9 %
Vehicle: deionised water
Positive control: none

Rainbow trout (Salmo gair dueri, currently known as Oncorhynchus mykiss) Species:

Oncorhynchus mykiss)

Size of animal: Weight 0.8 g (average

Length 42.4 mm (average)

Number of animals/dose level: 10 in each vesse

Mean loading rate (biomass per

volume of test solution):

Supplier:

4. Environmental conditions:

mures Strain C Temperature:

2.8-8.1

Dissolved oxygen 10.8-12.3 mg O₂/L (continuously aerated during the test)

Conductivity: Not reported Hardness: 250 mg CaCO₃

Mumination: 16 hours light/8 hours dark, 500-1500 lux

5. Experimental dates of work: May 28th to June 1st 1990

B. STUDY DESIGN

Experimental treatments

The effects of elephosate technical on rainbow trout (Oncorhynchus mykiss) were evaluated in a 96-hour static toxicity test. Groups of ten fish each were exposed to glyphosate technical at nominal concentrations of 95, 171, 309, 556, and 1000 mg a.s./L. The test solutions were prepared by adding 1.425, 2.565, 4.635, 8.34, and 35 g test item to 15 L test medium (reconstituted water prepared according to the OECD Guideline) in the respective tanks. In addition fish were exposed to test medium without test substance (blank control).

Observations

The number of surviving organisms and the occurrence of sub-lethal effects, as well as the measurement of dissolved oxygen, pH and water temperature were determined and recorded after 2, 24, 48, 72 and 96 hours after starting the exposure period. The concentrations of glyphosate in the test medium were determined at test initiation, and 2, 48 and 96 hours thereafter.

Statistical calculations

The Logit-Model could not be used to estimate the LC₅₀ value since the mortality rose from 0 % to 100 % within two test concentrations.

II. RESULTS AND DISCUSSION

A. FINDINGS
At test initiation the concentrations of glyphosate in the test medium were in a range of \$9 % to 101.9% of nominal. At the end of the test, the concentration of glyphosate in the tank where all fish survived (95 mg a.s./L) was 104.6% of nominal. Therefore, the toxicity values are based on (geometric) mean measured concentrations. Analytical results are shown below.

Table 8.2.1-14: Analytical results

Nominal concentration of glyphosate technical [mg a.s./L]	Time (hours)	Mean concentration of Samples A and B [mg a.s./k]	A popularinal	Geometric mean measured concentrations [mg a.s./L]
95	0	75.82 8	79.8	
95	2	77.32	81.4	87.7
95	48	S 95.33	100.3	67.7
95	96	(E) 199.33	104.6	
171	0 ,5	<u></u> \$124.4	72.7	
171	2 0000	108.5	63.5	135
171	4845	182.8	106.9	
309	19 10 Fill	184.1	59.6	188
309	5 10 120 S	192.6	62.3	188
556		528.2	95.0	407
556	5 ¹⁶ 2	470.3	84.6	497
1000	0	1019	101.9	1010
1000 80 8 8	2	1019.8	102.0	1019

At test concentration of 87.7 mg a.s./L there was no fish mortality within the 96 hour duration of the study. Increasing the mean measured test concentration by a factor of about 1.5 to 135 mg a.s./L the mortality resulted in 100% within the first 48 h of exposure. Based on these findings, the 96-h LC₅₀ for rainbow trout (Oncorhypichus mykiss) exposed to glyphosate technical was estimated to be between 87.7 and 135 mg L. Sout area out area a.s./L. The mortality in the control was 0%. The effects of glyphosate technical on mortality in rainbow trout are shown below.

Table 8.2.1-15: Effects of glyphosate technical on mortality of rainbow trout

Nominal concentration of glyphosate technical [mg a.s./L]	Control	95	171	309	556	1000 illinot
Geometric mean measured concentrations of glyphosate technical [mg a.s./L]	Control	87.7	135	188	497	1019
Mortality (24 h) [%]	0	0	50	100	1000	100
Mortality (48 h) [%]	0	0	100	100	2 100 P	100
Mortality (72 h) [%]	0	0	100	100	100	100
Mortality (96 h) [%]	0	0	100	100 💸 💍	900	100

B. OBSERVATIONS

At glyphosate technical concentrations of 309 and 1000 mg a.s. Easteriment of the test material on the bottom of the tanks was observed.

Clinical signs were recorded at alvebosate to be a significant of the test material on the second of the tanks was observed.

Clinical signs were recorded at glyphosate technical concentrations of 171 and 309 mg a.s./L, whereas in the control and in the 95 mg a.s./L tanks no sub-lethal effects were recorded.

All validity criteria according to OECD 203 were fulfilled, as mortality in control group did not exceed 10% (or one fish if less than ten are used), dissolved exygen concentration was \geq 60% of air saturation and constant exposure conditions have been maintained.

ILE CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

The 96-h LC₅₀ for rainbow trout (*Oncorhynchus mykiss*) exposed to glyphosate technical was estimated to be between 87.7 and 135 mg a.s. L based on geometric mean measured concentrations. The NOEC after 96 h was 87.7 mg a.s.A.

Some precipitate observed at test concentrations 188 mg a.s./L and 1019 mg a.s./L. The validity criteria are fulfilled and so this study is considered valid and the acute LC50 value for rainbow trout exposed to glyphosate technical was estimated to be 87.7 - 135 mg a.e./L (geometric mean measured concentrations) and can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.2.1/006
Report author	
Report year	1981
Report title	Acute Toxicity of MON 0139 (lot LURT 12011) (AB-81-072) to Rainbow Trout (Salmo gairdneri)
Report No	27202
Document No	-
Guidelines followed in study	Committee on Methods for Toxicity Tests with Aquatic Organisms
Deviations from current test guideline	Deviations from the current OECD 203 guidefine (2019): Major: - No analytical verification of test concentrations none Minor: - Fish were acclimatised 48 hours prior to the test (7 days are required) - Fish lengths 25 - 31 mm (30 to 60 mm is required) - pH of the highest concentration (5.0) was not with the specified range of 6.0 - 8.5.
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes S N S
Acceptability/Reliability	Supportive Solution Supportive
Category study in AIR 5 dossier (L docs)	Category 2b

Full summary of the study according to OECD format 2. CO. F. Z

Executive Summary

The effects of glyphosate isopropylantic salt (MON 0139) on the rainbow trout (*Salmo gairdneri*, currently known as Oncorhynchus mykiss) were evaluated in a 96-hour static toxicity test. Based on the results of a range finding test, a definitive toxicity test was performed using nominal concentrations of 100, 180, 320, 560 and 1000 mg test item/Ls corresponding to 62.5, 112, 200, 350 and 625 mg glyphosate isopropylamine salt/L (mg a.s./L) or 46.3, 83.3, 148, 259 and 463 mg glyphosate/L (mg a.e./L). In addition, a control group was exposed to dilution water (soft reconstituted water) and a reference product (Antimycin A). The mortality of fish was recorded in all test concentrations and the control at 24, 48 and 96 hours. No mortality was observed at any of the test concentrations up to and including 1000 mg test item/L, corresponding to 625 mg a.s./L or 463 a.e./L (nominal).

In a static acute fish toxicity test, the LC₅₀ (96 h) for rainbow trout (Salmo gairdneri) exposed to glyphosate isopropylamine salt (MON 0139) was determined to be >1000 mg test item/L (nominal), corresponding to >625 mg a.s./L or 463 mg a.e./L (nominal).

valuthe stue The validity of the present study according to OECD guideline 203 is questionable, since the analytical part of the study was not performed and/or reported. The study is considered supportive.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate isopropylamine salt (MON 0139)

Description: Light yellow liquid

Lot/Batch #: LURT 12011

Purity: 62.49 %

Rainbow Trout (Salmo gairdners)

At least 14 days old

Length: 27 mm / 2. Vehicle and/or positive control:

3. Test organism:

Species:

At least 14 days old Age:

Size: Length: 27 mm (mean)

Body weight: 0.22 g (mean)

10 test individuals for 15 L test solution (=0.146 g/L) Loading:

Source:

Daily with Standard commercial fish food (Rangen's) except 48 Diet/Food:

prior to the test 3 8

48 hours prior to the test initiation Acclimation period:

4. Environmental conditions:

Temperature:

Photoperiod:

Dissolved oxygen; \$9,8 mg/L

Conductivity: Not stated

Hardness: 45 mg CaCO₃/L.

March 10th to March 14th 1981 5. Experimental dates of work?

B. STUDY DESIGN Based on the results of a 48-h range finding test, a definitive toxicity test was performed using appraisal concentrations of 100, 180, 320, 560 and 1000 mg test item/L. In addition, a control group was exposed to dilution water (soft reconstituted water) and a reference product (Antimycin A). The mortality of fish was recorded in all test concentrations and the control at 24, 48 and 96 hours. There was one vessel per treatment, containing ten fish in 5 gallon (appr. 19 L) glass vessels containing 15 L test medium.

Observations: The fish mortality was recorded in all test concentrations and the control 24, 48 and 96 hours Statistical calculations: LC₅₀ values were calculated using computer program by Stephan et al. (1978). (Stephan, C.E., K.A. Busch, R. Smith, J. Burke and R.W., Andrew. 1978. A computer program calculating an LC50. U.S. Environmental Protection Agency, Duluth. Min. after the test initiation. Temperature, pH-value and oxygen saturation of the test solutions were measured on each observation date. Hardness of the test water was measured at the start of the test. The weight and

(Stephan, C.E., K.A. Busch, R. Smith, J. Burke and R.W., Andrew. 1978. A computer program for calculating an LC50. U.S. Environmental Protection Agency, Duluth, Minnesota, pre-publication manuscript, August, 1978)

II. RESULTS AND DISCUSSION

A. FINDINGS

No analytical verification of the tested concentrations was conducted or reported.

The LC₅₀ values are given below based on nominal concentrations.

Table 8.2.1-16: Endpoints

Endpoints (96 h)	Test item [mg/L]	Glyphosate isopropylamine salt [mg a.s./L]	Glyphosate [mg a.e./L]
LC ₅₀	>1000	>625	>463

B. OBSERVATIONS

There was no mortality observed at any of the test concentrations up to and including 1000 mg test item/L. For the reference product Antimycin A, the LC₅₀ was determined to be 0.000030 mg/L. The dissolved oxygen concentration which stayed between 40 and 100 % saturation was considered adequate for testing. The pH values dropped with increasing test concentrations.

Table 8.2.1-17: Lethal effects of glyphosate isopropylamine salt (MON 0139) to Salmo gairdneri

		Control					
Test item [mg/L]		10 S	100	180	320	560	1000
Glyphosate isopropylamine salt [m	ng a.s./L] 🦽		62.5	112	200	350	625
Glyphosate [mg a.e./L]	101	- 0 - 0 - 0	46.3	83.3	148	259	463
Mortality (24 h) [%]		SS. 0	0	0	0	0	0
Mortality (48 h) [%]	2,42,01	0	0	0	0	0	0
Mortality (72 h) [%]	of the till	0	0	0	0	0	0
Mortality (96 h) [%]	9 110	0	0	0	0	0	0

The following validity criteria according to the OECD 203 (2019) were fulfilled:

- The dissolved oxygen concentration was maintained ≥60 % of the air saturation value (ranging from 9.9 to 9.4 mg/L through the study).
- The control mortality was lower than 10 % at the end of the study.

M-CA, Section 8

Page 82 of 847

These deviations may affect the outcome of the study, so the validity of the study is questionable.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

In a static acute fish toxicity test, the LC₅₀ (96 h) for rainbow trout (Salmo gairdners) exposed to glyphosate isopropylamine salt (MON 0139) was determined to be >1000 mg test item. (nominal), corresponding to >625 mg a.s./L or >463 mg a.e./L (nominal).

Not all validity criteria according to the OECD 203 (2019) were fulfilled since the analytical part of the study was not performed and/or reported. Taking also into account the minor deviations, that may affect the outcome of the study, the study is therefore considered as supportive.

Assessment and conclusion by RMS:

1. Information on the study

1. Information on the stud	y Establish				
Data point:	CA 8.2.1/007				
Report author	<i>a</i> . \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
Report year	1978				
Report title	Acute Toxicity of Technical Glyphosate (AB-78-165) to Rainbow Trout (Salmo gardneri)				
Report No	AB 78-168 & S				
Document No					
Guidelines followed in study	Committee on Methods for Toxicity Tests with Aquatic Organisms				
Deviations from current test guideline	Deviations from the current OECD 203 guideline (2019):				
	Minor:				
Previous evaluation	Yes, accepted in RAR (2015)				
GLP/Officially recognised testing facilities	No, GLP was not compulsory at the time the study was performed				
Acceptability/Reliability	Supportive				
Category study in AIR 5 dossier (L does)	Category 2b				

Full summary of the study according to OECD format 2.

Executive Summary

The acute effects of glyphosate technical on rainbow trout (Salmo gairdneri - currently known as One of hynchus mykiss) were evaluated in a 96-hour static toxicity test. A definitive toxicity test was performed using nominal concentrations of 42, 87, 120, 180, 240 and 420 mg test item/L, corresponding to 34.9 72.2, 99.6, 149, 199 and 349 mg glyphosate technical/L (mg a.s./L), following a range-finding test. A Control group was exposed to deionised water and a reference treatment group exposed to Antimycin A were also tested.

The mortality of fish was recorded at 24, 48 and 96 hours after test initiation. At 24 hours, there was 100 % mortality in the 240 and 420 mg test item/L treatment groups. At 48 hours, there was 100 % mortality in the 180 mg test item/L treatment group. At 96 hours, in the 120 mg test item/L group there was 100% mortality recorded, 40 % mortality at 87 mg test item/L and no mortality in the control group or the lowest concentration (42 mg test item/L). The LC₅₀ (96 h) was determined to be 86 mg test item/L, corresponding to 71.4 mg a.s./L (nominal). The NOEC was determined to be 42 mg test item/L, corresponding to 34.9 mg a.s./L (nominal).

According to the current OECD 203 test guideline, despite the control validity criteria of 70% mortality being achieved, there was no chemical analysis performed to confirm glyphosate concentration in the test media. The test would therefore not be considered valid against the current criteria. Within the context of the Annex I renewal of glyphosate, this study may only be considered supportive.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Glyphosate technical white powder Strategy Research Test item:

Description:

Lot/Batch #:

Purity:

Vehicler deignised water 2. Vehicle and/or positive control:

Positive control: Antimycin A ILIS TO

3. Test organism:

Rambow trout (Salmo gairdenri) Species:

Not stated

Rength: 39 mm (mean, reference toxicant group: 34 mm)

10 individual fish per vessel (19 L glass vessel) in 15 L test Loadings

solution

Source:

48 hours prior to the test initiation Acclimation period:

Body weight of the animals: 0.58 g (mean, reference toxicant group = 0.55 g)

4. Environmental conditions:

 12 ± 1 °C Temperature:

Not stated Photoperiod:

7.0 - 7.2 (control); 4.4 - 5.8 (120 mg test item/L)

7.6 - 8.7 mg/LDissolved oxygen:

> Not stated Conductivity:

> > Hardness: 45 mg CaCO₃/L

5. Experimental dates of work: July 29th to August 2nd 1978

Experimental dates of wo.

B. DESIGN AND METHODS

Experimental treatments: From concentrations of 42 Experimental treatments: Following a range-finding test, a definitive test was conducted at nominal test concentrations of 42, 87, 120, 180, 240 and 420 mg test item/L, corresponding to 34.9, 72.2, 99.6, 149, 199 and 398 mg glyphosate a.s./L, in a static test setup. The test item was dissolved directly into dilution water. A control group was also prepared using fish exposed to dilution water only (soft reconstituted water using deionised water).

A reference toxicant test was conducted in parallel with fish exposed to Antimycin A at rates between 0.000024 – 0.00032 mg/L. Acetone was used to prepare the reference toxicant media.

A single replicate vessel was prepared per treatment, control and reference toxicant group.

Observations: Mortality was recorded in all test concentrations and the control 24, 48 and 6 fours after test initiation in the glyphosate exposure test and additionally at 72 hours in the reference toxicant test. Temperature, pH-value and oxygen saturation of the test solutions were measured on each observation date. Hardness of the test water was measured at the start of the test. Weight and length of the test fish were equally measured.

Statistical calculations: LC50 values were calculated along with the 95% confidence limits using Probit analysis.

II. RESULTS AND DISCUSSION

A. FINDINGS AND OBSERVATIONS

At and above nominal concentrations of 120 mg test item/L, and above nominal concentration of 87 mg test item/L, 40% mortality was recorded whereas no mortality was observed at the lowest test concentration of 42 mg test item/L. For the highest concentration of the reference product Antimycin A (0.00032 mg/L), 100% mortality was observed 24 hours after the test initiation.

Table 8.2.1-18: Lethal effects of glyphosate to rainbow trout

Test item [mg/L]	C	E_i&420	87	120	180	240	480
Glyphosate technical [mg a.s./L]	- 100	© 34. 9	72.2	99.6	149	199	398
Mortality (24 h) [%]	Oll Str	jo 0	0	0	70	100	100
Mortality (48 h) [%]	Sil Oil Sil	0	0	60	100	100	100
Mortality (96 h) [%]	5. E. OS	0	40	100	100	100	100

C = Control

The LC $_{50}$ and NOEC values are given below based on nominal concentrations.

Table 8.2.1-19: Endpoints

Endpoints (96 h)	Test item [mg/L]	Corresponding glyphosate technical concentration [mg a.s./L]	Reference [mg/L]
LC ₅₀ (95% & L)	86 (70 - 106)	71.4 (58.1 - 88.0)	4.2×10 ⁻⁵ (3.6×10 ⁻⁵ - 4.9×10 ⁻⁵)
NOEC 18 1	42	34.9	-

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:
In a static acute fish toxicity study of glyphosate, the LC₅₀ (96 h) for rainbow trout (Oncompachus mykiss) exposed to the glyphosate technical was determined to be 86 mg test item/L, corresponding to 71.4 mg a.s./L (nominal). The NOEC was determined to be 42 mg test item/L, corresponding to 34.9 mg a.s./L (nominal).

No chemical analysis was performed to confirm glyphosate concentration in the test media. The test would therefore be considered supportive for risk assessment purposes.

Assessment and conclusion by RMS:

1. Information on the study

D / ' /	CA 9.2.1/009
Data point:	CA 8.2.1/008
Report author	(E', 0', 20)
Report year	1972
Report title	Four-day static fish toxicity studies with CP 67573 in rainbow trout and
	bluegills.
Report No	BTL-72-104
Document No	- (2) (3)
Guidelines followed in	Not mentioned & & &
study	
Deviations from current	Deviations from the current OECD 203 guideline (2019):
test guideline	Major: Koroko S
	- No analytical verification of test concentrations
	- 60% of the air saturation was not maintained throughout the test.
	Minor.
	Oxygen, pH and temperatures were not daily measured.
	-The weight of the fish were not provided, so the loading cannot be
. 4 & & & & & & & & & & & & & & & & & &	Calculated.
E &	The length of bluegill ranged between 3.5 and 7.5 cm.
	- Temperature of bluegill test was 18°C.
Previous evaluation	Rainbow trout: Yes, accepted in RAR (2015)
Previous evaluation	Bluegill: Not accepted in RAR (2015)
GLP/Officially recognised	No, GLP was not compulsory at the time the study was performed
testing facilities	
Acceptability/Reliability	Invalid
68	
Category study in AIR 5	Category 2b
dossier (L docs)	

Executive Summary
The acute effects of glyphosate acid (CP 67573) to rainbow trout (*Oncorhynchus mykiss*) and bluegills (*Epomis macrochirus*) were evaluated in a 96-hour static toxicity tests. These tests were conducted at nominal test concentrations of 10, 18, 32, 56 and 78 mg a.s./L for rainbow trout and 32, 56, 56, 70, 85 and 100 mg a.s./L for bluegill. A control and a toxic reference item (Toxaphene) were also included in the test. Ten fish were exposed in the control and in each treatment. All fish were observed at daily in the day of the control and in each treatment. All fish were observed at daily in the control and in each treatment.

Page 87 of 847

the 96-hour study duration, with mortality and sub-lethal signs of toxicity recorded. Dissolved oxygen and pH values were measured for all solutions in which mortalities occurred. The temperature was maintained at 13° C for rainbow trout and 18 °C for bluegills. Glyphosate acid (CP 67573) was found to have a very low solubility in water. No analytical measurements were performed. Only one of the three validity criteria according to the guideline OECD 203 was fulfilled (control mortality < 10 %).

The 96-hour LC₅₀ value for rainbow trout exposed to glyphosate acid (CP 67573) was determined to be 38 mg a.s./L with a 95 % confidence interval of 25 to 56 mg a.s./L.

The 96-hour LC₅₀ value for the bluegills exposed to glyphosate acid (CP 67573) was determined to be approximately 78 mg a.s./L (95% confidence interval was not recorded).

The study was previously considered valid (RAR 2015) and was part of the list of endpoints, being the lowest available fish acute toxicity endpoint. However, as no analytical verification of test item was performed and oxygen levels decreased below 60 %, this are major deviations to the guideline. Taking also into account that some minor deviations were pointed out, the study is not considered valid according to OECD 203.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Glyphosate acid (CP 67573) Test item:

Low solubility in water Description:

Not reported Lot/Batch #: Not reported Purity:

Welficle: reconstituted water

Positive control: Toxaphene

3. Test organism:

2. Vehicle and/or positive control:

Rainbow trout (*Oncorhynchus mykiss*)

Bluegill (*Lepomis macrochirus*)

Length: 35-75 mm

Bluegill (Lep

Size: Length: 35-7

Body weight of the animals: Not reported

Loading: Not reported

Source: Not reported

Diet/Food: Brine shrimp or purina trout chow no feeding for 3 days

prior to test

Observation period: 14 days prior to experimental use

Acclimation period: 24 hours

4. Environmental conditions:

Temperature: 13 °C for rainbow trout and 18 °C for bluegill

Photoperiod: Not reported

pH range from start to 96h

for rainbow trout: Control: 7.0 - 7.3

18 mg/L: 6.2 32 mg/L: 6.0 - 6.4

56 mg/L: 5.5 - 6.2

78 mg/L: 4.0

for bluegill: Control: 6.9 - 7.1

85 mg/L: 4.0 100 mg/L: 3.9 - 4.1

Dissolved oxygen range from start to 96h

for rainbow trout:

... mg O₂/L
... mg/L: 0.8 mg O₂/L
32 mg/L: 3.0 – 3.4 mg O₂/L
56 mg/L: 2.6 – 6.0 mg O₂/L

for bluegill: Control: 4.1 - 6.8 mg O

85 mg/L: 6.8 mg Q₂/L²

100 mg/L: 7.1 -8.2 mg O₂/L

Not recorded Conductivity:

Hardness: Not recorded

Not reported 5. Dates of experimental work:

B. STUDY DESIGN
Experimental treatments
The toxicity test was performed with glyphosate acid (CP 67573) at nominal concentrations of 10, 18, 32, 56 and 78 mg a.s./L for rainbow trout and 32, 56, 70, 85 and 100 mg a.s./L for bluegill, prepared using reconstituted water. The bioassay vessels prepared for the control and at each treatment level, were lined with disposable polyethylene bags and then filled with 12.5 L of reconstituted water, with ten fish then added to each vessel. After an acclimation period of 24 hours, the test material was added directly to the vessels containing the fish. The tests were conducted under static test conditions. A negative control (water only) was also prepared. Toxaphene was used as toxic reference item and dispensed in the form of a 0.01 % w/v solution in acetone.

Observations
Fish in all vessels were observed for 96 hours after the introduction of the test material directly to the vessels, with sublethal effects (e.g. quiescence, mucosa shedding) and mortality recorded daily. The pHvalue and oxygen saturation of test solutions were measured in all solutions in which mortalities occurred. Hardness and conductivity of the test water were not measured. Analytical measurements were not performed.

Statistical calculations

The four-day median tolerance level TL₅₀ (equivalent to an LC₅₀ value) and corresponding 95 % confidence intervals, were calculated using the technique of Litchfield, J. T., Jr. and Wilcoxon, F., "A Simplified Methodof Evaluating Dose-Effect Experiments," J. Pharm. & Exp. Ther. 96, 99 (1949).

II. RESULTS AND DISCUSSION

Analytical data: No analytical verification of test concentrations was performed.

The 96 hour LC₅₀ values are presented below.

Table 8.2.1-20: Endpoints

Endpoints (96h)	Glyphosate acid (CP 67573) [mg a.s./L]
Rainbow trout LC ₅₀ (95% CI)	38 (25 – 56)
Bluegill LC ₅₀ (95% CI)	≈ 78 (n.d.)

CI= Confidence interval

n.d.= not determined

The 96-hour LC₅₀ value for rainbow trout exposed to glyphosate acid (CP 67573) was determined to be 38 mg a.s./L with a 95 % confidence interval of 25 to 56 mg a.s./L 38 mg a.s./L with a 95 % confidence interval of 25 to 56 mg a.s./L.

The 96-hour LC₅₀ value for bluegill exposed to glyphosate acid (CR 57573) was determined to be approximately 78 mg a.s./L (95 % confidence interval was not recorded).

B. OBSERVATIONS

For the rainbow trout:

At test concentrations of 18 and 32 mg a.s./L three fish died within 96 hours of exposure. At test concentration of 56 mg a.s./L four fish died within 96 hours of exposure. Increasing the test concentration by a factor of about 1.4 (78 mg a.s./L) the mortality resulted to be 100 % within the first 24 hours of exposure.

Sublethal effects of quiescence, swimming against tank side on bottom, patchy shedding of external mucosa were observed within the 6 hours after exposure at 78 mg test item/L and within 24 hours at concentrations up to 18 mg test item/L. There were no recovery until the end of the test when sublethal effects were detected.

The fish were in the recommended range length of 3 to 6 cm (actual values ranged between: 3.5 and 7.5 cm). The water quality parameters were not recorded except for control pH which was within the OECD 203 specifications of 6 to 8.5 (actual value, 7.6). The levels of pH declined with increasing concentration of the test item, with a pH of 4.0 being recorded at the highest rate. The biological observations recorded during the test are presented below.

Table 8.2.1-21: Effects of CR 67573 to rainbow trout

Nominal Number of survivor/observed symptoms 1						
concentration of glyphosate acid [mg a.s./L]	1-6 h	24 h	48 h	72 h	96 h	Survival %
Control	10/no	10/no	10/no	10/no	10/no	100
10,55	10/no	10/no	10/no	10/no	10/no	100
18 E	10/no	10/Q	10/Q	10/Q	7/Q	70
32	10/no	10/Q	10/Q	10/Q	7/Q	70
18 ⁶ 20 56	10/no	9/Q	8/Q, S	7/Q, S	6/Q, S	60
·(i'.) 78	10/Q, S, E, P	0	0	0	0	0

Q = quiescence, S = swimming against tank side on bottom, E = external mucosa shedding and P = patchy

For the bluegill:

No mortality occurred up the concentration of 70 mg a.s./L within the 96 hours of exposure. At test concentration of 85 mg a.s./L four fish died within 96 hours of exposure. At the highest test concentration of 100 mg a.s./L, the mortality resulted in 100% within 72 hours of exposure.

Sublethal effects of quiescence, light discoloration, external mucosa shedding or patchy behaviour were observed at the concentration of 56 mg a.s./L and higher. There were no recovery until the end of the test when sublethal effects were detected.

The fish were not in the recommended range length of 1 to 3 cm (actual values ranged between: 3.5 and 7.5 cm). The water quality parameters were not recorded except for control pH which was within the OECD 203 specifications of 6 to 8.5 (actual value: 6.8). The levels of pH declined with increasing concentration of the test item. The temperature was not in the required range of 21 to 25°C (actual value: 18°C). The biological observations recorded during the test are presented below.

Table 8.2.1-22: Effects of CP 67573 to bluegill

Nominal		Number of survivor/observed symptoms 1					
concentration of glyphosate acid [mg a.s./L]	1-6 h	24 h	48 h	10 72 h	96 h	96 h Survival %	
Control	10/no	10/no	10/no	€10/no	10/no	100	
32	10/no	10/no	10/mo 3	© 10/no	10/no	100	
56	10/no	10/Q	. 40/Q &	10/Q	10/Q	100	
70	10/no	10/Q, L	010/QxL	10/Q, L	10/Q, L	100	
85	10/Q, L, E, P	10/ Q, L, E, P	6. Q. L, E, P	6/ Q, L, E, P	6/ Q, L, E, P	60	
100	10/Q, L, E, P	7/ Q, L, E, P	4/Q, L, E, P	0	0	0	

¹ Q = quiescence, L = light discoloration, E = external mucosa shedding and P = patchy

General observations:
The test material, CP 67573, was found to have a very low solubility in water. At higher dose levels (56 mg a.s./L and upward) the test material displayed a very high acidity. Primarily those fish which came into direct contact with the test material (as it dropped to the bottom) were more affected.

The following points deviated from the current guideline:

- Oxygen, pH and temperatures were not daily measured.
- The weight of the fish were not provided, so the loading cannot be calculated.
- The length of bluegill ranged between 3.5 and 7.5 cm.
- Temperature of bluegill test was 18°C.

Validity criteria

In order to consider the test to be valid according to OECD 203, the following conditions should be fulfilled:

- Control mortality should not exceed 10% at the end of the exposure. No mortality was recorded in the control for both tests.
- The dissolved oxygen concentration should be ≥ 60 % of the air saturation value in all test vessels throughout the exposure. Air saturation was not reported. The dissolved oxygen values varied from for bluegill. Hence, the dissolved oxygen concentration was not steady throughout the test.

 Analytical measurement of test concentrations is compulsory, however no analytical measurement was performed.

 According to the current validity criteria of OECD 203 guideline, this study is not valid. The dissolved

oxygen concentration above 60 % of air saturation and evidence that the concentration of the chemical

Glyphosate Renewal Group AIR 5 - July 2020

being tested has been satisfactorily maintained (at least 80 % of the nominal concentration) throughout the test, cannot be concluded.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

The 96-hour LC₅₀ value for rainbow trout exposed to glyphosate acid (CP 67573) was determined to be 38 mg a.s./L with a 95% confidence interval of 25 to 56 mg a.s./L.

The 96-hour LC₅₀ value for bluegill exposed to glyphosate acid (CP 67573) was determined to be approximately 78 mg a.s./L (95% confidence interval was not recorded).

approximately 78 mg a.s./L (95% confidence interval was not recorded).

The study was previously considered valid (RAR 2015) and was part of the list of endpoints, being the lowest available fish acute toxicity endpoint. However, as no analytical verification of test item was performed and oxygen levels decreased below 60%, this are major deviations to the guideline. Taking also into account that some minor deviations were pointed out, the study is not considered valid according to OECD 203. Other valid studies with comparable results are available. This study is not considered acceptable for risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CACA 8.201/0095
Report author	
Report year	1995 5 5 5 5
Report title	Glyphosate acid: Acute Toxicity to Bluegill Sunfish (Lepomis
	macrochirus)
Report No	\$BJ\$\\$\\$\\$\}B
Document No	\$ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Guidelines followed in study	US EPA Guideline, FIFRA subdivision E, section 71-1.
Deviations from current test guideline	Deviations from the current OECD 203 guideline (2019): None
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing	Yes
facilities	
Acceptability/Reliability	Valid
Category study in AIR 5 dossier	Category 2a
(L docs)	

2. Full summary of the study according to OECD format

Executive Summary

The acute effects of glyphosate acid to bluegill sunfish (Lepomis macrochirus) was evaluated in a 96-hour static toxicity test performed at nominal test concentrations of 10, 18, 32, 56, 100 and 180 mg a.s./L. A dilution water only control was also included in the test. Ten fish were exposed in the control and in each

uuration, with mortality and submedia were analysed for glyphosate acid at 0 hours (before fish addition) and after 48 and 96 hours.
Glyphosate acid was not detected in the control group. The overall mean measured concentrations of glyphosate acid in the treatment groups ranged from 94.4 to 97% of nominal concentrations.

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

There was no fish mortality or sublethal effects observed in the control group, and in the 10, 18 and 32 mg & a.s./L treatments. By 96 hours, there was 90% mortality in the 56 mg a.s./L treatment and 100 % mortality. in the 100 and 180 mg a.s./L treatments. All validity criteria according to the OECD guideline 203 were fulfilled.

The 96 hour LC₅₀ value for bluegill sunfish (*Lepomis macrochirus*) exposed to glyphosate acid was 47 mg a.s./L (nominal concentration) with 95% confidence interval of 35 to 66 mg a.s./L. The NOEC after 96 hours was 32 mg glyphosate acid/L (nominal concentration). The study is considered valid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate acid Description: White solid

Lot/Batch #: P24

Purity: 95.6 % a.s.

Vehicle: dechlorinated filtered tap water

2. Vehicle and/or positive control:

3. Test organism:

Positive control: none Bluegill sunfish (Lepomis macrochirus) Species:

Juvenile 8 Age:

Size: Length: 26 to 35 g (mean = 30 mm)

0.29 to 0.96 g (mean = 0.54 g) Body weight:

10 test individuals for 20 L test solution Loading:

Source:

no feeding for 48 hours prior to test and during the total test Diet/Food:

period

Acclimation period: 19 days at 22 °C prior to the test initiation

4. Environmental conditions: Photoperiod:

 22 ± 1 °C

16 hours with 20 min transition period

Control (start – 96 h): 7.3–6.8

10 mg/L (start - 96 h): 5.9 - 6.418 mg/L (start - 96 h): 5.2 - 5.8

32 mg/L (start - 96 h): 4.6 - 4.856 mg/L(start - 96 h): 3.8 - 3.9

100 mg/L (start - 24 h): 3.4180 mg/L (start - 24 h): 3.1

Dissolved oxygen: 6.2 - 9.0 mg/L

> Conductivity: 100 μS/cm

> > Hardness: 16.0 mg CaCO₃/L.

Dissolved a Conductive of the November 20th to November 24th 1995

B. STUDY DESIGN

Experimental treatments: The acute toxicity test was performed at nominal concentrations of 10, 18, 32 56, 100 and 180 mg a.s./L prepared using filtered and dechlorinated tap water treated with ultra violet steriliser. The test was conducted under static test conditions (no media renewal). A negative control group (dilution water only) was also prepared. A single vessel was prepared for the control and each test media group, each containing ten fish (27.5 L borosilicate glass vessels containing 20 L test medium).

hours. Temperature, pH-value and oxygen saturation of test solutions were measured on a daily basis. Hardness and conductivity of the test water was measured at test initiation. Samples of test media were analysed for glyphosate acid content using HPLC analysis at test initiation and after 48 and 96 hours.

Analytical procedures: Samples were taken from the centre of the test solutions. Slyphosate acid concentrations in the test solutions were determined at 0, 48 and 96 hours by high performance liquid chromatography method using a fluorescence detector. The samples were quantified against standards of glyphosate acid. Prior to analysis, samples and standards were deriversed using flourenylmethyl chlorformate, to prepare a fluorescing derivate.

Statistical calculations: The 96 hour LC₅₀ values and 95% confidence intervals were calculated using nonlinear interpolation. The NOEC was determined by visual interpretation of the mortality and observation data.

II. RESULTS AND DISCUSSION

A. FINDINGS

Analytical data: The measured concentrations of glyphosate acid in fresh media at test initiation ranged between 96.9 and 110 % of nominal. In aged test media at 96 hours, mean measured glyphosate acid concentrations ranged between 94.4 and 97.0 % of nominal. At 100 and 180 mg a.s./L, no chemical analysis was performed at 48 and 96 hours, as all there was 100 % fish mortality within the first 24 hours following addition.

Table 8.2.1-23: Analytical results

Nominal concentration of glyphosate acid [mg a.s./L]	Measured concentration of glyphosate acid [mg a.s./L] at 48 hours	Measured concentration of glyphosate acid [mg a.s./L] at 96 hours	% of nominal
Dilution water control	< 0.023	< 0.023	-
10	10	9.7	100
18	192	172	100
32 11 10 800	33	31	100
56 B 1118	57	54	98
16000	100	1	100
\$ 180	180	1	100

¹ Not sampled, 100% mortality on previous sampling occasion

As measured concentrations of glyphosate acid were between 80 and 120 % of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item. The limit of detection was 0.023 mg/L.

The 96 h LC₅₀ value and corresponding NOEC value based on nominal concentrations are given below.

² mean of triplicate analysis

Table 8.2.1-24: Endpoints

Endpoints (96h)	Glyphosate acid [mg a.s./L]	
LC ₅₀ (95% CI)	47 (35- 66)	Mar.
NOEC	32	12,0

CI= Confidence interval

B. OBSERVATIONS

B. OBSERVATIONSThere were no mortalities in the control or the 10, 18 and 32 mg a.s./L treatments. At 50 mg a.s./L, there was 90 % mortality. There was 100 % mortality at 100 mg a.s./L and higher rest concentrations that occurred after 24 hours.

There was a strong negative correlation between pH value and test item concentrations observed. At 56 mg a.s./L, the pH was reduced to 3.8 and lower.

The biological observations recorded during the test are presented in the table below.

Table 8.2.1-25: Effects of glyphosate acid to Lepomis macrochirus

Nominal concentration of	Number of dead fish / number of fish with intoxication symptoms 1 and observed symptoms				
glyphosate acid [mg a.s./L]	24 h	548 h	72 h	96 h	
Control	0 / 0	16 49 80	0 / 0	0 / 0	
10	0/0		0 / 0	0 / 0	
18	0/0	5 0/0	0 / 0	0 / 0	
32	0/0/0/0	0/0	0 / 0	0 / 0	
56	4,84,000	8 / 8	9/9	9/9	
100	11/2 200 ED	2	2	2	
180	Childing Step	2	2	2	

¹Dead fish are added to the sum of fish with symptoms

All validity criteria according to QECD 203 were fulfilled, as mortality in control group did not exceed 10% (or one fish if less than ten are used), dissolved oxygen concentration was $\geq 60\%$ of air saturation and constant exposure conditions have been maintained.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

The 96 hour LC₅₀ value for bluegill sunfish (Lepomis macrochirus) exposed to glyphosate acid was 47 mg as L (nominal) with a 95% confidence interval of 35 to 66 mg a.s./L. The 96 hour NOEC was 32 mg a.s./L (nominal).

This study is considered valid and the acute LC50 value for bluegill sunfish exposed to glyphosate acid was 47 mg a.s./L (nominal) and can be used in risk assessment.

Assessment and conclusion by RMS:

²All fish dead

Page 95 of 847

1. Information on the study

Data point	CACA 8.2.1/010
Report author	1. S.
Report year	1991
Report title	Glyphosate technical: 96-Hour Acute Toxicity Study (Lesonn the Bluegill Sunfish
Report No	271642
Document No	-
Guidelines followed in study	EEC directive 92/69, Part C.1 OECD guidelines No. 203 (1992) EPA 540/9-82-024
Deviations from current test guideline	Deviation according to the current guideline OECD 203: -none.
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes Silver Silve
Acceptability/Reliability	Valid State of the
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary

Executive Summary

Executive Summary
The effects of glyphosate technical on blue gill sunfish (*Lepomis macrochirus*) were evaluated in a 96-hour static toxicity test conducted with nominal test concentrations of 59.3, 88.9, 133.3, 200 and 300 mg a.s./L, corresponding to 43.3, 91.0, 119, 173 and 243 mg a.s./L based on geometric mean measured concentrations. Furthermore, a blank control and a stability control with 300 mg a.s./L (nominal) was tested. Ten fish were exposed to each treatment.

Mortality and sublethal effects were recorded 2, 24, 48, 72 and 96 hours after the start of the test. Prior to

the start of the test, all animals were weighed and measured. Dissolved oxygen, pH and temperature were also measured and recorded prior to addition of the test article and 2, 24, 48, 72 and 96 hours after the start of the test in each test chamber. Concentration of the test item was determined by HPLC in the untreated control and for all test concentrations shortly after addition of the test item and 2, 48 and 96 hours after the start of the test except from test concentrations with 100% mortality. During the test period of 96 hours the fish were exposed to mean concentrations ranging between 59.6 and 144.2 % (average for test concentrations of 59.3 to 300 mg test item/L) of nominal concentration.

No mortality or sublethal effects occurred at geometric mean measured concentrations of up to 119 mg/L. The mortality was 100% at the 173 mg a.s./L test concentration, based on geometric mean measured concentration. At these high test concentrations the pH was very low (3.2 - 3.6). All validity criteria according to the guideline OECD 203 were fulfilled.

The LC₅₀ (96 h) for rainbow trout exposed to glyphosate technical ranged between 133.3 mg a.s./L and 200 mg/a.s./L (nominal), corresponding to 119 mg a.s./L and 173 mg a.s./L (geometric mean measured). The % hour NOEC was 133.3 mg a.s./L (nominal), corresponding to 119 mg a.s./L (geometric mean measured).

2. Vehicle and/or positive control:

A. MATERIALS

1. Test material:

Test item:: Glyphosate technical

Description:

Lot/Batch #:

Purity: 98.9 %

3. Test organism:

Species:

Age: juvenile; detailed age not stated

Size: 3.9 cm (mean), range: 3.5°

Body weight of the animals:

Bluegill sunfish (*Lepomis macrochurus*)
juvenile; detailed age not stated
3.9 cm (mean), range: 3.5.2 4 Loading:

Source:

Diet/Food: none

Acclimation period: 7 days

4. Environmental conditions:

Temperature:

16 hours light / 8 hours dark (500 – 1500 lux) Photoperiod:

8.9 11.2 mg O₂/L Dissolved oxygen -11.2 Not stated Hardness 250

Conductivity:

250 mg CaCO₃/L (reconstituted water)

5. Experimental dates of work: September 17th to September 21th 1990

B. STUDY DESIGN

Experimental treatments: Based on the results of a range finding test, the definitive toxicity test was performed using nominal concentrations of 59.3, 88.9, 133.3, 200 and 300 mg a.s./L dissolved in reconstituted water. Also a stability test with 300 mg a.s./L without fish was conducted. The test was conducted in a static test setup. In addition, a control group was exposed to the test medium without test substance or other additives. There was one vessel for each test concentration and one for the control group, each containing 10 fish (15 L glass containers).

Observations: Assessment of sublethal effects of after 2, 24, 48, 72 and 96 hours was conducted, while mortality was recorded daily. Temperature, pH-value and oxygen saturation of the test solutions were measured at the same time points as sublethal effects and on test initiation. Prior to the start of the test, all animals were weighed and measured. Analytical control measurements of the actual concentration of the test teem were performed by means of HPLC analysis using samples taken at test start and after 2, 48 and % k (except where the mortality was already 100%)

Statistical calculations: Descriptive statistics; the Logit-Model could not be used, since the mortality rates of 0 and 100 % were within two concentrations.

II. RESULTS AND DISCUSSION

A. FINDINGS

The NOEC, LOEC and LC₅₀ value are given below based on geometric mean measured concentrations,

Table 8.2.1-26: Endpoints

Endpoints (96 h)	Glyphosate technical [mg a.s./L]
LC ₅₀	between 119 and 173
LOEC	between 119 and 1730 100
NOEC	119 25 68

Analytical data: At nominal concentrations of 88.9, 133.3 and 200 mg as./L, the concentration of glyphosate technical was recorded to be within the range of 80 - 120% of nominal. At 300 mg a.s./L the concentration at test start was 79.7 % and after 2 h at 82.3 % of nominal. At the lowest test concentration (59.3 mg/L) the concentration ranged between 59.6 and 84.1 % of nominal. Therefore, the toxicity values are based on (geometric) mean measured concentrations. Analytical results are shown below.

Table 8.2.1-27: Analytical results

Nominal concentration of glyphosate technical [mg a.s./L]	Time (hours)	Mean concentration of Samples A and B	% of nominal	Geometric mean measured concentrations [mg a.s./L]
59.3	0	خَالِينَ 44.75	75.5	43.3
59.3	2 1101101	44.65	75.3	
59.3	48,6 20 2	49.81	84.1	
59.3	96 45 Q	35.37	59.6	
88.9	79 18 11	96.35	108.4	91
88.9		128.15	144.2	
88.9	\$ 48	75.10	84.5	
88.9	8 11 12 48 8 5 6 96	74.03	83.3	
133.3	<i>&</i> 0	120.3	90.2	119
133.3	2	123.1	92.3	
133.3 18 18 18	48	113.3	85.0	
133.3	96	120.0	90.0	
200	0	176.4	88.2	172
2000	2	169.1	84.5	
(S) 300	0	239.1	79.7	243
300	2	146.9	82.3	

No mortality occurred at concentrations of up to 119 mg a.s./L. At the nominal concentrations of 173 and 243 mg a.s./L there was 100% mortality detected. At these high test concentrations the pH was below the critical point of 4 for *Lepomis macrochirus*. At 173 mg a.s./L sublethal effects like loss of righting reflex and an enhanced respiratory rate were observed. Supine positions at the tank beat Glyphosete P.

motoric function, remaining at the tank bottom and an enhanced respiratory rate were notices at 243 mg a.s./L.

Table 8.2.1-28: Effects of glyphosate technical on survival of *Lepomis macrochirus*

Nominal concentration of						400
glyphosate technical [mg a.s./L]	Control	59.3	88.9	133.3	200	300 j
Geometric mean measured concentrations of glyphosate technical [mg a.s./L]	Control	43.3	91.0	119	173 & C. J.	243
Mortality (0h) [%]	0	0	0	0 🖒	10 20	10
Mortality (2 h) [%]	0	0	0	0 30 00	0	100
Mortality (24 h) [%]	0	0	0	10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	90	100
Mortality (48 h) [%]	0	0	0	% 10 %	100	100
Mortality (72 h) [%]	0	0	0	0 10 8	100	100
Mortality (96 h) [%]	0	0	0 🕉	82,72,0	100	100

All validity criteria according to OECD 203 were fulfilled as mortality in control group did not exceed 10% (or one fish if less than ten are used), dissolved oxygen concentration was ≥ 60% of air saturation and constant exposure conditions have been maintained.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

The LC₅₀ (96 h) for bluegill sunfish exposed to glyphosate technical ranged between 133.3 mg a.s./L and 200 mg a.s./L (nominal), corresponding to 119 mg a.s./L and 173 mg a.s./L (geometric mean measured). The 96 hour NOEC was 133.3 mg a.s./L (nominal), corresponding to 119 mg a.s./L (geometric mean measured).

This study is considered valid and the acute LC₅₀ value for bluegill sunfish exposed to glyphosate technical ranged between 19 9mg a.e./L and 173 mg a.e./L (geometric mean measured) and can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.2.1/011
-	CA 6.2.1/011
Report author	
Report year	1981
Report title	Acute Toxicity of MON 0139 (lot LURT 12011) (AB-81-073) to Bluegill Sunfish (<i>Lepomis macrochirus</i>)
Report No	27201 g 5
Document No	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Guidelines followed in study	Committee on Methods for Toxicity Tests with Aquatic Organisms
Deviations from current test guideline	Deviations from the current OECD 203 guideline (2019): Major: No analytical verification of test concentrations Dissolved oxygen concentration decreased below 60 % of saturation (from 9.5 mg/L to 5.5 mg/L in all tested groups: control, 100 and 1000 mg test item/L) Minor: Fish were acclimatized for 48 hours prior to the test (7 days are required) pH of the highest concentration (1000 mg test item/L) was not with the specified range of 60-8.5 pH measured: 4.5 – 5.1)
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	No, GLP was not compulsory at the time the study was performed
Acceptability/Reliability	Invalid Significant Control of the C
Category study in AIR 5 dossier (L docs)	Category 20 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2. Full summary of the study according to OECD format

Executive Summary

The effects of glyphosate isopropylamine salt (MON 0139) on the bluegill sunfish (Lepomis macrochirus) were evaluated in a 96-hour static toxicity test. Based on the results of a range finding test, a definitive toxicity test was performed using nominal concentrations of 100, 180, 320, 560 and 1000 mg test item/L, corresponding to 62.5, 112, 200, 350 and 625 mg glyphosate isopropylamine salt/L (mg a.s./L) or 46.3, 83.3, 148, 259 and 463 mg/glyphosate/L (mg a.e./L). In addition, a control group was exposed to dilution water (soft reconstituted water) and a reference product (Antimycin A). The mortality of fish was recorded in all test concentrations and the control at 24, 48 and 96 hours. There was no mortality observed at any of the test concentrations up to and including 1000 mg test item/L, corresponding to 625 mg a.s./L or 463 a.e./L (nominal).

Not all validity criteria according to the OECD 203 (2019) were fulfilled since the analytical part of the study was not performed and/or reported. Taking also into account that the oxygen levels decreased below sidered 60 %. And further minor deviations, that may affect the outcome of the study, the study is therefore considered as invalid.

Glyphosate Renewal Group AIR 5 – July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Page 100 of 847

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:	Glyphosate isopropylamine salt (MON 0139)
Test item:	Glyphosate isopropylamine salt (MON 0139)
Description:	Light yellow liquid
Lot/Batch #:	T T T D T 10011
Purity:	62.49%
2. Vehicle and/or positive control:	Vehicle: Soft reconstituted water Positive control: Antimycin A Bluegill sunfish (<i>Lepomis macrochirus</i>) At least 14 days old Length: 19 mm (mean) 0.14 g (mean)
3. Test organism:	
Species:	Bluegill sunfish (Lepomis macrochirus)
Age:	At least 14 days old
Size:	Length: 19 mm (mean)
Body weight:	0.14 g (mean)
Loading:	10 test individuals for 15 L test solution (= 0.09 g fish/L)
Source:	~ ~ ~
Diet/Food:	Daily with Standard commercial fish food (Rangen's) except 48 prior to the test
Acclimation period:	48 hours prior to the test initiation
4. Environmental conditions:	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Temperature:	22 ± 1 ℃
Photoperiod 8	
yří (Z. I
Dissolved oxygen;	9.5 mg/L
Conductivity:	Not stated
Hardness:	45 mg CaCO ₃ /L
5. Experimental dates of work:	March 19 th to March 23 rd 1981

B. STUDY DESIGNATION DESIGNATION OF THE PROPERTY OF THE PROPER B. STUDY DESIGN.

Experimental treatments: Based on the results of a 48-h range finding test, a definitive toxicity test was performed using command concentrations of 100, 180, 320, 560 and 1000 mg test item/L. In addition, a control group was exposed to dilution water (soft reconstituted water) and a reference product (Antimycin A). The mortality of fish was recorded in all test concentrations and the control at 24, 48 and 96 hours. There was one vessel per treatment, containing ten fish in 5-gallon (appr. 19 L) glass vessels containing 15 L test medium.

The fish mortality was the test initiation. Temperature, on each observation date. Hardness of length of the test fish were measured.

Statistical calculations: LC computer program for **Observations:** The fish mortality was recorded in all test concentrations and the control 24, 48 and 96 hours after the test initiation. Temperature, pH-value and oxygen saturation of the test solutions were measured on each observation date. Hardness of the test water was measured at the start of the test. The weight and

Statistical calculations: LC₅₀ values were calculated using computer program by Stephan et al. (1978) (A computer program for calculating an LC₅₀. U.S. Environmental Protection Agency, Duluth, Minnesota, prepublication manuscript, August, 1978.)

II. RESULTS AND DISCUSSION

A. FINDINGS

No analytical verification of the tested concentrations was conducted or reported. The LC₅₀ value is given below based on nominal concentrations.

Table 8.2.1-29: Endpoints

Endpoints (96 h)	Test item [mg/L]	Glyphosate isopropylamine salt [mg a.s./L]	Glyphosate [mg &e./L]
LC ₅₀	>1000	>625	2 463

B. OBSERVATIONS

There was no mortality observed at any of the test concentrations up to and including 1000 mg test item/L. For the reference product Antimycin A, the LC₅₀ was determined to be 0.000 0 mg/L. The dissolved oxygen concentration slightly dropped under 60% saturation. The pH values dropped with increasing test concentrations.

Table 8.2.1-30: Lethal effects of glyphosate isopropylamine salt (MON 0139) to Lepomis macrochirus

	100	W. O.				
	Control	N. K.				
Test item [mg/L]	19/10	5 100	180	320	560	1000
Glyphosate isopropylamine salt [mg a.s./L]	20 51 10	62.5	112	200	350	625
Glyphosate [mg a.e./L]	6.8 <u>-</u> 0	46.3	83.3	148	259	463
Mortality (24 h) [%]	11.10	0	0	0	0	0
Mortality (48 h) [%]	0	0	0	0	0	0
Mortality (72 h) [%]	0	0	0	0	0	0
Mortality (96 h) [%]	0	0	0	0	0	0

The following validity criterion according to the OECD 203 (2019) was fulfilled:

The control mortality was lower than 10 % at the end of the study.

The following validity criteria according to the OECD 203 (2019) were not fulfilled:

- No analytical measurement of the test concentrations was reported.
- The dissolved oxygen concentration was slightly below the trigger value of ≥60 % of the air

- 2 Descriptions occurred after 24h, 48h and 96h. The requirements are the following: a minimum of 2 Descriptions within the first 24 hours of the study and on days 2 4 of the test, all vessels with living fish inspected twice per day (preferably early morning and late afternoon to best cover the 24-hour periods).

 The pH was outside of accepted range of 6.0-8.5 (pH measured: 4.9 5.1) in the 1 concentration (1000 mg test item/L) and therefore the stock solution should 1.

 These deviations may affect the outcome of the study. So 1.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

In a static acute fish toxicity test, the LC₅₀ (96 h) for bluegill sunfish (Lepomis macrochirus) exposed to glyphosate isopropylamine salt (MON 0139) was determined to be >1000 mg test item/L, corresponding to >625 mg a.s./L or >463 mg a.e./L (nominal).

Not all validity criteria according to the OECD 203 (2019) were fulfilled since the analytical part of the study was not performed and/or reported. Taking also into account that the oxigen levels decreased below 60 % and further minor deviations that may affect the outcome of the study, the study is therefore considered as invalid.

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.2.1/012
Report author	39.0
Report year	1978
Report title	Acute Toxicity of Technical Glyphosate to Bluegill Sunfish (Lepomis macrochirus)
Report No	AB 78-123 () ()
Document No	- [6,0,0
Guidelines followed in study	Committee on Methods for Toxicity Tests with Aquatic Organisms
Deviations from current test guideline	Deviations from the current OECD 203 guideline (2019): Major: No analytical verification of test concentrations.
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing facilities	No, GLP was not compulsory at the time the study was performed
Acceptability/Reliability 2	Supportive
Category study in AIR 5 dossier (L docs)	Category 2b

2. Full summary of the study according to OECD format

Executive Summary

The acute effects of glyphosate technical on bluegill sunfish (Lepomis macrochirus) in a 96-hour static toxicity test. A definitive toxicity test was performed with glyphosate technical at nominal concentrations of 28, 42, \$6, 75, 100, 120, 140 and 180 mg glyphosate technical/L. A control group was exposed to deionised water and a reference treatment group exposed to Antimycin A were also tested.

a.s./L treatment groups. In the 120 mg a.s./L treatment group, there was 50% mortality recorded, with no mortality recorded at or below nominal concentrations of 100 mg a.s./L. The LC₅₀ (96 h) was determined to be 120 mg a.s./L (nominal concentration of glyphosate technical).

According to the current OECD 203 test guideline, despite the control validity criteria of <10 % mortality being achieved, the validity of the present study according to OECD. the analytical part of the study was not performed and/or reported. The study is considered supportive.

I. MATERIALS AND METHODS

A. MATERIALS	
1. Test material:	
Test item:	Glyphosate technical
Description:	Not stated
Lot/Batch #:	Not stated
Purity:	Technical grade (stated)
2. Vehicle and/or positive control:	Glyphosate technical Not stated Not stated Technical grade (stated) Vehicle: Deionised water Positive control: Antimycin Application Bluegill sunfish (Lepomis macrochirus) Not stated Length: 3.42 cm (mean)
3. Test organism:	
Species:	Bluegill sunfish (Lepomis macrochirus)
Age:	Not stated State
Size:	Not stated Length: 3.42 cm (mean)
Body weight:	0.96 g (mean)
Loading:	10 individuals test per vessel (19 L glass vessels) in 15 L test solution (0.64 g fish/L)
Source:	, 2 , 3 , 0
Diet/Food:	Daily with Standard commercial fish food (Rangen's No. 1 Kry Pexcept 48 prior to the test
Acclimation period:	48 hours prior to the test initiation
4. Environmental conditions:	
Temperature:	$^{\circ}21 \pm 1^{\circ}C$
Photoperiod:	Not stated
pH:	6.8 - 7.0
Photoperiod: pH: Dissolved oxygen: Conductivity: Hardness:	6.2 - 8.2 mg/L
Conductivity:	Not stated
Hardness:	46 mg CaCO ₃ /L
5. Experimental dates of work:	Test start: February 10 th 1978

B. STUDY DESIGN

Experimental treatments: Based on the results of a range finding test, definitive toxicity test was performed with glyphosate technical at nominal concentrations of 28, 42, 56, 75, 100, 120, 140 and 180 mg a.s./L is a static test setup. The test item was dissolved directly into deionised water. A control group was also prepared using fish exposed to deionised water only (soft reconstituted water).

A reference toxicant test was conducted in parallel using Antimycin A at rates between 0.024 and 6.2 Fmg/L, with acetone used to prepare the reference toxicant group treatment media.

Assingle replicate vessel was prepared per treatment, control and reference toxicant group.

Observations: Mortality was recorded in all test concentrations and the control 24, 48 and 96 hours after test initiation in the glyphosate exposure test and additionally at 72 hours in the reference toxicant test.

Glyphosate Renewal Group AIR 5 – July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Temperature, pH-value and oxygen saturation of the test solutions were measured on each observation date. Hardness of the test water was measured at the start of the test. Weight and length of the test fish were equally measured.

Statistical calculations: LC₅₀ values were calculated along with the 95% confidence limits using Probit

II. RESULTS AND DISCUSSION

A. FINDINGS

The LC₅₀ values are given below based on nominal concentrations.

Table 8.2.1-31: Endpoints

Endpoints (96 h)	Glyphosate [mg a.s./L]	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
LC ₅₀ (95% C.I.)	120 (111 - 130)	18 6 5 K

B. OBSERVATIONS
At and above the nominal concentration of 140 mg test item/L, 100 % mortality was observed 96 hours after test initiation. At the nominal concentration of 120 mg test arem/L, 50 % mortality was recorded whereas no mortality was observed at and below the nominal concentration of 100 mg test item/L. For the highest concentration of reference product Antimycin (20.021 mg/L), 70 % mortality was observed 24 hours after the test initiation and no fish survived 48 hours after test initiation.

Table 8.2.1-32: Lethal effects of glyphosate technical to Lepomis macrochirus

			7. 8	2 7/2					
Glyphosate [mg a.s./L]	C	28	42 %	∞ 56	75	100	120	140	180
Mortality (24 h) [%]	0	0		0	0	0	30	100	100
Mortality (48 h) [%]	0	0 6/1		0	0	0	40	100	100
Mortality (72 h) [%]	0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0	0	0	0	50	100	100
Mortality (96 h) [%]	0	7. 6. K	0	0	0	0	50	100	100

III. CONCLUSIONS

3. Assessment and conclusion Assessment and conclusion In a Assessment and conclusion by applicant:

In a static acute fish toxicity test, the LC₅₀ (96 h) for bluegill sunfish (Lepomis macrochirus) exposed to the test item glyphosate was determined to be 120 mg a.s./L (nominal).

According to the current OECD 203 test guideline, despite the control validity criteria of <10% mortality being achieved, there was no chemical analysis performed to confirm glyphosate concentration in the test media. The study is therefore not be considered valid against the current criteria.

Assessment and conclusion by RMS:

M-CA, Section 8 Page 105 of 847

1. Information on the study

Data point:	CACA 8.2.1/013
Report author	
Report year	2006
Report title	Glyphosate Technical: Acute Toxicity to Common Carp (Cyprinus carpio)
Report No	2060/015
Document No	- "Y. O. &
Guidelines followed in study	OECD Guideline 203 (1992); JMAFF Testing Guideline for Toxicology Studies, 12 NohSan No. 8147, Guideline 2-7-1(2000)
Deviations from current test guideline	Deviation compared with OECD 203 none.
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing facilities	Yes S S S S S S S S S S S S S S S S S S S
Acceptability/Reliability:	Valid St. St.
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary

Executive Summary

The effects of glyphosate acid to common carp (Cyprinus carpio) were evaluated in a 96-hour semi-static toxicity test (48 hour renewal of test media) conducted as limit test at a nominal test concentration of 100 mg a.s./L. A negative control (dechloringted tap water) was prepared in parallel. Duplicate control and test vessels were prepared, each containing seven fish.

All fish were observed for sub-lethal effects and mortality at 3, 6, 24, 48, 72 and 96 hours after the start of the test (fish addition). Dissolved oxygen, pH and temperature were measured and recorded daily in each test vessel. Glyphosate acid concentrations were measured at 0, 24 and 96 hours. Glyphosate acid was not detected in the control group. Mean measured concentrations ranged from 90 to 98 % of nominal concentrations.

concentrations.

No mortality or sub-lethal effects to common carp (Cyprinus carpio) were observed, when exposed to glyphosate acid at the normal concentration of 100 mg a.s./L. All validity criteria according to the guideline OECD 203 were fulfilled.

Glyphosate acid resulted in no mortality or sub-lethal effects in common carp at 100 mg a.s./L. The 96 h LC_{50} value for common carp exposed to glyphosate acid was determined to be > 100 mg a.s./L, the highest concentration tested. The NOEC was 100 mg glyphosate acid/L. This study is considered valid. SUS

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:		
Test item:	Glyphosate acid	
Description:	White crystalline solid	
Lot/Batch #:	H05H016A	
Purity:	95.7 %	

Annex to Regulation 283/2013	Glyphosate	M-CA, Section 8
		Page 106 of 847

2. Vehicle and/or positive control:	Vehicle: Dechlorinated tap water Positive control: Pentachlorophenol sodium salt (tested in a different study)
3. Test organism:	different study)
Species:	Common carp (Cyprinus carpio)
Age:	Juvenile Juvenile
Size:	$4.2 \pm 0.1 \text{ cm}$
Body weight:	$2.05 \pm 0.13 \text{ g}$
Loading:	0.72 g body weight/L test solution
Source:	₩ % % X -
Diet/Food:	no feeding during the total test period
Acclimation period:	12 days at test conditions
4. Environmental conditions:	
Temperature:	20.6 – 21.2 °C
Photoperiod:	16 hours light / 8 hours dark, with 20 minutes dawn and dusk transition
pH:	7.4 – 8.3 (control) 6.3 – 8.0 (treatment)
Dissolved oxygen:	8.1 - 8.8 mg/L (91 99 % saturation at 20.6 – 21.2 °C)
Conductivity:	359 – 610 µS cm
Hardness:	Approx 100 mg CaCO ₃ /L.
5. Dates of experimental work:	2005-05-31 to 2005-06-04

B. STUDY DESIGN

Experimental treatments: Based on the results of a range finding test, a final toxicity test was performed under semi-static test design as limit test using a single nominal concentration of glyphosate acid of 100 mg a.s./L. The control and test media at 100 mg a.s./L were renewed at 48 hours. A negative control group (derchlorinated water) was also prepared in parallel. There were duplicate glass vessels for the test concentration and control, each containing seven test fish in 20 L test medium.

Observations: All fish were observed for sub-lethal effects and mortality after 3, 6, 24, 48, 72 and 96 hours after test initiation (fish addition). Test solutions were renewed after 48 hours. Water temperature, pH-value and oxygen saturation of the test solutions were measured on a daily basis. Water hardness was measured in fresh media only. Samples of fresh media were taken at o hours and samples of old test media were taken at 24 and 96 hours to be analysed for glyphosate using a HPLC method of analysis.

Statistical calculations: Since the mortality was <50 %, no statistical calculation of LC₅₀ values was possible. Therefore NOEC and LC₅₀ were determined by visual interpretation of the mortality and observation data.

Glyphosate Renewal Group AIR 5 - July 2020

Avalytical data: Mean measured test item concentrations ranged from 90 % to 98 % o concentration. Therefore, endpoints were evaluated using nominal test item concentrations. Availytical data: Mean measured test item concentrations ranged from 90 % to 98 % of nominal test

Table 8.2.1-33: Analytical results

Sample	Nominal concentration of glyphosate acid [mg a.s./L]	Measured concentration glyphosate acid [mg a.s./L]	% of nominal
0 h (fresh media)	control	<loq< td=""><td>THE SA</td></loq<>	THE SA
	100	95.2	M. 95
	100	97.8	JE 58
24 h (old media)	control	<loq< td=""><td></td></loq<>	
	100	90.3	<i>ji</i> 90
	100	92.9	93
96 h (old media)	control	<loq into="" on<="" td="" vi=""><td>-</td></loq>	-
	100	98.16 6 6	98
	100	98.40	98

LOQ= Limit of quantification (5.3 mg/L)

LOQ= Limit of quantification (5.3 mg/L)

The 96 h LC $_{50}$ and corresponding NOEC values based on nominal concentrations are given below.

Table 8.2.1-34: Endpoints

Endpoints (96 h)	Glyphosate acid [mg a.s./L]	
LC_{50}	>100	
NOEC	5 100 100	

Reference test: The 96 h LC50 for the reference item pentachlorophenol was 0.26 mg/L, which is within the normal range of the reference material. The reference item was tested in a separate study.

B. OBSERVATIONS

During the acclimation the fish were fed with ZM Large Granule Feed as opposed to Commercial Car Pellets as this feed type was considered to be more suitable for the size of the fish. This deviation did not have any negative impact on the study validity.

At the 100 mg a.s./L concentration, there was no mortality during the 96 hours of exposure to glyphosate acid. In addition, no sub-lethal effects were observed.

All validity criteria according to OECD 203 were fulfilled, as mortality in control group did not exceed 10 % (or one fish if less than ten are used), dissolved oxygen concentration was ≥60 % of air saturation and constant exposure conditions have been maintained.

III. CONCLUSIONS

3. Assessment and conclusion

Assessment and conclusion by applicant:

The 96 h LC₅₀ for common carp (Cyprinus carpio) exposed to glyphosate acid in a limit test was determined to be >100 mg a.s./L, with a 96 hour NOEC of 100 mg glyphosate a.s./L.

This study is considered valid and the acute LC₅₀ value for common carp exposed to glyphosate acid was determined to be >100 mg a.s./L (nominal) and can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point	CA 8.2.1/014
Report author	1973 Information not available 95-00015
Report year	1973
Report title	Information not available 95-00015
Report No	95-00015
Document No	- 3000
Guidelines followed in study	Information mentioned in the Monographs
	The data presented below were generated in accordance with OECD-
	or equivalent guidelines.
GLP	No, GLP was not compulsory at the time the study was performed
Previous evaluation	Yes, accepted in RAR (2015)?
Short description of	Toxicity of technical glyphosate (purity> 94%) to aquatic organisms
study design and	(Cyprinus carpio) in a 96 hours static test
observations:	20,38
Short description of results:	$LC_{50} = 115 \text{ mg a.e.}$
Reasons for why the	The full study report is not available to the applicant. However these
study is not considered	data were provided in the Monograph 2001 and relied upon in the
relevant/reliable or not	previous evaluation, RAR (2015).
considered as key	previous evaluation, RAR (2015).
study:	
Reasons why the study report	The notifier has no access to this study report. Since the study was
is not available for submission	part of the earlier data package available to the former RMS of the
.8.	active substance glyphosate, the AGG would have to send a "request for administrative assistance (Art. 39 of Regulation (EC) No.
	\$107/2009) to the BVL
Category study in AIR	Category 4a
dossier (L docs)	emogery is
Category study in AIR 5 Mark of the dossier (L docs) Glyphosate Renewal Group AIR 5 – July 2020	
Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

1. Information on the study

Data point:	CA 8.2.1/015
Report author	
Report year	2000
Report title	Acute Toxicity of Glifosate Técnico Nurfarm to Zebrafish
	(Brachydanio rerio)
Report No	RF-D61.47/99
Document No	
Guidelines followed in study	OECD Guideline 203 (1993)
Deviations from current test	Deviation compared with OECD 203 none
guideline	\$\cdot\cdot\cdot\cdot\cdot\cdot\cdot\cdot
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing	Yes
facilities	The Police
Acceptability/Reliability	Supportive SS SS SS
Category study in AIR 5 dossier	Category 2b
(L docs)	in 8 th

Full summary of the study according to OECD format 2.

Executive Summary

The acute effects of glyphosate technical on zebra fish (Brachdanio rerio – also known as Danio rerio) were evaluated in a 96-hour semi-static toxicity test, 48 hour media renewal) conducted at nominal test concentrations of 10, 32, 56, 100, 180, 320 mg a,s./L. A control (reconstituted water) was also prepared. Vessels were prepared in duplicate with ten fish per vessel.

Observations for fish mortality and sub-lethal effects were performed at 3, 24, 48, 72 and 96 hours after the start of the test (fish addition). Dissolved oxygen, pH and temperature were measured and recorded daily in each test vessel. Glyphosate technical concentrations were measured in new and old control and test media on each day of the test. Glyphosate technical was not detected in the control group. Overall mean measured concentrations of gryphosate technical ranged between 95.9 and 108.8 % of nominal concentrations.

During the 96-hour exposure period to glyphosate technical, at nominal concentrations up to 56 mg a.s./L, there were no sub-lethal effects or mortality recorded. At the concentration of 100 mg a.s./L, there was 15 % mortality with hyperactivity observed in test fish at 48 hours onwards. At a concentration of 180 mg a.s./L and above, there was 100% mortality observed after 24 hours.

The 96 hour LC₅₀ for zelora fish exposed to glyphosate technical was determined to be 122.91 mg a.s./L nomination of the state of the (nominal) with a 95% confidence interval of 111.97 to 134.92 mg a.s./L. The 96-hour NOEC was 56 mg a.s./L (nominal concentrations of glyphosate technical).

I. MATERIALS AND METHODS

A. MATERIALS	<u> </u>			
1. Test material:	Glyphosate Tecnico Nufarm			
Test item:	Glyphosate Tecnico Nufarm			
Description:	White powder			
Lot/Batch #:	037-919-113			
Purity:	Glyphosate Tecnico Nufarm White powder 037-919-113 95.0 % a.s. (nominal), 95.49 % a.s. (analysed)			
	Vehicle: Reconstituted water			
2. Vehicle and/or positive control:	Vehicle: Reconstituted water Positive control: Potassium dichromate (R ₂ Cr ₂ O ₇)			
3. Test organism:	Zebra fish (<i>Brachydanio rerio</i>)			
Species:	Zebra fish (Brachydanio rerig)			
Age:	Not stated " S S			
Size:	Not stated			
Body weight of the animals:	Not stated 0.191 -0.239 g			
Y 1'	(0.38 to 1.44 g fish (b) 10 specimens exposed in 3 L test			
Loading:	solution & S. S. &			
Source:	In-house culture, previously obtained from the commercial			
Source.	supplier			
Diet/Food:	no feeding during the total test period			
Acclimation period:	72 h (to dilution water) prior to the test initiation (no feeding			
•	24 hyprior to test start and during the test)			
4. Environmental conditions:				
Temperature:	24.1 – 24.5 °C			
Photoperiod:	16 hours			
Photoperiod: pH: Dissolved oxygen: Conductivity:	Control (start – 96 h): 7.4 – 7.5			
	10 mg/L (start – 96 h): 7.3 – 7.1			
	32 mg/L (start – 96 h): 7.0 – 6.6			
pH:	56 mg/L(start – 96 h): 6.5 – 5.3			
E Site	100 mg/L (start – 96 h): 5.1– 4.8			
S. Z. S	180 mg/L (start – 24 h): 4.1 – 4.0			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	320 mg/L (start – 24 h): 3.5 – 3.6			
Dissolved ovygen	$4.9 - 5.8 \text{ mg O}_2/L$			
Dissolved oxygen.	(61.72 % - 73.06 % of saturation value at 24.5 °C)			
Conductivity	691 - 711 μS/cm			
Hardness:	229.7 – 249.9 mg CaCO ₃ /L.			
5. Dates of experimental work:	18 th October to 22 nd October 1999			

### **B. STUDY DESIGN**

Experimental treatments: Based on the results of a range finding test, a definitive toxicity test was performed with glyphosate technical at nominal concentrations of 10, 32, 56, 100, 180, 320 mg a.s./L in a semi-static test setup, with test media renewal after 48 hours. A negative control (reconstituted water only) was also prepared. There were two vessels per treatment, containing ten fish each (4000 mL glass vessels containing 3000 mL test medium).

**Observations:** All fish were observed for sublethal effects and mortality after 3, 24, 48, 72 and 96 hours. Temperature, pH-value and oxygen saturation of test solutions were measured on a daily basis. Weight measurements were conducted of each individual fish at test initiation. Samples of test media were analysed using HPLC analysis at test initiation and after 48 and 96 hours.

Analytical procedures: Aliquots of exposure concentrations were collected at each test solution renewal. The active ingredient was analysed by Liquid Chromatography HP 1050 (according to SOP-M.365 -Determination of Active Ingredient Metsulfuron metil in Formulation).

Statistical calculations: LC₅₀ values, along with respective 95% confidence limits were calculated using the Trimmed Spearman-Karber Method. The NOEC was determined by visual interpretation of the mortality and observation data.

### II. RESULTS AND DISCUSSION

A. FINDINGS

Analytical data: Mean measured concentrations of glyphosate and ranged between 95.5 % and 108.8 % of the nominal test concentrations. As values were between 80 and 120% of nominal, the ecotoxicological endpoints were evaluated using nominal test item concentration.

Table 8.2.1-35: Analytical results

Nominal concentration of glyphosate technical [mg a.s./L]	Mean measured concentration of glyphosate technical [mg a.s./L]	% of nominal
Dilution water control	E 15 1 0	-
10	10.83	108.3
32	33.28	104.0
56	58.37	104.2
100	108.80	108.8
180	171.96	95.5
320 5 6	346.34	108.2

The 96 h LC50 and corresponding NOEC values based on nominal concentrations are given below.

Table 8.2.1-36; Endpoints

Endpoints (96 h)	Glyphosate technical [mg a.s./L]
LC ₅₀ (95% CI)	122.91 (111.97 – 134.92)
NOEC	56

CD Confidence interval

### **B. OBSERVATIONS**

At the 180 mg a.s./L concentrations and higher, 100% mortality was observed after 24 hours exposure to glyphosate technical. At 100 mg a.s./L, there was 20% mortality after 72 hours and 30 % mortality after 96 hours, with hyperactivity observed in test fish at 48 hours onwards. At 56 mg a.s./L and lower, no fish mortalities or sub-lethal effects were observed throughout the test period.

The biological observations recorded during the test are presented in the table below.

Table 8.2.1-37: Lethal effects of glyphosate acid to zebra fish

Nominal concentration of		Number of dea	d fish and obse	S	
glyphosate technical [mg a.s./L]	3 h	24 h	48 h	72 h.s	96 h
Control	0	0	0	57 6 OC	0
10	0	0	0 50	estilia 0	0
32	0	0	0 2 2	₹ ⁰ 0	0
56	0	0	10 7 10 P	0	0
100	0	0	A AHA	2 HA	3 HA
180	0 LE	10 kilin	0 K 10	10	10
320	9 LE	10 A 8	10	10	10

No. The 96 h  $LC_{50}$  (95% CL) for the reference product was calculated to be 79.54 (68.87 – 91.88) mg/L based on nominal concentrations.

ill's

All validity criteria according to OECD 203 were fulfilled, as mortality in control group did not exceed 10 % (or one fish if less than ten are used), dissolved oxygen concentration was  $\geq$  60 % of air saturation and constant exposure conditions have been maintained.

### III. CONCLUSIONS

# 3. Assessment and conclusion Assessment and conclusion by applicant:

The 96 hour LC₅₀ for zebra fish (Brachydanio rerio) exposed to glyphosate technical was 123 mg a.s./L (nominal) with a 95% confidence interval of 111.97 to 134.92 mg a.s./L. All validity criteria according to OECD 203 were fulfilled. The 96-hour NOEC was 56 mg a.s./L (nominal concentration of glyphosate technical).

Since the analytical methods and substance verification were not documented in detail the study is therefore considered as supportive for the risk assessment.

### Assessment and conclusion by RMS:

loss of equilibrium

HA hyperactivity

### 1. Information on the study

Data point:	CA 8.2.1/016
Report author	
Report year	1993
Report title	Acute Toxicity Testing in Fish, Test Article: 'Glyphosate isopropylamine salt'
Report No	80-91-2328-02-93
Document No	
Guidelines followed in study	OECD Guideline 203; EEC Directive 92/69
Deviations from current test guideline	Deviations to OECD 203 (2019): Major: - None. Minor: - Test species: Leuciscus idus - Loading rate: slightly above 1 g fish/L (1.065 g fish/L)
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes OF THE STATE O
Acceptability/Reliability	Valid
Category study in AIR 5 dossier (L docs)	Category 2a

### 2. Full summary of the study according to OECD format

### **Executive Summary**

The effects of glyphosate isopropylamine salt on golden orfe (*Leuciscus idus*) were evaluated in a 96-hour static toxicity test. The toxicity test was performed using nominal concentrations of 498, 887, 1578, 2809 and 5000 mg test item/L, corresponding to 307, 546, 972, 1730 and 3080 mg glyphosate isopropylamine salt/L (mg a.s./L) or 227, 405, 720, 1282 and 2282 mg glyphosate/L (mg a.e./L). Further a dechlorinated and deionised tap water control was used. Ten fish were exposed to each treatment level.

Mortality was recorded after 2, 4, 24, 48, 72 and 96 hours after the start of the test. Records on visible abnormalities were equally made. At termination of the test, all animals were weighed and measured.

Analytical control measurements of the actual concentrations of the test item were performed by mean of HPLC analysis. Glyphosate isopropylamine salt levels were determined based on the concentrations of glyphosate. Three representative concentrations (498, 1578 and 5000 mg test item/L, corresponding to 307, 972 and 3080 mg a.s./L or 227, 720 and 2282 mg a.e./L) were analysed at 24 h intervals.

At and below the nominal concentration of 5000 mg test item/L, no mortality was observed during the exposure period. In comparison to the control group, no abnormal effects were seen at or below the highest concentration rested. All validity criteria according to the guideline OECD 203 were fulfilled.

In a static acute toxicity study of glyphosate isopropylamine salt, the LC₅₀ (96 h) for golden orfe (*Leuciscus idus*) was determined to be > 5000 mg test item/L, corresponding to 3080 mg glyphosate isopropylamine salt/L (mg a.s./L) or 2282 mg glyphosate/L (mg a.e./L) (nominal). The NOEC was determined to be  $\geq$ 5000 mg test item/L, corresponding to  $\geq$ 3080 mg glyphosate isopropylamine salt/L or  $\geq$  2282 mg glyphosate (mg  $\approx$  L) (nominal). The study is considered valid.

### I. MATERIALS AND METHODS

### A. MATERIALS

### 1. Test material:

Test item:	Glyphosate isopropylamine salt			
Description:	viscous liquid			
Lot/Batch #:	01/06/93			
Purity:	01/06/93 61.6% Glyphosate isopropylamine salt			
Density:	1.23 g/cm ³ at 20°C			
2. Vehicle and/or positive control:	Vehicle: dechlorinated deionised tap water  Positive control: none			
3. Test organism:				
Species:	Golden orfe (Leuciscus idus)			
Age:	not stated			
Size and Weight:	5.90 cm (mean length of 10 representative individuals), 2.13 g mean body weight			
Loading:	10 L for 5 fish (1.065 g.fish/L)			
Source:	8 .5 .0			
Diet/Food:	no feeding during test			
Acclimation period:	≥ 48 h in a 250 L glass aquarium under general test conditions			
Body weight of the animals:	2.13 g (mean body weight of all individuals)			
4. Environmental conditions:				
Temperature:	188-31.6°C			
Photoperiod:	6 Rours light / 8 hours dark, 600 – 800 lux			
pH:	₹5 – 8.5			
Dissolved oxygen:	$>$ 60% of air saturation (approx. 6.0 mg $O_2/L$ )			
Conductivity:	not stated			
Hardness:	14° dH (1dH= 10 mg CaO/L)			
5. Experimental dates of work:	03 rd September to 19 th September 1993			

# B. STUDY DESIGN

### Experimental treatments

Based on the results of a range finding test, the definitive toxicity test was performed using nominal

In addition, a controus.

In addition, a con

the concentrations of glyphosate. Three representative concentrations (498, 1578 and 5000 mg test item/L, corresponding to 307, 972 and 3080 mg a.s./L or 227, 720 and 2282 mg a.e./L) were analysed at 24 kg intervals.

Statistical calculations: Descriptive statistics

### II. RESULTS AND DISCUSSION

### A. FINDINGS

The LC₅₀ values are given below based on nominal concentrations.

Table 8.2.1-38: Endpoints

Endpoints (96 h)	Test item [mg/L]	Glyphosate isopropylamine salt [mg a.s./L]	Glyphosate [mg a.e./L]
LC ₅₀	>5000	>3080	>2282
NOEC	5000	30800,90	2282
LOEC	5000	% 3080c	2282

Analytical data: Analytical control measurements were performed on three representative concentration levels of glyphosate isopropylamine salt, at 498, 1578 in test item/L and 5000 mg test item/L. Before introduction of the fish 81.8%, 94.6% and 96.2% of graphosate were recovered at 498, 1578 and 5000 mg test item/L, respectively. In the aged test media 85.3%, 103.9% and 90.8% of the nominal concentration were recovered. Consequently, during the test period of 96 hours the fish were exposed to a mean concentration of 93.3% (average for test concentrations of 498, 1578 and 5000 mg test item/L, respectively) of nominal concentration.

As the mean measured content of the test deep always ranged between 80 and 120% of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

Table 8.2.1-39: Analytical results

	Nominal concentration of the test item [mg/L]	Nominal concentration of glyphosate [mg_a.e./L]	Time (hours)	Measured concentration of glyphosate [mg a.e./L]	% of nominal
	50,77		0	186	81.8
	498	227	48	194	85.5
	2,5		96	194	85.3
	90,11		0	681	94.6
	1578	720	48	665	92.4
S. F.		96	748	103.9	
	19 10 10 10 10 10 10 10 10 10 10 10 10 10		0	2196	96.2
	5000	2282	48	2215	97.1
			96	2072	90.8
Se Ve	498  1578  5000  B. OBSERVATIONS  Clinical observations:				
10 10 D	Glyphosate Renewal Group AIR 5	– July 2020		Doc ID: 110054-MC	CA8_GRG_Rev 1_Jul_2020

At or below the nominal concentration of 5000 mg test item/L, no mortality was observed during the exposure period.

In comparison to the control group, no abnormal effects were seen at or below the concentration of 5000 mg test item/L.

Table 8.2.1-40: Lethal effects of glyphosate isopropylamine salt to golden orfe

	Control				20.8	
Test item [mg/L]	-	498	887	1578	2809	5000
Glyphosate isopropylamine salt [mg a.s./L]	-	307	546	972	· c9730	3080
Glyphosate [mg a.e./L]	-	227	405	720	© 1282	2282
Mortality (2-4 h) [%]	0	0	0	70 E	0	0
Mortality (24 h) [%]	0	0	0	& O	0	0
Mortality (48 h) [%]	0	0	0 %	(0, 00)	0	0
Mortality (72 h) [%]	0	0	04,50	© Q 0	0	0
Mortality (96 h) [%]	0	0	0, 40 %	0	0	0

All validity criteria according to OECD 203 were fulfilled, as mortality in control group did not exceed 10 % (or one fish if less than ten are used), dissolved oxygen concentration was  $\geq$  60 % of air saturation and constant exposure conditions have been maintained.

### III. CONCLUSIONS

### 3. Assessment and conclusion

### Assessment and conclusion by applicant;

In a static acute toxicity study of glyphosate asopropylamine salt, the LC₅₀ (96 h) for golden orfe (*Leuciscus idus*) was determined to be 5000 mg test item/L, corresponding to 3080 mg glyphosate isopropylamine salt/L (mg a.s./L) or 2282 mg glyphosate/L (mg a.e./L) (nominal). The NOEC was determined to be  $\geq$ 5000 mg test item/L, corresponding to  $\geq$ 3080 mg glyphosate isopropylamine salt/L or  $\geq$  2282 mg glyphosate (mg a.e./L) (nominal).

This study is considered valid and the acute  $LC_{50}$  value for golden orfe exposed to glyphosate isopropylamine salt was determined to be >2282 mg a.e./L (nominal) and can be used in risk assessment.

### Assessment and conclusion by RMS:

### M-CA, Section 8 Page 117 of 847

### 1. Information on the study

Data point:	CA 8.2.1/017
Report author	
Report year	1998
Report title	96-Hour Acute Toxicity Study in Rainbow trout with (Aminomethyl)Phosphonic Acid (Static)
Report No	232469
Document No	
Guidelines followed in study	EEC directive 92/69, Part C.1 OECD guidelines No. 203 (1992).
Deviations from current test guideline	Deviation compared with OECD 203 – none
<b>Previous evaluation</b>	Yes, accepted in RAR (2015).
GLP/Officially recognised testing facilities	Yes Sold Sold Sold Sold Sold Sold Sold Sold
Acceptability/Reliability	Valid & STATES
Category study in AIR 5 dossier (L docs)	Category 2a

# 2.Full summary of the study according to OECD format

### **Executive Summary**

The toxicity of AMPA (Aminomethyl- phosphonic acid) on rainbow trout (*Oncorhynchus mykiss*) was determined in a 96-hour static toxicity test conducted as a limit test at a nominal test concentration of 100 mg/L. A negative control (dilution water only) was prepared in parallel. Seven fish were added to the control and each AMPA treated vessel. Observations for sub-lethal effects and mortality were performed at 2, 24, 48, 72 and 96 hours after the

start of the test (fish addition). Dissolved oxygen, pH and temperature were measured and recorded daily in each test chamber. AMPA concentrations were measured at 0 (freshly prepared test media before fish addition) and 96 hours (test end). AMPA was not detected in the control group. Mean measured concentrations ranged between \$750.405% of nominal concentrations. Toxicity was evaluated based on the nominal concentrations.

There were no sub-lethal effects or fish mortality observed at the nominal 100 mg/L concentration during the 96 h exposure to AMPA. All validity criteria according to the guideline OECD 203 were fulfilled.

### I. MATERIALS AND METHODS

# A. MATERIALS

1. Test material:	
Test item::	Aminomethyl - phosphonic acid (AMPA)
Description:	White powder
Lot/Batch #:	A010047101
Purity	99%
8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Vehicle: Tap water
2 Vehicle and/or positive control:	Positive control: Pentachlorophenol
3. Test organism:	
Species:	Rainbow trout ( <i>Oncorhynchus mykiss</i> )

И-СА	, Section 8	
Page	118 of 847	

Age:	Juveniles
Size:	4.14 ± 0.34 cm
Body weight of the animals:	$0.54 \pm 0.20$ g (mean weight of 10 representative individuals)
Loading:	0.38 g fish/litre (7 fish per 10 litres of test medium)
Source:	
Diet/Food:	Last feeding at about 30 hours prior to the test and no feeding during the total test period
Acclimation period:	At least 12 days after delivery
4. Environmental conditions:	
Temperature:	14.2 – 14.8°C
Photoperiod:	16 hours light / 8 hours dark
pH:	7.3 – .8.4
Dissolved oxygen:	$9.3 - 9.7 \text{ mg O}_2/L$
Conductivity:	Not stated STATE STATE OF THE S
Hardness:	2.4 mmol/L
5. Experimental dates of work:	24th May to 29th \$998 5

B. STUDY DESIGN

Experimental treatments: The test was conducted as a static (without renewal) 96 hour limit test at a nominal test concentration of 100 mg/L of AMPA; based on the results of a range finding test. The test media was prepared by direct addition of AMPA to tap water. A negative control (dilution water) was prepared in parallel. Single vessels (18-L glass aquariums) containing 10 litres of control, or test media were prepared. Seven fish were added to each vessel at the start of the test.

**Observations:** All fish were observed for sub-lethal effects and mortalities after 2, 24, 48, 72 and 96 hours. Temperature, pH-value and oxygen saturation of the test solutions were measured on a daily basis. Hardness of the test water was measured at test initiation only.

Prior to the start of the test, ten representative fish from the fish stock used in the test were weighed (wet weight (g)) and measured (total length (cm)).

Samples of control or test media were taken at test start (0 hours) before fish addition and at 96 hours (test end). Concentrations of AMPA in each sample were determined using an HPLC method of analysis.

Statistical calculations: Since the mortality was < 50%, no statistical calculation of LC₅₀ values was possible. Therefore, NOEC and LC₅₀ were determined by visual interpretation of the mortality and observation data.

### II. RESULTS AND DISCUSSION

Analytical data: Measured concentrations of AMPA in media samples taken at the start of the test before fish introduction were 105% of nominal. At the end of the test, concentrations in the aged test media were 97 % of nominal.

Table 8.2.1-41: Analytical results

Nominal concentration of AMPA [mg/L]	Time [hours]	Measured concentration of AMPA [mg/L]	% of nominal
water control	0	n.d.	27,410
100	0	105	ુર્ગ <b>્ક</b>
water control	96	n.d.	8 4 -
100	96	96.7	⁹⁷ 97

n.d. = not determined

The mean measured concentration of AMPA ranged between 80 and 120% of nominal, therefore the ecotoxicological endpoints were evaluated based on the nominal AMPA concentrations.

The 96 hour LC₅₀ and NOEC values for rainbow trout exposed to AMPA are given below.

Table 8.2.1-42: Endpoints

Endpoints (96 h)	Aminomethyk-phosphonic acid (AMPA)
LC ₅₀	J. 100
NOEC	£6,65,68 ≥100

Reference test: The determined 96 h-LC₅₀ for the reference item pentachlorophenol was 0.30 mg/L, which correspond well with the historical range of 0.40 \$0.46 mg/L. Thus, the sensitivity of trout from the present batch corresponded with the historical data.

B.OBSERVATIONS
There were no sub-lethal effects or mortality observed in fish exposed to AMPA during the 96 hours limit test at 100 mg/L.

All validity criteria according to OECD 203 were fulfilled, as mortality in control group did not exceed 10% (or one fish if less than ten are used), dissolved oxygen concentration was  $\geq$  60% of air saturation and constant exposure conditions have been maintained.

### III. CONCLUSIONS

### 3. Assessment and conclusion

### Assessment and conclusion by applicant:

Under the conditions of the present test AMPA induced no visible effects in rainbow trout at 100 mg/L (nominal). The 96 h LC₅₀ for rainbow trout exposed to AMPA was determined to be >100 mg/L (nominal) The 96 hour NOEC for rainbow trout exposed to AMPA was considered to be ≥100 mg/L (nominal) the maximum concentration tested.

This study is considered valid and the acute LC₅₀ value for rainbow trout exposed AMPA was determined to be \$100 mg/L (nominal) and can be used in risk assessment.

### Assessment and conclusion by RMS:

Annex to Regulation 283/2013 Glyphosate M-CA, Section 8 Page 120 of 847

### 1. Information on the study

	Data point	CA 8.2.1/018
	Report author	Anonymous
		1004
	Report title	No information available
	Report No	94-00499
	Document No	- 88.5
	Guidelines followed in study	No information available 94-00499  Information mentioned in the Monograph 2001: The data presented below were generated in accordance with OECD-or equivalent guidelines.  Information mentioned in the Monograph: The data presented below were generated in accordance with [] the appropriate GLP-requirements.  Yes, accepted in RAR (2015).
	GLP	Information mentioned in the Monograph: The data presented below were generated in accordance with [] the appropriate GLP-requirements.
	<b>Previous evaluation</b>	Yes, accepted in RAR (2015).
	Short description of study design and observations	Acute toxicity of the metabolite aminomethyl phophenic acid (AMPA) to Rainbow trout ( <i>Oncorhynchus mykiss</i> ) static test, 96 hours.
	Short description of results	hours.  Test item: AMPA  LC ₅₀ 96 h > 180 mg/L  NOEC 96 h > 8 mg/L  The full study report is not available to the applicant. However, these
	Reasons for why the study is not considered relevant/reliable or not considered as key study	data were provided in the Monograph 2001. Study was considered as valid in the Monograph 2001 but it was not mentioned in the RAR 2015. The study is therefore not considered valid.
	Reasons why the study report is not available for submission	The notifier has no access to this study report. Since the study was part of the earlier data package available to the former RMS of the active substance glyphosate, the AGG would have to send a "request for administrative assistance (Art. 39 of Regulation (EC) No. 1107(2009) to the BVL.
	Category study in AIR 5 dossier (L docs)	Category 4b
	Category study in AIR 5 dossier (L docs)  Republic of the control	
0 to	Glyphosate Renewal Group AIR 5 – July	2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2

### 1. Information on the study

Data point:	CA 8.2.1/019
Report author	
Report year	1991
Report title	Acute Toxicity of AMPA to Rainbow Trout (Oncorhynchus mykiss)
Report No	AB-90-402
Document No	-
Guidelines followed in study	OECD Guideline 203; Guideline 72-1; U.S. EPA-FIFRA, 40 CFR, Section 758.145
Deviations from current test guideline	Deviation compared with OECD 203 (2019) none.
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing facilities	Yes
Acceptability/Reliability	Valid
Category study in AIR 5 dossier (L docs)	Category 2a

### 2. Full summary of the study according to OECD format

### **Executive Summary**

The effects of AMPA on rainbow trout (*Oncorhynchus makiss*) were evaluated in a 96-hour static toxicity test. The toxicity test was performed with AMPA at nominal concentrations of 32, 56, 100, 180, 320, 560 and 1000 mg/L. In addition, a control group was exposed to dilution water (soft blended water). There was one vessel per treatment containing ten fish (49 L glass vessels containing 15 L test medium).

The fish mortality, loss of equilibrium, light discoloration, dark discoloration, fish on the bottom of test chamber, surfacing, quiescence, erratic swimming, excitability and/or laboured respiration were observed in all test concentrations and the control every 24 hours until finalisation of the test (24, 48, 72 and 96 hours). Dead individuals were removed from the test vessels after each observation.

80% and 90% mortality after 96 hours was observed in the 560 and 1000 mg/L test item treatments, respectively. Laboured respiration was noted in the 56 and 100 mg/L test item treatments only at 3 hours of exposure to AMPA. No abnormal effects were noted in these two chambers after this time. All validity criteria according to the OECD guideline 203 were fulfilled.

In a static acute fish toxicity test, the LC₅₀ (96 h) for rainbow trout (*Oncorhynchus mykiss*) exposed to AMPA was determined to be \$20 mg/L. The NOEC of 32 mg/L is based on the assessment after 3 hours, therefore the relevant NOEC at 96 h was determined to be 100 mg/L. The study is considered valid.

### I. MATERIALS AND METHODS

### A. MATERIALS

1. Test material:	
Test item?	AMPA ((Aminomethyl)phosphonic acid)
Description:	White powder
Lot Batch #:	HET-9001-M63T
Purity:	94.38%
	Vehicle: Soft blended water
2. Vehicle and/or positive control:	Positive control: none
3. Test organism:	

Species:	Rainbow trout (Oncorhynchus mykiss)
Age:	not stated
Size:	$3.9 \pm 0.3 \text{ cm}$
Body weight:	$0.79 \pm 0.19 \text{ g}$
Loading:	0.53 g/L test solution
Source:	
Diet/Food:	none
Acclimation period:	72 h (To the test temperature) prior to the test initiation (No feeding during the acclimation period)
4. Environmental conditions:	13 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Temperature:	12°C
Photoperiod:	16 hours light daily, with 30 minutes transition period (110 footcandles)
pH:	4.2 - 7.6.
Dissolved oxygen:	7.1 - 9.4 mg/L (69 – 91% saturation at 12°C)
Conductivity:	130 μMhos/cm
Hardness:	40-48 mg CaCQS/LS &
5. Dates of experimental work:	26th to 30th October 1990

B. STUDY DESIGN
Experimental treatments
Based on the results of a range finding test, definitive toxicity test was performed with AMPA at nominal concentrations of 32, 56, 100, 180, 320, 560 and 1000 mg/L with one vessel per treatment, each containing ten fish (19 L glass vessels containing 15 L test medium).

Observations
Mortality, loss of equilibrium, light discoloration, dark discoloration, fish on the bottom of test chamber, surfacing, quiescence, erratic symming, excitability and/or laboured respiration were monitored in all test concentrations and the control every 24 hours for 96 hours test duration (24, 48, 72 and 96 hours). Any dead individuals were removed from the test vessels after each observation. Temperature, pH-value and oxygen saturation of the test solutions were measured on a daily basis in all test concentrations with live fish. Hardness of the test water was measured at the start of the test. Mortality was recorded on each observation date. Records on visible abnormalities were equally made. Weight and length measurements were made on the control group of fish at the termination of the test. Analytical control measurements of the actual concentrations of the test item were performed and the results are reported in a separate study (study number: MD-90-403).

### Statistical calculations

The LC₅₀ values, along with their respective confidence limits were calculated using a computerized program developed by Stephan et al. (1978) (A computer program for calculating an LC₅₀. U.S.

FINDINGS

Analytical data: According to the results presented in the analytical study (study number ML-90-403), mean recovery of the test item was  $102 \pm 1.6\%$  of the nominal test concentrations. Therefore, the ecotoxicological endpoints were based on nominal concentrations of the test item.

According to the current requirements the 3 hours observation time point is not relevant, and therefore based on 24h and 72h observations, the NOEC can be cat to 100 m/T. observation part of the summary). The LC₅₀ and NOEC values are given below based on normal concentrations.

Table 8.2.1-43: Endpoints

Endpoints (96 h)	AMPA [mg/L]
LC ₅₀ (95% CI)	520 (410 - 660)
NOEC	100

CI= Confidence interval

### **B. OBSERVATIONS**

Environmental observations:
The pH decreased as the concentration of AMPA increased.
Clinical observations:
80% and 90% mortality was observed in the 560 and 1000 mg/L test concentrations after 96 hours exposure to AMPA, respectively. Laboured respiration was noted in the 56 and 100 mg/L concentrations only after 3 hours of exposure to AMPA. No abnormal effects were noted in these two chambers after this time. At or above the concentration of 320 mg/L, different abnormalities were observed and reported in the table below.

Table 8.2.1-44: Lethal effects of AMPA to rainbow trout

	Control		10.50 O	A	MPA [mg/	L]		
	-	32	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	100	180	320	560	1000
Mortality (3h) [%]	0	0 1101	6,00	0	0	0	0	0
Symptoms (3h) [%]	1001	1001	60 ¹ 40 ²	$\frac{30^{1}}{70^{2}}$	$\frac{10^{1}}{90^{2}}$	100 ²	$100^{2}$	1002
Mortality (24h) [%]	0 ,	@.@0.kg	0	0	0	0	0	10
Symptoms (24h) [%]	100127	2 10001	1001	1001	$90^{1}$ $10^{2}$	60¹ 40²	$\frac{20^{1}}{80^{2}}$	1002
Mortality (48h) [%]	\$ 60°	0	0	0	0	0	10	10
Symptoms (48h) [%]	\$ 1900 L	100¹	100¹	100¹	1001	1002	1002	$100^{2}$
Mortality (72h) [%]	01.00	0	0	0	0	0	20	70
Symptoms (72h) [%]	100 ¹	1001	1001	1001	90¹ 10²	1002	100 ²	1002
Mortality (96h) 1%	0	0	0	0	0	0	80	90
Symptoms (96h)	1001	1001	1001	1001	1001	1002	1002	1002

All validity criteria according to OECD 203 were fulfilled, as mortality in control group did not exceed 10% (or one fish if less than ten are used), dissolved oxygen concentration was  $\geq$  60% of air saturation and constant exposure conditions have been maintained

²affected (this could be surfacing; on bottom of test vessel, quiescent, laboured respiration and loss of equilibrium; dark discoloration)

### III. CONCLUSIONS

### 3. Assessment and conclusion

### Assessment and conclusion by applicant:

NNO In a static acute fish toxicity test of AMPA, the LC₅₀ (96 h) for rainbow trout (Oncorhynchus mykass) exposed to AMPA was determined to be 520 mg/L. The NOEC (96 h) was determined to be 100 mg/L. This study is considered valid and the acute LC₅₀ value for rainbow trout exposed to AMPA was determined to be 520 mg/L (nominal) and can be used in risk assessment.

### **Assessment and conclusion by RMS:**

### 1. Information on the study

Data point:	CA 8.2.1/020
Report author	in the second se
Report year	1993
Report title	AMPA: Acute toxicity to rambow trout (Oncorhynchus mykiss)
Report No	X582/A 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<b>Document No</b>	
Guidelines followed in study	OECD 203 Common State of Commo
Deviations from current test guideline	Deviations to OECD 203 (2019): none
<b>Previous evaluation</b>	Yes, accepted in RAR (2015).
GLP/Officially recognised testing facilities	Yes ( Q
Acceptability/Reliability	Valid
Category study in AIR 5 dossier (L docs)	Category 2a

Executive Summary
The effects of ANIPARAMETERS
Was evaluated to the state of the st The effects of AMPA technical (Aminomethylphosphonic acid) to rainbow trout (Oncorhynchus mykiss) was evaluated in a 96-hour static toxicity test conducted with nominal test concentrations of 18, 32, 56, 100 and 180 mg/L. Furthermore, a dilution water control was tested. Ten fish were exposed to each treatment (1 replicate per concentration).

Mortality was recorded, 24, 48, 72 and 96 hours after the start of the test. Records on visible abnormalities and temposited from 100 to 111% of nominal and doss of balance were recorded starting at a contract according to the guideline OECD 203 were fulfilled. were equally made. Dissolved oxygen, pH and temperature were measured and recorded daily in each test chamber. Fest item concentrations were verified at 0, 48 and 96 hours by HPLC. Mean measured concentrations ranged from 100 to 111% of nominal concentrations.

No mortality occurred during the 96 h exposure time. Sub-lethal effects like dark discolouration, sounding and doss of balance were recorded starting at a concentration of 32 mg test item/L. All validity criteria Solo Signal Sign

### I. MATERIALS AND METHODS

### A. MATERIALS

1. Test material:	
Test item::	AMPA technical (Aminomethylphosphonic acid)
Description:	
Lot/Batch #:	Not stated
Purity:	85%
2. Vehicle and/or positive control:	Not stated  Not stated  85%  Vehicle: Dechlorinated, filtered tap water property of the positive control: none
3. Test organism:	, O 10 00 00 00 00 00 00 00 00 00 00 00 00
Species:	Rainbow trout (Oncorhynchus mykiss)
Age:	juvenile Show
Size:	45 - 60 mm (mean: 50 mm) 5 50
Body weight of the animals:	1.14 – 2.82 g/ fish (means 1.70 g)
Loading:	0.85 g fish/L (in the dilution water control)
Source:	8.9.2
Diet/Food:	none none
Acclimation period:	18 days 15 15
4. Environmental conditions:	
Temperature:	14.2 ≤ 15.2°C
Photoperiod:	16 hours light / 8 hours dark with a 20 minute transition period
pH:	7.22 – 7.66
Dissolved oxygen:	≥9.4 - 10 mg O₂/L
Conductivity:	227 μS/cm³ in the dilution water
Hardness:	41.3 mg CaCO ₃ /L
5. Dates of experimental works	6 th December to 10 th December 1993

### В. STUDY DESIGN

### **Experimental treatments**

The toxicity test was performed using nominal concentrations of 18, 32, 56, 100 and 180 mg AMPA technical/L prepared sing dechlorinated and filtered tap water treated with ultraviolet steriliser.

was exposed to the test medium

per test concentration and one for the contro

and glass vessel containing 20 L test medium).

pregature, pH-value and oxygen saturation of test solutions were measured on a daily basis. Hardness and conductivity of the test water were controlled at test initiation.

Analytical control measurements of the actual concentration of the test item were performed by means of HPLC analysis at test start and after 48 and 96 hours.

Statistical calculations: Descriptive statistic

Glyphosate Renewal Group AIR 5

Annex to Regulation 283/2013 Glyphosate M-CA, Section 8 Page 126 of 847

### II. RESULTS AND DISCUSSION

### A. **FINDINGS**

The LC₅₀ values and the NOEC are given below based on nominal concentrations.

Table 8.2.1-45: Endpoints

Endpoints	AMPA technical [mg/L]
LC ₅₀ (24 h)	> 180
LC ₅₀ (48 h)	> 180
LC ₅₀ (72 h)	> 180
LC ₅₀ (96 h)	> 180
NOEC (96 h)	18 50 50 50

Analytical data:
The mean measured concentrations of AMPA technical ranged from 100 to 111 %.
As the mean measured content of the test item at

As the mean measured content of the test item always ranged between 80 and 120 % of nominal, the on Control of the Con ecotoxicological endpoints were evaluated using nominal concentrations of the test item. · si-

Table 8.2.1-46: Analytical results

Nominal concentration of AMPA technical [mg/L]	Measured concentration of AMRA technical [mg/L4]			Mean measured concentration of AMPA technical [mg/L]	% of nominal
[mg/L]	0 h	<b></b>	96 h		
Control	<7.9	16 ET 25	<7.9	<7.9	-
18	22	8 × 21	18	20	111
32	351	34 ¹	32	34	106
56	58	jiji 58	56	57	102
100	110 0	91	98	100	100
180	્કોં 90 ું	160	180	180	100

B. OBSERVATIONS AND MINISTRAL PROPERTY OF THE PROPERTY OF T No mortality occurred up to the highest test AMPA technical concentration of 180 mg/L. Sub-lethal effects like dark discologration, sounding and loss of balance were observed at 32, 100 and 180 mg/L respectively. The results of the test are depicted in the following tables.

scolor so of the state of the s

Nominal concentration of	Number of dead fish / observed symptoms (% affected)				
AMPA technical [mg/L]	24 h	48 h	72 h	96 h	
Control	0 / -	0 / -	0 / -	0 / 21 41	
18	0 / -	0 / -	0 / -	10 12 E	
32	0 / -	0 / -	0 / S, LB (11 – 30%)	0 S. LB, DC (11 – 30%)	
56	0 / -	0 / -	0/- &	0/-	
100	0 / -	0 / -	0 / S, LB (< 10%)	0 / S, LB (< 10%)	
180	0 / -	0 / -	07 8 (14 – 30%)	0 / S, LB (> 30%)	

S: Sounding DC: Dark colouration

LB: Loss of balance

All validity criteria according to OECD 203 were fulfilled, as mortality in control group did not exceed 10 % (or one fish if less than ten are used), dissolved oxygen concentration was ≥60 % of air saturation and constant exposure conditions have been maintained.

## III. CONCLUSIONS 1000

### 3. Assessment and conclusions

Assessment and conclusion by applicant:
The LC₅₀ (96 h) for rainbow trout exposed to AMPA technical was >180 mg/L (nominal). The NOEC after 96 h exposure to AMPA was 18 mg/L (nominal).

This study is considered valid and the acute LC₅₀ value for rainbow trout exposed to AMPA technical was >180 mg/L (nominal) and can be used in risk assessment.

### Assessment and conclusion by RMS:

### 1. Information on the study

Data point:	CA 8.2.1/021
Report author	Antunes, A. M. et al.
Report year	2017
Report title	Gender-specific histopathological response in guppies <i>Poecilia</i> reticulata exposed to glyphosate or its metabolite aminomethylphosphonic acid
Document No	DOI 10.1002/jat.3461 E-ISSN: 1099-1263
Guidelines followed in study	None
Deviations from current test guideline	Not applicable
GLP/Officially recognised testing facilities	No, not applicable
Acceptability/Reliability:	Yes/Reliable with restrictions

### 2. Full summary of the study according to OECD format

Ecotoxicity of glyphosate (GLY) and its metabolite aminomethylphosphonic acid (AMPA) was investigated in guppies, Poecilia reticulata. The median lethal concentration after 96 hours of exposure (LC₅₀, 96 h) of both test item was determined in male and female guppies

Both genders showed similar median lethal concentration (LC₅₀) at 96 hours for glyphosate and AMPA. The acute 96 hour-LC₅₀ of glyphosate obtained for male and female guppies P. reticulata were 68 38 mg/L (95 % C.I.: 64.59–73.24 mg/L and 70.87 mg/L (95 % C.I.: 65.91–76.26 mg/L), respectively. The 96 hour-LC₅₀ values for AMPA for male and female guppies were 180 mg/L (95 % C.I.: 175.12–184.54 mg/L) and 164.3 mg/L (95 % C.I.: 160.6–168.54 mg/L), respectively.

Materials and methods

Tested products; GLY and AMPA 96% and 99%, respectively, were purchased from Sigma-Aldrich (São Paulo, SP, Brazil). The stock solutions of GLY and AMPA were prepared in ultrapure water with a nominal concentration of 250 mg l⁻¹.

Animal collection and maintenance; P. reticulata used in the experiments was part of the animals group kept in the Aquatic Animal Biotery of the Cell Behavior Laboratory (Institute of Biological Sciences IV, Universidade Federal de Goiás, Goiânia, Brazil). All of them were 3-month-old F1 generation animals born in the biotery from a wild parental generation. 318 mature male and 318 mature female guppies (vitellogenic oocyte occurred) of an average weight of  $252 \pm 20$  mg and  $378.6 \pm 14.4$  mg, and total average length of  $2.98 \pm 0.3$  cm and  $2.47 \pm 0.2$  cm, respectively.

Toxicity test:  $LC_{50}$ ; For each experimental condition, eight males or eight females guppies were maintained in 2 liter tanks (4 fish L) and exposed to different nominal concentrations of GLY (50, 55, 60.5, 66.5 and 73.2 mg/L) or AMPA (86.8, 104.2, 125, 150 and 180 mg/L) during 96 h in the static test under 12: 12 h light/dark cycles. These concentrations were determined in the preliminary tests. The control group that consisted of eight fish kept in dechlorinated water. All treatments were performed in a triplicate design and the fish were not fed during the experimental period (USEPA, 1993). The mortality was reported at different exposure times (2, 4, 6, 8, 10, 12, 24, 48, 72 and 96 lp). Physical and chemical parameters of water were analyzed every morning and did not show any changes over the experimental period, such as temperature 24 ± 1 °C, dissolved oxygen 8 mg/L, ammonia 0.002 mg/L, pH 7.0 ± 1, nitrite 0.025 mg/L and nitrate 0.5 mg/L. Cumulative mortality data obtained at the end of the experiments (96 h) were analyzed by the trimmed Spearman–Karber method to estimate the LC₅₀ of a 96 h exposure to GLY and AMPA.

Statistical analysis; All statistical analyses were performed using the Statistica 7.0 software (Statsoft Inc., 2005, Tulsa, OK, USA). The differences between the treatments of the analyzed variables were identified using parametric tests (two-way ANOVA, followed by the Tukey's test) and/or non-parametric tests (Kruskal-Wallis), depending of the distribution of the data and homogeneity of variances (Shapiro-Wilk and Levene's tests). Linear and non-linear regression analyses were also applied to verify the relationship between variables.

### Results

Median lethal concentration ( $LC_{50}$ ); No mortality was observed for both genders in the control group during the experimental period of 96 h. The LC₅₀ results showed that the GLY is more toxic to the guppies than to its metabolite AMPA, whereas no significant difference was observed between the genders (P > 0.05). The GLY LC₅₀ values obtained for male and female P. reticulata were, respectively, 68.78 mg/L (95 % confidence interval = 64.59-73.24 mg/L) and 70.87 mg/L (95 % confidence interval = 65.91-76.26 mg/L). The AMPA (\$\infty\$) in turn, were 180 mg/L (95 % confidence interval = 175.12–184.54 mg/L) and 164.3 mg/L (95,% Confidence interval = 160.6–168.54 mg/L), respectively. The GLY and AMPA toxicity increased linearly with the increasing concentration for females (GLY: y = 0.6281x - 30.141, r = 0.96, P < 0.0000.05; ANPA: y = 0.150x - 11.193, r = 0.93, P < 0.05) and males (GLY: y = 0.666x - 30.653, r = 0.93, P < 0.05)

The results of the LC₅₀ values of GLY (male 68.78 mg/L and female 70.87 mg/L) and AMPA (male 180 mg/L and female 164.3 mg/L) based on the mortality test indicated a low sensitivity of *P. reticulata* in

comparison to the other teleost species, as reported by the USEPA. In addition, it was observed that the AMPA is less toxic to *P. reticulata* than GLY (male 2.6-fold, female 2.3-fold).

### Conclusion

The present study determined the acute 96 hour-LC₅₀ of glyphosate and AMPA. The glyphosate LC₅₀ values obtained for male and female guppies P. reticulata were 68.78 mg/L (95 % C.I.: 64.59-73 24 mg/L and 70.87 mg/L (95 % C.I.: 65.91–76.26 mg/L), respectively.

The 96 hour-LC₅₀ values for AMPA for male and female guppies were 180 mg/L (95 % 184.54 mg/L) and 164.3 mg/L (95 % C.I.: 160.6–168.54 mg/L), respectively.

### Assessment and conclusion by applicant:

The acute 96 hour-LC₅₀ values for male and female guppies P. reticulata after exposure to glyphosate were 68.78 mg/L and 70.87 mg/L, respectively. The acute 96 hour-LC₅₀ values for AMPA for male and female guppies were 180 mg/L and 164.3 mg/L, respectively.

In the material and methods part some important is missing. No information on preparation of test solution and application is given. Source and composition of media are unclear. Furthermore, there was no analytical verification of test concentrations reported. The study is considered as reliable with restrictions.

### 1. Information on the study

Data point:	CA 8.2.1/022 CA 8.2.1/023
Report author	Gholami, S.J. et al.
Report year	2013
Report title	Toxicity evaluation of Malathion, Carbaryle and Glyphosate in common carp fingerlings (Cyprinus carpio, Linnaeus, 1758)
Document No	ISSN: 2008-2525
Guidelines followed in study	OFCD 203
Deviations from current test guideline	None
GLP/Officially recognised testings facilities	No, not applicable
Acceptability/Reliability:	Yes/Reliable with restrictions

# 2. Full summary of the study according to OECD format

Fingerlings of the common carp (Cyprinus carpio, Linnaeus, 1758) are often exposed to a wide range of pesticides when they are released introduced into the sea at the estuaries of the rivers flowing into the Caspian Sea. The present study investigated effects of lethal concentrations (expressed as 96-hour LC_{50s}) and sublethat concentrations (determined by acetylcholinesterase assay) of glyphosate on these fingerlings. The results indicated that the 96-hour LC₅₀ of glyphosate for the fingerlings was 6.75 mg/L. In addition, the lowest observed effective concentrations (LOECs) (96-hour LC₁₀) was 5.548 mg/l for glyphosate.

, phosphoric acid, tris and hydrochloric acid were purchased using an ELISA Microplate Reader (ELx 808, BioTek). Chemicals: Sodium carbonate, sodium hydroxide, copper sulfate, potassium sodium tartrate, bovine serum albumin, phosphoric acid, tris and hydrochloric acid were purchased from the official representative of the German Company Merck in Iran. Glyphosate was purchased from Bazargan Kala (Iran). Absorbance was

Reactants: 0.1 mol phosphate buffer solution (PBS) (pH 7 with no Tritone), the Folin–Ciocalteu reagent (FCR) (diluted with an equal volume of distilled water), DTNB (dissolved in TRIS/HCl buffer) and

acetylthiocholine iodide were used in the experiments.

Two thousand fingerlings with the mean weight of  $2\pm0.4$  g were obtained from the Shahid Rajaee Fish Breeding and Rearing Center, Sari, Mazandaran Province, and were transferred to the Fish Breeding and Rearing Research Center in the Department of Fisheries at the College of Agriculture & Natural Resources (UTCAN) in University of Tehran (Karaj). In order to adapt to the new environmental conditions, the fish were kept in two 1000-liter fiberglass tanks for 15-20 days. The physicochemical parameters of water were controlled as follows: pH=7, total water hardness (CaCO₃) =175 mg/l, dissolved oxygen=more than 7 ppm and temperature= $20\pm2^{\circ}$ C. The stock solution of glyphosate was prepared with the concentration of 10,000 ppm.

Lethal concentration experiments (bioassays): To perform bioassay, the range of concentrations of glyphosate and the logarithmic distances were determined in a pilot test and then the main experiment was carried out. Based on the results of this pilot test, the fingerlings were exposed to the following concentrations of glyphosate for 96 hours: 5.5, 6.5, 7.5, 8.5, and 9.5 mg/l Effects and LC_{50s} were determined in accordance with the OECD Guidelines for the Testing of Chemicals (No. 203) in static water. Bioassay for each pesticide was performed on 150 fingerlings (a total of 450) that were randomly and equally put in fifteen 100-N fiberglass tanks (three replicates for each concentration with 10 fish in each tank). The experimental conditions were close to those during the adaptation period. The fingerlings were not fed during the experiment. All experimental groups were monitored twice a day and the behavior of the fingerlings was studied. Moreover, the number of deaths was recorded at 24, 48, 72, and 96 hours after the toxin was added.

Sublethal toxicity experiment: The fingerlings were randomly placed in nine 100-N fiberglass tanks. Each tank contained 40 fingerlings, and the experimental conditions were the same as in the previous experiments. As in the rearing and adaptation periods, the subjects were fed 2% of their body weight and the feeding was stopped 24 hours before they were killed. In the sublethal toxicity experiment, the fingerlings were exposed to three different concentrations of glyphosate, each with three replicates for 15 days. The treatments were as follows: 0 (control) 0.6, and 1.2 mg/l of glyphosate. These concentrations were determined based on the LC₅₀ values. About 10 % of the water in each tank was siphoned off every day in order to remove waste materials and reduce ammonia levels in the water. To maintain the stability of experimental conditions, the removed water was replaced by an equal volume of water with the initial concentrations of the pesticide.

Sampling and extract preparation (upper layer): A number of fingerlings from each treatment were sampled on the fifth, tenth, and fifteenth days after their first exposure to pesticides. Because of the very small size of the fingerlings, it was not possible to take blood or tissue samples. Therefore, they were beheaded and both parts (head and trunk) were frozen at -70° C to be later used for extract preparation. The obtained tissues were manually homogenized in 0.1 mmol PBS (pH 7 and containing 1 % of Tritone X-100). The samples were centrifuged and the resulting extract (upper layer) was removed to be used as the enzyme source.

Total protein assay and ACHE activity measurement: Total protein concentration in the tissues was measured by using the Lowry method at 540 nm utilizing an ELISA microplate reader. In this method, FCR was used as the color reagent. Protein concentration in tissue samples was then determined using the resulting curve and its linear equation. The specific activity of cholinesterase (in  $\mu$ U/min/mg protein) was measured based on Ellman's method at 420 nm using a microplate reader. To this end, a mixture of the extract (upper layer), 0.1 mol PBS, DTNB (Ellman's reagent) and acetylthiocholine iodide were added to each tube Finally, 100 ml of the final solution was poured into each well of the microplate and absorbance per minutes O.D. /min) was read.

Calculations and statistical analysis: The data obtained from the bioassay and mortality rate of the fingerlings determined by using the probit model were analyzed. The values obtained from bioassays were then estimated using the POLO-PC 2002 software (under license of the University of Tehran). The specific activity of the enzyme (in µU/min/mg protein) was calculated as the dependent variable. The data were statistically analyzed using two-way ANOVA. The concentrations of the pesticides and the durations of exposure to them were the independent variables. The difference between means was also evaluated using Duncan's test with type-I error level of 0.05.

### Results

Bioassay results: No mortality was observed during the adaptation period of the fingerlings. The results showed that their mortality rate increased with at the higher concentrations. Based on the mortality rates in the bioassays, the mean LC₁₀, LC₅₀, and LC₉₀ values of glyphosate for the fingerlings at 24, 48, 32, and 96 hours were calculated ( $\alpha$ =0.95) (see table below).

The results indicated that the 96-hour LC₅₀ of glyphosate for the fingerlings was 6.75 mg/L. In addition, the lowest observed effective concentrations (LOECs) (96-hour LC₁₀) was 5.548 mg/l for glyphosate.

Table 8.2.1-1: The mean values obtained from bioassays in Caspian Sea common carp fingerlings

Chemical's name	Lethal concentration (mg/l)	24-hour	48-hour	72-hour	96-hour
	$LC_{10}$	5.995	5.976	€5.865	5.548
Glyphosate	$LC_{50}$	7.202	7.172 d	6.985	6.753
	$LC_{90}$	8.651	8.606	8.319	8.168

### Conclusion

The results indicated that the 96-hour LC₅₀ of glyphosate for the regular was 6.75 mg/L. In addition, the lowest observed effective concentrations (LOECs) (96-hour LE was 5.548 mg/l for glyphosate.

### 3. Assessment and conclusion

Assessment and conclusion by applicant:

The acute 96 hours- LC₅₀ for common carp fingerlings was determined to be 6.75 mg/L by static exposure to glyphosate at 5 test concentrations between 5.5 and 9.5 mg/L.

The test was conducted according to OECD 203, but validity criteria are missing. No information on the test item such as purity is given. The results for the control are not stated. Furthermore, there was no analytical verification of test concentrations reported. The study is considered as reliable with restrictions.

## Long-term and chronic toxicity to fish **CA 8.2.2**

Studies considering the effects of glyphosate on longterm and chronic toxicity to fish were assessed for their validity to current and relevant guidelines for glyphosate and are presented in the following table. An expert opinion is available as indicated in the table below, which provides a detailed evaluation on the Brachydanio study. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are presented in this section below.

CA 8.2.2.1 Fish early life stage toxicity test Early life stage studies are available and provided below.

Page 131 of 847

Table 8.2.2.1-1: Studies on long-term and chronic toxicity of glyphosate and metabolites to fish

Annex point	Study	Study type	Test species	Substance(s)	Status	Remark is
CA 8.2.2.1/001	2010	Chronic, flow-through	Oncorhynchus mykiss	Glyphosate acid	Valid	S W
CA 8.2.2.1/002	, 2000	Chronic, semi-static	Brachydanio rerio	Glyphosate acid	Invalid	Refer to CA 8.22.1/003 for expert opinion
CA 8.2.2.1/003	2020	Expert opinion				Expert opinion regarding the study CA 8.2.2.1/002
CA 8.2.2.1/004	2011	Chronic, flow-through	Pimephales promelas	AMPA	Valid	

Literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the long-term impact of glyphosate on fish are summarised in the table below. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01. Each literature article summary is presented below according to the respective annex point. For discussions of literature regarding toxicity to fish, please refer to document M-CP Section 10.2

Table 8.2.2.1-2: Literature on long-term and chronic foxicity of glyphosate and metabolites to fish

Annex point	Study	Study type	Substance(s)	Status	Remark
CA 8.2.2.1/005	Rodrigues et al., 2019). Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatio organisms	acute toxicity	Glyphosate and AMPA	reliable with restrictions	Glyphosate and AMPA caused no acute toxic effect (LC ₅₀ -96h > 100 mg/L) in zebrafish.
CA 8.2.2.1/006	Schweizer et al., 2019. How glypflosate and its associated acidity affectearly development in zebrafish (Danio	Acute toxicity to zebrafish embyros. Based on OECD 236.	glyphosate	reliable with restrictions	For Zebrafish ( <i>Danio rerio</i> ) embryos acutely exposed to glyphosate at concentrations between 1.69 and 1690.7 mg glyphosate/L for 96 hours post fertilization.

Endpoints of studies considered valid for glyphosate are shown in the table below. Studies have been conducted with various forms of glyphosate, namely IPA salt, K-salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate technical are automatically expressed as acid equivalent.

Glyphosa

Table 8.2.2.1-3: Endpoints: Early life-stage toxicity of glyphosate to fish

Reference	Test item	Species	Test design/ GLP	LC ₅₀ (mg a.e./L)	NOEC (mg a.e./L)
2010 CA 8.2.2.1/001	Glyphosate acid	Oncorhynchus mykiss	Chronic, 85 d (60 days post-hatch) ELS, flow-through	-	≥ 9.63 (gm)

		.,	ELS, flow-through		17.01		
a.e.: acid equivalents gm: geometric mean measured Endpoints in <b>bold</b> are used for risk assessment							
Endpoints of studies	Endpoints of studies considered valid for AMPA are shown in the table below.						
Table 8.2.2.1-4: En	Table 8.2.2.1-4: Endpoints: Early stage toxicity of AMPA to fish						
Reference	Test item	Species	Test design/ GLP	LC ₅₀ (mg/L)	NOEC (mg/L)		
2011 CA 8.2.2.1/003	AMPA	Pimephales promelas	Chronic, 33 d (7 days post-hatch) ELS, flow through	-	≥ 12 (nom)		

nom: nominal

Endpoint in **bold** is used for risk assessment

Study summaries are provided below.

### 1. Information on the study

Data point:	CA.8.2.2.19001
Report author	
Report year	\$20f0\c)
Report title	Glyphosate acid: Early life-stage toxicity test with rainbow trout
5 3	(Oncorhynchus mykiss) under flow-through conditions
Report No	1005.029.321
Document No	
Guidelines followed in study	OECD Guideline 210 (1992)
Deviations from current test	Deviations from the current OECD 210 guideline (2013): none.
guideline Jacob	
Previous evaluation &	Yes, accepted in RAR (2015).
GLP/Officially recognised testing	Yes
facilities	
Acceptability/Reliability	Valid
Category study in AIR 5 dossier	Category 2a
(L docs) & S	
0, 7,	

The effects of glyphosate acid on the early life-stages of rainbow trout was determined under flow-through continuous renewal) exposure conditions. Fertilized eggs of *Oncorhynchus mykiss* were exposed for 85 days to nominal glyphosate acid concentrations of 0.095, 0.305, 0.977, 3.125 and 10.0 mg a.s./L. Initially, 50 fertilized eggs were exposed in duplicate exposure vessels at each of the five concentrations, with duplicate negative control groups (dilution water only) run in parallel.

Glyphosate Renewal Group AIR 5 – July 2020

Eggs were fertilized in the laboratory directly before addition to egg cups and remained undisturbed in the so test system in the dark until hatching success was determined on days 22 to 26, based on the number of viable eggs. On day 26 (complete hatch), twenty fish fry per replicate i.e. 40 organisms per treatment level and control were transferred from egg cups to surrounding test media, where the development and survival was evaluated until test termination. Dissolved oxygen (DO) concentrations, pH and temperature were measured and recorded in each test vessel at experimental start and weekly thereafter until test termination (day 85). Glyphosate acid concentrations were measured on test days 0, 6, 13, 20, 27, 33, 41, 48, 55, 62, 70, 76 and 85. Glyphosate acid was not detected in the control group. Mean measured concentrations were substantially achieved and ranged between 85.7 and 96.3% of nominal concentrations. Ecotoxicological endpoint evaluation was based on overall mean measured glyphosate acid concentrations?

No statistical significant differences were detected for normal fry at hatch, hatching success, survival at test termination and growth (total length, wet and dry weight), when compared to the control group. All validity criteria according to OECD 210 were satisfied.

In a fish early life stage study performed with rainbow trout (Oncorhynchus wykiss) exposed to glyphosate acid, the No-Observed-Effect Concentration (NOEC) and the Lowest-Observed-Effect Concentration (LOEC) were determined to be ≥ 9.63 and > 9.63 mg a.s./L, respectively based on geometric mean Pop of the state o measured concentrations. The study is considered valid.

### I. MATERIALS AND METHODS

### A. MATERIALS

THE INTERIOR STATES	
Materials and Methods	CE N P
1. Test material:	16 9 8
Test item:	Glyphosate acid
Lot/Batch #:	GLP-0807-19475-T
Purity:	96.037% 0
2. Vehicle and/or positive control:	Vehicle: reconstituted well water Positive control: none
3. Test organism:	
Species:	Rainbow trout (Oncorhynchus mykiss) eggs and milt
Age of eggs:	Eggs and milt were less than 36 hours old at fertilization. The time between fertilization and egg addition to test system was less than 3.5 hours
Number of animals/dose level	40 organisms per replicate i.e. 40 organisms per treatment level and control
Supplier:	
Mean loading rate (biomass per volume of test solution)	0.31 g/L per 24 hours
4. Environmental conditions:	
Temperature	Continuously measured temperature: 9.4 to 13.1°C Single-point measured temperature: 11.3 to 13.9°C
рН:	7.14 to 8.44
Dissolved oxygen:	> 60 % ASV for study duration
Conductivity of test medium:	340 to 450 μS/cm
Hardness of test medium:	153 to 184 mg/L CaCO ₃
Photoperiod:	16 hours with a 30 minute transition from Day 32 until test completion. Light intensity was 137 to 377 lux.  Eggs and larvae were shielded from all light during the incubation and hatching phases until one week after hatching

Annex to Regulation 283/2013

**5. Dates of experimental work:** May 14th to August 10th 2009

### **B. STUDY DESIGN**

### **Experimental treatments**

The fish early life-stage toxicity test was performed under flow-through exposure conditions using a constant-flow test item delivery system, supplying the appropriate test medium to duplicate exposure vessels at each of the five concentrations and the duplicate negative dilution water control vessels. The fertilized eggs were exposed to glyphosate acid at test concentrations of 0.095, 0.305, 0.977, 3.125 and 10.0 mg a.s./L for 85 days.

Twelve impartially located exposure vessels were maintained in a temperature controlled water bath designed to maintain the test solution temperatures at  $12 \pm 2$  °C. During the egg exposure phase and until one week after hatching the test area was maintained in continuous darkness. From test day 32 until test completion, the vessels were illuminated to a light intensity of 137 to 37 lox using fluorescent tubes. A photoperiod of 16 hours was employed with a 30 minute (dawn/dusk) transition period.

<u>Preparation of test solution:</u> A 1 g glyphosate acid/L stock solution was prepared directly prior to test initiation and as required during the exposure period, by dissolving approximately 11.737 g of glyphosate acid in 10 L of dilution water. The stock solution was further diluted (dilution water) by the test item delivery system to achieve the required concentrations in each of the exposure vessels. For the control group, dilution water only without test item was used.

Test units: The test vessels measured 39.0 cm × 19.2 cm, with an approximate water depth of 14.6 cm maintained at a constant volume of 10 L. Two replicates (A and B) were maintained for all treatments and the control.

Test initiation: Prior to fertilization, freshly collected authow trout milt and eggs were acclimatized in their respective delivery containers to the approximate test temperature of  $12 \pm 2$  °C, using a water bath and then mixed carefully together. The 'apparently' fertilized eggs were impartially distributed to egg incubation cups in groups of five, until each cup contained 50 eggs. The incubation cups were suspended in the respective exposure vessel with two cups per replicate vessel, resulting in 100 eggs per replicate. The test was initiated once all vessels contained eggs within 3.5 hours of receipt of the gametes and within two hours of fertilisation.

Hatching success was determined on days 22 to 26 based on the number of viable eggs. Any eggs exhibiting embryonic development, whether dead or alive, at the time of assessment, were considered fertile for purposes of determining percent viability. All non-viable eggs were counted and discarded at day 26. The percent viability was calculated based on the actual number of fertilized embryos on day 26. Hatching success was calculated based on the actual number of viable embryos.

Egg exposure: Dead and ative eggs were counted daily. All eggs observed to be clear were considered to be alive, all eggs observed to be opaque and milky were considered to be dead. All eggs observed to be dead were removed and preserved in Stockard's solution for clearing and determination of embryonic development. Fry which hatched prior to the determination of viability were collected in an auxiliary egg cup.

<u>Post hatch exposure</u>: At completion of hatch on day 26, twenty organisms per replicate i.e. 40 organisms per treatment level and control were transferred directly from the first egg cup (i.e., A1 and B1) to the surrounding test media in the test vessels and the egg cups were removed.

For replicate A of the control and the 0.095 mg glyphosate acid/L treatment, 20 fry in the auxiliary egg cup containing the early hatched fry were randomly selected. For replicate A of the 10 mg a.s./L treatment, only eight viable eggs hatched of the 20 randomly selected eggs and therefore only eight hatched fry were released into the test vessel.

All remaining alive and dead eggs were preserved in Stockard's solution. The remaining fry were recorded and then discarded. After evaluation of the developmental status of the cleared eggs, the viability of all eggs was calculated.

During the post-hatch exposure period, developing fry in all vessels were observed daily; recording behaviour and appearance. Dead fry were removed during these observations. Survival was estimated daily

throughout the post-hatch period. At 60-days post-hatch exposure (experimental completion), the percentage fish survival was calculated.

Fry feeding: At the beginning of fry swim-up, the fry were fed live brine shrimp nauplii (Artemia salina), harvested from hydrated cysts (24 to 36 hours post-hydration) three times per day. Fish were not fed during the 24 hours prior to study termination.

Length and weight: At day 60 post-hatch all of the surviving fish in each replicate vessel were enthanized with MS-222 (tricain methane-sulfonate), measured and weighed individually to determine fish total lengths and wet weights, respectively for each treatment.

### **Observations**

The dissolved oxygen (DO) concentrations, pH and temperature were measured and recorded in each test vessel at experimental start and weekly thereafter until test termination (day 85). On test day 75, the DO levels decreased to between 6.31 to 7.50 mg O₂/L, so aeration was provided to each test vessel until test completion.

Temperature was continuously monitored in one replicate (replicate A of the control) throughout the study. Total hardness, alkalinity and specific conductivity were monitored at experimental start and on test days 5, 11, 19, 25, 32, 39, 46, 53, 61, 67, 74 and 81 in one replicate of the highest treatment level and the control during the exposure.

Analytical procedures

Prior to the start of the exposure phase, i.e., day -2, samples from one replicate of the treatment level solutions and control solutions were collected and analysed for the active ingredient. Results of the pre-test analyses were used to assess correct dosage of the system before test initiation.

During the in-life phase, water samples of approximately 10 mL were removed from both replicates of each treatment level and control on test days 0, 6, 13, 20, 27, 33, 41, 48, 55, 62, 70, 76 and 85 and the content of glyphosate acid was determined. Samples of the stock solutions were also analysed at each sampling interval.

### **Statistical calculations**

The data for percent normal fry at hatch hatching success, survival at test termination and growth (total length, wet and dry weight) were first checked for normality using Shapiro-Wilks' Test (Weber et al., 1989) and for homogeneity of variance using Bartlett's Test (Bartlett, 1937).

The data set for hatching success and survival at test termination were arc-sine (square root) transformed prior to determination of the NOEC and the LOEC by using one-way ANOVA and the parametric post-hoc Dunnett's Test (Dunnett, 1955, 1964). The data sets for growth passed the tests for homogeneity and normality, and Dunnett's Test was used to determine the NOEC and the LOEC.

### II. RESULTS AND DISCUSSION

### A. FINDINGS AND OBSERVATIONS

Analytical data: The mean measured concentrations (calculated as geometric means) of 0.305, 0.977, 3.125 and 10.0 mg a.s./L ranged between 85.7 and 96.3% of the nominal test concentrations, with the exception of the lowest test concentration (0.095 mg a.s./L), where a mean recovery of 66.9% of the nominal concentration was calculated. Based on these results, the mean measured concentrations (calculated as geometric means) of 0.064, 0.261, 0.846, 2.804 and 9.63 mg a.s./L were used for the evaluation of the biological data.

Table 8.2.2.1-5: Analytical results

Nominal concentration [mg a.s./L]	Mean measured concentration [mg a.s./L]	% of nominal
Control	-	- 6,5
0.095	0.064	66.9
0.305	0.261	85.7
0.97	0.846	79. C86.g
3.125	2.804	50° 50° 589.7
10.0	9.63	4) 6 F 96.3

The water quality parameters measured were not affected by test item concentrations. The results of the water quality measurements carried out during this study established that conditions maintained throughout the 85-day exposure were satisfactory for the promotion of normal rainbow trout embryo hatchability, fry

survival and growth.

The effects of glyphosate acid on embryo viability, hatching success, number of normal fry at hatch, survival at test termination and growth (total length, wet and dry weight) are provided in the table below.

Table 8.2.2.1-6: Egg viability, hatching success and normal fry at completion of hatch (test day 26) and survival, total length, wet weight and dry weight of rainbow trout (Oncorhynchus mykiss) at test termination of the 85-day exposure to glyphosate acid

Mean	Egg	Hatching	Normal	60 days post-hatch			
measured concentration (mg a.s./L)	viability [%] ¹	success [%] ¹	fry at 50 hatch	Survival [%]	Total length [mm]	Wet weight [mg]	Dry weight [mg]
Control	35±3.3	92±6.9	₹7±0.56	85±7.1	46.38±0.41	942.6±34.9	195.1±14.3
0.064	43±4.9	84±20,2°	96±5.2	95 ² ±7.1	45.33±0.83	899.6±10.7	188.7±5.9
0.261	40±4.0	99±4.70	100±0.0	95±0.0	46.75±0.65	932.2±60.5	190.7±7.5
0.846	38±9.9	25±1.5	100±0.0	93±10.6	46.37±1.7	908.6±84.3	189.1±23.0
2.804	41±2.1	& 91±5.5	99±2.0	95±7.1	46.19±0.33	889.7±23.7	188.4±10.7
9.63	27±9.2	80±28.3	98±2.1	100±0.0	46.38±1.7	947.3±135	203.0±36.5

Based on total number of viable eggs

EC , ure to se line to The NOEC and LOEC values for survival and growth of rainbow trout (Oncorhynchus mykiss) after 85-day exposure to glyphosate acid are based on geometric mean measured concentrations.

Glyphosate Renewal Group AIR 5 – July 2020

On test day 59, one fish of replicate A was inadvertently injured during the cleaning process of the test vessel. One day later this fish had died, Singe this mortality was not test item related, the fish was therefore excluded from further statistical evaluation.

Table 8.2.2.1-7: Endpoints

Endpoint	Glyphosate acid [mg a.s./L]	
	NOEC	LOEC STATE
Percent normal fry at hatch	≥ 9.63	>9.63 8 5
Hatching success	≥ 9.63	>9,63,45
Survival at test termination	≥ 9.63	×9,63
Total length	≥ 9.63	§ CO ≥ 9.63
Wet weight	≥ 9.63	50 ill io >9.63
Dry weight	≥ 9.63	>9.63

All validity criteria according to OECD 210 were fulfilled, as dissolved a gen concentration was between 60% and 100% of air saturation, water temperature was within the range specified for the test species and constant exposure conditions have been maintained (i.e. within 20% of nominal concentration were recovered, except for the lowest concentration which does not affect the results of the study), and overall survival of fertilised eggs in the controls was greater than or equal to the limits defined in Annexes 3 and 6 of OECD 210.

### III. CONCLUSIONS

### 3. Assessment and conclusion

### Assessment and conclusion by applicant:

In a 85-day (60 days post-hatch) chronic study with rainbow trout (*Oncorhynchus mykiss*) exposed to glyphosate acid, the NOEC and LOEC values for percent normal fry at hatch, hatching success, fry survival, length and weight were  $\geq 9.63$  and > 9.63 mg a.s./L, respectively, based on geometric mean measured concentrations

measured concentrations.

The study is considered valid and the NOEC for rainbow trout exposed to glyphosate acid was ≥ 9.63 mg a.s./L (nominal) and is considered to be appropriate for use in ecotoxicological risk assessment.

### Assessment and conclusion by RMS:

### 1. Information on the study

Data point:	CA 8.2.2.1/002
Report author	in the state of th
Report year	2000
Report title	Chronic Toxicity of Glifosate Técnico Nufarm to Zebrafish larvae
-	(Brachydanio rerio)
Report No	RF-D62.16/99
Document No	21° 15°
Guidelines followed in study	IBAMA 1990: Manual de testes para avaliação da ecotoxicidade de
	agentes quimicos
<b>Deviations from current test</b>	Deviations compared from the current OECD 212 grideline (1998): Major:
guideline	Major:
	The study was not conducted according to the OECD 212  test guideline
	Free swimming fish larvae were exposed for 168 h without
	feeding, therefore the influence of the lack of feeding on the achieved results during the study cannot be excluded.
	<ul> <li>Larvae were added to the test vessels and not fresh eggs 'as soon as possible after fertilisation (early gastrula stage) to 5 days post-hatch (8 10 days) within 30 mins to 8 hours of fertilisation as stated in the test guideline.</li> <li>Active ingredient concentrations were determined in the stock solutions only.</li> <li>Survival of fertilised eggs and differences of water</li> </ul>
	<ul> <li>temperature between test chambers or successive days is not reported.</li> <li>Holding stock tank was maintained at 28 °C. Temperature of test media at fish addition was 24.1°C. The temperature difference between the holding tank and the test tank, exceeds the variability in temp range permitted for this study type ± 1°C (25±1°C stated in Annex 3 of OECD 212).</li> <li>For the batch of eggs received from which the larvae used in the test, were sourced, it is not possible to validate the quality of the eggs used in the test as there is no information on the hatching success reported.</li> <li>Validity criteria based on hatching success and post hatching survival are not reported.</li> <li>Not accepted in RAR (2015).</li> </ul>
	the test, were sourced, it is not possible to validate the quality of the eggs used in the test as there is no information
18 18 X	on the natching success reported.
Provious avaluation ( )	<ul> <li>Validity criteria based on hatching success and post hatching survival are not reported.</li> </ul>
Previous evaluation	Not accepted in RAR (2015).
GLP/Officially recognised	Yes
testing facilities 5	
Acceptability/Reliability	Invalid
Category study in AIR 5 dossier (L docs)	Category 5

Short term toxicity test with glyphosate acid with larvae of Danio rerio (formerly named Brachydanio rerio) was performed under semi-static conditions with test medium each 48 hours. Three replicates with 150 fish per concentration were exposed for 168 hours to seven concentrations of glyphosate acid, ranging from 0.32 to 32 mg a.s./L. A control treatment containing reconstituted water and a toxic reference using potassium dichromate was maintained concurrently.

Glyphosate Renewal Group AIR 5 – July 2020

Observations for mortality and sub lethal responses were made every 24 hours. Dissolved oxygen, pH and temperature were measured and recorded daily. Glyphosate soid control in the control of the contro chromatography in the stock solutions. Mean measured concentrations were at least 80% of nominal concentrations. Glyphosate acid was not detected in the control group.

A significant increase of mortality was observed at a concentration of 5.6, 10 and 32 mg a.s./L, behavioural responses such as lethargy was observed at 3.2, 5.6, 10 and 32 mg a.s./L. Several validity criteria according to the current OECD guideline 212 were not fulfilled.

The No-Observed-Effect Concentration (NOEC) and the Lowest-Observed-Effect Concentration (LOEC) for zebra fish larvae (Danio rerio) exposed to glyphosate acid were determined to be 3.2 mg a.s./L and 5.6 mg a.s./L, respectively, based on nominal concentrations. The LC₅₀ after 168 hours was determined to be 24.71 mg a.s./L. Overall this study is not reliable, invalid and does not address any current data requirements.

### I. MATERIALS AND METHODS

### A. MATERIALS

1. T	est material:			
Test	t item:	Glyphosate acid		
Lot/	Batch #:	Glyphosate acid (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975)		
Puri	ity:	934.9 g/kg acid equivalent		
2. V	ehicle and/or positive control:	Vehicle: Tap water  Positive control Potassium dichromate (K ₂ Cr ₂ O ₇ )		
3. T	est organism:			
Spec	cies:	Zebra fish (Danio rerio) larvae		
Age	»:	Larvae approx. 48 hours old		
Size	e: <u>\$</u>	Not stated		
Loa	ding:	for 10 larvae (bodyweight not specified)		
Sour	rce:  t/Food:  climation period:  chyironmental conditions:	Eggs: in-house. Matrix fish: Peixe		
Diet	t/Food:	Fish were not fed during acclimation or during the 168 h exposure period.		
Acc	limation period:	48 hours prior to testing during embryo incubation and hatching		
4. E	nvironmental conditions:			
Tem	nperature: A Significant	23.8 - 24.3 °C		
Pho	toperiod:	16 hours light / 8 hours dark		
Diss	solved oxygen:	60-100 %		
	ductivity of test medium:	168 μS/cm		
	dness of test medium:	44.1 mg/L CaCO ₃		
5. D	ates of experimental work:	03 rd November to 19 th November 1999		
BeSI	TUDY DESIGN			
Expe	erimental treatments			
S. D. S. B. S. T. S. S. Expe	osate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020		

The fish early life-stage toxicity test was performed under semi-static exposure conditions renewing the test solution every 48 hours. Following a range finding test, the freshly hatched fry (48 h post hatch) of Danio rerio were exposed to glyphosate acid at test concentrations of 0.32, 0.56, 1.0, 3.2, 5.6, 10 and 32 ang a.s./L for 168 hours. A control consisting of reconstituted water and five toxic reference concentrations (32, 56, 100, 140 and 180 mg K₂Cr₂O₇/L) were maintained concurrently.

### **Observations**

Observations for mortality and sublethal responses were made every 24 hours. Dead individuals were removed at each observation. Temperature, dissolved oxygen, pH and conductivity were measured daily. The active ingredient analysis of stock solutions was performed by liquid chromatography.

### **Statistical calculations**

LC50 and its confidence limits were determined using trimmed Spearman-Karber method. Fisher's Exact test was used for determination of significant differences in survival between control and exposure. The NOEC and LOEC were determined by Fisher's Exact test.

A. FINDINGS

Analytical results: The active ingredient concentration in each stock solution was at least 80% of the nominal concentration. Ecotoxicological relevant endpoints were therefore evaluated using nominal concentrations of the test item.

The 168h LC₅₀, NOEC and LOEC values are given below based on nominal concentrations.

Table 8.2.2.1-8: Endpoints

Endpoints (168 h)	Glyphosate acid [mg a.s./L]
LC ₅₀	24.7 (95% C.I. 13.75 – 44.40 mg a.s./L)
LOEC LOEC	5.6
NOEC OF A SO	3.2

### **B. OBSERVATIONS**

A significant increase of mortality after exposure to glyphosate acid was observed at concentrations of 5.6, 10 and 32 mg a.s./L. Behavioural responses such as lethargy was observed at 3.2, 5.6, 10 and 32 mg a.s./L. The results of the test are depicted in the following table.

Table 8.2.2.1-9; Lethal effects of glyphosate acid to zebra fish

Glyphosate acid	C	0.32	0.56	1.0	3.2	5.6	10	32
Mortality (168 h) [%]	0	0	0	0	10	16.7	26.7	56.7

 $C = Control^2$ 

variouty criteria of the OECD guideline 212 (1998), survival of fertilised eggs and contrerences of water temperature between test chambers or successive days is not reported. Additionally no information on timing of fertilization is provided. Mortality in control group did not exceed 10 %, dissolved

oxygen concentration was between 60 and 100 % of air saturation. Analysis of test item treatments was performed only for the stock solutions.

### III. CONCLUSIONS

### 3. Assessment and conclusion

### **Assessment and conclusion by applicant:**

The NOEC and the LOEC for zebra fish (*Danio rerio*) exposed to glyphosate acid were determined to be 3.2 mg a.s./L and 5.6 mg a.s./L, respectively, based on nominal concentrations. The LC₅₀ after 168 hours was determined to be 24.7 mg a.s./L (nominal).

This study type is based on OECD 212 which is not part of current data requirements and therefore receives a category 5 for studies in AIR 5 dossiers and typically a summary would not be presented. However, for completeness purposes and since the chronic aquatic endpoint in the RAR 2015 was based on this study, it is presented here.

Despite the study having been conducted according to GLP, there are several validity criteria according to the current OECD test guideline 212, that were not fulfilled, with multiple major and minor deviations to the test guideline identified in the summary above, that would make the study unreliable for use in risk assessment.

To further support this evaluation, a further reliability assessment has been conducted using the criteria applied to public domain literature according to EFSA [EFSA Journal 2011;9(2):2092] and is presented in the table below.

Additionally - to ensure an appropriate evaluation of the studies validity and relevance for use in EU level risk assessment, the opinion of an independent expert is provided in CA 8.2.2.1/003.

Conclusions of the Expert are that this study would not hold up to scientific scrutiny and would not be accepted for a scientific publication.

Based on the reliability assessment and on the opinion of the independent Expert, the study is not therefore considered relevant for use in EV level ecotoxicological risk assessment. Therefore, the study will not be used in ecotoxicological risk assessment for the EU renewal of glyphosate.

### ECOTOXICOLOGY: Reliability criteria for the detailed assessment of full-text documents

	Data requirements (indicated by the corresponding EU data point)	Criteria for "Reliable" articles	Criteria met? Yes / No / Uncertain
	General criteria for reliability considered for	OPPTS, ISO, and others. The validity/quality criteria listed in the corresponding guidelines met.	Yes – the study was GLP, but validity criteria of the OECD 212 test guideline were <u>not</u> stated / met.
	all data requirements indicated by	2. Not previous exposure to other chemicals is documented (where relevant).	No – no information in the report to confirm the source / quality of the fish.
20	corresponding EU data points as specified in	3. For aquatic studies, the test substance is dissolved in water or where a carrier is required, it is appropriate (non-toxic) and a carrier control / positive control is considered in the test design.	Yes.

EC Regulation (EU) No 283/2013	4. Glyphosate or Its metabolites (AMPA and HMPA), is sufficiently documented, and reported (i.e. purity, source, content, storage conditions)	Yes
203/2013	For tests including vertebrates, compliance of the batches used in toxicity studies compared to the technical specification	Uncertain – no information states in report.
	6. Species used in the experimental clearly reported, including source, experimental conditions (where relevant): strain, adequate age/life stage, body weight, acclimatization, temperature, pH, oxygen (dissolved oxygen for aquatic tests)	No - Source of fish not stated.  Fertilisation and hatching success of egg batches used in test not reported.  No fish body weights reported therefore fish loading rates could not be determined (g fish/L).
	7. The validity criteria from relevant test guidelines can be extrapolated across different species but not necessarily across different test designs. If different, then the nature of the difference and impact should ideally be discussed.	No - Validity criteria were not stated. See summary above.
	8. Only glyphosate or Its metabolites is the test substance (excluding mixture), and information on application of the test substance is described.	Yes
	9. The endpoint measured can be considered a consequence of glyphosate (or a glyphosate metabolite)	Uncertain – Starvation and temperature issues may have also contributed to the observed effects.
	10. Study design / test system is well described, including when relevant: concentration in exposure media (dose rates, volume applied etc.), dilution/mixture of test item (solvent, vehicle) where relevant.	No – Definitive test media preparation cannot be confirmed from report - no prep details reported. Renewal frequency in the definitive test
	vehicle) where relevant.	cannot be confirmed. Exposure cannot be confirmed in the test system, as there was no chemical analysis of test media during the test
	11. Analytical verifications performed in test media (concentration)/ collected samples, stability of the test substance in test medium should be documented	No – Test media was not analysed during the test. Report indicates that stock solutions were stable during the test – but this cannot be confirmed from the report
Glyphosate Renewal Grou	12. An endpoint can be derived. Findings do deliver a regulatory endpoint, and/or is useful as supporting information	Uncertain – as the validity of the test against a relevant

		guideline set of criteria cannot be confirmed. The test
		confirmed. The test guideline requires freshly fertilized embryos to be exposed and not fish
		freshly fertilized embryos to be exposed and not fish larvae – as was the case.
	13. The test has been tested in several dose levels (at least 3)	Yes
	including a positive/negative control where relevant  14. Suitable exposure throughout the whole exposure period was demonstrated and reported	No there was no analysis of test media
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	during the test Uncertain – cannot be
	15. A clearly concentration response relationship is reported in studies where the dose response test design is employed.	confirmed as exposure concentrations were not reported
	16. There is included a sufficient number of animals per group to facilitate statistical analysis: mortality in control groups	Yes
	reported, observations/findings in positive/negative control clearly reported (where relevant).  17. Assessment of the statistical power of the assay is possible	No
	with reported data.  18. If statistical methodology was applied for findings reported,	Yes
	then the data analysis applied & clearly reported (e.g., checking the plots and contidence intervals)	
	19. Description of the observations (including time-points), examinations, and analyses performed, with (where relevant)	No – detailed timepoint
	dissections being well documented.	observations of fish and appearance of the test media were not reported.
	20. For terrestrial ecotox studies in the lab or the field, the substrates used should be adequately described e.g. nature of	-
	substrate se species of leaf or soil type.  20 1 Field locations relevant/comparable to European	-
	substrates used should be adequately described e.g. nature of substrates used should be adequately described e.g. nature of substrates used should be adequately described e.g. nature of substrates used should be adequately described e.g. nature of substrates used should be adequately described e.g. nature of substrates used should be adequately described e.g. nature of substrates used should be adequately described e.g. nature of substrates used in the lab of the field, the substrates used should be adequately described e.g. nature of substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field, the substrates used in the lab of the field in the	
	20.2. Characterization of soil: texture (sandy loam, silty	
	density, water retention, microbial biomass (~1% of	
	organic carbon)  20.3. Other soils where information on characterization by the parameters: pH, texture, CEC, organic carbon, bulk	-
	density, water holding capacity, microbial biomass  20.4. For tests including agricultural soils, they should not	_
	have been treated with test substance or similar substances for a minimum of 1 year	-
Glyphosate R.	20.5. For soil samples, sampling from A-horizon, top 20 cm layers; soils freshly from field preferred (storage max 3 months at 4 +/- 2°C).	-
	,	
Glyphosate R	enewal Group AIR 5 – July 2020 Doc ID: 11005	54-MCA8_GRG_Rev 1_Jul_2020
r		

	20.6. Data on precipitation is recorded	-
21	. For lab terrestrial studies, the temperature was appropriate to	-
	the species being tested and generally should fall within the	.jo ⁵
	range between 20-25°C and soil moisture / relative humidity	
	was reported.	30,10
22	. For bee studies, temperature of the study should be	- 8.5
	appropriate to species.	111.0
23	. For lab aquatic studies	36.26
	23.1. The source and / or composition of the media used	Uncertain
	should be described	19. O 50°
	23.2. The temperature of the water should be appropriate to	No - see deviations
	the species being tested and generally fall within the	section in summary
	15-25°C	sabove
24	. The residue data can be linked to a clearly described (AP)	No
	Table appropriate in the context of the renewal of approval	
	of Glyphosate (crop, application method, doses, intervals,	
	PHI).	
25	. Analytical results present residues measurements which can	No
	be correlated with the existing residues definition of	
	glyphosate, and where relevant Its metabolites	
26	. Analytical methods clearly described and adequate	No – There is no
	Statement of specificity and sensitivity of the analytical	analytical method
	methods is included.	information presented
27	. Assessment of the ECX for the width of the confidence	in the report  Yes – The presented
	interval around the median value; and the certainty on the	LC ₅₀ value is
	level of materials officed by the median ECV	presented with
	iever of protection office of the median Lex.	confidence intervals,
		that exceed the range
	J. J. E.	of concentrations
	\$ 5. Q	tested in the study. A
	level of protection offered, by the median ECX.	NOEC is also presented.
<u> </u>		presented.
l		

# Assessment and conclusion by RMS:

# 1. Information on the expert opinion

	Data point:	CA 8.2.2.1/003
	Report author	C14 0.2.2.17005
	Report year	2020
	Reportitie	External expert opinion to the study No. RF-D62.16/99
	Report No	-
	Document No	-
	<b>Guidelines followed in study</b>	None
	Deviations from current test guideline	Not applicable
ill of	Previous evaluation	No
Story of the story	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul

Annex to Regulation 283/2013

GLP/Officially recognised	No, not applicable
testing facilities	
Acceptability/Reliability:	Valid
Category study in AIR 5	Category 1
dossier (L docs)	

#### 2. General evaluation

(2000) (CA 8.2.2.1/002) was evaluated by an independent fish The study by expert not associated with industry. The expert was not provided with the name of test substance, study director, performing laboratory nor the data owner or sponsor of the study.

The following observations and statements were made:

Overall, the study has been based on OECD TG 212. However, there are several shortcomings in the study or in the report:

- (1) A major deviation is that the renewal intervals for the test solution has been extended from 24 h to 48 h. Basically, this can be done; however, in such a case precise chemical-analytical data documenting the stability of the test solutions must be provided. A general reference such as "Roberts, 1998 (P. 6 of report) is certainly not sufficient and is inadequate. Given that the report lacks any chemical-analytical data, the extension of the renewal time of the test solutions is a serious deviation from OECD TG 212. Since the reviewer was not provided with the name of the test substance, he could not check whether such an extension can be accepted as an exception. In any case, the extension of the renewal time of the test solutions should have explicitly been reported as a deviation from the guideline.
- (2) Another critical deviation from OECD TG 212 is the fact that the information about the age of the embryos upon initiation of chemical exposure is confusing, if not lacking. Both OECD TG 212 and the more recent OECD TG 236 clearly require an exposure start as early as possible, if not within the first 1 h after fertilization. The report does not provide any information about the exact timing of the fertilization process and the time of egg collection.
- (3) Further deviations from OECD TG 212 are a pH of  $\sim 7.4$  (recommendation OECD TG 212: 7.8) and a temperature of ~ 24° C (recommendation OECD TG 212: 28°C). The consequences of these deviations cannot be assessed, as long as the name of test substance is not disclosed. Given the rather wide limits of tolerance of the zebrafish embryo, both pH and temperature deviations may have had an impact on the outcome of the test (chemical speciation, metabolism), however not necessarily.
- (4) The terminology for the general description of the assay is scientifically not correct: OECD TG 212 does not measure chronic toxicity, nor does it use larvae.
- (5) The origin of the fish is very poorly defined: no information about the strain of zebrafish used, no information about the age of the parental fish.
- (6) Likewise, the report lacks data on fertilization rate, which is an important parameter to assess the [fish embryo test]). Maybe, in 1999, this was acceptable; today it would be not adjustity of the egg batch used for the experiment (cf. information required for, e.g., OECD TG 236
- The report completely fails to provide details on behavioural observation; the term "lethargy" is definitely not satisfying and could have been specified much more precisely definitely not satisfying

  Additional specific comments:

- (1) Although OECD TG 212 also mentions zebrafish as Brachydanio rerio, the title of this species has been changed to Danio rerio.
- (2) The term "larvae" should be avoided for the early developmental stages used in this study. The official title of OECD TG 212 also reads "Fish, Short-term Toxicity Test on Embryo and Sao-fry Stages". Seven days old individuals of zebrafish are scientifically correctly served "eleutheroembryos", since they still live on the remnants of the yolk, but have not yet completely initiated external food uptake
- (3) The term "chronic toxicity" should be avoided, since OECD TG 212 does not use this term for the test itself. OECD TG 212 explicitly states that "Guideline does not replace Guideline 210 but it would provide useful information in that it could (a) form a bridge between lethal and sublethal tests, (b) be used as a screening test for either a Full Early Life Stage test Guideline 210) or for chronic toxicity

- (5) Lack of information on the strain, age of the fish used for egg production.

  (6) Lack of information on the parental fish: the water word for conditions commercial fish: (6) Lack of information on the parental fish: the water used for the maintenance, maintenance conditions, composition of breeding groups (Loading).
- (7) The quality of the chemical analysis cannot be assessed, since reference to an internal SOP is not sufficient as long as the SOP is not provided
- (8) Oxygen saturation occasionally drops below 60 % (e.g. 44 mg/L in some replicates of 0.56 mg/L test solution, which is equivalent to 53 % [saturation: 8.3 mg/L at 23.5 °C]). The minimal acceptable oxygen saturation for OECD TG 212 is 60%. Since such low oxygen saturation were measured repeatedly (Table p. 30 of report), this parameter is somewhat borderline

## **Summarized Deviations from the test guideline:**

As per deviations compared from the current OECD 212 guideline (1998): Major:

- The renewal intervals for the test solution has been extended from 24 h to 48 h.
- The information about the age of the embryos upon initiation of chemical exposure was confusing, if not lacking.
- pH of  $\sim 7.4$  (recommendation OECD TG 212: 7.8) and a temperature of  $\sim 24$  °C (recommendation OECD TG 212:28°C).

#### Minor:

- Lack of data on fertilization rate
- No details on behavioural observation provided

Given these major problems and the relatively long list of specific comments listed below, this report would not be acceptable as a scientific publication.

#### Assessment and conclusion by applicant:

According to expert opinion, study RF-D62.16/99 would not be accepted for scientific publication due to various deficiences and should also not be considered a chronic study in the assessment of effects of glyphosate on fish.

As a publication, this study would not be considered reliable and would not be considered for risk assessment.

Assessment and conclusion by	RMS:
10 to	

	Assessment and conclusion by RN	<u>1S</u> :	
ي .	F. Information on the study		
: 5 ° 5	Data point:	CA 8.2.4/004	
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	Report author	CA 6.2.4/004	
estilistics			
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Glyphosate Renewal Group AIR 5 – July 2020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

M-CA, Section 8

Page 147 of 847

Report year	2011
Report title	AMPA (Aminomethylphosphonic acid): An early life-stage toxicity test with the fathead minnow ( <i>Pimephales promelas</i> )
Report No	139A-39A
<b>Document No</b>	- 34
	OECD Guideline 210 (1992)
Guidelines followed in study	OPPTS 850.1400
	ASTM E 1241-05
Deviations from current test  Deviations from the current OECD 210 guideline (1)	
guideline	20 (1 %) Items and a series of 2 to 8 marries (2 2 2). Items
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing	Yes Je State
facilities	i es
Acceptability/Reliability:	Valid St. St.
Category study in AIR 5 dossier	Cotocomi 20
(L docs)	Category 2a

2. Full summary
Executive Summary
The effects of AMPA (Aminomethyl-phosphonic acid) on the time of hatch, hatching success, survival and growth of fathead minnow (Pimephales promelas), was evaluated in a fish early life-stage toxicity test performed under flow-through exposure conditions, using a continuous flow test item delivery system. The appropriate test medium was supplied to four replicates at each of five concentrations and a negative control (dilution water only) group. The fertilized eggs were exposed to AMPA at nominal test concentrations of 0.75, 1.5, 3.0, 6.0 and 12 mg/L for a 5 day hatching period followed by a 28 day post hatch growth period. AMPA concentrations in test media were measured on day 0, 7, 14, 21, 28 and 33. Mean measured concentrations ranged from 82.5 to 117% of nominal concentrations. AMPA was not detected in the control

No significant differences in the time to hatch hatching success, survival at test termination and growth (total length, wet and dry weight) were so served, when compared to the control. All validity criteria according to the current guideline OECD 210 were fulfilled.

In an fish early life stage test (OECD 210), performed using fathead minnows (*Pimephales promelas*) the No-Observed-Effect Concentration (NOEC) and the Lowest-Observed-Effect Concentration (LOEC) for fathead minnow (*Pimephales prometas*) exposed to AMPA were determined to be  $\geq 12.0$  and > 12.0 mg/L, respectively, based on mean measured concentrations. The study is considered valid.

# I. MATERIALS AND METHODS

# A. MATERIALS

1. Test material:	
Test item:	AMPA (Aminomethylphosphonic acid)
Lot/Batch # S	GLP-0908-19984-A
Purity:	98.7%
2. Vehicle and/or positive control:	Vehicle: moderately hard well water Positive control: none
3. Test organism:	
Species:	Fathead minnow ( <i>Pimephales promelas</i> ) embryos <24 hours old
Age of eggs:	<24 hours old

Number of animals/dose level:	20 organisms per replicate i.e. 80 organisms per treatment level and control	
Supplier:	ight	
Mean loading rate (biomass per volume of test solution)	0.05 g fish/L per 24 hours; instantaneous loading at the end of test: 0.32 g fish/L	
Diet/Food:	live brine shrimp nauplii ( <i>Artemia</i> sp.), Brine Shrimp Direct, Ogden, Utah, USA	
4. Environmental conditions:		
Temperature:	25±1°C	
рН:	7.8 to 8.2  ≥ 89% of saturation (7.3 mg/L)	
Dissolved oxygen:	≥ 89% of saturation (7.3 mg/L)	
Conductivity of test medium:	361 - 395 μS/cm	
Hardness of test medium:	132 - 140 mg/L CaCO ₃	
Photoperiod:  16 hours with a 30 minute transition period; Light intensity = 296 lux		
5. Dates of experimental work:	13 th January to 03 rd February 2011	
B. STUDY DESIGN	Service Servic	
<b>Experimental treatments</b>		
The fish early life-stage toxicity test wa	s performed ander flow-through exposure conditions, using a	

#### **B. STUDY DESIGN**

Experimental treatments

The fish early life-stage toxicity test was performed under flow-through exposure conditions, using a constant-flow test item delivery system, supplying the appropriate test medium to the exposure vessels at each of the five concentrations and a negative control dilution water only) group. The embryos of fathead minnow (Pimephales promelas) were exposed to AMPA at test concentrations of 0.73, 1.5, 2.9, 6.0 and 12.0 mg/L for 33 days. The test was conducted in a temperature controlled environmental chamber. The test vessels were 9 L glass aquaria with a constant volume of 7 L of test solution. Embryos were held in incubation cups constructed from glass cylinders 50 mm in diameter with 425 µm nylon screen mesh. Four replicates vessels were maintained for all treatments and the control.

At test initiation, embryos <24 hours old were impartially distributed to incubation cups. After a hatching period of 5 days, larvae were released into test chambers. Newly hatched larvae were fed live brine shrimp nauplii (Artemia sp.) harvested from hydrated cysts 2 - 3 times per day.

Observations

During the first day of expessure, embryos were observed twice for mortality and fungal infection. Thereafter, until hatching was complete, observations of embryo mortality and the removal of dead embryos was performed once per day. Once hatching had reached >90% in the control groups on day 5 of the test, the larvae were released into their respective test vessels and the post-hatch period began. During the 28-day post-hatch exposure period, the number of fry mortalities and numbers of individuals exhibiting clinical signs of toxicity or abnormal behaviour was recorded. From these observations, the time to hatch, hatching success, and post-hatch growth and survival were evaluated. On day 28 of the post-hatch exposure period – test termination, the total length for all surviving fish was measured to the nearest 1 mm using a metric ruler and wet and dry weights of all fish was measured to the nearest 0.1 mg using an analytical balance Fish were euthanized (MS-222) and dried to constant weight in an oven at approximately 60 °C for approximately 47 hours to establish fish dry weight data.

Dissolved oxygen, temperature and pH were measured in alternating replicates of each treatment and water) and the highest co water) and at the end of the test. control group at the beginning of the test, weekly during the test, and at the end of the test. Hardness, Salkalinity and specific conductance were measured in alternating replicates of the negative control (dilution water) and the highest concentration treatment group at the beginning of the test, weekly during the test

### **Analytical procedures**

Analytical measurements were performed by HPLC analysis using UV detection. Water samples were collected from one test chamber of each treatment and control group four days prior to test initiations to confirm the operation of the diluter. Water samples were collected from alternating replicate test chambers of each treatment and control group on day 0, 7, 14, 21, 28 and 33 (test termination) to determine concentrations of the test substance in the test chambers. All samples were collected at mid-depth in the test chambers, placed in glass vials and analysed immediately.

#### Statistical calculations

Data were statistically tested using Chi-square and Fisher's Exact test (discrete-variable data;  $\alpha=0.05$ ) and Dunnett's t-test (one-tailed, normal distributed data;  $\alpha = 0.05$ ). The NOEC and LOEC were determined by visual interpretation of the observation data.

#### II. RESULTS AND DISCUSSION

A. FINDINGS

Analytical data: Analytical measurements were performed on samples of representative test concentrations. Recoveries ranged from 82.5 % to 117% relative to nominal concentrations for all test concentrations and ranged from 97 to 100% of nominal for overall mean measured concentrations.

Table 8.2.2.1-10: Analytical results

Nominal concentration of AMPA [mg/L]	Mean measured concentration of AMPA	% of nominal
Control	Control	-
0.75	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	97
1.5	50 E0 S1.5	100
3.0	10 10 10 2.9	97
6.0	6.0	100
12	12	100

The water quality parameters measured were not affected by test item concentrations. The results of the water quality measurements carried out during this study established that conditions maintained throughout the 33-day exposure were satisfactory for the promotion of normal fathead minnow embryo hatchability, fry survival and growth.

# B. OBSERVATIONS

The effects of AMPA on embryo viability, hatching success and growth (total length, wet and dry weight) are provided in the table below.

Table 8.2.2.1-11: Hatching success, larval survival and total length, wet weight and dry weight of fathead minnow (Pimephales promelas) at test termination of the 33-day exposure to AMPA.

Mean	Hatching	Survival to	Gr	owth 28 days post-ha	tch gome
measured concentration of AMPA [mg/L]	success [%]	day 28 post hatch [%]	Mean total length [mm]	Mean wet weight [mg]	Mean dry weight
Control	99	91	25.2 ±0.57	112.0 ±11.5	24.1 ±1.4
0.73	100	91	25.2 ±0.27	120.7 ±7.4	24.6 ±1.0
1.5	100	93	25.5 ±0.39	119.3 ±14.2 (5)	24.9 ±2.1
2.9	100	90	$25.7 \pm 0.62$	117.4 ±3.80 0	23.5 ±0.42
6.0	100	91	$25.4 \pm 0.22$	117.4 ±4.2	$23.6 \pm 0.70$
12	99	92	$26.2 \pm 0.62$	135,2°±11.0	$26.5 \pm 2.9$

The majority of the fish in the control group and in the AMPA treatment groups appeared normal throughout the test. Through Day 7 post-hatch, in the control group and in the AMPA treatment groups, a low frequency of larvae were noted as either weak, lying on the bottom of the test chambers, curled, or having a curled or curved spine/crooked spine. The frequency of curved/curled presured spine/crooked spine observed in the treatment groups were comparable to historical frequencies observed in control treatments in early life-stage studies with fathead minnows performed at the test facility and consequently concluded to be not treatment related. Additionally, the frequencies of the occurrence of smaller fish visually observed in the control and treatment groups were comparable and consistent with the individual dry weight measurements. The 33-day NOEC values are given below based on mean measured concentrations.

Table 8.2.2.1-12: Endpoints table

Table 8.2.2.1-12: Endpoints table	
Endpoints (33 days)	AMPA [mg/L]
LOEC (hatching success, survival or growth)	>12
NOEC (hatching success, survival or growth)	≥ 12

All validity criteria according to OECD 210 were fulfilled, as dissolved oxygen concentration was between 60 % and 100 % of air saturation, water temperature was within the range specified for the test species and constant exposure conditions have been maintained (i.e. within ± 20% of nominal concentration were recovered), and overall survival of fertilised eggs/embryos in the controls was greater than or equal to the limits defined in Annexes 3 and 6 of OECD 210.

#### III. CONCLUSIONS

# 3. Assessment and conclusion

# Assessment and conclusion by applicant:

In a fish early life stage test (OECD 210) performed using fathead minnow (Pimephales promelas) exposed to AMPA, the NOEC and LOEC values for hatching success, fry survival, length and weight were  $\geq$  12 and  $\geq$ 12 mg/L, respectively, based on mean measured concentrations.

Page 152 of 847

The study is considered valid and the NOEC for fathead minnow exposed to AMPA was ≥ 12 mg/L (mean measured concentrations) and is considered to be appropriate for use in ecotoxicological risk assessment.

#### Assessment and conclusion by RMS:

#### 1. Information on the study

Data point:	CA 8.2.2.1/005
Report author	Rodrigues, L.B. et al.
Report year	2019
Report title	Impact of the glyphosate-based commercial herbicide, its components and its metabolite AMPA on non-target aquatic organisms
<b>Document No</b>	doi.org/10.1016/j.mrgentox.2019:05:002 E-ISSN: 1873-135X
Guidelines followed in study	OECD 236
Deviations from current test guideline	Not reported
GLP/Officially recognised testing facilities	No Constitution of the con
Acceptability/Reliability:	Yes/Reliable with restrictions

# 2. Full summary of the study according to OECD format

The present study assessed the acute toxicity of glyphosate, as well as the main metabolite aminomethylphosphonic acid (AMPA) or non-target aquatic organisms. The toxic effects of these chemicals were evaluated in a zebrafish (Danigaerio) embryo-larval toxicity test according to OECD Test Guideline 236 at 6 concentrations between 1,3 and 100 mg/L. Three replicates with 20 fertilized eggs per concentration were used.

Glyphosate and AMPA caused no acute toxic effect (LC₅₀-96 h > 100 mg/L).

#### Materials and methods

Materials and methods

Test chemicals; Technical-grade glyphosate (GLY; Glyphosate PESTANAL®; purity 99 %, CAS No. 1071-83-6) and aminomethylphosphonic acid (AMPA, purity 99 %, CAS No. 106651-9) were purchased from Sigma-Aldrich,

Zebrafish maintenance and egg production; Adult male and female zebrafish (D. rerio) were provided by the zebrafish facility ZebTec Tecniplast) at the Institute of Biology, University of Brasília and kept in separate tanks (ethical approval UFG N° 102/2014). Fish were maintained in a Rack Hydrus (Alesco) recirculating system using water filtered by reverse osmosis, where water passes through several levels of filtration (activated carbon filters and biological filters), is then disinfected by ultraviolet (UV) light and automatically adjusted for pH and conductivity. The temperature was maintained at  $26 \pm 1$  °C, conductivity at  $750 \pm 50 \,\mu$ S pH at  $7.5 \pm 0.5$  and dissolved oxygen of 8 ppm. Nitrate, nitrite and ammonia were regularly monitored. This water was used in preparing the test solutions of all assays performed. Adult organisms were fed with commercial dry flake food (TetraColor Flakes®) and live brine shrimp. On the day of the test, zebrafish eggs were collected about 30 min after natural mating, rinsed in water and examined under a stereomieroscope (Bel Photonics STM PRO). Unfertilized or damaged eggs were discarded. The ie. 1800 Been 18 fertilization success was checked, and only batches of eggs with a minimum fertilization rate of 90% were used.

Fish embryo acute toxicity (FET) test; The zebrafish embryo-larval toxicity test was carried out according to OECD Test Guideline 236. Twenty fertilized eggs per consentation carefully distributed in a 24-well plate, filled with 2 mL of GLY, AMPA at 1.7, 5, 10, 23, 50 and 100 mg/L and controls (negative control - NC: maintenance water and positive control - PC: 3,4-dichloroaniline at 4.5 mg/L). Tests were performed in triplicates (three independent experiments) in a climate chamber at 26 ± 1 °C and 12 h light under static conditions. Neither food nor aeration was provided during the bioassays. Embryo development was assessed at 24, 48, 72 and 96 h post-fertilization (hpf), using a stereomicroscope (Bel Photonics STM PRO) with 3x magnification. The distinction between the normal and abnormal development of embryos was established according to the zebrafish development descriptions reported previously. Lethal (egg coagulation, no somite formation, nondetachment of the tail from volk sac and no heart beating) and sublethal (effects on the eye and body pigmentation, absorption of the yolk sac, hatching rate, swimming bladder inflation, otolith, presence of edemas and blood accumulation, tail deformities) parameters were observed and reported.

Statistical analysis; The FET and Comet data were analyzed using one way ANOVA followed by Dunnett's multiple comparison test. Each experimental value was compared to its corresponding negative control and the statistical difference was considered significant when  $p \le 0.93$ . With respect to the FET, the toxicity was expressed as the lethal concentration (LC50), which was calculated using GraphPad Prism software (version 5.0, GraphPad Software, San Diego, CA, USA) with 55% confidence interval.

#### **Results**

Acute effects for zebrafish early-life stages; The present study investigated the effects of active ingredient GLY and its metabolite AMPA on the zebrafish embryonic development (survival and malformations) at 24, 48, 72 and 96 h of exposure. According to Fig. 1, no significant mortality was observed in zebrafish early-life stage after exposure to different concentrations (\$7,700 mg/L) of GLY and AMPA (Fig. 1), which presented survival rate ≥90 % in all exposure periods.

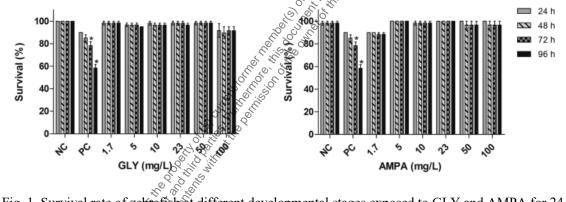



Fig. 1. Survival rate of zebratish at different developmental stages exposed to GLY and AMPA for 24, 48, 72 and 96 h. Twenty fertilized eggs per experimental group were evaluated. Bars represent the mean ± standard error of the mean of three independent experiments. *p < 0.05 statistically different from the respective negative control (NC) based on one-way ANOVA and Dunnett's post hoc test. PC = positive control (3,4-dichlorognitine at 4.5 mg/L after 24, 48, 72 and 96 h of exposure).

In relation to subjettial effects, Fig. 2 shows that GLY induced some morphological abnormalities, however, matics of the state of the stat Ton. Modern State of the state these malformations were not statistically significant when compared to their respective negative control.

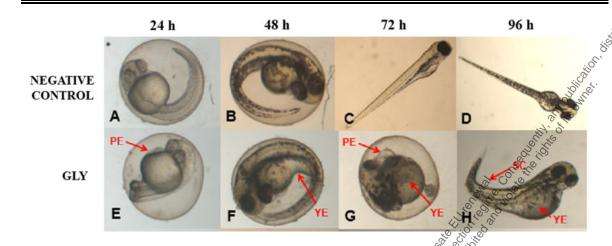



Fig. 2. Zebrafish embryos and larvae abnormalities after GLY exposure: pericardial edema (PE), yolk sac edema (YE), spinal curvature (SC). Embryos control after 24 h and 48 h of exposure, respectively (A–B); larvae control after 72 h and 96 h of exposure, respectively (C–D), embryos exposed to GLY at 23 mg/L and 100 mg/L for 24 h and 48 h, respectively (E–F); non-hatching embryo exposed to GLY at 10 mg/L for 72 h (G); larvae exposed to GLY at 100 mg/L for 96 h (H).

## Discussion

The current results showed that glyphosate and AMPA did not induce acute toxicity in zebrafish early-life stage with LC₅₀-96 h > 100 mg/L. Similar effect was observed by researchers in assessing the acute effects of glyphosate (0.005; 0.05; 5; 10 and 50 mg/L) on early-life stages of zebrafish and common carp (Cyprinus carpio) for 120 h. The authors demonstrated that all tested concentrations, except the highest concentration (50 mg/L), induced cumulative mortality  $\leq 10\%$  after 120 h of exposure. Glyphosate at 50 mg/L caused the highest cumulative mortality, reaching 17.5% after 120 h of exposure while in this study, there were no significant differences between this group (glyphosate at 50 mg/L) and control with 1.7 % of larvae mortality after 96 of exposure. It is worth noting that according to OECD 236, the survival of embryos in the NC must be  $\geq 90$  % (validation criterion of the test), and therefore mortality  $\leq 10$  % in the experimental groups is acceptable.

#### Conclusion

Glyphosate and AMPA caused no acute toxic effect (LC₅₀-96 h > 100 mg/L) in zebrafish.

# 3. Assessment and conclusion

#### Assessment and conclusion by applicant:

The acute toxicity of technical glyphosate and its metabolite aminomethylphosphonic acid (AMPA) to zebrafish embryos was investigated.

Glyphosate and AMPA caused no acute toxic effect (LC₅₀-96 h > 100 mg/L) in zebrafish.

The study was stated to have been conducted according to OECD guideline 236, but there is no information on hatching rates in the treatment and control groups, so exposure of the embryo without a potential barrier function of the chorion cannot be confirmed.

Concerning the validity of the study, four of the six validity criteria from the test guideline are mentioned in the paper (fertilization rate of embryo batches used was >90%, survival in the negative control group was > 90%, temperature was maintained at  $26 \pm 1^{\circ}$ C and dissolved oxygen was at an acceptable level appm). There is no information presented on the performance of the positive control group (3, 4-dichloroaniline) and no information provided on the hatching rates in the negative control group at 96 hours, which for the control group should exceed 80%. As these information are not presented and the

fact that there was no analytical verification of test concentrations reported, this study considered as reliable with restrictions.

#### 1. Information on the study

Data point:	CA 8.2.2.1/006
Report author	Schweizer, M. et al.
Report year	2019
Report title	How glyphosate and its associated acidity affect early
	development in zebrafish (Danio rerio)
Document No	DOI 10.7717/peerj.7094
	ISSN: 2167-8359
<b>Guidelines followed in study</b>	OECD Guideline 236
<b>Deviations from current test</b>	None None
guideline	
<b>GLP/Officially recognised testing</b>	No, not conducted under GLP/Officially recognised testing
facilities	facilities
Acceptability/Reliability:	Yes/Reliable with restrictions.

# 2. Full summary of the study according to OECD format

Zebrafish (*Danio rerio*) embryos exposed to concentrations between 10 μM and 10 mM glyphosate (corresponding concentrations between 1.69 and 1690.7 mg glyphosate/L) in an unbuffered aqueous medium, as well as at pH 7, for 96 hours post fertifization (hpf). Furthermore, for investigations of the influence of pH, the test concentration 1 mM glyphosate (169.07 mg glyphosate/L) was tested at different pH values ranging between pH 3 and 8 vs. the respective pH controls. A total of 32 embryos were used per treatment with 8 replicates of 4 embryos each. The observed endpoints included mortality, the hatching rate, developmental delays at 24 hpf, the heart rate at 48 hpf, hatching success from 60 to 96 hpf and malformations at 96 hpf. LC_{10/50}, EC₁₀ and if reasonable, EC₅₀ values were determined for unbuffered glyphosate.

In unbuffered glyphosate medium the lethal concentrations were calculated to be 385 mM (LC₁₀) and 582 mM (LC₅₀) at 96 hpf. Regarding heart rates the EC₁₀ was 43 mM. Concerning the hatching rate, EC₁₀ and EC₅₀ levels at 96 hpf were 155 and 224 mM, respectively. For developmental delays at 24 hpf the EC₁₀ was 126 mM.

#### Materials and methods &

Glyphosate; Glyphosate (N (phosphonomethyl)glycine, 96% pure substance, molecular weight: 169.07 g/mol, CAS: 1074-83-6; Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) was used to prepare the test solutions. A stock solution with a concentration of 25 mM was prepared as follows: glyphosate was diluted in reconstituted water (0.23 g KCl, 2.59 g NaHCO₃, 4.93 g MgS₄O x 7 H₂O and 11.76 g CaCl₂ x 2 H₂O were dissolved separately in one L double-distilled water, then 25 mL of each stock solution was added to 900 mL double-distilled water). The stock solution was then diluted to the following test concentrations: 10, 50, 100, 250, 500, 750 mM, one and 10 mM glyphosate. All those concentrations were tested unbuffiered and at pH 7. For pH adjustments, 1M HCl and NaOH solutions were used as recommended in the Organisation for Economic Co-operation and Development (OECD) 236 (2013) guideline. For investigations of the influence of pH, 1 mM glyphosate was tested at different pH values ranging between pH 3 and 8 vs. the respective pH controls. Due to preliminary results from the broad-scale pH testing, particular attention was paid to the range between pH 3 and 4. Measurements of pH were conducted with a pH meter (SevenCompactDuo; Mettler Toledo, Gießen, Germany) directly prior to the exposure.

Maintenance of zebrafish and test procedure; The embryos used in this study stem from our own breeding stock of the D. rerio West aquarium strain established in the Animal Physiological Ecology group,

Tübingen University. Adult zebrafish were kept in 90 L aquaria filled with a 1:1 mixture of purified water so and filtered tap water (AE-2L water filter with an ABL-0240-29 activated carbon filter, 0.3 mm; Reiser Seligenstadt, Germany) at  $26 \pm 1$  °C and an oxygen saturation of  $100\% \pm 5\%$ . Conductivity ranged from 260 to 350 mS/cm, nitrite and nitrate concentrations from 0.025 to 0.1 mg/L, one and five mg/L, respectively, and total water hardness from eight to 12 dH. Fish were subjected to an artificial 12:12 h day/night cycle and fed three times daily with flake food (TetraMin; Tetra GmbH, Melle, Germany) supplemented with frozen black mosquito larvae and glass worms (Poseidon Aquakultur Freeze, Ruppichteroth, Germany) prior to spawning to ensure sufficient dietary protein. The day before the test, pre-exposure and test Petri dishes (90 and 30 mm in diameter) were filled with the respective solutions and stored at  $26 \pm 1$  °C overnight to saturate the glass (the same was done with the Schott, flask used for the stock solution, beforehand). On the morning of the test, Petri dishes were emptied and refilled with 70 mL (pre-exposure) and three mL (test Petri dishes) solution. For spawning, Plexiglas bexes 20 x 20 x 6 cm in size and covered with a mesh grid to keep zebrafish from feeding on their own eggs were used as breeding boxes. They were topped with artificial sea grass acting as an optical spawning stimulus and were placed into the fish tanks the evening before the start of the test. Zebrafish spawn at surise; therefore, spawning in the laboratory starts with the onset of light the next morning. Eggs were collected with a sieve, rinsed with tepid tap water, transferred into pre-exposure Petri dishes and incubated for 2 h at  $26 \pm 1$  °C. Following the pre-exposure, eggs for the test were chosen with regard to their age and developmental stage (0 hours post fertilization (hpf)  $\triangleq 8$  a m.), placed into the small 30 mm Petri dishes and stored in a heated cabinet at  $26 \pm 1$  °C. A total of 32 individuals were used per treatment, that is, four per Petri dish and eight replicates each. Embryos were checked every 12 to 24 h. Endpoints investigated under a stereo microscope (Stemi 2000-C; Zeiss, Oberkochen, Germany) included mortality, developmental delays at 24 hpf, heart rate at 48 hpf, hatching success from 60 to 96 hpf and malformations at 96 hpf. Except for mortality, analysis of all endpoints, including hatching success, was based on living embryos/larvae at the respective time point of evaluation.

Table 8.2.2.1-13: Overview of observed lethal and sublethal endpoints at respective time points.

14,0,0

		140, 40, 10°			
Endpoint	12 hpf	24 hpf 2 48 hpf	60 hpf	72 hpf	96 hpf
Endpoint  Mortality Developmental delays No somites Non-detachment of the tail No development of the eyes Heart rate Hatching success Malformations Oedema Eye/brain defects Deformation of the spines	1	12/12/21	1	1	1
Developmental delays		1 8. 70 J			
No somites	Es				
Non-detachment of the tail	20.3	O K			
No development of the eyes	60 911	21			
Heart rate	The series	1			
Hatching success	I THE CO.		1	1	1
Malformations	0 4				1
Oedema	of the same of the				1
Eye/brain defects					1
Deformation of the spine					1
Light pigmentation					1

Heart rates were determined from two out of four individuals per Petri dish for 20 s, and values were extrapolated to 1 min. Coagulated eggs, dead larvae and empty egg shells were removed from the Petri dishes to avoid depletion of oxygen due to biological degradation processes. The embryo test was run three times and conducted according to Organisation for Economic Co-operation and Development (OECD) 236 (2013). The compound 3,4-dichloraniline (98%, CAS: 95-76-1; Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) at a concentration of four mg/L served as a positive control and reconstituted water, as a negative control. According to the Directive 2010/63/EU of the European Parliament and the Council on the protection of animals for scientific purposes, D. rerio embryos and larvae that do not feed independently are not regarded as animals, thus regulations and permissions for animal testing do not apply. Nevertheless, all embryos in our tests were handled in the least stressful way possible and with the utmost care. After test termination embryos/larvae were euthanized with MS222.

Statistics; All statistical analyses were conducted in JMP 11.2.0 (SAS Institute Inc., Cary, NC, USA). Mortality, hatching success and the malformation rate at 96 hpf, as well as developmental delays at 24 hpf. were analysed with a likelihood-ratio w2 test, followed by Fisher's exact test. Finally, the sequential Bonferroni-Holm method was applied accounting for multiple testing. A Cox regression was used to assess mortality and hatching success over time. For the analysis of heart rate, the data were averaged per Petri dish and checked for a normal distribution and homogeneity of variances. Subsequently an ANQVA with Tukey's HSD or Dunnett's test was conducted. If data did not meet the criteria for an ANOVA and transformation of the data did not lead to the desired result, a non-parametric Steel-Dwass test was conducted instead. Additionally, for assessing the pH range in which pH control and glyphosate treatments differed in heart rate across the whole span of tested pH, non-linear regression analysis, including calculation of 95% confidence intervals (TableCurve 2D v5.01; SYSTAT Software Inc., San Jose, CA, USA), was applied. Non-linear regression analysis by TableCurve was also asset for determining LC10/EC10 and LC50/EC50 values of endpoints in unbuffered glyphosate treatments.

Results
After 96 hpf, mortality and hatching success were 0% and above 80% respectively, in control embryos. The 3,4-dichloraniline positive control induced high mortalities, with rates consistently above 80 % after 96 hpf. Thus, the validity criteria according to Organisation for Economic Co-operation and Development (OECD) 236 (2013), including sensitivity of zebrafish, were met *Unbuffered glyphosate*: At the two highest concentrations tested (1 and 10 mM), it was already difficult to

select well-developed eggs after the 2 h pre-exposure period. The volk sac, which usually has a regular spherical shape, was found to be asymmetric and partly oval, and the chorion fluid, which is naturally clear, was murky in some cases and contained indefinable streaks.

As early as 12 hpf, all individuals, without exception, in the 1 mM treatment died. Mortality in the 1 mM exposure experiment was beyond 85% at 12 hpf and reached 100% within the first 24 h. Within the 750 mM glyphosate treatment, only six out of a total of 96 individuals survived until the end of the test at 96 hpf, whereas concentrations of 250 mM and below resulted in negligible or no mortality (3.125 %). Regarding mortality at 96 hpf, all treatments 500 mM were largely significantly different from the control (likelihood ratio w2, p < 0.001). Lethal concentrations were calculated to be 385 mM (LC10) and 582 mM (LC50) at 96 hpf. Heart rates showed a concentration-dependent relationship, decreasing with increasing glyphosate concentration. The mean heart rate was 149 beats per minute (bpm) for the control and between 130 and 140 bpm for low (10, 50 mM), 120 and 130 bpm for medium (100, 250 mM) and 110 and 120 bpm for the higher (500, 750 mM) concentrations. Thus, differences between the control and the 750 mM concentration ranged between 30 and 40 bpm. The freatments with the highest concentrations of glyphosate (one mM, 10 mM) could not be evaluated dec. to 100% mortality at that time point. Only two individuals out of those exposed to one mM glyphosate survived until 60 hpf and seemed to continue the observed relationship between glyphosate and heart rate by showing even lower rates (93 and 96 bpm). As single individuals, they were not included in the statistical analysis. All remaining treatments were significantly different from the control (ANOVA with Tekey's HSD, p < 0.001) and the relationship between glyphosate concentration and heart rate could be described by linear regression analysis (R2 = 0.546074, p < 0.001). The EC10 was 43 mM. Concerning the hatching rate, we observed a clear division between a cluster of treatments that comprised the control treatment and lower concentrations of glyphosate (10, 50, 100 mM) and another treatment cluster comprising higher concentrations (250, 500, 750 mM).

Annex to Regulation 283/2013 Glyphosate M-CA, Section 8 Page 158 of 847

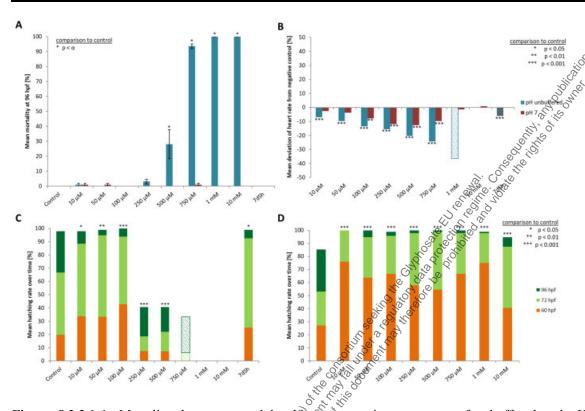



Figure 8.2.2.1-1: Mortality, heart rate and hatching success in percentage of unbuffered and pH 7 treatment. (A) Mortality after 96 hpf (likelihood ratio  $\alpha$ ). Fisher's exact test, Bonferroni-Holm,  $p < \alpha$ ), (B) heart rate at 48 hpf relative to the negative control (Steel-Dwass, p < 0.01), (C) hatching rate over time in unbuffered treatments (Cox regression, p < 0.05) (D) hatching rate in pH 7 treatments over time (Cox regression, p < 0.001); shaded bars mark treatments with n < 5 that show tendencies but are not included in the statistical analyses.

in the statistical analyses.

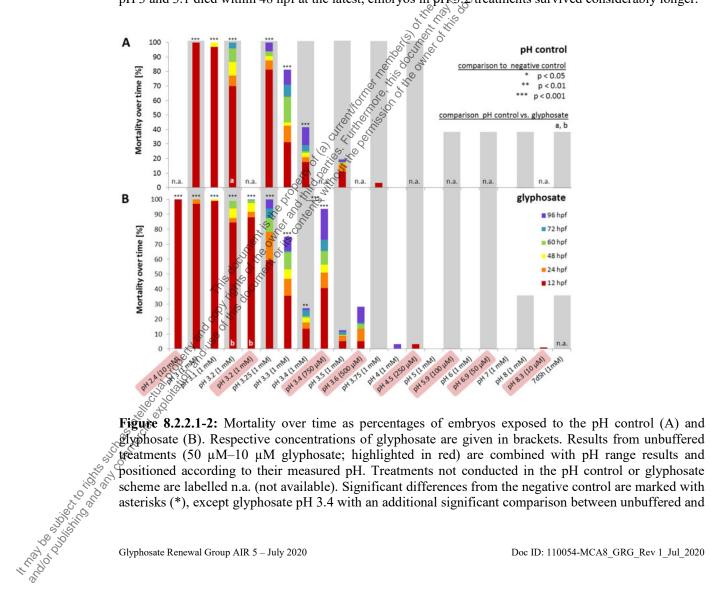
Embryos exposed to lower concentrations hatched in 98–100% of cases, whereas hatching success in the experiments with 250 and 500 mM glyphosate was approximately 40%. All glyphosate treatments showed significant differences compared with the control (Cox regression, p < 0.05). EC10 and EC50 levels at 96 hpf were 155 and 224 mM, respectively. There were no developmental delays at 24 hpf for glyphosate concentrations between 10 and 100 mM, whereas in treatments with 250 to 750 mM, rates varied from 15 % to 25 %. The EC10 for this endpoint was 126 mM. Results for all concentrations 250 mM were highly significant (likelihood catio w2, p < 0.001) compared with the control. A direct concentration dependency could not be observed. Rather, it seemed that a distinct concentration threshold had to be exceeded to induce those developmental delays and failures, which later approached the same level. Prevalent defects were a lack of tail detachment sometimes combined with apically curved tails; a lack of somite formation and an impairment of eye development was not detected. Occasionally, embryos were fully developed but either the complete tail of just the posterior end of their tails remained attached to the yolk sac. Under normal much muscular contractions were unable to turn around and their movemen embryos had the posterior end of their tails detached but displayed embryos could not move their tails in the same fluid manner as normally developed embryos could. Malformations could be found in embryos of all glyphosate treatments but with rates below 20 %. All glyphosate treatments were significantly different from the control. Among the malformations recorded, lightly pigmented embryos and larvae were particularly frequen). Furthermore, reduced eye size occurred regularly, and some individuals suffered from cardiac or yolk sac oedemas. Two individuals showed a conditions, movement begins after tail detachment. Yet, even the embryos in glyphosate treatments that

notable shortening of the tail. Deformations of the spine at 96 hpf were observed surprisingly rarely, despite the high rates of tail and spine malformations at 24 hpf.

Table 8.2.2.1-14: Results for concentration-dependent glyphosate treatments, as well as for OH-dependent control and glyphosate treatments, as percentages.

	Mortality	Mortality   Hatching   96 hpf (%)   Over time		HR	D	Mes	
	96 hpf (%)	Over time	96 hpf (%)	Over time	48 hpf (bpm)	24 hpf (%)	96 hpf (%
Unbuffered						and the same of th	110
Neg. control	0	4	97.92	-	148.75	0 % 0	© 0.26
10 μΜ	1.04	n.s.	97.92		138.38***	00, 70. 190	2.36*
50 μM	0	n.s.	98.96		134.19***	8 6 6	5.47*
100 μΜ	0	n.s.	100	***	128.69***	W W	4.69*
250 μΜ	3.13	n.s.	40.65	***	125.56***	22,23	13.57*
500 μM	28.13*		40.58*	***	118.63*** 5	20.36	16.06*
750 µM	93.64*	***	33.33*	n.a.	94.50*************************	19.04*	18.06*
1 mM	100*	***	n.a.	n.a.	n.a. Solo	n.a.	n.a.
10 mM	100*	***	n.a.	n.a.	n.a.X A .O	n.a.	n.a.
LC10/EC10	385 μM		155 μΜ		43 LM	126 µM	179 µM
LC ₅₀ /EC ₅₀	582 μM		224 μΜ		84 mg	<u>-</u> M	-
7dSh	0	n.s.	98.93		39,75	0.35	0.27
Neutral (pH 7)				TL _{ii}	of the		
Neg. control	0	-	85.42	- 60.3	48.04	0	0.52
10 μΜ	1.04	n.s.	100*	0	J 144.25	0	1.04
50 μM	1.04	n.s.	100*		142.56	1.04	1.87
100 μΜ	0	n.s.	98.96*	110.19	136.57**	0	2.60
250 μΜ	0	n.s.	100*	S 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	130.31***	0	0.26
500 μM	0	n.s.	100*	S. J. S.	129.19***	0	1.56
750 µM	1.04	n.s.	100*	O M	133.50*	0	2.35
1 mM	0	n.s.	98.96	. O	145.94	0.69	6.56*
10 mM	0	n.s.	94.79	11	149.38	0	7.29*
pH range—control		83,100	2000	Ť			2000
Neg. control	0	_	94.64	1-11	160.38	0	0.26
***		***	H WING	n.a.	n.a.	n.a.	n.a.
pH 3.1	100*	***	V _{n.a}	n.a.	n.a.	n.a.	n.a.
pH 3.2	100*	***	8	n.a.	n.a.	n.a.	n.a.
pH 3.3	84.03*	70.9	S 61.11°	***	140.19***	9.36*	4.17*
pH 3.4	51.04*	6. 6. 3	77.78**	***	141.38***	6.93*	3.51*
pH 3.5	8 33*	Olivin M	15.77** [†]	*****	144.25***	8.32*	2.0*
pH range—glypho	sate	Service Constitution	13177		111.20	0.52	2.0
pH 3	100*	11. 0. 10	n a	n.a.	n.a.	n.a.	n.a.
pH 3.1	100° 100° 84.03° 51.04° 8.33° saate 100° 100° 172.55° 173.46°	n.s.	n a	n.a.	n.a.	n.a.	n.a.
pH 3.2	100*	0 1	n a	n.a.	n.a.	n.a.	n.a.
pH 3.3	72 570	×	83 33	11.d.	136.46***	13.33*	0
pH 3.4	28.07.5	·**	60.61** [†]	***	141.49***	4.54*	3.80*
pH 3.5	15.16	ne	66 57**	*****	143.50***	10.31*	2.04*
pri 5.5	17.30	11.5.	00.57		145.50	10.51	2.04

tes: Asterisks (*) and bold indicate statistically significant differences from the negative control (Cox regression, ANOVA. *p < 0.05. **p < 0.01. ***p < 0.01. Likelihood ratio  $\chi^2$ , Fisher's exact test. Bortferroni-Holm: * $p < \alpha$ ).


Crosses (†) denote additional statistical significances between pH control and glyphosate within the same pH range or, in the case of 7dSh, differences from 1 mM glyphosate at pH  $\chi^2$  Figure ( $\chi^2$ ) concentrations, endpoint-related LC₁₀/EC₁₀ and LC₅₀/EC₅₀ values are given.

HR, heart rate;  $\chi^2$  developmental delays; M, malformations; n.s., not significant; n.a., not available (no sufficient sample sizes for statistical analysis).

Glyphosate adjusted to pH 7; When the glyphosate solutions were adjusted to pH 7, almost no mortality or From the negative control (Tukey's HSD, p < 0.01). At 750 mM, heart rates increased again, with a higher frequency than at 250 and 500 mM. At the two highest concentrations (1, 10 mM), heart rates were, on the one hand, marginally decelerated (1 mM) and on the other hand, marginally accelerated (10 mM) compared with the negative control. Thus, it seems that there is a turning point between 500 cm. 1.750 mM. developmental delays occurred, and malformation rates were below 10% but were still significantly

the relationship between increasing concentration and heart rate shifts from deceleration to acceleration in so comparison with the negative control. As already seen for lower concentrations in unbuffered treatments. glyphosate tends to induce early hatching, even at the lowest concentration and independently of concentration. This effect unfolded to its true extent in the pH-neutral treatments. At least twice as much larvae had hatched across all glyphosate treatments at 60 hpf compared with the negative control. After 72 hpf, all larvae were hatched in glyphosate treatments, except for single individuals that hatched at 96 hpf or did not hatch at all, whereas in the negative control, only 53 % of the embryos were hatched at 72 hpf and even about 15% remained unhatched at 96 hpf.

pH range, In a first step, one mM glyphosate was tested at pH 3, 4, 5, 6, 7 and 8 in comparison with negative controls at the respective pH but without the pesticide. Mortality was 100% for south treatments at pH 3, independent of the presence of glyphosate. Only a single individual survived the first 12 hpf. In contrast, only one individual died throughout all other exposures within 96 hpf. Morphological aberrations described for high glyphosate concentrations under unbuffered conditions also applied to low pH treatments, independent of glyphosate addition. Concerning sublethal endpoints results between different acidities in the range of pH 4 to 8, as well as between control and glyphosate within the same pH range, were inconspicuous for the most part. Thus, the pH 3 to 8 series was tested just once, and subsequent testing concentrated on the range from pH 3 to 4. Thus, in the next step of 3 3.25, 3.5, 3.75 and 4 were investigated in detail. As embryos exposed to pH 3.75 and 4 did not show any prominent effects, only a single run was conducted, and the final testing scheme was determined from pH 3 to 3.5 in 0.1 increments. Additionally, a test with unbuffered glyphosate at a one mM concentration (which resulted in a pH of 3.2 in the test solution) was included for direct comparison. Mortality decreased with increasing pH. Treatments with a pH of 3.2 and lower induced 100% mortality after 96 hpf. Whereas embryos exposed to pH 3 and 3.1 died within 48 hpf at the latest, embryos in pH3.2 treatments survived considerably longer.



cover time as percentages of embryos exposed to the pH control (A) and treatments (50 μM–10 μM glyphosate; highlighted in red) are combined with pH range results and positioned according to their measured pH. Treatments not conducted in the pH control or glyphosate scheme are labelled n.a. (not available). Significant differences from the negative control are marked with asterisks (*), except glyphosate pH 3.4 with an additional significant comparison between the significant comparison comparison comparison comparison comparison comparison comparison comparison compari

pH 7 treatment. Significances between pH control and glyphosate treatments within respective pH ranges are denoted with letters (a and b) (Cox regression, p < 0.01).

Apart from pH 3.5 without glyphosate, all treatments showed elevated mortality rates compared with the negative control (Cox regression, p < 0.05). There were no differences between control and glyphosate treatments with corresponding pH values, except for the elevated mortality in unbuffered glyphosate compared with the respective pH 3.2 control. Compared with the negative control, hatching was significantly delayed and also reduced in both glyphosate and pH control treatments (Cox regression, p < 0.001). Whereas 30 % of the control embryos hatched at 60 hpf, in the pH control and elyphosate exposures, the hatching rate at 60 hpf was consistently below 5% (see Supplementary File hatching rate). The tendency toward glyphosate-induced premature hatching at 60 hpf that was observed in pH-neutral treatments was not evident at low pH. Although not statistically significant (except for pH 3.5: Cox regression, p < 0.001), embryos exposed to glyphosate tended to hatch earlier and more frequently than embryos in the respective pH controls. Heart rates were significantly lowered by glophosate at pH 3.3 to 3.5, as well as by the corresponding control pH treatments (Steel-Dwass, p NOD). Differences between glyphosate and the respective controls at the same pH value could only be detected when the full pH range dataset (including results for pH 3 to 8) was analyzed. At a pH between 555 and 6.02, glyphosate elevated the embryonic heart rate significantly compared with pH controls (Table Curve 2D v5.01). Developmental delays and malformations occurred in the low pH treatments, but they did not vary in a pH-dependent manner, and there was no detectable difference between glyphosate and the respective pH controls.

Comparison; When datasets for the unbuffered glyphosate treatment and the pH range were merged regarding mortality in relation to pH, interestingly, embryos exposed to unbuffered glyphosate showed higher mortalities at 500 and 750 mM compared with their 10 mM counterparts at pH 3.5 and 3.4, respectively. The unbuffered 750 mM treatment with a pH of 3.4, in particular, resulted in a mortality rate more than twice as high as that in the glyphosate pH 3.4 treatment (1 mM), mirroring mortality effects seen in treatments ranging rather between pH 3.25 and 3.3

#### Conclusion

In unbuffered glyphosate medium the lethal concentrations were calculated to be 385 mM (LC₁₀) and 582 mM (LC₅₀) at 96 hpf. Regarding heart rates the EC₁₀ was 43 mM. Concerning the hatching rate, EC₁₀ and EC₅₀ levels at 96 hpf were 155 and 224 mM, respectively. For developmental delays at 24 hpf the EC₁₀ was 126 mM.

# 3. Assessment and conclusion

# Assessment and conclusion by applicant:

For Zebrafish (*Danio rerio*) embryos acutely exposed to glyphosate at concentrations between 1.69 and 1690.7 mg glyphosate/L (16  $\mu$ M to 10 mM) for 96 hours post fertilization (hpf) the LC₁₀ and LC₅₀ values (96 hpf) were calculated to be 65.1 mg a.s./L (385  $\mu$ M) and 98.4 mg a.s./L (582  $\mu$ M), respectively (in unbuffered glyphosate medium). Regarding heart rates the EC₁₀ was 7.27 mg a.s./L (43  $\mu$ M). Concerning hatclaing rate, 96 hpf -EC₁₀ and EC₅₀ values were 26.2 mg a.s./L (155  $\mu$ M) and 37.9 (224  $\mu$ M), respectively. For developmental delays at 24 hpf the EC10 was 21.3 mg a.s./L (126  $\mu$ M). The test was conducted according to OECD 236 test guideline.

Concerning the validity criteria in the OECD 236, despite the stated > 80% mortality in the positive control (>30% required) there are no details presented to confirm the level of mortality. The fertilisation rate of the batch of eggs used was not reported. Finally, acute endpoints based on developmental delay and heart rate are not relevant to an EU level risk assessment for Annex I renewal purposes.

The test design is adequately described, however, there was no analytical verification of test concentrations reported. The study is considered as reliable with restrictions.

#### **CA 8.2.2.2** Fish full life cycle test

A full life cycle study is available and presented below.

**Table 8.2.2.1-15:** Studies on fish full life cycle test

Annex point	Study	Study type	Substance(s)	Status	Remack
CA 8.2.2.2/001	Anonym., 1975	Chronic, 255 d FFLC,	Glyphosate acid	Valid	19. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10
		flow-through		0	E IN

There are no literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate or its relevant metabolites on fish full life cycles. Full literature evaluation is provided in document M-CA Section & summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. For discussions of literature regarding toxicity to fish please refer to document M-CP Endpoints of studies considered valid are shown in the table below.

Table 8.2.2 1-16.

Endpoints: Full life cycle toxicity of glyphosate to fish Table 8.2.2.1-16: 

Reference	Test item	Species Test de	esign/ GLP	NOEC (mg a.e./L)
Anon., 1975, CA 8.2.2.2/001	Glyphosate acid	Pimephales 255 d F flow-th	,	≥ 25.7 (mm)

a.e.: acid equivalents

mm: mean measured; cannot be determined from study report if arithmetic or geometric mean measured

Study summaries are provided below.

#### Information on the study 1.

Data point:	CA 8.2.2.2/001
Report author	Anonymous
Report year	1975
Report title	Chronic Toxicity of Glyphosate to the Fathead Minnow ( <i>Pimephales promelas</i> , Rafinesque)
Report No	BN-75-129
Document No &	-
Guidelines followed in study	EPA: Recommended bioassay procedures for fathead minnow (Pimephales promelas, Rafinesque) chronic tests. By the Bioassay Committee, National Water Quality Laboratory, Duluth, USA (1971)
Deviations from current test guideline	Deviations from the current EPA guideline OPPTS 850.1500 (1996): - none.
<b>Previous evaluation</b>	Yes, accepted in RAR (2015).
GLP/Officially recognised	No, GLP was not compulsory at the time the study was performed
testing facilities	

Acceptability/Reliability	Valid	
Category study in AIR 5 dossier (L docs)	Category 2a	

#### 2. Full summary of the study according to OECD format **Executive Summary**

The effects of glyphosate on fathead Minnow (*Pimephales promelas*) were evaluated in a full life eycle test in flow-through test conditions. The test was performed using mean measured concentrations of 0.7, 2.8, 7.0, 13.0 and 25.7 mg glyphosate/L (mg a.s./L). In addition, a control group was exposed to the dilution water. At test initiation, thirty fathead minnow eggs were incubated in each test aquarium and observed for effects at all developmental steps of the full life cycle. Forty fish were divided into two groups of twenty each, were randomly selected, and distributed to growth chambers in each aquariting Two growth chambers were used to facilitate handling of fry for 30 and 60 day measurements by a photographic method. Percent survival based on cumulative mortality was also determined at these intervals. After 60 day measurements, the number of fish released to each spawning chamber was impartially reduced to fifteen after combining fish from the growth chambers. When secondary sexual characteristics were well developed (circa day 134), the number of fish in each tank was reduced initially to four makes and four females and subsequently (day 179) to two males and four females which were allowed to spawn.

During the full life cycle test, adult fecundity (approx. day 112) and survival (day 30, 60 and day 134) were recorded. The egg hatchability was determined on the first generation eggs 4 days after the test initiation. Total length (day 30, day 60 and day 255), total wet weight (day 254), sex ratio (day 134 and day 254) and gonadal conditions (day 254) were equally determined for each adult fish.

Temperature and dissolved oxygen were measured on a daily basis. The alkalinity, acidity and hardness of the test water were measured on a weekly basis. All validity criteria according to EPA guideline OPPTS 850.1500 were fulfilled. None of the parameters studied adult fecundity, parental and juvenile mortality, total length, wet weight, sex ratio and gonadal conditions), were significantly affected by the chronic exposure to the test item.

# I. MATERIALS AND METHODS

## A. MATERIALS

1. Test material:

Test item:
Description: Glyphosate None

Lot/Batch #: Not stated

Purity: 87.3%

Vehicle: dilution water 2. Vehicle and/or positive control: Positive control: none

3. Test organism:

Fathead minnow (Pimephales promelas, Rafinesque) Species:

Age: Not stated Size: Not stated

Loading: 40 fish per aquarium of 41 L test solution (at test initiation)

Source: In-house stock culture

Diet/Food: 3 - 4 times per day *ad libitum* with brine shrimp nauplii (first 45

days);

Twice a day *ad libitum* with frozen brine shrimp (after 45 days).

Not stated

Acclimation period: Not stated

Body weight of the animals: 1.5 g

#### 4. Environmental conditions:

Temperature:  $25 \pm 1$  °C (chronic test) Photoperiod: 16 hours light / 8 hours dark

pH: 6.5 - 7.6

Dissolved oxygen:  $6.3 - 9.0 \text{ mg O}_2/L$ 

Conductivity: not stated

Hardness: 32 - 42 mg CaCO₃/L

**5. Experimental dates of work:** Test start: January 27th 1975

#### **B. STUDY DESIGN**

Experimental treatments: A fish chronic toxicity tests (full life vice) was performed with glyphosate using concentrations 0.7, 2.8, 7.0, 13.0 and 25.7 mg a.s./L (mean measured) in a flow-through test. In addition, a control group was exposed to the dilution water. The test medium in aquaria was exchanged continuously through a flow-through system. A glass flow-splitting chamber was calibrated to deliver an equal flow rate to the growth chambers. There were six duplicate lest vessels, containing 41L test solution each. At test initiation, thirty eggs were incubated in each test vessel. Dead eggs were removed and counted each day until hatching was completed (4 days at 25°C) 40° fish (selected from the hatched fish) were randomly distributed to growth chambers in each vessel. Percent survival based on cumulative mortality was determined at these intervals. After 60 day, the number of fish released to each spawning chamber was impartially reduced to fifteen after combining fish from the growth chambers. On day 64, five spawning sites were made. When secondary sexual characteristics were well developed (circa day 134) the number of fish in each tank was reduced initially to four males and four females and subsequently (day 179) to two males and four females. When spawning began (circa day 112), eggs were daily removed from the underside of spawning tiles and counted Fifty eggs from each of the first ten spawning were then oscillated in their respective test waters and dead eggs were removed and counted daily, until hatching was completed. Twenty fry from the first two spawns in each tank, in which at least 80 % live hatch was observed, were placed in their respective growth chambers and observed for 30 days, after which fry groups were terminated and total lengths determined by the photographic method. Total length, wet weight, sex and gonadal conditions were determined for each adult fish at the termination of the experiment.

Observations: During the full life cycle test, adult fecundity was determined approximately on day 112 and survival was observed on day 30, day 60 and day 134. The egg hatchability was determined on the first generation (F1) eggs 4 days after the test initiation. Total length, wet weight, sex and gonadal conditions were equally determined for each adult fish at termination of the experiment after 254 days. Temperature and dissolve oxygen were measured on a daily basis. The alkalinity, acidity and hardness of the test water were measured on a weekly basis. Chemical analyses were performed on samples of the test solutions (taken weekly) to quantify glyphosate in test solution with colorimetric measurements. Indirect quantification of glyphosate was used by quantifying ortho-phosphate and total phosphorus, and then to correct the quantification of the difference between the two analyses for background (i.e. controls) and results were expressed as mg/L phosphorus calculated as glyphosate.

Statistical calculations: ANOVA, Duncan's Multiple Range Test at  $\alpha = 0.05$  as post hoc test.

#### II. RESULTS AND DISCUSSION

#### A. **FINDINGS**

**Table 8.2.2.1-17: Endpoints** 

Endpoints	Glyphosate [mg a.s./L]	
NOEC (255 days)	≥ 25.7	7, 80 %
		'y. O 'so

illo. Analytical results: Chemical analyses were performed on samples of the test solutions (taken weekly) to quantify glyphosate in test solution. The mean measured concentrations of the sest item in test solutions were 43.75%, 87.50%, 110.11%, 104.0% and 102.80% for the nominal test concentrations of 1.6, 3.2, 6.3, 12.5 and 25 mg a.s./L respectively.

Table 8.2.2.1-18: Analytical results

Nominal concentration of glyphosate [mg a.s./L]	Mean measured of glyphosate [mg a.s/L]	% of nominal
Control	6,000	-
1.6	507 5	43.8
3.2	×2.8°	87.5
6.3	5 2 30	110.1
12.5	€ 613.0	104.0
25.0	25.7	102.8
B. OBSERVATIONS		

#### **OBSERVATIONS**

Clinical observations: Analyses of variance indicated that continuous exposure of fathead minnows to concentrations of glyphosate as high as 25.7 mg a.s./L had no significant effects on any of the parameters studied during 254 days of continuous exposure. Hatchability of eggs was >94 % in all test item treatments. Mortality and total length of fathead minnows after 30 through 134 days of exposure to concentrations of glyphosate in the treatment groups did not differ significantly from control fish. At termination, total length and wet weight of the female fathead minnows were similar to controls among fish exposed to all concentrations of glyphosate. The number of spawning, eggs per female and eggs per spawn did not differ significantly between controls and fish exposed to the test item treatments.

Percentage of live fry matching in test item treatments was similar to that which was observed in the controls. Survival and total length and wet weight of second generation fathead minnows was similar to controls for fish exposed 30 days to concentrations of glyphosate. The number of spawnings, eggs per female and eggs per spawn did not differ significantly between controls and fish exposed to concentrations of glyphosate as high as 25.7 mg/l. One spawn of 33 eggs was recovered from the B replicate of 25.7 mg/l before the accidental death of fish due to a diluter malfunction early in the spawning period. Prior to that time, all fish appeared healthy and had reached sexual maturity.

Table 8.2.2.1-19: Survival and growth of fathead minnows during chronic exposure to glyphosate (mean values)

Glyphosate	e (mg a.s./L)	Control	0.7	2.8	7.0	13.0	25.7
Egg hatchal	oility	99.5	97	96	97	99	<b>397</b> ,©
Day 20	Survival 1	98.5	81.5	78	89	73	3 89
Day 30	Total length	16	16	16	14.5	16.5	. Til 6
Doy 60	Survival	93	81.5	76.5	82.5	73	‰ 89 ≈
Day 60	Total length	25.5	25	27.5	26.5	27.5%	26
Day 140	Survival ²	100	93	96.5	96.5	76.5 _% %	96.5
	Total length ♂	59	62	62	63	\$ 65°	61 ³
Day 254	Total length♀	47	46	48	45	. 6 348	42
	Total weight ♂	3.8	3.3	3.4	3.05	3.2	2.4
	Total weight ♀	1.08	1.03	1.18	0.94.5	1.05	0.94

¹ Survival based on 40 fish per duplicate.

1 Survival based on 40 fish per duplicate.
2 Survival based on 15 fish per duplicate.
3 Fish accidentally killed on day 168 due to diluter malfunction.

Table 8.2.2.1-20: Spawning and egg hatchability of fathead minutows continuously exposed to glyphosate (mean values)

Glyphosate (mg a.s./L)	Control	0.7	£2.8 £	7.0	13.0	25.7 ^A
Number females	4	4	0 .040°	4	4	4
Spawning/♀	9.5	4.5	10.0	5.5	5.0	4.5
Eggs spawned/♀	340	207	619	323	298	263
Eggs/spawning	66.5	51.0	62.5	60.0	65.0	51.0
Hatchability	93.5	90.0	87.5	91.5	89.5	86.5 B
N ^C	7.5	6,000	10.0	9.0	5.5	6.0

A All fish killed on day 168 due to diluter malfunction in only one compartment of the aquarium.

# O JULIANI. CONCLUSIONS

# 3. Assessment and conclusion Assessment and conclusion by applicant:

In a flow through full life cycle study of fathead minnows exposed to glyphosate, none of the parameters studied (adult fecundity, parental and juvenile mortality, total length, wet weight, sex ratio and gonadal conditions), were significantly affected by the chronic exposure to glyphosate. The NOEC was determined to be 23.7 mg a.s./L (mean measured).

This flow through full life cycle study is considered valid and the NOEC value for fathead minnow exposed to glyphosate was determined to be >25.7 mg a.e./L (mean measured) and can be used in risk assessment

# Assessment and conclusion by RMS:

^B Eggs from unexposed parents (in the aquarium compartment, in which all fish were killed)

^C Number of egg groups exposed.

#### **CA 8.2.2.3 Bioconcentration in fish**

Bioconcentration of glyphosate in fish has been evaluated and presented below.

Table 8.2.2.1-21: Studies on bioconcentration in fish

Annex point	Study	Study type	Test species	Substance(s)	Status Remark
CA 8.2.2.3/001	1989	BCF (part 1): 56 d /flow-through	Lepomis macrochirus	Radiolabelled glyphosate acid	valid% -
CA 8.2.2.3/002	1989	BCF (part 2): 56 d /flow-through	Lepomis macrochirus	Radiolabelled glyphosate acid	valid -

There are no literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate or its relevant metabolites on bioconcentration. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2019 is also available in Annex M-CA 8-01 to this document. Endpoints of studies considered valid are shown in the table below.

Table 8.2.2.1-22:

Endpoints: Bioconcentration of glyphosate in fish

Reference	Test item	Species	Test design/ GLP	BCF
1989 CA 8.2.2.3/001	Glyphosate acid	Lepomis macrochirus	BCF (part 1) - 56 d flow-through/ GLP	$1.1 \pm 0.61$
1989 CA 8.2.2.3/002	21	Lépomis macrochirus	BCF (part 2) - 56 day flow-through/ GLP	$1.1 \pm 0.61$

Study summaries are provided below

#### Information on the study 1.

Data point:	CA 8.2.2.3/001
Report author	
Report year	1989
Report title	Uptake, Depuration and Bioconcentration of ¹⁴ C Glyphosate to Bluegill Sunfish ( <i>Lepomis macrochirus</i> ) Part I
Report No S	MSL-9304
Document No	-
Guidelines followed in study	Guideline 72-6
Deviations from current test guideline	Deviations according to the current OECD 305 guideline (2012): - none.
Previous evaluation	Yes, accepted in RAR (2015).
<b>CLP/Officially recognised</b> testing facilities	Yes
Acceptability/Reliability	Valid

Category study in AIR 5 dossier (L docs)	Category 2a
------------------------------------------	-------------

#### 1. Information on the study

Data point:	CA 8.2.2.3/002
Report author	
Report year	1989
Report title	Uptake, Depuration and Bioconcentration of ¹⁴ C Glyphosate to Bluegill Sunfish ( <i>Lepomis macrochirus</i> ) Part II: Characterization and Quantitation of Glyphosate and Its Metabolites
Report No	MSL-9303
Document No	- 50 50 50
Guidelines followed in study	Guideline 72-6
Deviations from current test guideline	Deviations according to the OECD guideline 305; Minor: fish loading range of 0.1 g 1.0g/L, actual loading is slightly outside this range at 1.5 g/L.
Previous evaluation	Yes, accepted in RAR (2013)
GLP/Officially recognised testing facilities	Yes S S S
Acceptability/Reliability	Valid On The State of the State
Category study in AIR 5 dossier (L docs)	Category 2a

# Full summary of the study according to OECD format **Executive Summary**

In a dynamic flow-through laboratory study, the bioconcentration potential was determined in bluegill sunfish (Lepomis macrochirus). A flow-through proportional diluter system was used to maintain a mean measured water concentration of 12±17.7 mg ¹⁴C glyphosate/L for a 35-day exposure period. Subsequently, the fish were exposed for 21-days to flowing uncontaminated well water. During the uptake phase, water was sampled on day 0 and then water and fish were sampled after 2 and 6 hours, and after 1, 3, 7, 14, 21, 28 and 35 days. During the depuration period, water and fish were sampled on day 1, 3, 7, 10, 14 and 21 (corresponding to day 36, 38, 42, 45, 49 and 56 after test initiation).

Five fish per sampling date were collected from each replicate and pooled into control and treated samples. Six of the control and treated fish were dissected into fillet/edible (body muscle, skin and skeleton) and viscera/non-edible (fins, head and internal organs). Four fish of the control and treated samples per sampling date were used for whole fish analysis. For metabolite characterisation, 12 fish from the control and treatment group from each aquarium were sampled and dissected on days 7, 14, 21 and 28 of the uptake

The daily bioconcentration factor ranged from <0.11 to 0.38 for fillet, from <0.11 to 0.52 for whole fish, and from <0.13 to 0.63 for viscera, respectively. Uptake tissue concentrations of ¹⁴C-glyphosate ranged from <1.45 to 4.6 mg a.s./kg for fillet, from <1.3 to 6.2 mg a.s./kg for whole fish, and from <1.3 to 7.6 mg a.s. Rg for viscera, respectively. ¹⁴C-residue levels were below minimum quantifiable limits until day 21 for fillet and day 7 for whole fish and viscera samples. Radio-analysis on day 21 of the depuration period indicated 35%, 52% and 51% depuration from fillet, whole fish and viscera, respectively.

e glyphosate was estimated to be 0.02 to be to  $35\pm18$  days. All validity criteria according to the OECD guideline 305 were fulfilled. The aptake rate constant ( $K_1$ ) of ¹⁴C glyphosate was estimated to be  $0.022 \pm 0.004$  mg a.a./kg in fish/mg/L speeday while the depuration rate constant ( $K_2$ ) was of  $0.020 \pm 0.01$ /day. The 50% clearance was estimated to be 0.024  $\pm$  0.004 mg a.a./kg in fish/mg/L

In a flow-through dynamic uptake study of ¹⁴C-glyphosate (12 mg a.s./L) by *Lepomis macrochirus*, the time to reach 90 % of steady state was estimated to be 120 ± 50 days. The line was estimated to be  $1.1 \pm 0.61$ . The study is considered valid.

#### I. MATERIALS AND METHODS

#### A. MATERIALS

#### 1. Test material:

Test item: ¹⁴C glyphosate (N-phosphonomethylglycine anethyl-¹⁴C)

Description: White powder

Lot/Batch #: C-1106-4; C-1106-5 (FJGT-07-000)

Purity: 99.2 %

Vehicle: deionised water 2. Vehicle and/or positive control:

3. Test organism:

Bluegill sunfish (Lepopus macrochirus) Species:

Age: juvenile

Length: 6.3 ± 01. nm

Body weight:

Loading: 1 specimen (0.6 L (1.5g fish/L)

Source:

Daily with Zeigler Brothers #1 Salmon Starter equivalent to Diet/Food:

approximately 3 % of fish body weight.

>14 days Acclimation period: Hold

4. Environmental conditions:

Temperature. 422 1 °C

Photoperiod. 16/8 hours light/dark

Dissolved oxygen: 6.4 - 8.4 mg/L (76 – 100 % of oxygen saturation)

Conductivity:  $480 - 540 \, \mu \text{S/cm}^3$ Hardness: 238 - 278 CaCO₃/L.

5. Dates of experimental work: January 26th to March 22nd 1988

# B. STUDY DESIGN

#### **Experimental treatments:**

Based on the results of a range-finding test, a 56-days laboratory bioconcentration study of bluegill sunfish (Lepomis macrochirus) exposed to glyphosate was conducted using a nominal test concentration of 12 mg ¹⁴C glyphosate/L under flow-through conditions. The test was conducted in glass aquaria containing 70 L test solution. A modified proportional diluter system (Hamilton Model 420 dual syringe dispenser), was used for intermittent introduction of test item and water solution at an average rate of 340 mL/min., replacing test volume approximately 7 times/day.

The uptake phase (day 0-35) was initiated by transferring groups of 110 specimens to each replicate. Water was sampled on day 0 and water and fish were sampled 0.17 (2 – 6 hours), 1, 3, 7, 14, 21, 28 and 35 of the uptake phase and on day 1, 3, 7, 10, 14 and 21 of the depuration period (corresponding to day 36, 38, 42, 45, 49 and 56 after test initiation) and radio-assayed.

All measurements of radioactivity were made using either a Searle Model Delta 300® Liquid Scintillation & Counting (LSC) System or a TM Analytic Model Delta 300® LSC System optimized for carbon-14 sample

Observations: On sampling days, five fish from each chamber were collected and pooled into control and treated samples. Six of the pooled fish were dissected into fillet/edible (body muscle, skin and skeleton) and viscera/non-edible (fins, head and internal organs). The remaining four fish of the pooled control and treated samples were reserved for whole fish analysis. Additional fish (12 fish from the control and treatment group) were collected and dissected for metabolite characterization on days 7, 14, 21 and 28 of the uptake phase.

**Analytical procedures:** The levels of ¹⁴C-activity calculated as concentrations of ¹⁴C-glyphosate in whole fish, fillet and viscera samples were determined by triplicate analysis of homogenised samples using sample combustion followed by liquid scintillation counting.

Statistical calculations: A non-linear kinetic modelling computer program (Dow BFOFAC) was used to determine the uptake rate constant (K₁) and depuration rate constant (K₂). The Broconcentration factors for the uptake period were determined by dividing the ¹⁴C-glyphosate concentration in tissue by the mean ¹⁴Cglyphosate concentration in water for corresponding exposure time.

## II. RESULTS AND DISCUSSION

A. FINDINGS
Initial water concentrations are shown below, throughout the 35-day study water concentrations ranged from 11 to 13 mg ¹⁴C/L, equivalent to 91.7% and 108.3% of the nominal test concentration respectively.

Table 8.2.2.3-1: Initial water concentrations - Radiochemical/HPLC analysis

Glyphosate in water [mg a.s./L]	% in final concentrate	% Glyphosate	% AMPA
12.3	74.350 10 36	95	1.2
12.5	84.84 F.	95.9	1.9
13.2	£ 82.90°	95.8	1.8
12.3	£ 85.6	96.6	1.1

Total ¹⁴C-radioactivity calculated as ¹⁴C-glyphosate in test water and fish tissue during 35 days exposure and 21 days depuration with bluegill sunfish is given below.

Table 8.2.2.3-2: Summary of results

Parameter	Endpoints
K1, Uptake rate constant [ppm fish/ppm water/day]	$0.022 \pm 0.004$
K2, Depuration rate constant [/ day]	$0.020 \pm 0.010$
50% Depuration [days]	35 ± 18
90% Steady-State [days]	$120 \pm 59$
Bioconcentration factor	$1.1 \pm 0.61$
Symptoms	none

Table 8.2.2.3-3: Total ¹⁴C-radioactivity calculated as ¹⁴C-glyphosate in test water and bluegill sunfish tissue

	Fille	t	Whole	fish	Viscera 🧬	
<b>Days</b> ↓	[mg a.s./kg]	BCF	[mg a.s./kg]	BCF	[mg a.s./kg]	BCE
3	< LOD	< 0.11	< LOD	< 0.11	< LOD	x 0.11
14	< LOD	< 0.11	4.3	0.36	5.1	€ 0.42
21	1.8	0.15	3.9	0.32	7.6	0.63
28	3.6	0.30	6.2	0.52	6.85 30	0.57
35	4.6	0.38	4.6	0.38	J. J	0.60

LOD: Limit of detection

Table 8.2.2.3-4: Depuration of total ¹⁴C calculated as ¹⁴C-glyphosate from bluegill sunfish during a 21-day clearance period

		Fillet			Whole fish	10,00	Viscera			
<b>Days</b> ↓	Conc. [mg	Depurati	ation Conc. [mg/kg]		Depuration S		Conc. [mg/kg]	Depuration		
	a.s./kg]	[mg a.s./kg]	[%]		[mg a.s./kg]	&[%]		[mg a.s./kg]	[%]	
0	4.6	0	0	4.6		0	7.2	0	0	
1	2.7	1.9	41	13	10 0 18 S	0	5.2	2.0	28	
3	2.8	1.8	39	4.1	50 6 0.5°	11	5.6	1.6	22	
7	4.8	0	0	10		0	6.2	1.0	14	
10	2.1	2.5	54	6.80	0	0	3.4	3.8	53	
14	3.0	1.6	35	28.5 ₀ 0 0	2.1	46	3.9	3.3	46	
21	3.0	1.6	35	2250	2.4	52	3.5	3.7	57	

B. OBSERVATIONS

Due to the nature of the test compound, a steady-state plateau was never achieved during the 35 days of uptake. No mortality or abnormal behaviour was observed during the conduct of this study. All validity criteria according to the OECD guideline 305 were fulfilled as the temperature variation was < 2°C and the concentration of dissolved oxygen was  $\geq 60\%$  saturation. The concentration of the test substance in the chambers was maintained within ± 20% of the mean of measured values during uptake phase and no mortality or abnormal behaviour was observed during the conduct of this study.

#### III. CONCLUSIONS

# 3. Assessment and conclusion

#### Assessment and conclusion by applicant:

In a flow through dynamic uptake study of ¹⁴C-glyphosate by Bluegill sunfish (*Lepomis macrochirus*), the time to reach 90% of steady state was estimated to be  $120 \pm 59$  days. The bioconcentration factor (BCF) was estimated to be  $1.1 \pm 0.61$ .

This flow through dynamic uptake study of ¹⁴C-glyphosate by Bluegill sunfish (*Lepomis macrochirus*) is considered valid and the bioconcentration factor (BCF) was estimated to be  $1.1 \pm 0.61$  and can be used in risk assessment.

#### **Assessment and conclusion by RMS:**

# CA 8.2.3 Endocrine disrupting properties

According to the endocrine disrupting (ED) criteria laid down in Regulation (EU) 2018/605, endocrine mediated adversity as well as activity and the biological link between those two must be apparent to identify a substance as an endocrine disruptor. A detailed evaluation of endocrine disrupting properties has been made according to EFSA Journal 2018;16(6):5311 incorporating relevant regulatory studies and reliable literature articles. The results are summarised below, see report CA 5.8.3/010 for full details.

Concerning the ED assessment of non-target organisms, EATS-mediated adversity of glyphosate has not been observed in any of the ecotoxicological studies conducted with glyphosate in birds, fish, amphibians and invertebrates. Regarding the assessment of potential EAS-mediated adversity, only secondary effects as a consequence of systemic toxicity are observed. The effects are ranked as "sensitive to, but not diagnostic of EATS" modalities and "systemic toxicity". Potential EAS-mediated activity has been investigated within a Fish Short-Term Reproduction Assay and is therefore sufficiently investigated. No indication for EAS-related endocrine activity was observed. T-mediated activity was investigated within an amphibian metamorphosis assay and is therefore sufficiently investigated. No effects on relevant parameters rated as "T-mediated" were found. This result is sufficient to conclude that T-mediated adversity is unlikely, as no T-related endocrine activity has been observed. Hence, the ED criteria for glyphosate with regards to non-target organisms are therefore not met.

In conclusion, glyphosate does not induce EATS mediated adversity and no EATS-related endocrine activity was observed *in silico*, *in vitro*, and *in vivo* for humans and mammals as well as for non-target organisms. This conclusion is in concordance with the current Peer review of the pesticide risk assessment of the potential endocrine disrupting properties of glyphosate (EFSA Journal 2017; 15(9): 4979) as well as with the conclusion of EPA on the Endocrine Screening Program (EDSP) Tier I (US EPA, 2015).

Since glyphosate has not been shown to induce EATS-mediated adversity or endocrine activity, it is concluded that the ED criteria with regard to EATS-modalities in humans and mammals as well as non-target organisms are not met for glyphosate.

Specific studies considering the effects of glyphosate on the endocrine system were assessed for their validity to current and relevant guidelines for glyphosate and are presented in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are presented in this section below. These studies are also incorporated into the ED assessment report (CA 5.8.3/010).

Table 8.2.3-1: Studies on endocrine properties

Annex point	Study	Study type	Substance(s)	Status	Remark
CA 8.2.3/001 5 5	2012	Fish short-term reproduction assay	Glyphosate	Valid	-
CA 8.2.3.002		Amphibian metamorphosis assay	Glyphosate	Valid	-

Literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate or its relevant metabolites on endocrine disrupting properties are summarized in the report CA 5.8.3/010.

Endpoints of studies considered valid for glyphosate are shown in the table below. Studies have been conducted with various forms of glyphosate, namely IPA salt, K-salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate technical are automatically expressed as acid equivalent.

Table 8.2.3-2: Endpoints: endocrine disrupter properties

Reference	Test item	Species	Test design	Endpoints based on	EC ₅₀ (mg a.e./L)	NOEC (mg a.e./L)	
2012	Glyphosate	Pimephales	Fish short-	ams of	-	≥33	
CA 8.2.3/001	acid	promelas	term	application of the state of the			
			reproduction assay				
			(FSTRA)	270			
2012	Glyphosate	Xenopus	Amphibian	nom	-	≥100	
CA 8.2.3/002	acid	laevis	metamorphosis				
			assay (AMA)				
am= arithmetic mean measured	l, nom: nominal		THE TO SE				
		, 3					
Ct- 1-	: 4 - 4 1 - 1		chi e				
Study summaries are prov	ided below.	0, 8	, o ^r				
am= arithmetic mean measured, nom: nominal  Study summaries are provided below.  1. Information on the study							
Data point:	CA 8	3.2.3/001					

#### 1. Information on the study

	"/\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\
Data point:	CA 8.2.3/004
Report author	
Report year	2012 5
Report title	Glyphosate: Fish Short-Term Reproduction Assay (FSTRA) with the Fathead Minnow ( <i>Pimephales promelas</i> )
Report No	707A-102A
Document No	-
Guidelines followed in study	OECD Guideline 229 (2009) OPPTS/OCSPP Guideline 890.1350 (2009)
Deviations from correct test guideline	Deviations from guideline OECD 229 (2012): Minor: - Temperature range was greater than 2°C for a short time period (< 24 hours).
Previous evaluation	Yes, EFSA ED Conclusion (2017) ¹²
GLP/Officially recognised testing facilities	Yes
Acceptability/Reliability	Valid
Category study in AIR 5 dossier (L docs)	Category 2a

¹² EFSA (European Food Safety Authority), 2017. Conclusion on the peer review of the pesticide risk assessment of the potential endocrine disrupting properties of glyphosate. EFSA Journal 2017;15(9):4979, 20 pp. https://doi.org/10.2903/j.efsa.2017.4979

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

# 2. Full summary

#### **Executive Summary**

The 21-day short-term reproduction assay of MON 77973 (glyphosate acid) with the fathead minrow (Pimephales promelas) was conducted under flow-through conditions to determine the impact of glyphosate acid on the hypothalamus-pituitary-gonadal (HPG) endocrine axis by evaluating effects on the reproductive system, such as fecundity, fertility, secondary sexual characteristics (tubercles and fatpad scores), gonadosomatic index (GSI) histopathology of gonads as well as plasma vitellogeran Four groups of adult males and females (2 males and 4 females in each group), were exposed to group at a nominal concentrations of 0 (negative control), 0.048, 0.24, 1.2, 6.0, and 30 mg &s, Lathe highest test concentration was based on one-third of a 96-hr LC₅₀ value of a previous acute toxicaty test) with a total of 24 fish exposed per treatment and control group. Following a pre-exposure period of 19 days, groups of actively spawning fish, were exposed to glyphosate acid according to the aforement oned treatment groups, for a 21-day exposure period, with survival, fecundity, fertility and general observations recorded daily. The remaining reproductive endpoints were evaluated at test termination; along with fish lengths and fish

The overall arithmetic mean measured glyphosate acid concentrations were (negative control; <LOQ), 0.046, 0.23, 1.2, 6.2, and 33 mg a.s./L, respectively. All performance criteria were met for this study, except for a slight deviation in temperature. Recorded temperatures exceeded the recommended range ( $25 \pm 1$  °C), for less than 24 hours on Day 7 when the maximum recorded temperature reached 29.1 °C (range of 28.6 - 29.1 °C); deviation occurred in three replicates each in the 1.2 rag a.s./L and 6.2 mg a.s./L groups). This deviation was due to a loose wiring between the temperature probe and the heat plates beneath these replicates, which was quickly rectified. Temperature measurements repeated on Day 7, across all affected replicates fell within a 24.4 to 4.7 °C range. This minor deviation is not considered to have had any impact on study integrity.

There was 100 % fish survival in the negative control 0.046, 0.23, 6.2, and 33 mg a.s./L treatment groups with 91.7 % survival in the 1.2 mg a.e./L treatment group.

Glyphosate acid did not result in any significant increases or decreases in weight or length for either sex at any treatment level. There were no observed effects on secondary sex characteristics or clinical signs (i.e., behavioral and other sub-lethal effects) in males or females in any treatment group. The mean number of eggs per female reproductive day in the negative control was 23.5 eggs/day (range: 23.2-23.9 eggs/female/day); fertilization success in the negative control was 97.3 %. Fecundity and fertilization success were not significantly different from the negative control for any treatment group.

There were no effects on survival, growth, reproduction, secondary sex characteristics, GSI, VTG or gonad in Father in Fat histopathology in male or female ash exposed to glyphosate acid for 21 days. Based on the endpoints evaluated, glyphosate acid is concluded to not impact the function of the hypothalamus-pituitary-gonadal (HPG) endocrine axis in fathead minnows. The study is considered valid.

Table 8.2.3-3: Summary of FSTRA Findings

Treatment (mg a.e./L)	Fecundity	Fertilization		Tubercle Score		GSI		Gonadal Histopathology		Plasma VTG	
[mean- measured]	reculialty	Success	М	F	M	F	M	F	M	OF ST	
0.046	No	No	No	No	No	No	No	No	No	No	
0.23	No	No	No	No	No	No	No	No	No. ic.	No	
1.2	No	No	No	No	No	No	No	No.	No	No	
6.2	No	No	No	No	No	No		S 100 6	No	No	
33	No	No	No	No	No	No	New	ON, NO	No	No	

F = Female; GSI = Gonado-Somatic Index; M = Male; VTG = Vitellogenin

The fish short-term reproduction assay (FSTRA) with breeding groups of fathead minnow (Pimephales promelas) exposed to glyphosate acid is considered valid. The overall NOEC was ≥ 33 mg a.s./L (arithmetic mean measured).

# I. MATERIALS AND METHODS

#### A. MATERIALS

1. Test material:

MON 77973 (glyphosate acid) Test item:

White powder Description: Lot/Batch #: GLP-1103-21149-T

> Purity: 85.14% before drying (95.93% glyphosate acid, dried)

Stability of test compound: Stable. Mean-measured concentrations yielded recoveries of 96-

2. Vehicle and/or positive control: Vehicle: dilution water (filtered well water)

Positive control: none

3. Test organism:

Fathead minnow (Pimephales promelas)

Species/sex: Far'

Strain

of d Age at start of dosing: 5.5 months

Weight at start of dosing: 0.9 g (females) - 1.6 g (males)

Acclimation period:

Source:

2 months, plus 19-day pre-exposure period

Diet: Commercial flake food (Sera Vipan, Sera North America)

supplemented with shrimp brine nauplii (Brine Shrimp Direct,

Ogden, UT, USA), 2 times/day

**Housing:** 

Exposure System: Continuous flow-through diluter system

Flow-through Rate: 44 mL/min

Exposure Vessel: 12 L Glass Aquaria (10 L fill volume)

Spawning Substrate Material: Inverted semi-circular PVC pipe section (~10 cm)

Source of dilution water: Fresh filtered and sterilized well water (0.45 μm)

## 4. Environmental conditions:

Temperature:  $25.4 \,^{\circ}\text{C} (24.3 \,^{\circ}\text{C} - 29.1 \,^{\circ}\text{C})$ 

A minor temperature deviation occurred on Day 7 due to loose wiring between a temperature probe and heat plates beneath replicates B, C and D of the 1.2 mg a.s./L treatment group and replicates A, B and C of the 6.2 mg a.s./L treatment group, with a

maximum temperature of 29.1 °C recorded.

The wiring was reattached, and measurements were re-taken later on Day 7. The second measurements in Replicates B, C and D of the 1.2 mg a.s./L and Replicates A, B and C of the 6.2 mg a.s./L treatment groups respectively were 24.7, 24.6, 24.5, 24.4, 24.4

and 24.5°C, respectively.

pH: 8.1 (8.0 - 8.3)

7.2 mg/L (6.0 – 7.9 mg/L) Dissolved Oxygen

7.2 mg/L (6.0 – 7.9 mg/L) 7.2 mg/L as CaCO₃ (160 mg/L as CaCO₃) Total Alkalinity:

144.5 mg/L as  $CaCO_3$  (140  $\stackrel{?}{\sim}$  148 mg/L as  $CaCO_3$ ) Hardness:

16 h light/8 h dark 30-minute transition of low light between Photoperiod:

light and dark periods).

Mean =  $1170 \pm 412 \text{ lux}$  (range 450 - 1976 lux) Light Intensity at Water's Surface:

17th October 2011 to 11th January 2012 5. Dates of experimental work:

B. STUDY DESIGN

Experimental treatments

A 14-day range-finding test was conducted at 1.9, 3.8, 7.5, 15 and 30 mg a.s./L, for 14 days, the highest concentration tested, being based on the results of a 96 hour acute toxicity study¹³, being approximately one-third of the achieved LC₅₀. In the range-finding test, one incidental mortality occurred at 15 mg a.s./L, with no other signs of toxicity observed in any control or treatment group throughout the test duration.

The definitive test concentration range was 0.048, 0.24, 1.2, 6.0 and 30 mg a.s./L, conducted under flowthrough exposure conditions. A nominal stock solution of 225 mg a.s./L – corrected for purity, was pumped into mixing chambers according to treatment group at rates (mL/min) required to achieve the final required test concentrations. Test solutions were then pumped into the test chambers (12-L glass aquaria) filled with approximately 10 L of test water. The volume in the test chambers was maintained by an overflow port on one end of each chamber. Into each chamber, a spawning substrate or tile was placed into each chamber. A tile consisted of a semi-circular section of PVC pipe approximately 10 cm in length.

Four replicates were used in each treatment group (including the control group); each replicate consisted of two males and four females, except the fourth replicate at 33 mg a.s./L, where there were three males and three females due to a mis-sexed fish at pre-exposure allocation. Water samples were collected from two alternating replicate test chambers in each treatment and control group for concentration analysis on Days 0, \$\overline{x}\$, \$\overline{1}\overline{4}\$, and 21. The limit of quantification (LOQ) was 0.0300 mg a.s./L.

Notifical and arithmetic mean measured glyphosate acid concentrations can be found in the table below.

^{. 1975.} Chronic toxicity of glyphosate to the fathead minnow (Pimephales promelas Rafinesque). Monsanto unpublished study BN-75-129. MRID 108171.

Table 8.2.3-4: Summary of Treatment Concentrations in the FSTRA with Glyphosate acid

Treatment ID	Nominal Concentration (mg a.e./L)	Measured Concentration (mg a.e./L)	Mean CV (%)	
Negative Control	0.00	< LOQ	NA &	
Treatment 1	0.048	0.046	9.0	
Treatment 2	0.24	0.23	9.9	
Treatment 3	1.2	1.2	2.30 ;(5)	
Treatment 4	6.0	6.2	254,0	
Treatment 5	30	33	€ C7.8	

CV = Coefficient of variation; LOQ = Limit of Quantification (0.0300 mg a.e./L)

Observations:

Mortality, Clinical Signs: Survival and general observations were made daily during the 21-day exposure period. External abnormalities and abnormal behavior were noted if observed. Dead fish were removed as soon as possible but were not replaced in either the control or treatment test chambers.

Body Weight and Length: The wet weight and total length of each fish was recorded at test termination. Fish were blotted dry and weighed to the nearest 0.1 mg. Fotal length was measured to the nearest millimeter.

Secondary Sex Characteristics: Detailed observations of secondary sex characteristics including pigmentation patterns, tubercles, fatpads, and ovipositors were recorded and the external sex was 1,900 F determined at test termination.

Spawning and Mean Fecundity: Spawning tiles were removed from the test chambers daily and any eggs that were present were counted. Fecundity was calculated as the number of eggs per surviving female per reproductive day per replicate. After eggs were counted, they were evaluated for fertilization success. The number of infertile eggs was counted and the number of fertile eggs was calculated as the difference between the total number of eggs and the number of infertile eggs on the tile. Fertilization success (%) was calculated as the number of embryos divided by the number of eggs, multiplied by 100.

Plasma Vitellogenin (VTG): At study termination, at least two blood samples were collected from the caudal vein/artery of each fish using heparinized microhematocrit tubes. Male fish were processed before female fish to avoid contamination of VTG samples. After collection, the plasma was separated by centrifugation and transferred to a microcentrifuge tube containing lyophilized protease inhibitor (aprotinin). Analysis for vitellogenin was conducted with a commercially available enzyme-linked immunosorbent assay, (EEISA) kit (Biosense Laboratories, Bergen, Norway) using an antibody raised against fathead miniow VTG. The procedures used to collect, prepare and analyze the plasma samples were based upon methodology provided by the ELISA system manufacturer and those presented by the U.S. EPA.

Plasma Sex Steroid Levels: No plasma sex steroids were measured.

Gonada Histology and Histopathology: Immediately following blood collection, gonads were fixed in situ with Davidson's solution, removed from the abdominal cavity, gently blotted and weighed to the nearest 0.1 mg to determine the gonadosomatic index (GSI = gonad wt/body wt × 100). After weighing, each pair of gonads (right and left) was enclosed in a plastic tissue cassette that was then placed in a container of Sfigative (Davidson's solution). After at least 24 hours of fixation, the gonads in the cassettes were rinsed with 70 % ethanol and placed in neutral-buffered formalin. Gonads were then subjected to routine histological processing, embedded in paraffin, and longitudinally sectioned. At the largest cross-sectional area of the gonads, three step sections (each 4-6 microns thick) were cut at approximately 50-micron intervals and all three sections were mounted on a single glass slide. Slides were stained with hematoxylin and eosin, cover-slipped, and then evaluated by a histopathologist.

Gonadal staging for the male fathead minnow was as follows: 0 = undeveloped, 1 = early spermatogenic, 2 = mid-spermatogenic, 3 = late spermatogenic, 4 = spent. Gonadal staging for the female fathead minnow was as follows: 0 = undeveloped, 1 = early development, 2 = mid-development, 3 = late development, 4 = late development/hydrated, 5 = post-ovulatory.

Histomorphologic parameters assessed included relative germ cell numbers, alterations in numbers and sizes of non-germ cells (e.g., testicular interstitial cells and ovarian perifollicular cells), and increased degenerative changes. When appropriate, the pathologist used a scoring system to indicate the severity of these changes and other abnormalities according to the following scale: Grade 0 for remarkable, Grade 1 = minimal, Grade 2 = mild, Grade 3 = moderate, and Grade 4 = marked. Any changes not amenable to grading were designated as "Present". In addition, the stage of developmental maturity of each gonad pair was indicated according to guideline recommendations.

Analytical procedures: Water samples were collected from two alternating replicate test chambers in each treatment and control group for concentration analysis on Days 0, 3, 14, and 21. Samples were collected from mid-depth at each interval, placed in glass vials, and processed immediately for analysis and analyzed by reverse-phase high performance liquid chromatography (HPLC) using variable wavelength detection set at 500 nm. Chromatographic separations were achieved using a YMC-PACK ODS-AM analytical column (150 mm x 4.6 mm, 3-µm particle size). Fresh calibration standards (range: 0.0300 - 0.300 mg a.s./L) were prepared and analyzed with each sample set. Linear regression equations were generated using the peak area responses versus the respective concentrations of the calibration standards. The concentration of glyphosate acid in the samples was determined by substituting the peak area responses of the samples into the applicable linear regression equation. The limit of quantification (LOQ) was 0.0300 mg a.s./L. Four matrix blank samples were analyzed to determine possible interferences. No interferences were observed at or above the LOQ during the sample analyses.

Statistical calculations: Analyses were performed to evaluate differences between treatment and control groups for each of the following endpoints survival, wet weight, total length, fecundity, fertility, gonado-somatic index (GSI), vitellogenin (VPG) concentration, tubercle score, gonad developmental stage, and incidence and severity of gonad abnormalities. Measurements of VTG are inherently variable, and boxplots of log transformed VTG values were used to identify potential outliers (Tukey's method) that might need special handling in the analyses. No outliers were excluded from analyses in this study. Unless otherwise noted, replicate test chambers were used as the unit of statistical analysis. Males and females were analysed separately for each endpoint when appropriate. Endpoints were first evaluated for monotonicity. Since the responses for all endpoints except male tubercle scores appeared to be monotonic, a step-down Jonckheere-Terpstra trend test was used to evaluate possible trends in the ranks of replicate means to determine concentration responsible trends among the treatment groups. Dunnett's test was used to evaluate male tubercle scores. Survival was analyzed using Fisher's Exact test, and histopathology severity scores and stages of individuals were analyzed using step-down Jonckheere-Terpstra trend tests. Statistical tests used to evaluate treatment effects were performed at confidence level of  $\alpha = 0.05$ .

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

Mean measured concentrations of glyphosate acid in test solution samples ranged from 96 to 110 % of nominal concentrations.

# SOBSERVATIONS

Mortality, Clinical Signs: No treatment-related effects on survival were observed in any treatment group. There were incidental mortalities of one female and one male fish in the 1.2 mg a.s./L treatment group resulting in an overall survival of 91.7 %. Survival was 100 % in the remaining treatment groups.

Glyphosate Renewal Group AIR 5 – July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

No clinical signs were observed in any males or females in the negative control and treatment groups.

Body Weight and Length: No treatment-related effects were observed on mean body weight or mean length in males or females (see table below).

Table 8.2.3-5: Body Weight and Length at Test Termination in Fathead Minnow (Pimephales promelas)

Turneture	Body Weight					Length			10 :10 .			
Treatment	Males		Females		Males		Females					
[mg a.s./L] (mean measured)	n	Mean	± SD	n	Mean	± SD	n	Mean	± SD	δn O	∦Mean	$\pm$ SD
(mean measured)		[g]			[g]			[mm]		il on	[mm]	
Negative Control	4	2.20	0.462	4	1.14	0.047	4	55	2.8	° <u>4</u> 0	46	0.7
0.046	4	2.17	0.348	4	1.11	0.056	4	53	1.80	4	46	0.9
0.23	4	2.28	0.397	4	1.04	0.069	4	55 g	35 6	4	45	1.1
1.2	4	2.20	0.185	4	1.12	0.051	4	54	્યું. <b>ૄ</b> ં	4	46	0.2
6.2	4	2.15	0.272	4	1.07	0.108	4	530	2.3	4	45	1.3
33	4	2.05	0.209	4	1.13	0.094	4	<b>5</b> 2 A	1.0	4	46	0.8

Secondary Sex Characteristics: Overall, there were no treatment-related effects on secondary sex characteristics in males or females in all treatment groups. No treatment-related effects were observed on median tubercle scores. Male nuptial median tubercle scores ranged from 15 at 33 mg a.s./L to 19 at 0.046 and 1.2 mg a.s./L; no nuptial tubercles were observed for females. There were 3 males instead of the recommended 2 due to a mis-sexing error in the fourth replicate of the 33 mg a.s./L treatment group. The median scores are unaffected when this fish is removed from the results.

<u>Spawning and Mean Fecundity:</u> No treatment-related effects were observed on mean fecundity and mean fertilization success (see table below).

Table 8.2.3-6: Fecundity and Fertilization Success in Fathead Minnow (Pimephales promelas)

Treatment	(Eggs per Female pe	ndity er Reproductive Day)	Fertilization Success (%)		
[mg a.s./L] (mean measured)	Mean Mean	± SD	Mean	± SD	
Negative Control	£ 23.5	0.33	97.3	0.4	
0.046	29.3	5.3	97.6	1.0	
0.23	22.7	5.4	98.4	1.4	
1.2	24.9	0.89	96.0	2.7	
6.2	28.1	6.4	98.1	1.1	
33	23.6	2.2	96.7	2.0	

Plasma Vitellogenin (VTG): The mean VTG concentration in males in the negative control, 0.046, 0.23, 1.2, 6.2 and 33 mg a.s./L treatment groups was 1.01, 0.77, 1.34, 0.75, 0.39 and 0.33  $\mu$ g/mL, respectively. There were no statistically significant effects on VTG among males in any treatment group in comparison to the negative control (p > 0.05). The mean VTG concentration in females in the negative control, 0.046, 0.23, F.2, 6.2 and 33 mg a.s./L treatment groups was 3191, 2124, 2226, 2195, 1442 and 2142  $\mu$ g/mL, respectively. There were no statistically significant effects on VTG among females in any treatment group in comparison to the negative control (p > 0.05).

Glyphosate Renewal Group AIR  $5-July\ 2020$ 

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Table 8.2.3-7: Plasma Vitellogenin (VTG) in Fathead Minnow (Pimephales promelas)

Treatment		Males		Females				
[mg a.s./L]	n	Mean	± SD	n	Mean	+ SD €		
(mean measured)	n	[µg/mL plasma]	± SD	n	[µg/mL plasma]	± SDiji		
Negative Control	4	1.01	1.143	4	3191	1170 1		
0.046	4	0.77	0.312	4	2124	80₹		
0.23	4	1.34	2.068	4	2226	624		
1.2	4	0.75	1.240	4	2195	× 403		
6.2	4	0.39	0.368	4	1442	S S 550		
33	4	$0.33^{1}$	0.210	4	2142 😹 ح	356		

In the fourth replicate of the 33 mg a.s./L treatment group, there were 3 males instead of the recommended 2 due to a missexing error. If this fish is removed from analysis of VTG, the treatment means are very similar as when retained (327 when retained vs. 299 when mis-sexed removed). The values in this table reflect data excluding the mis-sexed male.

Gonadal Histology and Histopathology:

There were no treatment-related effects on GSI (see table below) or openedian gonadal staging in males or females.

Table 8.2.3-8: Gonado-Somatic Index (GSI) in Fathead Minnow (Pimephales promelas)

			~~ /	10		
Treatment		Males	in 161	10.00	Females	
[mg a.s./L] (mean measured)	n	Mean GSI (%)	± <b>SD</b>	n	Mean GSI (%)	±SD
Negative Control	4	1.48	%0,2×1,8%	4	14.7	3.28
0.046	4	1.11	o 0.202	4	14.4	2.04
0.23	4	1.43	0393	4	13.1	1.66
1.2	4	1.33	S 0.087	4	14.0	2.58
6.2	4	1.35	0.324	4	15.5	2.06
33	4	1.511	0.325	4	15.8	3.12

¹ In the fourth replicate of the 33 mg a.s./L treatment group, there were 3 males instead of the recommended 2 due to a missexing error. If this fish is removed from analysis of GSI, the treatment means are very similar as when retained (1.51 when S. H. S. H. retained vs. 1.52 when removed).

No treatment-related effects in gonadal staging were observed. Testes and ovaries from the five treatment groups showed no changes in gonadal staging or increased abnormalities when compared with the negative control.

There were no treatment related effects or statistically significant differences observed in the histological evaluations of the testes and ovaries. Testes and ovaries from the five treatment groups showed no changes in gonadal staging or increased abnormalities when compared with the negative control.

Minimal and mild granulomatous inflammation was found in male gonads from the mean-measured 0.046 mg a.s./L freatment group, but these observations were not considered to be treatment-related (see table below). No other male gonadal histopathological observations were made.

Hoo College of the Co

Table 8.2.3-9: Gonadal histopathology in male fathead minnow (Pimephales promelas)—Selected parameters as discussed above

Treatment (mg a.e./L)	Severity	Gra Inf	Incidence  8 0 0 0 4 1 3 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
[mean-measured]		n	Incidence
	0	8	8
	1	8	0
Negative Control	2	8	0
	3	8	0
	4	8	0
	0	8	4
	1	8	1 .
0.046	2	8	3 %
	3	8	0 8
	4	8	0,8 8
	0	8	8 70 8
	1	8	2000
0.23	2	8	10 × 10 × 10
	3	8	8 3 00 m
	4	8 0	200
	0	ZUE	5 6 7
	1	ST.	ET 0
1.2	2	5.8	0
	3 0	1720	0
	44	6.9	0
	30 B.	× 8	8
	011116	8	0
6.2	TO STATE	8	0
8	\$ 30 B	8	0
Zo.	11/4	8	0
26.26	S 0	9	9
.0° م			
all office	1	9	0
33 ¹ 16 16 16	1 2	9	0
33 ¹ (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2 3	1.75	2,050

In the fourth replicate of the 33 mgs.egic treatment group, there were 3 males instead of the recommended 2 due to a missexing error. Because the mis-sexed mole of the fourth replicate of the mean-measured 33 mg a.e./L treatment group was not explicitly identified, it was included in the histopathologic evaluations.

Mild increased oocyte acress in females was observed in the negative control, low, and mid concentration treatments, and a single incident of moderate increased oocyte atresia was noted in the high concentration treatment group (see table below). Moderate to marked increases in mature oocytes were observed in two, five, and one females in the negative control and mean-measured 1.2 and 33 mg a.s./L treatment groups, respectively, and were therefore not considered to be treatment-related. Mild granulomatous inflammation was noted in a single female in the negative control and mean-measured 6.2 mg a.s./L treatment group and therefore was not considered to be treatment-related (see table below).

Table 8.2.3-10: Gonadal histopathology in female fathead minnow (*Pimephales promelas*)—Selected parameters as discussed above

Treatment (mg a.e./L)	Severity	Incre	eased Ooctye Atresia		nulomatous lammation	Incre	eased Mature
[mean-measured]		n	Incidence	n	Incidence	n	Incidense
	0	16	15	16	15	16	7 18 7 19 8 19 8 19
	1	16	0	16	0	16	83 :180
<b>Negative Control</b>	2	16	1	16	1	16	£ 10 0
	3	16	0	16	0	106	× 0
	4	16	0	16	0	(0)16°	0 0 2
	0	16	15	16	16	0360	16
	1	16	0	16	0 6 6	5 18	0
0.046	2	16	1	16	0 8 8	i [™] 16	0
	3	16	0	16	<b>2</b> 0 50 8	16	0
	4	16	0	16		16	0
	0	16	16	16	\$ 18 0 \$ 5 00 \$ 5 00	16	16
0.23	1	16	0	16	J. 5006	16	0
	2	16	0	16	5 8 B	16	0
	3	16	0	1600	(80, ×1, 0	16	0
	4	16	0	16.5 36 (15.5) (15.5) (15.5) (15.5)	0 15	16	0
	0	15	13	350	15	15	10
	1	15	0 4	13/1	0	15	0
1.2	2	15	2 0	1015	0	15	0
	3	15	0 126	.515	0	15	1
	4	15	00000	15	0	15	4
	0	16	26.5	16	15	16	16
	1	16	THE SOUTH	16	0	16	0
6.2	2	16		16	1	16	0
	3	16	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	16	0	16	0
	4	16,50	020	16	0	16	0
	0	16 16 16 16 15 15 15	0	15	15	15	14
	1	315/1	Elli 0	15	0	15	0
33	2 .	15	0	15	0	15	0
	3 8	150	1	15	0	15	0
	42	25	0	15	0	15	1

Following point is a minor deviation from guideline OECD 229 (2012):

- Temperature range was greater than 2 °C for a short time period (< 24 hours).

This deviation did not have any adverse impact on the study.

The test is regarded as valid, since criteria for test acceptability according to OECD 229 guideline (2012) were met:

- The dissolved oxygen concentration was at least 60 % of the air-saturation value throughout the exposure period.
- Water temperature did not differ by more than 1 °C between test vessels at any one time during the exposure period and was maintained within ±1 °C of the 25 °C temperature specified, except on Day 7 of the test when the maximum temperature was 29.1 °C for a short duration (< 24 hours). This deviation did not have any adverse impact on the study

There was more than 90% survival of control animals over the duration of the chemical exposure. Mean measured concentrations of the test substance remained within an acceptable range throughout the test (CV < 20%)

# III. CONCLUSIONS

# 3. Assessment and conclusion

# Assessment and conclusion by applicant:

Breeding groups of fathead minnows (*Pimephales promelas*) were exposed to glyphosate arithmetic mean measured assessment in a contract of the arithmetic mean measured concentrations of 0.046, 0.23, 1.2, 6.2 and 33 mg a.s./L for 21 days. The endpoints evaluated were adult survival, body length and wet weight, fecundity (cumulative egg production and eggs per female reproductive day), fertilization success, secondary sex characteristics (including fatpad and tubercle scores), GSI, VTG and gonad histopathology. There were no effects on survival, growth, reproduction, secondary sex characteristics, GSI, VTG or gonad histopathology in male or female fish exposed to glyphosate acid for 21 days. Based on the endpoints evaluated, glyphosate acid is concluded to not affect the function of the hypothalamus-pituitary-gonadal (HPG) endocrine axis in fathead minnows.

The fish short-term reproduction assay (FSTRA) with breeding groups of fatheas minnow (Pimephales promelas) exposed to glyphosate acid is considered valid and the overall NOEC ≥33 mg a.s./L (arithmetic mean measured) can be used for ecotoxicological risk assessment.

# Assessment and conclusion by RMS:

### 1. Information on the study

CA 8.2.3/002
2012
Glyphosate: Amphibian Metamorphosis Assay for the Detection of Thyroid Active Substances
707A-103 ( ) C
- 55.5
OECD Guideline 231 (2009) OPPTS OCSPP Guideline 890.1100 (2009)
Deviations from guideline OECD 231 (2009):
Minor:
Measured test concentrations CV% >20 % due to low recoveries in
the low treatment group on Day 14 and in the high treatment group on Day 21.
Day 21.
Yes, EFSA ED Conclusion (2017)
Yes
Valid
Category 2a

# Full summary

# **Executive Summary**

The 2P-day assay of MON 77973 (glyphosate acid) on amphibian metamorphosis of the African clawed frog (Xenopus laevis) was conducted under flow-through conditions, to determine the potential for glyphosate to interfere with the normal function of the hypothalamic-pituitary thyroid (HPT) axis and the African clawed frog (Xenopus laevis). Amphibian larvae at Nieuwkoop-Faber (NF) stage 51 (80 per control and treatment group) were exposed to glyphosate acid at nominal concentrations of 0 (negative control),

0.16, 0.80, 4.0, 20, and 100 mg a.s./L. Arithmetic mean-measured concentrations were < 0.100 (<LOQ; control), 0.13, 0.79, 4.3, 20, and 90 mg a.s./L.

All performance criteria were met in this study, except for the test solution coefficient of variance (CV) for the 0.16 and 100 mg a.s./L treatment groups, in which the CVs were 41 and 31%, respectively, both greater than the recommended maximum of 20%. However, this deviation did not impact the interpretation of the results.

Tadpole survival to Day 21 in the negative control group and in the 0.13, 0.79, 4.3, 20 and 20 mg a.s./L treatment groups was 98.8, 100, 100, 100, 96.3 and 98.8%, respectively. The numbers of tadpoles in the treatment groups with tail curvature were comparable to the number in the control group and the tail curvature was not considered to be a thyroid-related effect, but rather a dietary effect. In feeding trials done at the testing lab it was shown that feeding rates during acclimation contribute to the amount of curvature

Glyphosate acid caused no significant acceleration or delay of median NF developmental stage throughout the test. Further, no asynchronous development was observed. No tadpole single control and treatment groups developed beyond NF stage 57. Glyphosate acid exposure did not cause significant effects on Day 7 or Day 21 normalized hind-limb lengths (HLL) at any concentration tested. Shout-vent length (SVL) was not significantly affected at any treatment concentration at Day 7, but was significantly increased (p < 0.05) in the 4.3, 20, and 90 mg a.s./L treatment concentrations at Day 27 6.2%, 2.5%, and 6.7% increase, respectively) compared to the control. Additionally, there was a significant increase in Day 21 body weight at 90 mg a.s./L (17% increase). However, growth should never be solely relied upon to determine thyroid toxicity. Rather, growth, in conjunction with developmental stage and thyroid histopathology, should be used to determine thyroid activity.

There were no treatment-related effects on thyroid gland histopathology at any treatment level, with comparable incidence and severity of thyroid gland alrophy and hypertrophy, and follicular cell hypertrophy and hyperplasia in the control and treatment concentrations. While there appeared to be an increased incidence of mild thyroid gland hypertroplay at the highest treatment concentration, the same incidence was observed at the lowest treatment concentration and the effect was not concentration responsive. Similar findings were observed for foldicular cell height increase: an apparent increase in mild severity at the top concentration with a simplar incidence at the lowest treatment concentration and no concentration-responsive pattern. Finally, the pathologist report indicated that there were no treatmentrelated changes in the thyroid glands of tadpoles exposed to glyphosate acid when compared to those in the negative control.

Table 8.2.3-11: Summary of AMA Findings

Treatment (mg a.e./L) [mean-measured]	NF Devel	opmental age		zed Hind- ength ¹		nronous opment	Thyroid Gross and Histopathology	
70° 10°	Day 7	Day 21	Day 7	Day 21	Day 7	Day 21	Day 21	
0.13	No	No	No	No	No	No	No	
0.79	No	No	No	No	No	No	No	
4.3	No	No	No	No	No	No	No	
20 (4),6	No	No	No	No	No	No	No	
90000000	No	No	No	No	No	No	No	

High-limb length is normalized to snout-vent length (SVL).

The Amphibian metamorphosis assay (AMA) with the African clawed frog (Xenopus laevis) exposed to glyphosate acid is considered valid and the overall NOEC was ≥100 mg a.s./L (arithmetic mean measured).

# I. MATERIALS AND METHODS

# A. MATERIALS

# 1. Test material:

MON 77973 (glyphosate acid) Test item:

Description: White powder Lot/Batch #: GLP-1103-21149-T

> Purity: 85.14% before drying (95.93% glyphosate acid, dried)

CAS #: 1071-83-6

Stability of test compound: Not reported

Vehicle: dilution water (filtered well water)
Positive control: none 2. Vehicle and/or positive control:

3. Test animals

Species/sex: African clawed frog (Xenopus laevis)

Strain: Not specified

rt of dosing: NF 52

NF Stage 51, 16 days post fertilization; all tadpoles were derived Age at start of dosing:

from eggs spawned on the same day

Source: Tadpoles were from eggs collected from adult male frogs and

female frogs injected with Hcg induced to spawn in the laboratory; healthy adults obtained from Xenopus I (Dexter, MI; USA)

Sera Micron (Sera North America, PA, USA), 3 times/day Diet:

Housing

Continuous flow through diluter system Exposure System:

69 mL/min Flow-through Rate:

12 L Glass Aquaria (10 L fill volume) Exposure Vessel:

Filtered fresh well water Source of dilution water:

4. Environmental conditions:

Temperature:

\$142.5 mg/L as CaCO₃ (140 - 144 mg/L as CaCO₃)

Dissolved Oxygen 8.2 mg/L (7.6.0 - 8.7 mg/L)

Aeration:

Photoperiod: 12 h light/ 12 h dark

Light Intensity at Water's Surface: 911 – 1387 lux

October 19th to November 14th 2011 5. Experimental dates:

# B. STUDY DESIGN

# **Experimental treatments:**

Test concentrations were 0 (dilution water only), 0.16, 0.80, 4, 20, and 100 mg a.s./L. The highest test concentration was selected based on results of a 14-day range-finder and is the guideline-recommended highest test concentration. All test solutions were adjusted for test substance purity. Water samples were collected from each replicate test chamber on Days 0, 7, 14, and 21 to measure concentrations of the test Substance. The limit of quantification (LOQ) was 0.100 mg a.s./L. Nominal and mean measured glyphosate acid concentrations can be found in the table below. Additional water samples were collected as needed during the test when previous results were questionable, or when there were interruptions in test substance delivery. The number of replicates per treatment was four (4); the number of larvae per replicate per treatment at test initiation was 20 (total: 80 larvae/treatment).

Table 8.2.3-12: Summary of Treatment Concentrations in the Amphibian Metamorphosis Assay with Glyphosate

Treatment ID	Nominal Concentration (mg a.e./L)	Measured Concentration (mg a.e./L)	Mean CV (%)
Control (dilution water only)	0.00	<loq< td=""><td>NACS IN</td></loq<>	NACS IN
Treatment 1 ^a	0.16	0.13	A1.0
Treatment 2	0.80	0.79	J. 65 9.2
Treatment 3	4.0	4.3	3.5 4.4
Treatment 4	20	20	6.8
Treatment 5	100	90 67 0	31

In Treatment 1, Day 0, 7 and 21 concentrations were >80% of nominal. Day 14 amples were <LOQ due to a diluter malfunction. Day 16 samples confirmed that concentrations were returning to domain a some the diluter was repaired. Values of ½ the LOQ (0.050 mg a.e./L) were used for Day 14 samples to calculate the mean recasured concentration.

Arithmetic mean measured concentrations are 81, 99, 108, 100 and 90% for the 0.16, 0.80, 4, 20, and 100 mg a.s./L treatment groups.

Observations:

Mortality, Clinical Signs: Survival and clinical signs of toxicity, including any abnormal behavior, were assessed daily. Dead tadpoles were not replaced in enter the control or treatment test chambers.

Developmental Stage: Developmental stage was determined under a dissection microscope based on the developmental stages described by Nieuwkoop and Faber (NF). Developmental stage was determined on Day 7 for five tadpoles randomly selected from each test chamber and on Day 21 for all remaining tadpoles.

Tadpole Growth: Tadpoles were measured for total length to the nearest 1 mm using a metric ruler and were weighed to the nearest 0.1 mg. Digital images were used to determine snout-to-vent length and hindlimb length for each tadpole, using a computer image-processing program. For consistency, the left hind limb of each tadpole was measured. Hind-limb length was normalized by dividing by snout-to-vent length. Any tadpoles beyond Stage 60 by Day 21 were excluded from analyses of growth.

Histopathology: On Day 21, the tadpoles were fixed in Davidson's solution for at least 48 hours, rinsed with 70% ethanol, and placed in neutral buffered formalin. When possible, stage-matched tadpoles (5 from each replicate test chamber) were selected for histopathological processing and evaluation based on the median developmental stage of the negative controls. When there were fewer than five tadpoles at that stage, where available in a replicate, additional tadpoles were randomly selected from the developmental stages just above or below the median control developmental stage.

Histomorphologic parameters assessed included relative increases or decreases in the overall size of the thyroid glands, changes in follicular epithelial cell numbers or height, and alterations in colloid consistency. When appropriate, a scoring system to indicate the severity of these changes was used (Grade 0 =unremarkable, Grade 1 = mild, Grade 2 = moderate, and Grade 3 = severe).

Analytical procedures: Water samples were collected from each replicate test chamber on Days 0, 7, 14 and 21 to measure concentrations of the test substance. Samples were collected from mid-depth at each interval, placed in glass vials, and processed immediately for analysis. The analytical method consisted of diluting the samples in freshwater, derivatizing and filtering. The samples were then analyzed by high performance liquid chromatography (HPLC) using variable wavelength detection set at 500 nm. Concentrations of glyphosate acid in the samples were determined using an Agilent Series 1100/1200 High Performance Liquid Chromatograph with an Agilent Series 1100 Variable Wavelength Detector. Chromatographic separations were achieved using a YMC-PACK ODS-AM column (150 mm & 4.6 mm, 3-µm particle size). Calibration standards (range: 0.100 – 1.00 mg a.s. mg/L) were analyzed with each sample set. Linear regression equations were generated using the peak area responses versus the respective concentrations of the calibration standards. The concentration of glyphosate acid in the samples was determined by substituting the peak area responses of the samples into the applicable linear regression equation. The limit of quantitation (LOQ) for the analysis of glyphosate acid in freshwater was 0.100 mg a s/L.

Statistical calculations: Analyses were performed on survival, developmental stage, body weight, snoutvent length (SVL), normalized hind-limb lengths (HLL), and incidence and severity of thyroid abnormalities. Unless otherwise noted, the unit of statistical analysis was the replicate test chamber. If necessary, endpoints were analyzed using two complementary statistical approaches. For growth parameters, endpoints were first evaluated for monotonicity. Since responses for these endpoints appeared to be monotonic, a step-down Jonckheere-Terpstra trend test was used to determine possible concentration responsive trends among the treatment groups. Body weight and SVL data also were analysed by performing pair-wise comparisons using Dunnett's multiple comparison test to further evaluate if those treatment groups differed statistically from the control group. Data for endpoints analyzed by Dunnett's test were evaluated for normality using Shapiro-Wilk's test and for homogeneity of variance using Levene's test ( $\alpha = 0.01$ ).

Survival was analyzed using Fisher's Exact test and histopathology severity scores of individuals were analyzed using step-down Jonckheere-Terpstractrend tests only. Statistical tests used to evaluate treatment effects were performed at confidence level of 0.05.

# E. RESULTS AND DISCUSSION

# A. FINDINGS

Measured concentrations of the pretest samples ranged from approximately 57 to 107% of nominal concentrations. Arithmetic mean measured concentrations are 81, 99, 108, 100 and 90% for the 0.16, 0.80, 4, 20, and 100 mg a.s./Litreatment groups.

# B. OBSERVATIONS

Mortality, Clinical Signs: There were no treatment-related effects on survival during the 21-day test. Mean percent survival to Day 7 was 100% in all treatment groups including control, except at 20 and 90 mg a.s./L, where mean survival was 97.5% and 98.8%, respectively. Mean percent survival to Day 21 was 98.8, 100, 100, 100, 96.3 and 98.8% in the 0, 0.13, 0.79, 4.3, 20, and 90 mg a.s./L treatment groups, respectively. Control and treatment tadpoles generally appeared normal and healthy throughout the test. Beginning on Day 2 and continuing until test termination, tail curvature was observed in control and treatment tadpoles. By test termination, tail curvature was observed in 64, 63, 65, 53, 53, and 78% of the tadpoles in the negative control, 0.13, 0.79, 4.3, 20, and 90 mg a.s./L treatment groups, respectively. The tail curvature was not considered to be a treatment-related effect. Tail curvature was not considered to be a thyroid-related effect, but eather, a dietary effect. In feeding trials done at the testing lab, it was shown that feeding rates during acclimation contribute to the amount of curvature observed.

<u>Developmental stage</u>: No treatment-related effects on the median developmental stage were observed on Day 7 or Day 21. The median developmental stage of the tadpoles on Days 7 and 21 were 53 and 57,

respectively, in all treatment groups including control. No observations of asynchronous development were noted.

# Tadpole Growth:

No treatment-related effects on absolute or normalized hind-limb lengths were apparent on Days 70 (see table below).

Table 8.2.3-13: Larval Development in African Clawed Frog (Xenopus laevis) - Hind Limb Length

Treatment			Day 7			Day 24 3				
(mg a.e./L) [mean-measured]	n	Mean (mm)	±SD	HLL:SVL	n	Mean (mm)	(Section 1)	HLL:SVL		
Negative Control	4	2.08	0.10	0.13	4	7.65	(i) 0.68	0.33		
0.13	4	2.10	0.08	0.13	4	848Q	0.22	0.36		
0.79	4	2.15	0.17	0.13	4	E 7.78	0.43	0.33		
4.3	4	1.75	0.21	0.11	4:11	10 8220	0.50	0.34		
20	4	2.08	0.10	0.13	84.0	8.00	0.69	0.34		
90	4	2.10	0.14	0.13	S A S	8.25	0.79	0.33		
	-									

Snout-to-Vent Length (SVL) and Body Weight

Mean SVL was not significantly affected by glyphosate acid treatment on Day 7 (see table below). On Day 21, SVL was significantly increased (p < 0.05) compared to control in the 4.3, 20 and 90 mg a.s./L treatment groups by 5.2 %, 2.5 % and 6.7 %, respectively, but this difference was not significant when normalized for hind-limb length. Additionally, there was a significant increase (17%) in Day 21 body weight at 90 mg a.s./L. However, growth should never be solely relied upon to determine thyroid toxicity. Rather, growth, in conjunction with developmental stage and thyroid histopathology, should be used to determine thyroid activity.

Table 8.2.3-14: Larval Growth in African Clawed Frog (Xenopus laevis)

Treatment		Snowt-Went Length (SVL)						Body Weight ^a						
(mg a.e./L)		Day 7	Collins .		Day 21	Ĺ		Day 7	•		Day 2	ay 21		
[mean- measured]	n	Mean &	S ±SD	n	Mean (mm)	±SD	n	Mean (g)	±SD	n	Mean (g)	±SD		
Negative Control	40	5 2	0.98	4	23.2	0.43	4	0.267	0.040	4	0.864	0.038		
0.13	12	15.9	0.38	4	23.6	0.66	4	0.273	0.021	4	0.925	0.100		
0.79	2419	16.1	0.75	4	23.5	0.83	4	0.288	0.031	4	0.907	0.078		
4.3	O'A	16.1	0.80	4	24.4*	0.15	4	0.290	0.042	4	0.973	0.037		
20 E 25 E	4	16.1	0.34	4	23.8*	0.45	4	0.282	0.022	4	0.920	0.056		
90000	4	16.1	0.99	4	24.8*	0.38	4	0.300	0.048	4	1.01*	0.060		

Standard deviation

There were no apparent treatment-related trends in thyroid histopathology. Observations and severity of thyroid atrophy and hypertrophy, and follicular cell hypertrophy and hyperplasia were comparable between the stage matched control and treatment groups (see table below). While there appears

Also referred to as "wet weight" in the test guideline.

to be an increased incidence of mild thyroid gland hypertrophy in the highest treatment concentration, the same incidence was observed at the lowest treatment concentration and the effect was not concentration responsive. Similar findings were observed for follicular cell height: an apparent increase in mild severty at the top concentration, but again, this incidence was similar to the lowest treatment concentration and no concentration-responsive pattern was seen. In addition, the pathology analysis indicated that there were no treatment related changes in the thyroid glands of tadpoles exposed to glyphosate acid when compared to organisms in the negative control.

Table 8.2.3-15: Gross Histopathology of the Thyroid Gland in African Clawed Frog (Xenopus laevis)

120000000000000000000000000000000000000				Diagr	ostic Observ	ations	72,60	20	
Treatment (mg a.e./L) [mean-measured]	Severity*		roid Gland pertrophy	(m) (c) (c)	roid Gland Atrophy	Foll Hyp	icular Cell	Foll	licular Cell Atrophy
,,		n	Incidence	n	Incidence	11/7	"Ancidence	n	Incidence
<b>Negative Control</b>	0	20	17	20	19	<b>20</b> 8	[∞] √°17	20	17
	1	20	3	20	1 (	58	o [©] 1	20	2
	2	20	0	20	0 00 0	\$20,5	2	20	1
	3	20	0	20	0 چې رو	20	0	20	0
0.13	0	20	14	20	10	®20	14	20	16
	1	20	4	20		20	4	20	2
	2	20	2	20	95 10 Th	20	1	20	2
	3	20	0	20 0	2000	20	1	20	0
0.79	0	20	17	20 0 20 0 20 0 20 0 20 0	£0:517	20	13	20	17
	1	20	1		2	20	3	20	3
	2	20	2 0	300	1	20	3	20	0
	3	20	0 66	200	0	20	1	20	0
4.3	0	20	18, 11,	20	18	20	16	20	17
	1	20	્રહ્યાં છે. ે	20	2	20	2	20	3
	2	20	11 14 10.	20	0	20	2	20	0
	3	20	0 10 00 00 00 00 00 00 00 00 00 00 00 00	20	0	20	0	20	0
20	0	200	(N 018	20	19	20	18	20	15
	1	2000	0 0	20	1	20	1	20	4
	2	0,50	2	20	0	20	1	20	1
	3 0	200	0	20	0	20	0	20	0
90	0.0.0	300	14	20	18	20	14	20	17
	May Co	20	6	20	2	20	2	20	3
	.0.	20	0	20	0	20	4	20	0
	St. 2135	20	0	20	0	20	0	20	0

^{*} Thyroid histopathology, graded 0 – 3 based on severity: 0 = not remarkable, 1 = Mild, 2 = Moderate, 3 = Severe.

The test is regarded as valid, since performance criteria for test acceptability according to OECD 231 guideline (2009) were met with one exception which did not affect the outcome of the study:

- The dissolved oxygen concentration was at least 40% of the air-saturation value throughout the exposure period.
- Water temperature did not differ by more than 1°C between test vessels at any one time during the exposure period, and were maintained within  $\pm$ 1°C of the 22°C temperature specified.
- There was at least 90 % survival of control animals over the duration of the exposure period, and mortality in any one control replicate did not exceed two tadpoles.
  - Test concentrations were consistent over the course of the study (i.e., contained at  $\leq$ 20 % CV over the 21-day test), except for low recoveries in the low treatment group on Day 14 and in the high treatment group on Day 21.
- The minimum median stage of the control tadpoles at the end of the test was at least 57.
- The 10th and the 90th percentiles of the developmental stage distribution did not differ by more than 4 stages.

Glyphosate Renewal Group AIR 5 – July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

- There were less than two non-control test concentrations with overt toxicity.
- There were less than two replicates across the test that were compromised.

# III. CONCLUSIONS

# 3. Assessment and conclusion

# **Assessment and conclusion by applicant:**

Arithmetic mean measured concentrations are 81, 99, 108, 100 and 90% for the 0.16, 0.80, 4, 20, and 100 mg a.s./L treatment groups. Therefore, results can be expressed as nominal concentrations.

There were no treatment related effects on survival, stage, or normalized find limb length during the 21-day test. Histopathologic analysis showed no treatment related changes in the thyroid glands of *Xenopus laevis* tadpoles when compared to negative control animals. There was a slight increase in wet weight in the 100 mg a.s./L treatment group and in snout-to-vent length in the 4.0 and 100 mg a.s./L treatment groups at the end of the 21-day test, however, this difference in snout-vent length was not significant when normalized with hind-limb length. Since there were not indicative of a thyroid effect. Glyphosate acid was not found to interfere with the normal function of the hypothalamic-pituitary-thyroid (HPT) axis of African clawed frog tadpoles in this study.

The Amphibian metamorphosis assay (AMA) with the African clawed frog (*Xenopus laevis*) exposed to glyphosate acid is considered valid and the overall NOEC≥100 mg a.s./L (arithmetic mean measured) can be used for ecotoxicological risk assessment.

# Assessment and conclusion by RMS:

# CA 8.2.4 Acute toxicity to aquatic invertebrates

Studies on acute effects of the active substance glyphosate and its relevant metabolites on aquatic invertebrates to fulfil the data requirements according to EU Regulation No 283/2013 are presented in the following.

Studies considering the acute toxicity of glyphosate to aquatic invertebrates were assessed for their validity

More

Studies considering the acute toxicity of glyphosate to aquatic invertebrates were assessed for their validity to current and relevant guidelines for glyphosate, glyphosate salts and the metabolites AMPA and HMPA, and are presented in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are presented in this section below.

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Table 8.2.4-1: Studies on acute toxicity of glyphosate and metabolites to aquatic invertebrate

Annex point	Study	Study type	Substance(s)	Status	Remark 35
CA 8.2.4.1/001	2003	48 hour acute	Glyphosate K - salt	Valid	
CA 8.2.4.1/002	2000	48 hour acute	IPA salt	Valid	- QUAR
CA 8.2.4.1/003	2000	48 hour acute	Glyphosate technical	Valid	- 6 % - 6 %
CA 8.2.4.1/004	1996	48 hour acute	Glyphosate acid	Valid	47,0
CA 8.2.4.1/005	1995	48 hour acute	Glyphosate acid	Supportive	Report not available
CA 8.2.4.1/006	, 1995	48 hour acute	Glyphosate	Valido V	-
CA 8.2.4.1/007	1994	48 hour acute	IPA salt	Valide in	-
CA 8.2.4.1/008	1993	48 hour acute	IPA salt	Supportive	Report not available
CA 8.2.4.1/009	1990	48 hour acute	Glyphosate technical	Valid	-
CA 8.2.4.1/010	1981	48 hour acute		Supportive	No analytical verification of test concentrations
CA 8.2.4.1/011	1978	48 hour acute	Gyphosate 1	Supportive	No analytical verification of test concentrations
CA 8.2.4.1/012	1998	48 hour acute	AMPA	Valid	-
CA 8.2.4.1/013	1994	48 hour acute	AMPA	Valid	-
CA 8.2.4.1/14	1991	48 hour acute 48 hour acute 48 hour acute	AMPA	Valid	-
CA 8.2.4.1/15	2011	48 hour acute	HMPA	Valid	-
CA 8.2.4.2/001	1996	96 hour acute	Glyphosate acid	Valid	-
CA 8.2.4.2/002	1978	96 hour acute	Glyphosate	Supportive	No analytical verification of test concentrations
CA 8.2.4.2/003			Glyphosate acid	Valid	-
CA 8.2.4.2/004	1996 5 5 19850 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	48 hour acute	Glyphosate technical	Supportive	No analytical verification of test concentrations

There are no literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the acute impact of glyphosate or its relevant metabolites on aquatic invertebrates. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. For discussions of literature regarding toxicity to aquatic invertebrates, please refer to document M-CP Section 10.2.

glyphosate are shown in the table below. Glyphosate is an acid as a salt. Ecotoxicological studies have been conducted with various toring of glyphosate, namely IPA salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate or glyphosate technical are automatically expressed as acid equivalent.

**Table 8.2.4- 2: Endpoints: Acute toxicity of glyphosate to Aquatic Invertebrates** 

		T		T		,OL.
Reference	Test item	Species	Test	Endpoints	EC ₅₀	NOEC (mg a.e./I.a.
			design	based on	(mg a.e./L)	(
2003	Glyphosate	Daphnia	48h	am	278	149
CA 8.2.4.1/001	K - salt	magna	static			
					, i	1490 50
2000CA	IPA salt	Daphnia	48h	im	> 471	<u>≥</u> 471
8.2.4.1/002		magna	static		9. C) %	
					10.10 10.10 10.10	
2000CA	Glyphosate	Daphnia	48h	im		179.56
8.2.4.1/003	technical	magna	static	· · ·	4.50	
					420590 5 5 5 5 5 5 5 7	
1996	Glyphosate	Daphnia	48h	nom R	\$36.5	100
CA 8.2.4.1/004	acid	magna	static	0.86.0		
				25,07,00		
1995	Glyphosate	Daphnia	48h	nom &	> 100	≥ 100
CA 8.2.4.1/006		magna	static s	100 m		
			static			
1994	IPA salt	Daphnia	48h,8 35	@nom	> 45.64	≥ 45.64
CA 8.2.4.1/007		magna	statice of			
			1 2 2			
1990	Glyphosate	Daphnia S	48h	mm	74.0	53
CA 8.2.4.1/009	technical	Daphnia magna				
		61.80	n'			
1996	Glyphosate	Mysidopsis	96h	nom	80	32
CA 8.2.4.2/001	acid	bahia	static			
	Š	Mysidopsis bahia				
1996	Glyphosate acid	W 6	48h	nom	40	32
CA 8.2.4.2/003	acid S	gigas	static			
	acid	7				
.1 . 1 .	1 2 40 38	l		l		

a.e.: acid equivalents

nom: nominal, mm mean measured, in initial measured; am: arithmetic mean measured Endpoint in **bold** is used for risk assessment

Endpoints of studies for AMPA and HMPA considered valid are shown in the table below.

Table 8.2.4- 3: Endpoints: Acute toxicity of AMPA and HMPA to Daphnia magna

	Reference	Test item	Species	Test design	Endpoints based on	EC ₅₀ (mg/L)	NOEC (mg/L)
	1998 CA 8.234.19012	AMPA	Daphnia magna	48h static	nom	> 100	≥ 100
8	1994 8.2.4.1/013	AMPA	Daphnia magna	48h static	nom	>180	≥ 180
	1991 CA 8.2.4.1/014	AMPA	Daphnia magna	48h static	nom	690	320
ST AR STORY OF THE PROPERTY OF	Glyphosate Renewal Group All	R 5 – July 2020			Doc ID:	110054-MCA8_GRC	i_Rev 1_Jul_2020

Table 8.2.4-3: Endpoints: Acute toxicity of AMPA and HMPA to Daphnia magna

Reference	Test item	Species	Test design	Endpoints based on	EC ₅₀ (mg/L)	NOEC (mg/L)
2011 CA 8.2.4.1/015	НМРА	Daphnia magna	48h static	nom	>100	≥ 100 %

Endpoints in **bold** are used for risk assessment

Full study summaries are provided below.

### Acute toxicity to Daphnia magna CA 8.2.4.1

### 1. Information on the study

1. Information on the stud	0.80
Data point:	CA 8.2.4.1/001
Report author	
Report year	2003
Report title	MON 78623: A 48-Hour State Acute Toxicity Test with the
	Cladoceran (Daphnia magna)
Report No	139A-309 10 10 10 10 10 10 10 10 10 10 10 10 10
<b>Document No</b>	
<b>Guidelines followed in study</b>	OECD Guideline 202 (1984)
•	OPPTS 850.1016 (1996)
	EU Directive 67/548/EEC Method C2 (1992)
<b>Deviations from current test</b>	Deviation from the guideline OECD 202 (2004):
guideline	Minorg
	- Immobilisation was recorded after 19 h of exposure (this is in addition
	to the guideline requirement).
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised	A es
testing facilities	
Acceptability/Reliability	Valid
Category study in AIR 5	Category 2a
dossier (L docs)	

# Full summary

# **Executive Summary**

The effects of Mon 78623 (Glyphosate K-Salt) on Daphnia magna were evaluated in a 48-hour static toxicity test performed using nominal concentrations of 156, 313, 625, 1250 and 2500 mg test item/L, equivalent (5) 74, 149, 298, 596 and 1193 mg glyphosate acid equivalents/L. These nominal concentrations are equivalent to mean measured concentrations of 165, 312, 624, 1285 and 2582 mg test item/L. In addition, regative control group (well water only) was run in parallel. There were two vessels prepared

Mean overall measured concentrations of glyphosate (acid equivalents) ranged between 100 and 106 % of the nominal values. Glyphosate K-salt was not detected in the control group. At 624 mg test item/L 65 % of the daphnids were observed to be lethargic at the bottom of the test chamber at test termination. Immobility at 48 h at concentrations of 1285 and 2582 mg test item/L were 5 and 25 and

all remaining daphnids at these two test concentrations were lethargic at the bottom of the test chamber. All validity criteria according to the guideline OECD 202 were fulfilled.

In conclusion, the 48 h EC₅₀ for *Daphnia magna* exposed to Glyphosate K-salt was calculated to be > 2582mg/L, equivalent to >1231.6 mg glyphosate acid/L based on mean measured concentrations. The 48-thour no-effect level (NOEC) for Glyphosate K-salt was determined to be 312 mg/L, equivalent to 148.8 mg glyphosate acid/L based on mean measured concentrations. The study is considered to be valid.

# I. MATERIALS AND METHODS

### A. MATERIALS

# 1. Test material:

Test item: MON 78623 (Glyphosate K-salt)

Active substance Glyphosate acid Description: Yellow liquid Lot/Batch #: GLP-0108-11688-F

> Purity: 47.7 % acid equivalents

> > Vehicle: Well water 🔊

2. Vehicle and/or positive control:

Positive control: None

3. Test organism:

Daphnia magna Species:

Neonates ( 24 h old)

Loading: 2 × 10 specimens for 250 mL test solution

Source: In-house culture

None ( Diet/Food:

..d: None Acclimation period:

4. Environmental conditions:

19.5 – 20.0 °C Temperature:

Photoperiod 16 hours light / 8 hours dark with 30 min transition period

> 5.7 - 8.1 (test item) 8.1 - 8.2 (control)

Dissolved oxygen:  $\geq$  8.6 mg/L ( $\geq$  96 % saturation)

Eonductivity: 310 µmhos/cm 140 mg CaCO₃/L. Alkalinity:

184 mg CaCO₃/L

5. Experimental dates: December 3, 2002 to December 5, 2002

# B. STUDY DESIGN AND METHODS

- a definitive toxicity test was 1, 250 and 2500 mg test item/L (mean 165, 312, 250). The test solutions were prepared using test facility was exposed to well water (negative control). There were two replicates per treatment, each containing ten daphnids. Test chambers were 250 mL glass beakers containing approx. 250 mL of test medium.

  2. Observations: Total number of immobile Daphnia magna was recorded at 19h. 24 h. Glyphan.

  Glyphan.

  Glyphan.

  Glyphan.

Hardness, alkalinity and specific conductance of the dilution water were measured at test initiation. The pH value and oxygen saturation were measured at test initiation and at 24 h and 48 h. For analysis of test substance concentration with HPLC, test medium was collected from the replicate test chambers at 0 and 48 h.

The validity criteria according to the current OECD 202 guideline are the following:

- validity criteria according to the current OECD 202 guideline are the following:
   In the control, not more than 10 per cent of the daphnids should have been immobilised on show or other signs of disease or stress other signs of disease or stress.
- The dissolved oxygen concentration at the end of the test should be  $\geq 3$  mg/L in control and test vessels.
- 3. Statistical calculations: Since the immobility was < 50%, no statistical calculation of  $EC_{50}$  values was possible. Therefore, EC₅₀ and NOEC values were determined by visual inspection.

possible. Therefore, EC₅₀ and NOEC values were determined by visual inspection.

II. RESULTS AND DISCUSSION

A. FINDINGS

The analytics confirm the stability of the test substance, since the recovery was 99 – 105 % at test start and 97 – 107% at test end. Results are based on arithmetic mean measured concentrations.

Table 8.2.4- 4: Analytical results

			X 10 -10.			
Nominal concentration MON 78623 [mg/L]	Control	156	313	625	1250	2500
0 h mean measured concentration [ mg/L]		163	S 311	636	1279	2548
48 h mean measured concentration [mg/L]		167 8	314	612	1291	2616
Mean measured over 48 h Glyphosate K-salt (MON 78623) [mg/L]		165	312	624	1285	2582
% of nominal	61.8	o ² 106	100	100	103	103
Mean Measured over 48 h Glyphosate acid [mg/L]	91. 9. 7. 9. 9. 9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	78.7	148.8	297.6	612.9	1231.6

The EC₅₀ and NOEC are based on mean measured concentrations of 165, 312, 624, 1285 and 2582 mg test item/L and are given below.

Table 8.2.4- 5: Endpoints

Endpoints		Glyphosate K-salt [mg/L]	Glyphosate Acid [mg a.e./L]
48 h EC ₅₀		> 2582	> 1231.6
NOEC	THE ST ST	312	148.8

# B. OBSERVATIONS

In the negative control and at mean measured concentrations of 165 and 312 mg test item/L no effects were observed. At 624 mg test item/L 65% of the daphnids were observed to be lethargic at the bottom of the test chamber at test termination. Immobility at 48 h at 1285 and 2582 mg test item/L was 5 and 25 %, respectively. All remaining daphnids were lethargic at the bottom of the test chamber.

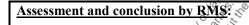
Table 8.2.4- 6: Lethal effects of glyphosate K-salt to Daphnia magna

Mean measured Glyphosate K-salt (MON 78623) [mg/L]	Control	165	312	624	1285	2582
Mean Measured Glyphosate acid [mg a.e./L]	-	78.7	148.8	297.6	612.9	1231.6
Immobility (19 h) [%]	0	0	0	0	0	0
Immobility (24 h) [%]	0	0	0	0	0,5° (8°C)2°	0 (17C)
Immobility (48 h) [%]	0	0	0	0 (13C+G)	(19C+G)	5 (15C+G)

C = lethargic; G = on bottom of test chamber; AN = appear normal

All validity criteria according to OECD 202 were fulfilled, as no immobility of daphnids was observed in control groups and dissolved oxygen concentration was  $\geq 3$  mg/L in all test vessels.

# III. CONCLUSIONS


# Assessment and conclusion by applicant:

Assessment and conclusion by applicant:

The 48 h EC₅₀ for Daphnia magna exposed to Glyphosate K-salt was calculated to be > 2582 mg/L, equivalent to >1231.6 mg a.e./L based on mean measured concentrations. The 48- hour no-effect level (NOEC) for Glyphosate K-salt was determined to be 3/2 mg/L, equivalent to 148.8 mg a.e./L based on arithmetic mean measured concentrations.

Based on lethargy, RAR 2015 recalculated EC to be 278 mg a.e./L and NOEC to be 149 mg a.e./L, arithmetic mean measured.

The study is considered valid and reliable for the risk assessment of glyphosate.



### 1. Information on the study

D-4	CA 9.2.4.1/002
Data point:	CA 8.2.4.1/002
Report author	Hi ⁰ &.
Report year	2000
Report title	Acute toxicity of glifosato IPA tecnico Nufarm to Daphnia magna
Report No	RF-D51.017/00
<b>Document No</b>	-
<b>Guidelines followed in study</b>	OECD 202 (1984)
<b>Deviations from current test</b>	Deviations from the guideline OECD 202 (2004)
guideline	Minor:
	- The concentration of the test substance in the test media was measured
	only at the beginning of the study.
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised	Yes
testing facilities	
Acceptability/Reliability:	Valid
Category study in AIR 5	Category 2a
dossier (L docs)	E S E

2. Full summary
Executive Summary
The effects of glyphosate on Daphnia magna were evaluated in a 48-hour static toxicity test. Twenty Daphnia (4 replicates of 5 animals per test beaker) per concentration were exposed to 100, 180, 320, 560, and 1000 mg a.s./L nominal concentrations. In addition, 4 x 5 Daphnia were exposed to test water without test substance (blank control). Daphnids were observed for immobilisation at 24 and 48 hours and were not fed during the test. pH-values and dissolved oxygen concentrations were determined in the test media at the beginning and at the end of the test. The water temperature in the test media was measured at the start of the test, 24, and 48 hours thereafter. Samples for the determination of the concentrations of glyphosate in the test medium were taken from the control and from all test concentrations at the beginning of the test. The analysed test concentrations ranged between 75.90 and 139.70% of the nominal values. Therefore, the results reported are related to initial measured concentrations of the test item. The NOEC after 48 h based on immobilisation was  $\geq 13\sqrt{2}$  and test item/L (equivalent to  $\geq 471$  mg a.e./L). All validity criteria according to the guideline OECD 202 were fulfilled. The study is considered to be valid.

# I. MATERIALS AND METHODS

# A. MATERIALS

1. Test material:

Test item: Glyphosate Isopropylamine Salt

Lot/Batch #: MJRT 025-201-104

Purity: 612.7 g/kg salt equivalent (analysed on May 02, 2000)

2. Vehicle and/or positive control: Vehicle: Water

Positive control: Toxic standard (potassium dichromate)

3 Test organism:

Species: Daphnia magna

Age of animals: Neonates (< 24 h old)

> Loading: 5 organisms per vessel (30 mL glass beakers containing 20 mL

test solution)

Source: Carolina Biological Supply Company, Burlington, North

Carolina (USA) and maintained as a stock culture at

BIOAGRI

4. Environmental conditions:

Temperature: 21.1 to 21.2 °C

Start of the test: 5.56-7.39

End of the test: 5.54-7.81

Start of the test: 6.10-6.27 mg O₂/L Dissolved oxygen:

Conductivity: 603.0 mg/L µS/cm Hardness:

Photoperiod:

5. experimental dates:

Light/dark 0/24 h

June 6th, 2000 to June 15th, 2000 B: STUDY DESIGN AND METHODS

1. Experimental treatments: The effects of glyphosate on Daphraa magna were evaluated in a 48-hour static toxicity test. Twenty Daphnia (4 replicates of 5 animals per test beaker) per concentration were exposed to 100, 180, 320, 560, and 1000 mg a.s./L nominal concentrations. In addition, 4 x 5 Daphnia were exposed to test water without test substance (blank control). A reference test using potassium dichromate was carried out in order to verify the sensitivity of the test system. The primary stock solution of nominal concentration of 1000 mg a.s./L was prepared by dissolving \$00 mg test item in 500 mL water. Appropriate amounts of this stock solution were diluted to prepare the lower test concentrations of 100, 180, 320, and 560 mg a.s./L. The *Daphnia* were randomly placed into the test beaker and exposed to the test item for 48

2. Observations: Daphnids were observed for immobilisation at 24 and 48 hours and were not fed during the test. pH-values and dissolved oxygen concentrations were determined in the test media at the beginning and at the end of the test. The water temperature in the test media was measured at the start of the test, 24, and 48 hours thereafter. Samples for the determination of the concentrations of glyphosate in the test medium were taken from the control and from all test concentrations at the beginning of the test.

3. Statistical calculations: The EC of for glyphosate could not be quantified due to the absence of toxicity of the test item, therefore, no statistical analysis was performed. The EC₅₀ value for the reference substance potassium dichromate was calculated by applying Trimmed Spearman-Karber method.

II. RESULTS AND DISCUSSION

A. FINDINGS

The analysed test concentrations ranged between 75.90 and 139.70 % of the nominal values. Therefore, the results reported are related to measured concentrations of the test item.

Table 8.2.4- Analytical results

Nominal concentration  mg test item/L]	Measured concentration [mg test item/L]	% of nominal
Control	-	-
100	75.9	75.90
180	150.0	83.33
320	282.8	88.37
560	693.6	123.85
1000	1397	139.70

The EC₅₀ value is given below based on nominal concentrations.

Table 8.2.4- 8: Endpoints

Endpoints	Test item mg/L	Glyphosate acid [mg/L分) ろ
EC ₅₀ (48 h)	> 1397	> 471

The reference substance potassium dichromate resulted in a 48-h EC₅₀ of 1.22 mg/L (95% CL = 1.12-1.35 mg/L).

B. OBSERVATIONS

After 24 hours and 48 hours of exposure neither in the control nor in the test item concentration vessels immobilisation of Daphnia was observed.

The effects of glyphosate on Daphnia magna are shown below.

Table 8.2.4- 9: Effects of glyphosate on Daphnia magna

Number of Num

Nominal concentration [mg test item/L]	Measured concentration [mg test item/L]	Number of Sexposed Daphnia per replicates	Number of immobile <i>Daphnia</i> after 24 hours	Number of immobile <i>Daphnia</i> after 48 hours
Control	-	\$20° &	0	0
100	75.9	200	0	0
180	150.0	5 × 20	0	0
320	282.8	0 20	0	0
560	693.6	20 E	0	0
1000	1397	20 20	0	0

All validity criteria according to the OECD 202 were fulfilled, as no immobility of daphnids was observed in control groups and dissolved oxygen concentration was  $\geq 3$  mg/L in all test vessels.

# III. CONCLUSIONS

# Assessment and conclusion by applicant:

The 48-h EC₅₀ for Daphnia magna exposed to glyphosate isopropylamine Salt was > 1397 mg test item/L (corresponding to 471 mg a.e./L) based on initial measured concentration. The NOEC after 48 h based on immobilisation was  $\geq 1397$  mg test item/L (corresponding to  $\geq 471$  mg a.e./L).

All validity criteria according to the OECD 202 were fulfilled, the study is therefore considered valid and the  $EC_{50}$  of 471 mg a.e./L and the NOEC of  $\geq$  471 mg a.e./L can be used in risk assessment.

# Assessment and conclusion by RMS:

et e

### 1. Information on the study

	***
Data point:	CA 8.2.4.1/003
Report author	
Report year	2000
Report title	Acute toxicity of glifosate tecnico Nufarm to Daphnia magna
Report No	RF-D51.39/99
<b>Document No</b>	-
<b>Guidelines followed in study</b>	OECD 202 (1984)
<b>Deviations from current test</b>	Deviations from the guideline OECD 202 (2004):
guideline	Minor:
	The concentration of the test substance in the test media was
	measured only at the beginning of the study.
<b>Previous evaluation</b>	Yes, accepted in RAR (2015).
GLP/Officially recognised	Yes
testing facilities	il so to
Acceptability/Reliability:	Valid San
Category study in AIR 5	Category 2a
dossier (L docs)	Carlo Carlo

2. Full summary
Executive Summary
The effects of glyphosate on Daphnia magna were evaluated in a 48-hour static toxicity test. Twenty Daphnia (4 replicates of 5 animals per test beaker) per concentration were exposed to nominal 100, 180, 320, 560, and 1000 mg a.s./L (corresponding to 103.40, 179.56, 334.11, 597.06, and 1051.12 mg a.s./L measured concentrations). In addition 4 \$ 5 Daphnia were exposed to test water without test substance (blank control).

(blank control).

Daphnids were observed for immobilisation at 24 and 48 hours and were not fed during the test. pH-values and dissolved oxygen concentrations were determined in the test media at the beginning and at the end of the test. The water temperature in the test media was measured at the start of the test, 24, and 48 hours thereafter. Samples for the determination of the concentrations of glyphosate in the test medium were taken from the control and from all test concentrations at the beginning of the test. The analysed test concentrations ranged between 99.75 and 106.61% of the nominal values. The results reported are related to initial measured concentrations of the test item. The NOEC after 48 h based on immobilisation was 179.56 mg a.e./L. All validity criteria according to the guideline OECD 202 were fulfilled. The study is considered to be valid.

# I. MATERIALS AND METHODS

# A. MATERIALS

1. Test material:

Test item: Glyphosate technical

Description: White powder Lot/Batch #: 037-919-113

> Purity: 95 %

2. Vehicle and/or positive control: Vehicle: Water

Positive control: Toxic standard (potassium dichromate)

# 3. Test organism:

Species: Daphnia magna

Age of animals: Neonates (< 24 h old)

> 5 organisms per vessel (30 mL glass beakers containing 20 mL Loading:

> > test solution)

Carolina Biological Supply Company, Burlington, North Supplier:

Carolina (USA) and maintained as a stock culture at

**BIOAGRI** 

# 4. Environmental conditions:

Temperature:

End of the test: 3.06-7.40End of the test: 3.10-7.96Start of the test: 5.7-6.2 mg  $O_2/E$ End of the test: 4.4-4.6 mg  $O_2/E$ 

Dissolved oxygen:

Conductivity:

Hardness: 245 mg CaCO₃ Photoperiod: Light/dark 0/24 h

October 13th, 1999 to October 28th, 1999 5. Experimental dates:

# **B: STUDY DESIGN AND METHODS**

- 1. Experimental treatments: The effects of glyphosate on Daphnia magna were evaluated in a 48-hour static toxicity test. Twenty Daphnia (4 replicates of 5 animals per test beaker) per concentration were exposed to nominal 100, 180, 320, 560, and 1000 mg a.s./L (corresponding to 103.40, 179.56, 334.11, 597.06, and 1051.12 mg a.s./L measured concentrations). In addition, 4 x 5 Daphnia were exposed to test water without test substance (blank control). A reference test using potassium dichromate was carried out in order to verify the sensitivity of the test system. The primary stock solution of nominal concentration of 1000 mg a.s./L was prepared by dissolving 1000 mg test item in 1000 mL water. Appropriate amounts of this stock solution were diluted to prepare the lower test concentrations of 100, 180, 320, and 560 mg a.s./L. The Daphnia were randomly placed into the test beaker and exposed to the test item for 48 hours.
- 2. Observations: Daphnids were observed for immobilisation at 24 and 48 hours and were not fed during the test. pH-values and dissolved experience concentrations were determined in the test media at the beginning and at the end of the test. The water temperature in the test media was measured at the start of the test, 24, and 48 hours thereafter. Samples for the determination of the concentrations of glyphosate in the test medium were taken from the control and from all test concentrations at the beginning of the test.
- 3. Statistical calculations: The EC₅₀ value for glyphosate and reference substance potassium dichromate was calculated by applying Trimmed Spearman-Karber method.

# II. RESULTS AND DISCUSSION

A. FINDINGS

The analysed test concentrations ranged between 99.75 and 106.61 % of the nominal values. The results reported are related to initial measured concentrations of the test item.

Table 8.2.4- 10: Analytical results

Nominal concentration [mg test item/L]	Measured concentration [mg test item/L]	% of nominal
Control	-	- 3710
100	103.40	103.40
180	179.56	99.75
320	334.11	104.4
560	597.06	્રે. ાર્ગ્ફર્ફ ફો
1000	1051.12	20 105.11

1000	1051.12	(%) 105.11
The effects of glyphosate on <i>Daphni</i> The 24 and 48 hour EC ₅₀ values (bas <b>Table 8.2.4- 11: Endpoints EC₅₀ v</b>	ed on measured concentrations) are	given below:
Time	EC ₅₀ & & & & & & & & & & & & & & & & & & &	95 % confidence interval (mg a.s./L)
24 h	530.42	471.64 - 596.52
48 h	420.59	388.02 - 455.90

The reference substance potassium dichromate resulted in a 48-h EC50 of 0.68 mg/L (95% CL = 0.63-0.75 mg/L). **B. OBSERVATIONS** 

B. OBSERVATIONS

Table 8.2.4- 12: Effects of glyphosate on Paphnia magna

Nominal concentration [mg test item/L]	Measured concentration [mg test item/L]	Number of exposed Daphnia per replicate	Number of immobile Daphnia after 24 hours	Immobility after 24 hours [%]	Number of immobile <i>Daphnia</i> after 48 hours	Immobility after 48 hours [%]
Control	10 0 d	20	0	0	0	0
100	\$03.40	20	0	0	0	0
180	∠ii 3579.36	20	0	0	0	0
320	334.11	20	0	0	2	10
560	్ర్మే 597.06	20	14	70	20	100
1000	5 1051.12	20	20	100	20	100

All validity criteria according to the OECD 202 were fulfilled, as no immobility of daphnids was observed Il v. in contains the contains in control groups and dissolved oxygen concentration was  $\geq 3$  mg/L in all test vessels.

# III. CONCLUSIONS

# Assessment and conclusion by applicant:

The 48-h EC₅₀ for *Daphnia magna* exposed to glyphosate technical was 420.59 mg a.e./L based on initial measured concentration. The NOEC offer 49 h had a second of the initial measured concentration. The NOEC after 48 h based on immobilisation was 179.56 mg a.e. L. All validity criteria according to the OECD 202 were fulfilled. The study is therefore considered valid and reliable for the regulatory risk assessment for glyphosate.

# Assessment and conclusion by RMS:

### 1. Information on the study

	\$ \frac{1}{2} \cdot \cdo
1. Information on the stud	ly State of the st
Data point:	CA 8.2.4.1/004
Report author	0 20 30
Report year	1996
Report title	Glyphosate acid: Acute toxicity to Daphnia magna
Report No	AB0503/C
Document No	- [5]
<b>Guidelines followed in study</b>	OECD 202 (1984), EPA FIFRA, Subdivision E, Guideline 72-2
Deviations from current test guideline	Deviations from Equideline OECD 202 (2004): none
<b>Previous evaluation</b>	Yes, accepted in RAR (2015).
GLP/Officially recognised testing facilities	Yes A Control of the
Acceptability/Reliability:	Valid S S
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary
Executive Summary
The effects of glyphosate acid on Daphnia magna were evaluated in a 48-hour static toxicity test. Twenty Daphnia (4 replicates of 5 animals per test beaker) per concentration were exposed to nominal 10, 18, 32, 56, 100 and 180 mg/L of glyphosate acid and a pH adjusted 1000 mg/L test concentration of glyphosate acid. In addition, 48.5 Daphnia were exposed to test medium without test substance (blank control).

Daphnids were observed for immobilisation at 24 and 48 hours and were not fed during the test. pH-values and dissolved expending and at the end of the test. The water temperature in the test media was measured at the start of the test, 24, and 48 hours thereafter. The concentration of glyphosate acid in the test solutions were measured at 0 and 48 hours.

The analysed test concentrations ranged between 85 and 100 % of the nominal values, therefore, the results reported are related to nominal concentrations of the test item. All validity criteria according to the guideline QEQD 202 were fulfilled. The 48 hour EC₅₀ for Daphnia exposed to glyphosate acid falls between 100 and 180 mg/L, where there was zero and 100 % immobility, respectively. Using linear interpolation between these two concentrations, the EC₅₀ is 136.5 mg/L. The study is considered to be valid.

# I. MATERIALS AND METHODS

### A. MATERIALS

# 1. Test material:

Test item: Glyphosate acid Description:

Lot/Batch #: Not mentioned in the report

Purity:

2. Vehicle and/or positive control:

3. Test organism:

Species:

Age of animals:

Loading:

Source:

4. Environmental conditions:

Dissolved oxygen: 8.7-9.0 mg ©2/15.

Photoperiod: 16 hours light / 8 hours dark with 20 minute transition periods

July 24th, 1995 to July 26th, 1995 5. Experimental dates:

# B: STUDY DESIGN AND METHODS

B: STUDY DESIGN AND METHODS

1. Experimental treatments: The effects of glyphosate acid on Daphnia magna were evaluated in a 48hour static toxicity test. Twenty Daphina (4 replicates of 5 animals per test beaker) per concentration were exposed to nominal 10, 18, 32, 56, 100 and 180 mg/L of glyphosate acid and a pH adjusted 1000 mg/L test concentration of glyphosate acide in addition, 4 x 5 Daphnia were exposed to test medium without test substance (blank control).

A stock solution of nominal concentration of 1000 mg a.s./L was prepared by dissolving 1000 mg test item in 1000 mL dilution water. The 10 to 180 mg a.s./L test solutions were prepared by dispersing aliquots of the stock solution to dilution water.

A further 1000 mg as Is stock solution was prepared by dissolving 1 g of glyphosate acid in 1 litre of dilution water. The Hof this stock solution was adjusted from 2.59 to 8.98 using 12 mL of 1 M sodium hydroxide. All stock and test solutions were observed to be clear and colourless. The Daphnia were randomly placed into the test beaker and exposed to the test item for 48 hours.

- 2. Observations Daphnids were observed for immobilisation at 24 and 48 hours and were not fed during the test, pHevalues and dissolved oxygen concentrations were determined in the test media at the beginning and at the end of the test. The water temperature in the test media was measured at the start of the test, 24, and 48 hours thereafter. The concentrations of glyphosate acid in the test solutions were measured at 0 and 48 hours.
- 3. Statistical calculations: The EC₅₀ values for the 10 and 180 mg a.s./L test concentrations were calculated with the binomial method.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

The analysed test concentrations ranged between 85 and 100 % of the nominal values, therefore, the results reported are related to nominal concentrations of the test item.

Due to an oversight at 0 hours the pH adjusted 1000 mg a.s./L test solution was not sampled for analysis and therefore a sample was taken at 24 hours. The lack of 0 hour analysis for this concentration was considered not to have affected the validity of the study since analysis at 24 and 48 hours gave results which were close to the nominal value (100 and 83 %, respectively).

Table 8.2.4- 13: Analytical results

Nominal concentration [mg/L]		tration of Glyphosate [mg/L]	Mean measured concentration of Glyphosate acid [mg/L]	% of nominal
	0 hours	48 hours	CHE OF C	
Control	< 0.0039	< 0.0039	10° 0<0.0039	-
10	8.6	8.4	ji ji se 8.5	85
18	16 ¹	16¹	16	89
32	29	29 <u>ziti</u>	e <u>a f</u>	91
56	49	49	KIE 49	88
100	92	93,6 3,80	93	93
180	180	7800, 72	180	100
1000 (pH adjusted)	$1000^{2}$	8300	920	92

¹Triplicate analysis

The 24 and 48 hour EC₅₀ values (based on nominal concentrations of glyphosate acid) are given below.

Table 8.2.4- 14: EC50 values for Daphnia magna

Time	EC50 [mg a.s./L]	95 % confidence interval [mg a.s./L]
24 h	130	100-180
48 h	130	100-180

The pH adjusted 24 and 48 hour EC₅₀ values (based on nominal concentrations of glyphosate acid) are given below:

15. EC50 values for Daphnia magna (pH adjusted)

	Time	EC ₅₀ [mg a.s./L]	95 % confidence interval [mg a.s./L]
	24 h	>1000	-
	48 h	>1000	-
10 00 00 00 00 00 00 00 00 00 00 00 00 0	Glyphosate Renewal Group AIR 5 – July 2020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

² measured at 24 hours.

### B. **OBSERVATIONS**

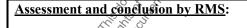
The results obtained from this study indicate that the toxicity of glyphosate acid below 1000 mg/L was caused by pH values less than 5.

The effects of glyphosate acid on Daphnia magna are shown below.

Table 8.2.4- 16: Effects of glyphosate acid on Daphnia magna.

Table 8.2.4- 16: Effects of glyphosate acid on Daphnia magna

Nominal concentration [mg a.s./L]	Number of exposed <i>Daphnia</i> per replicate	Number of immobile Daphnia after 24 hours	Immobility after 24 hours [%]	Number of immobile Of Daphnia after 48 flows	Ammobility after 48 hours [%]
Control	20	0	0	20 30 00 °	0
10	20	0	0		0
18	20	0	0 &	1, 10 ° 0 ° 0	0
32	20	0	0 %	A. 60 0	0
56	20	0	8/11/2/10	§ 0	0
100	20	0	1000 m	0	0
180	20	20	. 400°	20	100
1000 (pH adjusted)	20	ى 0		0	0


All validity criteria according to the OECD 202 were fulfilled, as no immobility of daphnids was observed in control groups and dissolved oxygen concentration was  $\geq 3$  mg/L in all test vessels. 

# Micconclusions

# Assessment and conclusion by applicant

Due to 0% mortality at 100 mg/b and 100% mortality at 180 mg a.s./L, the 48 hour EC₅₀ for Daphnia exposed to glyphosate acid falls between 100 and 180 mg/L. Using linear interpolation between these two concentrations, the EC₅₀ is 136.5 mg/L. The NOEC was 100 mg a.s./L (nominal). All validity criteria according to the OECD 202 were fulfilled, so the study is considered valid for risk

assessment purposes. Ó



1. Information on the study

1. Information on the study			
Data point	CA 8.4.2.1/005		
Report author	, is a second of the second of		
Report year	1995		
Report title	The acute toxicity of glyphosate to Daphnia magna		
Report No	710/22		
<b>Document No</b>	- 3.5		
Guidelines followed in study	Information mentioned in the Monograph: The data presented below were generated in accordance with OECD-or equivalent guidelines.		
GLP	Yes		
<b>Previous evaluation</b>	Yes, accepted in RAR (2015).		
Short description of study design and observations	Toxicity of technical glyphosate (purity 394 %) to aquatic organisms (Daphnia magna), 48 hours test.		
Short description of results	NOEC 24 h = 100 mg a.s./L  LC ₅₀ 24 h > 100 mg a.s./L  NOEC 48 h = 18 mg a.s./L  LC ₅₀ 48 h = 40 mg a.s./L  These data were provided in the Monograph 2001 and relied upon in		
Reasons for why the study is not considered relevant/reliable or not considered as key study	These data were provided in the Monograph 2001 and relied upon in the previous evaluation, RAR 2015. The study is considered as supportive because the report is not available and therefore it cannot be concluded on the study validity according the current guideline requirements.		
Reasons why the study report is not available for submission	The notifier has no access to this study report. Since the study was part of the earlier data package available to the former RMS of the active substance glyphosate, the AGG would have to send a "request for administrative assistance (Art. 39 of Regulation (EC) No. 1107/2009) to the BVL.		
Category study in AIR 5 dossier (L docs)	Category 4a		

	dossier (L docs)	
	1. Information on the study  Data point:	
	Data points	CA 8.2.4.1/006
	Report author	CA 8.2.4.1/000
	Report year	1995
	Report title	Acute Toxicity Study in Daphnia magna with Glyfosaat
	Report No	141863
	Document No	-
	Guidelines followed in study	OECD Guideline 202 (1984)
	Deviations from current test	Deviation from the guideline OECD 202 (2004):
	guideline	Minor:
	S. S	- Only two replicates - Only one test concentration of 100 mg/L.
cyc	Previous evaluation	Yes, accepted in RAR (2015).
	GLP/Officially recognised testing facilities	Yes
Strong of the st	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Acceptability/Reliability:	Valid	
Category study in AIR 5 dossier (L docs)	Category 2a	

### 2. **Full summary**

# **Executive Summary**

The effects of glyphosate on *Daphnia magna* were evaluated in a 48-hour static toxicity test. The toxicity test was performed using three nominal concentrations, 1, 10 and 100 mg test item/L. Furthermore, a blank control was tested. Ten daphnids were exposed to the concentrations of 1 and 10 mg/test/item/L (in one test vessel for each test concentration). 2 replicates with 10 daphnids each were prepared for the highest test concentration of 100 mg test item/L and the control.

At or below the highest test nominal concentration, no immobilisation was observed in tested daphnids during the 48 h exposure period. Hence, the 48 h EC₅₀ for *Daphnia magna* exposed to glyphosate was determined to be > 100 mg a.e./L. All validity criteria according to OECD 202 were fulfilled. The study is considered to be valid.

# I. MATERIALS AND METHODS

### A. MATERIALS

1. Test material:

Glyphosatex® Test item:

White powder Description:

Lot/Batch #:

Purity:

Wehicle: ISO-medium (in milli-RO water) Positive control: K₂Cr₂O₇ 2. Vehicle and/or positive control:

3. Test organism:

Species: Šaphnia magna Straus

Neonates (< 24 h old)

oading: 10 daphnids per 80 mL test medium

Source: In-house culture

4. Environmental conditions

Temperature: 19.5°C

Photoperiod: 16 hours light / 8 hours dark

8.0 - 8.1 (control), 5.2 - 5.5 (100mg test item/L)

Dissolved oxygen:  $8.9 - 9.5 \text{ mg } O_2/L$ 

> Hardness: 250 mg CaCO₃/L

5. Experimental dates: April 12, 1995 to April 14, 1995

The test was conducted in a static test setup for 48 hours in 100 mL vessels containing 80 mL test solution each. In addition, a control group was exposed to test medium without test substance or other additives.

The test consisted of one vessel per treatment (containing 10 daphnids each) for the test concentrations of so 1 and 10 mg test item/L and two vessels (containing 10 daphnids each) for the highest test concentration of 100 mg test item/L and for the control.

2. Observations: Total number of mobile Daphnia magna was recorded at 24 h and 48 h after the test initiation.

The pH-values were measured at test initiation and termination, for all concentrations and the control. The oxygen saturation was measured at test initiation for the control and the highest test concentration and at test termination for all concentrations and control. The temperature was controlled daily in one control vessel, starting from the beginning of the test.

Analytical control measurements of the actual concentration of the test item were performed by mean of HPLC analysis using samples taken at test start (0 h) and test termination (48 h).

**3. Statistical calculations:** Descriptive statistics

# II. RESULTS AND DISCUSSION

### A. FINDINGS

Analytical data: Analytical control measurements were performed on samples of the highest test concentration. Before introduction of the daphnids 112 % of the nominal glyphosate concentration was recovered in the test media. In the aged test media 109 % of the nominal concentration was recovered. As the mean measured content of the test item ranged between 80 and 120% of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

Table 8.2.4-17: Analytical results

Nominal Concentration [mg/L]	Time [hours]	Measured	% of nominal
0	0 9 4 4 4	0	-
0	480 60 6	0	-
100		112	112
100	48	109	109

The EC₅₀ value is given below based on nominal concentrations.

Table 8.2.4- 18: Endpoints

Endpoints	Glyphosate [mg a.e./L]
EC50 (48 18)	> 100

Reference item: The 48h-EC₅₀ for the reference item was 0.52 mg/L (95% CL = 0.50 - 0.55 mg/L), which was within the range of expected responses. Hence, the sensitivity of this batch of Daphnia magna was in agreement with the historical data collected at test facility.

# B. OBSERVATIONS

now the now the line of the 48 h common distribution of day and all test vessels. At or below the highest test nominal concentration, no immobilisation was observed in tested daphnids during the 48 h exposure time. Also, all validity criteria according to the OECD 202 were fulfilled, as no immobility of daphnids was observed in control groups and dissolved oxygen concentration was  $\geq 3~\text{mg/L}$ 

# III. CONCLUSIONS

# Assessment and conclusion by applicant:

Under the conditions of the present test, glyphosate induced no visible effects in *Daphnia magna* at 100 mg a.e./L, the only concentration tested. Hence, the 48 h EC₅₀ for *Daphnia magna* exposed to glyphosate was determined to be > 100 mg a.e./L and the NOEC  $\geq$  100 mg a.e./L. Although this limit test was conducted with only two replicates, all validity criteria according to the OECD 202 were fulfilled. Therefore, the study is considered valid and reliable for the regulatory risk assessment for glyphosate.

Assessment and conclusion by RMS:	%. O. %
	2 6. 15°
	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	4,8,8

# 1. Information on the study

	2 2 3		
Data point:	CA 8.2.4.1/007		
Report author	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
Report year	1994		
Report title	Acute Toxicity in <i>Daplinia magna</i> ; Test Article: 'Glyphosate isopropylamine salt'		
Report No	83-91-0737-00-93		
Document No	- 5555		
<b>Guidelines followed in study</b>	OECD Guideline 202		
Deviations from current test guideline	Deviation from the guideline OECD 202 (2004):  Minor: - Limit test with one concentration (100 mg test item/L)		
<b>Previous evaluation</b>	Yes, accepted in RAR (2015).		
GLP/Officially recognised testing facilities	Ker in		
Acceptability/Reliability:	Valid		
Category study in AIR 5 6 6 dossier (L docs)	Category 2a		

# 2. Full summary

# **Executive Summary**

The acute effects of glyphosate isopropylamine salt on *Daphnia magna* were evaluated in a 48-hour static toxicity test. The test was conducted to supplement the results of the acute toxicity test already performed as a range finding study for the 21 d reproduction test in *Daphnia magna* (IBR Project No. 89-91-2328-05-93).

The acute toxicity test was performed under static conditions as limit test using only one test concentration of nominal 100 mg test item/L, equivalent to 61.6 mg glyphosate isopropylamine salt/L or 45.64 mg glyphosate/L. In addition, a control group was exposed to reconstituted water (Elendt-medium). As a toxic reference, daphnids were exposed to 0.4 and 1.4 mg/L of the reference substance K₂Cr₂O₇.

There were four test vessels per treatment, each containing five *Daphnia magna* (25 mL volumetric cylinder containing 10 mL test medium).

Temperature, pH-value and oxygen saturation of the test solutions were measured at test initiation and termination. Total number of mobile daphnids and the rate of immobilisation were recorded 24 and 48 h after test initiation. At 100 mg test item/L, none of the *Daphnia magna* was found to be immobilised. The EC₅₀ was determined to be >100 mg test item/L, equivalent to 61.6 mg glyphosate isopropylamine salt/L

or 45.64 mg a.e./L (nominal). All validity criteria according to OECD 202 were fulfilled.

# I. MATERIALS AND METHODS

### A. MATERIALS

# 1. Test material:

Test item: Glyphosate isopropylamine salt

Description: viscous liquid Lot/Batch #: 01/06/93

Purity: 61.6 % Glyphosate isopropylamine salts

Density: 1.23 g/cm³ at 20°C

2. Vehicle and/or positive control: 0.4 and 1.4 mg/L K₂Cr₂O₇

3. Test organism:

Species: Daphnia magna Strauss

Age: neonates (6 - 24 h old)

Loading: 10 mL for 5 specimens

Source: Laboratory bred

Diet/Food: none

Acclimation period: Daphnids were held in groups of 25-30 organisms in 1000 mL

glass vessels at test conditions. Specimens were fed on green

algae and water was renewed 3 times a week.

4. Environmental conditions:

Temperature: 22°C (± 1°C during the test)

Photoperiod: 16 hours light / 8 hours dark, 600 – 700 lux

pt: 37.5 – 8.5

Dissolved oxygen: > 60 % of air saturation (approx. 6.0 mg  $O_2/L$ )

Conductivity: 0.049 µS/cm

Hardness: 14.5° dH

Janu

5. Experimental dates: January 4th, 1994 to January 6th, 1994

# B: STUDY DESIGN AND METHODS

- 1. Experimental treatments: The acute toxicity test was performed under static conditions as limit test using a nominal test concentration of 100 mg test item/L, corresponding to 61.6 mg glyphosate isopropylamine salt/L or 45.64 mg glyphosate/L in glass vessels containing reconstituted water (Elendtmedium). In addition, a control group was exposed to Elendt-medium. Two reference groups were equally exposed to 0.4 and 1.4 mg/L of K₂Cr₂O₇. There were four vessels per treatment, each containing five Daphnia magna (25 mL volumetric cylinder containing 10 mL test medium).
- **2. Observations:** The *Daphnia magna* were observed 24 and 48 hours after initiation of the test. Temperature, pH-value and oxygen saturation of the test solutions were measured at initiation and test termination.

Total number of mobile *Daphnia magna* was recorded at 24 h and 48 h after the test initiation.

Analytical measurement of the test item concentration was performed by mean of HPLC analysis at the beginning (0 h) and end (48h) of the limit test. Glyphosate isopropylamine salt concentrations were determined based on the concentrations of glyphosate.

# 3. Statistical calculations: Descriptive statistics.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

Analytical data: The average recovery of glyphosate in the test media at the beginning (0 h) and end (48h) of the limit test were 103.7%, and 103.2% respectively. As the mean measured content of the test item always ranged between 80 and 120% of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

Table 8.2.4- 19: Analytical results

	Nominal concentration [mg/L]	Measured concentration [mg/L]								
		24 hr	48 hr 0 5	24 hr	48 hr					
test item	100	-	8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 - 8 -	-	-					
glyphosate isopropylamine salt	61.6	-	2000	-	-					
glyphosate	45.65	47.32	¥7, <b>0</b> 9	103.7%	103.2%					

The EC₅₀ values are given below based on nominal concentrations.

Table 8.2.4- 20: Endpoints

Endpoints	test item [mg/L]	Glyphos	ate isopropylamine salt [mg/L]	Glyphosate [mg a.e./L]
EC ₅₀ (48 h)	> 100		> 61.6	> 45.64

**B. OBSERVATIONS**The immobility rate in the control group did not exceed 10% (0% in the test) at any stage of the test. At the concentration level of 100 mg test item/L, none of the daphnids tested were found to be immobilised, 24 h and 48 h after the start of the test.

Table 8.2.4- 21: Immobilisation of daphnids exposed to glyphosate isopropylamine salt

	Control	Test item [mg/L]	Reference [mg/L]		
test item	-	100			
glyphosate isopropylamine salt	-	61.6	0.4	1.4	
glyphosate & S	-	45.64	0.4	1.4	
24 h	0	0	0	85	
48 h	0	0	5	100	

be directional integrity of the test system. All validity criteria according to the OECD 202 were fulfilled, as no immobility of daphnids was observed in control groups and dissolved oxygen concentration was 3 mg/L in all test vessels.

# III. CONCLUSIONS

# Assessment and conclusion by applicant:

In a 48-hours static acute toxicity study with *Daphnia magna* exposed to glyphosate isopropylamine salt, the EC₅₀ was determined to be >100 mg test item/L, corresponding to 61.6 mg a.s/L or 45.64 mg a.s/L (nominal). As this was conducted as a limit test, the NOEC corresponds to  $\geq$  45.64 mg a.e./L. All validity criteria according to the OECD 202 were fulfilled, the study is therefore considered valid and reliable for the regulatory risk assessment for glyphosate..

# **Assessment and conclusion by RMS:**

# 1. Information on the study

	il it is a second of the secon
Data point	CA 8.4.2.1/008
Report author	
Report year	1993
Report title	Information not available
Report No	94-00549 (typo error in the Monograph: 95-00549)
<b>Document No</b>	- \$ 55 5
Guidelines followed in study	Information mentioned in the Monograph 2001: The data presented below were generated in accordance with OECD-or equivalent guidelines.
GLP	Yes Significant Section 1. Sectio
<b>Previous evaluation</b>	Yes, accepted in RAR (2015).
Short description of study design and observations	Acute and chronic toxicity of glyphosate isopropylamine salt (purity 61–65%) to aquatic organisms ( <i>Daphnia magna</i> ), 48 hours static test:
Short description of results	EC (48 h) >1000 mg a.s./L
Reasons for why the study is not considered relevant/reliable or not considered as key study	The study is considered as supportive because the report is not available; so it cannot be concluded on the study validity according the current guideline requirements. However, these data were provided in the Monograph 2001 and relied upon in the previous evaluation, RAR 2015.
Reasons why the study report is not available for submission	The notifier has no access to this study report. Since the study was part of the earlier data package available to the former RMS of the active substance glyphosate, the AGG would have to send a "request for administrative assistance (Art. 39 of Regulation (EC) No. 1107/2009) to the BVL.
Catagory study in AIR 5	Category 4a
Glyphosate Renewal Group AIR 5 – July	2020 Doc ID: 110054-MCA8_GRG_Rev 1_Ju

### 1. Information on the study

Data point:	CA 8.2.4.1/009
Report author	
Report year	1990
Report title	48-Hour Acute Toxicity of Glyphosate Technical to <i>Daphnia magna</i> (OECD-Immobilization Test)
Report No	272968
<b>Document No</b>	- <u>**</u> ** ******************************
<b>Guidelines followed in study</b>	OECD Guideline 202 (1984)
Deviations from current test guideline	Deviation from the guideline OECD 202 (2004).  Minor:  • The pH was not in a range of 6.9 but from 2.3 – 7.6.
<b>Previous evaluation</b>	Yes, accepted in RAR (2015).
GLP/Officially recognised testing facilities	Yes State of the second
Acceptability/Reliability:	Valid
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary
Executive Summary
The effects of glyphosate technical on Daphnia magna were evaluated in a 48-hour static toxicity test. The toxicity test was performed using five nominal concentrations, 62.5, 125, 250, 500 and 1000 mg test item/L. Furthermore, a blank control consisting of reconstituted water and a stability control with 1000 mg test item/L and no daphnids were tested. Two replicates with ten daphnids each were exposed to the test item concentrations and the control. Immobilisation was recorded 24 and 48 hours after the test initiation. Dissolved oxygen and pH were recorded at the beginning and at the end of the tests.

Test item concentrations were verified in the freshly prepared and in the aged test media. During the test period of 48 hours the daphnids were exposed to a mean concentration of 86.1% of nominal concentration. Therefore, all reported results are related to nominal concentrations of the test item.

The immobilisation of *Daphusa magna* increased with increasing test concentration, while at increasing test concentrations, the pH decreases beyond the pH range of 6 - 9 given in the guideline. The EC₅₀ (48 h) was 84.0 mg a.e./L with a 95% confidence interval of 73.3 to 96.6 mg a.e./L based on nominal concentrations. All validity criteria according to the guideline OECD 202 were fulfilled. The study is considered to be valid.

# I. MATERIALS AND METHODS

# A. MATERIAES

1. Test material:

Test item: Glyphosate technical

Description: solid

Lot/Batch #: 229-Jak-5-1

Purity: 98.9%

Vehicle: Test medium

2. Vehicle and/or positive control: Positive control: Reference item: Potassium dichromate

 $(K_2Cr_2O_7)$ 

# 3. Test organism:

Species: Daphnia magna

Age: Neonates (< 24 h old)

Loading: 10 daphnids per 20 mL test medium

Source: In-house culture

Diet/Food:

 $\sim 24~h$  (acclimatisation started on July  $2^{nd}$  ) test started on July  $3^{rd}$  ). Acclimation period:

# 4. Environmental conditions:

Temperature:  $21.0 \pm 0.5$  °C

Photoperiod: 16 hours light / 8 hours dark

pH: 8.3 - 8.2 (control)

6.3 - 7.6 (62.5 mg test item 2.5) 4.8 - 5.2 (125 mg test item/L) 3.2 - 3.4 (250 mg test item) L) 2.7 - 2.9 (500 mg test item/L) 2.3 - 2.6 (1000 mg/test item/L)

Dissolved oxygen:  $8.3 - 8.1 \text{ mg } O_2/\mathbb{D} \text{ (mean)}$ 

> Conductivity: Not stated

250 mg CaCO L (reconstituted water) Hardness: July 3rd 1990 to July 5th, 1990

# 5. Experimental dates:

# **B: STUDY DESIGN AND METHODS**

1. Experimental treatments: Five test concentrations (nominal 62.5, 125, 250, 500 and 1000 mg test item/L), prepared with reconstituted water according to EEC directive, were tested in duplicate.

The test was conducted in a static test setup for 48 hours in 50 mL beakers containing 20 mL test solution each. In addition, a control group was exposed to test medium without test substance or other additives. The test vessels contained 10 daphinds each. Also a stability control with 1000 mg test item/L without daphnids was tested.

- 2. Observations: Total number of mobile Daphnia magna was recorded at 24 h and 48 h after test initiation. The pH-values and oxygen saturation were measured ion each test vessel at test initiation and termination. Analytical control measurements of the actual concentration of the test item were performed by mean of HPLC analysis using samples taken at test start (0 h) and test termination (48 h).
- 3. Statistical calculations: The EC₅₀ was estimated by using the Logit-model, EC₀, EC₅₀ and EC₁₀₀ values were determined by linear regression.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

an test concentrations and the stability 1.02.3, 125, 250 and 500 the test concentrations were in the 1.02.3, 125, 250 and 500 the test concentrations were in the 1.02.3, 125, 250 and 500 the test concentrations were in the 1.02.3 at test initiation and 77.6 – 95.2 % at test termination. At the highest test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and at test 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test termination was 69.7 % of nominal and 1.02.3 test test termination was 69.7 % of nominal of 1000 mg test ation 85.3 %, respective concentration of 86.1 % of no. concentrations of the test item.

Table 8.2.4- 22: Analytical results

	% of no	ominal .6"
Nominal concentration [mg test item/L]	0 hrs	48 hrs
62.5	80.9	89.1
125	78.5	77.6
250	92.4	93,4
500	94.9	25,2
1000	69.7	§ C 285.3

The EC₅₀ value is given below based on nominal concentrations.

Table 8.2.4- 23: Endpoints

Endpoints	Glyphosate technical [mg a.e./L]
48 h EC ₅₀ (95% CL), Logit-model	84.0 (73.3 – 96.6)

Reference item: The 48h-EC₅₀ for the reference item was  $\frac{132 \text{ mg/L}}{132 \text{ mg/L}}$  (95% CL = 1.203 – 1.426 mg/L), which was within the range of expected responses. Hence, the sensitivity of this batch of Daphnia magna was in agreement with the historical data collected at test facility.

B. OBSERVATIONS
The immobilisation increases with increasing test concentration. Beginning with 125 mg test item/L, all daphnids are immobilised after 48 h. At increasing test concentrations, the pH decreases beyond the pH range of 6 - 9 given in the guideline.

Table 8.2.4- 24: Observations of pH and immobilisation range of 6 - 9 given in the guideline.

, v	Control	Glyphosate [mg a.e./L]									
Test parameters	96,20°	62.5		12	25	250		500		1000	
Replicate No.	S. All	1	2	1	2	1	2	1	2	1	2
% immobile daphnids after 24 h	0	10	0	30	60	100	100	100	100	100	100
% immobile daphnids after 48 h	0	10	0	100	100	100	100	100	100	100	100
pH after 24 h	8.4	6.3		4.8		3.2		2.7		2.3	
pH after 48 h	7.9	7.6		5.	.2	3.4		2.9		2.6	

Je groupe of the state of the s All validity criteria according to the OECD 202 were fulfilled, as no immobility of daphnids was observed in control groups and dissolved oxygen concentration was  $\geq 3$  mg/L in all test vessels.

#### III. CONCLUSIONS

#### Assessment and conclusion by applicant:

The EC₅₀ (48 h) for *Daphnia magna* exposed to glyphosate technical was 84.0 mg a.e./L with a 95% confidence interval of 73 3 to 96.6 mg a e./L based or required. confidence interval of 73.3 to 96.6 mg a.e./L based on nominal concentrations.

In the RAR 2015, results were recalculated based on mean measured concentrations using probit analysis which provided an EC50 value of 74 mg a.e./L (95% CL: 16.966 -130.338). The NOEC was determined to be 53 mg a.e./L.

The validity criteria according to the OECD 202 were fulfilled, the study is therefore considered valid and reliable for the regulatory risk assessment for glyphosate.

	V 3. 2
Assessment and conclusion by RMS:	
	£ 4.0

#### 1. Information on the study

0.8 %
CA 8.2.4.1/010
8
1981
Acute Toxicity of MON 0139 (Lot LURT 12011) (AB-81-074) to
Daphnia magna of the control of the
27203
- 10 10 15
Methods of Acute Toxicity Tests with Fish, Macroinvertebrates and
Amphibians, US EPA, Ecol Res. Ser. 660/3-75009
Deviation from the current guideline OECD 202 (2004):
Major:
No analytical measurements of the lowest and highest treatment
solutions were performed.
Yes, accepted in RAR (2015)
Yes
Supportive
Category 2b

# Fuff summary

**Executive Summary** 

per replicate) were exposed to each treatment level and in the control group. Total number of immobile baphnia magna in each vessel were recorded at 24 and 48 hours after the test initiation. The pH-values and oxygen saturation of the test solutions were measured at test initiation and termination. In addition, total hardness and specific conductivity of the dilution water was analysed.

The 48 h LC₅₀ for *Daphnia magna* exposed to MON 0139 was determined to be 930 mg test item/L. The no effect level (NOEC) observed for MON 0139 was 320 mg test item/L after 48 hours. According to the points deviated from the current guideline OECD 202 recommendations, the study is considered as supportive.

### I. MATERIALS AND METHODS

#### A. MATERIALS

#### 1. Test material:

Test item: MON 0139

Description: Light yellow liquid

Lot/Batch #: LURT 12011

Purity: 62.49 %

2. Vehicle and/or positive control:

3. Test organism:

Species:

Age:

Daphnia magna
Neonates (1st instant \$24 h old)
10 specimens in 200 mL test solv

house culture

ne Loading:

Source:

Diet/Food:

Acclimation period:

4. Environmental conditions:

Temperature:

eriod ( ) 6 hours light / 8 hours dark Photoperiod

8.6 (control, test start), 7.9 - 8.6 (at test end)

Dissolved oxygen: 8.8 mg/L (control, test start ), 3.5 - 7.8 mg/L (at test end)

Conductivity: 50 μmhoS/cm Hardness: 255 ppm (CaCO₃).

5. Experimental dates: April 21 to April 24 1981

B. STUDY DESIGN THE The toxicity one The toxicity of MON 0139 on Daphnia magna was evaluated in a 48-hour static toxicity test, using nominal concentrations 85%, 100, 180, 320, 560 and 1000 mg test item/L. In addition, a control group was exposed to dilution water. The test solutions were prepared using water prepared to a total hardness of 255 mg CaCO₃/L. There were two glass jars per treatment, each containing ten daphnids (250 mL glass jars containing 200 mL test medium). The vessels were kept at 20 ± 1 °C. The photoperiod was controlled to give 16 hours daylight and 8 hours darkness.

### **Observations**

and oxygen saturation of the dilution water was analysed. Total number of mobile Daphnia magna was recorded at 24 h and 48 h after the test initiation. The pH-Evalues and oxygen saturation of the test solutions were measured at test initiation (only in control) and at test termination (control and three test concentration). test termination (control and three test concentrations). In addition, total hardness and specific conductivity

The validity criteria according to the current OECD 202 guideline are the following:

- In the control, not more than 10 per cent of the daphnids should have been immobilised or show or other signs of disease or stress.
- The dissolved oxygen concentration at the end of the test should be  $\geq 3$  mg/L in control and test

Statistical calculations
The LC₅₀ values were obtained by employing a computerised LC₅₀ program developed by Stephan et. al. (1978) performing binomial, moving average and probit tests

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

The 48 hours LC₅₀ and NOEC values are given below based on nominal concentrations.

Table 8.2.4- 25: Endpoints

Endpoints	MON 0139 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	Glyphosate [mg a.s./L]
48 hours LC ₅₀ (95% C.I.)	930 (800 - 1200)	581 (500 - 750)
48 hours NOEC	329 5 6	200

C.I. = Confidence interval

#### **B. OBSERVATIONS**

No mortality to *Daphnia magna* from exposure to MON0139 was observed at test concentrations ≤ 560 mg test item/L. At 1000 mg test item/L, some behavioural effects were notified after 48 hours and 10% and 60% mortality was observed after 24 and 48 hours respectively (see table below).

Table 8.2.4- 26: Mortality of *Daphnia magna* exposed to MON 0139

Test concentration	Mor	rtality (%)
(mg MON 0139/L)	24 hours	48 hours
Control		0
56	D 18 0	0
100	0	0
180	0	0
320	0	0
560	0	5
1000 & & 5	10	60

The following points deviated from the current guideline OECD 202 recommendations:

- No analytical measurements of the lowest and highest treatment solutions were performed.
- The hardness is slightly higher than 250 mg/L CaCO3 (actual value: 255 mg/L)

All validity criteria according to the OECD 202 were fulfilled, as no immobility of daphnids was observed in control groups and dissolved oxygen concentration was  $\geq 3$  mg/L in all test vessels.

M-CA, Section 8

Page 219 of 847

#### III. CONCLUSIONS

#### Assessment and conclusion by applicant:

The 48 h LC₅₀ for *Daphnia magna* exposed to MON 0139 was determined to be 930 mg test item/L equivalent to 581 mg a.e./L. The no effect level (NOEC) above 1.6 MON 0139 was determined to be 930 mg test item/L equivalent to 581 mg a.e./L. The no effect level (NOEC) observed for MON 0139 was 320 mg test item/L after 48 hours, equivalent to 200 mg a.e./L.

No chemical analysis was performed to confirm glyphosate concentration in the test media. The test would therefore be considered as supportive for risk assessment purposes.

# Assessment and conclusion by RMS:

#### 1. Information on the study

CA 8.2.4.1/011
1978
Acute Toxicity of Technical Glyphosate (AB-78-201) to Daphnia
magna & 3 8
AB 78-201
-
Committee on methods for toxicity tests with aquatic organisms.
Deviations from guideline OECD 202 (2004):
Major: Not of of
• End analytical verification of test concentrations
Yes, accepted in RAR (2015).
No shot conducted under GLP/Officially recognised testing facilities
(GLP was not compulsory at the time the study was performed)
Supportive
Category 2b

## 2.

## Executive Summarv

Full summary The effects of glyphosate on Daphnia magna were evaluated in a 48-hour static toxicity test. Based on the results of a range finding test, a definite toxicity test was performed using nominal concentrations of 560, 650, 750, 870 and 1000 mg test item/L, equivalent to 464.8, 539.5, 622.5, 722.1, and 830.0 mg glyphosate/La In addition, a control group was exposed to dilution water. There were three vessels per

mas recorded at 24 h and 48 h after test initiation.

mas recorded at 24 h and 48 h after test initiation.

mas observed, while no many was observed at a nominal concentration of 560 mg test item/L, 48 hours after the test initiation. The 48 h EC₅₀ for *Daphnia magna* exposed to glyphosate was calculated to be 780 mg test item/L.

The 48- hour no-effect level (NOEC) was determined to be 560 mg/L. All validity criteria according to the guideline OECD 202 were fulfilled, however no analytical verification of test concentrations was made and the study was not conducted to GLP. This study is therefore considered supportive. magna exposed to glyphosate was calculated to mo-effect level (NOEC) was determined to be 560 mg/L. All validity considered to the study was not conducted to GLP. This study is therefore considered supportive.

### I. MATERIALS AND METHODS

#### A. MATERIALS

#### 1. Test material:

Test item: Technical Glyphosate

Description:

Lot/Batch #: XHI-162 Purity: 83.0 %

2. Vehicle and/or positive control:

3. Test organism:

Species:

Age:

Loading:

Source:

Diet/Food:

Acclimation period: None

4. Environmental conditions:

Temperature:

None
None

19 ± 1 °C

16 hours light 88 hours dark Photoperiod:

pH: 8.0 (at test termination)

Dissolved oxygen: 7.5 me/L Conductivity: Not stated

250 mg CaCO₃/L. Hardness

5. Experimental dates:

August 29th, 1978 to August 31st, 1978

#### STUDY DESIGN AND METHODS

- 1. Experimental treatments: Based on the results of a range finding test, definite toxicity test was performed using nominal concentrations of 560, 650, 750, 870, 1000 mg test item/L, equivalent to 464.8, 539.5, 622.5, 722.1, and 830.0 mg glyphosate/L in a static test setup. The test solutions were prepared using well water of the test facility (Dissolved oxygen = 8.6 mg/L, pH = 7.8, hardness > 250 mg CaCO₃/L.). In addition, a control group was exposed to dilution water. There were three replicates per treatment, each containing ten daphards (500 mL glass beakers containing each 250 mL test medium).
- 2. Observations: Total number of immobile Daphnia magna was recorded at 24 h and 48 h after the test initiation. Temperature, pH-value and oxygen saturation of the test solutions were measured at the test termination. Hardness of the test water was measured at test initiation.
- 3. Statistical calculations: EC₅₀ values were calculated along with the 95 % confidence limits using Probit The state of the s analysis.

#### II. RESULTS AND DISCUSSION

The EC₅₀ and NOEC values of Glvr¹ The EC₅₀ and NOEC values are given below based on nominal concentrations as no analytical verification of test concentrations was made.

Table 8.2.4- 27: Endpoints

Endpoints (48 h)	Test item[mg/L]	Glyphosate [mg a.e./L]
EC ₅₀ (95% C.I.)	780 (696 - 874)	647.4 (577.7 - 725.4)
NOEC	560	464.8

B. OBSERVATIONS
At and above nominal concentrations of 870 mg test item/L, 100 % immobilisation was observed while no immobilisation was observed at the nominal concentration of 560 mg test item 15, 48 hours after the test initiation. At concentrations of 650 and 750 mg test item/L, immobilisation of 3.3 % and 33.3 % of STATION TO specimens was observed.

Table 8.2.4- 28: Lethal effects of glyphosate to Daphnia magna

Test item [mg/L]	Control	560	<u>, 5</u> 650	750	870	1000
Glyphosate [mg a.e./L]	ı	464.8	ু≈ <b>5</b> 39.5	622.5	722.1	830.0
Immobility (24 h) [%]	0		0	6.7	73.3	100
Immobility (48 h) [%]	0	0.70	3.3	33.3	100	100

All validity criteria according to OECD 202 were fulfilled, as no immobility of daphnids was observed in control groups and dissolved oxygen concentration was ≥ 3 mg/L in all test vessels.

## 1, Hg Ho III. CONCLUSIONS

#### Assessment and conclusion by applicant:

The 48 h EC₅₀ for *Daphnia magna* exposed to technical glyphosate was calculated to be 780 mg test item/L, equivalent to 647.4 mg a.e./L. The 48- hour no-effect level (NOEC) was determined to be 560 mg/L, equivalent to 464.8 mg are /L.

All validity criteria according to the guideline OECD 202 were fulfilled, however no analytical verification of test concentrations was made. This study is therefore considered supportive for risk No No assessment purposes. 6

# Assessment and conclusion by RMS:

#### 1. Information on the study

_	0.
Data point:	CA 8.2.4.1/012
Report author	**************************************
Report year	1998
Report title	Acute Toxicity Study in Daphnia magna with (Aminomethyl)Phosphonic Acid (Static)
Report No	232471
Document No	- <u>*</u> * * * * * * * * * * * * * * * * * *
Guidelines followed in study	OECD Guideline 202, Part I (1984) ECC Directive 92/69, Part C.2 (1992) ISO International Standard 6341 (1996)
Deviations from current test guideline	Deviation from the guideline OECD 202 (2004): none
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing facilities	Yes E STATE OF THE
Acceptability/Reliability:	Valid in the second sec
Category study in AIR 5 dossier (L docs)	Category 2a

#### 2. **Full summary Executive Summary**

The effects of (Aminomethyl) phosphonic acid (AMPA) on Daphnia magna were evaluated in a 48-hour static toxicity test conducted as a limit test with a nominal concentration of 100 mg test item/L. Furthermore, a blank control was tested. Twenty daphnids (2 replicates, 10 individuals per replicate) were exposed to each treatment level.

Immobilisation was recorded 24 and 48 hours after the start of the test.

At the tested nominal concentration of 100 mg test item/L, no immobilisation was observed in tested daphnids during the 48 h exposure time. The 48-h EC₅₀ for Daphnia magna exposed to AMPA was determined to be > 100 mg test item & All validity criteria according to OECD 202 were fulfilled. The study is considered valid.

## I. MATERIALS AND METHODS

# A. MATERIALS

1. Test material:

Test item: (Aminomethyl)phosphonic acid

Description: White powder Lot/Batch #: A010047101

> Purity: 99 %

Reference item: K₂Cr₂O₇ 2. Vehicle and/or positive control:

Species: Daphnia magna Straus Age: Neonates (< 24 h old)

Loading: 10 daphnids per 80 mL of test medium

Page 224 of 847

Source: In-house culture

4. Environmental conditions:

Temperature: 20.4 - 20.6 °C

Photoperiod: 16 hours light / 8 hours dark

pH: 8.0 - 8.2 (control), 6.2 - 6.4 (test solution)

Dissolved oxygen:  $8.8 - 9.0 \text{ mg O}_2/L$ 

Hardness: 250 mg CaC0₃/L

**5. Experimental dates:** May 18th, 1998 to May 27th, 1998

HPLC analysis using samples taken at test start (0 h) and test termination (48 h).

#### **B: STUDY DESIGN AND METHODS**

1. Experimental treatments: Based on the results of a range finding test the final toxicity test was performed using a unique nominal concentration of 100 mg test item/L prepared using ISO-medium (in milli-RO water). The test was conducted in a static test setup as limit test in addition, a control group was exposed to the test medium without test substance or other additives. The test consisted of two replicates per treatment group (100 mL vessels containing 80 mL test solution each). Per replicate 10 daphnids were exposed.

2. Observations: Total number of mobile *Daphnia magna* was recorded at 24 h and 48 h after the test initiation.

The pH-values and oxygen saturation of the test solutions were measured at test initiation and termination. The temperature was controlled daily in one control vessel starting from the beginning of the test.

Analytical control measurements of the actual concentration of the test item were performed by mean of

3. Statistical calculations: Descriptive statistics.

## II. RESULTS AND DISCUSSION

#### A. FINDINGS

The EC₅₀ value is given below based on nominal concentrations.

Table 8.2.4- 29: Endpoints

Endpoints	(Aminomethyl) phosphonic acid [mg/L]
EC ₅₀ (48 h)	> 100

<u>Analytical data</u>: Before introduction of the daphnids 98 % of (Aminomethyl)phosphonic acid was recovered. In the aged test media 95 % of the nominal concentration was recovered. The results are summarised below.

As the mean measured content of the test item always ranged between 80 and 120 % of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

Table 8.2.4-30: Analytical results

Time [hours]	Nominal [mg/L]	Analysed [mg/L]	% of nominal [ mg/L]
<u> </u>	100	98.2	98
48	100	95.4	95

<u>Reference test:</u> The 48h-EC₅₀ for the reference item was 0.5 mg/L (95 % CL = 0.4 - 0.6 mg/L), which was within the range of expected responses. Hence, the sensitivity of this batch of Daphnia magna wassin agreement with the historical data collected at test facility. Onlot.

#### **B. OBSERVATIONS**

At the tested nominal concentration, no immobilisation was observed in tested daphnids during the 48 h exposure time. Also, all validity criteria according to OECD 202 were fulfilled, as no immobility of daphnids was observed in control groups and dissolved oxygen concentration was  $\geq 3$  mg/L in all test vessels.

#### III. CONCLUSIONS

### Assessment and conclusion by applicant:

Under the conditions of the present test (Aminomethyl) phosphonic acid induced no visible effects in Daphnia magna at nominal concentrations of 100 mg/L. Hence the 48-h EC₅₀ for Daphnia magna exposed to AMPA was determined to be > 100 mg/L, the maximum nominal concentration tested, and The state of the s the NOEC  $\geq$  100 mg/L.

Sold State of the state of the

The study is considered valid.

## Assessment and conclusion by RMS:

#### 1. Information on the study

		868 8
	Data point:	CA & 2.4.1/013
	Report author	
	Report year	1994
		AMPA: Acute toxicity to Daphnia magna
	Report No	X582/C
	Document No	-
	Guidelines followed in study	OECD No 202
	Deviations from correct test	Deviation from the guideline OECD 202 (2004): none
	guideline	
	Previous evaluation	Yes, accepted in RAR (2015).
	GLP/Officially recognised	Yes
	testing facilities	
	Acceptability/Reliability:	Valid
	Category study in AIR 5	Category 2a
	dossier (L docs)	
Š		
Ś	Full summary	
: 15° 22'	The effects of AMDA on Danhuis	
,6,0	(4 mm): a tan a f f a minus la man tant	magna were evaluated in a 48-hour static toxicity test. Twenty Daphnia
	(4 replicates of 3 animals per test	beaker) per concentration were exposed to nominal 18, 32, 56, 100 and
ROJA OF SHIP	Category study in AIR 5 dossier (L docs)  Full summary Executive Summary The effects of AMPA on Daphnia (4 replicates of 5 animals per test	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020
/ V		

## **Full summary**

180 mg/L of AMPA. In addition, 4 x 5 Daphnia were exposed to test medium without test substance (blank control).

Daphnids were observed for immobilisation at 24 and 48 hours and were not fed during the test. pH-values and dissolved oxygen concentrations were determined in the test media at the beginning and at the end of the test. The water temperature in the test media was measured at the start of the test, 24, and 48 hours thereafter. The concentration of AMPA in the test solutions were measured at 0 and 48 hours.

The mean measured test concentrations of AMPA ranged from 93 to 128% of the nominal values, therefore, the results reported are related to nominal concentrations of the test item. The 48-h EC₅₀ for Daphaia magna exposed to AMPA was >180 mg/L. The NOEC after 48 h based on immobilisation was 180 mg/AMPA/L. All validity criteria according to OECD 202 were fulfilled. The study is therefore considered valid.

#### A. MATERIALS

1. Test material:

I. MATERIALS AND METHODS

Test item: AMPA technical (metabolite of plyphosate))
escription: White solid

Description: White solid

Lot/Batch #: Not mentioned in the report

Purity: 85 %

Vehicle: Dilution water 2. Vehicle and/or positive control:

Positive control: None

3. Test organism:

Daphnia magna Straus Species:

Age: Less than 24 hours

5 organisms per vessel (250 mL glass beakers containing Loading:

200 mL test solution) which corresponds to 25 Daphnia/L.

16 hours light / 8 hours dark with 15 minute transition periods

Continuous laboratory cultures

4. Environmental conditions:

Temperature; 19.9-20.1 °C

pH: 8.23-847

Dissolved oxygen: 8.8-9.1 mg O2/L

> Conductivity: 545 mg/L µS/cm 161.6 mg CaCO₃

5. Experimental dates: November 16th, 1993 to November 18th, 1993

#### B. STUDY DESIGN AND METHODS

- 1. Experimental treatments: The effects of AMPA on Daphnia magna were evaluated in a 48-hour static toxicity test. Twenty Daphnia (4 replicates of 5 animals per test beaker) per concentration were exposed to nominal (8, \$2, 56, 100 and 180 mg/L of AMPA. In addition, 4 x 5 Daphnia were exposed to test medium Ins stock solution was observed to be clear Daphnia were randomly placed into the test beaker and exposed to the test item for 48.

  Observations: Daphnids were observed for immobilisation at 24 and 48 hours and were not fed during the test. pH-values and dissolved oxygen concentrations were determined in the test media at the beginning and at the end of the test. The water temperature in the test media was measured at the Glyphose. without test substance (blank control). A stock solution of nominal concentration of 180 mg a.s./L was

and 48 hours thereafter. The concentrations of AMPA in the test solutions were measured at 0 and 48 hours. 3. Statistical calculations: The EC₅₀ could not be quantified due to the absence of toxicity of the test items therefore, no statistical analysis was performed.

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

A. FINDINGS

The mean measured test concentrations of AMPA ranged from 93 to 128 % of the nominal values. The limit of quantification of AMPA in this study was 6.9 mg/L. The results are summarised below. The variability of the chemical analysis was considered to be due to the analytical method used. A similar study with AMPA technical completed after this study with an improved analytical method, reported mean measured concentrations ranging from 100 to 111 % of the nominal values. Therefore, it was assumed that the nominal concentrations were maintained during this study and results have been provided using the nominal concentrations.

Table 8.2.4-31: Analytical results

Nominal concentration [mg AMPA/L]	Measured concentration [mg AMPA/L]		Mean measure	d concentration
	0 hrs	48 hrs 55	[mg AMPA/L]	% of nominal
Control	<6.9	\$ 9 kg Ch	<6.9	-
18	34	5"1£"ii	23	128
32	45	E 1630	38	119
56	73	6 347	60	107
100	99	9 E. E. E. 86	93	93
180	170	200	190	106

The 24 and 48 hour EC₅₀ values (based on nominal concentrations of AMPA) are given below.

Table 8.2.4- 32: EC50 values for Daphnia magna

Time & & & &	EC ₅₀ (mg a.s./L)	95 % confidence interval (mg a.s./L)
24 h	>180	-
48 to 25 J	>180	-

#### B. OBSERVATIONS

The effects of AMPA on *Daphnia magna* are shown below.

Page 227 of 847

Table 8.2.4-33: Effects of AMPA on Daphnia magna exposed for 48 hours

Nominal concentration [mg a.s./L]	Number of exposed <i>Daphnia</i> per replicate	Number of immobile Daphnia after 24 hours	Immobility after 24 hours [%]	Number of immobile <i>Daphnia</i> after 48 hours	Immobility after 48 hours
Control	20	0	0	0	111.0
18	20	0	0	0	9, 12, 0
32	20	0	0	0 56	<i>i</i> 0
56	20	0	0	0 0 0 0 0	0
100	20	0	0	710,00,00	5
180	20	0	100		0

All validity criteria according to OECD 202 were fulfilled, as no immobility of daphnids was observed in control groups and dissolved oxygen concentration was  $\geq 3$  mg/L in all test vessels.

# III. CONCLUSION SERVICES

## Assessment and conclusion by applicant:

The 48-h EC₅₀ for *Daphnia magna* exposed to AMPA was \$180 mg/L based on nominal concentration. The NOEC after 48 h based on immobilisation was \$180 mg/L.

All validity criteria according to OECD 202 were fulfilled, so the study is therefore considered valid.

Assessment and conclusion by RMS:

#### Information on the study 1.

	Data nainta	CA 8.2.4.1/014
	Data point:	CA 8.2.4.1/014
	Report author	
	Report year	1991
	Report title	Acute Toxicity of AMPA to Daphnia magna.
	Report No	38988
	Document No	-
	Guidelines followed in study	Guideline No. 72-2, U.S. EPA-FIFRA 40 CFR. Part 158, 145
	Deviations from current test guideline	Deviation from to the guideline OECD 202 (2004): none
	Previous evaluation	Yes, accepted in RAR (2015).
Ž	GLP/Officially recognised testing facilities	Yes
	Acceptability/Reliability:	Valid
	Category study in AIR 5 dossier (L docs)	Category 2a
TO SE	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

#### 2. **Full summary**

#### **Executive Summary**

The effects of AMPA on Daphnia magna were evaluated in a 48-hour static toxicity test. Based on the results of a range finding test, the final toxicity test was performed using nominal concentrations of £00, 180, 320, 560 and 1000 mg test item/L prepared using hard blended water (a combination of well-water and reverse-osmosis water blended to a hardness of 160-180 mg/L as CaCO₃) Furthermore, a control group was exposed to the dilution water (hard blended water). The test consisted of two replicates per treatment group. Per replicate 10 daphnids were exposed.

Total number of immobile Daphnia magna was recorded at 3, 24 h and 48 h after the test initiation. In addition, other abnormal effects such as surfacing, clumping of the daphnids together and daphnids tending to the bottom of the test chambers were recorded.

At the highest test concentration (1000 mg test item/L), 85 % and 100 % immobility were observed at 24 and 48 hours after test initiation. At or below a concentration of 320 mg test item/L, no mortality was observed.

Immobility and abnormal effects, namely surfacing and daphnids trailing extraneous material were observed in the 560 and 1000 mg/L test concentrations. The abnormal effects such as fish on the bottom of the test vessel and immobility at 24- and 48- hours, respectively, in the control were considered aberrant since no toxic response was observed at 100, 180 and 320 mg/L test concentrations. The 48 h EC₅₀ for Daphnia magna exposed to AMPA was determined to be 690 mg AMPA/L (nominal). The 48- hour noeffect level (NOEC) was determined to be 320 mg/L (nominal). All validity criteria according to the OECD guideline 202 were fulfilled. The study is therefore considered valid.

# I. MATERIALS AND METHODS

#### A. MATERIALS

1. Test material:

Test item:

White powder Description:

Lot/Batch#; HET-9001-1463T

Purity: \$94.38 %

2. Vehicle and/or positive control. None

3. Test organism:

Species: Daphnia magna Straus

Age: Neonates (< 24 h old)

Loading: 10 daphnids per 200 mL of test medium

Source: In-house culture

Diet/Food: None Acclimation period: None

4. Environmental conditions:

Temperature:  $20 \pm 1$  °C

16 hours light / 8 hours dark (399-797 Lux), with 30 minute Photoperiod:

dawn dusk transition periods.

8.2 - 8.3 (control), 5.2 (highest test concentration)

Dissolved oxygen:  $8.4 - 8.8 \text{ mg } O_2/L \text{ (94 \% - 101 \% of } O_2 \text{ saturation)}$ 

Conductivity:  $370 \mu S/cm$ 

> Hardness: 160 mg CaCO₃/L

#### 5. Experimental dates:

November 24, 1990 to November 26, 1990

#### **B. STUDY DESIGN AND METHODS**

- 1. Experimental treatments: Based on the results of a range finding test, the final toxicity test was performed using nominal concentrations of 100, 180, 320, 560 and 1000 mg test item/L dissolved in hard blended water (a combination of well water and reverse-osmosis water blended to a hardness of \$60 mg/L as CaCO₃). The test was conducted in a static test setup. In addition, a control group was exposed to dilution water (hard blended water). The test consisted of two replicates per treatment group in 250 mL glass beakers containing 200 mL test solution. 10 daphnids were exposed per replicate.
- 2. Observations: Total number of immobile Daphnia magna was recorded 3, 24 h and 48 h after test initiation. In addition, other effects such as surfacing, clumping of the daphnids together and daphnids tending to the bottom of the test chambers were recorded.

The pH-values and oxygen saturation of the test solutions were measured at test initiation and termination (0 – 48 h). The temperature was recorded continuously in all test vessels, starting from the test initiation. Analytical samples of the control water and each test level solutions were taken at the beginning and the end of exposure. These samples were frozen and sent to the study sponsor at test termination. The results of these analyses are reported separately Monsanto (Study No. ML-96-403/EHL-90187-Daphnia)

3. Statistical calculations: The EC₅₀ values were determined by Probit analysis.

# II. RESULTS AND DISCUSSION

#### A. FINDINGS

### Analytical results

Analytical results
The results of analytical part are reported in a separate study (Monsanto study No. ML-90-403/EHL-90187-Daphnia).

The EC  $_{50}$  and NOEC values are given below based on nominal concentrations.

Table 8.2.4- 34: Endpoints

Endpoints	10 8. 10 g	AMPA [mg/L]
EC ₅₀ (48 h) (95% CI)	12 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	690 (560 – 1000)
NOEC (48 h)	ill sili	320

# B. OBSERVATIONS

At highest test concentration (1000 mg test item/L), 85 % and 100 % immobility were observed at 24 and 48 hours after test initiation. At or below a concentration of 320 mg test item/L, no mortality was observed. Immobility and abhormal effects such as surfacing and daphnids trailing extraneous material were observed in the 560 and 1000 mg/L test concentrations. The abnormal effects such as fish on the bottom of the test vessel and immobility at 24- and 48- hours, respectively, in the control were considered aberrant since no AND STATE OF THE S toxic response was observed at 100, 180 and 320 mg/L test concentrations.

Table 8.2.4-35: Lethal and sublethal effects of AMPA to Daphnia magna

		Control	AMPA [mg/L]			.61.	
			100	180	320	560	1000
24 h	Cumulated Immobility [%]	5	0	0	0	0	j. 85 2
24 n	Symptoms	5% OB	-	-	-	5% OB	& -
	Cumulated Immobility [%]	0	0	0	0	15%	100
48 h	Symptoms	-	-	-	-	SUR/TR	-

Glyphosate

SUR = surfacing; OB = on bottom of test vessel; TR = trailing extraneous material

All validity criteria according to the OECD 202 were fulfilled, as no immobility of caphnids was observed in control groups and discolved according to the OECD 202 were fulfilled, as no immobility of caphnids was observed in control groups and discolved according to the OECD 202 were fulfilled, as no immobility of caphnids was observed in control groups and dissolved oxygen concentration was  $\geq 3$  mg/L in all test we seels.

#### III. CONCLUSIONS

### Assessment and conclusion by applicant:

Assessment and conclusion by applicant:
The 48 h EC₅₀ for *Daphnia magna* exposed to AMPA was determined to be 690 mg/L (nominal). The 48- hour no-effect level (NOEC) was determined to be 320 mg/E (nominal).

All validity criteria according to the OECD 202 were fulfilled. The study is therefore considered valid and reliable for risk assessment purposes.

#### **Assessment and conclusion by RMS:**

#### 1. Information on the study

	,8`%`
Data point:	CA 8.2.4.1/015
Report author	
Report year	2011
Report title	HMPA (Hydroxymethylphosphonic acid): A 48-hour static acute toxicity test with the cladoceran ( <i>Daphnia magna</i> )
Report No	139A-395
Document No Rich	-
Guidelines followed in study	OECD 202 (1984) EPA OPPTS 850.1010
Deviations from current test guideline	Deviation from the guideline OECD 202 (2004): none
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing facilities	Yes
Acceptability/Reliability:	Valid
Category study in AIR 5 dossier (L docs)	Category 2a

#### 2. **Full summary**

#### **Executive Summary**

The toxicity of Hydroxymethylphosphonic acid (HMPA) on *Daphnia magna* was evaluated in a 48-hour static toxicity test. Daphnia magna neonates were exposed to a limit concentration of 100 mg HMPA/L and a negative control consisting of dilution water only. The test consisted of three replicates per treatment group and control with 10 daphnids exposed per replicate vessel. Daphnia were not fed during the test. All Daphnids were observed for immobilisation and other clinical signs of toxicity at 2.5, 24 and 38 hours after test initiation.

Temperature, pH-values and dissolved oxygen concentrations were measured at the beginning, at approximately 24 hours during the test and at the end of the test. Samples of the control and the test item treatment media were taken and analysed for HMPA concentration at the beginning of the test and at 48 hours from each replicate test chamber. HMPA was not detected in the control group. The measured test concentrations ranged between 86 and 103 % of the nominal values.

There was no immobility or overt signs of toxicity observed in the treatment group or in the control. The 48-hour EC₅₀ for *Daphnia magna* exposed to HMPA was > 100 mg HMPA/E. The 48- hour NOEC was determined to be ≥ 100 mg HMPA/L. All validity criteria according to the OECD guideline 202 were fulfilled. The study is therefore considered valid.

# I. MATERIALS AND METHODS

### A. MATERIALS

1. Test material:

HMPA(Hydroxymethylphosphonic acid) Test item:

Description: White powder

Lot/Batch #: GLR-1003-20448-A

Purity: 97.0%

Vehicle: Well water Positive control. Positive control: None 2. Vehicle and/or positive control:

3. Test organism:

pecies: Daphnia magna Straus Neonates (< 24 h old)

Loading: 10 daphnids per 220 mL of test medium

Source: In-house culture

Diet/Food: None Acclimation period:

4. Environmental conditions:

Temperature: 19.7 - 20.7 °C

Photoperiod: 16 hours light (light intensity = 323 Lux), with 30 minute

transition periods.

pH: 6.9 - 8.5

Dissolved oxygen:  $8.3 - 9.4 \text{ mg O}_2/L (\ge 92 \% \text{ of O}_2 \text{ saturation})$ 

Conductivity:  $386 \mu S/cm$ 

> Hardness: 140 mg CaCO₃/L

Annow the state of January 25, 2011 to January 28, 2011

Glyphosate M-CA, Section 8 Annex to Regulation 283/2013 Page 233 of 847

#### **B. STUDY DESIGN AND METHODS**

- 1. Experimental treatments: The toxicity of Hydroxymethylphosphonic acid (HMPA) on neonates of Daphnia magna was evaluated in a 48-hour static toxicity test at a single nominal limit concentration of 100 mg HMPA/L dissolved in well water. A negative control group (well water only) was prepared in parallel. Thirty daphnids (3 replicates of 10 animals per test beaker) were exposed at the control and at the limit concentration.
- 2. Observations: The total number of immobile Daphnia magna was recorded at 2.5, 24 h and 48 h after test initiation. In addition, specimens were observed for clinical signs of toxicity.

Temperature, pH-values and oxygen saturation of the test solutions were measured at test initiation, after 24 hours and at test termination (48 h). The temperature of test media was monitored continuously in all test vessels. Hardness, alkalinity, specific conductance and total organic carbon (TOC) were measured at the beginning of the test.

Samples of test media were taken from each replicate test chamber at the start and end of the test for the determination of HMPA concentrations. Samples were analysed using an HPLC method of analysis with mass selective detection (LC/MS).

The validity criteria according to the current OECD 202 guideline are the following:

- In the control, not more than 10 per cent of the daphnids should have been immobilised or show or other signs of disease or stress.
- The dissolved oxygen concentration at the end of the test should be  $\geq 3$  mg/L in control and test
- 3. Statistical calculations: Descriptive only since no immobility of daphnids was observed in the test and control treatments.

# II. RESULTS AND DISCUSSION

#### A. FINDINGS

SCHOOL OF THE SC The measured test concentrations ranged between 859 and 103% of the nominal values.

Table 8.2.4-36: Analytical results

Nominal HMPA [mg/L]	0 mg/L	$100~{ m mg/L}$
0 h	< LOQ1	85.9
48 h	< LOQ1	95.8
10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	< LOQ1	99.6
	< LOQ1	103.0
Mean measured HMBA [mg/L]	-	93
% of nonmal	-	93

 $^{1 \}text{LOQ} = 1.00 \text{ mg/L}$ 

Therefore, the EC₃₀ and NOEC values given below are based on nominal concentrations.

Table 8.2.4-37: Endpoints

, v. v.	
Endpoints	HMPA [mg/L]
48 h EC ₅₀	>100 mg/L (nominal)
48 h NOEC	≥ 100 mg/L (nominal)

#### **B. OBSERVATIONS**

After 2.5, 24 and 48 hours of exposure, no immobilisation of *Daphnia* in the control nor in the test item concentration vessels was observed.

Table 8.2.4- 38: Acute toxicity of MON 52276 to Daphnia magna under flow-through conditions

Nominal concentration HMPA (mg a.s./L)	Time point (h)	Abnormalities/ Sublethal Effects	No. of <i>Daphnia</i> immobilised or dead ¹	Cumulative %mortality
0	2.5 24 48	None observed	0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100	2.5 24 48	None observed		0

¹ Of 30 total *Daphnia* in group.

All validity criteria according to the OECD 202 were fulfilled, as no immobility of daphnids was observed in control groups and dissolved oxygen concentration was  $\geq 3$  mg/L in all test vessels.

# III. CONCLUSIONS

#### Assessment and conclusion by applicant:

The 48-hour EC₅₀ for *Daphnia magna* exposed to HMPA was >100 mg/L (nominal). The 48-hour

NOEC was determined to be  $\geq 100$  mg/L (nominal). All validity criteria according to the OECD 202 were fulfilled. The study is therefore considered valid and reliable for the regulatory risk assessment of glyphosate.

# Assessment and conclusion by RMS

# Acute toxicity to an additional aquatic invertebrate species CA 8.2.4.2

As glyphosate is not an insecticide or insect growth regulator, studies on the acute toxicity to an additional aquatic investebrate species are not required. Nevertheless, the following studies are available.

# Information on the study

	Data point:	CA 8.2.4.2/001
	Report author	
	Report years	1996
	Report title	Glyphosate acid: Acute toxicity to mysid shrimp (Mysidopsis bahia)
	Report No	AB0503/H
	Document No	-
	Guidelines followed in study	EPA FIFRA, Subdivision E, Guideline 72-3
\$ .	Deviations from current test	Deviation from the guideline OCSPP 850.1035 (2016): none
	guideline	
	Previous evaluation	No, not previously submitted
The Control of the Co	Glyphosate Renewal Group AIR 5 – July 202	0 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

GLP/Officially recognised testing facilities	Yes	8
Acceptability/Reliability	Valid	žilot.
Category study in AIR 5 dossier (L docs)	Category 1	A STAN

# 2. Full summary Executive Summary

The effects of glyphosate acid on mysid shrimp *Mysidopsis bahia* were evaluated in a 96-hour static toxicity test. Ten mysids were allocated to a single vessel (1000 mL glass beaker containing 800 mL test solution) for each test concentration and the dilution water control. The shrimps were exposed to nominal 3.2, 5.6, 10, 18, 32, 56, 100 and 180 mg a.s./L, together with pH adjusted 320, 560, and 1000 mg a.s./L.

The mysids were exposed to the test item for 96 hours at 25±1°C. The mysids were fed on days 0, 1, and 3 with *Artemia salina* nauplii.

Mortalities of the mysids and overt symptoms of toxicity were assessed after 24, 48, 72, and 96 hours. pH-values were determined in the test media at the beginning and at the end of the test. Dissolved oxygen concentrations were measured at 0, 48, and 96 hours. The water temperature in the test vessels was measured daily. The salinity of the dilution water control and 1000 mg/L solution was determined at the start and at the end of the test. The concentrations of glyphosate acid in the test solutions were measured at 0, 48, and 96 hours.

At the lowest test concentration of 3.2 mg/L, analytical results indicated that an error might have occurred during the solution preparation, leading to a value 150% of nominal. Since this was a no effect concentration, and several higher concentrations gave no indication of toxicity, this data point was excluded from all calculations. Excluding this concentration, the mean measured concentrations ranged from 81 to 95% of the nominal values. On the basis of the analytical data the nominal concentrations were used for the calculation and reporting of all results.

The 96-h LC₅₀ for *Mysidopsis bahia* exposed to glyphosate acid was 80 mg/L based on nominal concentration. The NOEC after 96 h was 32 mg/test item/L.

In test systems dosed with pH adjusted glyphosate acid, no mortalities at a nominal concentration of 560 mg a.s./L and 50 % mortality at 1000 mg a.s./L indicated this 96-h LC₅₀ (80 mg/L) was caused by the low pH of the unneutralised glyphosate acid solutions.

The validity criteria of OCSPP 850 1035 were fulfilled so the study is therefore considered valid.

# MATERIALS AND METHODS

#### A. MATERIALS

1. Test material:

Test item: Glyphosate acid Description: White solid

Lot/Batch #: P24

Purity: 95.6 %

2. Vehicle and/or positive control:

Vehicle: Dilution water (1:1 mix of dechlorinated tap water

and full seawater

Positive control: Not stated

3. Test organism:

Species: Mysid shrimp Mysidopsis bahia

Source of organisms: Continuous cultures at Brixham Environmental Laboratory

Age of animals: Less than 24 hours

Loading: 0.8 mysids per litre of water

#### 4. Environmental conditions:

Temperature: 23.7-25.9 °C

pH: 4.5-8.0 (unneutralised test solutions)

8.0-8.5 (neutralised test solutions)

Dissolved oxygen:  $7.0-8.4 \text{ mg O}_2/L$ 

> Salinity: 17%

Photoperiod: 16 hours light / 8 hours dark with 20 minute transition periods

5. Experimental dates: March 21, 1996 to March 25, 1996

B. STUDY DESIGN AND METHODS

1. Experimental treatments: The effects of glyphosate acid on mysid shring Mysidopsis bahia were evaluated in a 96-hour static toxicity test. Ten mysids were allocated to a single vessel (1000 mL glass beaker containing 800 mL test solution) for each test concentration and the dilution water control. The shrimps were exposed to nominal 3.2, 5.6, 10, 18, 32, 56, 100 and 180 ang a, L, together with pH adjusted 320, 560, and 1000 mg a.s./L.

A stock solution of nominal concentration of 1000 mg a.s./L was prepared by dispersing 1.5 g test item in 1.5 L of dilution water. The unneutralised test solutions were prepared by dispersing aliquots of the stock solution to dilution water. Three further test solutions were prepared at 320, 560, and 1000 mg a.s./L from a stock solution of 1000 mg/L prepared by dispersing 2.0% of glyphosate acid in approximately 2 L of dilution water and adjusted to pH 8.1 with 1M sodium hydroxide.

The mysids were randomly placed into the test beaker and exposed to the test item for 96 hours at 25±1 °C. The mysids were fed on days 0, 1, and 3 with Artemia salina nauplii.

- 2. Observations: Mortalities of the mysids and overtsymptoms of toxicity were assessed after 24, 48, 72, and 96 hours. pH-values were determined in the test media at the beginning and at the end of the test. Dissolved oxygen concentrations were measured at 0, 48, and 96 hours. Treatments showing 100 % mortality were measured for pH and dissolved oxygen at that time. The water temperature in the test vessels was measured daily. The salinity of the dilution water control and 1000 mg/L solution was determined at the start and at the end of the test. The concentrations of glyphosate acid in the test solutions were measured at 0, 48, and 96 hours.
- 3. Statistical calculations: The Less water calculated by the Brixham Environmental Laboratory computer program "LC50" using Stephan's method.

## II. RESULTS AND DISCUSSION

#### A. FINDINGS

At the lowest test concentration of 3.2 mg/L, analytical results indicated that an error might have occurred during the preparation of the test solution, leading to a value 150 % of nominal. Since this was a no effect concentration, and several higher concentrations gave no indication of toxicity, this data point was excluded from all calculations. Excluding this concentration, the mean measured concentrations ranged from 81 to 95 % of the nominal values. Based on the analytical data the nominal concentrations were used for the on an individual of the state o calculation and reporting of all results.

Nominal concentration of	Measured co	ncentration of g [mg/L]	lyphosate acid	Mean measured concentration of	% of nominal of the state of th
Glyphosate acid [mg/L]	0 h	48 h	96 h	glyphosate acid [mg/L]	S S NO
Dilution water control	< 0.01	< 0.01	< 0.01	< 0.01	10 X15
3.2	4.8	4.1	5.5	4.8	150
5.6	4.71	4.11	5.51	4.8	86
10	7.9	7.0	9.5	8.1	81
18	16	15	16	16 4	89
32	30	28	30	29	91
56	55	48	50	3, P 60	91
100	98	89	97	20 295°	95
180	170	160	-	<u>. (8)</u> (8) 70	94
320 (pH adjusted)	300	270	200	290	91
560 (pH adjusted)	530	490	556 1 1	520	93
1000 (pH adjusted)	940	860	2	920	92

The LC₅₀ values for *Mysidopsis bahia* (based on nominal concentrations of glyphosate acid) are given below.

Table 8.2.4- 40: Endpoints

	Time	LC ₅₀ [mg a.s./L]	95 % confidence interval [mg a.s./L]			
	24 h	130	100-180			
	48 h	96	77-130			
	72 h J J J S	88	71-110			
	96.4	80	64-100			
	The 96-hour NOEC was 32 mg a.s./	L.				
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Glyphosate Renewal Group AIR 5 – July 2020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020			

Annex to Regulation 283/2013 Glyphosate M-CA, Section 8 Page 238 of 847

#### **B. OBSERVATIONS**

The effects of glyphosate acid on *Mysidopsis bahia* are shown in the table below.

Table 8.2.4- 41: Effects of glyphosate acid on *Mysidopsis bahia* 

Nominal concentration	Cumulative percentage mortality observed						
(mg a.s./L)	24 hours	48 hours	72 hours	96 hours			
Control	0	0	0	Z. Z.			
3.2	0	0	0	(S) (O)			
5.6	0	0	0 3	S. C. S. O			
10	0	0	0 &	0.70 0			
18	0	0	0 0	0			
32	0	0	04.55	0			
56	0	0		10			
100	0	60	% 80° % Th	80			
180	100	100	3000	100			
320 (pH adjusted)	10	10	% \% \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	10			
560 (pH adjusted)	0	0	0 10 10 10	0			
n test systems dosed with	0	0 &	30	50			

In test systems dosed with pH adjusted glyphosate acid, no mortalities at a nominal concentration of 560 mg a.s./L and 50% mortality at 1000 mg a.s./L indicated this 96-h LC₅₀ (80 mg/L) was caused by the low pH of the unneutralised glyphosate acid solutions.

The validity criteria of OCSPP 850.1035 Mysid Acute Toxicity Test (October 2016) were fulfilled as: 80

- All test vessels were identical
- Individual test organisms were randomly assigned to test vessels.
- A dilution water control was included in the test
- Not more than 10% of the organisms in the dilution water control showed signs of disease, stress (e.g., discoloration, unusual behaviour, immobilization), and/or death.

#### III. CONCLUSIONS

#### Assessment and conclusion by applicant:

The 96-h LC₅₀ for Mysidopsis bahia exposed to glyphosate acid was 80 mg a.s./L based on nominal concentrations. The NOEC after 96 h was 32 mg a.s./L.

The validity criteria of OCSPP 850.1035 were fulfilled. The study is therefore considered valid and reliable for the regulatory risk assessment of glyphosate.

	Assessment and conclusion by RMS	:	
St. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co	10 10 10 10 10 10 10 10 10 10 10 10 10 1		
	Glyphosate Renewal Group AIR 5 – July 2020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

M-CA, Section 8 Annex to Regulation 283/2013 Glyphosate Page 239 of 847

#### 1. Information on the study

Data point:	CA 8.2.4.2/002
Report author	High to
Report year	1978
Report title	Toxicity of seven test materials to mysid shrimp Mysidopsis Bahia
Report No	BP-78-4-032
Document No	-
<b>Guidelines followed in study</b>	Committee on Methods for Toxicity Tests with Aquatic Organisms (1975)
Deviations from current test guideline	Deviation from the guideline OCSPP 850.1035 (2016):  Major:  No analytical verification performed.  No indication of the organisms randomisation
<b>Previous evaluation</b>	Not accepted in RAR (2015)
GLP/Officially recognised testing facilities	No, GLP was not compulsory at the time the study was performed.
Acceptability/Reliability:	Supportive
Category study in AIR 5 dossier (L docs)	Category 3b
2. Full summary Executive Summary The effects of seven test items, to	avo solid test items (Clyphosate, BN-78-44, and Glyphosate intermediate

#### 2. **Full summary Executive Summary**

The effects of seven test items, two solid test items (Glyphosate, BN-78-44, and Glyphosate intermediate, BN-78-45) and five liquid test items (Comp. #1, BN-78-46, Comp. #2, BN-78-47, Comp. #3A, BN-78-48, Comp. #4, BN-78-49 and Comp. 5A) on mysideshrimp, Mysidopsis bahia, were evaluated in a 96-hour static toxicity test. The test concentrations used for solid test items were using 3.2, 10, 32, 56, 100, 1000 mg test item/L. For the liquid test items, the concentrations used were 0.6, 1.0, 3.2, 10, 32 and 56 % effluent. The test solutions were prepared using seawater. In addition, a control group was exposed to seawater without test material. There was one replicate (3.5 L glass jar) per treatment (7 jars for each solid test material and 8 jars for each liquid test material), containing each ten mysids in 3 L test solution.

Mortality was recorded in all test concentrations and the control 24, 48, 72 and 96 hours after test initiation. For the two solid test materials (Glyphosate, BN-78-44 and Glyphosate intermediate, BN-78-45) the highest mortality was 20 % in the 2000 mg test item/L treatment group for both test items after 96 hours of exposure. For the liquid materials, the highest mortality was observed with Comp. #3A, BN-78-48, while the lowest mortality was obtained with Comp. #1, BN-78-46 and "Comp. #4, BN-78-49. In Comp. #3A, BN-78-48, mortality was 40 % and 30 % in the non-aerated and aerated test solutions of the 10 % effluent treatment group, respectively; in Comp. 5A, mortality was 0 % and 10 % in the non-aerated and aerated treatments of the 10% effluent treatment group, respectively. However, oxygen demand apparently contributed to the toxicity of these two samples in concentrations  $\geq 32$  % effluent. The study is considered to be supportive as no analytical verification was performed and organisms randomisation was not performed or reported.

#### I. MATERIALS AND METHODS

#### A. MATERIALS

#### 1. Test material:

Test item (Description):

Comp. #2, BN-78-47 (clear liquid) Comp. #3A, BN-78-48 (murky liquid) Comp. #4, BN-78-49 (clear liquid)

Comp. 5A. (clear liquid)

2. Vehicle and/or positive control: Dodecyl sodium sulphate (DSS

3. Test organism:

Species: Mysid shrimp (Mysidopsis bahia)

Age: 6 - 8 days old Size: 4-6 mm length

Loading: 10 test individuals for 3 L test solution

In-house culture Source:

Diet/Food: None

48 hours prior to the test initiation Acclimation period:

Not stated Body weight of the animals:

4. Environmental conditions:

Temperature: 20 ± 1°C

Photoperiod? ⊗Not stated

pH or Salinity (%): Glyphosate, BN-78-44, (6.4 - 8.3)

Glyphosate intermediate, BN-78-45. (6.8 - 8.3)

Comp. #1, BN-78-46 (8 – 20 ‰) Comp. #2, BN-78-47 (8 – 20 ‰) Comp. #3A, BN-78-48 (20 – 32 %)

Comp. #4, BN-78-49 (12 – 20 %)

Dissolved oxygen: Glyphosate, BN-78-44,  $(6.4 - 7.7 \text{ mg O}_2/L)$ 

Glyphosate intermediate, BN-78-45.  $(6.4 - 7.4 \text{ mg O}_2/\text{L})$ 

Comp. #1, BN-78-46  $(6.1 - 7.6 \text{ mg O}_2/\text{L})$ Comp. #2, BN-78-47  $(6.1 - 7.4 \text{ mg O}_2/\text{L})$ Comp. #3A, BN-78-48  $(0.4 - 7.4 \text{ mg O}_2/L)$ Comp. #4, BN-78-49  $(4.9 - 7.6 \text{ mg O}_2/\text{L})$ 

Comp. 5A.  $(0.3 - 7.4 \text{ mg O}_2/\text{L})$ 

Conductivity: Not stated Hardness: Not stated

5. Experimental dates: Not stated

... reatments: Toxicity tests for the seven test materials were performed using 3.2, 10, 32, 100, 1000 mg test item/L for the two solid test materials (Glyphosate, BN-78-44 and Glyphosate intermediate, BN-78-45) and the nominal concentrations of 0.6, 1.0, 3.2, 10, 32 and 56% effluent for liquid materials (Comp. #1, BN-78-46; Comp. #2, BN-78-47; Comp. #3A, BN-78-48; Comp. #4, BN-78-49 and Comp. 5A.). For solid test materials, appropriate amounts were added to deionised water; the pH was Glyphosate Renewal Group AIR 5 – July 2020

adjusted to 8.0, and the materials were finally diluted in seawater in the test containers to obtain appropriate & concentrations. For liquid materials, the test solutions were prepared by adding appropriate volumes of test materials to seawater in the test containers: Two containers of 10 % test concentration were tested for each material, one aerated and one non-aerated. In addition, a control group was exposed to seawater without test material. Salinity controls were also maintained; mysids were exposed to salinities corresponding to the lowest and highest (8 and 32 %) salinity occurring in any of the test concentrations.

There was one replicate (3.5 L glass jar) per treatment (7 jars for each solid test material and 8 jars for each liquid test material), containing each ten mysids in 3 L test solution.

A separate test was conducted, in which mysids were exposed to the reference toxicant codecyl sodium sulfate under the same test conditions as for the test materials.

- 2. Observations: Mortality was recorded in all test concentrations and the control 24, 48, 72 and 96 hours after test initiation. Temperature was constantly maintained at  $20 \pm 1$  °C; pH-value and oxygen saturation of the test solutions were measured at test initiation and test termination.
- 3. Statistical calculations: The percentage of dead mysids was converted to a Probit (Finney, 1971) and the LC₅₀ values were then calculated by linear regression.

#### II. RESULTS AND DISCUSSION

II. RESULTS AND DISCUSSION						
A. FINDINGS						
The EC ₅₀ values are given below based on nomin	nal concentrations.					
Table 8.2.4- 42: Endpoints						
Test materials	ECso (96 h) [% effluent or mg test item/L)]					
Glyphosate, BN-78-44	> 1000 mg test item/L					
Glyphosate intermediate, BN-78-45	> 1000 mg test item/L					
Comp. #1, BN-78-46	> 56 % effluent					
Comp. #2, BN-78-47	5.6 % effluent					
Comp. #3A, BN-78-48	2.8 % effluent					
Comp. #4, BN-78-49	> 56 % effluent					
Comp. 5A.	> 10, <32 % effluent					

Clinical observations:
For the two solid test For the two solid test materials (Glyphosate, BN-78-44 and Glyphosate intermediate, BN-78-45) the highest mortality was 20 % in the 1000 mg test item/L treatment group for both test items after 96 hours of exposure. For the highest mortality was observed with Comp. #3, BN-78-48, while the lowest mortality was obtained with Comp. #1, BN-78-46 and "Comp. #4, BN-78-49.

Two of the liquid samples, Comp. #3 and Comp. 5A, had considerable oxygen demand. In test concentrations 40 % effluent, the oxygen demand did not contribute appreciably to toxicity.

In Comp. #3A, BN-78-48, mortality was 40 % and 30 % in the non-aerated and aerated test solutions, respectively; in Comp. 5A, mortality was. 0 % and 10 % in the non-aerated and aerated treatments, respectively. However, oxygen demand apparently contributed to the toxicity of these two samples in The state of the s concentrations  $\geq 32$  % effluent.

Table 8.2.4- 43: Lethal effects of Glyphosate, BN-78-44 and Glyphosate intermediate, BN-78-45 on Mysidopsis bahia

Test items [mg/L] →	Control	3.2	10	32	56	100	1000		
Glyphosate, BN-78-44									
Mortality (24 h) [%]	0	0	0	0	0	0	\$\int_{\int}\tag{\partial}{\partial}		
Mortality (48 h) [%]	0	0	0	0	0	10	(5° 0		
Mortality (96 h) [%]	0	0	10	0	0	1000	20		
	(	Glyphosate i	ntermediate	, BN-78-45		19. C. 16.			
Mortality (24 h) [%]	0	0	0	0	0 🔊	Ozi Ziji	0		
Mortality (48 h) [%]	0	0	0	0	0,5	F 10	10		
Mortality (96 h) [%]	0	0	10	0	30,000,000	10	20		

	7 \ / L 3							V.0' 0		
	Mortality (96 h) [%]	0	0	10	)	0	500		10	20
	Mortality (96 h) [%]       0       10       0       10       20         Table 8.2.4- 44: Lethal effects of Comp. #1, BN-78-46, Comp. #2, BN-78-47, Comp. #3A, BN-78-48, Comp. #4, BN-78-49, and Comp. 5A. on Mysidopsis bahia         Test items [% effluent] →       Control       0.6       1.0       3.2       10       10 AE       32       56         Comp. #1, BN-78-46									
	Test items [% effluent] →	(	Control	0.6	1.0	3.20	10	10 AE	32	56
			Com	p. #1, B	N-78	460 6				
	Mortality (24 h) [%]		0	0	& Q.	, 0	0	0	0	0
	Mortality (48 h) [%]		0	0 8	91	0	0	0	0	0
	Mortality (96 h) [%]		0	16 B	01%	0	10	0	0	10
			Com	p. #2, B	N-78-	47				
	Mortality (24 h) [%]		0	1.02	0	0	0	0	0	0
	Mortality (48 h) [%]		0 10 10	0°0	0	0	20	10	30	100
	Mortality (96 h) [%]		0 11 11	0	10	10	70	70	90	100
		4	Comp	. #3A, ]	BN-78	3-48				
	Mortality (24 h) [%]	12/0	5 Ot	0	0	0	0	0	0	0
	Mortality (48 h) [%]	So illi	iili 0	30	20	0	40	20	100	100
	Mortality (96 h) [%]	6 8 6°	0	30	20	20	40	30	100	100
		16,00	Com	p. #4, B	N-78-	49				
	Mortality (24 h) [%]  Mortality (48 h) [%]  Mortality (96 h) [%]	5	0	0	0	0	0	0	0	0
	Mortality (48 h) [%]		0	0	0	0	20	10	20	0
	Mortality (96 h) [%]		0	0	0	0	20	20	20	30
	20,10			Comp.	5A					
	Mortality (24 h) [%]		0	0	0	10	0	0	0	0
	Mortality (48 h) [%]		0	0	0	10	0	0	100	100
	Mortality (96 h) [%]		10	20	20	10	0	10	100	100
738 1/48 0 1/48 1/48 1/48 1/48 1/48 1/48 1/48 1/48	AE = acrated  Glyphosate Renewal Group AIR 5 – J	inly 2020					Doc ID:	110054-MCA8	S GRG Pa	sv 1 Jul 2020
	•	-								

Table 8.2.4- 45: Lethal effects of the toxic reference dodecyl sodium sulfate on Mysidopsis bahia

Test items [mg/L] →	Control	6	8	10 .5
Mortality (24 h) [%]	0	0	20	20
Mortality (48 h) [%]	0	0	20	20 20 41
Mortality (96 h) [%]	0	30	60	705

The following points deviated from OCSPP 850.1035 Mysid Acute Toxicity Test (October 2016):

Analytical confirmation of dissolved test concentrations were not performed.

The validity criteria of OCSPP 850.1035 guideline (2016) are the following:

- All test vessels were identical achieved
- Individual test organisms were randomly assigned to test vessels no into in the report.
- A dilution water control was included in the test achieved

  Not more than 10% of the organisms in the dilution water control showed signs of disease, stress (e.g., discoloration, unusual behaviour, immobilization), and/or death - achieved

## III. CONCLUSIONS

#### Assessment and conclusion by applicant:

The effects of seven glyphosate-related test items of Mysidopsis bahia were studied in a static acute toxicity test. The EC₅₀ (96 h) for Mysidopsis bahva exposed to Comp. #1, BN-78-46, Comp. #2, BN-78-47, Comp. #3A, BN-78-48, Comp. #4, BN-78-49 and were > 56, 5.6, 2.8 and > 56% effluent respectively. The EC₅₀ (96 h) for Comp. 5A was found to be between 10 and 32% effluent. For the test items Glyphosate, BN-78-44, and Glyphosate intermediate, BN-78-45, no EC₅₀ were calculated since the effects on mysid shrimps were low at the highest test concentration.

No analytical verification was performed and organism randomisation was not performed or reported. The study is therefore considered to be supportive for the regulatory risk assessment for glyphosate.

# Assessment and conclusion by RMS:

#### 1. Information on the study

	9
Data point:	CA 8.2.4.2/003
Report author	
Report year	1996
Report title	Glyphosate acid: Acute toxicity to larvae of the Pacific oyster (Crassostrea gigas)
Report No	AB0503/G
Document No	- %. O. %.
<b>Guidelines followed in study</b>	EPA FIFRA, Subdivision E, Guideline 72-3 ASTM (1989) E724/9-85-012 (OPPTS 850, 1059)
Deviations from current test guideline	Deviation from OPPTS 850.1055 (1996); from
Previous evaluation	No, not previously submitted
GLP/Officially recognised testing facilities	Yes State of the second
Acceptability/Reliability:	Valid
Category study in AIR 5 dossier (L docs)	Category 1

2. Full summary
Executive Summary
The effects of glyphosate acid to pacific oyster (Crassostrea gigas) was evaluated in a 48-hour static toxicity test conducted with nominal test concentrations of 3.2, 5.6, 10, 18, 32, 56, 100 and 180 mg Glyphosate acid/L. Furthermore, a dilution water control was tested. To each test vessel 0.535 mL inoculum containing 22 embryos/ mL was added. For each test item concentration 2 replicates and for the control 4 replicates were tested. The number of normal and abnormal larvae was counted after 48 h. Dissolved oxygen and pH were measured at test start and test end, while the temperature was measured daily. The salinity was measured in the dilution water control and in the 180 mg/L test solution and the density of the embryo solution was determined by electronic particle counting before test start. Test item concentrations were verified by HPLC at 0 and 48 hours. Mean measured concentrations ranged from 91 to 100 % of nominal concentrations.

The reduction of oyster development was assessed with a parametric and a non-parametric test which both indicated no significant reduction of development up to nominal concentrations of 32 mg test item/L. The LC₅₀ (48 h) for Crassostrea gigas was 40 mg a.s./L (nominal). The NOEC after 48 h was 32 mg a.s./L. All validity criteria according to OPPTS 850.1055 were fulfilled. The study is therefor considered valid.

#### I. MATERIALS AND METHODS

## A. MATERIALS

1. Test material:

Glyphosate acid Test item:

Description: White solid

Lot/Batch #: P24 Purity:

95.6 %

Density: Not stated

2. Vehicle and/or positive control:

Vehicle: Dilution water

Positive control: None

#### 3. Test organism:

Pacific oyster (Crassostrea gigas), Brood stock batch Species:

Age: Embryos, approx. 15 minutes after fertilisation

In-house culture originally obtained from Guerrise Sea Source:

Farms, Parc Lane, Vale, Guernsey, Channel Islands, UK

Density of embryo solution at test start: 22 embryos/mL

#### 4. Environmental conditions:

Temperature: 19.4 - 20.5 °C

> pH: 5.6 - 8.1

Dissolved oxygen:  $7.0 - 7.8 \text{ mg O}_2/L$ 

Salinity: 31.0 – 31.5 ‰

**5.** Experimental dates: April 23, 1996 to April 23

B. STUDY DESIGN AND METHODS

1. Experimental treatments: The toxicity test was performed using nominal concentrations of 3.2, 5.6, 10, 18, 32, 56, 100 and 180 mg glyphosate acid/L prepared using natural sea water, filtered through 0.2 μm with adjusted salinity (32 ±2 ‰). In addition, a control was exposed to the test medium without test substance or other additives.

The test was conducted 48 h in a static test setup in 250 mL glass beakers with loose fitting lids. There were two vessels per test concentration and four for the control group, each containing 0.535 mL embryo solution with an embryo density of 22 embryos/mL (determined in three additional inoculated vessels). At test end, the test media were mixed, and 20 mL removed and fixed with 1 mL buffered formalin. The number of normal and abnormal larvae was counted. Larvae were defined as normal, if the bivalve shell was fully formed.

- 2. Observations: The number of normal and abnormal larvae was counted at test end in triplicate in 1 mL subsamples using an inverted microscope. The pH-value and the oxygen saturation were measured at test start and test end. The temperature was measured daily in one replicate of each test solution. The salinity was measured in the dilution water control and in the 180 mg/L test solution. The density of the embryo solution was determined by electronic particle counting before test start. Analytical control measurements of the actual concentration of the test item were performed by means of HPLC analysis at test start and test
- 3. Statistical calculations: The EC₅₀ value was calculated using Stephan's method. The significance of reduction in normal development was assessed using the Students t-test with Bonferroni adjustment (parametric) and Wilcoxon rank sum test (non-parametric).

#### II. RESULTS AND DISCUSSION

The EC₅₀ value and the NOEC are given below based on nominal concentrations.

Table 8.2.4- 46: Endpoints

88. 11. 10. 10. 10. 10. 10. 10. 10. 10. 10	Endpoints	Glyphosate acid [mg/L]
Sul	EC ₅₀ (48 h) (95% CL)	40 (36 – 45)
,	NOEC (48 h)	32

Analytical data: The mean measured concentrations of glyphosate acid ranged from 91 to 100 % of nominal values. As the mean measured content of the test item always ranged between 80 and 120 % of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

Table 8.2.4-47: Analytical results

Nominal concentration of glyphosate acid	a	tration of glyphosate ocid ag/L]	Mean measured concentration of glyphosate acid	% of nominal
[mg/L]	0 h	48 h	[mg/L]	0.10
Dilution water control	< 0.01	< 0.01	<0.01	
3.2	3.0	2.7	2.9	91
5.6	5.7	5.1	5/4 6 6	96
10	10	8.8		94
18	18	16	0 10 10 TO	94
32	32	30	8 3 × 31	97
56	56	52\$	[ 54	96
100	100	94	97	97
180	180	170	180	100

B. OBSERVATIONS
The reduction of oyster development was assessed with two statistical methods. The parametric test (Students t-test with Bonferroni adjustment) calculated a non significant reduction at nominal concentrations up to 32 mg/L. As these data were non-parametric, the Wilcoxon rank sum test for nonparametric data was conducted, which also indicated no significant development reduction up to nominal concentrations of 32 mg test item/L.

The results of the test are depicted in the following tables.

Table 8.2.4- 48: Effects of glyphosate acid to Crassostrea gigas

Nominal concentration of glyphosate  acid		Number of normal / abnormal oysters after 48 h			Mean normal oysters [%]	Reduction [%]	
LI ST OF	A	A B C D					
Control	43/0	36/4	46/1	45/2	103	-	
3.2	42	2/1	37	7/2	95	8	
5.6	43	5/0	41	1/2	100	3	
10	45	5/1	42	2/1	105	0	
18	38	3/1	38	3/3	90	13	
32	41	/4	37	7/4	91	12	
§ 56	12/	/21	9/	25	27	74*	
100	0/26		6 0/29		0	100*	
180	0/	11	0/	12	0	100*	

^{*}significant reduction

M-CA, Section 8 Page 247 of 847

All validity criteria according to OPPTS 850.1055 were fulfilled, as mortality/ aberrant development in control group did not exceed 30 %, dissolved oxygen concentration was ≥ 60 % of air saturation and embryos were  $\leq 4$  h old at test start.

#### III. CONCLUSIONS

#### **Assessment and conclusion by applicant:**

In conclusion, the LC₅₀ (48 h) for Crassostrea gigas exposed to glyphosate acid was 40 mg a.s./L (nominal). The NOEC after 48 h was 32 mg a.s./L, based on nominal test concentrations.

The study is considered to be valid and reliable for the regulatory risk assessment for glyphosate.

# Assessment and conclusion by RMS:

#### 1. Information on the study

	\$ \$ \tilde{\pi}_{\tilde{\pi}}							
. Information on the study								
Data point:	CA 8.2.4.2/004 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							
Report author								
Report year	1985							
Report title	Acute Toxicity of Roundup (Technical) to Atlantic Oyster (Crassostrea virginical)							
Report No	BN-73-79							
<b>Document No</b>	- 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,							
Guidelines followed in study	Woelke, C. E "Measurement of Water Quality with the Pacific Oyster Brossay." Water Quality Criteria, ASTM Spec. Tech. Publ. 416, Am. Soc. Testing Mats, 1967, p. 112-120.							
Deviations from current tests	Deviation from OPPTS 850.1055 (1996):							
guideline	<ul><li>No information about the dissolved oxygen concentration.</li><li>No analytical verification.</li></ul>							
Previous evaluation 5 5	Not accepted in RAR (2015)							
GLP/Officially/recognised testing facilities	No, GLP was not compulsory at the time the study was performed							
Acceptability/Reliability	Supportive							
Category study in AIR 5 dossier (L'docs)	Category 3b							

Glyphosate Renewal Group AIR 5 – July 2022

test flasks were incubated for 48 hours at 25° C. The salinity of the test solutions was measured at test initiation to range between 26 - 28 ‰ at test initiation.

At the end of this period cultures were sieved and larvae were preserved in 5 % formalin for microscopic examination to determine the percentage of fertilized eggs that had developed to a normal morphological stage.

Compared to the untreated control, no adverse effects of glyphosate on the normal embryonic development of oysters were observed up to the highest concentration tested (10 mg glyphosate/L). The EC₅₀ and the NOEC were therefore determined to be > 10 mg/L and  $\ge 10$  mg/L, respectively. The study is considered to be supportive.

#### I. MATERIALS AND METHODS

#### A. MATERIALS

#### 1. Test material:

Test item: Glyphosate technical

Description: White powder

Lot/Batch #: CP67573 Purity: 96.7 %

None 2. Vehicle and/or positive control:

3. Test organism:

Species: Atlantic ovster (Crassostrea virginica)

Fertilised eggs Age: Size: Not stated

50.000 fertilized eggs/L Loading:

Source: De Sourcau of Commercial Fisheries Shellfish Research

**Laboratory** in Milford

Diet/Food: Mone

Acclimation period: Sexually mature Atlantic oysters were collected from Milford

harbour and held at the BCF' Shellfish Laboratory in filtered sea

water for 7 days at a temperature of 22C.

4. Environmental conditions Temperature: 25 °C Photoperiod: Not stated

> 26-28 ‰ (at test start) Salinity

Dissolved oxygen: Not stated Conductivity: Not stated

5. Experimental dates: Not mentioned

## B. STUDY DESIGN AND METHODS

performed using nominal concentrations of Josephson Was tested under the same conditions as in the test groups. Ten hours prior to the daying. About 30 minutes before spawning was desired, the water temperature was raised to 30°C and a sperm suspension from a sexually mature, sacrificed male oyster was added to the water. The combination of increased temperature and sperm induced one or more of the female oysters to spawn. Eggs from

selected for use in the bioassay and the number of eggs/unit volume was determined by sampling the spermegg suspension. The test was performed in 500 mL volumetric flasks, containing each 300 mL test solutions with a salinity of 26 – 28‰, in which 15000 newly fertilised oyster eggs (at two-cell stage) were introduced for each test concentration and control. The test flasks were incubated for 48 hours at 25°C. At the ent of this period cultures were poured through a 37 µm sieve to obtain samples containing about 200 largae and samples were preserved in 5% formalin for microscopic examination.

- 2. Observations: Quantitative samples were taken 48 hours after test initiation to determine the percentage of the fertilized eggs that had developed to a normal morphological stage (straight-hinged vehicer larvae).
- 3. Statistical calculations: The concentrations tested and the corresponding observed percent normal development were transformed to log and Probit, respectively. The EC₅₀ values were predicted using a linear regression.

### II. RESULTS AND DISCUSSION

#### A. FINDINGS

The EC₅₀ and NOEC values given below are based on nominal concentrations.

Table 8.2.4- 49: Endpoints

Endpoints	Test item [mg/L]				
EC ₅₀ (48 h)	> 10				
NOEC (48 h)	<u> </u>				

#### **B. OBSERVATIONS**

Compared to untreated control, no adverse effects of glyphosate on the normal embryonic development of oysters were observed up to the highest concentration tested (10 mg test item/L).

Table 8.2.4- 50: Percentage normal development of Atlantic oyster larva exposed to glyphosate for 48 hours

Glyphosate [mg/L]	Control	0.75	1.0	2.4	4.9	7.5	10.0
Normal embryonic development	> 90	> 90	> 90	> 90	> 90	> 90	> 90

Results showed that graphes ate did not adversely affect the normal development of Atlantic Oyster larvae.

The validity criteria according to OPPTS 850.1055 are the following:

- The mortality/aberrant development in control group should not exceed 30 % achieved
- The dissolved oxygen concentration should be  $\geq 60$  % of air saturation no information in the report &
- The embryos should be  $\leq 4$  h old at test start two cell stage embryos were used.

#### III. CONCLUSIONS

#### Assessment and conclusion by applicant:

In an acute toxicity test, Atlantic Oysters (Crassostrea virginica) were exposed to glyphosate technical for 48 hours. The EC₅₀ and the NOEC were therefore determined to be > 10 mg a.e./L and  $\ge 10$  mg a.e./L, respectively.

Since no analytical verification was performed, the study is considered to be support verification on considered reliable for the regulatory risk assessment for glyphosate.

# Assessment and conclusion by RMS:

#### **CA 8.2.5** Long-term and chronic toxicity to aquatic invertebrates

Studies on long-term and chronic effects of the active substance glyphosate and its relevant metabolites on aquatic invertebrates to fulfil the data requirements according to EUR egulation No 283/2013 are presented in the following.

Studies considering the reproductive toxicity of glyphosate to aquatic invertebrates were assessed for their

validity to current and relevant guidelines for glyphosate, glyphosate salts and the metabolite AMPA and are presented in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are presented in this section below.

Studies on long-term and chronic toxicity of glyphosate and metabolites to Table 8.2.5- 1: aquatic invertebrate · OS

Annex point	Study	Study type	Substance(s)	Status	Remark
CA 8.2.5.1/001	1999	21 d Reproduction	Glyphosate acid	Valid	-
CA 8.2.5.1/002	1995	21 d Reproduction	Glyphosate	Valid	-
CA 8.2.5.1/003	, 1993 ( ) ( ) ( )	21 d Reproduction	IPA salt	Valid	-
CA 8.2.5.1/004	, 1990	21 d Reproduction	Glyphosate	Valid	-
CA 8.2.5.1/005	\$`1989 ₆ °	21 d Reproduction	Glyphosate	Valid	-
CA 8.2.5.1/006	19825 &	21 d Reproduction	Glyphosate	Valid	-
CA 8.2.5.1/007	2019	21 d Reproduction	AMPA	Valid	-
CA 8.2.5.3/001	2020	Water spiked	Glyphosate acid	Valid	-

Literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate and the metabolites on aquatic invertebrates are previously evalues 8-01 to this document. It is agreen a social manner point. For discussions document M-CP Section 10.2. summarised in the table below. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. Each literature article summary is presented below according to the respective sames point. For discussions of literature regarding toxicity to aquatic invertebrates, please refer to

Literature on long-term and chronic toxicity of glyphosate and metabolites **Table 8.2.5-2:** to aquatic invertebrate

Annex point	Study	Study type	Substance(s)	Status	Remark
CA 8.2.5.1/008	2015	21 d Reproduction	AMPA	Reliable	Chronic toxicity tests of the AMPA were performed with fathead minrow (Pimenhales prometas) and Daphaia magna.

Endpoints of studies considered valid for glyphosate are shown in the table below.

Table 8.2.5-3:

Endpoints: Long-term and chronic toxicity of glyphosate to Aquatic Invertebrates

Reference	Test item	Species	Test design	Endpoints based on	mo	NOEC (mg a.e./L)
1999CA 8.2.5.1/001	Glyphosate acid	Daphnia magna	21 d Reproductions semi-static	group it	a.e./L)	12.5
1995 CA 8.2.5.1/002	Glyphosate	Daphnia magna	21 d Reproduction serni-static	nom	> 100	56
1993 CA 8.2.5.1/003	IPA salt	Daphnia magna	21cd Reproduction semi-static	nom	267.93	42.90
1990 CA 8.2.5.1/004	Glyphosate	Daphnia ( )	21 d Reproduction semi-static	nom	-	30
1989 CA 8.2.5.1/005	Glyphosate	Daphnia magna	21 d Reproduction semi-static	nom	> 100	≥ 100
1982 CA 8.2.5.1/006	Glyphosate Glyphosate	Paphnia magna	21-day flow- through	nom	-	50
2020 CA 8.2.5.3/004	Glyphosate acid	Chironomus sp.	Spiked water	nom	-	≥1000

a.e.: acid equivalents nom: nominal

Endpoint in **bold** is used for risk assessment.

Endpoints of studies considered valid for AMPA are shown in the table below.

Table 8.2.5-4: Long-term toxicity of AMPA to Aquatic Invertebrates						
Reference (Data owner)	Test item	Species	Test design	Endpoints based on	EC ₅₀ (mg/L)	NOEC (mg/L)
2011 8.2.5.1/007	AMPA	Daphnia magna	21 d Reproduction semi-static	nom	Immobility: > 120 Reprod: 90 Growth: 90	Immobility: 2120 Reprod: 15 Growth: 30

### CA 8.2.5.1

#### 1. Information on the study

8.2.3.1/00/			sciiii-static		Growth: 90 Growth: 30			
Endpoint in <b>bold</b>	Endpoint in <b>bold</b> is used for risk assessment.							
Study summarie	Study summaries are provided below.							
J								
CA 8.2.5.1	Reproductive	and develop	ment toxicity t	o Danhnia(n	i agna			
1 1	-4: 414-	.1						
1. Inform	ation on the stu	iay		60 10 12 0 12 0 12 0 12 0 12 0 12 0 12 0	7.00			
Data point:		CA 8.2.5.	1/001	ill of the				
Report author	•			The Contract of the Contract o				
Report year		1999		180				
Report title		Glyphosat	e acid: Chronic	toxicity to I	Daphnia magna			
Report No		AF0497/B	. ~ ()					
<b>Document No</b>		-	Self 80 on					
<b>Guidelines foll</b>	lowed in study	OECD 20	2; Part II, Repr	oduction Tes	t (1984)			
<b>Deviations fro</b>	m current test	Deviation	from guideline	OECD 211	(2012): none			
guideline		HOLING	.63					
Previous evalu	Previous evaluation Yes, accepted in RAR (2015)							
GLP/Officially								
testing facilitie	es	6 6 30° C						
Acceptability/		Valid						
Category stud	y in AIR 550 0	Category	2a					
dossier (L doc	s) stime	3						

# Full summary 2.

## **Executive Summary**

The lethal and sub lethal effects of glyphosate acid on Daphnia magna were evaluated in a 21-day toxicity test performed under semi-static conditions. Ten replicates of one *Daphnia* per concentration were exposed to 12.5, 25, 50, 100, and 200 mg a.s./L nominal concentrations. In addition, 10 x 1 Daphnia were exposed to test medium without test substance (blank control). The Daphnia were randomly placed into the test beaker and exposed to the test item for 21 days. The test Daphnia were fed daily with cultured algae (Chlorella sulgaris).

Mortality of P₀ generation of *Daphnia* and observation for the presence of alive and dead offspring (termed

Temperature measurements were recorded daily by means of a thermometer and hourly automatically. The concentration of glyphosate acid in the test solutions was determined on days 0, 2, 7, 9, 14, and 16. Old solutions were analysed on days 2, 7, 9, 14, and 21.

The mean measured concentrations of glyphosate acid in the new test solutions ranged from 100 to 104 % & of the nominal values. The mean measured concentrations in the old test solutions ranged from 96 to 104 % of the nominal values. Therefore, the results are based on nominal glyphosate acid concentrations. The overall 21-day NOEC for the reproduction of *Daphnia magna* exposed to glyphosate acid was 50 mg/L based on nominal concentration. All validity criteria according to the pertinent OECD 211 guideline were fulfilled. The overall 21-day NOEC for the reproduction of *Daphnia magna* exposed to glyphosate acid was 50 mg/L based on nominal concentration. The study is considered to be valid.

#### I. MATERIALS AND METHODS

#### A. MATERIALS

1. Test material:

Test item: Glyphosate acid

Lot/Batch #: P30

Purity:

97.6 %
Dilution water: Dilution water
Positive control: none Positive control: none

Daphnia magna
Neonates (< 244) 2. Vehicle and/or positive control:

3. Test organism:

Species:

Age:

Neonates (< 24th old). 1 organism per vessel (glass beakers containing 80 mL test Loading:

solution)

Source: Continuous laboratory cultures

4. Environmental conditions:

19,4 to 20.2 °C Temperature:

pH: 3.67-8.02 (new solutions)

Dissolved oxygen,  $9.2^{\circ}$ -9.2 mg  $O_2/L$  (dilution water, new) 8.8-9.2 mg  $O_2/L$  (dilution water, new Second conductivity 572-617 mg/L  $^{\circ}$   $^{\circ}$ 

572-617 mg/L μS/cm (test solutions)

Hardness: 202.7-218.3 mg CaCO₃

Photoperiod: 16 hours light /8 hours dark, 20 minute dawn and dusk

transition period; 480 lux

November 16, 1998 to December 07, 1998

# B. STUDY DESIGN AND METHODS

Experimental treatments: The lethal and sub lethal effects of glyphosate acid on Daphnia magna were evaluated in a 21-day toxicity test performed under semi-static conditions. Ten replicates of one Daphnia per concentration were exposed to 12.5, 25, 50, 100, and 200 mg a.s./L nominal concentrations. In addition, 10 x 1 Daphnia were exposed to test medium without test substance (blank control). The Daphnia were randomly placed into the test beaker and exposed to the test item for 21 days. The test Daphnia were fed daily with cultured algae (Chlorella vulgaris).

A primary stock solution of 200 mg a.s./L was prepared on day 0 by dissolving 400 mg test item in 2000 mL of allution water. On days 2, 4, 7, 9, 11, 14, 16, and 18 a primary stock solution of 100 mg a.s./L was prepared by dissolving 200 mg test item in 2000 mL dilution water. The test solutions were prepared by the addition of appropriate aliquots of the stock solutions to dilution water. At each renewal of the test Solutions, the surviving  $P_0$  generation of *Daphnia* were transferred to the new solutions. The  $F_1$  generation of Daphnia were removed from each vessel and counted. The numbers of alive and dead F₁ Daphnia were recorded.

**2. Observations:** Mortality of  $P_0$  generation of *Daphnia* and observation for the presence of alive and dead offspring (termed  $F_1$  generation) were recorded daily in each test vessel. At the end of the test, the length of each surviving  $P_0$  *Daphnia* was measured

The pH was measured in each newly prepared test solution. The pH and dissolved oxygen concentration of two of the replicates of the old test solutions were measured after transfer of the P₀ generation of daphards. Temperature measurements were recorded daily by means of a thermometer and hourly automatically. The concentration of glyphosate acid in the test solutions was determined on days 0, 2, 7, 9, 14, and 16. Old solutions were analysed on days 2, 7, 9, 14, and 21.

The validity criteria according to the current OECD 211 guideline are the following:

- In the control, the mortality of the parent animals (female Daphnia) should not exceed 20% at the end of the test.
- In the control, the mean number of living offspring produced per parent animal surviving at the end of the test should be > 60.
- 3. Statistical calculations: The reproduction and length data for each individual  $P_0$  generation daphnid were entered into electronic data files and analysed using statistical procedures contained in the Brixham Environmental Laboratory computer programs 'STATS' (version 4.10) and 'EPA' (version1.04).

## II. RESULTS AND DISCUSSION

#### A. FINDINGS

The mean measured concentrations of glyphosate acid in the new test solutions ranged from 100 to 104 % of the nominal values. The mean measured concentrations in the old test solutions ranged from 96 to 104 % of the nominal values. On the basis of the analytical data, the nominal concentrations were used for the calculation and reporting of all results.

**Table 8.2.5-5: Analytical measurements** 

Nominal concentration (mg glyphosate acid/L)	Mean measured (new solutions) mg/L	Mean measured (old solutions) mg/L	% of nominal of overall mean measured concentrations
Control		-	-
12.5	3 (104%)	12 (96%)	100
25	25 (100%)	25 (100%)	100
50	50 (100%)	52 (104%)	102
100	100 (100%)	102 (102%)	101
200	200 (100%)	200 (100%)	100

The 21-day EC₅₀ and NOEC values (based on nominal concentrations) are given below:

Table 8.2,5-6: Toxicity values for Daphnia magna

Mortality	
21-day EC ₅₀	100 (95 % confidence interval 77-142)
21-day NOEC	50
21-day LOEC	100
Maximum allowable toxicant concentration (MATC)	71

Reproduction	ilot
21-day NOEC	100 (considered 25 by RMS)
21-day LOEC	200
Maximum allowable toxicant concentration (MATC)	141
Length	7. S.
21-day NOEC	100
21-day LOEC	200 00000000000000000000000000000000000
Maximum allowable toxicant concentration (MATC)	140 6 5
Overall result	\$ 15 B
21-day NOEC	50 (considered 25 by RMS)
21-day LOEC	No too
Maximum allowable toxicant concentration (MATC)	71 × 71
D ODGEDYA TYONG	

B. OBSERVATIONS
In the dilution water control and test concentrations up to and including 100 mg a.s/L all surviving P₀ Daphnia generation had released their first offspring by day 10. There was no reproduction at the concentration of 200 mg a.s./L due to mortality of the Papania.

The effects of glyphosate acid on Daphnia magna mortality and reproduction are shown below.

Table 8.2.5-7: Effects of glyphosate acid on Daphnia magna mortality and reproduction after 21 days of exposure

Nominal concentration (mg a.s./L)	Mean adult mortality	Total number of off-spring per parent	Total offspring	Mean adult length [mm]
Control	8 JO 3 10 1	108± 20	1028	4.28
12.5	10 11 0 M	100±21	1003	4.40
25		84±12*	840	4.31
50		91±18	912	4.31
100	10° 50	109±23	763	3.81
200	100	-	-	A

A mortality before day 21

All validity eriteria according to OECD 211 were fulfilled, as immobility of adult daphnids was ≤20% in control groups and number of off-spring was >60 for the duration of the exposure.

ol group of the state of the st Glyphosate Renewal Group AIR 5 – July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

M-CA, Section 8 Page 255 of 847

^{*} Statistically significant difference

#### III. CONCLUSIONS

#### Assessment and conclusion by applicant:

The overall 21-day NOEC for the reproduction of *Daphnia magna* exposed to glyphosate acid was 50 mg a.s./L based on nominal concentration. The EC50 was determined to be 100 mg a.s./L.

In the RAR 2015, the RMS considered the nominal NOEC to be 12.5 mg a.s./L based on statistical difference at the next higher test concentration.

The study is considered to be valid for risk assessment purposes.

## Assessment and conclusion by RMS:

#### 1. Information on the study

Data point:	CA 8.2.5.1/002
Report author	
Report year	1995
Report title	Daphnia magna, Reproduction Test with Glyfosaat
Report No	141874
<b>Document No</b>	-
Guidelines followed in study	OECD Guideline 202 C ECC Draft Guideline XI/681/86 "Prolonged Toxicity Study with
	Daphnia magna: Effects on Reproduction"
Deviations from current test guideline	Deviation from guideline OECD 211 (2012): none
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes of the second of the secon
Acceptability/Reliability:	Valid
Category study in AIR 5 dossier (L docs)	Sategory 2a

## Full summary 2.

## Executive Summary

The effects of glyphosate (glyfosaat) on *Daphnia magna* were evaluated in a 21-day reproduction test under semi-static conditions. The reproduction test was performed using six nominal test concentrations (5, 10, 18, 32, 56 and 100 mg test item/L) and a control. 10 replicates with one daphnid each were prepared per test concentration and 20 replicates with one daphnid each for the control.

The number of fiving, immobilised and dead parental *Daphnia magna* was observed on a daily basis. In addition, the presence of eggs in the brood pouch was observed on every workday. For the F1 generation, the appearance of the first brood was recorded. Every workday, the number of newborn daphnids were

was equally recorded, when occurred.

The content approach was recorded, when occurred.

The content approach was equally recorded, when occurred.

The average mumbers of offspring per parent at concentrations up to and including 56 mg/L were > 90 % when compared to the control group. The average number of offspring at 100 mg/L ranged from 54 to 74 % when compared to the controls. Statistical analysis demonstrated significant reduction of reproductive capacity of Daphnia magna at 100 mg/L. The EC₅₀ for parental immobility and reproduction were both calculated to be > 100 mg/L.

mg a.e./L (nominal). The overall no observed effect concentration (NOEC) was 56 mg a.e./L based on nominal concentrations. All validity criteria according to the partitions of the partition of The study is considered to be valid.

#### I. MATERIALS AND METHODS

#### A. MATERIALS

1. Test material:

Test item: Glyphosate Description: White powder

Lot/Batch #: 22021 Purity: 96 %

Vehicle: Dilution water (M4 medium) 2. Vehicle and/or positive control:

Positive control: None

3. Test organism:

Species:

Daphnia magna Strans Neonates (< 24) Age: Neonates (< 24 h old)

Loading: 1 daphnid per 50 mL test medium

Source: In-house culture

Diet/Food: Chlorella pyrenoidosa at each solution renewal

4. Environmental conditions:

19.5°21.0°C Temperature:

Photoperiod: 16 hours light / 8 hours dark, 600 lux

8.8 (control), 5.2 - 5.7 (100mg test item/L)

Dissolved oxygen;  $8.9 \text{ mg O}_2/L$ ,  $(5.9 - 7.6 \text{ mg O}_2/L \text{ on day } 21 \text{ only})$ 

Conductivity: Not stated

250 mg CaCO₃/L

5. Experimental dates:

May 5, 1995 to May 29, 1995

## B. STUDY DESIGN AND METHODS

- 1. Experimental treatments: A 21-day reproductive toxicity test was conducted under semi-static conditions (renewal of sest medium three times a week). Daphnia magna was exposed to nominal concentrations of 5, 10, 18, 32, 56 and 100 mg test item/L in ISO-medium (M4). In addition, a control group was exposed to test medium without test substance. Ten glass vessels (80 mL vessels containing 50 mL test medium each) were used per treatment group for the test item and 20 vessels for the control group. One daphnid was exposed per replicate (vessel).
- 2. Observations: The number of living, immobilised and dead parental Daphnia magna was observed on a daily basis. In addition, the presence of eggs in the brood pouch was observed on every workday.

For the Fargeneration, the appearance of the first brood was recorded. Every workday the number of young newborn daphnids was counted and the condition of the young recorded. The presence of unhatched eggs was recorded, when observed. Incidental mortality was equally recorded, when occurred.

The pH-values and the oxygen saturation were measured at test initiation and just before the renewal of the test media in all treatments. The temperature was controlled at each renewal in one of the control vessels and on a daily basis in the climate room.

Analytical control measurements were performed by mean of HPLC analysis using samples taken from all test concentrations on day 0 for the freshly prepared solutions. For the aged test media, samples were taken The validity criteria according to the current OECD 211 guideline are the following:

- In the control, the mortality of the parent animals (female Daphnia) should not exceed 20 % at the end of the test.
- In the control, the mean number of living offspring produced per parent animal surviving at the end of the test should be > 60.
- 3. Statistical calculations: Data were statistically tested using a mean comparison test (Williams' t-Test;  $\alpha = 0.05$ ). EC₅₀ (immobilisation) and the EC₅₀ (reproduction) were estimated.

#### II. RESULTS AND DISCUSSION

A. FINDINGS

Analytical data: Analytical control measurements were performed on samples of representative test concentrations. Recoveries ranged from 104 % to 118 % relative to concentrations for test concentrations > 10 mg/L. Therefore, endpoints are based on nominal concentrations. At 5 and 10 mg/L recovery of glyphosate was significantly higher than nominal (> 120 %). The actual concentrations did not decrease significantly during the periods between renewal (48 or 72 hours).

Table 8.2.5-8: Analytical results

	mgglyphosate/L							
Nominal concentration	Control	5	& A106	18	32	56	100	
Day 0	-	8.47 8	12.0	21.3	32.2	58.7	100	
Day 3 (old)	ı		14.3		35.7		110	
Day 7 (fresh)	-	20,80 %	19.1		36.3		112	
Day 14 (fresh)	- 10	1. 11, 11,	16.7		36.7		111	
Day 21 (old)	- citto	0.50			34.1	58.7	106	
Mean measured over 21 d study	21411	8.4	15.5	21.3	35.2	58.7	108.2	
% of nominal	1 110 IL	169	155	118	110	104	108	

The 21-day EC₅₀ and NOEC values are given below based on nominal concentrations.

Table 8.2.5-9: Endpoints

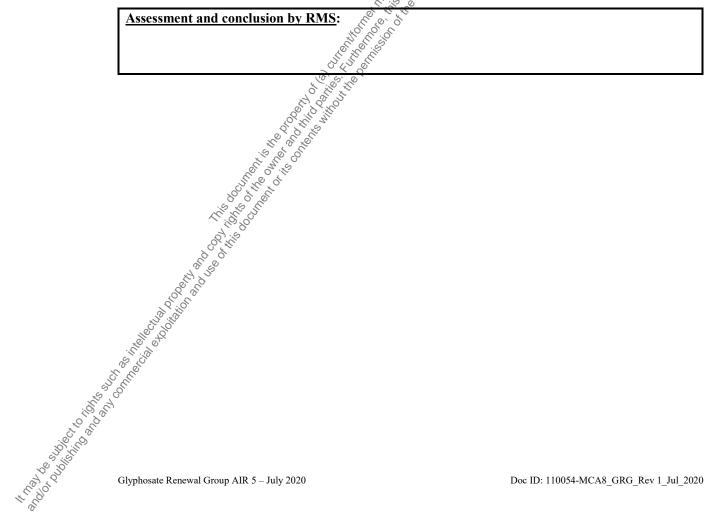
Endpoints	Glyphosate [mg/L] Nominal concentrations	Glyphosate [mg/L] Mean measured concentrations		
EC ₅₀ (21 days) for parental immobility	> 100	> 108		
EC ₅₀ (21 days) for reproduction	> 100	> 108		
Overall LOEC	> 100	> 108		
Overall NOEC	56	59		

average numbers of offspring per parent at concentrations up to and including 56 mg/L were > 90 % when compared to the control. The average number at 100 mg/L ranged from 54 to 74 % when compared to the control. Statistical analysis shows significant reduction of reproductive capacity of Daphnia magna at 100 mg/L.

Table 8.2.5-10: Chronic toxicity of glyphosate to Daphnia magna

	Control	Glyphosate [mg/L]				32, 60.	
		5	10	18	32	56	<b>100</b>
Immobilisation of adults after 21 d [%]	5	20	0	0	0	10	20
Mean number offspring per day per adult from day 10 to day 21	133	145	147	151	158	5.18 <u>60</u>	91.7
mean living young compared to controls [%]	-	109	111	114	. 149%	120	69

All validity criteria according to the current OECD 211 were fulfilled, as immediately of daphnids in control groups was <20 % and the mean number of live offspring produced per parent animal surviving at the end of test was  $\geq 60$ .


## III. CONCLUSIONS

Assessment and conclusion by applicant:

The  $EC_{50}$  for parental immobility and reproduction were both calculated to be > 100 mg a.e./L (nominal). The overall no observed effect concentration (NOEC) was 56 mg a.e./L based on nominal

concentrations.

All validity criteria according to the current OECD211 were fulfilled .The study is therefore considered to be valid for risk assessment purposes.



#### 1. Information on the study

	8
Data point:	CA 8.2.5.1/003
Report author	He to the second
Report year	1993
Report title	21-day Reproduction Test in Daphnia Test Article: Glyphosate isopropylamine salt
Report No	80-91-2328-05-93
Document No	- 8. O. S.
<b>Guidelines followed in study</b>	OECD Guideline 202, Part I and II.
Deviations from current test guideline	Deviation from guideline OECD 211 (2012) none
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes O S S
Acceptability/Reliability:	Valid * * * * * * * * * * * * * * * * * * *
Category study in AIR 5 dossier (L docs)	Category 2a
2. Full summary Executive Summary The effects of glyphosate isoprop	ylamine salt on reproduction of <i>Daphnia magna</i> were evaluated in a semi-

#### 2. **Full summary**

Executive Summary

The effects of glyphosate isopropylamine salt on reproduction of Daphnia magna were evaluated in a semistatic test. Prior to the inhibition and reproduction test, a preliminary acute toxicity test was performed to determine the concentration rage for the reproduction test.

For the definite reproduction test the following concentrations were tested: 43, 94, 207, 455 and 1000 mg test item/L, equivalent to 26.49, 57.90, 12751, 280.28 and 616.0 mg glyphosate isopropylamine salt/L or 19.63, 42.90, 94.48, 207.68 and 456.43 mg/glyphosate/L, respectively. In addition, a control group was exposed to synthetic test medium only. Daphnids were observed for immobilisation and reproduction on day 0, 3, 5, 7, 10, 12, 14, 17, 19 and 21.

The adult daphnids were observed and the young counted and removed from the test vessels. Temperature, pH-value and oxygen saturation of the test solutions were measured at the test beginning and end each renewal period.

At the highest concentration level of 1000 mg/L, all specimens were found to be immobile on day 7. At or below a concentration of 207 mg/L, no significant immobilisation was observed. Reproduction was significantly inhibited at or above a concentration of 207 mg/L.

For the number of offspring, significant reductions in reproduction rate were observed at or above a concentration level of 209 mg/L, whereas at or below a concentration of 94 mg/L, significant increases were generally observed. However, on day 19, the reproduction rate was significantly reduced at a concentration of 455 and test item/L. Therefore, it is considered more appropriate to determine the NOEC on the basis of the average number of off-spring per adult and day over the entire reproduction period. The 21-day EC₅₀ for immobilisation was 587 mg test item/L, equivalent to 361.59 mg glyphosate isopropylantine salt/L or 267.93 mg a.e./L (nominal). The NOEC for immobilization was 207 mg test item/L, equivalent to 127.51 mg glyphosate isopropylamine salt/L and 94.48 mg a.e./L (nominal), respectively. The NOEC for reproduction rate was calculated to be 94 mg test item/L equivalent to 57.90 mg glyphosate isopropylamine salt/L and 42.90 mg a.e./L (nominal), respectively. All validity criteria according to the current OECD 211 were fulfilled. The study is considered to be valid.

#### I. MATERIALS AND METHODS

#### A. MATERIALS

#### 1. Test material:

Test item: Glyphosate isopropylamine salt

Description: viscous liquid Lot/Batch #: 01/06/93

> Purity: 61.6 % Glyphosate isopropylamine salt

Density:  $1.23 \text{ g/cm}^3 \text{ at } 20 \text{ }^{\circ}\text{C}$ 

2. Vehicle and/or positive control: none

3. Test organism:

Species: Daphnia magna Strauss

Age:

Size: Not stated

neonates (< 24 h old)

Not stated

50 mL for each animal (reproduction test) Loading:

in-house laboratory breeding Source:

Unicellular green algae (Scenedesmus spp.) Diet/Food:

Daphnids were held in groups of ca.30 organisms in 1000 mL

Acclimation period: glass at standard test conditions. They were fed once daily on

4. Environmental conditions:

green algae Temperature:

16 hours light / 8 hours dark, ~1000 lux Photoperiod:

pH:

Dissolved oxygens > 60% of air saturation (approx. 6.0 mg O₂/L)

Conductivity 0.049 µS/cm Hardness 14.5° dH n. illi

5. Experimental dates:

August 27, 1993 to September 17, 1993

## B. STUDY DESIGN AND METHODS

- 1. Experimental treatments: The test was performed under semi-static conditions. Specimens were exposed to 43, 94, 207, 455 and 1000 mg test item/L, corresponding to 26.49, 57.90, 127.51, 280.28 and 616.0 mg glyphosate isopropylamine salt/L and 19.63, 42.90, 94.48, 207.68 and 456.43 mg glyphosate/L. In addition, a control group was exposed to the synthetic test media only. Stock solutions were prepared three times per week in which the solution was diluted with test water in a geometrical series by a factor or 2.2. Defined volumes of the stock solution were placed in a volumetric flask and filled up to the final volume of 2000 mL with synthetic test water (Elendt media). There were 8 vessels per treatment containing 5 daphnids each (500 mL glass beakers containing 50 mL test medium).
- 2. Observations: Daphnids were observed for immobilisation and reproduction on day 0, 3, 5, 7, 10, 12, 14, \$7, \$9 and 21. The adult daphnids were observed and the young counted and removed from the test were filtered through a glass filter with 200 µL polypropylene mesh. Subsequently, the young were counted and the number of live and dead daphnids was noted. Three times and the subsequently in the young were counted and the number of live and dead daphnids was noted. Subsequently, the offspring were counted and the number of live and dead animals was recorded. Temperature, pH-value and oxygen saturation were measured in line with each renewal period.

Page 262 of 847

Analytical measurements were performed by HPLC analysis. Representative concentration levels of 43, 207, 455 and 1000 mg test item/L were analysed. The freshly prepared test medium was analysed on day 0, 5, 10, 14 and 19. As on day 7, no specimen survived at the highest concentration, analytical measurements were conducted on concentration levels 43, 207 and 455 mg test item/L.

The validity criteria according to the current OECD 211 guideline are the following:

- idity criteria according to the current OECD 211 guideline are the following:

  In the control, the mortality of the parent animals (female Daphnia) should not exceed 20% at the end of the test.
- In the control, the mean number of living offspring produced per parent animal surviving at the end of the test should be > 60.
- 3. Statistical calculations: The 21 d EC₅₀ value was calculated according to Spearman and Karber. Fecundity was analysed using a Man-Whitney-U-test (2-tailled, corrected for ties)

II. RESULTS AND DISCUSSION

A. FINDINGS

Analytical data: The average recovery of glyphosate in test media over 21 days was 87.5 % and 93.7 %, 98.7 and 99.6 % of the nominal concentrations for 43, 207, 455 and 1000 mg test item/L, respectively. As the mean measured content of the test item always ranged between 80 and 120 % of nominal in both tests, ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

Table 8.2.5-11: Analytical results

		19 8 9 9 B	[mg/L]		
Nominal concentration of test item	Control	18 83 N	207	455	1000
Nominal concentration of glyphosate isopropylamine salt	Control	6 5 19	94	207.67	456.43
Mean measured value of Glyphosate IPA salt over 21-day study	17 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	17.18	88.54	204.93	454.71
% of nominal	Kilo kilo	87.5	93.7	98.7	99.6

The NOEC value is given below are based on nominal concentrations.

Table 8.2.5-12: Endpoints

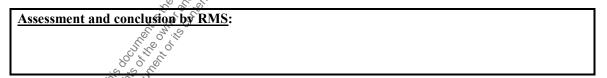
Endpoints (21-day)	Test item [mg/L]
EC ₅₀ Immobilisation	587
NOEC Immobilisation	207
NOECReproduction	94

#### **OBSERVATIONS**

Observations: At the highest concentration level of 1000 mg/L, all specimens were found to be immobile on day 7. At or below a concentration of 207, no relevant immobilisation was observed. Results of the reproduction rate revealed significant inhibitory effects at or above a concentration of 207 mg/L.

For the number of off-spring, significant reduction in reproduction rate was observed mostly at or above a concentration level of 207 mg/L, whereas at or below a concentration of 94 mg/L, significant increases were generally observed. However, the reproduction rate was significantly reduced for all concentrations on day 19. The NOEC on the basis was determined of the average number of off-spring per adult and day over the entire reproduction period. Also, all validity criteria according to the current OECD 219 were fulfilled, as immobility of daphnids in control groups was <20% and the mean number of live off-spring produced per parent animal surviving at the end of test was  $\geq 60$ .

or oddiced per parent animal surviving at the end of test was 200.								
The percentage immobilisation is given below based on nominal concentrations.								
Table 8.2.5-13: Chronic toxicity of glyphosate isopropylamine salt to Daphnia magna								
		Nominal concentration of test item [mg/L]						
Parameter	Control	43	94	ji 207 ji	455	1000		
Immobilisation of adults after 21 d [%]	0.0	7.5	0.0	© 2.5	10.0	100		
Total number of live off-spring from day 7 to day 21	5452	4941	501 le 3	4426	3738	0		
Mean number offspring per day per adult from day 7 to day 21	8.78	8.24	S S S S S S S S S S S S S S S S S S S	7.021	6.051	n.d.		


 $^{^{1}}$  = statistically significant when compared to control (U-test according to Mann-Whitney),  $\alpha = 0.05$ n.d. = not determined

# III. CONCEUSIONS

#### Assessment and conclusion by applicant:

The effects of glyphosate isopropylamine salt on Daphnia magna were evaluated. The 21-day EC₅₀ for immobilisation was 587 mg test item/L, corresponding to 361.59 mg a.s./L and 267.93 mg a.e./L (nominal). The NOEC for immobilization was 207 mg test item/L, equivalent to 127.51 mg a.s./L and 94.48 mg a.e./L (nominal), respectively. The NOEC for reproduction rate was calculated to be 94 mg test item/L equivalent to 57.90 mg a.s./L and 42.90 mg a.e./L (nominal), respectively.

All validity criteria according to the current OECD 211 were fulfilled. The study is considered to be valid for risk assessment purposes.



#### 1. Information on the study

Data point:	CA 8.2.5.1/004
Report author	
Report year	1990
Report title	Influence of glyphosate on the reproduction of Daphnia magna
Report No	250795
Document No	-
Guidelines followed in study	OECD 202, Part II, Reproduction Test (1984)
Deviations from current test guideline	Deviation from guideline OECD 211 (2012): none
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes Sold of the second
Acceptability/Reliability:	Valid San
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary
Executive Summary
The lethal and sub-lethal effects of glyphosate on Daplinga magna were evaluated in a 21-day toxicity test performed under semi-static conditions. The study was started with two glass beakers per test concentration, each containing 200 mL test solution. Two replicates of 10 Daphnia per concentration were exposed to 3.0, 9.4, 30, 94.9, and 300 mg a.s./L nominal concentrations. In addition, 2 x 10 Daphnia were exposed to test medium without test substance (blank control). After 7 days of exposure, 10 daphnids per test concentration and control with eggs in the brood pouch were selected and placed individually in a 100 mL beaker which contained 50 mL test solution. Daphnia were ted a mixture of yeast and algae (Scenedesmus subspicatus) at each test solution renewal.

Mortality of parent *Daphnia* and observation for the presence of alive and dead offspring were recorded three times a week at the renewal of the test media.

The pH and dissolved oxygen concentration of the test samples were measured for all treatment periods at the beginning and end of the respective periods. The temperature was measured at the renewal of the test solutions.

The concentration of glyphosate in the test solutions was determined at the first and at the last treatment period (last water renewal) directly after treatment and at the end of the respective period in the 3.0, 30, and 300 mg a.s./L test vessels.

The mean measured concentrations of glyphosate in the test solutions ranged from 82.3 to 130.1 % of nominal values. On the basis of the analytical data, the nominal concentrations were used for the calculation and reporting of all results. NOEC for survival and reproduction was 30 mg a.s./L based on nominal concentrations. All validity criteria according to the OECD guideline 211 were fulfilled. The study is The less of the le considered to be valid.

#### I. MATERIALS AND METHODS

#### A. MATERIALS

1. Test material:

Test item: Glyphosate Lot/Batch #:

Purity:

2. Vehicle and/or positive control:

3. Test organism:

Species:

Age of animals:

Anedium ontrol: none

**Daphnia magna**

Neonates (< 24 h old)

First 7 days of exposure: 10 Daphnia in 200 mL test solution; Form day 7 to day 21: 1 Daphnia in 50 mL test solution ontinuous laboratory cultures.

1-22.5 °C

3 (new solutions)

mg O E (new solutions)

mg O E (new solutions)

mg O E (new solutions)

mg O I sold solutions)

mg of the first of the solutions)

mg of the solutions)

mg of the solutions) Loading:

Source of organisms:

4. Environmental conditions:

Temperature:

Dissolved oxygen:

Conductivity:

Hardness:

Photoperiod: 16 hours light /8 hours dark; 500-2000 lux

5. Experimental dates:

Fanuary 17, 1990 to February 07, 1990

B. STUDY DESIGN AND METHODS:

1. Experimental treatments: The distribution of the control of the 1. Experimental treatments: The ethal and sub-lethal effects of glyphosate on Daphnia magna were evaluated in a 21-day toxicity dest performed under semi-static conditions. The study was started in two glass beakers per test concentration, each containing 200 mL test solution. Two replicates of 10 Daphnia per concentration were exposed to 3.0, 9.4, 30, 94.9, and 300 mg a.s./L nominal concentrations. In addition, 2 x 10 Daphnia were exposed to test medium without test substance (blank control). After 7 days of exposure, 10 daphnids per test concentration and control with eggs in the brood pouch were selected and placed individually in a 100 mL beaker which contained 50 mL test solution. Daphnia were fed a mixture of yeast and algae (Scenedesmus subspicatus) at each test solution renewal.

A stock solution of 500 mg a.s./L was prepared on day 0 by dissolving 500 mg test item in 1000 mL of test medium. This solution was freshly prepared on days 2, 5, 7, 9, 12, 14, 16, and 19 of the exposure period. Appropriate amounts of this stock solution were diluted to prepare the test concentrations.

2. Observations: Mortality of P₀ generation of *Daphnia* and observation for the presence of alive and dead offspring were recorded three times a week at the renewal of the test media. Dead P₀ Daphnia and offspring were removed at the observation dates.

The pH and dissolved oxygen concentration of the test samples (controls, the lowest (3.0 mg a.s./L) and The concentration of glypho dreatment period (last water renewal) d 3.0, 30, and 300 mg a.s./L test vessels.

The validity criteria according to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment period (last water renewal) d to the contraction of glypho dreatment pe the dighest (300 mg a.s./L) test concentrations of glyphosate) was measured at all treatment periods at the beginning and at the end of the respective periods. The temperature was measured at the renewal of the test solutions. The concentration of glyphosate in the test solutions was determined at the first and at the last Greatment period (last water renewal) directly after treatment and at the end of the respective period in the

The validity criteria according to the current OECD 211 guideline are the following:

- In the control, the mortality of the parent animals (female Daphnia) should not exceed 20% at the end of the test.
- In the control, the mean number of living offspring produced per parent animal surviving at the end of the test should be > 60.

#### 3. Statistical calculations: Steel-Test.

#### II. RESULTS AND DISCUSSION

A. FINDINGS
The mean measured concentrations of glyphosate in the test solutions ranged from \$2.3 to 130.1 % of the nominal values for the 3.0, 30, and 300 mg a.s./L test concentrations. On the basis of the analytical data, the nominal concentrations were used for the calculation and reporting of all results.

Table 8.2.5-14: Analytical results

	[mg glyphosate/E]					
Nominal concentration	Control	3.0	9.48	30.0	94.9	300
Day 0 mean concentration	-	2.821		27.71	-	390.4
Day 2 mean concentration	1	3.183		31.40	ı	365.8
Day 19 mean concentration	-	2.585	6	27.08	-	
Day 21 mean concentration	-	3,404° 50°	-	29.63	-	
Mean measured over 21 day study	<u>-</u>	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	-	28.95	-	378.1
% of nominal over 21d study	- - - - - - - - - - - - - - - - - - -	, g 99.9	-	96.5	-	126

The endpoint value is given below

Table 8.2.5-15: Endpoints

Endpoints	[mg a.s./L]
21-day NOEC for survival and reproduction	30 mg/L

## B. OBSERVATIONS

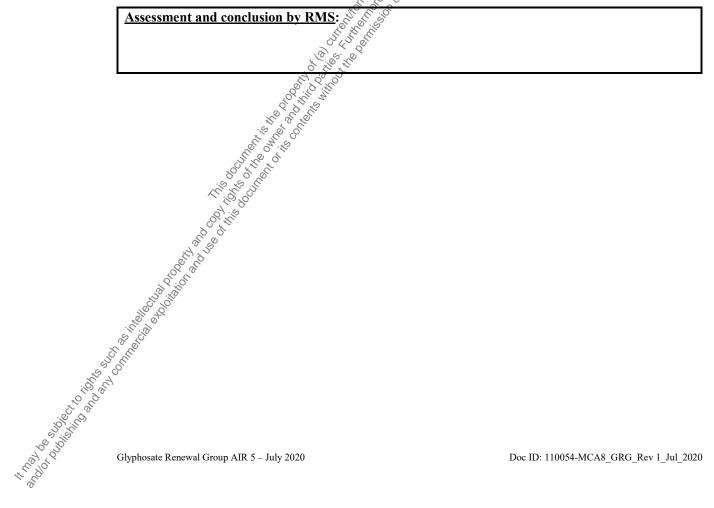
Reproduction of young daphnids started on day 9 of the exposure period. No statistically significant influence of glyphosate on the reproduction rate was observed up to a concentration of 30 mg a.s./L. At the highest tested concentration of 300 mg a.s./L all daphnids were dead after 5 days of exposure.

The effects of glyphosate on *Daphnia magna* mortality and reproduction are shown below.

Table 8.2.5-16: Effects of glyphosate on Daphnia magna mortality and reproduction

Glyphosate

Nominal concentration [mg a.s./L]	Mean adult mortality [%]	Total number of off-spring per parent animal	Total off-spring
Control	0	127±24	1266
3.0	0	123±29	1226
9.4	0	134±22	4338
30	0	102±26	ية 1023 يان مان المان الم
94.9	10	48±29¹	· 🕉 476
300	100	0	0 ° io


¹ Statistically significant difference

All validity criteria according to the current OECD 211 were fulfilled, as immobility of daphnids in control groups was <20% and the mean number of live off-spring produced per parent animal surviving at the end III. CONCLUSIONS of test was  $\geq 60$ .

#### Assessment and conclusion by applicant:

Lethal and sub-lethal effects of glyphosate on Daphnia magna were evaluated in a 21-day toxicity test. The 21-day NOEC for survival and reproduction of D. magna exposed to glyphosate was 30 mg a.e./L based on nominal concentrations. All validity criteria according to the current OECD 211 were fulfilled in the test.

The study is considered to be valid for risk assessment purposes.



#### 1. Information on the study

-	
Data point:	CA 8.2.5.1/005
Report author	
Report year	1989
Report title	21-Day Prolonged Static Renewal Toxicity of Glyphosate Technical to Daphnia magna
Report No	AB 89-58
Document No	-
Guidelines followed in study	OECD Guideline 202 U.S. Guideline 72-4, (EPA-FIFRA, 40 CFR, Section 158.145).
Deviations from current test guideline	Deviation from guideline OECD 211 (2012); none
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes E S S S S S S S S S S S S S S S S S S
Acceptability/Reliability:	Valid
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary
Executive Summary
The effects of glyphosate on the reproduction of Daphua magna were evaluated in a 21-day semi-static test. The test was performed using nominal concentrations of 6.5, 13, 25, 50 and 100 mg test item/L. In addition, a control group was exposed to dilution water. The test solutions were prepared using hard blended water. The test solutions were renewed three times a week. There were four glass jars per treatment, each containing ten daphnids.

Samples for analytical confirmation were taken initially and at each renewal. Recoveries were ranging from 92.3, to 108.0% of nominal concentrations. Therefore, ecotoxicological endpoints were based on nominal

concentrations of the test item.

Starting at test initiation, observations were made daily, recording the number of immobile *Daphnia magna*. Furthermore, behavioural or subjectival effects as well as any gross pathogenic or toxic response were recorded. Furthermore, survival, abnormal effects and time to first brood of daphnids were recorded daily throughout the study. Reproduction success was measured by counting and discarding the offspring produced in each concentration 3 days a week for the duration of the study.

No effects of glyphosate technical on survival, reproduction and time to first brood of *Daphnia magna* after 21-day exposure were observed in any test item treatment. No effects on behaviour were observed for the duration of the study  $EC_{50}$  was determined to be > 100 mg a.e./L. The NOEC was determined to be  $\ge 100$ St.

L. Ab.

L mg test item/L. All validity criteria according to OECD 211 were fulfilled. The study is considered to be

#### I. MATERIALS AND METHODS

#### A. MATERIALS

#### 1. Test material:

Test item: Glyphosate technical

Description: White powder

Lot/Batch #: XLI-203 Purity: 97.67 %

2. Vehicle and/or positive control: None

3. Test organism:

Species: Daphnia magna

> Age: Neonates (< 24 h old)

Loading: 10 specimens in 400 mL test solution

Source:

In-house culture
Once daily with a suspension of Selenastrum capricornutum Diet/Food:

(8 x 10⁷ cells/400 mL), supplemented with a Tetramin®, cereal

leaves and yeast suspension

Acclimation period: None

4. Environmental conditions:

Temperature:

 $20 \pm 2$  °C  $\frac{1}{2}$  8 hours dark (approx. 431 - 861 Lux), with Photoperiod:

30-minute dawn and dusk transition periods

pH: 6.8 - 8.2 (new solutions), 7.4 - 7.9 (old solutions)

Dissolved oxygen: Solutions: 8.3 – 9.0 mg/L (89.5 to 101 % saturation)

Old solutions (2-3 days after renewal): 4.1 - 6.8 mg/L (47 to

Conductivity: 350 us/ 6 satura 6 satura γ satura 6 satura 6

174 mg CaCO₃/L.

April 4, 1989 to April 25, 1989

# 5. Experimental dates: B. STUDY DESIGN AND METHODS

- 1. Experimental treatments: The toxicity of glyphosate on Daphnia magna was evaluated in a 21-days prolonged semi-static test, using nominal concentrations of 6.5, 13, 25, 50 and 100 mg test item/L. In addition, a control group was exposed to dilution water. The test solutions were prepared using hard blended water prepared to a total hardness of between 160 and 180 mg CaCO₃/L. The test solutions were renewed three times a week. There were four glass jars per treatment, each containing ten daphnids (1000 mL glass jars containing 400 mL test medium).
- Daphnic Streets as well as any gross on behaviour and observance of first brood of the organisms on behaviour and observance of first brood of the organisms and discarding produced in each concentration three times a week for the duration of the study. Temperature, fotal hardness and specific conductivity of the dilution water was measured weekly. Samples for analytical confirmation of the new solutions were taken initially and at each renewal days. The analytical data are reported separately (Monsanto Study No. ML-89-62).

  Glyphosate Renewal Group AIR 5 July 2020 2. Observations: Observations were made on a daily basis to record the number of immobile Daphnia

The validity criteria according to the current OECD 211 guideline are the following:

- In the control, the mortality of the parent animals (female Daphnia) should not exceed 20 % at the end of the test.
- In the control, the mean number of living offspring produced per parent animal surviving at the end of the test should be > 60.
- 3. Statistical calculations: The test parameters of survival, time to first brood (days), and total young/adult reproduction were analysed using analysis of variance. Dunnett's Test was used for mean separation. The 21-day EC₅₀ values were calculated by probit analysis.

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

Analytical data: Analytical control measurements (separate report ML-89-62) were performed to determine the concentration of glyphosate in test solutions. Result showed recoveries of 92.3, 100 %, 108.0 %, 108.0 % and 100% for nominal concentrations of 6.5, 13, 25, 50 and 100 mg test item/L. Therefore, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

The 21-day EC₅₀ and NOEC values are given below based on nominal concentrations.

Table 8.2.5-17: Endpoints

Endpoints (21-day)		Glyphosate [mg a.e./L]
EC ₅₀ 21-day (95% C.I.)	ELIS STE	> 100
NOEC 21-day	4 H H O	≥ 100

B. OBSERVATIONS
No effects of glyphosate technical on surviyal, reproduction and time to first brood of Daphnia magna were observed after 21-days of exposure in all test item concentrations. No effects on behaviour of adults and offspring were observed during the course of the study.

Table 8.2.5-18: Lethal effects of glyphosate to *Daphnia magna* (mean values)

Glyphosate [mg a.e./L]	Control	6.5	13	25	50	100
Survival (21-day) [%]	98	100	100	100	100	98
Reproduction (21-day) (young adult/reproduction day) (± SD)	$5.2 \pm 0.2$	$5.1 \pm 0.3$	5.3 ± 0.2	5.1 ± 0.1	5.1 ± 0.2	$5.1 \pm 0.0$
Mean number of young adult/adult (21-days)	73.7	72.7	74.2	71.4	72.7	71.0
Time to fist brood (days) (± SD)	$7.8 \pm 0.5$	$7.8 \pm 0.5$	$8.0\pm0.0$	$8.0\pm0.0$	$7.8 \pm 0.5$	$8.0 \pm 0.0$

andity criteria accorcina control groups was <20 at the end of test was ≥60. All validity criteria according to the current guideline OECD 211 were fulfilled, as immobility of daphnids in control groups was <20 % and the mean number of live off-spring produced per parent animal surviving

#### III. CONCLUSIONS

### Assessment and conclusion by applicant:

In a 21-day prolonged semi-static reproduction study with *Daphnia magna*, no effects of glyphosate technical on survival, reproduction, and time to first brood of *Daphnia magna* were observed. Therefore, the 21-day EC₅₀ was determined to be > 100 mg a.e./L (nominal). The NOEC was determined to be  $\ge$ 100 mg a.e./L (nominal). All validity criteria according to the current guideline OECD 211 were fulfilled. The study is considered to be valid and reliable for the regulatory risk assessment for glyphosate.

#### Assessment and conclusion by RMS:

#### 1. Information on the study

_	0,00,00
Data point:	CA 8.2.5.1/006
Report author	
Report year	1982
Report title	Chronic Toxicity of Glyphosate to Daphnia magna Under Flow-
	Through Test Conditions
Report No	AB 82-036
Document No	- 5556
<b>Guidelines followed in study</b>	ASTM Committee (Draft No. 5, September, 1979, E-35.2; Draft No. 3,
	1981, E-47,01, Draft No. 2, September, 1979, E-35.21)
<b>Deviations from current test</b>	Deviation from guideline OECD 211 (2012): none
guideline	
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)
GLP/Officially recognised	No. GLP was not compulsory at the time the study was performed
testing facilities	
Acceptability/Reliability:	Valid
Category study in AIR 5	Category 2a
dossier (L docs)	

## Full summary 2.

## Executive Summary

The effects of glyphosate on the reproduction of *Daphnia magna* were evaluated in a 21-day chronic test in flow-through conditions. The test was performed using nominal concentrations of 25, 50, 99, 199 and 397 mg test item/D. In addition, a control group was exposed to untreated water. The test solutions were permanently renewed using a one-litre proportional diluter system. There were four replicates per treatment, each containing 10 test daphnids.

The number of immobile Daphnia magna was recorded three times a week. Furthermore, reproductive success was measured by recording the number of off-spring produced in each treatment on every observation day for the duration of the study. In addition to survival and reproduction data, growth of adult

Toti-st at the termination of the test.

The action of the test.

The action of the test and the termination of the test.

The action of the test and the termination of the test.

The action of the test and the termination of the test.

The action of the test and the termination of the test.

The action of the test and the termination of the test and the termination of the test.

The action of the test and the termination of the test and the termination of the test.

The action of the test and the termination of the test and the termination of the test.

The action of the test and the termination of the test and the termination of the test.

The action of the test and the termination of the test and the termination of the test.

The action of the test and the termination of the test and the test and the termination of the test and the tes No significant decrease in survival or length of adult daphnids was observed in organisms exposed to glyphosate for 21 days. Length of daphnids in the lowest (26 mg/L)

Reproduction significantly decreased at the three highest test item concentrations (96, 186 and 365 mg glyphosate/L). In contrast to that, at the lowest test item concentration (26 mg/L) an increase of reproduction when compared to the control was observed. The NOEC was determined to be 50 mg test item/L (nominal). All validity criteria according to the OECD width 211 considered to be valid.

#### I. MATERIALS AND METHODS

#### A. MATERIALS

1. Test material:

Test item: Glyphosate standard

Description:

Lot/Batch #:

Purity: 99.7 %

2. Vehicle and/or positive control:

3. Test organism:

Species:

Loading:

Source: In-house culture

Decies: Daphnia magna

Age: Neonates (< 24 h.old)

In-house culture

d: Once daily v...

None Diet/Food:

Acclimation period:

4. Environmental conditions:

Temperature:

16 hours light / 8 hours dark (approx. 538 – 753 Lux) Photoperiod;

83 - 8.2 (control), 6.1 - 6.2 (highest test concentration)

Dissolved oxygen: 7.0 – 9.0 mg/L

Conductivity:  $50 \mu S/cm$ 

> Hardness: 255 mg CaCO₃/L.

1 to 100 st. 10 1. 5. Experimental dates: March 5, 1982 to March 26, 1982

## B. STUDY DESIGN AND METHODS

- 1. Experimental freatments: The toxic effects of glyphosate on Daphnia magna were evaluated in a 21day flow-through test, using nominal concentrations of 25, 50, 99, 199 and 397 mg test item/L. In addition, a control group was exposed to untreated water. The test solutions were prepared using well water at ABC's Aquatic Bioassay Laboratory, with known characteristics (hardness = 255 mg CaCO₃/L, pH = 8.2). The test system consisted of six sets of 1 L quadruplicate chambers, which were immersed in a circulating water bath. The less solutions were permanently renewed using a one-litre proportional diluter system, with modifications to allow intermittent delivery of large stock volumes of glyphosate and dilution water into the test chambers. The renewal rate was 200 mL/aquarium every 120 minutes, an amount sufficient to replace the 1 L test volume 3 times in a 24-hour period. There were four replicates per treatment, each containing 10 test daphnids, which were randomly placed in test chambers.
- **Descriptions:** Observations were made three times a week (every Monday, Wednesday and Friday) to Record the number of immobile Daphnia magna, starting from test initiation. Furthermore, the reproductive success was measured by recording and discarding the offspring produced in each concentration on every observation day for the duration of the study. Growth of adult daphnids was determined at test termination.

Page 273 of 847

Temperature, pH-value and oxygen saturation of the test solutions were measured on day 0, 4, 7, 14 and 21 in control, and nominal test item treatments of 25, 99 and 397 mg glyphosate/L.

Samples for analytical confirmation of the concentration of glyphosate in test solutions were taken and analysed.

The validity criteria according to the current OECD 211 guideline are the following:

- validity criteria according to the current OECD 211 guideline are the following:
  In the control, the mortality of the parent animals (female Daphnia) should not exceed 20% at the end of the test.
- In the control, the mean number of living offspring produced per parent animal surviving at the end of the test should be > 60.
- 3. Statistical calculations: Measured parameters in the quadruplicate test chambers were analysed using one-way analyses of variance (ANOVA) and as a post hoc test, Fisher's Protected Ceast Significant Difference (LSD), was used.

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

Analytical data: Analytical control measurements were performed to determine the concentration of glyphosate in test solutions. The mean measured concentrations of glyphosate in test solutions were 26, 50, 96, 186 and 378 mg glyphosate/L for the nominal concentrations of 25, 50, 99, 199 and 397 mg test item/L respectively. Analytical recovery ranged from 93 to 104% of nominal concentrations.

Table 8.2.5-19: Analytical results

	3		mş	g glyphosate	e/L	
Nominal concentrations	Control	\$ 25	50	99	199	397
Day 0 measured concentrations	10 0 V	17	32	61	115	250
Day 4 measured concentrations	Tho tho so	25	44	90	175	356
Day 7 measured concentrations	in iti	22	44	82	155	306
Day 14 measured concentrations	5. A. 10.	24	43	83	162	332
Day 21 measured concentrations	- 11	21	42	79	157	312
Mean measured concentrations over study period	-	26	50	96	186	378

The NOEC value is given below are based on nominal concentrations.

Table 8.2.5-20: Endpoints

Endpoints (21-day)	Glyphosate [mg a.e./L]
NOEC 21-day	50

## B. OBSERVATIONS

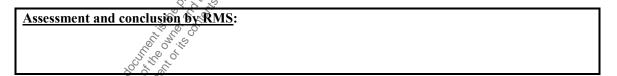
According to the state of the s

reproduction was 50 mg/L. An increase of length and reproduction of daphnids observed at the lowest test item concentration is not considered to be deleterious and thus not used to estimate the NOEC.

Table 8.2.5-21: Adult length, survival and young produced per adult reproductive day of *Daphnia magna* continuously exposed to glyphosate during a 21-day life cycle study

Glyphosate [mg a.e./L] (mean measured concentrations)	Control	26	50	96	186	378
Survival (21-day) [%]	100	98	100	98	% 38° %	98
Reproduction (21-day) (young adult/reproduction day) (± SD)	4.9 ± 0.42	6.5 ± 0.15 ¹	5.1 ± 0.49	4.1 ± 0.78	3.8 5±0.10 1	$1.7 \pm 0.32^{-1}$
Adult length (mm) (± SD)	3.7 ± 0.06	3.9 ± 0.05 ¹	3.7 ± 0.07	3.6 ±8.10	3.7 ± 0.10	3.8 ± 0.03 ¹
Mean number of young adult/adult (21-days)	68.6	91.5	70.5	£ 55.₹ 1,55.₹	52.5	23.5

^{*} Significantly different (Fishers' LSD,  $\alpha = 0.05$ ).


All validity criteria according to the current OECD 211 were fulfilled as immobility of daphnids in control groups was <20% and the mean number of live off-spring produced per parent animal surviving at the end of test was  $\geq$ 60.

## III. CONCLUSIONS

#### Assessment and conclusion by applicant:

In a 21-day chronic toxicity study, the exposure of *Daphnia magna* to glyphosate resulted in reduced reproduction at or above the nominal concentration of 99 mg a.e./L. No other adverse compound-related effects were observed. The NOEC was determined to be 50 mg a.e./L (nominal). All validity criteria according to the current OECD 21 lowere fulfilled.

The study is considered to be valid and reliable for the regulatory risk assessment for glyphosate.



#### 1. Information on the study

Data point:	CA 8.2.5.1/007
Report author	
Report year	2011
Report title	AMPA (Aminomethylphosphonic acid): A semi-static life cycle toxicity test with the Cladoceran (Daphnia magna)
Report No	139A-393
Document No	- \$\tau_{\text{i}} \cdot \text{i}
<b>Guidelines followed in study</b>	OECD Guideline 211 (1998), ASTM E 1193-97
Deviations from current test guideline	Deviation from guideline OECD 211 (2012):  Minor:  Survival in the negative control group was slightly below the 80 %  This does not affect the reliability of the study.
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes & & & &
Acceptability/Reliability:	Valid San
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary
Executive Summary
The effects of AMPA (aminomethylphosphoric acid) on the survival, growth and reproduction of Daphnia magna were evaluated in a 21-day reproduction test under semi-static conditions with renewal of test medium every 2 to 3 days. The reproduction test was performed using a geometric series five nominal test concentrations (7.5, 15, 30, 60 and 120 mg AMPA/L) and a dilution water control (negative control). 10 replicates with one daphnid each were prepared per test concentration and 20 replicates with one daphnid each for the control.

Parental *Daphnia magna* were observed on a daily basis for mortality, onset of reproduction and signs of

toxicity. Body length and dry weights of surviving parental specimens were measured at the end of the exposure period. The number of juvenile daphnia produced in each vessel was counted three times per week and at test termination. Mean measured test concentrations were determined from samples of test media collected from each treatment and control group at test initiation, at the end of the first renewal cycle, at the beginning and end of the longest renewal cycle during the second week of the test, and at the beginning and end of the last renewal cycle (test termination).

AMPA was not detected in the control group. The mean measured concentrations of AMPA in samples collected during the test for each treatment group were 7.4, 15, 30, 57 and 120 mg AMPA/L, equivalent to 99, 100, 100, 95 and 100 % of the nominal concentrations, respectively. Therefore, the results evaluation is based on nonifial test concentrations. There was no significant mortality observed during the test when compared to the control. Treatment related effects on growth were observed at 60 and 120 mg AMPA/L.

group was slightly below the 80% validity criterion required in the OECD salidity of this study as the surviving daphnids in the control replicates appeared normal and healthy throughout the test suggesting that the mortality observed was most likely attributable to incidental death and not related to the health of the organisms.

Adult daphnids in the control group produced an average of 227 live young per surviving adult of (CV = 11.6%), which is well above the validity criterion of  $\geq$  60 live young per surviving adult. Therefore the study is considered valid according to OECD 211.

The overall no observed effect concentration (NOEC) based on reproduction (juvenile production) was determined to be 15 mg AMPA/L. The study is considered to be valid.

## I. MATERIALS AND METHODS

#### A. MATERIALS

1. Test material:

AMPA (Aminomethylphosphonic acid) Solid

Description:

Lot/Batch #: GLP-0908-199984-A

> Purity: 98.7 %

Vehicle: ASTM medium 2. Vehicle and/or positive control:

Positive control: None

3. Test organism:

Daphnia magna Straus Species:

Neonates (< 24 h old)

1 daphnid per 200 mL test medium Loading:

In-house culture Source:

Daily mixture of yeast, cereal grass media and trout chow Diet/Food:

(YCT) and suspension of Pseudokirchneriella subcapitata

4. Environmental conditions:

19.0° 20.8°C Temperature;

16 hours light

Light intensity = 314 lux

7.1 - 8.6

Dissolved oxygen:  $6.8 - 9.1 \text{ mg } O_2/L$ 

> Conductivity:  $274 - 391 \,\mu\text{S/cm}$

Hardness: 132 - 140 mg CaCO₃/L

5. Experimental dates: February 09, 2011 to March 04, 2011

## B. STUDY DESIGN AND METHODS

- 1. Experimental treatments: A 21-day reproductive toxicity test was conducted under semi-static conditions, with renewal of test medium every 2 to 3 days. Daphnia magna neonates (<24 hours old) were exposed to nominal concentrations of 7.5, 15, 30, 60 and 120 mg AMPA/L in moderately hard dilution water (ASTM medium). In addition, a negative control group was prepared in parallel. Ten glass vessels (250 mL sessels containing 200 mL test medium each) were used per treatment group for the test item and 20 vessels for the control group. One daphnid (neonate < 24 hours old) was exposed per replicate (vessel).
- 2. Observations: The number of living, immobilised and dead parental Daphnia magna and the time to gravidity (presence of eggs in brood pouch) were observed on a daily basis. Body length and dry weights of surviving parental specimens were measured at the end of the exposure period (21 days).

The number of neonate daphnids was counted three days a week and their condition was recorded. The presence of unhatched eggs was recorded, when observed. Incidental mortality was also recorded, when occurred. At the end of the test, body length and dry weight of each surviving parental daphnid was measured.

The temperature, pH-values and the oxygen saturation were measured at test initiation, before and after the renewal of the test media in two replicate test chambers and at test termination. Hardness, alkalinity and specific conductance were measured in batch solutions of the negative (dilution water only) control and at the highest test item concentration at test initiation and on one renewal day each week and from pooled

Analytical measurements were performed by using an HPLC method of analysis using samples taken from all test concentrations for the freshly prepared solutions, at the end of the first renewal cycle (old solution), and at the beginning and end of last renewal cycle. For the aged test media, samples were taken from 2 alternate replicates of each treatment and control group and pooled by treatment group.

The validity criteria according to the current OECD 211 guideline are the following:

- In the control, the mortality of the parent animals (female Daphnia) should not exceed 20% at the
- In the control, the mean number of living offspring produced per parent animal surviving at the end of the test should be > 60.
- 3. Statistical calculations: Data were statistically tested using Chi-square and Fisher's Exact test (discretevariable data;  $\alpha = 0.05$ ) and Dunnett's t-test (one-tailed, normal distributed data;  $\alpha = 0.05$ ). The NOEC was II. RESULTS AND DISCUSSION determined by visual interpretation of the results.

#### A. FINDINGS

Concentrations of AMPA in the freshly prepared test solutions, sampled on Days 0, 9 and 19 ranged from 92.5 to 106 % of the nominal concentrations. Concentrations of AMPA in the old test solutions sampled immediately prior to renewal on Days 2, 12 and at test termination on Day 21 ranged from 78.6 to 117 % of the nominal concentrations. The overall mean measured concentrations of AMPA during the test were 7.4, 15, 30, 57 and 120 mg AMPA/L, equivalent to 99, 100, 100, 95 and 100 % of the nominal concentrations, respectively. Since the mean measured test concentrations were within the 80 - 120 % of nominal test concentration, the results of the study are reported as nominal test concentrations.

**Table 8.2.5-22: Analytical results** 

replicate solutions at test termination.

	[mg AMPA/L]						
Nominal concentration	Control	7.5	15	30	60	120	
Day 0 mean concentration (fresh)	8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7.41	15.8	30.9	62.7	127	
Day 2 mean concentration	in Sil	6.21	12.8	24.5	47.2	97.9	
Day 9 mean concentration (fresh)	-	7.05	13.9	29.3	56.3	112	
Day 12 mean concentration	-	7.90	15.9	35.2	58.5	137	
Day 19 mean (fresh)		7.64	14.0	28.0	55.7	114	
Day 21 mean concentration		8.04	15.7	32.4	61.4	133	
Mean measured over 21-day study	-	7.4	15	30	57	120	
% of nominal over 21d Study	-	99	100	100	95	100	

M-CA, Section 8

Page 277 of 847

Page 278 of 847

The 21-day EC₅₀ and NOEC values are given below based on nominal concentrations.

Table 8.2.5-23: Endpoints

Endpoints	AMPA [mg/L]
EC ₅₀ (21 days) for parental survival and immobility	> 120
NOEC (21 days) for parental survival and immobility	120
EC ₅₀ (21 days) for reproduction (95% C.I.)	90 (84 – 94)
NOEC (21 days) for reproduction	15 8 0 20
EC ₅₀ (21 days) for growth (95% C.I.)	90 (84 5 94) 50
NOEC (21 days) for growth	\$0 C F
Overall LOEC	jo 30 jo
Overall NOEC	16 6 18

B. OBSERVATIONS
Survival in the 7.5, 15, 30, 60 and 120 mg AMPA/L treatment groups at test termination was 80, 100, 70, 100 and 90%, respectively. No significant differences were detected in any treatment group in comparison to the control ( $\alpha = 0.05$ , Fisher's Exact test). In the 120 mg AMPAE treatment group, all surviving parental daphnids appeared pale and smaller in comparison to the control organisms from Day 5 through test end. The first day of brood production in the controls and in all AMPA treatments indicated no delay in the onset of egg production at any of the AMPA concentrations tested. No aborted or shed eggs were present in the control or in any of the AMPA treatments. No males or ephippia were observed during the test.

Adult daphnids in the 7.5, 15, 30, 60 and 120 mg AMPA/L treatment groups produced an average of 229, 213, 189, 169 and 59.6 live young per surviving adult, respectively. Dunnett's test indicated there was a statistically significant decrease in mean neonate production in the 30, 60 and 120 mg AMPA/L treatment groups (30, 57 and 120 mg AMPA/L as mean measured concentration) in comparison to the negative control ( $\alpha = 0.05$ ).

In the control group, the mean body length was 5.3 mm and mean dry weight was 0.99 mg. Daphnids in the 7.5, 15, 30, 60 and 120 mg AMRA Literatment groups had mean lengths of 5.2, 5.2, 5.1, 5.3 and 4.3 mm, respectively, and mean dry weights 0.99, 1.0, 0.97, 0.69 and 0.45 mg, respectively. Dunnett's test indicated a significant decrease in length in the 30 and 120 mg AMPA/L (30 and 120 mg AMPA/L as mean measured concentration) treatment groups in comparison to the negative control ( $\alpha = 0.05$ ).

However, the decreases noted in the 30 mg AMPA/L treatment group was not dose related. Dunnett's test indicated there was a statistically significant decrease in dry weight in the 60 and 120 mg AMPA/L (57 and 120 mg AMPA/L as mean measured concentration) treatment groups in comparison to the control  $(\alpha = 0.05).$ 

Table 8.2.5-24: Chronic toxicity of AMPA to Daphnia magna

800	Control	AMPA [mg/L]					
72,72		7.5	15	30	60	120	
Mortality of adults after 25d [%]	25	20	0	30	0	10	
Mean number offspring per adult	227±26.3	229 ±24.8	213 ±26.6	$189 \pm 19.7^{1}$	$169 \pm 22.1^{1}$	$59.6 \pm 13.4^{1}$	
Mean length of of softspring	5.3 ±0.14	5.2 ±0.16	5.2 ±0.12	$5.1 \pm 0.16^{1}$	5.3 ±0.18	4.3 ±0.17	
Mean dry weight of offspring	$0.99 \pm 0.24$	$0.99 \pm 0.12$	1.0 ±0.22	0.97 ±0.25	$0.69 \pm 0.20^{1}$	$0.45 \pm 0.15^{1}$	

Indicates a statistically significant decrease in comparison to the negative control (Dunnett's one-tailed test,  $\alpha = 0.05$ ).

After 21 days of exposure, survival in control group was 75 %. Although survival in the negative control group was slightly below the 80% criterion in OECD 211, this small difference is not considered to have impacted the validity of this study. The surviving daphnids in the control replicates appeared normal and healthy through until test end indicating that the mortality observed was attributed to incidental death and not the health of the organisms. Adult daphnids in the control group produced an average of 227 live young per surviving adult (CV = 11.6 %), well above the validity criterion of  $\geq$  60 live young per surviving adult. Therefore, the study is considered valid according to OECD 211.

#### III. CONCLUSIONS

#### Assessment and conclusion by applicant:

Assessment and conclusion by applicant:
The effects of AMPA (aminomethylphosphonic acid) on the survival, growth and reproduction of Daphnia magna were evaluated in a 21-day reproduction test.

The nominal based EC₅₀ values for reproduction, immobility and growth were 90 mg/L, ≥ 120 mg/L and 90 mg/L, respectively.

The no observed effect concentrations (NOEC) for immobility and growth were 30 mg/L and  $\geq 120$ mg/L, respectively. The NOEC based on reproduction was determined to be 15 mg/L (nominal) for AMPA exposed daphnids.

The study is considered to be valid.

#### Assessment and conclusion by RMS:

1. Information on the study

·	
Data point:	CA8, \$.5,1/008
Report author	Levine, S.L. et al.
Report year	\$20158
Report title	Aminomethylphosphonic acid has low chronic toxicity to
	Daphnia magna and Pimephales promelas
Document No	DOI: 10.1002/etc.2940
10 H &	E-ISSN: 1552-8618
Guidelines followed in study	OECD 211 (2008), OECD 210 (1992)
Deviations from current test	Deviations from current OECD guideline 211 (2012): None
guideline	
GLP/Officially recognised testing	No, not applicable
facilities & South	
Acceptability/Reliability:	Yes/Reliable

#### Full summary

The purpose of the present study was to assess the potential for chronic toxicity of AMPA to fathead minnow (Rimephales promelas) and Daphnia magna. Chronic toxicity to P. promelas was evaluated in a fish early-life stage study. The primary endpoints were larval survival, growth, and development. The chronic toxicity to D. magna was evaluated in a Daphnia reproduction test. The primary endpoints were survival, growth, and reproduction.

Observed-effect concentration for *D. magna* was determined to be 15 mg/L. The NOAEC for P. promelas was determined to be 12 mg/L, the highest concentration tested. The no-

# Materials and methods

Test substance

Synthesis of AMPA was performed by Chemir, and it had a purity of 98.7 %. The water solubility for

AMPA is reported to be 10 500 mg/L (based on glyphosate acid solubility data [RMS Germany. 2013]); therefore, solvent (to aid the dissolution of AMPA into water) was not required for the aquatic exposures. Stock solutions for waterborne exposures were prepared in well water, appeared clear and colorless after mixing, and were stored under refrigerated conditions ( $\sim 4 \pm 1$  °C).

For the *D. magna* reproduction study, primary stocks and test solutions were prepared every 2 d to 3 d during the test. A primary stock solution was prepared in ultraviolet sterilized dilution water at a nominal concentration of 120 mg AMPA/L, equivalent to the highest concentration tested. Proportional dilutions of the primary stock solution were made in dilution water to prepare test solutions at nominal concentrations of 7.5 mg AMPA/L, 15 mg AMPA/L, 30 mg AMPA/L, and 60 mg AMPA/L.

For the fish early–life stage study, stock solutions were delivered using syringe pumps into mixing vessels and mixed with diluent water in a continuous diluter system to prepare nominal test concentrations of 0.75 mg AMPA/L, 1.5 mg AMPA/L, 3.0 mg AMPA/L, 6.0 mg AMPA/L, and 12 mg AMPA/L. Delivery of the test solutions was started 7 d prior to the initiation of the test to achieve equilibrium of the test substance in the test chambers.

Daphnia magna reproduction study—Culturing, exposure, and observations

Daphnia magna are the required cladoceran test species under the Organisation for Economic Co-operation and Development (OECD) 211 guideline [OECD 2008]. Daphnia magna was tested because it is representative of an important group of freshwater invertebrates and has a long and successful history as a test organism in the laboratory. Neonates (juveniles) <24 h old were used to initiate the test and were obtained from established cultures. Parental daphnids were cultured in well water that was filtered with a 0.45- $\mu$ m filter and passed through an ultraviolet sterilizer. The source of well water was characterized as moderately hard water with an average specific conductance of 362  $\mu$ S/cm, hardness of 132 mg/L as CaCO₃, alkalinity of 173 mg/L as CaCO₃, and pH of 8.2 during the 4-wk period immediately preceding the test.

During the 2-wk period preceding the test, culture temperatures ranged from 19.6 °C to 20.8 °C, pH from 8.1 to 8.7, and dissolved oxygen from 7.6 mg/L to 9.5 mg/L. During culturing and testing, daphnids were fed daily with a mixture of yeast, cereal grass medium, and trout chow, as well as a suspension of the freshwater green alga *Pseudokirchnetiella subcapitata*. During the test, organisms in each test chamber were fed 0.5 mL of yeast–cereal–trout thow and 1.0 mL of algae, which represented 0.60 mg C/daphnid/d. Although this amount of feed exceeded the OECD guideline recommended amount of 0.1 mg C/daphnid/d to 0.2 mg C/daphnid/d, an excess amount was fed to maintain sufficient feed in the system to support acceptable reproduction rates, which is an acceptable deviation from the testing guideline.

The 4 adult daphnids used to supply neonates for the test were held for 19 d prior to collection of the juveniles for testing and tad each produced at least 1 previous brood. Adult daphnids in the culture had produced an average of at least 3 young per adult per day over the 7-d period prior to the test. The adults showed no signs of disease or stress, and no ephippia were produced during the holding period. To initiate the test, juvenile daphnids were collected from the cultures and indiscriminately transferred 1 or 2 at a time into the transfer chambers that were impartially assigned to a control or treatment group until each transfer chamber contained 10 daphnids. All animals were released from the transfer chambers into the assigned test chambers below the water surface (to avoid air contact) using wide-bore pipettes to not harm the neonates.

We tested AMPA in a semistatic renewal design with the renewal of test solutions every 2 d or 3 d. Concentrations of AMPA were measured on 3 occasions during the test: at the beginning and end of the first renewal cycle, at the beginning and end of the longest renewal cycle during the second wk of the test, and at the beginning and end of the last renewal cycle. Test chambers were 250-mL glass beakers that contained approximately 200 mL of test solution and were loosely covered with plastic Petri dishes. Beakers were impartially positioned in an environmental chamber that was programmed to maintain the target water temperature  $(20 \pm 1 \, ^{\circ}\text{C})$  throughout the test period. A 16:8-h light:dark photoperiod was used

with a 30-min transition period of low light intensity when lights went on and off to avoid sudden changes so in lighting. Lighting was provided by fluorescent light bulbs that emit wavelengths similar to natural sunlight. At test initiation the light intensity at the water surface of 1 representative test chamber was 296 lux (measured with a SPER Scientific Model 840006C light meter).

Temperature was measured continuously in 2 replicate test chambers in each treatment group, and measurements rotated among replicates in each group. Dissolved oxygen and pH were measured in the newly prepared solutions for each treatment group at test initiation and on renewal days and in the old solutions from 2 replicate test chambers in each treatment and control group on renewal days and at test termination. When a first-generation daphnid was found dead, measurements of temperature, dissolved oxygen, and pH were taken in the replicate at that time and then discontinued. Hardness, alkalinity, and specific conductance were measured in batch solutions of the negative control, the highest test concentration at test initiation and on 1 renewal day each week (day 7 and day 14); and pooled replicate solutions at test termination. Total organic carbon (TOC) was measured in the dilution water at test initiation and termination using a Shimadzu model TOC-VCSH analyzer and following the Standard Methods for the Examination of Water and Wastewater [American Public Health Association]. Hardness and alkalinity were measured by titration based on procedures in the Standard Methods for the Examination

of Water and Wastewater [American Public Health Association].

First-generation daphnids were observed daily during the test for immobility, the onset of reproduction, and clinical signs of toxicity. Following the onset of reproduction, the second- generation daphnids were counted 3 times per week and at test termination (day 21). Body lengths and dry weights of the surviving first-generation daphnids were measured at the end of the exposure period.

Fish early—life stage study—Culturing, exposure, and observations

Test methodology followed the procedure outlined in the OECD 210 test guideline for P. promelas with the exception of doubling the required level of replication [OECD 1992]. We selected P. promelas for the early-life stage study based on past use and ease of handling in the laboratory. Embryos (Chesapeake Cultures) were examined under a dissecting inscroscope to select healthy, viable specimens at approximately the same stage of development (<24 h). Embryos collected for use in the test were from 10 individual spawns and were <24 h old when the test initiated. Test chambers were 9-L glass aquaria filled with approximately 7 L of test solution and contained an embryo incubation cup attached to a reciprocating rocker arm (2 rpm) for water circulation during embryo incubation. To initiate the test, groups of 1 to 3 embryos were impartially distributed among incubation cups until each cup contained 20 embryos. A single incubation cup constructed from 50-min-diameter glass cylinders with 425-um nylon screen mesh attached to the bottom was placed into each test chamber. The incubation cup with the embryos was impartially assigned to each of the control and treatment groups.

The test was conducted in a semperature-controlled environmental chamber designed to maintain the target test temperature of 25 \$ \$ c throughout the test period. Temperature was measured in each test chamber at the beginning of the test, weekly during the test, and at the end of the test using a liquid-in-glass thermometer. Temperature also was monitored continuously in 1 negative control replicate using a Fulscope ER/C Recorder. Fluorescent light bulbs that emit wavelengths similar to natural sunlight were used on a 16:8-le light:dark photoperiod. A 30-min transition period of low light intensity was provided when lights went on and off to avoid sudden changes in lighting.

The negative dilution water) control and AMPA test concentrations were delivered in a continuous-flow diluter. Syringe pumps (Harvard Apparatus) delivered the stock solutions (at a rate of 30 µL/min) into mixing chambers and mixed with dilution water (at a rate of 125 mL/min) to achieve the target test The flow of test water from the test of the test of the test to ensure that flow rates varied by no more than  $\pm$  10% of the mean for the 4 replicates. The diluter flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume additions of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume addition of test water in each test chamber per flow rate was adjusted to provide approximately 6 volume addition of test water in each test chamber flow rate was adjusted to provide approximately 6 volume addition of test water in each test chamber flow rate was adjusted to provide approximately 6 volume addition of test water in each te

day. The general operation of the diluter was checked visually at least 2 times/d during the test and at least 8 once at the end of the test.

According to the OECD guideline, concentrations above the 96-h lethal concentration for 50% of the population or 10 mg/L, whichever is lower, need not be tested. To assure that a mean measured concentration ≥10 mg/L was tested, the highest nominal test concentration of 12 mg/L and the dower concentrations of 6 mg/L, 3 mg/L, 1.5 mg/L, and 0.75 mg/L were selected. Stock solutions were stored under refrigerated conditions, and fresh aliquots were placed in the syringe pumps daily daring the test. Water samples were collected from 1 test chamber of each treatment and control group & d prior to test initiation to confirm the operation of the diluter. Water samples were collected from alternating replicate test chambers of each treatment and control group on day 0, day 7, day 14, day 21, day 28, and day 33 (test termination) to determine concentrations of the test substance in the test chambers. All samples were collected at mid-depth in the test chambers, placed in glass vials, and processed immediately for analysis. Dissolved oxygen and pH were measured in alternating replicates of each treatment and control group at the beginning of the test, weekly during the test, and at the end of the test. Hardness, alkalinity, and specific conductance were measured in alternating replicates of the negative control (dibition water) and the highest concentration treatment group at the beginning of the test, weekly during the test and at the end of the test. Hardness and alkalinity were measured by titration based on procedures in Standard Methods for the Examination of Water and Wastewater [American Public Health Association], and specific conductance was measured using an Acorn Series Model CON6 Conductivity-Temperature meter.

During the first day of exposure, embryos were observed twice for mortality and fungal infection. Thereafter, until hatching was complete, observations of embryo mortality and the removal of dead embryos were performed once daily. When hatching reached >90 % in the control groups on day 5 of the test, the larvae were released to their respective test, chambers and the posthatch period began. During the 28-d posthatch exposure period, the larvae were observed daily to evaluate the mortality and the numbers of individuals exhibiting clinical signs of toxicity of almormal behavior. From these observations, time to hatch, hatching success, and posthatch growth and survival were evaluated. Hatching success was calculated as the percentage of embryos that hatched successfully. Posthatch survival was calculated from the number of larvae that survived to test termination as a percentage of the number of embryos that hatched successfully.

Newly hatched larvae were fed live brine shrimp nauplii (Artemia sp.) 3 times/d during the first 7 d of the posthatch period. Thereafter, they were fed live brine shrimp nauplii 3 times/d on weekdays and at least 2 times/d on weekends. Fish were not red for approximately 48 h prior to the termination of the test to allow for clearance of the digestive tract before weight measurements were made. To ensure that the feeding rate per fish remained constant, rations were adjusted at least weekly. The test chamber loading rate (the total wet wt of fish per liter of water in the tank) at the end of the test was 0.32 g fish/L.

Posthatch growth of Repromelas was evaluated at the conclusion of the 28-d posthatch exposure period. Total length for each sarvaving fish was measured to the nearest 1mm using a metric ruler, with wet and dry weights measured to the nearest 0.1 mg using an analytical balance. Fish were placed in an oven at 60 °C for up to approximately 48 h to obtain dry weight data.

#### Analytical method for detection of AMPA

Samples were chluted, as appropriate, with freshwater. The 2.0 mL of diluted sample and/or external calibration standards were placed into the 15-mL test tube. Then, 1.0 mL of 0.37 M aqueous potassium tetraborate was added to each test tube, followed by 2.0 mL of 0.025 M NBD-C1 (methanolic) for derivatization. Solutions were capped, mixed, and heated at approximately 80 °C for 40 min. Next, 1.0 mL and sturbed for approximately 10 mere analyzed on an Agilent Series 1100/1200 mere analyzed on an Agilent Series 1100 variable wavelength detector at 500 nm. Chromatographic separations were achieved using a YMC-Pack ODS-AM (150 mm × 4.6 mm, 3 μm particle size) analytical column at a temperature of 40 °C and eluted over a gradient of 0.1% H₃PO₄ (solvent A) and CH₃CN (solvent B). The retention time for AMPA was approximately 6.5 min to 7.3 min and the method limit of quantitation for these analyses was defined as 0.4 mg AMPA/L.

#### Statistical and power analyses

Test endpoints analyzed statistically in the Daphnia test for first-generation daphnids were survival, reproduction (the number of live young produced per 21-d surviving adult), and growth (length and dry wt). Neonates produced by those first-generation daphnids that did not survive the full 21 d were excluded from analysis of reproduction.

Test endpoints analyzed statistically in the fish early-life stage test were hatching success, Parval survival, and growth (total length, wet wt, and dry wt). Data on time to hatch were evaluated by visual interpretation.

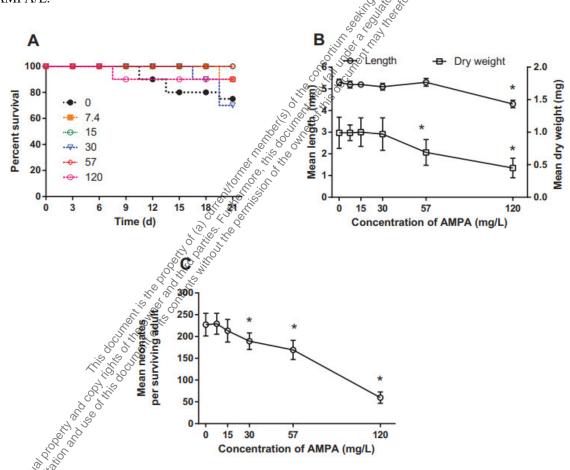
Discrete-variables data were analyzed using Fisher's exact test to identify treatment groups that showed a statistically significant difference ( $p \le 0.050$ ) from the negative control. All continuous-variable data were evaluated for normality using the Shapiro-Wilk test and for homogeneity of variance using Levene's test (p = 0.010). When the data passed the assumptions of normality and homogeneity of variance, those treatments that were significantly different from the control means were identified using the 1-tailed Dunnett's test ( $p \le 0.050$ ). All statistical tests were performed using a personal computer with SAS software. The results of the statistical analyses were used to aid in the determination of the no-observedadverse effect concentration (NOAEC), defined as the greatest test concentration that produced no significant treatment-related adverse effects on survival, reproduction, or growth.

Results

Daphnia magna survival, growth, and reproduction

Water temperatures were maintained within the targeted range of  $20 \pm 1$  °C, dissolved oxygen concentrations remained ≥76 % of saturation (6.8 mg/L), and pH ranged from 7.1 to 8.6 during the test. Specific conductance, hardness, and alkalinity were similar between the control and treatment groups and did not appear to be influenced by AMPA. The TOC is the dilution water at test initiation and termination IL TO was <1 mg C/L.

Table 8.2.5-25: Means and ranges of water quality measurements taken during the 21-Day D. magna exposure to AMPA


Mean Measured	Mean ± Std. Dev. and Range of Measured Parameters							
Concentration	Temperature Dissolv	ed Oxygen 1	Hardness ²	Alkalinity 2	Conductivity 4			
(mg AMPA/L) (°C)		mg/L) pH	(mg/L as CaCO ₃ )	(mg/L as CaCO ₃ )	(µS/cm)			
6, 14, 74,								
Negative Control	19.8 ± 0.55 > 8.2	$2 \pm 0.58$ $8.4 \pm 0.10$	$135 \pm 2$	$167 \pm 5$	$339 \pm 46$			
Negative Control		2 - 9.1) $(8.3 - 8.6)$	) (132 - 136)	(160 - 171)	(280 - 391)			
7.4	19.9. <b>£</b> 0, <b>48</b> ⊘ 8.0	$0 \pm 0.60$ $0.4 \pm 0.09$	) <u></u>					
7.4	(19,2 - 20.7) (7.	1 - 9.1) $(8.3 - 8.6)$	)		-			
15	19.9±0.50 7.9	$0 \pm 0.65$ $8.4 \pm 0.08$	3					
15	(19.1 - 20.8) (6.9)	9 - 9.1) $(8.2 - 8.6)$	)					
30		$0 \pm 0.66$ $0.3 \pm 0.10$	)					
30	(6.	8 - 9.1) $(8.2 - 8.5)$	)					
57		$0 \pm 0.60$ $8.2 \pm 0.2$	3					
31	(19.1 – 20.6) (7.	0 - 9.1) $(7.7 - 8.5)$	)					
120	$20.1 \pm 0.54$ 8.0	$0 \pm 0.54$ $7.9 \pm 0.4$	$139 \pm 2$	$164 \pm 6$	$340 \pm 46$			
120	(19.1 – 20.7) (7.	1 - 9.1) $(7.1 - 8.4)$	) (136 – 140)	(156 - 170)	(274 - 381)			

A dissolved oxygen concentration of 9.1 mg/L represents 100% saturation at 20°C in freshwater. Any recorded dissolved oxygen measurement greater than 100%

Measured concentrations of AMPA for the D. magna study were close to nominal concentrations throughout the renewal periods. Concentrations of AMPA in the new test solutions prepared and sampled on day 0, day 9, and day 19 ranged from 92.5% to 106% of the nominal concentrations. Concentrations of AMPA in the old test solutions sampled immediately prior to renewal on day 2, day 12, and at test termination on day 21 ranged from 78.6% to 117% of the nominal concentrations. When the measured concentrations of the samples collected during the test were averaged for each treatment group, the mean measured test concentrations were 7.4 mg AMPA/L, 15 mg AMPA/L, 30 mg AMPA/L, 57 mg AMPA/L, and 120 mg AMPA/L.

saturation is reported as 9.1 mg/L.

There was no significant effect of AMPA on individually exposed first-generation daphnids across the treatments, and survival was ≥80%. A summary of adult survival is presented in Figure A below 1.7.4 mg AMPA/L, and 120-mg AMPA/L groups was 75 %, 80 %, 100 %, 70 %, 100 %, and 90 %, respectively. Although survival in the negative control group was slightly below the 80 % criterion in OECD guideline 211, it is not considered to have impacted the validity of the present study because of the small difference and with the final mortality occurring near the end of the study. In addition, there was ≥80% survival in all treatment groups. The surviving daphnids in the control replicates appeared normal and healthy through the end of the test, indicating that the mortality observed was attributed to incidental ceath and not the health of the organisms. In addition, the percentage survival of the control replicates was within the control criterion of 70% as specified in the American Society for Testing and Materials standard guide E 1193-97 [ASTM International. 1997]. Survival in the 7.4-mg AMPA/L, 15-mg AMPA/L, 30-mg AMPA/L, 57-mg AMPA/L, and 120-mg AMPA/L treatment groups at test termination didenot follow a concentrationresponse pattern and was 80 %, 100 %, 70 %, 100 %, and 90 %, respectively, No significant differences in survival were detected in any of the AMPA treatment groups in comparison with the control (p > 0.05, Fisher's exact test). Consequently, the no-observed-effect concentration (NOEC) for survival was 120 mg AMPA/L.



Reproductive endpoints the control (0 mg/L).

Daphnids in the groups that a groups tha Figure \$2.5-1: (A) Survival (percentage) of Daphnia magna exposed to increasing concentrations of AMPA for 21 d. (B) Sublethal endpoints in 21-d chronic D. magna: body length and dry weight. (C) Reproductive endpoint neonates per surviving adults. * Statistically significant difference (p < 0.05) from

Daphnids in the 7.4-mg AMPA/L, 15-mg AMPA/L, 30-mg AMPA/L, and 57-mg AMPA/L treatment groups that survived until test termination generally appeared normal. In the 120-mg AMPA/L treatment

M-CA, Section 8 Page 285 of 847

group, all surviving first-generation daphnids appeared pale in comparison with the control organisms from 80 day 5 through the end of the test. Daphnids in this treatment group were also observed to be smaller that the control organisms from day 7 through the end of the test. All surviving daphnids in the 7.4 ang AMPA/L, 15-mg AMPA/L, 30-mg AMPA/L, and 57-mg AMPA/L treatment groups were normal in appearance throughout the test and at test termination, with the exception of 1 daphnid in the strange AMPA/L treatment group that appeared pale on day 6 of the test but appeared normal from day 7 to the end of the test.

A summary of production of neonates by surviving first-generation daphnids is presented in Figure C above. The first day of brood production in the negative controls and in all AMPA treatment replicates was day 7, day 8, or day 9 of the test, indicating that there was no apparent delay in the onset of preduction at any concentration of AMPA tested. Immobile neonates were noted in the control, 7.4 mg AMPA/L, and 57– mg AMPA/L treatment groups. However, the mean number of immobile neonates per surviving adult in these replicates was less than 1. No aborted broad or aborted eggs were present in the control or any of the AMPA treatment replicates. No males or ephippia were produced during the test.

Summaries of the mean lengths and dry weights of surviving first-generation daphnids are presented in Figure 8.2.5-2 'B' below. Daphnids in the negative control group averaged 5.3 mm in length and 0.99 mg in dry weight. Daphnids in the 7.4-mg AMPA/L, 15-mg AMPA/L, 30-mg AMPA/L, 57-mg AMPA/L, and 120-mg AMPA/L treatment groups had mean lengths of 52 mm, 5.2 mm, 5.1 mm, 5.3 mm, and 4.3 mm, respectively, and mean dry weights of 0.99 mg, 1.0 mg, 0.97 mg, 0.69 mg, and 0.45 mg, respectively. There were significant decreases in length in the 30-mg AMPA/L and 120-mg AMPA/L treatment groups in comparison with the negative control (\$\sigma 0.05\$) but not in the 57-mg AMPA/L treatment group. There were significant decreases in dry weight in the 57-mg AMPA/L and 120-mg AMPA/L treatment groups in comparison with the negative control ( $p \le 0.05$ ). Consequently, the NOEC for growth was 30 mg AMPA/L.

Adult daphnids in the negative control group produced an average of 227 live young per surviving adult (coefficient of variance of 11.6%), well above the validity criterion of ≥60 live young per surviving adult. Adult daphnids in the 7.4-mg AMPA/L, 15-mg AMPA/L, 30-mg AMPA/L, 57-mg AMPA/L, and 120mg AMPA/L treatment groups produced at average of 229, 213, 189, 169, and 59.6 live young per surviving adult, respectively. There was a significant decrease in mean neonate production in the 30-mg AMPA/L, 57-mg AMPA/L, and 120-mg AMPA/L treatment groups in comparison with the negative control ( $p \le 0.05$ ). Consequently, the NOAEC for reproduction is 15 mg AMPA/L.

Pimephales promelas embryo hatching success, growth, and survival

Samples of the test solutions collected during the test had measured concentrations that ranged from 82.5 % to 117 % of nominal concentrations. When the measured concentrations of test solution samples collected on day 0, day 7, day 14, day 21, day 28, and day 33 of the test were averaged for each treatment group, the mean measured test concentrations were 0.73 mg AMPA/L, 1.5 mg AMPA/L, 2.9 mg AMPA/L, 6.0 mg AMPA/L, and 12 mg AMPA/L, which represented 97 %, 100 %, 97 %, 100 %, and 100 % of nominal concentrations, respectively. Therefore, the results of the present study have been based on mean measured concentrations. The analytical results are summarized in Supplemental Data, Table S4.

Hatching success of the P. promelas embryos is summarized in Figure 8.2.5-2'A' below. Daily observations of the embryos indicated that there were no apparent differences in time to hatch between the negative control group and any of the AMPA treatment groups. All P. promelas embryos in the control and treatment replicates hatched by day 5 of the test. Hatching reached >90 % in the control groups on day 5 of the test at which time the larvae were released to their respective test chambers.

groups was 99 %, 100 %, 100 %, 100 %, 100 %, and 99 %, 100 % the AMPA treatment groups in comparison with the negative control (p > 0.05). Larval survival in the negative control, 0.73–mg a.i./L, 1.5–mg a.i./L, 2.9–mg a.i./L, 6.0–mg a.i./L, and 12–mg a.i./L treatment groups was 91 %, 91 %, 93 %, 90 %, 91 %, and 92 % (Figure A below), respectively; and there were no statistically significant differences in hatching success in any negative control (p > 0.05). Larval survival in the negative control, 0.73–mg a.i./L, 1.5–mg a.i./L, 6.0–mg a.i./L, and 12–mg a.i./L treatment groups was 91 %, 91 %, 93 %, 90 %, 91 %, and 92 % (Figure A below), respectively; and there were no statistically significant differences in hatching success in any negative control (p > 0.05). Larval survival in the negative control, 0.73–mg a.i./L, and 12–mg a.i./L treatment groups was 91 %, 91 %, 93 %, 90 %, 91 %, and 92 % (Figure A below), respectively; and there were no statistically significant differences in hatching success in any negative control (p > 0.05). Larval survival in the negative control, 0.73–mg a.i./L, and 12–mg a.i./L treatment groups was 91 %, 91 %, 93 %, 90 %, 91 %, and 92 % (Figure A below), respectively; and there were no statistically significant differences in hatching success in any negative control (p > 0.05). Larval survival in the negative control (p > 0.05). Larval survival in the negative control (p > 0.05). Larval survival in the negative control (p > 0.05).

statistically significant differences in hatching success in any of the AMPA treatment groups in comparison with the negative control (p > 0.05). In addition, there were no statistically length, wet weight, and dry weight (Figure B below) among fish in the AMPA treatment groups in comparison with the negative control (p > 0.05). Based on an evaluation of each of these endpoints the NOAEC for growth was 12 mg a.i./L.

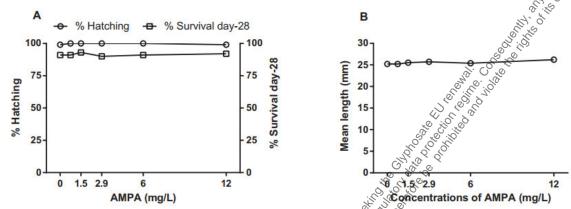



Figure 8.2.5-2: (A) Hatching success (percentage) and survival (percentage) at day 28 of *Pimephales* promelas in an early-life stage study with aminomethylphosphonic acid (AMPA). (B) Body length (millimeters) of *P. promelas* exposed to AMPA.

Table 8.2.5-26. Means and Ranges of Water Quality Measurements Taken During the 33-Day P. promelas Exposure to AMPA

Mean Measured	Mean #SD and Range of Measured Parameters						
Concentration (mg AMPA/L)	Temperature (°C)	DO ² (mg/L)	⁽⁰⁾ ⁽¹⁾	Hardness ² (mg/L as CaCO ₃ )	Alkalinity ² (mg/L as CaCO ₃ )	Conductivity ² (µS/cm)	
Assay Control	$24.8 \pm 0.27$ (24.4 - 25.4)	7.9 ± 0.40 (7.4 ± 8.2)	8.1 ± 0.10 (8.0 – 8.2)	$136 \pm 3$ $(132 - 140)$	$172 \pm 5$ $(166 - 178)$	$378 \pm 11$ (361 – 393)	
0.73	$24.7 \pm 0.59$ (23.7 – 25.5)	7.9±0.39 (7.458.20	$8.1 \pm 0.09$ $(8.0 - 8.2)$	 			
1.5	$24.9 \pm 0.66$ (23.9 – 25.7)	7.9 ± 0.39 (7.3 ⊖ 8.2)	$8.1 \pm 0.10$ $(8.0 - 8.2)$				
2.9	$25.0 \pm 0.52$ (24.2 – 25.6)	$7.9 \pm 0.33$ (7.5 - 8.2)	$8.1 \pm 0.12$ $(7.9 - 8.2)$				
6.0	25.0 ± 0.46 (24.3 - 25.73)	$7.9 \pm 0.34$ (7.5 - 8.2)	$8.0 \pm 0.12$ $(7.9 - 8.2)$				
12	25.1 € 0.18 5 (24.3 -25.7)	$7.9 \pm 0.37$ $(7.4 - 8.2)$	$7.9 \pm 0.13$ $(7.8 - 8.1)$	$138 \pm 2$ $(136 - 140)$	$174 \pm 4$ $(170 - 180)$	$379 \pm 11$ $(365 - 395)$	

#### Conclusion

For D. magnate sposed to concentrations ranging from 7.4 mg AMPA/L to 120 mg AMPA/L for 21 d, reproduction was the most sensitive endpoint with significant treatment-related effects noted at 30 mg AMPA/L, 57 mg AMPA/L, and 120 mg AMPA/L. Consequently, the NOAEC based on reproduction was as 12 mg AMPA/L, the entrations from conservative magnitude, indicating no unacceptal environ mental exposure to AMPA. 15 mg AMPA/L. No impact was noted on hatching success, survival, or growth in P. promelas embryos exposed to concentrations ranging from 0.73 mg AMPA/L to 12 mg AMPA/L for 33 d. Consequently, the NQAEC was 12 mg AMPA/L, the greatest concentration tested. These values exceed the worst-case water concentrations from conservative modelling and surface water monitoring data by 2 to 3 orders of magnitude, indicating no unacceptable chronic risk for vertebrate and invertebrate aquatic organisms from

## Assessment and conclusion

#### Assessment and conclusion by applicant:

Chronic toxicity tests of the glyphosate environmental metabolite aminomethylphosphonic acid (AMPA) were performed with fathead minnow (Pimephales promelas) and Daphnia magna. During a 21-d exposure period under semi-static test conditions the effects on survival, growth, and reproduction of the cladoceran Daphnia magna were determined resulting in a no-observed-effect concentration (NOEC) of 15 mg AMPA/L. During a 33-d exposure period under continuous renewal test conditions the effects on time to hatch, hatching success, posthatch growth and survival of the fish Pimephales promelas were assessed resulting in an NOAEC of 12 mg AMPAL the highest tested concentration. Test methodology followed the procedure outlined in the OECD 218 test guideline for P. promelas. For the chronic test on Daphnia magna the OECD 211 guideline is mentioned in the full text.

The study is well documented and all relevant information, e.g. information on the test item, test design, application method and implementation of the study, is available. In addition, a chemical analysis of test solutions was performed. All information for evaluation of the study is given. The study is considered as reliable.

# Reproductive and development toxicity to an additional aquatic invertebrate species CA 8.2.5.2

As glyphosate is not an insecticide or insect growth regulator, studies on the reproductive and development toxicity to an additional aquatic invertebrate species are not required. in the second

## Development and emergence in Chironomus riparius

As glyphosate is not an insecticide or insect growth regulator, studies on the development and emergence in Chironomus riparius are not required. Nevertheless, the following studies are available.

# Information on the study

Data point: CA 8.2.5.3/001

Report author 2020

State of the state Report year Report title MON 77973: A Study on the Toxicity to the Sediment Dweller

Chironomus riparius Using Spiked Water Report No 20FV2ME (Interim Report no analytical report presented)

Document No S Guidelines followed in study OECD guideline 219 (2004)

Deviations from current test Deviations from the guideline OECD 219 (2004): guideline Minor:

> Samples of sediment and pore water were not taken or analysed based on the concentrations of the test item in the overlying water measured during the range-finding test (>80 % of nominal at test start in the overlying water column at start of exposure and > 50 % of nominal for the duration of the rangefinding trial). Analysis of overlying water only is therefore

considered to be sufficient and to reflect the exposure situation in this study. An impact on the integrity of this study can therefore be excluded.

Several midges in the control emerged later than required in the guideline. Since total emergence in the control exceeded 96% of inserted animals, and since more than 89 % of the emerged control midges had emerged by day 23, this is not considered to have any impact on the integrity of the study

No, not previously submitted Previous evaluation

GLP/Officially recognised

Yes

testing facilities

Valid Acceptability/Reliability: Category study in AIR 5 Category 1

dossier (L docs)

2. Full summary
Executive Summary
In a sediment-water toxicity test using spiked water first-instar larvae of freshwater dipteran Chironomus riparius were exposed to MON 77973 concentrations of 100 and 1000 mg a.e./L according to OECD 219 for 28 days. Exposure concentrations were based on results of a range-finding test conducted at 0.1 – 1000 mg a.e./L. The test was conducted using a limit test design at the two rates with eight replicates prepared per test item concentration and the control, with 20 organisms added per test vessel. Three times per week, the larvae were fed using a TetraMin® suspension, with the food ration increased accordingly during the test. At least three times per week the test vessels were observed in order to visually assess any behavioural differences compared with the control Daily from day 11 the vessels were checked for emerged midges.

A concentration-response relationship of MON \$7973 was not observed for emergence ratio and development rate after 28 days of exposure. A statistically significant inhibition compared to the control was not found up to and including the highest test concentration. Glyphosate was not detected in the control group. The measured concentrations of glyphosate at test initiation were 89.4 and 81.7 % of nominal for the 100 and 1000 mg a.e/L test concentrations, respectively. At day 28 the measured concentrations were 55.8 and 71.1 % of nominal for the 30% and 1000 mg a.e/L test concentrations, respectively. The biological results are expressed based on nominal concentrations in accordance with the guideline requirements. Therefore, NOEC and LOEC values were ≥ 1000 mg a.e./L and > 1000 mg a.e./L, respectively, based on nominal test concentrations

#### I. MATERIALS AND METHODS

#### A. MATERIAE

#### 1. Test material:

Test item: MON 77973 (Glyphosate acid)

Description. White crystalline powder

Lot/Batch #: 11493988

Purity? 97.7 wt% (acid equivalent: a.e.)

Wehicle and/or positive control:

Vehicle: Test medium

3. Test organism:

Species: Chironomus riparius (Meigen) Age of animals: 1st instar larvae 20 larvae/vessel Loading:

Fill volume: 570 mL

8 replicates per test item concentration and the control Replication:

House cultures, originally supplied by Aventis, De65962 Source of animals:

Frankfurt am Main

TetraMin® suspension three times a week®

Feed rate:

Day 0 - 10 = 0.25 - 0.5 mg TetraMin® per day

Day 11 until end = 0.5 long TetraMin® per day

Egg masses and hatching larvae were maintained for at least 5 days prior to addition to the test vessels as 1st instar larvae.

Animal addition occurred one day prior to spiking.

Acclimation period:

Diet/Food:

Annex to Regulation 283/2013

Animal addition occurred after sediment had been added to test vessels and covered with test medium and acclimated

under test conditions for 2 days.

4. Environmental conditions:

Yes, according to OECD 219 (2004), peat content 4.8% of Artificial Sediment:

sediment dry weight; sediment water ratio approx. 1:4

Temperature:

16 h light:8 h dark Photoperiod:

pH range Duration: Dissolved oxygen range

Hardness: 254-336 mg/L CaCO₃

5. Dates of experimental work: 10th February to 24th March 2020

## B. STUDY DESIGN AND METHODS

## Experimental conditions

First-instar larvae were exposed to MON 77973 concentrations of 100 and 1000 mg a.e./L according to OECD 219 for 28 days. Eight replicates were used per test item concentration and the control designed as a limit test. Prior to application of the test item, the formulated sediment was conditioned for 7 days. For this purpose it was covered with Medium M4 (sediment:water volume ratio 1:4 ( $\pm \leq 0.5$ )) and was incubated under the same conditions which prevailed in the subsequent test.

A stock solution was prepared by adding 10.0 g nominal of the test item to 1000 mL of test medium. After 2 min ultrasonication and 30 min stirring, the test item had dissolved and the stock solution appeared clear. This stock solution was used undiluted as the application solution for preparation of treatment of 1000 mg/L 100 mL of this stock solution were diluted to 1000 mL in order to prepare the application solution for treatment of 100 mg/L. The chironomid larvae were introduced into the test vessels one day prior to spiking. One day after addition of the larvae, the test item was added to the overlying water of each test vessel.

Per test vessel, an aliquot of 57 mL (nominal) of the application solutions were carefully mixed with the Sominal volume of 513 mL of test medium present in each test vessel to obtain a total volume of 570 mL. Vessels were aerated daily on workdays in all test vessels. Three times per week, the larvae were fed with TetraMin®. The food ratio was 0.25-0.5 mg TetraMin® per day and larva from day 0 to day 10 and 0.5-1 mg TetraMin® per day and larva from day 11 until the end of the exposure. At least three times per

week the test vessels were observed in order to assess visually any behavioural differences compared with so the control. Daily from day 11, the vessels were checked for emerged midges. Dissolved oxygen content and pH were measured in one test vessel of each concentration level and the control at start of exposure and once per week; in all test vessels at the end of the exposure. Temperature was monitored in one test vessel of each concentration level and the control at start of exposure and once per week and in all lest vessels at the end of the exposure.

### **Analytical procedures**

This is an ongoing study and details to analytical work are not yet available.

To verify the nominally applied concentrations, samples were taken from the overlying water.

## **Statistical calculations**

To determine whether there were sex-specific effects, a Chi²-Contingency test (one-sided greater; alpha 0.05) was performed. Since there was no significant effect on the sex ratio, the biological parameters emergence ratio and development rate were evaluated for pooled male and temale emerged midges. Dunnett's multiple t-test procedure was used to evaluate whether there were againficant differences between the control and the various test item concentrations (emergence ratio and development rate). Normaldistribution of data was tested with the Kologorov-Smirnov test (alpha of the SLevene's test (p: 0.01) was used to test variance homogeneity. In one of the replicates, zero midges emerged during the test. The reasons are not clear, since oxygen concentrations, aeration monitoring and observation of test vessels documentation gave no hint. This replicate was therefore excluded from statistical evaluation of emergence. The statistical software package ToxRatPro® 3.3.0 (ToxRat Solutions GmbH, Naheweg 15, D-52477 Alsdorf) was used for these calculations.

# II. RESULTS AND DISCUSSION

### **FINDINGS**

### Analytical data:

This study summary presented the biological procedures will be presented in a final report.

Samples were taken from the overlying water at day 0 and day 28 to verify the nominally applied concentrations. The results are summarised below.

Table 8.2.5-27: Summary of analytical results. Concentrations of glyphosate (a.e.) measured in the overlying water.

Test period [d]	Nominal Concentration Timg test item/L	Nominal concentration [mg a.e/L]*	Measured concentration [mg a.e./L]	% of nominal concentration
0	© Control	0	n.d.	n.a.
0 0 0	100	<mark>97.7</mark>	87.3	<mark>89.4</mark>
0 52 6 33	1000	<mark>977</mark>	<mark>798</mark>	81.7
285°°	Control	<mark>0</mark>	n.d.	n.a.
	100	<mark>97.7</mark>	<mark>54.5</mark>	<mark>55.8</mark>
28	1000	<mark>977</mark>	<mark>695</mark>	<mark>71.7</mark>
*Using the test item pur **Control of the control	ity of 97.7 wt% (a.e.); limit of detection: 3 mg/L fo	it of quantification (LOQ) or water)	was 10 mg/L for water	
Tusing the test item pur red.: not detectable (< lin n.a.: not applicable.				
Glyphosate Renewal Group	AIR 5 – July 2020		Doc ID: 110054-M	ICA8_GRG_Rev 1_Jul_2020

The initially measured concentrations of the test item in the overlying water represent ≥80 % of the nominal concentrations. The biological results are therefore expressed based on nominal concentrations is accordance with the guideline requirements.

### Biological data:

Table 8.2.5-28: Number and emergence ratio of midges emerged per replicate of each treatment at end of exposure.

Nominal concentration [mg a.e./L]		Number of midges emerged							
Replicate	a	b	с	d	e	f 🐼		h	Mean
Control	18	17	19	18	18	19,00	7	17	18.1
100	17	17	17	17	18	-31 ² 20 ² 4	18	18	17.8
1000	0	17	18	19	20 🔊	A 18	19	15	15.8
		Emergence ratio							
Control	0.90	0.85	0.95	0.90	0.90 ×	0.95	0.95	0.85	0.906
100	0.85	0.85	0.85	0.85	9.20	1.00	0.90	0.90	0.888
1000	0.00	0.85	0.90	0.95	√£.00	0.90	0.95	0.75	0.788

Table 8.2.5-29: Mean development rates [1/d] of the midges (males & females, pooled) per replicate of each treatment and mean development rate per treatment.

Concentration [mg a.e./L]	Control Co. S	100	1000
Replicate	HO HO HO		
a	0,04,121	0.04916	-
b	0,05340	0.05645	0.05087
c	0 <u>0</u> 04850	0.05309	0.05002
d	0.04829	0.04557	0.04839
e ä	0.05157	0.05577	0.04557
f jf	0.05235	0.04871	0.05165
g Soot	0.05067	0.04970	0.05188
h tijago	0.05105	0.04944	0.04995
Mean of it	0.04963	0.05099	0.04976
SDE	0.003826	0.003760	0.002193

resident observations were recorded. Across all treatments, emerged midges were at 100 mg a.e./L. A concentration-response relationship of MON 77973 was not observed for emergence that of and development rate after 28 days of exposure. A statistically significant inhibition compared to the control was not found up to and including the highest test concentration. Therefore, NOEC and LOEC values were ≥ 1000 mg a.e./L dry sediment and > 1000 mg a.e./L, respectively.

**Validity criteria**

Glyphosate Renewal Group AIR 5 – July 2020

In order to consider the test to be valid according to OECD 219, the following conditions should be fulfilled:

- The emergence in the controls must be at least 70% at the end of the test
- Emergence to adults from control vessels should occur between 12 and 23 days after their insertion into the vessels
- At the end of the test, pH and the dissolved oxygen concentration should be measured in each vessel. The oxygen concentration should be at least 60% of the air saturation value, at the temperature used, and the pH of overlying water should be in the 6-9 range in all test wessels.
- the water temperature should not differ by more than  $\pm 1.0$  °C.

Several midges in the control emerged later than required in the guideline. However, since ot all emergence in the control exceeded 90% of inserted animals, and since more than 89% of the emerged control midges had emerged by day 23, this is not considered to have any impact on the integrity of the study. The study is therefore considered valid.

## III. CONCLUSIONS

## Assessment and conclusion by applicant:

\@ In a sediment-water toxicity test using spiked water, Chironomus riparius was exposed to MON 77973 concentrations of 100 and 1000 mg a.s./L according to OECD 219. Based on nominal concentrations, the derived NOEC and LOEC were  $\geq 1000$  mg a.s. L. and > 1000 mg a.s./L,

The study is considered valid for risk assessment purposes

Assessment and conclusion by RMS:	
_ O X X	
(S) (S) (S)	

### Sediment dwelling organisms CA 8.2.5.4

This study is required, if the  $EC_{10}$  or NQEC of the chronic Daphnia test is below 0.1 mg/L and the test substance is considered to partition to the seedment, according to the EFSA aquatic guidance document (2015). Since the chronic Daphnia endpoint is 12.5 mg/L, this study is not considered necessary.

### Effects on algal growth CA 8.2.6

Studies on effects of the active substance glyphosate and its relevant metabolites on aquatic macrophytes to fulfil the data requirements according to EU Regulation No 283/2013 are presented in the following.

### CA 8.2.6.1 Effects on growth of green algae

Studies considering the effects of glyphosate on algal growth were assessed for their validity to current and relevant guidelines for glyphosate and are presented in the following table. Where appropriate position papers are available as indicated in the table below, which contain details regarding the statistical reevaluation of the study to current requirements. Studies previously evaluated in either the monograph 2001 or the RAR 2025 were also included in this assessment. Study summaries for all studies are presented in this section below.

Table 0212 Studies on effects of glyphosate and metabolites to green algae

Annex point	Study	Study type	Test species	Substance(s)	Status	Remark
CA 8.2.6.1/001	2002	96 h algae inhibition	Pseudokirchneriella subcapitata (Raphidocelis subcapitata)	IPA salt	valid	-

Studies on effects of glyphosate and metabolites to green algae **Table 0-1:** 

/002	inhibition 72 h	caprocornutum (Raphidocelis subcapitata)  Pseudokirchneriella subcapitata (Raphidocelis subcapitata)  Pseudokirchneriella	Glyphosate acid Collyphosate acid	valid in	- Coefficient of variation for section specific
2000 /004 2020 /005 1995 /006 2020 /007 1995	algae inhibition  Position Paper  120 h algae inhibition  Position Paper  72 h algae inhibition  72 h	caprocornutum (Raphidocelis subcapitata) Selenastrum caprocornutum (Raphidocelis subcapitata) Selenastrum caprocornutum (Raphidocelis subcapitata) Selenastrum caprocornutum (Raphidocelis subcapitata) Selenastrum caprocornutum (Raphidocelis subcapitata) Pseudokirchneriella subcapitata) Pseudokirchneriella	Glyphosate acid Glyphosate acid Glyphosate acid	valid valid	certification of test concentrations throughout the test  -  Coefficient of variation for section specific
/005 1995 /006 2020 1995	Paper  120 h algae inhibition  Position Paper  72 h algae inhibition  72 h	caprocornutum (Raphidocelis subcapitata) Selenastrum caprocornutum (Raphidocelis subcapitata) Selenastrum caprocornutum (Raphidocelis subcapitata) Pseudokirchneriella subcapitata  Pseudokirchneriella	Glyphosate acid Company Glyphosate acid	valid valid	- Coefficient of variation for section specific
/006 2020 1995	algae inhibition  Position Paper  72 h algae inhibition  72 h	caprocornutum (Raphidocelis subcapitata)  Pseudokirchneriella subcapitata (Raphidocelis subcapitata)  Pseudokirchneriella	Glyphosate acid Company Glyphosate acid	valid valid	- Coefficient of variation for section specific
/007	Paper  72 h algae inhibition  72 h	caprocornutum (Raphidocelis subcapitata)  Pseudokirchneriella subcapitata (Raphidocelis subcapitata)  Pseudokirchneriella	Glyphosate acid	valid	variation for section specific
	algae inhibition  72 h	(Raphidocells is subcaptiate)		invalid	variation for section specific
/008 , 1995		Pseudokirckneriella	1		growth rate: > 35%
	inhibition	subcapitata Rashisocelis Boxspitata)	Glyphosate	invalid	Report not available
/009 1987	168 h algae inhibition	Selenasstrum capricornutum (Raphidocelis subcapitata)	Glyphosate technical	valid	-
2020 .5 0	Paper	Selenasstrum capricornutum (Raphidocelis subcapitata)	Glyphosate technical	valid	-
/011	algae inhibition	Desmodesmus subspicatus	Glyphosate acid	supportive	Report not available
/012	72 h algae inhibition	Desmodesmus subspicatus	IPA salt	supportive	Report not available
, 1993	72 h algae inhibition	subspicatus (Desmodesmus subspicatus)	IPA salt	invalid	Report not available
, 1990	96 h algae inhibition	Scenedesmus subspicatus (Desmodesmus subspicatus)	Glyphosate	invalid	Numerous deviations from guideline
/015 1990 ,	96 h algae inhibition	Scenedesmus subspicatus (Desmodesmus subspicatus)	Glyphosate	invalid	Coefficient of variation for section specific growth rate: > 35%
/	/010 2020 /011 1995 /012 1994 /014 , 1990 /015 1990 ,	/010 2020 Position Paper 72 h algae	/010 Position capricornutum (Raphidocelis subcapitata)  /011 Page Desmodesmus subspicatus	Selenasstrum capricornutum (Raphidocelis subcapitata)  72 h algae subspicatus  Glyphosate technical  Glyphosate technical  Glyphosate acid	/010 Position capricornutum (Raphidocelis subcapitata)  72 h algae subspicatus subspicatus  73 h algae subspicatus  74 h algae subspicatus  75 h algae subspicatus  76 h algae subspicatus  77 h algae subspicatus

Table 0-1: Studies on effects of glyphosate and metabolites to green algae

Annex point	Study	Study type	Test species	Substance(s)	Status	Remark
CA 8.2.6.1/016	, 1998	72 h algae inhibition	Pseudokirchneriella subcapitata (Raphidocelis subcapitata)	AMPA	invalid	Coefficient of variation for section by section specific growth rate: 35%; only study currently available for algae exposed to AMPA
CA 8.2.6.1/017	2020	Position Paper	Pseudokirchneriella subcapitata (Raphidocelis subcapitata)	AMPA	valies in	
CA 8.2.6.1/018	1994	72 h algae inhibition	Scenedesmus subspicatus (Desmodesmus subspicatus)	AMPA ^{SO} ON O	U >	Noumerous deviations from guideline
CA 8.2.6.1/019	2011	72 h algae inhibition	subcapitata (Raphidocelis subcapitata)	HMPA	valid	-
CA 8.2.6.1/020	2020	Position Paper	Pseudokirchnerielta subcapitata (Raphido A) subcapisitas	2	valid	-

There are no literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the effects of glyphosate or its relevant metabolites on growth of green alga. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. For discussions of literature regarding toxicity to algae, please refer to document M-CP Section 10.2.

Endpoints of studies considered valid for glyphosate are shown in the table below. Glyphosate is an acid molecule, so it is often formulated as a salt. Ecotoxicological studies have been conducted with various forms of glyphosate, namely IPA salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate or glyphosate technical are automatically expressed as acid equivalent.

Table 0-2: Endpoints: Toxicity of glyphosate to green algae

Reference*	Test item	Species	Test design	Endpoints expressed	72h ErC50	72h EyC50	NOErC
all of the				as	(mg a.e./I	۲)	
2002 CA 8.2.6.1/001	IPA salt	Pseudokirchneriella subcapitata (Raphidocelis subcapitata)	96 h algae inhibition	am	23.5	6.85	2.21

**Table 0-2:** Endpoints: Toxicity of glyphosate to green algae

Reference*	Test item	Species	Test design	Endpoints expressed as	72h ErC50 (mg a.e./I	72h EyC50	NOESC
1995 CA 8.2.6.1/005	Glyphosate acid	Selenastrum caprocornutum (Raphidocelis subcapitata)	120 h algae inhibition	nom	18.9	16.46	10.0
1987 CA 8.2.6.1/009	Glyphosate acid	Selenasstrum capricornutum (Pseudokirchneriella subcapitat)	168 h algae inhibition	nom	27:24 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	12.1	< 10.0

^{*} Endpoints for Smyth 1995 and Hughes 1987 are based on statistical re-evaluation provided in Position Papers: CA 8.2.6.1/006, CA 8.2.6.1/010;

According to the provisions of the new Guidance Document on Aquatic Ecotoxicology (2013), E_rC₅₀ endpoints shall be chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment if available and the chosen for the risk assessment in the chosen for the risk assessment and the chosen for the risk assessment in the chosen for the risk assessment and the chosen for the risk assessment and the risk asses endpoints shall be chosen for the risk assessment if available. The most sensitive 72 h algal endpoint is 18.9 mg a.e./L for the active substance.

Endpoints of studies considered valid for HMPA are shown in the table below. Since fully valid algae study

with AMPA is not available (according to the current QECD test guidelines), the study by (CA 8.2.6.1/016) is used.

Endpoints: Toxicity of AMPA and HMPA to green algae **Table 0-3:** 

Reference ¹	Test item	Species HE HOLE	Test design	Endpoints expressed	72h ErC50 ²	72h EyC50	NOErC
		Call Art Str.		as	(mg/L)		
1998 CA 8.2.6.1/016	AMPA	Pseudokircunersella subcapitata (Ragnidocies successivea)	72 h algae inhibition	nom	191	110	100
2011 CA 8.2.6.1/019	HMPA ST	Pseudokirchneriella subgapitata (Raphidocelis subcapitata)	72 h algae inhibition	nom	> 120	> 120	60

All endpoints are based on statistical re-evaluation provided in Position Papers: CA 8.2.6.1/017 and CA 8.2.6.1/020

Summary of the studies are provided below.

a.e.: acid equivalents; nom: nominal; am: arithmetic mean measured

² According to the provisions of the new Guidance Document on Aquatic Ecotoxicology (2013), ErC50 endpoints shall be chosen for the risk assessment if available.

### 1. Information on the study

Data point:	CA 8.2.6.1/001
Report author	
Report year	2002
Report title	A study on the Toxicity of Glyphosate isopropylamine salt 62.5
•	% to Algae (Pseudokirchneriella subcapitata)
Report No	A-99-02-04
Document No	- 21,5
<b>Guidelines followed in study</b>	OECD Guideline 201, EEC Directive 92/69 C.3
<b>Deviations from current test</b>	Deviation from the guideline OECD 201 (2011)
guideline	Minor:
	- The pH-values of the algal medium recommended by, "Schlösser (1982). Sammlung von Algenkulturen, Pflanzenphysiologisches Institut der Universität Göttingen (SAG) - List of Strains", were lower than reported in OECD 201. In correlation with the slightly lower pH values measured in concentration 100.0 mg/L there could be an effect on the growth rate of the algae.  - Analysis of the results were based on average recovery value instead of the geometric mean concentrations.  The study is considered valid as all validity criteria were met.
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing	Yes Valid Sold Category 2a Sold Category
facilities	(S) (S) (S)
Acceptability/Reliability	Valid & S. S. K.
Category study in AIR 5 dossier	Category 2a 0
(L docs)	\$ 15° 11.

2. Full summary
Executive Summary
The effects of glyphosate isopropylamine salt on Pseudokirchneriella subcapitata were evaluated in a 96-hour static toxicity test at nominal concentrations of 4.27, 9.39, 20.66, 45.45 and 100 mg test item/L. A negative control group (culture medium only) was prepared in parallel. The test vessels were 300 mL Erlenmeyer glass flasks containing 100 mL of control or test medium. The initial algal cell concentration was 1 × 104 cells/mL. At 24 48 72 and 96 hours, the algal cell densities in all treatment and control vessels was determined and the inhabition in cell growth, relative to the control group was determined. Cell densities were used to calculate endpoints in terms growth rate and biomass (ErC50, EbC50 and NOEC values), based on the norminal and measured glyphosate concentrations (average recovery rate was 70.1 %) derived from the chemical analysis.

At the start of the test measured concentrations of glyphosate acid ranged between 68.9 and 80.6 % of nominal. At the end of the test, they ranged between 52.0 and 73% of nominal in the (low, mid and high) 4.27, 20.66 and 100 mg test item/L treatments. Glyphosate acid was not detected in the control group. The validity criteria according to guideline OECD 201 are therefore fulfilled. The 72 h and 96 h ErC50 values for *Escudokirchneriella subcapitata* exposed to glyphosate isopropylamine salt were calculated to be 31.70 and 32.01 mg/L, equivalent to 23.48 and 23.71 mg glyphosate acid/L (mean measured). The 72 h and 96% EbC50 for P. subcapitata exposed to glyphosate isopropylamine salt was calculated to be 9.25 validation and 10.30 mg/L, equivalent to 6.85 and 7.63 mg glyphosate acid/L (mean measured). The test is considered valid for risk assessment purposes.

# I. MATERIALS AND METHODS

A. MATERIALS			
Test material:	30,00		
Test item:	Glyphosate isopropylamine salt		
Description:	Light brown liquid		
Lot/Batch #:	Tech L 020131		
Purity:	62.66 % Glyphosate isopropylamine salt		
Vahiala and/an nasitiva control	Vehicle: SAG medium		
Vehicle and/or positive control:	Positive control:Potassium dichromate		
Test organism:			
Species:	Pseudokirchneriella subcapitata (Chodat, strain: SAG 61.81)		
Initial cell concentration	1 × 104 cells/mL		
Source:	Pflanzenphysiologisches Institut, Göttingen, Germany		
<b>Environmental conditions:</b>	The state of the s		
Temperature:	21.7 – 25.0 °Co S S S		
Photoperiod:	24 h light		
Light intensity	8082 lux 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
Light quality	Universal white light		
pH:	5,7 6,2		

### **B. STUDY DESIGN**

Experimental dates: 12 July- 19 July 2002 (Biological work) 4Š

### **Experimental treatments**

On the basis of the results of a range finding test, the main test was performed with five concentrations, 4.27, 9.39, 20.66, 45.45 and 100 mg test item/L and a negative control (culture medium only). A toxic reference item Potassium dichromate was performed in August 2002.

For each concentration and the control, four vessels were prepared using 300 ml Erlenmeyer flasks each containing 100 mL of control or test medium. The initial cell concentration was 1 × 104 cells/mL. The concentrations of glyplosate IPA salt in the test solutions were measured by HPLC as concentrations of glyphosate acid at the start and at the end of the test in the 4.27, 20.66 and 100 mg test item/L treatments. Endpoints were calculated using the average recovery rate of glyphosate achieved over the duration of the test, based on geometric mean measured values achieved for each of the treatment groups. A stability sample was analysed from a test vessel without algae with the highest test item concentration at the end of the exposure period.

To maintain the algae in the suspension, all flasks were shaken continuously over the entire test period  $(100 \pm 5 \text{ oscillations/min}).$ 

## Observations

relative to the control group was determined. This was achieved by plotting the mean value of the cell concentration (converted in log values) against the percentage growth inhibition to generate dose-response curves for each concentration. The concentrations resulting in 50 % inhibition (ErC50, EbC50), were determined, as well as the NOEC. The pH-values were determined in the test media at the beginning and at the end of the test. The temperature in the incubator was measured.

automatic recording system. The concentrations of glyphosate acid in the test solutions were measured at the start and at the end of the test.

### Statistical calculations

Probit analysis was used to calculate the EC10, EC20, and EC50 values. One-way ANOVA, Cochran's Test and subsequent Dunnett's t-test was used to calculate whether there were significant differences between the growth of algae in the controls and the algae exposed to the various test item concentrations to establish NOErC and NOEbC values.

II. RESULTS AND DISCUSSION

A. FINDINGS
In the test, concentrations of glyphosate acid were determined. In stock solutions prepared at test start, measured concentrations were \$1.9 % of nominal concentrations. He is a start of the start of measured concentrations were 81.9 % of nominal concentrations. In test media at the beginning of the test, mean concentrations were 75.9% of nominal concentrations and at the end of the test (96 h), mean concentrations were 64.2 % of nominal with 45.2 % found in the stability sample without algae (see table below). The average recovery in all water samples containing algae was 70.1 % for Glyphosate isopropylamine salt. Therefore, results are based on mean measured concentrations.

**Table 0-4: Analytical measurements** 

Test item concentration (nominal)	Glyphosate IPA (nominal)	Glyphosate acid (mean measured) (mg/L)		Glyphosate (mean mea (mg/L)		% of nominal	
(mg/L)	(mg/L)	-0.5 h	96 h	- €0.5 h	96 h	-0.5 h	96 h
500 (Stock solution)	313.30	190.245	- 6 % % % % % % % % % % % % % % % % % %	256.7	-	81.9	-
Control	0	nd	and " x"	nd	nd	-	-
4.27	2.68	1.554	.P.341	2.1	1.8	78.4	67.6
20.66	12.95	6.606	7.907	8.9	9.5	68.9	73.0
100	62.66	37.406	24.164	50.5	32.6	80.6	52.0
100 (stability sample without algae)	62.66		20.991	-	28.3	-	45.2

The ErCx, EbCx and NOE6 values are given below based on nominal and arithmetic mean measured concentrations.

Toxicity of Glyphosate IPA salt and Glyphosate acid to Pseudokirchneriella subcapitata

Endpoint	зиосир	Glyphosate IPA salt (nominal) (mg/L)	Glyphosate IPA salt (mean measured) (mg/L)	Glyphosate acid (mean measured) 1 (mg/L)		
	<u> </u>	(mg/L)	72 hours	(mg/L) Sign		
	0 - 72 h ErC10	8.16	, 2 222 322			
	0 - 72 h ErC20	14.7		28.8°		
	0 - 72 h ErC50	45.2	31.7	23.5		
	0 - 72 h NOEC	4.27	2.99	2.21		
Growth rate		I	96 hours	les Eq.		
	0 - 96 h ErC10	13.7				
	0 - 96 h ErC20	20.8	£ 6 5			
	0 - 96 h ErC50	45.7	32.0	23.7		
	0 - 96 h NOEC	9.39	6380 30	4.87		
			72 hours & S			
	0 - 72 h EbC10	4.18	ill o to			
	0 - 72 h EbC20	6.21	6 4 6 C			
	0 - 72 h EbC50	13.2	9.25	6.85		
	0 - 72 h NOEC	4.27	2.99	2.21		
Biomass	96 hours					
	0 - 96 h EbC20	8.06				
	0 - 96 h EbC10	5.885 15 15				
	0 - 96 h EbC50	14.76	10.3	7.63		
		JE JE LES				
	0 - 96 h NOEC	5.4.27	2.99	2.21		

¹ The ratio between mean measured concentration in mg glyphosate IPA salt/L and mg glyphosate acid/L is stated as 1.35 in the report.

B. OBSERVATIONS

The results of the definitive test show that for algal growth rates, after 72 hours, these were significantly

inhibited at nominal concentrations of 9.39 mg test item/L and higher. After 96 hours, significant inhibition was observed at 20.66 mg test item/L and higher.

For biomass, after 72 and 96 hours, there were significant effects observed at nominal concentrations of 9.39 mg test item/L and higher.

In contrast no inhibition of the algae growth was found at or below a nominal concentration of 4.27 mg test

no inhibite no inh

**Table 0-6:** Percentage inhibition of growth rate and biomass of to Pseudokirchneriella subcapitata exposed for 72 and 96 hours to glyphosate isopropylamine salt

Glyphosate isopropylamine salt formulation (nominal) (mg/L)		4.27	9.39	20.66	45.45	1000
Glyphosate isopropylamine salt (mean measured) (mg/L)1	Control	2.99	6.58	14.48	31.86	70.1
Glyphosate acid (mean measured) (mg/L)2		2.21	4.87	10.73	23.6	51.9
Inhibition growth rate (0-72 h) (%)	-	1.6	6.6*	25.2*	64.8*	61.4*
Inhibition growth rate (0-96 h) (%)	-	-0.9	4.2	17.5	\$53.4*	77.1*
Inhibition biomass (0-72 h) (%)	-	11.4	33.5*	70.78	92.4*	91.9*
Inhibition biomass (0-96 h) (%)	-	3.2	27.1*	\$68.0*°	94.9*	95.9*

^{*} Significantly different from the control at  $\alpha = 0.05$ 

2 Taken into account 1.35 ratio stated in the report.

For the toxic reference item, the 96 h EbC50 was 0.497 mg/est item/L and the 96 h ErC50 was 1.721 mg test item/L. These results were in agreement with what was expected on the basis of data shown in EEC Directive 92/69 method C.3.

The biomass in the control cultures increased by a factor of ≥16 (actual value 152.9), the coefficient of variance for section-by-section specific growth rates 35 % (actual values ranged between 0 and 28.0), and the coefficient of variation of average specific growth rates during the whole test period in replicate control was ≤7 % (actual value: 0.8 %). The validity criteria according to guideline OECD 201 are therefore fulfilled.

# III. CONCLUSION

### Assessment and conclusion by applicant:

The biomass in the control cultures increased by a factor of  $\geq 16$  (actual value 152.9), the coefficient of variance for section-by-section specific growth rates was ≤35% (actual values ranged between 0 and 28.0), and the coefficient of variation of average specific growth rates during the whole test period in replicate control was ≤7% (actual value: 0.8%). The validity criteria according to guideline OECD 201 are therefore fulfilled.

The 72 h and 96 b Exc 50 values for Pseudokirchneriella subcapitata exposed to glyphosate isopropylamine salf were calculated to be 31.70 and 32.01 mg test item/L, corresponding to 23.5 and 23.7 mg a.e./L (arithmetic mean measured). The 72 h and 96 h EbC50 for P. subcapitata exposed to glyphosate isopropylamine salt was calculated to be 9.25 and 10.30 mg test item/L, equivalent to 6.85 and 7.63 mg a.e./L. (arithmetic mean measured). The 72h NOErC and NOEbC value was 2.21 mg a.e./L, respectively,

The study is considered valid and 72 h NOEC, ErC50, EbC50 values of 2.21, 23.5 and 6.85 mg a.e./L (arithmetic mean measured), respectively, are reliable for risk assessment purposes.

### Assessment and conclusion by RMS:

¹ Taken into account the average recovery of 70.1 % for Glyphosate isopropylamine salt.

M-CA, Section 8 Page 301 of 847

### 1. Information on the study

Data point	CA 8.2.6.1/002	
Report author		
Report year	2003	
Report title	MON 78623: a 72-hour toxicity test with the freshwater alga-	
	(Selenastrum capricornutum)	
Report No	139A-311	
Document No	- 2.5	
<b>Guidelines followed in study</b>	OECD Guideline 201 (1984)	
	EU Directive 92/69/EEC, Method C.3. (1992)	
	ASTM Standard Guide 1218-90E (1990)	
<b>Deviations from current test</b>	Deviations from the guideline OECD 201 (2011):	
guideline	Major:	
	- The mean coefficient of variation for section-by-section	
	specific growth rates in the control cultures was 39.8 % instead	
	of <35 %	
Previous evaluation	Yes, accepted in RAR (2015)	
<b>GLP/Officially recognised testing</b>	Yes	
facilities	8° 0° 20°	
Acceptability/Reliability	Invalid E E	
Category study in AIR 5 dossier	Category 2b	
(L docs)	% 7 % C.	

2. Full summary
Executive Summary
The effects of MON 78623 (K-salt) on Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum, currently known as Raphidocelis subcapitata) were evaluated in a 72-hour static toxicity test. P. subcapitata were exposed to five nominal concentrations encompassing 7.5, 15, 30, 60 and 120 mg test item/L, and the measured concentrations were 7.1, 15, 30, 61 and 122 mg test item/L.

For each concentration, three parallel cultures in 250 ml Erlenmeyer flasks were prepared. The initial cell concentration was 104 cells/mL. For the control group, six parallel test vessels were prepared. An additional abiotic replicate at the highest test concentration was included in the experimental design for concentration verification at 72 hours.

After 24, 48 and 72 hours of growth, the numbers of viable cells for each test concentrations and control were determined and the growth inhibition was calculated. At this, concentrations resulting in 50 % inhibition (EC50, ErC50, Eb@50), were determined, as well as the NOEC.

EC50, EbC50, ErC50 and the corresponding 95% confidence limits for each 24-hours exposure interval were calculated by non-linear regression.

The results of main test showed that the algae growth was inhibited at the measured concentrations of 61 and 122 mg test rem L. In contrast, no inhibition of the algae growth was found at or below a measured concentration of 30 mg test item/L.

The 72 hours-EC50, EbC50 and ErC50 for P. subcapitata exposed to MON 78623 was determined at 69, .4 n.
.ie QEQ
sesse in
sess in
sesse in
sess in
ses in 74 and 114 mg test item/L. The NOEC was 30 mg test item/L. The validity criteria according to the current guideline QECD 201 were not met, therefore, this study is not considered valid for risk assessment

### I. MATERIALS AND METHODS

A. MATERIALS				
Test Material:	2 no			
Identification:	MON 78623, 47.7% Glyphosate			
Lot No.:	GLP-0108-11688-F			
Chemical purity:	47.7%			
Physical state:	Yellow liquid			
Expiration date:	Yellow liquid October, 2003			
Analytical standard:	12 18 18			
Identification:	Glyphosate (A.S.)			
Lot No.:	GLP-9607-7215-A			
Chemical purity:	99.8%			
Physical state:	Powder			
Expiration date:	January 31, 2003			
Vehicle and/or positive control:	J. S. C. C.			
Vehicle:	Dilution water Signature			
Positive control:	99.8%  Powder  January 31, 2003  Dilution water State None			
Test organism:				
Species: Pseudokir dineriella subcapitata, formerly known as Selenastrum capricornutum				
Initial cell concentration:	104 cells/mL			
Source:	in-house culture, started from University of Toronto Culture Collection			
Environmental conditions:	<u>Filt</u>			
Temperature:	©22.0 – 22.3 °C			
Photoperiod:	24 h light			
Light intensity:	6500 – 8550 lux			
Light quality:	cool-white fluorescent lighting			
Light quality:  pH:  Conductivity:  Hardness:	8.0 - 8.1 (negative control); $6.9 - 7.8$ (highest test concentration)			
Conductivity:	not stated			
Hardness:	not stated			

Three replicate cultures per test concentration of *P. subcapitata* (initial cell density in each chamber was 104 cells/mL) were exposed for 72 hours to nominal concentrations of 7.5, 15, 30, 60, and 120 mg test item/L. A negative control group with six replicate cultures was held under the same environmental conditions concurrently. An additional abiotic replicate at the highest test concentration was included in the experimental design for concentration verification at 72 hours. The methods of test solution preparation

were stock solution preparation and proportional diluting. The test flasks were shaken continuously at 100 rpm during the test.

### **Observations**

The temperature of a container of water adjacent to the test chambers in the environmental chamber was recorded twice daily during the test using a liquid-in-glass thermometer. Light intensity was measured at five locations surrounding the test flasks on each shaker table at test initiation. The pH of the medium in each treatment and control group was measured at test initiation and at test termination.

Test medium samples were collected from each biological replicate of the treatment and control group for the determination of algal cell densities. Samples were collected at approximately 24 hours intervals during the 72-hours exposure and were held for a maximum of two days under darks refrigerated conditions sufficient to inhibit growth until cell counts could be performed. Prior to conducting cell counts, the linearity of the instrument response was determined at settings previously established for *P. subcapitata*.

Samples of the test solutions were collected at approximately 0 and 72 hours to measure concentrations of the test substance. At test initiation samples were collected for each treatment and control group prior to addition of the algae. At test termination, the biological replicates from each respective treatment and control group were pooled and then sampled. The 120 mg test item Leganivalent to 57.24 mg glyphosate/L abiotic replicate was sampled at test termination to determine the stability' of the test substance under the conditions of administration. All samples were collected in glass vials and processed immediately for analysis.

### **Statistical calculations:**

Cell densities, areas under the growth curve, growth rates and percent inhibition values were calculated using SAS System for Windows (Version 8.02). Cell densities, areas under the growth curve and growth rates were analysed statistically to estimate EC50 values and the corresponding 95 % confidence limits for each 24-hours exposure interval. All EC50 values were calculated by non-linear regression.

The cell density, area under the growth curve and growth rate data were evaluated for normality and homogeneity of variance (p=0.05) using the Shapiro-Wilk's and Levene's tests, respectively. Since the data were normal with homogeneous variances, the treatment groups were compared to the negative control using ANOVA and Dunnett's test (p=0.05). The results of the statistical analyses, as well as an evaluation of the concentration-response pattern, were used to determine the NOEC relative to each parameter at 72 hours.

# RESULTS AND DISCUSSION

### A. FINDINGS

The EC50, EbC50, ErC50 and NOEC values are given below based on mean measured concentrations.

Table 0-7: Toxicity of MON 78623 to Pseudokirchneriella subcapitata

Endpoint & &	MON 78623 [mg test item/L]
EC50 (cell density) and 95% Confidence Limits	69 (62 – 77)
EbC50 (biomass) and 95% Confidence Limits	74 (67 – 83)
ErC50 (growth rate) and 95% Confidence Limits	114 (111 – 118)
NOEC (cell density)	30
NOEC (biomass)	30
NOEC (growth rate)	30

Concentrations of MON 78623 in the samples were determined using a HPLC (UV detector at 500nm). Calibration standards of Glyphosate, ranging in concentration from 2.00 to 20.0 mg glyphosate/L, were prepared in freshwater algal medium using a stock solution of Glyphosate in NANOpure® water. Linear regression equations were generated using the peak area responses versus the respective concentrations of the calibration standards. The method limit of quantitation (LOQ) for these analyses was defined as 43 9 mg test item/L equivalent to 2.00 mg glyphosate/L. The analytical results are given below.

**Table 0-8:** Analytical measurements

MON 78623	Sampling time	MON 78623	Percent of nominal	MON 78623	Mean percent of nominal
nominal	[hours]	measured	[%]	mean measured	
[mg/L]		[mg test item/L]	. ,	[mg/test/item/L]	[%]
	0	< LOQ	-		
-	72	< LOQ	-	( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )	-
7.5	0	6.20	82.7	174 V A O.	04.7
7.5	72	8.03	107	-\ (7)	94.7
1.5	0	14.7	98.3	15	100
15	72	15.7	104		
20	0	29.5	98:3		100
30	72	31.2	ij\104 . C	30	100
60	0	59.3	S 98.8°	61	102
60	72	62.1	S N 1094	01	102
120	0	119	99.3	122	102
120	72	124	103	122	102
120 (Abiotic)	72	125	104	-	-

Although the determined concentrations of the tiem in test medium always ranged between 80 and 120 % of nominal, the ecotoxicological endpoints were evaluated using the mean determined concentrations of the test item.

### **B. OBSERVATIONS**

The results of main test showed that the algae growth was inhibited at the measured concentrations of 61 and 122 mg test item/L corresponding to 28.95 and 57.96 mg glyphosate/L. In contrast, no inhibition of the algae growth was found at or below a measured concentration of 30 mg test item/L corresponding to to 14.48 mg glyphosate/L.

Table 0-9: Percentage inhibition of growth rate and biomass to P. subcapitata exposed for 72 hours to MON 78623

8	Control	MON 7862	23 [mg test	item/L]		
	-	7.1	15	30	61	122
Mean number of algae cells (10000/ml)	81.3645	92.6914	97.6039	86.9339	54.8190*	7.4236*
Inhibition growth rate (0-72 h) [%]	-	-3.1	-4.3	-1.7	9.0*	54*
Inhibition biomass (0-72 h) [%]	-	-12	-17	-6.1	26*	88*

*There were statistically significant differences (p<0.05) in comparison to the negative control replicates.

## III. CONCLUSIONS

The 72 h ErC50 for Pseudokirchneriella subcapitata exposed to MON 78623 was determined at 114 ang test item/L. The 72 h EbC50 for P. subcapitata exposed to MON 78623 was 74 mg test item/L. The 72 h EC50 for P. subcapitata exposed to MON 78623 was 69 mg test item/L. Significant effects of MON 78623 on the growth of P. subcapitata were found from a concentration > 30 mg test item/L. The NQEC was 30 mg test item/L.

### 3. Assessment and conclusion

## Assessment and conclusion by applicant:

The validity criteria for the study were re- evaluated according to the current guideline OECD 201 (2011).

Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (*) (0, 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	\$ 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 1	81.4
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35%.	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	39.8%
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7%.	8° ≤7%	3.4%

The biomass in the control cultures increased by a factor of ≥16 (actual: 81.4), the coefficient of variance for section specific growth rates exceeded 35% (actual: 39.8%), for the whole test period it was  $\leq 7\%$ (actual 3.4%). Because the coefficient of variation for the section specific growth rate was > 35%, the validity criteria according to the current guideline OECD 201 were not met and this study is not considered valid for risk assessment purposes.

# Assessment and conclusion by RMS:

### 1. Information on the study

Data point	CA 8.2.6.1/003			
Report author				
Report year	2000			
Report title	Acute toxicity of glifosate tecnico NUFARM to Selenastrum capricornutum			
Report No	RF-D2.44/99			
<b>Document No</b>	-			
<b>Guidelines followed in study</b>	OECD Guideline No. 201 (1993)			
Deviations from current test guideline	Deviations from the guideline OECD 201 (2011).  Major: - Analytical verification of test item only performed at the start of the test.in samples of test medium and stock solution (both >80% of nominal).			
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)			
GLP/Officially recognised testing facilities	Yes Sold Sold Sold Sold Sold Sold Sold Sold			
Acceptability/Reliability	Supportive			
Category study in AIR 5 dossier (L docs)	Category 2b			

2. Full summary
Executive Summary
The toxicity of glyphosate technical to the green alga Selenastrum capricornutum (currently known as Raphidocelis subcapitata) was determined in a 96-hour, static test. The test comprised 7 nominal concentrations of glyphosate (nominal 5.6% 10% 32, 56, 100, 320, and 560 mg test item/L, corresponding to initial measured concentrations of 5.74 9.81 33.48, 58.55, 104.17, 325.42, and 585.52) and a control (untreated culture medium) without test item. The test vessels were 250 mL glass Erlenmeyer flasks containing 100 mL of test solution. Three replicate vessels were prepared for each test concentration and for the control group. Each replicate

test vessel was inoculated with an initial cell density of 1.6 x 104 cells/mL. After 1, 2, 3, and 4 days, samples were removed from each test and control vessel and the algal cell densities were determined by cell counting. The pH-values were determined in the test media at the beginning and at the end of the test. The temperature in the incubator was measured daily. The concentrations of glyphosate technical in the test solutions were measured at the start of the test. The measured test concentration values were used for the calculation and reporting of all results.

The effective concentration of glyphosate technical causing 50 % inhibition of growth in Pseudokirchneriella subcapitata after 96 hours when compared to the control was 114.05 mg test item/L, the no observed effect concentration (NOEC) was 104 mg test item/L (initial measured concentrations). The validity criteria according to the current guideline OECD 201 were met. However, analytical work was tive on tive on the state of th not performed throughout the test, as required per current test guidelines. Therefore, this study is considered supportive only.

## I. MATERIALS AND METHODS

A. MATERIALS	, ight
Test material:	Ja ro
Test item:	Glyphosate technical
Description:	White powder 037-919-113
Lot/Batch #:	037-919-113
Purity:	954.9 g/kg
Vehicle and/or positive control:	954.9 g/kg  Vehicle: Cell growth medium  Positive control: None  Graen alone Psaudokirchnavilless Despitata LITEX 1648
Test organism:	
Species:	Green algae Pseudokirchneriella subcapitata, UTEX 1648
Initial cell concentration	1.6 × 104 cells/mL
Source:	UTEX – The culture collection of algae at the University of Texas at Austin, Texas, USA
Acclimatisation period:	4 days
<b>Environmental conditions:</b>	
Temperature:	24.3-24.4 ° & & & & & & & & & & & & & & & & & &
Photoperiod:	Continuous Allumination
Light intensity:	7933 Mix 5 5
pH:	7.19 7.22 at 0 hour 5.46 9.31 at 72 hour

B. STUDY DESIGN
Experimental dates: 25 October -12 November 1999
Experimental treatments

### **Experimental treatments**

The toxicity of glyphosate to the green alga *Pseudokirchneriella subcapitata* was determined in a 96-hour, static test. The test comprised Thominal concentrations of glyphosate (nominal 5.6, 10, 32, 56, 100, 320, and 560 mg test item/L, corresponding to initial measured concentrations of 5.74, 9.81, 33.48, 58.55, 104.17, 325.42, and 58552 mg test item/L) and a control consisting of culture medium without test item. The test vessels were 250 mP glass Erlenmeyer flasks containing 100 mL of test solution.

A primary stock solution of nominal concentration of 10000 mg test item/L was prepared by dissolving 1.0 g glyphosate in 300 mL distilled and deionised water. From this initial solution, following stock solutions were prepared: 10, 100, and 1000 mg test item/L. Appropriate aliquots of these stock solutions were diluted to prepare the test concentrations. 100 mL of the appropriate test solution were dispensed to each test and blank vessel. The test comprised 3 replicates of the control (untreated culture medium) and 3 replicates of each concentration of the test item.

Each replicate test vessel was inoculated with a cell density of 1.6 × 104 cells/mL. The culture vessels were incubated at 24.3 - 24.4°C under continuous illumination for 96 hours. During incubation, the algal cells were kept in suspension by continuous shaking.

## **Observations**

After 1, 2, 3 and 4days, samples were removed from each test and control vessel and the algal cell densities were determined by cell counting using a Neubauer improved haemacytometer and a phase-contrast microscope. The pH-values were determined in the test media at the beginning and at the end of the test. The temperature in the incubator was measured daily with a minimum-maximum thermometer. The

concentrations of glyphosate in the test solutions were measured at the start of the test only. The effective concentration was within acceptable limits of nominal concentration (80%) for all tested concentrations.

### Statistical calculations

The computer program used was STATGRAPHICS – Statistical Graphic System.

## II. RESULTS AND DISCUSSION

The EC₅₀ (96 h), NOEC and LOEC values are given below based on initial measured concentrations.

Table 0-10: Toxicity of glyphosate to Pseudokirchneriella subcapitata

Endpoint	Glyphosate [mg test item/L]
96-h EC ₅₀ (95% CI)	114.05 (94.04°- 131,49)
96–h NOEC	104.19
96–h LOEC	325.42

CI = confidence interval

### **B. OBSERVATIONS**

The effective concentration of glyphosate technical causing 50 % inhibition of growth after 96 hours when compared to the control was 114.05 mg test item Lythe no observed effect concentration (NOEC) was 104.17 mg test item/L. No morphological changes were observed after 96 hours of exposure to glyphosate 11/2/10 technical.

Mean cell densities and Percentage of inhibition of cell growth of **Table 0-11:** Pseudokirchneriella subcapitata exposed for 72 and 96 hours to glyphosate

5 <u>ill</u> ill	Control	Glyph	osate to	echnical	[mg/L			
Test parameters	-	5.6	10	32	56	100	320	560
Mean cell densities (0-96 h) (× 10000 cells/mL)	740	732	723	723	707	473	48.4	23.4
Mean growth rate (0-96 h) [%]		99	98	98	96	64	7	3
Mean cell densities (0-72 h) (\$\frac{10000}{2000}\$ cells/mL)	307	290	248	215	223	173	23.4	23.4
Mean growth rate (0-72 h) 4%		94	81	70	73	57	8	8

The biomass in the control cultures increased by a factor of  $\geq 16$ , the coefficient of variance for section specific growth rates was  $\leq 35\%$ , for the whole test period it was  $\leq 7\%$ . The validity criteria according to guideline OE@D_201 are therefore fulfilled.

### III. CONCLUSIONS

The 96 PErC₅₀ for Pseudokirchneriella subcapitata exposed to glyphosate technical was calculated to be 11405 mg test item/L, the no observed effect concentration (NOEC) was 104 mg test item/L (initial measured concentrations).

## 3. Assessment and conclusion

## Assessment and conclusion by applicant:

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and EC₁₀, EC₂₀, and EC₅₀, NOEC and LOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

### Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0~72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	) () () () () () () () () () () () () () () () (
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35%.	≤35% z z z z z z z z z z z z z z z z z z z	10%
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7%.		0.9%

The biomass in the control cultures increased by a factor of  $\ge 16$  (actual: 192), the coefficient of variance for section specific growth rates was ≤ 35% (actual: 10%) and the coefficient of variance for the whole test period it was ≤ 7% (actual: 0.9%). The validity criteria according to the current guideline OECD 201 were met. However, analytical work was performed only at test initiation, yet not throughout the test nor at test end, as required per current test guidelines. As there are other studies with more sensitive endpoints available, this study is considered supportive only. in Sold

Nevertheless, endpoints were recalculated.

A statistical re-evaluation addressing EC10, EC20, EC50, NOEC and LOEC was performed (Positon Paper No. 110054-001). Endpoints are based on nominal concentrations.

## Re-calculated EC10, EC20, EC50, NOEC and LOEC values based on nominal concentrations

Endpoint (0 – 72 hours)	Glyphosate [mg a.e./L]			
	Yield	Growth rate		
EC10 (95% CI)	5.54 (2.99 – 8.68)	62.6 (40.4 – 84.6)		
EC20 (95% CI)	14.6 (9.40 – 20.5)	132 (100 – 161)		
EC50 (95% CI)	75.9 (56.4 – 105)	469 (401 – 568)		
NOEC 80 5 5	5.6	5.6		
LOEC ZÜĞÜĞÜ	10	10		

# Assessment and conclusion by RMS:

### 1. Information on the study

Data point	CA 8.2.6.1/004
Report author	
Report year	2020
Report title	Statistical evaluation (non-GLP) of the study RF-D2.44/99 on the toxicity of glifosate tecnico NUFARM to <i>Selenastrum capricornutum</i> under static conditions
Report No	110054-001
Document No	-
Guidelines followed in study	OECD Guideline No. 201 (1993)
Deviations from current test guideline	Not applicable
Previous evaluation	No, not previously evaluated
GLP/Officially recognised testing facilities	No, GLP is not compulsory for statistical evaluation
Acceptability/Reliability	Valid & S.
Category study in AIR 5 dossier (L docs)	Category 1
2. Full summary	

2. Full summary
Executive Summary
A statistical evaluation addressing the calculation of valid EC10, EC20 and EC50 as well as NOEC values was conducted for the algae study RF-D2.44/99 C.M., 2000) to fulfill the data requirements according to regulation EU 283/2013. Furthermore, the validity criteria for the study were reevaluated according to the current guideline OECD 201 (2011).

Analyses were performed using software ToxRatPro Version 3.3.0. The validity criteria according to the current guideline OECD 201 (2011) were met and this study is considered valid for risk assessment purposes. The calculated EC₁₀, EC₂₀ and EC₃₀ values are 62.6, 132, and 469 mg/L for growth rate and 5.54, 14.6, and 75.9 mg a.e./L for yield, respectively. The NOEC for growth and yield was determined to be 5.6 mg a.e./L. However, analytical work was performed only at test initiation, yet not throughout the test nor at test end, as required as per current test guidelines. As there are other studies with more sensitive endpoints available, this study is considered supportive only and is not used for risk assessment.

### I. MATERIALS AND METHODS

# A. MATERIALS

	Author:	
	Substance:	Glyphosate
	Title:	Acute toxicity of glifosate tecnico NUFARM to Selenastrum capricornutum
	Study number:	RF-D2.44/99
	Completion date:	03-01-2000
	Test guideline(s):	OECD 201 (1993)
è	GIP:	Yes
60	Software:	ToxRatPro Version 3.3.0
. J. J.	Testing facility:	BIOAGRI Laboratorios, Piracicaba, SP. Brasil
10.00	Sponsor:	NUFARM DO BRASIL Ltda., Curitiba, PR., Brasil
Se No of Se	Glyphosate Renewal Group AIR 5 – Ju	uly 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

# Page 311 of 847

### **B. STUDY DESIGN**

Dates of work: May 2020

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and 72-h EC10, EC20, and EC50 as well as the NOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

The study RF-D2.44/99 (2000) was statistically evaluated for the effects of glyphosate on the organism *Selenastrum capricornutum* (currently known as *Raphidoceks subcapitata*, also formerly known as *Pseudokirchneriella subcapitata*). The organisms were expessed for 96 hours to the following concentrations of glyphosate 5.6, 10, 32, 56, 100, 320, and 560 mg test stem/L (nominal) and corresponding to initial measured concentrations 5.74, 9.81, 33.48, 58.55, 104.17, 325.42, and 585.52 mg test item/L. Additionally, a control was tested in parallel. The data used for this evaluation were obtained from the original study report.

### **Statistical calculations**

Models providing best fit to the respective data were selected and are as follows:

In order to derive Effect Concentrations that have 10, 20 and 50 % effects on yield and growth rate of the test subjects (EC10, EC20 and EC50), a logit analysis using linear weighted regression was performed. For growth rate, a logit analysis with linear maximum likelihood regression was used.

NOEC was determined by Welsh-t-test After Bonferroni-Holm (one-sided smaller, p = 0.05). Analyses were performed.

All statistical evaluations and checks for validity criteria were performed using the software ToxRatPro Version 3.3.0.

# II. RESULTS AND DISCUSSION

0

### A. FINDINGS

The validity criteria according to the current guideline OECD 201 (2011) were met and this study is considered valid for risk assessment purposes. Results are provided in the table below:

Table 0-12: Validity criteria

Validity criteria acc. to QECD 201 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	192
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35 %.	≤35 %	10 %
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7 %.	≤7 %	0.9 %

The validity criteria according to the current guideline OECD 201 were met. However, analytical work was performed only at test initiation, yet not throughout the test nor at test end, as required per current test guidelines.

For yield, the parameters for the logit model are estimated as slope b: 1.93240; Intercept a: -3.63371. For growth rate, the parameters for the probit model are estimated as slope b: 2.51249; Intercept a: -6.71063. According to the statistical parameters; Chi2(13) = 0.283521; p(Chi²): 1.000; F(1,19) = 120.416; p(F) <0.001; r²: 0.864 for yield; and Chi2(13) = 0.04958; p(Chi²): 1.000; F(1,19) = 107.785; p(F) <0.001;

r²: 0.850 for growth rate. Based on these values the EC10, EC20 and EC50 for yield and growth rate calculations should be considered valid.

The obtained  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$ , and NOEC values for the effect of Glyphosate on growth rate and yield of *Selenastrum capricornutum* (currently known as *Raphidocelis subcapitata* or formally known as *Pseudokirchneriella subcapitata*) are presented in the table below.

Table 0-13: Re-calculated EC₁₀, EC₂₀, EC₅₀, NOEC and LOEC values based on nominal concentrations

Endpoint (0 – 72 hours)	Glypho	Glyphosate technical [mg a.e. L]			
	Yield	S Growth rate			
EC ₁₀ (95% CI)	5.54 (2.99 – 8.68)	62.6 (40.4 - 84.6)			
EC ₂₀ (95% CI)	14.6 (9.40 – 20.5)	132 (100 - 161)			
EC ₅₀ (95% CI)	75.9 (56.4 – 105)	469 (4012 568)			
NOEC	5.6	(3.6° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °			
LOEC	10	300			

CI = confidence interval

# III. CONCLUSTON

### 3. Assessment and conclusion

### **Assessment and conclusion by applicant:**

The validity criteria according to the current guideline OECD 201 were met and this study is considered valid in view of parameters for increase of biomass mean coefficient of variation for section-by section specific growth rate, and coefficient of variation of average specific growth rates. However, analytical work was performed only at test initiation, yet not throughout the test nor at test end, as required as per current test guidelines. As there are other studies with more sensitive endpoints available, this study is considered supportive only and is not used for risk assessment.

Nevertheless, the calculated EC₁₀, EC₂₀ and EC₅₀ values are 62.6, 132, and 469 mg a.e./L (nominal) for growth rate and 5.54, 14.6, and 75.9 mg a.e./L (nominal) for yield, respectively. The statistical parameters showed that these values can be considered reliable. The nominal based NOEC was determined to be 5.6 mg are /E for yield and growth rate.

## Assessment and conclusion by RMS:

1. Information on the study

Data point	CA 8.2.6.1/005
Report author	
Report year	1995
Report title	Glyphosate acid: Toxicity to the green alga Selenastrum capricorputum
Report No	AB0503/B
<b>Document No</b>	- 3.5
Guidelines followed in study	OECD Guideline No. 201 (1984) US EPA Guideline 540/09-82-020 (1982)
Deviations from current test guideline	Deviations from the guideline OECD 201 (2011).  Minor:  - Initial nominal cell density of 3 × 103 cells/mL, was below the recommended density of 5 × 103 – 104 cells/mL for <i>P. subcapitata</i> , however validity criteria were met.
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes E E E E
Acceptability/Reliability	Valid Silver Control C
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary
Executive Summary
The toxicity of glyphosate acid to the green alga Selenastrum capricornutum (currently known as Raphidocelis subcapitata) was determined in a \$20 hour, static test conducted at six nominal glyphosate acid concentrations (5.6, 10, 18, 32, 56, and 100 mg test item/L) and a control prepared using culture medium without test item.

Six replicate vessels were prepared for the control group with three replicate vessels prepared for each concentration of glyphosate acid. Each replicate test vessel was inoculated with 0.370 mL of the inoculum culture to give a nominal cell density of  $3 \times 103$  cells/mL. The culture vessels were incubated at  $24 \pm 1$  °C in an orbital incubator (vessels shaken at 100 rpm) under continuous illumination for 120 hours.

The algal cell densities were determined after 1, 2, 3, 4, and 5 days. Test and control group media pH values were determined at the beginning and end of test, with temperature measured hourly. Glyphosate acid concentrations in test solutions were measured at the start and at the end of the test. The mean measured glyphosate acid concentrations ranged from 100 to 111% of the nominal values.

The 72-hour E_bC₅₀ and E_bC₅₀ for Selenastrum capricornutum exposed to glyphosate acid were determined to be 18 and 19 mg test frem/L, respectively. The 72-hour NOE_bC and NOE_rC values were 10 mg test item/L, respectively. The 120-hour  $E_bC_{50}$  and  $E_rC_{50}$  were calculated to be 17 and 21 mg test item/L. The 120-hour NOE_bC and NOE_rC were 10 mg test item/L each. The validity criteria according to the current guideline OECD 201 were met and this study is considered valid for risk assessment purposes.

## I. MATERIALS AND METHODS

A. MATERIALS	ight.
Test material:	Glyphosate acid
Test item:	Glyphosate acid
Description:	White solid
Lot/Batch #:	P24
Purity:	95.6%
Vehicle and/or positive control:	White solid  P24  95.6%  Vehicle: Cell growth medium Positive control: None  Green algae Pseudokirchneriella subcanitata Korshikov
Test organism:	
Species:	Green algae Pseudokirchneriella subcapitata Korshikov
Initial cell concentration	3 × 103 cells/mL
Source:	Brixham Environmental Laboratory culture from strain ATCC 22662
<b>Environmental conditions</b> :	
Temperature:	24.1 - 24.2 °C (measured by thermometer). The hourly temperature measured automatically remained within $24 \pm 1$ °C
Photoperiod:	Continuous illumination
Light intensity:	5030 lux 5 2
pH:	3.5 7.5 at the start of the test 3.6 8.9 at the end of the test

B. STUDY DESIGN
Experimental dates: 7 August - 12 August 1995
Experimental treatments

The toxicity of glyphosate acid to the green alga Selenastrum capricornutum (currently known as Raphodocelis subcapitata) was determined in a 120-hour, static test, conducted at six nominal glyphosate acid concentrations of 5.6 10, 18, 32, 56, and 100 mg test item/L, and a control consisting of culture medium without test item. The test vessels were 250 mL conical glass flasks containing 100 mL of test or control solution. The stock solution (nominal concentration of 100 mg a.s./L) was prepared by adding glyphosate acid directly to 2000 mL sterile culture medium. Appropriate aliquots of this stock solution were diluted to prepare the lower test concentrations of 5.6, 10, 18, 32, and 56 mg test item/L. To each test and blank vessel 100 mL of the appropriate test solution were dispensed. The test was performed in six replicate cultures of the culture medium control and three replicate cultures of each concentration of glyphosate acid

Each replicate test vessel was inoculated with 0.370 mL of the inoculum culture to give a nominal cell density of  $3\times 104$  cells/mL. The culture vessels were incubated at  $24\pm 1$  °C under continuous illumination for 120 h. During incubation, the algal cells were kept in suspension by continuous shaking using an orbital incubator (oscillating at 100 rpm).

an earl densities were determined by electronic particle counting, using a Coulter counter. After 1, 2, 3, 4, and 5 days, samples were removed from each test and blank vessel. The appropriate blank particle count was subtracted from that of the test culture to obtain the cell density. pH-values were determined in the test media at the beginning and at the end of the test. The temperature in the incubator was monitored continuously with readings recording hourly with an automatic recording system.

glyphosate acid in the test and control solutions were measured at the start and at the end of the test. **Statistical calculations** 

One-way analysis of variance, and Dunnett's post-hoc test to determine the NOEC. ECx values were evaluated by linear regression against log concentration.

### II. RESULTS AND DISCUSSION

### A. FINDINGS

Table 0-14: Toxicity of glyphosate acid to Selenastrum capricornutum

		6.8.7			
Enducint	Glyphosate acid [mg	Glyphosate acid [mg test item /L]			
Endpoint	Growth rate	Biomass			
72-h EC ₅₀ (95% CI)	19 (14 - 25)	18 (136-239)			
72–h NOEC	10	10 8 8 8			
72–h LOEC	18	18 8 8			
120-h EC ₅₀ (95% CI)	21 (16 - 28)	778(13°-22)			
120-h NOEC	10	£ 30 £			
120-h LOEC	18	& \$1, <del>*</del>			

CI= Confindence interval

The mean measured concentrations of glyphosate acid ranged from 100 to 111 % of the nominal values. On the basis of the analytical results the nominal test concentration values were used for the calculation and reporting of all results.

### В. **OBSERVATIONS**

Mean cell densities and percentage of inhibition of cell growth of **Table 0-15:** Selenastrum capricornutum exposed for 72, 96 and 120 hours to glyphosate

Control Glyphosate acid [mg test item/L]							
Test parameters	-	5.6	10	18	32	56	100
Mean cell densities (0-72 h) (× 10000 cells/mL)	73.4	79.1	74.5	2.05	0.143	0.021	0.033
Mean cell densities (0-96h) (* 10000 cells/mL)	312	314	311	2.60	0.178	0.070	0.045
Mean cell densities (0.120 h) (× 10000 cells/mL)	567	605	568	4.20	0.478	0.138	0.172
Mean area under growth curve (0-72 h) [%]	-	108	104	8	-1	-1	-1
Mean area under growth curve (0-96 h) [%]	-	103	101	2	0	0	0
Mean area under growth curve (0-120 h) [%]	-	104	100	1	0	0	0
Mean growth rate (0-72 h) [%]	-	101	100	35	-13	-48	-40
Mean growth rate (0-96 h) [%]	-	100	100	31	-7	-21	-27
Mean growth rate (0-120 h) [%]	-	101	100	35	6	-10	-7

### III. CONCLUSION

The 72-hour E_bC₅₀ and E_rC₅₀ for Selenastrum capricornutum exposed to glyphosate acid were determined to be 18 and 19 mg test item/L, respectively. The 72-hour NOE_bC and NOE_rC values were 10 mg test item/L, respectively. The 120-hour E_bC₅₀ and E_rC₅₀ were calculated to be 17 and 21 mg test item/L. The

120-hour NOE_bC and NOE_rC were 10 mg test item/L each.

### 3. Assessment and conclusion

### Assessment and conclusion by applicant:

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2017) and EC₁₀, EC₂₀, and EC₅₀, NOEC and LOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

### Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	245
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35%.	≤3 <b>5%</b> &	9.1%
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7%.		1.6%

The biomass in the control cultures increased by a factor of societal: 245), the coefficient of variance for section specific growth rates was  $\leq 35\%$  (actual: 9.1%) and the coefficient of variance for the whole test period it was  $\leq 7\%$  (actual: 1.6%). The validity criteria according to the current guideline OECD 201 were met and this study is considered valid for risk assessment purposes.

A statistical re-evaluation addressing  $EC_{10}$ ,  $EC_{50}$ , and  $EC_{50}$  was performed (Positon Paper No. CA 8.2.6.1/006).

Re-calculated EC₁₀, EC₂₀ and EC₅₀ values based on nominal test concentrations:

Endpoint (0 – 72 hours)	Glyphosate a	Glyphosate acid [mg a.s./L]		
	Yield	Growth rate		
EC ₁₀ (95% CI)	4.84 (2.07 – 7.80)	5.74 (3.65 – 7.87)		
EC ₂₀ (95% CI)	7.59 (3.93 – 11.3)	8.91 (6.25 – 11.6)		
EC ₅₀ (95% CI)	16.4 (10.9 – 23.0)	18.9 (14.9 – 23.7)		

CI = confidence interval

The 72-hour NOE and NOE values were provided by the study report as 10 mg a.s./L, based on glyphosate acide

### Assessment and conclusion by RMS:

M-CA, Section 8	
Page 317 of 847	

1.	Information	on	the	study
----	-------------	----	-----	-------

Data point	CA 8.2.6.1/006
Report author	
Report year	2020
Report title	Statistical evaluation (non-GLP) of the study BL5550/B on the toxicity
	of Glyphosate acid to Selenastrum capricornutum (currently known as
	Raphidocelis subcapitata) under static conditions
Report No	110054-002
Document No	- %. %. %. %. %. %. %. %. %. %. %. %. %.
<b>Guidelines followed in study</b>	OECD 201 (2011)
<b>Deviations from current test</b>	Not applicable
guideline	
Previous evaluation	No, not previously evaluated
GLP/Officially recognised	No, GLP was not compulsory for statistical evaluation
testing facilities	71° 01' 10°
Acceptability/Reliability	Valid ** ** ** ** ** ** ** ** ** ** ** ** **
Category study in AIR 5	Category 1
dossier (L docs)	

2. Full summary
Executive Summary
A statistical evaluation addressing the calculation of valid 72-h EC10, EC20 and EC50 values was conducted for the study BL5550/B ( (1995) to fulfill the data requirements according to regulation EU 283/2013. Furthermore, the validity criteria for the study were re- evaluated according to the current guideline OECD 201 (2011). Analyses were performed using software ToxRatPro Version 3.3.0. The validity criteria according to the current guideline OECD 201 (2011) were met. The calculated EC₁₀, EC₂₀ and EC₅₀ values are 4.84, 7.59 and 18.4 mg a.e./L (nominal), respectively for yield and 5.74, 8.91 and 18.9 mg/L (nominal), respectively for growth rate. The statistical parameters showed that these values can be considered reliable and therefore considered for risk assessment.

# L MATERIALS AND METHODS

## A. MATERIALS

oxRatPro Version 3.3.0 Software:

AB0503/B Study number: Author: Smyth, D.V. et al. Glyphosate acid Substance:

Completion dates Glyphosate acid: Toxicity to the green alga Selenastrum capricornutum

15-Aug-1995

OECD Guideline No. 201 (1984); US EPA Guideline 540/09-82-020 (1982) Test guideline(s):

Re-evaluated according to OECD 201 (2011)

Yes, conducted under GLP/Officially recognised testing facilities

Testing facility: Brixham Environmental Laboratory, Brixham Devon, UK

Sponsor: ZENECA Agrochemicals, Surrey, UK Sponsor: ZENECA Agrochemicals, Surrey, UK

### **B. STUDY DESIGN**

### Dates of work: April 2020

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and 72-h EC₁₀, EC₂₀, and EC₅₀ values were calculated to fulfil the data requirements according to regulation EU 283/2013.

1995) was statistically evaluated for the effects of Glyphosate acid on The study BL5550/B ( the organism Selenastrum capricornutum (currently known as Raphidocelis subcapitata). The organisms were exposed for 120-hours to the following concentrations of Glyphosate acid: 5.6, 10,28,32, 56, and 100 mg test item/L. Additionally, a control was tested in parallel. The data used for this evaluation were obtained from the original study report.

### **Statistical calculations**

The analytical data from the study report were checked to ensure the appropriate incan measured or nominal exposure concentrations were used in the ECx calculations.

The data was checked for normality using Shapiro-Wilk's Test on Normal Distribution for all time points (p = 0.01). Subsequently, for determination of outliers, The Dixon & Hartley outlier test was performed for parametric data (24-h and 48-h replicates), and Hampel Outlier test for non-parametric data (72-h replicates). Only if an outlier was detected repeatedly for a given replicate, it was excluded from subsequent in Judet analyses.

Models providing best fit to the respective data were selected and are as follows:

In order to derive the 72-h Effect Concentrations that have 10, 20 and 50 % effects on growth rate and yield of the test subjects (EC₁₀, EC₂₀ and EC₅₀), a logit analysis was performed and outlier excluded where applicable.

Furthermore, results of the original report were reviewed, which determined the NOEC.

All statistical evaluations and checks for validity criteria were performed using the software ToxRatPro KJill Version 3.3.0.

## IE RESULTS AND DISCUSSION

### A. FINDINGS

The validity criteria according to the current guideline OECD 201 (2011) were met and this study is considered valid for risk assessment purposes. Results are provided in the table below:

Table 0-16: Validity criteria

Validity criteria acc to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	245
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35%	≤35%	9.1%
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control contures must not exceed 7%.	≤7%	1.6%

### Outlier test:

Data sets for 24 and 48 hours follow a normal distribution, while the 72 hour dataset is not normally distributed (Annex 2, Tables 2, 3 and 4 of this report).

According to Dixon & Harley outlier test (24 and 48 hours; Annex 2, tables 5 and 6 of this report) and Hampel outlier test (72 hours, Annex 2, table 7 of this report), the following outliers were determined:

Time point	Test concentration	Replicates
24h	No outliers detected	
48h	32 mg/L	Replicate 1
4011	56 mg/L	Replicate 2
72h	32 mg/L	Replicate 1 5 0 0
/2n	100 mg/L	Replicate 20 100

As replicate 1 in the test concentration of 32 mg/L resulted in being an outlier at 48 as well as 72 hours, this replicate is excluded from further statistical analysis.

The mean measured concentrations of glyphosate acid ranged from 100 to 11% of the nominal values. On the basis of the analytical results the nominal test concentration values were used for the calculation of all results.

For yield at 72 hours, the parameters for the logit model are estimated as slope b: 4.14430; intercept a: -5.03349.

For growth rate at 72 hours, the parameters for the logit model are estimated as slope b: 4.24735; intercept a: -5.41977.

Statistical parameters for goodness fit of the logic model are: Chi2(15) = 0.473; p(Chi2): 1.000; F(1,15) = 91.681, p(F) <0.001; R2 = 0.859 the EC10, EC20 and EC50 for growth rate and Chi2(15) = 1.011; p(Chi2): 1.000; F(1,15) = 40.874 p(F) <0.001; R2 = 0.732 the EC10, EC20 and EC50 for yield, calculations should therefore be considered valid.

The obtained  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  values for Selenastrum capricornutum (currently known as Raphidocelis subcapitata) are presented in the table below.

Geometric mean measured test concentrations ranged from 100 to 111% of nominal. Therefore, all results are based on nominal test concentrations.

**Table 0-17:** Re-calculated EC₁₀, EC₂₀, EC₅₀ values based on nominal test concentrations:

Endpoint (0 – 72 hours)	Glyphosate acid [mg a.e./L]		
	Yield	Growth rate	
EC ₁₀ (95% CI)	4.84 (2.07 – 7.80)	5.74 (3.65 – 7.87)	
EC ₂₀ (95% CI)	7.59 (3.93 – 11.3)	8.91 (6.25 – 11.6)	
EC ₅₀ (95% CT)	16.4 (10.9 – 23.0)	18.9 (14.9 – 23.7)	

CI = confidence interval

## III. CONCLUSION

### 3. Assessment and conclusion

## Assessment and conclusion by applicant:

Assessment and conclusion by applicant:
The validity criteria according to the current guideline OECD 201 were met and this study is considered valid.

The calculated EC₁₀, EC₂₀ and EC₅₀ values are 4.84, 7.59 and 16.4 mg a.s./L (nominal), respectively for vield and 5.74, 8.91 and 18.9 mg a.s./L (nominal), respectively for growth rate. The statistical parameters showed that these values can be considered reliable and therefore considered for risk assessment.

## Assessment and conclusion by RMS:

### 1. Information on the study

1. Information on the stud	y g g g g g g
Data point	CA 8.2.6.1/00/
Report author	Soli Mark
Report year	1995
Report title	Fresh Water Algal Growth Inhibition Test with Glyfosaat
Report No	141896
<b>Document No</b>	- 1 ¹
<b>Guidelines followed in study</b>	OECD Guideline No. 201 (1984) EEC Directive 92/69, Part C-3 (1992) ISO International Standard 8692 (1989)
Deviations from current test guideline	Deviations from the guideline OECD 201 (2011):  Major:  The mean coefficient of variation for section-by-section specific growth rates in the control cultures was 56.7% instead of <35% Validity criteria was not met.
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recogniseds testing facilities	Yes
Acceptability/Reliability	Invalid
Category study in AIR 5 dossier (L docs)	Category 2b

# Full summary

For each test concentration and the control group, three (test concentrations) or six (control) replicates with Additionally, for the highest test concentration one replicate without algae was provided.

After 24, 48, and 72 hours, mean cell densities for each test concentration and control were.

M-CA, Section 8 Page 321 of 847

based on spectrophotometrical measurements and a linear calibration curve relating extinction and cell density.

The concentrations resulting in 50% reduction of growth rate (E_rC₅₀) and 50% inhibition of cell growth (E_bC₅₀) were determined, as well as the associated NOEC values.

Results showed glyphosate inhibited cell growth of the fresh water algae Pseudokirchneriella subcapitata increasingly with increasing concentrations, resulting in an almost complete inhibition at 56 and 100 mg test item/L. A significant reduction of growth rate was observed at 56 and 100 mg test item/L. Because the coefficient of variation for the section specific growth rate was > 35%, the validity criteria according to the current guideline OECD 201 were not met and this study is not considered walld for risk assessment purposes.

## I. MATERIALS AND METHODS

A. MATERIALS	
Test material:	Glyphosate  White powder  22021  96 %  Vehicle: Diffution water (ISO-medium)
Test item:	Glyphosate St.
Description:	White powder
Lot/Batch #:	22021 ji ja
Purity:	96 % 5 3 3 5 5
Vehicle and/or positive control:	Vehicle: Difution water (ISO-medium)
venicle and/or positive control:	Positive control: Potassium dichromate (K2Cr2O7)
Test organism:	K S K
Species:	Pseudokirchneriella subcapitata, strain: CCAP 278/4
Initial cell concentration	1 × 104 cells/mL
Source:	In House culture
Acclimatisation period:	Not stated
Environmental conditions:	
Acclimatisation period:  Environmental conditions:  Temperature:  Photoperiod:  Light intensity:  pH:  Hardness:	22.0° C
Photoperiod:	24 h light
Light intensity:	7000 - 8000 lux
pH:	Control (0 – 72 h): 8.1 – 8.2
	10 mg/L (0 – 72 h): 7.8 – 7.9
pH:	18 mg/L (0 – 72 h): 7.3 – 7.8
8.10	32 mg/L (0 – 72 h): 6.5 – 7.6
	56 mg/L (0 – 72 h): 5.9 – 6.5
	100 mg/L (0 – 72 h): 4.7 – 4.9
Hardness:	24 mg CaCO3/L

Experimental treatments

Prior to the main test, a range-finding test was performed with concentrations of 0.01, 0.1, 1, 10 and 100 mg test item/L. On the basis of the preliminary test results, the main test was performed with five concentration ranges, 10, 18, 32, 56 and 100 mg test item/L. In addition, algae were exposed to test

substance or other additives (blank control). The test solutions were prepared using ISO-medium.

The culture vessels were incubated on a shaking plate over several generations for 72 hours. During the incubation, the algal cells were kept in suspension by continuous shaking. For each concentration, there parallel cultures were prepared in 100 ml all-glass vessels. To each test vessel, 50 mL of the test rem preparation were added with an initial cell density adjusted to 1 × 104 cells/mL. Additionally, for the lighest test concentration one replicate without algae was provided. For the control group, six parallel test vessels were prepared.

### **Observations**

After 24, 48, and 72 hours, mean cell densities for each test concentration and control were determined based on spectrophotometrical measurements and a linear calibration curve relating extinction and cell

The concentrations resulting in 50 % and 10 % reduction of growth rate (E_rC₅₀ and E_rC₁₀) and 50 % and 10 % inhibition of cell growth (E_bC₅₀ and E_bC₁₀) were determined, as well as the associated NOEC values. The pH-values of the test solutions were measured at test initiation and test termination. The temperature was controlled daily in a temperature-control vessel.

Analytical control measurements of the actual concentration of the test item were performed by mean of HPLC analysis, using samples taken from three representative concentrations, 10, 32 and 100 mg test item/L.

### **Statistical calculations**

The calculation of the EC₅₀ and EC₁₀ values was based on the percentages of growth inhibition and the percentages of growth rate reduction versus the (log) concentration using the linear regression method.

# II. RESULTS AND DISCUSSION

### A. FINDINGS

E_rC₅₀, E_bC₅₀ and NOEC values are given below based on nominal concentrations.

Table 0-18: Toxicity of glyphosate to Pseudokirchneriella subcapitata

Endpoint (0 – 72 hours)	Glyphosate [mg test item/L]
E _r C ₅₀ (95% CI)	54 (51 - 58)
E _b C ₅₀ (95% CI)	48 (43 - 54)
E _r C ₁₀ (95% CI)	33 (upper limit of 95% CI: 36)
E _b C ₁₀ (95% CI)	18 (13 - 22)
NOE _r C	32
NOEPC NOEPC	10

CI = confidence interval

Analytical data: Analytical control measurements were performed on three representative concentrations. At test initiation, 106 %, 109 % and 108 % of the test item were recovered for the nominal concentrations of 10,32 and 100 mg test item/L, respectively. At test termination, 103 %, 108 % and 111 % of the test item were recovered for the nominal concentrations of 10, 32 and 100 mg test item/L, respectively. As the mean measured content of the test item always ranged between 80 and 120 % of nominal, the Ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

Referentem/L. Reference item: The 72-hour  $E_bC_{50}$  was 0.69 mg reference item/L, the 72-hour  $E_rC_{50}$  was 1.32 mg reference

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

M-CA, Section 8 Page 323 of 847

### **B. OBSERVATIONS**

Glyphosate inhibited cell growth of the fresh water algae Pseudokirchneriella subcapitata increasingly with increasing concentrations, resulting in an almost complete inhibition at 56 and 100 mg test item/LsA significant reduction of growth rate was observed at 56 and 100 mg test item/L.

Pseudokirchneriella subcapitata exposed for 72 hours to glyphosate hours) **Table 0-19:** 

Test managed (0. 73 hans)	Control	Glyphosate [mg test item/L]			
Test parameters (0 – 72 hours)	-	10	18 32	S [©] 56	100
Mean cell densities (× 10000 cells/mL)	57.4	52.3	49.3 47.8	5.3	1.2
Cell growth rate reduction [%]		2.3	3.7 3 4.5	58.9	96.0
Cell growth inhibition [%]		7.1	9.4 19.9	81.6	96.7

In the control the cell density increased by an average factor of 57 within three days. Analysis of samples taken from the solution without algae showed that the actual exposure concentration remained above 80 % relative to the initial concentration. Further, all test conditions remained within the ranges prescribed by the protocol.

III. CONCLUSION Study of Study Under the conditions of the present study the morninal based 72 hours  $E_rC_{50}$  and  $E_bC_{50}$  for Pseudokirchneriella subcapitata exposed to glyphosate were calculated to be 54 mg test item/L and 48 mg test item/L, respectively. The NOE_rC and NOE_bC were determined to be 32 mg test item/L and 10 mg test ILIS TO item/L, respectively.

### 3. Assessment and conclusion

## Assessment and conclusion by applicants

The validity criteria for the study were re- evaluated according to the current guideline OECD 201 (2011).

### Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	57.5
The mean coefficient of variation for section-by-section specific growth sates in the control cultures must not exceed 35%.	≤35%	56.7%
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7%.	≤7%	3.4%

The bismass in the control cultures increased by a factor of  $\geq 16$  (actual: 57.5), the coefficient of variance for section specific growth rates exceeded 35% (actual: 56.7%), for the whole test period it was < 7% (actual: 3.4%). Because the coefficient of variation for the section specific growth rate was > 35%, the validity criteria according to the current guideline OECD 201 were not met and this study is not considered valid for risk assessment purposes.

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

## **Assessment and conclusion by RMS:**

### 1. Information on the study

	Data point:	CA 8.2.6.1/008
	Report author	CA 6.2.6.17000
	Report year	1995 Resident
	Report title	Fresh water algal growth inhibition test with glyphosate
	Report No	R481
	Document No	K-101
		No information mentioned in the Monograph.
	Guidelines followed in study	£ 7 0
	GLP	Yes
	Previous evaluation	Not accepted in RAR (2015)
	Short description of	Toxicity of technical glyphosate (purity >94 %) to aquatic organisms (Pseudokirchneriella subcapitata)
	study design and observations:	(I seudokir chnerietta supraphata)
	Short description of	No information mentioned in the Monograph
	results:	No information institution in the Monograph
	Reasons for why the	No study report available and no information mentioned in the
	study is not considered	Monograph 2001. However, these data were considered as not
	relevant/reliable or not	acceptable in the Monograph 2001
	considered as key	
	study	- 0 4 - 0
	Reasons why the study report	The notifier has not access to this study report. Since the study was
	is not available for submission	part of the earlier data package available to the former RMS of the active substance glyphosate, the AGG would have to send a "request
	is not available for submissions	for administrative assistance (Art. 39 of Regulation (EC) No.
	\$\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}\bar{\delta}	1107/2009) to the BVL.
	Acceptability/Reliability	Invalid
	2,76,0	Category 4b
	Category study in AIR 5 dossier (L docs)	
18 95 97 95 95 95 95 95 95 95 95 95 95 95 95 95	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Annex to Regulation 283/2013 Glyphosate M-CA, Section 8 Page 325 of 847

#### 1. Information on the study

Data point	CA 8.2.6.1/009
Report author	
Report year	1987
Report title	The Toxicity of Glyphosate Technical to Selenastrum caprico natum
Report No	1092-02-1100-1
Document No	-
<b>Guidelines followed in study</b>	Guideline 123-2, U.S. EPA – FIFRA (Growth and Reproduction of Aquatic Plants, Tier 2)
Deviations from current test guideline	Deviations from the guideline OECD 201 (2011). Minor: - Initial nominal cell density of $3 \times 103$ cells in was below the recommended density of $5 \times 103 - 104$ cells in L for P. subcapitata, however validity criteria were met
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes
Acceptability/Reliability	Valid JE JE
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary
Executive Summary
The effects of glyphosate technical on Pseudokirchneriella subcapitata, (formerly named Selenastrum capricornutum, currently named as Raphidocelis Subcapitata) were evaluated in a 7-day static toxicity test. After a range-finding test, suspensions of Pseudokirchneriella subcapitata were exposed to five nominal concentrations encompassing 10, 18, 32,36 and 100 mg test item/L. In addition, a control with the test medium (without test substance) was tested.

The test flasks were inoculated with cells from a seven-days-old pre-culture of Pseudokirchneriella subcapitata with an initial test cell density of 3000 cells/mL. The test concentrations and the control comprised 3 replicates. The test flasks were placed in the incubator and maintained over several generations for 7 days. The temperature was measured daily and the pH was adjusted to  $7.5 \pm 0.1$  at test initiation.

Cell counts were made using a Coulter counter on test days 2, 3, 4, and 7 after test initiation. On the basis of the mean cell counts the percentage inhibition was determined and the EC_x values calculated using the algal growth curve as determined by inverse estimation least squares linear regression.

The effects of the test tem on algal growth inhibition on day 7, relative to the control, ranged from 9.3 % for the lowest test concentration to > 97.6% at or above the nominal test concentration of 18 mg test item/L. Cso to extited to the state of The 7-day EC₅₀ for Eseudokirchneriella subcapitata exposed to glyphosate technical was calculated to be 13.8 mg test item/D.

#### I. MATERIALS AND METHODS

A. MATERIALS	
Test material:	Glyphosate technical
Test item:	Glyphosate technical
Description:	White solid NBP-3594465
Lot/Batch #:	White solid NBP-3594465
Purity:	NBP-3594465 96.6 % 1.2 % at 25 °C
Water solubility:	1.2 % at 25 °C
Vehicle and/or positive control:	1.2 % at 25 °C  Vehicle: Dilution water (AAP medium)  Positive control: None
venicie and/or positive control.	Positive control: None
Test organism:	
Species:	Pseudokirchneriella subcapitata
Initial cell concentration	3 × 103 cells/mL
Source:	In-house culture
Acclimatisation period:	7 days
<b>Environmental conditions</b> :	
Temperature:	24 ± 2 °C ,
Photoperiod:	24 h light ( )
Light intensity:	4306 £ 650 Lux
pH:	7.5 ± 0.15

Experimental dates: 20 April - 27 April 1987
Experimental treatments
Prior to the main test. a read and 100 mg/f Prior to the main test, a range-finding test was performed with six concentrations ranging between 0.001 and 100 mg test item/L. On the basis of the preliminary test results, the main test was performed with five nominal concentrations (10,518,32, 56 and 100 mg test item/L) and three replicates per test item treatment group. Test concentrations were prepared by adding the required volumes of the stock solution to AAP medium in 250 mL volumetric flasks. A control with the test medium (without test substance) was tested under the same conditions as in the test groups. The test was performed in 250 mL volumetric flasks, containing each 50 met sest solution. Test algae were taken from a 7-day old stock culture and were aseptically added to the test medium to obtain a nominal initial concentration of 3000 cells/mL. Flasks were kept in an incubator at a temperature of  $24 \pm 2$  °C. Flasks were continuously shaken at 100 oscillations per Observations &

Cell counts were made using a Coulter counter on test days 2, 3, 4, and 7 after test initiation. Three counts per replicate were made. On the basis of the mean cell count, the percentage inhibition was determined. The temperature was measured daily and the pH was adjusted to  $7.5 \pm 0.1$  at test initiation. Samples of test

To determine the ECx values, the log of test concentration was plotted against percent inhibition expressed as probit. Inverse estimation least squares linear regression was used to determine the line of best fit and the concentrations corresponding to 25 and 50 % inhibition and the associated 95 % confidence intervals were calculated. Parameters of the regression line were determined using the SAS attributed.

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

The EC50 value is given below based on nominal concentrations.

Table 0-20: Toxicity of glyphosate technical to Pseudokirchneriella subcapitata

Endpoint	Glyphosate technical [mg test item/L]
EC ₅₀ (7 day)	13.8

Chemical analyses were performed on samples of the test solutions to quantity glyphosate in the test solution. The mean measured concentrations were 10.6, 19.6, 35.2, 588 and 104 mg test item/L, corresponding to 106 %, 109 %, 110 %, 105 % and 104 % of the nominal test concentrations, respectively. As the mean measured content of the test item always ranged between 80 and 120 % of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

B. OBSERVATIONS

The effects of the test item on algal growth inhibition on day 9, relative to the control, ranged from 9.3 % for the lowest test concentration to > 97.6% at or above the nominal test concentration of 18 mg test item/L.

Percentage growth inhibition of Pseudokirchneriella subcapitata exposed to **Table 0-21:** glyphosate for 7 days

Nominal concentrations [mg test item/L]	Control	10	18	32	56	100
Mean number of algae cells on Day 7 [× 1000 cells/mL]	7000	6347	168.333	11.0	9.333	8.333
Mean inhibition (7 days) [%]	-	9.3	97.6	99.8	99.9	99.9

III. CONCLUSIONS

The 7-day EC₅₀ for *Pseudokirchneriella subcapitata* exposed to glyphosate technical was calculated to be 13.8 mg test item/L&

#### 3. Assessment and conclusion

# Assessment and conclusion by applicant:

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and  $EC_{10}$ ,  $EC_{20}$ , and  $EC_{50}$ , NOEC and LOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

# Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 < 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	247 (1) 2 (2) 2
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35%.	≤35% & & & & & & & & & & & & & & & & & & &	0.6%
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7%.		1.7%

The biomass in the control cultures increased by a factor of a cachieved: 247), the coefficient of variance for section specific growth rates was  $\leq 35\%$  (achieved: 0.6%) and the coefficient of variance for the whole test period it was  $\leq 7\%$  (achieved: 1.7%). The validity criteria according to the current guideline OECD 201 were met and this study is considered valid for risk assessment purposes.

A statistical re-evaluation addressing  $EC_{10}$ ,  $EC_{20}$ ,  $EC_{30}$  NOEC and LOEC was performed (Positon Paper No. CA 8.2.6.1/010). Recovery of test item concentrations ranged from 100 - 114%. Therefore, results are based on nominal concentrations.

# Re-calculated EC₁₀, EC₂₀, EC₅₀, NOEC and LOEC value based on nominal test concentrations

Endpoint (0 – 72 ho	urs)	Glyphosate technical [mg a.e./L]		
	(8)	Yield	Growth rate	
EC ₁₀ (95% CI)		< 10	< 10.0	
EC ₂₀ (95% CI)	8 10 13 18 13 18	10.25 (9.46 – 10.9)	10.8 (< 10.0 – 15.4)	
EC ₅₀ (95% CI)	70 F 9	12.11 (11.4 – 12.8)	27.4 (20.2 – 36.6)	
NOEC	19 10 80	< 10.0	< 10.0	
LOEC	16.00 C	10.0	10.0	
CI = confidence interve	1500			

# Assessment and conclusion by RMS:

#### 1. Information on the study

Data point	CA 8.2.6.1/010
Report author	
Report year	2020
Report title	Statistical evaluation (non-GLP) of the study 1092-02-1100-15 on the toxicity of Glyphosate Technical to <i>Selenastrum capricornatum</i> under static conditions
Report No	110054-003
Document No	-
<b>Guidelines followed in study</b>	OECD 201 (2011)
Deviations from current test guideline	Not applicable None
<b>Previous evaluation</b>	No, not previously evaluated
GLP/Officially recognised testing facilities	No, GLP is not compulsory for statistical evaluation
Acceptability/Reliability	Valid & S S S S
Category study in AIR 5 dossier (L docs)	Category 1

2. Full summary
Executive Summary
A statistical evaluation addressing the calculation of valid 72-h EC10, EC20 and EC50 as well as NOEC values for yield and growth rate was conducted for the algae study 1092-02-1100-1 fulfill the data requirements according to regulation EU 283/2013. Furthermore, the validity criteria for the study were re- evaluated according to the current guideline OECD 201 (2011).

Analyses were performed using software ToxRatPro Version 3.3.0. The validity criteria according to the current guideline OECD 201 were met and this study is considered valid.

The calculated EC₁₀, EC₂₀ and EC₅₀ varies are <10, 10.8, and 27.4 mg a.e./L, respectively for growth rate and < 10.0, 10.3 and 12.1 mg/L, respectively for yield. NOEC for yield and growth rate were determined to be < 10.0 mg a.e./L. The statistical parameters showed that these values can be considered as reliable Original report details
Study number:
Author:
ubstance
tle and therefore considered for risk assessment.

#### I. MATERIALS AND METHODS

ToxRatPro Version 3.3.0

1092-02-1100-1

Glyphosate Technical

The Toxicity of Glyphosate Technical to Selenastrum capricornutum Title:

Completion date: 27-Apr-1987

Test guideline(s): Guideline 123-2, U.S. EPA – FIFRA (Growth and Reproduction of Aquatic Plants,

Tier 2) and re-evaluated according to the current test guideline OECD 201 (2011)

Yes, conducted under GLP/Officially recognised testing facilities

Malcolm Pirnie, Inc., mite Plains, NY 10602, USA

Monsanto Agricultural Company, Chesterfield, MO 63198, USA

#### **B. STUDY DESIGN**

# Dates of work: April 2020

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and 72-h EC₁₀, EC₂₀, and EC₅₀, and NOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

The study 1092-02-1100-1 [1987] was statistically evaluated for the effects of glyphosate technical on the organism *Pseudokirchneriella subcapitata*, (formerly named *Selenastrum capricornutum*, currently known as *Raphidocelis subcapitata*). The organisms were exposed for 7 days to the following concentrations of Glyphosate technical: 10, 18, 32, 56 and 100 mg a.s./L. Additionally, a control was tested in parallel. The data used for this evaluation were obtained from the original study reports.

The analytical data from the study report were checked to ensure the appropriate mean measured or nominal exposure concentrations were used in the ECx calculations.

#### **Statistical calculations**

Models providing best fit to the respective data were selected and are as follows:

In order to derive the 72-h Effect Concentrations that have 10, 20 and 50% effects on yield and growth rate of the test subjects ( $EC_{10}$   $EC_{20}$  and  $EC_{50}$ ), a non-linear regression analysis was performed with a 3-parametric logistic CDF (Cumulative Distribution Function) model for yield and with probit analysis for growth rate.

growth rate. NOEC levels were determined by Welsh-t-test After Bonterroni-Holm Correction (one-sided smaller; p = 0.05).

All statistical evaluations and checks for validity criteria were performed using the software ToxRatPro Version 3.3.0.

# II. RESULTS AND DISCUSSION

#### A. FINDINGS

The validity criteria according to the current guideline OECD 201 (2011) were met and this study is considered valid for risk assessment purposes. Result are provided in the table below:

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	247
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35 %.	≤ 35 %	0.6 %
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7 %.	≤ 7 %	1.7 %

Analytical recovery of test item ranged from 100-114 % of nominal test concentrations. Therefore, results are based on nominal concentrations.

EC10, EC20, and EC50, NOEC and LOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

For yield, the parameters for the 3-parameter logistic CDF model are estimated as b0: 73.835; b1: 12.108; 62: 8.330.

For growth rate, the parameters for the probit model are estimated as slope b: 2.08968; Intercept a: -3.00423.

For yield, the statistical parameters are: F(2, 3) = 1250,486; p(F) = <0.001; R2 = 0.984. After non-linear regression no lack of fit was detected for the function (p(F|Lack of Fit) = 0.838.

For growth rate, statistical parameters for goodness of fit test are: Chi2(13) = 1.61163; p(Chi²): 1.000; F(1,13) = 41.449; p(F) < 0.001; r²: 0.761 for growth rate.

Based on these values the EC₁₀, EC₂₀ and EC₅₀ for yield and growth rate calculations should be considered valid.

The obtained EC₁₀, EC₂₀ and EC₅₀, and NOEC values for *Raphidocelis subcapitata*, (formerly known as *Selenastrum capricornutum* or *Pseudokirchneriella subcapitata*) are presented in the table below.

Table 0-22: Re-calculated EC₁₀, EC₂₀, EC₅₀, NOEC and LOEC value based on nominal test concentrations

Endpoint (0 – 72 hours)	Glyphosate technical [mg a.e./L]		
	Yield	Growth rate	
EC ₁₀ (95% CI)	< 10.0	< 10.0	
EC ₂₀ (95% CI)	10.3 (9.46 – 10.9)	10.8 (< 10.0 – 15.4)	
EC ₅₀ (95% CI)	12.1 (11.4 – 12.8)	27.4 (20.2 – 36.6)	
NOEC	< 10.0	< 10.0	
LOEC	10.0	10.0	

CI = confidence interval

# III. CONCLUSION

#### 3. Assessment and conclusion

# Assessment and conclusion by applicant

The validity criteria according to the current guideline OECD 201 were met and this study is considered valid.

The calculated  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  values are <10, 10.8, and 27.4 mg a.e./L, respectively for growth rate and < 10.0, 10.3 and 12.1 mg/L, respectively for yield. NOEC for yield and growth rate were determined to be < 10.0 mg a.e./E. The statistical parameters showed that these values can be considered as reliable and therefore considered for risk assessment.

# Assessment and conclusion by RMS:

#### 1. Information on the study

l I	Data point:	CA 8.2.6.1/011
<u> </u>	Report author	. Šie
R	Report year	1995
R	Report title	Glyphosate: Algal inhibition test
R	Report No	710/12
	Document No	710/12 -
0	<b>Guidelines followed in study</b>	No information mentioned in the Monograph.
(	GLP	Yes
P	Previous evaluation	Yes, accepted in RAR (2015)
S	Short description of	Toxicity of glyphosate acid to aquatic organisms (Desmodesmus
	tudy design and	subspicatus) 72 hours static test.
_	observations:	subspicatus) 72 hours static test.
	Short description of results:	NOECb = 25 mg a.s./L NOECr = 25 mg a.s./L
		$E_rC_{50}(24 \text{ h}) = 60 \text{ mg a.s./L}$
		NOECb = 25 mg a.s./L  NOECr = 25 mg a.s./L $E_rC_{50}$ (24 h) = 60 mg a.s./L $E_bC_{50}$ (72 h) = 46 mg a.s./L  No study report available. However, these data were provided in the Monograph 2001 and refree upon in the previous evaluation, RAR 2015.
	Reasons for why the	No study report available. However, these data were provided in the
	tudy is not considered	Monograph 2001 and refree upon in the previous evaluation, RAR 2015.
	relevant/reliable or not considered as key	2013.
	tudy	
R	Reasons why the study report	The notifier has no access to this study report. Since the study was part
is	s not available for submission	of the earlier data package available to the former RMS of the active
		substance glyphosate, the AGG would have to send a "request for
		administrative assistance (Art. 39 of Regulation (EC) No. 1107/2009) to the BVL.
	Acceptability/Reliability	Supportive. The study report is not available to the applicant. Data
	.8,	was provided in the Monograph 2001 and relied upon in the previous
	Sectionary Solutions of Solutio	Evaluation, RAR 2015. Validity cannot be checked. Other valid studies
<u> </u>		
	Category study in AIR 5	Category 4a
u	iossici (L'uocs)	
	7, ¹⁰ , 90	
	900,100	
	7 5 5°	
	No to	
5		
10 V		
So Miller		
G G	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020
4,28	lossier (L docs)	
	Category study in AIR 5 AIR Solution of the Country	

#### Information on the study 1.

	Data point:	CA 8.2.6.1/012
	Report author	
	Report year	1994
	Report title	Testing of toxic effects of aminomethylphosphonic acid (AMPA) on the
		single cell green alga Scenedesmus subspicatus.
	Report No	XX-93-271
	Document No	-
	Guidelines followed in study	Information mentioned in the Monograph: The data presented below were generated in accordance with OECD- or equivalent guidelines.
	GLP	Yes
	Previous evaluation	Yes, accepted in RAR (2015)
	Short description of study design and observations: Short description of	Acute and chronic toxicity of glyphosate isopropylamin-salt to aquatic organisms (purity 61-65 %) 72 hours static test.  NOECb = 4.8 mg a.s./L
	results:	NOECr = 24.0 mg a.s./L $E_rC_{50}$ (72 h) = 166 mg a.s./L $E_bC_{50}$ (72 h) = 729 mg a.s./L
	Reasons for why the study is not considered	No study report available. However, these data were provided in the Monograph 2001 and relied upon in the previous evaluation, RAR
	relevant/reliable or not	2015.
	considered as key	2015. 18 0° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5° 5°
	study	
	Reasons why the study report is not available for submission	The notifier has no access to this study report. Since the study was part of the earlier data package available to the former RMS of the active substance glyphosate, the AGG would have to send a "request for administrative assistance (Art. 39 of Regulation (EC) No. 1107/2009) to the BVL.
	Acceptability/Reliability 7 2	Supportive. The study report is not available to the applicant. Data were provided in the Monograph 2001 and relied upon in the previous evaluation, RAR 2015. Other valid studies with more sensitive endpoints are available.
	Cotogory study in AID 5	Category 4a
	Glyphosate Renewal Group AIR 5 – July 2020	
A A A A A A A A A A A A A A A A A A A	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

#### 1. Information on the study

Annex to Regulation 283/2013

Data point	CA 8.2.6.1/013
Report author	ijo
Report year	1993
Report title	Algae growth inhibition test – Test article: "Glyphosate
-	isopropylamine salt"
Report No	80-91-2328-01-93
<b>Document No</b>	- 3.5
Guidelines followed in study	OECD Guideline 201(1984) and in compliance with Hemmung
	der Zellvermehrung bei Grünalge Scenedesmus subspicatus –
	Verfahrensvorschlag der ad hoc Arbeitsgruppe des
	Umweltbundesamtes Berlin"
<b>Deviations from current test</b>	Deviations from the guideline OECD 200 (2011):
guideline	Major:
	- The mean coefficient of variation for section-by-section specific
	growth rates in the control cultures was 47.5%, instead of $\leq$ 35%,
	and the coefficient for the whole period was 7.8% instead of $\leq 7\%$
Previous evaluation	Yes, accepted in RAR (2015) 500
<b>GLP/Officially recognised testing</b>	Yes
facilities	"P. " Co.
Acceptability/Reliability	Invalid & S
Category study in AIR 5 dossier	Category 2b
(L docs)	

2. Full summary
Executive Summary
The effects of glyphosate isopropylamine salts on Desmodesmus subspicatus (formerly known as Scenedesmus subspicatus) were evaluated in a 72-hour static toxicity test. After a range-finding test D. subspicatus were exposed to six nominal concentrations encompassing 1.6, 5.0, 15.8, 50.0, 158 and 500 mg test item/L.

For each concentration, four parallel cultures in 250 ml Erlenmeyer flasks were prepared. The initial cell concentration was 104 cells/mL. For the control group, six parallel test vessels were prepared.

After 24, 48, and 72 hours of growth, the numbers of viable cells for each test concentrations and control were determined and the growth inhibition was calculated. At this, concentrations resulting in 50 % inhibition (E_rC₅₀, EbC₅₀), were determined, as well as the NOEC.

The EbC and ErC values were calculated by the mean of dose response curve in regression analysis. The EC50 and EC10 values calculated on the basis of the area under the curve are designated as EbC and the EC values based on the calculation of the growth rate are designated as E_rC.

The 72 h E_rC₅₀ for Desmodesmus subspicatus was determined to be 241 mg glyphosate isopropylamine salt/L. The 72 h E_bC₅₀ for D. subspicatus was 41.1 mg glyphosate isopropylamine salt/L. Significant effects of glyphosate isopropylamine salt on the growth of D. subspicatus were found at a concentration \$15.8 mg test item/L. The NOEC was 15.8 mg test item/L. The validity criteria according to em ment production of the last the current guideline OECD 201 were not met. Therefore, this study is not considered valid for risk assessment purposes.

# I. MATERIALS AND METHODS

A. MATERIALS	
Test Material:	Glyphosate isopropylamine salt
Test item:	Glyphosate isopropylamine salt
Lot No.:	01/06/93
Chemical purity:	61.6%
Physical state:	viscous liquid
Density:	1.23 g/cm3 at 20 °C
Vehicle and/or positive co	
Vehicle:	None St. of the state of the st
Positive control:	None Resident
Test organism:	
Species:	Desmodesmus subspicatus (formerly known as Scenedesmus subspicatus)
Initial cell concentration:	104 cells/mL
Source:	Pflanzenphysiologisches Institut Göttingen, Germany (Stock No. 8681 SAG)
<b>Environmental condition</b>	s:
Temperature:	21 – 23 °C
Photoperiod:	24 h light
Light intensity:	10900 – 11200 lux
Light quality:	Universal white light (8 × 25 W)
pH:	6.69 2 10 59
Conductivity:	not stated
Hardness:	not stated

# B. STUDY DESIGN

Experimental dates: 26 July – 29 July 1993

# **Experimental treatments:**

On the basis of the results of a range finding test, the main test was performed with six concentrations, 1.6, 5, 15.8, 50, 158 and 500 mg test item/L.

To maintain the algae in the suspension and to facilitate transfer of CO₂ during the test, the flasks were Observations:
After 24, 48, and were and the rotated continuously over the entire test period. For each concentration, four parallel cultures in 250 ml Erlemmeyer flasks were prepared. To each Erlenmeyer flask, 100 mL of the test item preparation were added. The initial cell concentration was 104 cells/mL. For the control group, six parallel test vessels were

After 24, 48, and 72 hours of growth, the numbers of viable cells for each test concentrations and control were and the growth inhibition was calculated. At this, the mean value of the cell concentration (converted

in log values) was plotted versus percentage growth inhibition to generate dose-response curves for each so concentration. The concentrations resulting in 50% inhibition (ErC50, EbC50), were determined, as well as the NOEC.

#### **Statistical calculations:**

The area under the growth curves, the percentage inhibition of the cell growth at each test concentration, the average specific growth rate for exponentially growing cultures were calculated according to formulas in OECD 201 (1984). The EC50 and EC10 values calculated on the basis of the area under the curve are designated as E_bC, and the EC values based on the calculation of the growth rate are designated as E_rC. The  $E_bC$  and  $E_rC$  values on the basis of nominal concentrations were calculated by regression analysis after log transformation of the concentration values.

# II. RESULTS AND DISCUSSION

#### A. FINDINGS

The ErC10, EbC10, ErC50, EbC50 and NOEC values are given below based on nominal concentrations.

7, 6 This

Table 0-23: Toxicity of Glyphosate isopropylamine salt to Desmodesmus subspicatus

Endpoint (72 h)	Glyphosate isopropylamine salt [mg test item/L]			
ErC10	18.9			
EbC10	6.3			
ErC50	241			
EbC50	£ 5 5 41.1			
NOEC	15.8			

Analytical measurements were performed by HPLC on four representative concentration levels of glyphosate isopropylamine salt, at 15.8 mg test item/L, equivalent to 7.21 mg glyphosate/L, 50 mg test item/L, equivalent to 22.82 mg glyphosate/L, 158 mg test item/L, equivalent to 72.12 mg glyphosate/L and at the highest concentration tested, \$00 mg test item/L, equivalent to 228.22 mg glyphosate/L. The analytical results of the determination of glyphosate isopropylamine salt on the basis of glyphosate are given below.

Measured concentration and recoveries of glyphosate isopropylamine salt **Table 0-24:** S based on glyphosate

	Nominal concentration		Measured concentration [mg glyphosate/L]		Recovery [%]	
	[mg glyphosate isopropylamine salf/L/	[mg glyphosate/L]	0 h	72 h	0 h	72 h
	500	228.216	198.901	197.598	87.2	86.6
	158	72.116	74.271	72.599	103.0	100.7
	j. 50 50	22.822	25.318	24.479	110.9	107.3
5,	15.8	7.212	7.834	7.607	108.6	105.5
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	5					
30 30	Glyphosate Renewal Group AI	R 5 – July 2020		Doc ID: 11005	4-MCA8_GRG	_Rev 1_Jul_2020

As the measured contents of glyphosate ranged between 80 and 120 % of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

#### **B. OBSERVATIONS**

The results of the definite test show that algae growth was completely inhibited at a nominal concentration of 500 mg test item/L. In contrast, no inhibition of the algae growth was found at or below a nominal concentration of 15.8 mg test item/L.

Table 0-25: Percentage inhibition of growth rate, yield and biomass of to *Desmodesmus subspicatus* exposed for 72 hours to glyphosate isopropylamine salt

Glyphosate isopropylamine salt [mg test item/L]	Mean number of algae cells [10000/ml]	Inhibition growth rate (0-72 h) [%]	Inhibition biomass (0-72 h) [%]
Control	119.1	- 🔊	-
1.6	107.4	-5.3	-9.5
5	123.9	-15.0	-4.4
15.8	112.2	17.9	12.4
50	26.1	16.95 5 5	69.8
158	15.8	342 6	86.3
500	1.9	84.P X	96.9

The required minimum of a 16-fold cell multiplication in the control cultures during the test period was achieved.

# III. CONCLUSIONS

The 72 h  $E_rC_{50}$  for *Desmodesmus subspicatus* was determined to be 241 mg glyphosate isopropylamine salt/L. The 72 h  $E_bC_{50}$  for *D. subspicatus* was 41.1 mg glyphosate isopropylamine salt/L. Significant effects of glyphosate isopropylamine salt on the growth of *D. subspicatus* were found at a concentration >15.8 mg test item/L. The NOEC was 15.8 mg test item/L.

#### 3. Assessment and conclusion

# Assessment and conclusion by applicant:

The validity criteria for the study were re- evaluated to the current guideline OECD 201 (2011).

#### Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	66.2
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35%	≤35%	47.5%
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7%.	≤7%	7.8%

The biomass in the control cultures increased by a factor of  $\geq$  16 (actual: 66.2), the coefficient of variance for section specific growth rates exceeded 35% (actual: 47.5%), for the whole test period it exceeded 7% (actual: 7.8%). Because the coefficient of variation for the section specific growth rate was  $\geq$  35%, and the coefficient for the whole period was  $\geq$  7%, the validity criteria according to the current guideline

OECD 201 were not met and this study is not considered valid for risk assessment purposes.

# **Assessment and conclusion by RMS:**

#### 1. Information on the study

6 - hour static test. The test in co	To Desmodesmus subspicatus us subspicatus) was determined in a
lgal growth inhibition test with -7-46-90 DECD 201 Tes Tot accepted in RAR (2015) The toxicity of Glyphosate TCN formerly known as Scenedesmu 6 - hour static test. The test into	n compound glyphosate TCN  To Desmodesmus subspicatus us subspicatus) was determined in a
lgal growth inhibition test with -7-46-90 DECD 201 Tes Tot accepted in RAR (2015) The toxicity of Glyphosate TCN formerly known as Scenedesmu 6 - hour static test. The test into	To Desmodesmus subspicatus us subspicatus) was determined in a
DECD 201 Tes Tot accepted in RAR (2015) The toxicity of Glyphosate TCN Formerly known as Scenedesmu 6 - hour static test. The test into	To Desmodesmus subspicatus us subspicatus) was determined in a
DECD 201  Tes  Tot accepted in RAR (2015)  The toxicity of Glyphosate TCN  Tormerly known as Scenedesmy  To hour static test. The test into	To Desmodesmus subspicatus us subspicatus) was determined in a
Tes  Tot accepted in RAR (2015) The toxicity of Glyphosate TCN Formerly known as Scenedesmu 6 - hour static test. The test into	To Desmodesmus subspicatus us subspicatus) was determined in a
Tes  Tot accepted in RAR (2015) The toxicity of Glyphosate TCN Formerly known as Scenedesmu 6 - hour static test. The test into	To Desmodesmus subspicatus us subspicatus) was determined in a
ot accepted in RAR (2015) The toxicity of Glyphosate TCN formerly known as Scenedesmut 6 - hour static test. The test in the control of the c	To Desmodesmus subspicatus us subspicatus) was determined in a
he toxicity of Glyphosate TCN formerly known as Scenedesmu. 6 - hour static test. The test in the state of the test in the tes	To Desmodesmus subspicatus us subspicatus) was determined in a
he toxicity of Glyphosate TCN formerly known as Scenedesmu. 6 - hour static test. The test in the state of the test in the tes	No Desmodesmus subspicatus us subspicatus) was determined in a
formerly known as <i>Scenedesmy</i> 6 - hour static test. The test inco	us subspicatus) was determined in a
6 - hour static test. The test in co	
2 50 100 200 and 400 and 30d	orporated 5 nominal concentrations at
J, JU 100, ∠00 and 400 mg a.s.	L (Glyphosate TCN: sample No.
6/03/90 with 95% purity) and a	an untreated control. The test comprised
ree replicate cultures of each to	est concentration and the control. The
nitial nominal cell density was 1	
	ned microscopically with the help of the
	ell numbers were counted at test start,
fter 72 and 96 hours.	
he pH-values and O2 values we	ere determined in the test media at the
eginning and at the end of the to	est. The room temperature was 22 $\pm$
	ox. 8000 lux. The algae were illuminate
ontinuously with fluorescent lan	mp (Universalweiß Typ L 25, Osram)
Glyphosate TCN	Inhibition in algal growth
(mg a.s./L)	(%)
Control	-
20	0
50	6.7
100	33.3
200	55.4
400	84.6
-	
Endpoints (96 h)	Glyphosate TCN
• ` '	(mg a.s./L)
LC10	56 ± 26
LC50	$136 \pm 64$
here were no differences in par	rameters oxygen and temperature
1	
etween the test item treatments	and the control. The pH values
etween the test item treatments ecreased very clearly with incre	
etween the test item treatments ecreased very clearly with increated the test of the cell at 400 mg a.s./L 50% of the cell	easing dosage.
etween the test item treatments ecreased very clearly with increat at 400 mg a.s./L 50% of the cell bserved in the other test item co	easing dosage.  Is were damaged. This was not
etween the test item treatments ecreased very clearly with increated to 400 mg a.s./L 50% of the cell bserved in the other test item con he study design is not in line ar	easing dosage.  Is were damaged. This was not
1 (f	itial nominal cell density was the cell densities were determine the cell densities were determine the cell densities were determined to the cell densities and O2 values were determined and at the end of the tell cand light intensity was approprint approach with fluorescent lands. It phosate TCN and a.s./L)  Control  Co  CO  CO  CO  CO  CO  CO  CO  CO  CO

relevant/reliable or not	growth rates were not determined, no analytical measurement		
considered as key	performed). The validity criteria according to the current guideline		
study:	could not be concluded. Therefore, no consistent conclusions could be		
	drawn from the study. The study is considered as not relevant according		
	to various shortcomings.		
Reasons why the study	The notifier has not access to this study report. Since the study was part		
report is not available for	of the earlier data package available to the former RMS of the active		
submission	substance glyphosate, the AGG would have to send a "request for		
	administrative assistance (Art. 39 of Regulation (EC) No. 107/2009) to		
	the BVL.		
Acceptability/Reliability	Invalid.		
Category study in AIR 5	Category 3b		
dossier (L docs)			

#### 1. Information on the study

Data naint	CA 8.2.6.1/015
Data point	CA 6.2.0.1/013
Report author	
Report year	1990
Report title	Acute Toxicity of Glyphosate to Scenedesmus subspicatus (OECD -
	Algae Growth Inhibition Test)
Report No	250773
<b>Document No</b>	\$ \$ \frac{1}{2}\$
<b>Guidelines followed in study</b>	OECD Guideline 201 (1984)
<b>Deviations from current test</b>	Deviations from the guideline OECD 201 (2011):
guideline	Major: ( ) ( ) ( ) ( )
	- The thean coefficient of variation for section-by-section specific
	growth rates in the control cultures was 101.6%, instead of $\leq 35\%$
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)
GLP/Officially recognised	Yes II
testing facilities	8 6
Acceptability/Reliability	Invalid
Category study in AIR 5	Category 2b
dossier (L docs)	

# Full summary

2. Full summary

Executive Summary

The effects of glyphosate on Desmodesmus subspicatus (formerly known as Scenedesmus subspicatus) were evaluated in a 96-hour static toxicity test. Based on the results of a range finding test, Desmodesmus subspicatus were exposed to five nominal concentrations encompassing 1.6, 8.0, 40, 200 and 1000 mg test item/L and a control.

For each test concentration and control treatment three replicates with 30 mL test solution and an initial After 24, 48, 72 and 96 hours, the number of algae was estimated microscopically after 24 and 48 hours and after 72 and 96 hours by spectrophotometer.

Test item concentrations were verified by HPLC in the 1.6, 40 and 1000 mg test item/L test item treatments and the 1000 mg/L stability control at the beginning and the end of the test (after 96 hours). During the test period test item concentrations were in the range from 56.9 to 66.6 % of the nominal values. Therefore.

reported results are related to mean measured concentrations of the test item.

Glyphosate inhibited cell growth of the fresh water algae Desmodesmus subspicatus after 72 hours at mean measured concentrations of 200 and 1000 mg test item/L and after 96 hours at mean measured concentrations of 8.0, 40, 200 and 1000 mg test item/L.

The 72 hours EbC₅₀ for *Desmodesmus subspicatus* exposed to glyphosate was 326.9 mg/L (300.2 \$3\$\frac{3}{2}\$4.3 mg test item/L), the 96 hours  $E_bC_{50}$  was 117.8 mg/L (107.3 - 129.5 mg test item/L). The NOEC and DOEC for D. subspicatus after 96 hours of exposure were 40 and 200 mg test item/L, respectively.

Because the coefficient of variation for the section specific growth rate was > 35%, the variative criteria according to the current guideline OECD 201 were not met and this study is not considered walld for risk assessment purposes.

#### I. MATERIALS AND METHODS

#### A. MATERIALS

Test material:	5 6 5 C
Test item:	Glyphosate Solid
Description:	Solid
Lot/Batch #:	198-SI-22-1
Purity:	98.7%
Solubility:	Aqueous: 12000 mg/L at 25 °C
Vehicle and/or positive control:	Vehicle: Test medium
venicle and/or positive control.	Positive control: Potassium dichromate (K2Cr2O7)
Test organism:	£ 8 3
Species:	Algae (Desmodesmus subspicatus)
Initial cell concentration	104 ælls/mL
Source:	Umweltbundesamt, Berlin, Germany
Environmental conditions:	²
Temperature:	24.0°C
Photoperiod:	24 h light
Light intensity	8000 lux
Light intensity  pH:	7.7 (adjusted at test start), 6.3 (control), 7.3 (mean of all test concentrations)

# B. STUDY DESIGN

Experimental dates: 9 to 13 October 1989

#### **Experimental treatments**

Based on the results of a range-finding test the definitive study encompassed five nominal concentrations: 1.6, 8.0, 40, 200 and 1000 mg test item/L. In addition, algae (Desmodesmus subspicatus) were exposed to test medium without test substance or other additives (control).

Acept in suspension by continuous should be replicated with an initial cell density adjusted to highest test concentration one replicate without algae was provided. The culture vessels were incubated on a shaking plate in a water bath at 24 °C for 96 hours. During incubation, the algal cells were kept in suspension by continuous shaking. For each concentration and the Scontrol, three replicates were prepared in 50 ml Erlenmeyer flasks. To each test vessel, 30 mL of the test Rem preparation were added with an initial cell density adjusted to 104 cells/mL. Additionally, for the

#### **Observations**

After 24 and 48 hours, the number of algae was estimated microscopically and spectrophotometrically after 72 and 96 hours. The concentrations resulting in 50 % reduction of growth rate (E_bC₅₀), 100 % reduction of growth rate ( $E_bC_{100}$ ) and no growth rate reduction ( $E_bC_0$ ) were determined as area under the growth curve. The pH-values of the test solutions were adjusted at test initiation and measured at test termination. Analytical control measurements of the actual concentration of the test item were performed by means of HPLC analysis, using duplicate samples of 5 mL taken from the low (1.6 mg/L), medium (40 mg/L) and high (1000 mg/L) test concentration at test termination. From the additional test vessel containing 1000 mg/L and no algae samples of 100 mL and 10 mL were taken after 0 and 96 hours.

Statistical calculations
Inhibition of cell growth was determined from the area under the growth curve. The NOEC and LOEC after 96 hours were statistically determined with the Dunnett's test 96 hours were statistically determined with the Dunnett's test.

# II. RESULTS AND DISCUSSION

#### A. FINDINGS

The  $E_bC_{50}$  (0 - 72, 0 - 96 hours), NOEC and LOEC values are given below based on nominal concentrations.

Table 0-26: Toxicity of glyphosate to Desmodesmus subspicatus

Endpoint	Glyphosate [mg test item/L]
0 - 72 hours E _b C ₅₀ (95 % CI)	326.9 (300.2 - 354.3)
0 - 96 hours E _b C ₅₀ (95 % CI)	\$ 117.8 (107.3 - 129.5)
NOE _b C	40
LOEbC	200

CL = confidence limit

CL = confidence limit

Analytical control measurements were performed in the test solutions with nominal values of 1.6, 40 and 1000 mg test item/ and at 1000 mg test item/L without algae. At test initiation and test termination the test concentrations were in a range of \$6.9 to 66.6% of nominal. In the 1000 mg/L stability test the concentration was 117.3 % of nominal at test initiation and 92.9 % of nominal at test termination.

As the mean measured content of the test item was not in the range between 80 and 120 % of nominal, the endpoints are given as nominal concentrations.

Reference item: The 96-hour  $E_bC_{50}$  was 1.514 mg/L (95% CI: 1.488 – 1.542 mg/L). These results were in agreement with what was expected on the basis of historical data.

# B. OBSERVATIONS

Glyphosate inhibited cell growth of the fresh water algae Desmodesmus subspicatus after 72 hours at test concentrations of 200 and 1000 mg test item/L and after 96 hours at test concentrations of 8.0, 40, 200 and Section of the sectio 1000 mg test item/L.

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

**Table 0-27:** Mean cell densities and percentage of inhibition of cell growth of Desmodesmus subspicatus exposed for 72 and 96 hours to glyphosate

	Control Glyphosate [mg test item/L]					
Test parameters	-	1.6	8.0	40	200	900E
Mean cell densities (0 - 72 h) (× 10000 cells/mL)	35.6	38.0	32.8	36.7	18.2	6.5
Mean cell densities (0 - 96 h) (× 10000 cells/mL)	363.7	348.4	291.5	311.2	103/40	0
Cell growth inhibition (0 - 72 h) [%]	-	-2.2	12.1	8.2	62.0	94.6
Cell growth inhibition (0 - 96 h) [%]	-	-21.3	-12.4	-8.50	<b>3</b> 6.6	78.9

III. CONCLUSIONS

The 72 hours  $E_bC_{50}$  for Desmodesmus subspicatus exposed to glyphosate was 326.9 mg/L (300.2 – 354.3 mg test item/L), the 96 hours  $E_bC_{50}$  was 117.8 mg/L (107.3 - 129.5 mg test item/L). The NOEC and LOEC for D. subspicatus after 96 hours of exposure were 40 and 200 mg test item/L, respectively.

#### 3. Assessment and conclusion

#### Assessment and conclusion by applicant:

Assessment and conclusion by applicant:

The validity criteria for the study were re- evaluated according to the current guideline OECD 201 (2011).

#### Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72 hour test period.	≥16	35.6
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35%.	≤35%	101.6%
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7%.	≤7%	4.9%

The biomass in the control cultures increased by a factor of ≥16 (actual: 35.6), the coefficient of variance for section specific growth rates exceeded 35% (actual: 101.6%), for the whole test period it was  $\leq 7\%$ (actual: 4.9%). Because the coefficient of variation for the section specific growth rate was > 35%, the validity criteria according to the current guideline OECD 201 were not met and this study is not considered valid for risk assessment purposes.

# Assessment and conclusion by RMS:

#### 1. Information on the study

Data point	CA 8.2.6.1/016	
Report author		
Report year	1998	
Report title	Fresh Water Algal Growth Inhibition Test with (Aminomethyl)Phosphonic Acid	
Report No	232458	
Document No		
Guidelines followed in study	OECD Guideline No. 201 (1984) EEC Directive 92/69, Part C-3 (1992) ISO International Standard 8692 (1989)	
Deviations from current test guideline	Deviations from the guideline OECD 201 (2013):  Major:  - The mean coefficient of variation for section-by-section specific growth rates in the control cultures was \$8.5% instead of ≤35%	
Previous evaluation	Yes, accepted in RAR (2015)	
GLP/Officially recognised testing facilities	Yes, conducted under GLP officially recognised testing facilities	
Acceptability/Reliability	Invalid (however, study is used for risk assessment, as this is the most reliable algae study with AMPA)	
Category study in AIR 5 dossier (L docs)	Category 2b	

#### 2. **Full summary Executive Summary**

The effects of (Aminomethyl)phosphonic acid (AMPA) on Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum, currently known as Raphidocelis subcapitata) were evaluated in a 72-hour static toxicity test. After a range-finding test *Pseudokirchneriella subcapitata* were exposed to five nominal concentrations encompassing \$10,22,46, 100 and 220 mg test item/L and a blank control.

For each test concentration and the control group, three (test concentrations) or six (control) replicates with 50 mL test solution and an initial cell density of 104 cells/mL were prepared in 100 mL vessels. The culture vessels were incubated on a shaking plate for 72 h. After 24, 48, and 72 hours, mean cell densities for each test concentration and control were determined based on spectrophotometrical measurements.

The concentrations resulting in 50% reduction of growth rate (ErC50) and 50% inhibition of cell growth (EbC50) were determined, as well as the associated NOEC values.

Results showed that the cell densities were comparable to those of the control at nominal concentrations up to 46 mg test item/L, while cell densities at 100 mg test item/L and 220 mg test item/L were increasingly reduced. At 220 mg test item/L almost no increase in cell densities were observed during the test period. Statistically significant inhibition of cell growth was found at test concentrations of 100 mg test item/L and higher.

Growth rates were in the range of the control at concentrations from 10 to 46 mg test item/L during the 72hour test period, whereas the growth rate of algae exposed to 100 and 220 mg test item/L were increasingly reduced. Statistically significant reduction of growth rate was found at test concentrations of 100 mg/L and higher

was for *Pseudokira* teest item/L and 110 mg test item/L. Because the coefficien was > 35%, the validity criteria according to the current gurstudy is not considered valid for risk assessment purposes. The 72th ErC50 and 72 h EbC50 values for Pseudokirchneriella subcapitata exposed to AMPA were calculated to be 200 mg test item/L and 110 mg test item/L, respectively. NOErC and NOEbC were both determined to be 46 mg test item/L. Because the coefficient of variation for the section specific growth rate was > 35%, the validity criteria according to the current guideline OECD 201 were not met. Therefore, this

# I. MATERIALS AND METHODS

#### A. MATERIALS

Test material:	(Aminomethyl)phosphonic acid (AMPA)
Test item:	(Aminomethyl)phosphonic acid (AMPA)
Description:	White powder
Lot/Batch #:	A010047101
Purity:	White powder  A010047101  99 %  Vehicle: Dilution water (ISO-medium)  Positive controls Potossium dishretate (ESC-207)
Vahiala and/an maritima aantuula	Vehicle: Dilution water (ISO-medium)
Vehicle and/or positive control:	Positive control: Potassium dichromate (K2Cr2O7)
Test organism:	
Species:	Pseudokirchneriella subcapitata, strain: CCAP 278/4
Initial cell concentration:	1 × 104 cells/mL
Source:	In-house culture
Acclimatisation period:	4 days
<b>Environmental conditions</b> :	Pseudokirchneriella subcapitata, strain: CCAP 278/4  1 × 104 cells/mL  In-house culture  4 days  22.5 – 23.0 °C  24 h light
Temperature:	22.5 – 23.0 °C ( ) ( )
Photoperiod:	24 h light
Light intensity:	6000 - 7800 lux
Light quality:	TLD lamps of 18 Watt
	Blank-control (0 – 72 h): 8.5
	10 mg/L (0 – 72 h): 7.7 – 8.0
pH:	22 mg/L (0 – 72 h): 7.5 – 8.0
bii:	$\mathcal{N}$ $\sigma_i^{s}$
	100 mg/L (0 – 72 h): 6.2 – 7.0
	220 mg/L (0 – 72 h): 6.0 – 6.8
Hardness:	24 mg CaCO3/L

B. STUDY DESIGN STORY OF WORK: 19 May to 29 May 1998

# Experimental treatments

Prior to the main test, a range-finding test was performed with concentrations of 0.1, 1, 10 and 100 mg test item/L. On the basis of these preliminary test results, the main test was performed with five concentrations: 10, 22, 46, 100 and 220 mg test item/L. In addition, algae were exposed to test medium without test substance or other additives (blank control). The test solutions were prepared using ISO-medium.

generations for 72 h. For each management of the second se

The concentrations resulting in 50 % reduction of growth rate (E_rC₅₀) and 50 % inhibition of cell growth (E_bC₅₀) were determined, as well as the associated NOEC values.

The pH values of the test solutions were measured at test initiation and test termination. Temperature was controlled daily in a temperature-control vessel.

Analytical control measurements of the actual concentration of the test item were performed by HRLC analysis using samples taken from three representative concentrations, 10, 46 and 220 mg test item/b.

#### **Statistical calculations**

The calculation of the EC₅₀ values was based on linear regression analysis of the percentages of growth inhibition and the percentages of growth rate reduction versus the logarithms of the corresponding nominal concentrations of the test substance.

#### II. RESULTS AND DISCUSSION

A. FINDINGS
The ErC50, EbC50 and NOEC values are given below, based on nominal concentrations.

Table 0-28: Toxicity of AMPA to Pseudokirchneriella subcapitata

Endpoint (0 – 72 hours)	AMPA [mg test item/L]
E _r C ₅₀ (95% CI)	200 (98 - 410)
E _b C ₅₀ (95% CI)	(72 - 180)
E _r C ₁₀ (95% CI)	268 (34 - 140)
E _b C ₁₀ (95% CI)	53 (33 - 86)
NOE _r C	£ 46
NOE _b C	<u> </u>

CI = confidence interval

Analytical data: Analytical control measurements were performed on three representative concentrations. At test initiation, 99 %, 100 % and 102 % of the test item were recovered for the nominal concentrations of 10, 46 and 220 mg test item/L, respectively. At test termination, 98 %, 98 % and 96 % of the test item were recovered for the nominal concentrations of 10, 46 and 220 mg test item/L, respectively.

As the mean measured content of the test item always ranged between 80 and 120% of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

Reference item: The 72-hour E₆C₅₀ was 1.3 mg reference item/L (95 % CI: 0.34 - 4.6 mg reference item/L), the 72-hour E_rC₅₀ was T_{rmg} reference item/L (95 % CI: 1.1 - 2.8 mg reference item/L).

# B. OBSERVATIONS

Mean cell densities. Cell densities were comparable to blank at nominal concentrations up to 46 mg test item/L while cell densities at 100 mg test item/L and 220 mg test item/L were increasingly reduced. At 220 mg test itsm/L almost no increase in cell densities were observed during the 72 hour test period.

Inhibition of cell growth: Inhibition of cell growth increased with increasing concentration of AMPA from a nominal concentration of 22 mg test item/L upwards. Statistically significant inhibition of cell growth was found at test concentrations of 100 mg test item/L and higher.

______ orowth rates were in the ran _______ nem/L during the 72-hour test period, whe _______ at test concentrations of 100 mg test item/L and higher. Reduction of growth rate: Growth rates were in the range of the controls at the concentrations from 10 to \$46 mg test item/L during the 72-hour test period, whereas the growth rate of algae exposed to 100 and 220 mg test item/L were increasingly reduced. Statistically significant reduction of growth rate was found

**Table 0-29:** Percentage reduction of growth rate and inhibition of cell growth of Pseudokirchneriella subcapitata exposed for 72 hours to AMPA

Test manameters (0. 72 haves)	Control	AMPA [mg test item/L]				
Test parameters (0 – 72 hours)	-	10	22	46	100%	<b>220</b>
Mean cell densities (× 10000 cells/mL)	67.8	73.0	67.6	64.5	44.55	5.4
Cell growth rate reduction [%]		-1.7	0.1	1.2	£ 12.0	59.8
Cell growth inhibition [%]		-3.5	3.0	6.65,	°35.4	87.8

In the controls, cell density increased by an average factor of > 16 within 3 days. Analysis of samples taken from the solution without algae showed that the actual exposure concentration remained above 80% relative to the initial concentration. Further, all test conditions remained within the ranges prescribed by the protocol.

 $\label{eq:conclusion} \textbf{III. CONCLUSION}$  Under the conditions of the present study the nominal based 72 h  $E_rC_{50}$  and the 72 h  $E_bC_{50}$  for Pseudokirchneriella subcapitata exposed to AMPA were calculated to be 200 mg test item/L and 110 mg test item/L, respectively. The NOE_rC and NOE_bC were both determined to be 46 mg test item/L.

#### 3. Assessment and conclusion

# Assessment and conclusion by applicant:

The validity criteria for the study were re- evaluated to the current guideline OECD 201 (2011). illo

#### Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control culture should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	67.9
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35%.	≤ 35%	58.5%
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7%.	≤ 7%	0.6%

The biomass in the control cultures increased by a factor of ≥16 (actual: 67.9), the coefficient of variance for section specific growth rates exceeded 35% (actual: 58.5%), for the whole test period it was  $\leq 7\%$ (actual: 0.6%) Because the coefficient of variation for the section specific growth rate was > 35%, the validity criteria according to the current guideline OECD 201 were not met and this study is not considered valid for risk assessment purposes.

However, due to the more severe shortcomings of the algae study with Desmodesmus exposed to AMPA (CA \$.2.6.1/018, Dengler D. 1994), this study is used in risk assessment.

A statistical re-evaluation addressing EC₁₀, EC₂₀, EC₅₀, NOEC and LOEC was performed (Positon Paper No. 110054-004).

Since analytical recoveries of the test item ranged from 96 to 102%, results are based on nominal test concentrations.

# Re-calculated EC₁₀, EC₂₀, EC₅₀, NOEC and LOEC values based on nominal concentrations

Endpoint (0 – 72 hours)	AMPA [mg/L]		
	Yield	Growth rate	
EC ₁₀ (95% CI)	58.2 (45.3 – 74.8)	92.8 (84.6–102)	
EC ₂₀ (95% CI)	72.5 (57.4–91.8)	119 (109– 130)	
EC ₅₀ (95% CI)	110 (82.2– 147)	191 (171 – 243)	
NOEC	100	1005° 50°	
LOEC	220	22000	

<b>Assessment</b>	and	conclusion	by	RMS:

#### 1. Information on the study

I. Information on the study				
Data point	CA 8.2.6.1/017			
Report author				
Report year	2020			
Report title	Statistical evaluation (non-GLP) of the study 232458 on the toxicity of (Aminomethy) phosphonic acid (AMPA) to <i>Pseudokirchneriella</i> subcapitata (currently known as <i>Raphidocelis subcapitata</i> ) under static conditions			
Report No	11,0054-004			
Document No				
Guidelines followed in study	OECD 201 (2011)			
Deviations from current test significant guideline	Not applicable			
Previous evaluation A Thirty	No, not previously evaluated			
GLP/Officially recognised testing facilities	No, GLP is not compulsory for statistical evaluation			
Acceptability/Reliability	Valid			
Category study in AIR 5 dossier (L docs)	Category 1			

# Full Summary

Glyphosate Renewal Group AIR 5 – July 2020

To the algual study 232458

Glyphosate Renewal Group AIR 5 – July 2020

To the algual study 232458

Glyphosate Renewal Group AIR 5 – July 2020

Glyphosate

As this is the only study currently available for algae exposed to AMPA, the data was further analysed to obtain the required effect concentrations.

The calculated EC10, EC20 and EC50 values are 58.2, 72.5 and 110 mg/L for yield, respectively and 928, 119 and 191 mg/L, respectively for growth rate. The statistical parameters presented showed that these values can be considered reliable/valid and therefore considered for risk assessment.

# I. MATERIALS AND METHODS

#### A. MATERIALS

ToxRatPro Version 3.3.0 Software:

Original report details

232458 Study number:

Author:

Substance: (Aminomethyl) phosphonic acid (AMPA)

(Aminomethyl) phosphonic acid (AMPA)
Fresh Water Algal Growth Inhibition Test with (Aminomethyl)Phosphonic Acid Title:

Completion date: 29 June 1998

OECD Guideline No. 201 (1984) Test guideline(s):

EEC Directive 92/69, Part C-3 (1992)

ISO International Standard 8692 (1989)

GLP: Yes

NOTOX B.V., DD 's-Hertogenbosch, The Netherlands Testing facility: Sponsor: AgriChem BV, AG OOSTERHOUT, The Netherlands

#### **B. STUDY DESIGN**

Dates of work: April 2020
Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and 72-h EC10, EC20, and EC50, and NOEC values were calculated to fulfil the data requirements according to 3/3 regulation EU 283/2013.

was statistically evaluated for the effects of (Aminomethyl) The study 232458 phosphonic acid (AMPA) on the organism *Pseudokirchneriella subcapitata*, strain: CCAP 278/4 (currently known as Raphidocelis subcapitatas. The organisms were exposed for 72 h to the following concentrations of (Aminomethyl) phosphonic acid (AMPA): 10, 22, 46, 100 and 220 mg test item/L. Additionally, a control was tested in parallel. The data used for this evaluation were obtained from the original study report.

The analytical data from the study report were checked to ensure the appropriate mean measured or nominal exposure concentrations were used in the ECx calculations.

#### Statistical calculations

Models providing best fit to the respective data were selected and are as follows:

In order to derive the 72-h Effect Concentrations that have 10, 20 and 50 % effects on growth rate and yield of the test subjects (EC10, EC20 and EC50), the 3-parametric normal CDF (Cumulative Distribution Function) model was used for growth rate and yield.

NOSC for growth rate and yield was determined by Welsh-t-test After Bonferroni-Holm Correction (onesided smaller, p = 0.05).

All statistical evaluations and checks for validity criteria were performed using the software ToxRatPro

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

The validity criteria according to the current guideline OECD 201 (2011) were met for increase of biomass and for coefficient of variation of average specific growth rates in the controls. However, mean coefficient of variation for section-by-section specific growth rate was 58.5% and exceeds the required 35%. Results are provided in the table below:

Table 0-30: Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥160 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	68
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35 %.	35 %	58.5 %
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7 %.	\$ 53.50 \$ \$ \$57.70 \$ \$ \$5.00	0.6 %

As this is the only study currently available for algae exposed to AMPA, the data was further analysed to obtain the required effect concentrations.

The mean measured content of the test item always ranged between 80 and 120% of nominal, therefore, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

For yield, the parameters for the 3-parameter normal CDF model are estimated as b0: 68.412; b1: 1.765; b2: 0.216.

For growth rate, the parameters for the 3-parameter normal CDF model are estimated as b0: 1.411; b1: 1.968; b2: 0.244. For yield, the statistical parameters are: F(2, 3) = 225.575; p(F) = <0.001; R2 = 0.939. After non-linear

regression no lack of fit was detected for the function (p(F|Lack of Fit) = 0.396.

For growth rate, the statistical parameters are: F(2, 3) = 901.363; p(F) = <0.001; R2 = 0.990. After nonlinear regression no lack of fit was detected for the function (p(F|Lack of Fit) = 0.637.

Based on these values & EC10, EC20 and EC50 for yield and growth rate calculations should be

The obtained EC10, EC20 and EC50 values for *Pseudokirchneriella subcapitata* (currently known as Raphidocelis subcapitata) are presented in the table below.

The old in Glyphosate Renewal Group AIR 5 – July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Table 0-31: Re-calculated EC10, EC20, EC50, NOEC and LOEC values based on nominal concentrations

Endpoint (0 – 72 hours)	AMPA [mg test item/L]		
	Yield	Growth rate	
EC10 (95% CI)	58.2 (45.3 – 74.8)	92.8 (84.6–102)	
EC20 (95% CI)	72.5 (57.4 – 91.8)	119 (109–130)	
EC50 (95% CI)	110 (82.2 – 147)	191 (171 293)	
NOEC	100	2.100	
LOEC	220	220	

CI = confidence interval

#### III. CONCLUSION

#### 3. Assessment and conclusion

Assessment and conclusion by applicant:
The validity criteria according to the current guideline OECD 201 were met for increase of biomass and for coefficient of variation of average specific growth rates in the controls. However, mean coefficient of variation for section-by-section specific growth rate was 58.5% and exceeds the required

As this is the only study currently available for algae exposed to AMPA, the data was further analysed to obtain the required effect concentrations.

The calculated EC10, EC20 and EC50 values are 58.2, 72.5 and 110 mg/L for yield, respectively and 92.8, 119 and 191 mg/L, respectively for growth rate. NOEC for yield and growth rate were determined to be 100 mg/L.

The statistical parameters presented showed that these values can be considered reliable/valid and therefore considered for risk assessment.

# Assessment and conclusion by RMS:

#### Information on the study 1.

Data point:	CA 8.2.6.1/018	
Report author		
Report year	1994	
Report title	Testing of toxic effects of aminomethyl phosphonic acid (AMPA) on	
	the single cell green alga Scenedesmus subspicatus	
Report No	IFU93006/01-Ss	
Document No	-	
<b>Guidelines followed in study</b>	OECD Guideline No. 201 (1984)	
<b>Deviations from current test</b>	Deviations from the guideline OECD 201 (2011)	
guideline	13.6 ·	
	- Raw data is provided as optical density, however a correlation with	
	biomass is not provided.	
	- Test was conducted in three runs (not replicates). No replicates for	
	each concentration.	
	- In the 2nd and 3rd run, a test substance was used not originally	
	purchased from sponsor, rendering lower absolute growth densities.	
	- Control biomass was not determined and section specific growth rates	
	are not reproducible.  - The measured concentrations of AMPA were reported only for one	
	test concentration at the start and at the end of the test.	
Previous evaluation	No, not previously evaluated	
<b>GLP/Officially recognised</b>	Yes & John State S	
testing facilities	Yes States	
Acceptability/Reliability:	Invalid & The State of the Stat	
Category study in AIR 5	Category 26 5	
dossier (L docs)		

2. Full summary
Executive Summary
The toxicity of AMPA to the green algae Desmodesmus subspicatus (formerly known as Scenedesmus subspicatus) was determined in a 72-hour, static test. The test incorporated six nominal concentrations of AMPA (0.192, 0.96, 4.8, 24, 120, and 600 mg a.s./L) and a dilution water control without test item. The test was performed in 3 replicates per test concentration and control. At the start of the test, 50 mL test solutions (or test median without AMPA for the controls) was inoculated with 104 algae cells/mL. The culture vessels were neubated at 23±2°C under continuous illumination for 72 h. The cell number was determined by photographic measurements at 0, 15, 24, 39, 48, 63, and 72 hours of exposure. The pH-values were determined in the test media at the beginning and at the end of the test.

The nominal concentration in the analysed dilution step was 0.96 mg AMPA/L; the analytical values were 0.99 mg/L at the start of the test and 1.06 mg/L at the end of the test. For that reason AMPA can be regarded as stable under test conditions. Due to various deviations from the current OECD 201 guideline, this study is not considered valid for risk assessment purposes.

# I. MATERIALS AND METHODS

#### A. MATERIALS

#### **Test material:**

Test item::	Aminomethyl phosphonic acid (AMPA)	
Description:	not stated	
Lot/Batch #:	not stated  A) PIT-8912-1385A  B) 09203L7  A) 99.1%  B) 99%	
Purity:	A) 99.1% B) 99%	
Vehicle and/or positive control:	Vehicle:Cell growth medium Positive control: None	
Test organism:		
Species:	Algae Desmodesmus subspicatus CHODAT	
Initial cell concentration:	104 cells/mL & & & &	
Source:	Collection of algae cultures, Pflanzenphysiologisches Institut der Universitaet 37073 Goettingen, Germany	
Acclimatisation period:	3 days	
<b>Environmental conditions</b> :		
Temperature:	23 ± 2 (Component of the component of th	
Photoperiod:	Continuous illumination	
Light intensity:	approximately 8000 lux	
pH:	432 6.39 at the start of the test $434 - 7.34$ at the end of the test	

B. STUDY DESIGN
Experimental dates: 5 November 10 December 1993
Experimental treatments
The toxicity of AMPA to the order The toxicity of AMPA to the green algae Desmodesmus subspicatus was determined in a 72-hour, static test. The test incorporated six nominal concentrations of AMPA (0.192, 0.96, 4.8, 24, 120, and 600 mg test item/L) and a dilution water control without test item. The six test concentrations were prepared by appropriate dilutions of a stock solution. The test was performed in three runs per test concentration and control. At the start of the test, 50 mL test solution (or test medium without AMPA for the controls) was inoculated with 104 algae cells/mL. The culture vessels were incubated at  $23 \pm 2$  °C under continuous illumination for 72 hours.

# **Observations**

The cell number was determined by photometric measurements at 0, 15, 24, 39, 48, 63, and 72 hours of exposures The pH-values were determined in the test media at the beginning and at the end of the test.

#### Statistical calculations

Graphical determination of endpoints.

#### II. RESULTS AND DISCUSSION

# A. FINDINGS

The ErC50, EbC50 and NOEC values are given below, based on nominal concentrations.

**Table 0-32:** Toxicity of AMPA to Desmodesmus subspicatus (nominal values)

Endpoints (72 hours)	AMPA [mg test item/L]	,i6
NOErC	8.3	
ErC10	18.5	2000
ErC50	452	2. 12. 2. 12.
NOEbC	7.9	
EbC10	12.9	
EbC50	89.8	), O '6

The nominal concentration in the analysed dilution step was 0.96 mg AMPA/L; the analytical values were 0.99 mg AMPA/L at the start of the test and 1.06 mg/L at the end of the test For that reason, AMPA can be regarded as stable under test conditions.

B. OBSERVATIONS

AMPA inhibited cell growth of the fresh water algae Desmodesmus subspicatus after 72 hours within a test item concentration of 0.1 to 600 mg test item. (In company) item concentration of 0.1 to 600 mg test item./L (nominal).

Calculation of the percentage of inhibition for the determination of the **Table 0-33:** EbC value (0-72 h)

Nominal	Para	llel 1	Para Miles	llel 2	Parallel 3	
concentration (mg AMPA/L)	Area (A)	% inhibition Area (A)		% inhibition	Area (A)	% inhibition
Control	0.9085	016 150	0.478	0	0.495	0
0.192	0.980	-£87*_°	0.506	-5.85*	0.546	-10.3*
0.96	1.0415	-14.63*	0.5565	-16.42*	0.598	-20.8*
4.8	0.9875	8.69*	0.515	-7.74*	0.513	-3.63*
24	0.897	1.26	0.446	6.69	0.444	10.3
120	0.6725	S 25.97*	0.094	80.33	0.116	76.65
600	0.23 1	74.5	0.080	83.26	0.092	81.41

^{*} Not taken for the calculation

**Table 0-34:** Calculation of the percentage of inhibition for the determination of the ErC value (0-72 h)

	Para	Parallel 1 Parallel		llel 2	Parallel 3	
Nominal concentration (mg AMPA/L)	μ (1/h)	% inhibition	μ (1/h)	% inhibition	μ (1/h)	% inhibition
Control	0.0871	0	0.0890	0	0.0894	© 0
0.192	0.0823	5.51*	0.0702	21.12*	0.080.0	9.39*
0.96	0.0742	14.81*	0.0712	20.00*	0.0827	7.49*
4.8	0.0785	9.87*	0.0700	21.34*	0.0742	17.00*
24	0.0762	12.51	0.0605	32.02*	& 0.0716	19.91
120	0.0717	17.68	0.0598	32.80	0.0609	31.88
600	0.0377	56.71	0.0349	60.78	© 0.0429	52.01

^{*} Not taken for the calculation

III. CONCLUSION OF THE PARTY OF The 72 h EbC50 for *Desmodesmus subspicatus* exposed to AMPA was 89.8 mg test item/L (nominal). The 72 h ErC50 was 452 mg test item/L (nominal).

#### 3. Assessment and conclusion

# Assessment and conclusion by applicant:

The study shows various deficiencies.

- Raw data is provided as optical density however a correlation with biomass is not provided.
- Test was conducted in three runs instead of simultaneous replication of each test concentration.
- For the 2nd and 3rd run, a test substance was used with a different source and lot number compared to the first run, rendering lower absolute growth densities.
- Control biomass was not determined and section specific growth rates are not reproducible.
- The measured concentrations of AMPA were reported only for one test concentration at the start and at the end of the test

Therefore, the study is not considered valid. However, an additional study with AMPA is available.

# Assessment and conclusion by RMS:

#### 1. Information on the study

Data point:	CA 8.2.6.1/019
Report author	
Report year	2011
Report title	HMPA (hydroxymethylphosphonic acid): A 72-hour toxicity test
	with the freshwater alga (Pseudokirchneriella subcapitata)
Report No	139A-396A
Document No	-
Guidelines followed in study	OECD Guideline 201 (2006)
	EU Directive 92/69/EEC, Method C.3. (1992)
<b>Deviations from current test</b>	Deviations from the guideline OECD 201 (2011): None
guideline	, 5° 6° 6°
Previous evaluation	Yes, accepted in RAR (2015)
<b>GLP/Officially recognised testing</b>	Yes
facilities	
Acceptability/Reliability	Valid & & &
Category study in AIR 5 dossier	Category 2a
(L docs)	E. 70 F8.

2. Full summary
Executive Summary
The effects of HMPA on *Pseudokirchneriella subcapitata* were evaluated in a 72-hour static toxicity test. P. subcapitata were exposed to five nominal concentrations encompassing 7.5, 15, 30, 60 and 120 mg HMPA/L, and the measured concentrations were 7.3, 14, 29, 60 and 115 mg HMPA/L respectively. For each concentration, three parallel cultures in 250 ml Erlenmeyer flasks were prepared. The initial cell concentration was 1 x 104 cells/mL. For the control group, six parallel test vessels were prepared. After 24, 48, and 72 hours of growth, the numbers of viable cells for each test concentrations and control were determined and the growth inhibition was calculated. Exposure concentrations resulting in 50 % inhibition (ErC50, EC50), were determined, as well as the NOAEC. EC50, ErC50 and the corresponding 95 % confidence limits for each 24-hour exposure interval were calculated by non-linear regression.

The results of main test showed that the algal growth was not inhibited at the measured test item concentrations of 7.3, 14, 29 and 60 mg/HMPA/L, and was inhibited slightly at the measured test item concentration of 115 mg HMPA/E

The 72 h-ErC50 and EC50 for P. subcapitata exposed to HMPA was determined both >115 mg HMPA/L. The NOAEC was 60 mg HMPAC. The validity criteria according to the current guideline OECD 201 were met. Therefore, this study is considered valid for risk assessment purposes. 

#### I. MATERIALS AND METHODS

	A. MATERIALS	
	Test Material:	
	Identification:	Hydroxymethyl phosphonic acid (HMPA)
	Lot No.:	GLP-1003-20448-A
	Chemical purity:	97 %
,	Physical state:	White powder
is a second	Storage condition:	Ambient desiccated
	Expiration date:	30 April 2012
The Day of	Glyphosate Renewal Group AIR 5 – Ju	uly 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

И-CA,	Se	ction	8
Page 3	56	of 84	7

Vehicle and/or positive co	ontrol:			
Vehicle:	None S			
Positive control:	None But of the second			
Test organism:				
Species:	Pseudokirchneriella subcapitata			
Initial cell concentration:	104 cells/mL			
Source:	in-house culture, started from University of Toronto Culture Collection			
<b>Environmental condition</b>	s: \(\sigma_{\infty}^{\infty} \sigma_{\infty}^{\infty} \sigma_{\infty}^			
Temperature:	23.0 – 24.8 °C			
Photoperiod:	24 h light			
Light intensity:	6030 – 7040 lux			
Light quality:	cool-white fluorescent lighting			
pH:	7.0 - 7.2 (test start); $7.5 - 9.3$ (test termination)			
Conductivity:	not stated			
Hardness:	not stated			

Experimental dates: 13 June - 16 June 2010

Experimental treatments

Three replicate cultures part 1 × 104 cells 1 Three replicate cultures per test concentration of *P. subcapitata* (initial cell density in each chamber was 1 × 104 cells/mL) were exposed for 72 hours to nominal concentrations of 7.5, 15, 30, 60, and 120 mg HMPA/L. A negative control group with six replicate cultures was held under the same environmental conditions concurrently.

A primary stock solution with a nominal concentration of 120 mg HMPA/L was prepared, and the pH of mixed sufficiently stock solution was determined as 3.0. The pH of the stock solution was adjusted to  $7.0 \pm 0.1$  with 0.1 N NaOH, then another four test solutions with the nominal concentrations of 7.5, 15, 30 and 60 HMPA/L were prepared through proportionally diluting of stirred stock solution.

#### **Observations**

THO WILL Test medium samples were collected from each biological replicate of the treatment and control group for the determination of algal cell densities. Samples were collected at approximately 24-hour intervals during the 72-hour exposure and were held for a maximum of two days under dark, refrigerated conditions sufficient to inhabit growth until cell counts could be performed. Cell counts. Prior to conducting cell counts, the linearity of the instrument response was determined at settings previously established for P. subcapitata

Samples of test solution were collected from each of the replicates per treatment and control group at the end of the test. These samples were pooled within their respective treatments, and subsamples were were assessed for aggregations or flocculation of cells, and samples of the test solutions were collected at approximately 0 and 72 hours to measure concentrations of the test substance. At test initiation, samples were collected for each treatment and control group prior to

distribution of test solution into test chambers. At 72 hours, samples were collected from the pooled biological replicates from each respective treatment and control group.

The temperature was recorded twice daily during the test using a liquid-in-glass thermometer. Light intensity was measured at test initiation. The pH of the medium in each treatment and control group was measured at test initiation and at test termination

#### **Statistical calculations**

Cell densities, growth rates and percent inhibition values were calculated according to formulas in OECD 201 (2006) using SAS System for Windows (Version 8.2). EC50, ErC50 and the corresponding 95 % confidence intervals for each 24-hour exposure interval were calculated by non-linear regression.

The 72-hour cell density and growth rate data were evaluated for normality and homogeneity of variance (p=0.01) using the Shapiro-Wilk's and Levene's tests, respectively. All data met the assumptions for normality and homogeneity of variance; therefore, the treatment groups were compared to the negative control using Dunnett's test (p=0.05). The results of the statistical analyses, as well as an evaluation of the concentration-response pattern, were used to determine the NOAEC relative to each parameter at 72 hours.

# II. RESULTS AND DISCUSSION

A. FINDINGS

The EC50, ErC50 and NOAEC values are given below based on mean determined concentrations.

Toxicity of HMPA to Pseudokirchneriella subcapitata exposed for 72 hours **Table 0-35:** illip to HMPA

Endpoint	and of the second	HMPA [mg test item/L]
EC50 (cell density)	- cultural office	> 115
ErC50 (growth rate)	6 8 10 V	> 115
NOAEC (cell density)		60
NOAEC (growth rate)	ill of the second	60

Concentrations of HMPA in the samples were determined using a HPLC/MS. Calibration standards of HMPA, ranging in concentration from 1.00 to 10.0 mg HMPA/L, were prepared in freshwater algal medium using a stock solution of AMPA in methanol. Linear regression equations were generated using the peak area responses versus the respective concentrations of the calibration standards. The method limit of quantitation (LOQ) for these analyses was defined as 1.00 mg HMPA/L. The analytical results are given below.

Measured concentrations of HMPA in freshwater algal medium samples

Nominal concentration [mg HMPA/L]	Sampling time [hours]	Measured concentration [mg HMPA/L]	Percent of nominal [%]	Mean measured concentration [mg HMPA/L]	Mean percent of nominal [%]
8 10	0	< LOQ	-		
-	72	< LOQ	-	-	-
7.5	0	7.92	106	7.3	97
1.3	72	6.60	88.0	7.3	7/

Table 0-36: Measured concentrations of HMPA in freshwater algal medium samples

Nominal concentration [mg HMPA/L]	Sampling time [hours]	Measured concentration [mg HMPA/L]	Percent of nominal [%]	Mean measured concentration [mg HMPA/L]	Mean percent of nominal [%]
15	0	14.1	94.1	14	02/02
13	72	13.9	92.8	14	100
20	0	29.8	99.4	20	111/0
30	72	27.7	92.4	29	S 597
60	0	62.5	104	60	5 5 100
60	72	57.5	95.8	60	0 100
120	0	110	91.7	115	06
120	72	120	100	115	96

Although the measured concentrations of test item in test medium always ranged between 80 and 120 % of nominal, the ecotoxicological endpoints were evaluated using the mean measured concentrations of the test

B. OBSERVATIONS
At test initiation, algal cells appeared normal. After 72-hours of exposure there were no noticeable changes in cell morphology in any of the tested concentrations when compared to the control. No flocculation or aggregation of cells or adherence of cells to test chambers were observed.

The results showed that the algal growth was not inhibited at the measured test item concentrations of 7.3, 14, 29 and 60 mg HMPA/L, and was inhibited slightly at the measured test item concentration of 115 mg HMPA/L

Percentage inhibition of growth rate and cell density to P. subcapitata **Table 0-37:** exposed for 72 hours to HMPA (mean measured) 2000

	ntrol	HMPA [mg test item/L]				
@ s & &	_	7.3	14	29	60	115
Mean number of algae cells (10000 mi) 29	98.8	319.2	294.9	286.5	273.1	186.41
Inhibition growth rate (0-72 h) \$\frac{1}{2}	-	-1	0	1	2	81
Inhibition cell density (0-72 h)	-	-7	1	4	9	381

¹ There were statistically significant differences (p<0.05) in comparison to the negative control replicates.

The mean cell density in the control flasks increased by a factor greater than 16 within three days, and the factor was 299. The coefficient of variation of average specific growth rate in the control replicates during the whole test period and not exceed 7 %, and it was 0.96 %. The mean percent coefficient of variation for section-by-section specific growth rates (days 0-1, 1-2 and 2-3) did not exceed 35 %, and it was 23.4 %.

III. CONCLUSIONS

The Description of the Pseudokirchneriella subcapitata exposed to HMPA was determined >115 mg HMPA/L. The 72 h EC50 for *P. subcapitata* exposed to HMPA was also >115 mg HMPA/L. Slight effect of HMPA on the growth of P. subcapitata were found at the measured concentration of 115 mg HMPA/L. The NOAEC was 60 mg HMPA/L.

#### 3. Assessment and conclusion

# Assessment and conclusion by applicant:

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and EC10, EC20, and EC50, NOEC and LOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

# Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 < 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	299 200 200 200 200
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35%.	≤35% \$ \$ \$. \$ \$ \$ \$.	23.4%
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7%.		1.0%

The biomass in the control cultures increased by a factor of ≥16 (actual: 299), the coefficient of variance for section specific growth rates was ≤ 35% (actual: 23.4%) and the coefficient of variance for the whole test period it was  $\leq 7\%$  (actual: 1.0%). The validity criteria according to the current guideline OECD 201 were met and this study is considered valid for risk assessment purposes.

A statistical re-evaluation addressing EC10 and EC20 was performed (Positon Paper No. CA 8.2.6.1/020).

Re-calculated EC10 and EC20 values based on nominal test concentrations

# "94,00.0

Endpoint (0 – 72 hours)	HMPA	HMPA [mg/L]		
	Yield	Growth rate		
EC10 (95% CI)	57.8 (40.7 – 82.1)	> 120		
EC20 (95% CI)	80.4 (56.1 – 116)	> 120		

CI = confidence interval

Assessment at	nd coi	nclusion	by RMS:

#### 1. Information on the study

Data point	CA 8.2.6.1/020	
Report author		
Report year	2020	
Report title	Statistical evaluation (non-GLP) of the study 139A-396A on the toxicity of Hydroxymethyl phosphonic acid (HMPA) to Pseudokirchneriella subcapitata under static conditions	
Report No	110054-005	
Document No	-	
<b>Guidelines followed in study</b>	OECD 201 (2011)	
Deviations from current test guideline	Not applicable	
Previous evaluation	No, not previously evaluated	
GLP/Officially recognised testing facilities	No, GLP is not compulsory for statistical evaluation	
Acceptability/Reliability	Valid & STA	
Category study in AIR 5 dossier (L docs)	Category 1	

#### 2. **Full summary**

#### **Executive Summary**

A statistical evaluation addressing the calculation of valid 72 h EC10 and EC20 values was conducted for the study 139A-396A ( 2011) to fulfill the data requirements according to regulation EU 283/2013. Furthermore, the validity criteria for the study were re- evaluated according to the current guideline OECD 201 (2011).

# I. MATERIALS AND METHODS

#### A. MATERIALS

Software: ToxRatPro Version 3.3.0

139A-396A Study number:

Author:

Substance: HMPA (hydroxymethylphosphonic acid)

HMPA (hydroxymethylphosphonic acid): A 72-Hour Toxicity Test with the Title:

Freshwater Alga (Pseudokirchneriella subcapitata)

Completion date: PLOct-2011
Test guideline(s): Directive 92/69/EEC, Method C.3., OECD 201 (2011)

GLP:

Testing facility: Wildlife International, Ltd., Easton, Maryland 21601 USA Monsanto Company, St. Louis, Missouri 63167; USA Sponsor:

# B. STUDY DESIGN

Dates of work: April 2020

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and 72 h ECFO and EC20 values were calculated to fulfil the data requirements according to regulation EU 283/2013. The study 139A-396A 2011) was statistically evaluated for the effects of HMPA (hydroxymethylphosphonic acid) on the organism *Pseudokirchneriella subcapitata* (currently known as Raphidocelis subcapitata). The organisms were exposed for 72 hours to the following concentrations of HMPA: 7.5, 15, 30, 60 and 120 mg HMPA/L, and the measured concentrations were 7.3, 14, 29, 60 and 115 mg HMPA/L respectively. Additionally, a control was tested in parallel.

The report states the 72-h EC50 for yield and growth rate to be > 115 mg HMPA/L based on mean measured concentrations, corresponding to > 120 mg HMPA/L based on nominal concentrations. The NOEC was determined to be 60 mg HMPBA/L for growth rate and cell density.

The analytical data from the study report were checked to ensure the appropriate mean measured or nominal exposure concentrations were used in the ECx calculations.

The data used to derive the 72-h EC10 and EC20 were obtained from the original study report.

# **Statistical calculations**

Models providing best fit to the respective data were selected and are as follows:

In order to derive Effect Concentrations that have 10 and 20% effects on growth rate and yield of the test subjects (EC10 and EC20), a non-linear 3-parameter normal CDF (Cumulative Distribution Function) model for growth rate and yield and regression analysis was performed.

All statistical evaluations and checks for validity criteria were performed using the software ToxRatPro Version 3.3.0.

# II. RESULTS AND DISCUSSION

A. FINDINGS

The validity criteria according to the current guideline OECD 201 (2011) were met and this study is considered valid for risk assessment purposes. Result are provided in the table below:

	7- 20	
Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-from test period.	≥16	299
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35 %.	≤35 %	23.4 %
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 7 %.		1.0 %

6 6 6

For yield, the parameters for the 3 parameter normal CDF model are estimated as b0: 300.355, b1: 1.762, and b2: 0.326.

For growth rate, the parameters for the 3 parameter normal CDF model are estimated as b0: 1.902, b1: 2.122, and b2: 0.438.

According to the stansical parameters; F(2, 3) = 46.773; p(F) = <0.001; R2 = 0.817 the EC10 and EC20 for yield and F (2,3)  $\approx$  65.380; p(F) = <0.001; R2 = 0.865 the EC10 and EC20 for growth rate, calculations should be considered valid.

After non-linear regression no lack of fit was detected for the function (p(F|Lack of Fit) = 0.237 for yield)and 0.321 for growth rate as shown in Appendix 2 of this report.

The obtained EC10 and EC20 effect of HMPA on growth rate and yield on Pseudokirchneriella subcapitata values are presented in the table below.

Recovery of test concentrations ranged from 94.1 to 106% for fresh solutions and from 88.0 to 100% for Espent solutions. Therefore, endpoints are given based on nominal concentrations.

Table 0-38: Re-calculated EC10 and EC20 values based on nominal test concentrations

Endpoint (0 – 72 hours)	HMPA [mg/L]	HMPA [mg/L]		
	Yield	Growth rate		
EC10 (95% CI)	57.8 (40.7 – 82.1)	> 120	O'ID MO	
EC20 (95% CI)	80.4 (56.1 – 116)	> 120	27.00	

# III. CONCLUSION

# 3. Assessment and conclusion

# Assessment and conclusion by applicant:

The validity criteria according to the current guideline OECD 201 were met and this study is considered valid

The calculated EC10 and EC20 values are 57.8 and 80.4 mg/L, respectively for yield and > 120 and > 120 mg/L for growth rate. The statistical parameters showed that these values can be considered reliable and therefore considered for risk assessment.

	8 8 2	
Assessment and conclusion by RMS:		
	10 E 7	

## CA 8.2.6.2 Effects on growth of an additional algal species

Studies considering the effects of glyphosate on additional algal species were assessed for their validity to current and relevant guidelines for glyphosate and are presented in the following table. Where appropriate position papers are available as indicated in the table below, which contain details regarding the statistical re-evaluation of the study to current requirements. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are Studies on effects of glyphosate and metabolites to additional algal species presented in this section below

**Table 0-1:** 

Annex point	Study 5	Study type	Test species	Substance(s)	Status	Remark
CA 8.2.6.2/001	1996	96 h algae inhibition	Anabaena flos- aquae	Glyphosate acid	Supportive	Correlation between biomass and optical density cannot be demonstrated.
CA 8.2,62,602	1987	168 h algae inhibition	Anabaena flos- aquae	Glyphosate technical	valid	-
CA 8.2 6.2/003	2020	Position Paper	Anabaena flos- aquae	Glyphosate technical	valid	-
ÉA 8.2.6.2/004	1996	120 h algae inhibition	Navicula pelliculosa	Glyphosate	invalid	Coefficient of variation for section specific growth rate: > 35%

Table 0-1:

# Studies on effects of glyphosate and metabolites to additional algal species

Annex point	Study	Study type	Test species	Substance(s)	Status	Remark John
CA 8.2.6.2/005	, 1987	168 h algae inhibition	Navicula pelliculosa	Glyphosate technical	invalid	Biomass increase in control cultures: \$16, coefficient of variation for the whole period: \$10%,
CA 8.2.6.2/006	1996	96 h algae inhibition	Skeletonema costatum	Glyphosate acid	valid	-
CA 8.2.6.2/007	2020	Position Paper	Skeletonema costatum	Glyphosate acid	svalid s	-
CA 8.2.6.2/008	, 1987	168 h algae inhibition	Skeletonema costatum	Glyphosate technical	invalid	Biomass increase in control cultures: <16 and coefficient of variation for section specific growth rate: > 35%
CA 8.2.6.2/009	1978	96 h algae inhibition	Skeletonewa & Costatura	Glyphocata	invalid	No information on validity criteria
CA 8.2.6.2/010	1996	96 h algae inhibition	Nitzschiæpalea	Glyphosate technical	invalid	Numerous validity criteria not met

There are no literature articles and peer reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the effects of glyphosate or its relevant metabolites on growth of additional algal species. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. Each literature article summary is presented below according to the respective annex point. For discussions of literature regarding toxicity to algae, please refer to document M-CP Section 10.2.

Endpoints of studies considered valid are shown in the table below. Glyphosate is an acid molecule, so it is often formulated as a salt. Ecotoxicological studies have been conducted with various forms of glyphosate, namely TPA salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report of by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate of glyphosate technical are automatically expressed as acid equivalent.

**Table 0-2:** Endpoints: Toxicity of glyphosate to additional algae species

Reference*	Test item	Species	Test design	Endpoints expressed	72h ErC50 ¹	72h EyC50	NOE
				as	(	mg a.e./L	Olyno,
1987 CA 8.2.6.2/002	Glyphosate acid	Algae Anabaena flos- aquae	168 h algae inhibition*	nom	33.4	16.4	40.0
1996 CA 8.2.6.2/006	Glyphosate acid	marine alga Skeletonema costatum	96 h algae inhibition*	nom	13.5	.jo 50,950 50,950	5.6

Glyphosate

Study summaries are provided below.

# 1. Information on the study

	8,78
Data point	CA 8.2.6.2/001
Report author	
Report year	1996
Report title	Glyphosate agid: Toxicity to blue-green alga Anabaena flos-aquae
Report No	AB0503/J & 10 10 10 10 10 10 10 10 10 10 10 10 10
Document No	- "6"6"5"
<b>Guidelines followed in study</b>	OECD Guideline No. 201 (1984)
	US EPA Guideline 540/09-82-020 (1982)
<b>Deviations from current test</b>	Deviations to OECD 201 (2011):
guideline	Major:
, O , z	Raw data is provided as optical density, however a correlation with
200	biomass is not provided.
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised	Yes
testing facilities	
Acceptability/Refiability	Supportive
Category study in ATR 5	Category 2b
dossier (L docs)	

The test vessels were 250 mL conical flask containing 100 mL of test or control medium. Six vessels were prepared for the control, and three replicate vessels at each concentration of glyphosate acid. Each replicate test vessel was inoculated with a nominal cell density of 2.05 × 104 cells/mL. All vessels were at 24 ± 1 °C under continuous illumination for 120 hours.

^{*} All endpoints are based on statistical re-evaluation provided in Position Papers: CA 8.2.6.2003, CA 8.2.6/007 a.e.: acid equivalents; nom: nominal; Endpoint in bold is used for risk assessment.

¹ According to the provisions of the new Guidance Document on Aquatic Ecotoxicology (2013), ErC50 endpoints shall be chosen for the risk assessment if available

After 1, 2, 3, 4, and 5 days, samples were removed from each test and blank vessel and algal cell densities were determined by spectrophotometrically. The pH-values in the test and control media, were determined at the beginning and at the end of the test. The concentrations of glyphosate acid in the test solutions were measured at the start and at the end of the test.

The mean measured concentrations of glyphosate acid ranged from 98 to 110 % of the nominal values The 72 h EbC50 (based on nominal concentrations) for Anabaena flos-aquae exposed to glyphosate acid was 8.5 mg test item/L, the 72 h ErC50 was 22 mg/L and the 72-hour NOEbC and NOErC values were both 12 mg test item/L. The 120 h EbC50 for Anabaena flos-aquae exposed to glyphosate acid was 15 mg test item/L. The 120 h ErC50 was 38 mg/L.

A satisfactory correlation between optical density and biomass cannot be made as the report does not provide a calibration curve. Therefore, this study is considered supportive.

# I. MATERIALS AND METHODS

# A. MATERIALS

Test material:	Glyphosate acid
Test item:	Glyphosate acid
Description:	White solid
Lot/Batch #:	P24 5 15 15 15 15 15 15 15 15 15 15 15 15 1
Purity:	95.6%
Vehicle and/or positive control:	Vehicle: Cell growth medium Positive control: None
Test organism:	Tostive control. None
Species:	Blue-green alga Anabaena flos-aquae
Initial cell concentration:	205× 104 cells/mL
Source:    Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Source:   Sourc	
Environmental conditions	
	24.1-24.2 °C (measured by thermometer)
Environmental conditions of the state of the	The hourly temperature measured automatically remained within $24 \pm 1^{\circ}C$
Photoperiod: Kill Kill Hill	Continuous illumination
Light intensity:	3600 lux
pH:	3.5 - 7.2 at the start of the test
pii.	3.6 - 8.2 at the end of the test

The toxicity of glyphosate acid to the blue-green alga *Anabaena flos-aquae* was determined in a 120-hour, static test. The test incorporated 8 nominal concentrations of glyphosate acid (0.75, 1.5, 3.0, 6.0, 12, 24, 48, 96 mg test item/L) and a control consisting of culture medium without test item.

The stock solution of nominal concentration of 96 mg test item/L was prepared.

glyphosate acid directly to 2000 mL sterile culture medium. Appropriate aliquots of this stock solution were diluted to prepare the lower test concentrations of 0.75, 1.5, 3.0, 6.0, 12, 24, and 48 mg test item/Ison mL of the appropriate test solution were dispensed to each test and blank vessel.

The test vessels were conical glass flasks of 250 mL nominal capacity containing 100 mL of test solution, with six replicate vessels prepared for the control group with culture medium only and three replicate vessels prepared for each concentration of glyphosate acid. Each replicate test vessel was inoculated with 1.120 mL of the inoculum culture to give a nominal cell density of  $2.05 \times 104$  cells/mL. The culture vessels were incubated at  $24 \pm 1^{\circ}$ C under continuous illumination for 120 hours. A blank vessel without algal inoculum) containing control medium and single blank vessels for each test concentration were also incubated concurrently.

# **Observations**

The algal cell densities were determined by spectrophotometric adsorbance, using a Unikon 860 UV/visible spectrophotometer. After 1, 2, 3, 4, and 5 days, samples were removed from each test and blank vessel. The appropriate blank solution absorbance was subtracted from that of the test culture to obtain the algal absorbance reading. At the start of the test, the absorbance of a range of diditions of the inoculum culture was used to determine the relationship between absorbance and cell density. The pH-values were measured in the test media at the beginning and at the end of the test. The temperature in the incubator was measured daily with a thermometer, and hourly with an automatic recording system. The concentrations of glyphosate acid in the test solutions were measured at the start and at the end of the test.

# **Statistical calculations**

One-way analysis of variance, and Dunnett's procedure.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

The mean measured concentrations of glyphosate acid ranged from 98 to 110 % of the nominal values. On the basis of the analytical results the nominal test concentration values were used for the calculation and reporting of all results.

Table 0-3: Toxicity of glyphosate acid to Anabaena flos-aquae (nominal values)

Endnoint	Glyphos:	ate acid [mg a.s./L]
Endpoint	0 − 72 hours	0 -120 hours
ErC50 (95% CI)	22 (8.8 ->96)	38 (20 ->96)
EbC50 (95% CI)	8.5 (2.6 – 28)	15 (9.7 – 27)
NOErC (Section 1)	12	12
LOErC LOErC	24	24
NOEbC	12	12
LOEbe	24	24

# **B. OBSERVATIONS**

Glyphosate acid inhibited cell growth of the fresh water algae *Anabaena flos-aquae* after 120 hours at test concentrations of 24, 48 and 96 mg test item/L (nominal).

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Table 0-4: Mean areas under the growth curve

Nominal	0-3 day		0-4 day		0-5 day	.60,
concentration [mg a.s./L]	Mean area under growth curve	% of control	Mean area under growth curve	% of control	Mean area under growth curve	% of control
Control	0.4	-	1.5	-	3.5	27,00
0.75	0.4	91	1.5	103	3.6	§ 105
1.5	0.3	85	1.5	99	3.6	× 102
3.0	0.3	80	1.4	94	3.5	99
6.0	0.3	82	1.4	94	3.5 6 3	100
12	0.3	76	1.3	87	3.3.	93
24	0.0*	6	0.0*	2	~ * <b>0.0</b> %	1
48	0.0*	5	0.0*	2	(N) (0.0*	1
96	0.0*	5	0.0*	2	&	1

^{*} Significant difference from the culture control (P=0.05)

**Table 0-5:** Mean growth rates

Nominal	0-3 d	lay	0-4 da	ay so so so	0-5 da	ay
concentration	Mean	% of	Mean growth	ુર્ક _હ ્યું હતે	Mean growth	% of
[mg a.s./L]	growth rate	control	rate 🔬	Control	rate	control
Control	1.392	-	1.331	i citi -	1.139	-
0.75	1.365	98	1.357.8	8 102	1.145	101
1.5	1.336	96	1.355	102	1.139	100
3.0	1.328	95	1,34,40,0	101	1.141	100
6.0	1.321	95	342	101	1.144	100
12	1.299	93	& 4°329°	99	1.138	100
24	0.231*	17	Ø 0.216*	16	0.251*	22
48	0.231*	17 🦽	0.173*	13	0.139*	12
96	0.231*	17	S. & 0.173*	13	0.139*	12

^{*} Significant difference from the culture control (P=0.05)

# III. CONCLUSIONS

The 72 h EbC50 for *Anabagina flos-aquae* exposed to glyphosate acid was 8.5 mg test item/L, the 72 h ErC50 was 22 mg/L and the 22-hour NOEbC and NOErC values were 12 mg test item/L, respectively. The 120 h EbC50 for *Anabagina flos-aquae* exposed to glyphosate acid was 15 mg test item/L. The 120 h ErC50 was 38 mg/L.

# 3. Assessment and conclusion

6.13

# Assessment and conclusion by applicant:

The nominal based 72 h EbC50 for *Anabaena flos-aquae* exposed to glyphosate acid was 8.5 mg a.s/L, the 72 h ErC50 was 22 mg a.s./L and the 72-hour NOEbC and NOErC values were 12 mg a.s./L, respectively. Raw data of the study is given in optical density. A satisfactory correlation between optical density and biomass cannot be made as the report does not provide a calibration curve.

Therefore, this study is considered supportive. Another valid study with Anabaena flos-aquae is available.

# Assessment and conclusion by RMS:

## 1. Information on the study

Data point	CA 8.2.6.2/002
Report author	95 on
Report year	1987
Report title	The Toxicity of Glyphosate Technical to Anabaena flos-aquae
Report No	1092-02-1100-4
Document No	-
<b>Guidelines followed in study</b>	Guideline 123-2, U.S. EPA – FIFRA (Growth and Reproduction of Aquatic Plants, Tier 2)
Deviations from current test guideline	Deviations from the guideline OECD 201 (2011):  Minor: - Initial cell density of 3 × 103 cells me, was below the recommended density of 104 cells/mL for <i>Anabaena flos-aquae</i>
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes GO TO
Acceptability/Reliability	Valid S N N N N N N N N N N N N N N N N N N
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary
Executive Summary
The effects of glyphosate technical on Anabaena flos-aquae were evaluated in a 7-day static toxicity test. The test comprised five nominal test concentrations of 10, 18, 32, 56 and 100 mg test item/L (mean measured test concentration: 9.7, 18.1, 32% \$54 and 102.2 mg test item/L). In addition, a control (untreated 3,13 culture medium) was tested.

The test flasks were inoculated with colls from a seven-days-old pre-culture of Anabaena flos-aquae with an initial test cell density of 3000 cells in L. The test was performed in 500 mL volumetric flasks, containing each 100 mL test solution. The test concentrations and the control were prepared in three replicates. The test flasks were placed in an incubator and maintained over several generations for 7 days. The temperature was measured daily and the pH was adjusted to  $7.5 \pm 0.1$  at test initiation.

Cells were counted on test days 2, 3, 4, and 7 after test initiation by using a Coulter counter. On the basis of the mean cell count; the percentage inhibition was determined and the ECx values calculated using of the algal growth curve as determined by inverse estimation least squares linear regression.

The effects of the test tem on algal growth inhibition on day 7, relative to the control, ranged from 79.8% for the nominal test concentration of 18 mg test item/L to 99.5% for the highest nominal test concentration of 100 mg test item. At the lowest nominal concentration of 10 mg test item/L, however, a slight algal growth increase of 5.4% relative to control was observed.

The 7-day ES30 for Anabaena flos-aquae exposed to glyphosate technical was calculated to be 4.4 mg test adered a series of the series item/L. The validity criteria according to the current guideline OECD 201 were met and this study is considered valid for risk assessment purposes

# I. MATERIALS AND METHODS

# A. MATERIALS

# **Test material:**

Test item:	Glyphosate technical
Description:	White solid  NBP-3594465  96.6%  1.2 % at 25°C
Lot/Batch #:	NBP-3594465
Purity:	96.6%
Water solubility	1.2 % at 25°C
Vahiala and/an positiva control	Vehicle: Dilution water (AAP medium)
Vehicle and/or positive control:	Positive control: None
Test organism:	
Species:	Anabaena flos-aquae
Initial cell concentration:	3000 cells/mL
Source:	In-house culture
<b>Environmental conditions:</b>	24 ± 2°C
Temperature:	24 ± 2°C
Photoperiod:	24 h light See See See See See See See See See Se
Light intensity	2153 ± 323 Lux
pH:	7.5 \ 0 18 38
Conductivity:	Not stated
Hardness:	Not stated

B. STUDY DESIGN

Experimental dates of work: 20 April to 27 April 1987

Experimental treatments **Experimental treatments** 

Prior to the main test, a range-finding test was performed with six concentrations ranging between 0.001 and 100 mg test item/L. On the basis of the preliminary test results, the main test was performed with five nominal concentrations (10, 48, 32, 56 and 100 mg test item/L) and three replicates per test item treatment group. Test concentrations were prepared by adding the required volumes of the stock solution to AAP medium. A control with the test medium (without test substance) was tested under the same conditions as in the test groups. The test was performed in 500 mL volumetric flasks, containing each 100 mL test solution. Test algae were taken from a 7-day old stock culture and were aseptically added to the test medium to obtain a nominal initial concentration of 3000 cells/mL. Flasks were kept in an incubator at a temperature

.....g a Coulter counter on test days 2, 3, 4, and 7 after test initiation. Based on the pH was adjusted to 7.5 ± 0.1 at test initiation. Samples of test media were taken at test initiation and test dermination for analysis of the active ingredient content in initial and aged test solutions. Samples were analysed for active substance using HPLC.

# **Statistical calculations**

To determine the ECx values, the log of test concentration was plotted against percent inhibition expressed as probit. Inverse estimation least squares linear regression was used to determine the line of best fit and the concentrations corresponding to 25 and 50 % inhibition and the associated 95 % confidence intervals were calculated. Parameters of the regression line were determined using the SAS statistical package.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

The EC50 value is given below based on mean measured concentrations.

Toxicity of glyphosate technical to Anabaena flos-aquae **Table 0-6:** 

Endpoint	Glyphosate technical [mg a.e./L
EC50 (7 day)	4.4

Chemical analyses were performed on samples of the test solutions to quantify glyphosate technical in the test solution. The mean measured concentrations were 9.75 18.15.32.6, 55.1 and 102.2 mg test item/L, corresponding to 97.0 %, 100.6 %, 101.9 %, 98.4 % and 102.2 % of the nominal test concentrations of 10, 18, 32, 56 and 100 mg test item/L respectively.

18, 32, 56 and 100 mg test item/L respectively. **B. OBSERVATIONS**The effects of the test item on algal growth inhibition on day 7, relative to the control, ranged from 79.8 % for the nominal test concentration of 18 mg test stem Loto 99.5 % for the highest nominal test concentration of 100 mg test item/L. At the lowest nominal concentration of 10 mg test item/L, however a slight algal growth increase of 5.4 % relative to control was observed.

As the mean measured content of the test atem always ranged between 80 and 120 % of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

Percentage of growth inhibition of Anabaena flos-aquae exposed to **Table 0-7:** glyphosate technical for 7 days 10,11,

Nominal concentrations	Control	10	18	32	56	100
[mg test item/L]				-		
Measured concentrations	-	9.7	18.1	32.6	55.1	102.2
Mean number of algae cells on Day 7 [× 1000 cells/mL]	1486.66	1566.667	300.0	10.0	8.333	7.667
Mean inhibition (Fdays) [%]	-	-5.4	79.8	99.3	99.4	99.5

# III. CONCLUSIONS

The 7-day EC50 for Anabaena flos-aquae exposed to glyphosate technical was calculated to be 4.4 mg test item L+

# 3. Assessment and conclusion

# Assessment and conclusion by applicant:

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and EC10, EC20, and EC50, NOEC and LOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

# Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 < 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	27 (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35%.	≤35% \$ \$ \$. \$ \$ \$ \$.	20.6%
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 10%.	\$10% o	6.4%

The biomass in the control cultures increased by a factor of \$16 (achieved: 27), the coefficient of variance for section specific growth rates was  $\leq 35\%$  (achieved: 20.6%) and the coefficient of variance for the whole test period it was  $\leq 10\%$  (achieved: 3.4%). The validity criteria according to the current guideline OECD 201 were met and this study is considered valid for risk assessment purposes.

Recovery of mean measured concentrations tanged from 91 to 108%. Therefore, endpoints are based on nominal test concentrations.

Re-calculated EC10, Total

# Re-calculated EC10, EC20, EC50, NOEC and LOEC values based on nominal test concentrations

Endpoint (0 – 72 hours		Glyphosato	e technical [mg a.e./L]
		Yield	Growth rate
EC10 (95% CI)	20 H & 9.9	97 (7.21 – 11.7)	7.63 (3.08 – 11.9)
EC20 (95% CI)	.5. 5. 5. 11	.8 (9.35 – 13.4)	12.7 (6.71 – 17.7)
EC50 (95% CI)	16 Miles 16	.4 (14.7 – 18.1)	33.4 (25.7 – 43.7)
NOEC	Lo To	10	10
LOEC SASS	Ţ,	18	18
CI = confidence interval	•		·

Assessment and	conclusion	by	RMS	:
r4. 3"				

M-CA, Section 8

Page 371 of 847

## 1. Information on the study

Data point	CA 8.2.6.2/003
Report author	
Report year	2020
Report title	Statistical evaluation (non-GLP) of the study 1092-02-1100 on the toxicity of Glyphosate technical to <i>Anabaena flos-aquae</i> under static conditions
Report No	110054-006
Document No	-
<b>Guidelines followed in study</b>	OECD 201 (2011)
<b>Deviations from current test</b> guideline	Not applicable
<b>Previous evaluation</b>	No, not previously evaluated
GLP/Officially recognised testing facilities	No, GLP is not compulsory for statistical evaluation
Acceptability/Reliability	Valid & STA
Category study in AIR 5 dossier (L docs)	Category 1

2. Full summary
Executive Summary
A statistical evaluation addressing the calculation of valid 72-h EC10, EC20 and EC50 as well as the NOEC values was conducted for the algae study 1092-02-1100-4 ( 1987) to fulfill the data requirements according to regulation EU 283/2013. Burthermore, the validity criteria for the study were reevaluated according to the current guideline OECD 201 (2011).

The validity criteria according to the current guideline OECD 201 were met and this study is considered valid.

The calculated EC10, EC20 and EC50 values are 9.97, 11.8 and 16.4 mg/L for yield and 7.63, 12.7 and 33.4 mg a.e./L for growth rate, respectively. The NOEC was determined to be 10 mg a.e./L for yield and growth rate. The statistical parameters showed that these values can be considered reliable and therefore considered for risk assessment,

# A MATERIALS AND METHODS

A. MATERIALS
Software: ToxRatPro Version 3.3.0

Original report details

1092-02-1100-4 Study number:

Author:

Substance: Glyphosate

The toxicity of glyphosate technical to Anabaena flos-aquae Title:

Completion date: 20-Apr-1987

Test guideline(s): Guideline 123-2, U.S. EPA – FIFRA (Growth and Reproduction of Aquatic Plants,

Tier 2)

GLP; of Yes, conducted under GLP/Officially recognised testing facilities

Testing facility: Malcolm Pirnie, Inc., White Plains, NY, USA

Monsanto Agricultural Company, Chesterfield, MO, USA

# **B. STUDY DESIGN**

# Dates of work: April 2020

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and the 32-h EC10, EC20, and EC50, NOEC and LOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

The study 1092-02-1100-4 ( 1987) was statistically evaluated for the effects of Glyphosate technical on the organism *Anabaena flos-aquae*. The organisms were exposed for 7 days to the following concentrations of Glyphosate technical: 10, 18, 32, 56 and 100 mg a.s. /L (nominal concentrations, units equivalent to mg a.e./L). Additionally, a control was tested in parallel. The data used for this evaluation were obtained from the original study report.

The analytical data from the study report were checked to ensure the appropriate mean measured or nominal exposure concentrations were used in the ECx calculations.

# **Statistical calculations**

Models providing best fit to the respective data were selected and are as follows:

5

In order to derive the 72-h Effect Concentrations that have 10, 20 and 50% effects on growth rate and yield of the test subjects (EC10 EC20 and EC50), for yield and growth rate probit analysis using linear maximum likelihood regression was used.

NOEC for yield and growth rate was estimated by Welsh-Etest After Bonferroni-Holm Correction (one-sided smaller, p = 0.05).

All statistical evaluations and checks for validity criteria were performed using the software ToxRatPro Version 3.3.0.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

The validity criteria according to the current guideline OECD 201 (2011) were met and this study is considered valid for risk assessment purposes. Results are provided in the table below:

Table 0-8: Validity Criteria

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	27
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35%.	≤35%	20.6%
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 10%.	≤10%	6.4%

Recovery of mean measured concentrations ranged from 91 to 108 % of nominal. Therefore, endpoints are based on nominal test concentrations.

Forwield, the parameters for the probit model are estimated as slope b: 5.95612; Intercept a: -7.22883.

For growth rate, the parameters for the probit model are estimated as slope b: 1.99737; Intercept a: -3.04435.

According to the statistical parameters; Chi2(13) = 0.59361;  $p(\text{Chi}^2)$ : 1.000; F(1,13) = 34.365; p(F) < 0.001;  $r^2$ : 0.726 for yield; and Chi2(13) = 1.26237;  $p(\text{Chi}^2)$ : 1.000; F(1,13) = 34.400; p(F) < 0.001;  $r^2$ : 0.726 for

Glyphosate Renewal Group AIR 5 – July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

growth rate. Based on these values the EC10, EC20 and EC50 for yield and growth rate calculations should be considered valid.

The obtained EC10 EC20 and EC50 values on the effect of Glyphosate technical on growth rate and yield of Anabaena flos-aquae are presented in the table below.

Table 0-9: Re-calculated EC10, EC20, EC50, NOEC and LOEC values based on nominal test concentrations

Endpoint (0 – 72 hours)	Glyphosate technical [mg a.e./L]		
	Yield	Growth rate	
EC10 (95% CI)	9.97 (7.21 – 11.7)	7.63 (3.08 – 11.9)	
EC20 (95% CI)	11.8 (9.35 – 13.4)	\$12.7 (6.71 – 17.7)	
EC50 (95% CI)	16.4 (14.7 – 18.1)	33.4 (25.7 – 43.7)	
NOEC	10	10	
LOEC	18	18	

CI = confidence interval

# III. CONCLUSION

# 3. Assessment and conclusion

# Assessment and conclusion by applicant:

The validity criteria according to the current guideline OECD 201 were met and this study is considered

The calculated EC10, EC20 and EC50 values are 9.97, 11.8 and 16.4 mg/L for yield and 7.63, 12.7 and 33.4 mg a.e./L for growth rate, respectively. The NOEC was determined to be 10 mg a.e./L for yield and growth rate. The statistical parameters showed that these values can be considered reliable and therefore considered for risk assessment.

# Assessment and conclusion by

# Information on the study 1.

Data point	CA 8.2.6.2/004
Report author	
Report year	1996
Report title	Glyphosate acid: Toxicity to freshwater diatom Navicula pelliculosa
Report No	AB0503/K
Document No	-
Guidelines followed in study	OECD Guideline No. 201 (1984)
of the second second	US EPA Guideline 540/09-82-020 (1982)

Deviations from current test guideline	Deviations from the guideline OECD 201 (2011):  Major:  - The mean coefficient of variation for section-by-section specific growth rates in the control cultures was 135.5 %, instead of ≤ 35% Minor:  - Initial cell density of 3 × 103 cells/mL, which is below the recommended density of 104 cells/mL for Navicula pelliculosa.
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes
Acceptability/Reliability	Invalid
Category study in AIR 5 dossier (L docs)	Category 2b

# 2. Full summary Executive Summary

The toxicity of glyphosate acid to the freshwater diatom *Navicula pelliculosa* was determined in a 120-hours static test. The test incorporated 8 nominal concentrations of glyphosate acid (1.8, 3.2, 5.6, 10, 18, 32, 56, and 100 mg test item/L) and a control consisting of culture medium without test item. The test vessels were conical glass flasks of 250 mL nominal capacity containing 100 mL of test solution.

The test was performed in 6 replicate cultures of the culture medium control and 3 replicate cultures of each concentration of glyphosate acid. The initial cell density was  $0.500 \times 104$  cells/mL. The cell densities were determined by electronic particle counting, using a Counter counter after 1, 2, 3, 4, and 5 days. The pH-values were determined in the test media at the beginning and at the end of the test. The temperature in the incubator was measured daily. The concentrations of glyphosate acid in the test solutions were measured at the start and at the end of the test.

The mean measured concentrations of glyphosate acid ranged from 106 to 111% of the nominal values. Based on the analytical results the nominal test concentration values were used for the calculation and reporting of all results. Glyphosate acid inhibited cell growth of the fresh water diatom *Navicula pelliculosa* after 120 hours at test concentrations of 32, 56 and 100 mg test item/L in terms of area under growth curve and growth rates.

and growth rates.

The 72 hours EbC50 for *Navicula pelliculosa* exposed to glyphosate acid was 16 mg test item/L; the 72 hours ErC50 was 17 mg test item/L. The 120 hours EbC50 and ErC50 were both 17 mg test item/L.

The NOErC and LOErC for *Navicula pelliculosa* after 72 hours and 120 hours of exposure were both 18 mg test item/L, respectively. The NOEbC and LOEbC for *Navicula pelliculosa* after 72 hours of exposure were 3.2 and 5.6 mg test item/L, respectively. The NOEbC and LOEbC for *Navicula pelliculosa* after 120 hours of exposure were <1.8 and 18 mg test item/L, respectively. The validity criteria according to current guideline OECD 201 were not met. Therefore, this study is not considered valid for risk assessment purposes.

# I. MATERIALS AND METHODS

# A. MATERIAES

# 1. Test material:

Test items	Glyphosate acid
Description:	White solid
Lot/Batch #:	P24
Purity:	95.6 %
2 V-1: 1 1/	Vehicle: Cell growth medium
2. Vehicle and/or positive control:	Positive control: None

, Section 8	
376 of 847	

3. Test organism:	ž
Species:	Freshwater diatom Navicula pelliculosa
Initial cell concentration:	$3 \times 103 \text{ cells/mL}$
Source:	Brixham Environmental Laboratory culture from strain UTEX 667
4. Environmental conditions:	
Temperature:	24.0-24.1 °C (measured by thermometer). The bourly temperature measured automatically remained within $24 \pm 1$ °C
Photoperiod:	Continuous illumination
Light intensity:	4560 lux
pH:	3.7 - 8.3 at the start of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ at the end of the test $3.7 - 8.7$ a

B. STUDY DESIGN
Experimental dates: 29 January - 3 February 1996
Experimental treatments
The toxicity of glyphosate acid to the freshwater diatom Navicula pelliculosa was determined in a 120hour, static test. The test incorporated 8 nominal concentrations of glyphosate acid (1.8, 3.2, 5.6, 10, 18, 32, 56, and 100 mg test item/L) and a control consisting of culture medium without test item. The test vessels were conical glass flasks of 250 mL nominal capacity containing 100 mL of test solution.

The stock solution of nominal concentration of 100 mg test item/L was prepared by adding glyphosate acid directly to 2000 mL sterile culture medium. Appropriate aliquots of this stock solution were diluted to prepare the lower test concentrations of 1.8, 3.2, \$6, 16, 18, 32, and 56 mg test item/L. To each test and blank vessel 100 mL of the appropriate test solution were dispensed.

The test was performed in 6 replicate cultures of the culture medium control and 3 replicate cultures of each concentration of glyphosate acid. Each replicate test vessel was inoculated with 0.915 mL of the inoculum culture to give a nominal cell density of 6300 × 104 cells/mL. The culture vessels were incubated at 24 ± 1°C under continuous illumination for 1.20 hours. During incubation, the cells were kept in suspension by continuous shaking.

# **Observations**

The cell densities were determined by electronic particle counting, using a Coulter counter. After 1, 2, 3, 4, and 5 days, samples were removed from each test and blank vessel. The appropriate blank particle count was subtracted from that of the test culture to obtain the cell density. pH-values were determined in the test media at the beginning and at the end of the test. The temperature in the incubator was measured daily with a thermometer, and hourly with an automatic recording system. The concentrations of glyphosate acid in the test solutions were measured at the start and at the end of the test.

# Statistical calculations

One-way analysis of variance, and Dunnett's post-hoc test.

# II. RESULTS AND DISCUSSION

The EbC50 and ErC50 (72 hours based on nominal concentrations. The EbC50 and ErC50 (72 hours and 120 hours), corresponding NOEC and LOEC values are given below 

Endneint		Glyphosate acid [mg test item/L]	
Endpoint	0 – 72 hours	0 -120 hours	
ErC50 (95% CI)	17 (13 - 24)	17 (12 - 24)	Jan S
EbC50 (95% CI)	16 (12 - 22)	17 (13 - 24)	8,4
NOErC	18	18 A	
LOErC	32	32	
NOEbC	3.2	<1.8 B	2. % 2. %
LOEbC	5.6	1.8	

A Effects observed in the 5.6 mg test item/L test concentrations were due to growth enhancement of inhibitory effects were observed below the nominal 32 mg test item/L test concentration.

Analytical data: The mean measured concentrations of glyphosate acid ranged from 106 to 111 % of the nominal values. Based on the analytical results the nominal test concentration values were used for the calculation and reporting of all results.

B. OBSERVATIONS
Glyphosate inhibited cell growth of the fresh water diatons Navicula pelliculosa after 120 hours at test concentrations of 32, 56 and 100 mg glyphosate acid/L in terms of area under growth curve and growth rates.

Mean algal densities of Navicula pelliculosa after treatment with glyphosate acid **Table 0-11:** 

		- 1, 1, 1, 2, 2,			
Glyphosate aci	d	all stricts	Algal cell density		
[mg test item/L	4]	THE THE THE	[× 104 cells ml-1]		
	Day 0	Ö ∜ ÇDay 1	Day 3	Day 4	Day 5
Control	0.321	Ø 55° 0.169	18.2	93.2	170
1.8	0.321	0.109	22.0	165	197
3.2	0.328	0.271	3.43	171	156
5.6	0.3210 6	3.38	32.0	190	166
10	0.321	0.347	29.8	177	160
18	0.321	0.136	10.9	74.2	187
32	JE 0321	0.060	0.071	0.181	0.237
56	© 5° 60.321	0.008	0.005	0.035	0.212
100	\$ \$ JE 0.321	0.001*	0.006	0.001*	0.147

^{*}Algal density measurement for replicate was lower than the blank solution

B Effects observed in the 1.8, 3.2, 5.6, and 10 mg test item/L test concentrations were due to growth enhancement. No inhibitory effects were observed below the nominal 32 mg test item/L test concentration.

**Table 0-12:** Mean area under growth curve and mean growth rates of Navicula pelliculosa exposed for 72 hours and 120 hours to glyphosate acid

	Control Glyphosate acid [mg test item/L]								
Test parameters	-	1.8	3.2	5.6	10	18	32	56	100
Mean areas under the growth curve (0 – 72 h)	11.0	12.1	16.7	22.6*	17.9*	5.8	-0.7*		1.0.8*
Mean areas under the growth curve $(0-72 \text{ h}) \%$ of control	-	111	153	206	163	53	-6	-78 18 -78 18 -7	-7
Mean growth rates $(0-72 \text{ h})$	1.346	1.409	1.485	1.534	1.510	1.175	-0.504*	1.366*	-1.309*
Mean growth rates (0 – 72 h) % of control	-	105	110	114	112	87	13 30 10 10 10 10 10 10 10 10 10 10 10 10 10	-102	-97
Mean areas under growth curve $(0-120 \text{ h})$	197.7	285.8*	278.6*	311.3*	288.9*	17834°		-1.3*	-1.4*
Mean areas under growth curve (0 – 120 h) [%] of control	-	145	141	157	146	90 90	0	-1	-1
Mean growth rates $(0-120 \text{ h})$	1.255	1.284	1.237	1 2500	√01° ??¥13	1.274	-0.061*	-0.083*	-0.156*
Mean growth rates (0 – 120 h) [%] of control	-	102	99	400° 5	99	102	-5	-7	-12
* Significant difference from the control (p=0.05)									

^{*} Significant difference from the control (p=0.05)

# 05) KE CONCLUSIONS

The NOErC and LOErC for Navicula pelliculosa after 72 hours and 120 hours of exposure were both 18 mg NOED respective, ad 1.8 mg test of the land of the lan test item/L, respectively. The NOEbC and LOEbC for Navicula pelliculosa after 72 hours of exposure were 3.2 and 5.6 mg test item/L, respectively. The NOEbC and LOEbC for Navicula pelliculosa after 120 hours of exposure were <1.8 and 1.8 mg test item/L, respectively.

# 3. Assessment and conclusion

# Assessment and conclusion by applicant:

The validity criteria for the study were re- evaluated according to the current guideline OECD 201 (2011).

# Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (0 < 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	\$ 56.6 \$ \langle \text{2} \text{3} \text{2}
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35 %.	≤35 % \$ \$ \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$ . \$	135.5 %
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 10 %.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.4 %

The biomass in the control cultures increased by a factor of  $\geq 16$  (actual: 56.6), the coefficient of variance for section specific growth rates exceeded 35% (actual: 135.5%), for the whole test period it was  $\leq 10\%$ (actual: 4.4%). Because the coefficient of variation for the section specific growth rate was > 35%, the validity criteria according to the current guideline OECD 2015 were not met. Therefore, this study is not considered valid for risk assessment purposes.

# **Assessment and conclusion by RMS:**

## 1.

1. Information on the stud	
Data point	CA 8.2.6.2/005
Report author	
Report year	1987
Report title	The Toxicity of Glyphosate Technical to Navicula pelliculosa
Report No	1092-02-1100-2
Document No	
Guidelines followed in study	Guideline 123-2, U.S. EPA – FIFRA (Growth and Reproduction of Aquatic Plants, Tier 2)
Deviations from current test guideline	Deviations from the guideline OECD 201 (2011):  Major:  - The biomass in the control cultures increased by a factor of 9 instead of ≥16, and the coefficient for the whole period was 10.1% instead of ≤ 10%  Minor:  - Nominal cell density of 3 × 103 cells/mL was below the recommended density of 104 cells/mL for <i>Navicula pelliculosa</i> ,
Previous evaluation	Yes, accepted in RAR (2015)

GLP/Officially recognised testing facilities	Yes	:%
Acceptability/Reliability	Invalid	
Category study in AIR 5 dossier (L docs)	Category 2b	of only of the original origi

# 2. Full summary Executive Summary

The effects of glyphosate technical on *Navicula pelliculosa* were evaluated in a 7-day static toxicity test. After a range-finding test, suspensions of *Navicula pelliculosa* were exposed to five nominal concentrations encompassing 10, 18, 32, 56 and 100 mg test item/L (measured: 10.6, 19.1, 336, 36.1 and 103 mg glyphosate technical/L). In addition, a control with the test medium (without test substance) was tested. The test flasks were inoculated with cells from a 7-days-old pre-culture of varicula pelliculosa with an initial test cell density of 1000 cells/mL. The test was performed in 250 mL volumetric flasks, containing each 50 mL test solution. The test concentrations and the control were prepared in 3 replicates. The test flasks were placed in the incubator and maintained over several generations for 7 days. The temperature was measured daily and the pH was adjusted to  $7.5 \pm 0.1$  at test initiation.

Cell counts were made using a Coulter counter on test days 2, 3, 4 and 7 after test initiation. Three counts per replicate were made. On the basis of the mean cell count, the percentage inhibition was determined and the ECx values calculated using of the algal growth curve as determined by inverse estimation least squares linear regression.

The effects of the test item on algal growth inhibition on day? relative to the control, ranged from 97.9 to 99.7 % for the nominal test concentrations of 56 mg test item/L and 100 mg test item/L respectively. At or below the nominal test concentration of 32 mg test item/L no algal growth inhibition was observed. Rather slight algal growth increases of 2.0 % and 7.7 % were observed for the nominal concentrations of 18 mg test item/L and 32 mg test item/L respectively. Because the biomass in the control cultures increased by a factor of <16, and the coefficient of variation for the whole period > 10%, the validity criteria according to the current guideline OECD 201 were not metand this study is not considered valid for risk assessment purposes.

# I MATERIALS AND METHODS

# A. MATERIALS

Test material:	
Test item:	Glyphosate technical
Description:	White solid
Lot/Batch #: 📈 👸	NBP-3594465
Purity:	96.6 %
Water solubility	1.2 % at 25 °C
Vehicle and or positive control:	Vehicle: Dilution water
venicie and/or positive control:	Positive control: None
Test organism:	
Species:	Navicula pelliculosa
Initial cell concentration:	$3 \times 103 \text{ cells/mL}$
Source:	In-house culture

<b>Environmental conditions:</b>		ž
Temperature:	20 ± 2 °C	92,
Photoperiod:	24 h light, 4306 ± 650 Lux	
pH:	$7.5 \pm 0.1$	
Conductivity:	Not stated	6:49
Hardness:	Not stated	

B. STUDY DESIGN

Experimental dates of work: 13 April to 20 April 1987

Experimental treatments

Prior to the main test, a range-finding test was performed with six concentrations ranging between 0.001 and 100 mg test item/L. Based on the preliminary test results, the main test was performed with five nominal. and 100 mg test item/L. Based on the preliminary test results, the main test was performed with five nominal concentrations (10, 18, 32, 56 and 100 mg test item/L). Test concentrations were prepared by adding the required volumes of the stock solution to AAP/Si (medium with sistem) medium. A control with the test medium (without test substance) was tested under the same conditions as in the test groups. The test was performed in 250 mL volumetric flasks, containing each 50 mk test solution. Test algae were taken from a 7-day old stock culture and were aseptically added to the fest medium to obtain a nominal initial concentration of  $1.11 \times 106$  cells/mL. Flasks were kept in an incubator at a temperature of  $20 \pm 2^{\circ}$  C and were continuously shaken at 100 oscillations per minute.

were continuously shaken at 100 oscillations per minute.

Observations

Cell counts were made using a Coulter counter on test days 2, 3, 4, and 7 after test initiation. Three counts per replicate were made. All counts were multiplied by the appropriate conversion factors (for sample dilution and volume counted) to yield cells/ml. Samples ranging in volume from 0.1 to 2.0 mL, depending upon the expected population density, were collected aseptically using an automatic micropipette with sterile tips. Based on the mean cell count, the percentage inhibition was determined and the ECx values calculated using the algal growth curve as determined by inverse estimation least squares linear regression. The temperature was measured daily and the pH was adjusted to  $7.5 \pm 0.1$  at test initiation. Samples of test media were made at test initiation and test termination for analysis of the active ingredient content in initial and aged test solutions. Samples were analysed for active substance using HPLC.

# **Statistical calculations**

To determine the ECx values the log of test concentration was plotted against percent inhibition expressed as probit. Inverse estimation least squares linear regression was used to determine the line of best fit and the concentrations corresponding to 25 and 50 percent inhibition and the associated 95 % confidence limits were calculated. Parameters of the regression line were determined using the SAS statistical package.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

The EC50 value is given below based on mean measured concentrations.

Table 0-13: Toxicity of glyphosate technical to Navicula pelliculosa of

Endpoint	Glyphosate technical [mg test item/L]	
£C50 (7 day)	24.9	

Chemical analyses were performed on samples of the test solutions to quantify glyphosate in the test

solution. The mean measured concentrations were 10.6, 19.1, 33.6, 56.1 and 103 mg glyphosate technical/L, corresponding to 106.0, 106.1, 105.0, 100.2 and 103.0 % of the nominal test concentrations of 10, 18, 32 56 and 100 mg glyphosate technical/L respectively. The ecotoxicological endpoints were evaluated using measured concentrations of the test item.

# **B. OBSERVATIONS**

# Observations:

The effects of the test item on algal growth inhibition on day 7, relative to the control, ranged from 97.9 to 99.7 % for the nominal test concentrations of 56 mg test item/L and 100 mg test item/L respectively. At or below the nominal test concentration of 32 mg test item/L no algal growth inhibition was observed. Rather slight algal growth increases of 2.0 % and 7.7 % were observed for the nominal concentrations of 18 mg test item/L and 32 mg test item/L respectively.

st item/L respectively.

Percentage growth inhibition of Navicula pelliculose exposed to glyphosate **Table 0-14:** technical for 7 days

Nominal concentrations [mg test item/L]	Measured concentrations [mg test item/L]	Mean number of algae cells (day7) [× 1000 cells/mL]	Mean inhibition (7 days) [%]
Control	Control	3020	-
10	10.6	29.\$3	2.9
18	19.1	3080 5	-2.0
32	33.6	S 33535	-7.7
56	56.1	×6335	97.9
100	103	9 2 28	99.7

# III. CONCLUSIONS

The 7-day EC50 for Navicula pelliculosa exposed to glyphosate technical was calculated to be 24.9 mg test item/L.

# 3. Assessment and conclusion

# Assessment and conclusion by applicant:

The validity criteria for the study were re- evaluated according to the current guideline OECD 201 (2011).

# Validity criteria

Validity criteria acc. to QECD 201 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	9
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35 %.	≤ 35 %	29.1 %
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 10 %.	≤ 10 %	10.1 %

The biomass in the control cultures increased by a factor of <16 (actual: 9), the coefficient of variance For section specific growth rates was  $\leq$  35 % (actual: 29.1 %), for the whole test period it exceeded 10 % actual: 10.1 %). Because the biomass in the control cultures increased by a factor of <16, and the coefficient of variation for the whole period > 10%, the validity criteria according to the current guideline OECD 201 were not met and this study is not considered valid for risk assessment purposes.

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Assessment	and	conclusion	by	RMS	:
------------	-----	------------	----	-----	---

## 1. Information on the study

i <del></del>	
Data point	CA 8.2.6.2/006
Report author	
Report year	1996
Report title	Glyphosate acid: Toxicity to the marine alga sketetonema costatum
Report No	AB0503/I
Document No	-
Guidelines followed in study	OECD Guideline No. 201 (1984) \$\infty\$ (1982) \$\infty\$ (200) (1982)
Deviations from current test guideline	Deviation from the guideline 201 (2011): None
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes State of the s
Acceptability/Reliability	Valid
Category study in AIR 5 dossier (L docs)	Category 2a K & K

2. Full summary
Executive Summary
The toxicity of glyphosate acid to the marine alga Skeletonema costatum was determined in a 120-hour, static test. The test incorporated 8 pointing concentrations of glyphosate acid (1.0, 1.8, 3.2, 5.6, 10, 18, 3.2, and 56 mg a.e./L) and a control consisting of culture medium without test item. The test comprised six replicate cultures of the culture medium control and three replicate cultures of each concentration of glyphosate acid. The initial nominal cell density was 1.00 × 104 cells/mL. The culture vessels were incubated at  $20 \pm 1$  °C for 120 hours.

The cell densities were determined by electronic particle counting, using a Coulter counter. After 1, 2, 3, 4, and 5 days, samples were removed from each test and blank vessel. The pH-values were determined in the test media at the beginning and at the end of the test. The temperature in the incubator was measured daily with a thermometer, and hourly with an automatic recording system. The concentrations of glyphosate acid in the test solutions were measured at the start and at the end of the test.

The mean measured concentrations of glyphosate acid ranged from 94 to 106 % of the nominal values. Based on the analytical results the nominal test concentration values were used for the calculation and reporting of all results.

The 72 h Eb 30 for Skeletonema costatum exposed to glyphosate acid was 11 mg/L; the 72 h Er 50 was 18 mg test stem/L. The 120 h EbC50 was 12 mg test item/L; the 120 h ErC50 was 24 mg test item/L. The 72-hour NOEbC and NOErC values were 1.8 mg test item/L, respectively. The validity criteria according Se Control of the Con to the current guideline OECD 201 were met and this study is considered valid for risk assessment purposes

# I. MATERIALS AND METHODS

# A. MATERIALS

**Test material:** 

Test item: Glyphosate acid Description:

Lot/Batch #: Purity:

Vehicle and/or positive control:

**Test organism:** 

White solid
P24
95.6 %
Cell growth medium

Marine alga Skeletonema costatum strain CCAP 1077/1C
1.00 × 104 cells/mI Species:

Initial cell concentration:  $1.00 \times 104 \text{ cells/mL}$ 

Culture centre of algae and protozoa, Dunstaffnage Marine Source:

Laboratory, Oban, Argyll, UK

**Environmental conditions:** 

20.0 - 20.1 °C (measured by thermometer). The hourly Temperature:

temperature measured automatically remained within  $20 \pm 1$  °C

Photoperiod: 16 h light / 8 h dark

4340 lux 🔊 Light intensity:

7.1 - 8 at the start of the test 8.1 8.8 at the end of the test pH:

B. STUDY DESIGN
Experimental dates: 5 February – 10 February 1996
Experimental treatments

**Experimental treatments** 

The toxicity of glyphosate acid to the marine alga Skeletonema costatum was determined in a 120-hour, static test. The test incorporated 8 nominal concentrations of glyphosate acid (1.0, 1.8, 3.2, 5.6, 10, 18, 3.2, and 56 mg test item/L) and a control consisting of culture medium without test item. The test vessels were conical glass flasks of 250 mD portinal capacity containing 100 mL of test solution. The stock solution of nominal concentration of 56 mg test item/L was prepared by adding glyphosate acid directly to 2000 mL sterile culture medium. Appropriate aliquots of this stock solution were diluted to prepare the lower test concentrations of 1.0, \$2.86 3.2, 5.6, 10, 18, and 32 mg test item/L. 100 mL of the appropriate test solution were dispensed to each test and blank vessel.

The test was performed in six replicate cultures of the culture medium control and three replicate cultures of each concentration of glyphosate acid. The initial nominal cell density was 1.00 × 104 cells/mL. The culture vessels were incubated at 20 ± 1°C for 120 hours. During incubation, the cells were kept in suspension by continuous shaking.

# Observations

Counter counter. After 1, 2, 3, and orank vessel. The appropriate blank particle count counture to obtain the cell density. The pH-values were determined in at the beginning and at the end of the test. The temperature in the incubator was measured daily with a thermometer, and hourly with an automatic recording system.

The concentrations of glyphosate acid in the test solutions were measured at the start and at the end of the test.

# **Statistical calculations**

One-way analysis of variance, and Dunnett's post-hoc test.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

The mean measured concentrations of glyphosate acid ranged from 94 to 106 % of the nominal values. Based on the analytical results the nominal test concentration values were used for the calculation and reporting of all results.

The EC50 (72 h and 120 h), NOEC and LOEC values are given below based on nominal concentrations.

Table 0-15: Toxicity of glyphosate acid to Skeletonema costatum (nominal values)

Endnoint	Glyphosate acid [mg test item/E]			
Endpoint	0 – 72 hours	0 - £20 hours		
ErC50 (95% CI)	18 (10 – 42)	24 (12 -> 56)		
EbC50 (95% CI)	11 (7.1 – 20)	12 (7.6 – 19)		
NOErC	1.8	je 10		
LOErC	3.2	18		
NOEbC	1.8	1.8		
LOEbC	3.2	3.2		

# **B. OBSERVATIONS**

Glyphosate inhibited cell growth of the marine algae *Skeletonema costatum* after 120 hours at test concentrations of 18, 32 and 56 mg glyphosate acid/L; mean area under growth curve was affected at 10, 18, 32 and 56 mg glyphosate acid/L.

Table 0-16: Mean cell densities and percentage of inhibition of cell growth of Skeletonema costatum exposed for 120 hours to glyphosate acid

	Control	Glyph	osate aci	d [mg tes	t item/L	]			
Test parameters	-10, Fill of	1.0	1.8	3.2	5.6	10	18	32	56
Mean areas under the growth curve (0 - 72 h)	37.4	38.0	38.9	29.5*	34.2	17.9*	2.8*	2.3*	1.5*
growth curve (0 - 72 h) % of control	51/4	102	104	79	92	48	8	6	4
Mean growth rates (0,7 ) 72 h)	1.423	1.433	1.443	1.322*	1.387	1.111*	0.362*	0.295*	0.188*
Mean growth rates (Q2 72 h) % of control	1	101	101	93	97	78	25	21	13
Mean areas under growth curve (0 120 h)	162.2	162.7	163.3	149.5*	156.9	132.1*	7.1*	4.0*	2.2*
Mean areas under growth curve (62 120 h)	-	100	101	92	97	81	4	2	1
Mean growth rates (0 -	0.882	0.879	0.869	0.873	0.875	0.905	0.315*	0.115*	0.055*
Mean growth rates (0 - 120 h) [%] of control	-	100	99	99	99	103	36	13	6

^{*} Significant difference from the culture control (p=0.05)

# III. CONCLUSIONS

The 72 h EbC50 for *Skeletonema costatum* exposed to glyphosate acid was 11 mg test item/L; the 72 h ErC50 was 18 mg/L (nominal). The 120 h EbC50 was 12 mg test item/L; the 120 h ErC50 was 24 mg test item/L. The 72-hour NOEbC and NOErC values were 1.8 mg/L, respectively. All endpoints are based on nominal test concentrations.

# 3. Assessment and conclusion

# Assessment and conclusion by applicant:

Validity of the study was re-evaluated according to the current test guideline QECD 201 (2011) and EC10, EC20, and EC50, NOEC and LOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

# Validity criteria

Validity criteria acc. to OECD 201 (2011)	Required (0.72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	5 10 16 16 5 16	72
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35 %.	§ ≤35 %	33.1 %
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 10 %.	≤10 %	4.3 %

The biomass in the control cultures increased by a factor of  $\geq 16$  (achieved: 72), the coefficient of variance for section specific growth rates was  $\geq 35\%$  (achieved: 33.1 %) and the coefficient of variance for the whole test period it was  $\leq 10\%$  (achieved: 4.3 %). The validity criteria according to the current guideline OECD 201 were met and this study is considered valid for risk assessment purposes.

A statistical re-evaluation addressing EC10, EC20, EC50, NOEC and LOEC was performed (Positon Paper No. CA 8.2.6.2/007).

Recovery of test concentrations ranged from 94 to 106%. Therefore endpoints are based on nominal.

# Re-calculated EC10, EC20, EC50, NOEC and LOEC values based on nominal concentrations

Endpoint (0 – 72 hours)	Glyphosate acid [mg a.e./L]			
	Yield	Growth rate		
EC10 (95% CI)	5.22 (2.44 – 6.70)	1.87 (1.18 – 2.62)		
EC20 (95% Cb) 6	6.38 (2.90 – 7.73)	2.98 (2.86 – 5.26)		
EC50 (95% CP)	9.00 (7.58 – 10.4)	13.5 (10.8 – 20.7)		
NOEC	5.6	5.6		
LOEC	10.0	10.0		

CI confidence interval n.d= not determined

# Assessment and conclusion by RMS:

1. **Information on the study** 

	2) (6
Data point	CA 8.2.6.2/007
Report author	17:0
Report year	2020
Report title	Statistical evaluation (non-GLP) of the study BL5684/B on the toxicity of Glyphosate acid to <i>Skeletonema costatum</i> under state conditions
Report No	110054-007
Document No	- 455
<b>Guidelines followed in study</b>	OECD 201 (2011)
Deviations from current test guideline	Deviations to current guideline OECD 201 (2011): None
Previous evaluation	No, not previously evaluated
GLP/Officially recognised testing facilities	No, GLP is not compulsory for statistical evaluation
Acceptability/Reliability	Valid SSSSSS
Category study in AIR 5 dossier (L docs)	Category 1

## 2. **Full summary Executive Summary**

A statistical evaluation addressing the calculation of valid 72 h EC10, EC20 and EC50 values was conducted for the study BL5684/B (Smyth, et al., 1996) to fulfill the data requirements according to regulation EU 283/2013. Furthermore, the validity criteria for the study were re- evaluated according to the current guideline OECD 201 (2011). The validity criteria according to the current guideline OECD 201 were met and this study is considered

The calculated 72 h- EC10, EC20 and EC50 values are 5.22, 6.38 and 8.99 mg a.s./L, respectively for yield and 1.87, 2.98, and 13.5 mg as a for growth rate, respectively, based on glyphosate acid. NOEC was determined to be 5.6 mg for yield as well as for growth rate. The statistical parameters showed that these values can be considered reliable for use in the risk assessment. V

# I. MATERIALS AND METHODS

# A. MATERIALS

Software: ToxRatPro Version 3.3.0

Study number? AB0503/I

Glyphosate acid

Substance: S Glyphosate acid: Toxicity to the marine alga Skeletonema costatum Title:

Completion date: 10-Feb-1996

OECD Guideline No. 201 (1984); US EPA Guideline 540/09-82-020 (1982) Test guideline(s):

Re-evaluated according OECD 201 (2011)

Testing facility:
Sponsor: Yes, conducted under GLP/Officially recognised testing facilities

Brixham Environmental Laboratory, Brixham Devon, UK

ZENECA Agrochemicals, Surrey, UK

# **B. STUDY DESIGN**

Dates of work: April 2020

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and \$72-h EC10, EC20, and EC50, NOEC and LOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

1996) was statistically evaluated for the effects of Glyphosate acid on The study BL5684/B ( the marine alga Skeletonema costatum. The organisms were exposed for 120-hours to the following concentrations of glyphosate acid: 1.0, 1.8, 3.2, 5.6, 10, 18, 32, and 56 mg a.s./L. Additionally, a control was tested in parallel. The data used for this evaluation were obtained from the original study report.

The analytical data from the study report were checked to ensure the appropriate mean measured or nominal exposure concentrations were used in the ECx calculations.

# **Statistical calculations**

Models providing best fit to the respective data were selected and are as follows:

In order to derive the 72-h Effect Concentrations that have 10, 20 and 50% effects on growth rate and yield of the test subjects, a 3-parameter logistic CDF (Cumulative Distribution Function) model was used for yield and for growth rate and a non-linear regression analysis was performed.

NOEC levels were determined by Welsh-t-test After Bonferroni-Holm Correction for yield, and Williams Multiple Sequential t-test for growth rate (one-sided smaller, p=0.05).

All statistical evaluations and checks for validity criteria were performed using the software ToxRatPro Version 3.3.0.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and EC₁₀ and EC₂₀ and EC₅₀ values were calculated to falfil the data requirements according to regulation EU 283/2013. Validity parameters are provided in the table below:

Table 0-17: Validity Criteria

Validity criteria acc. to OECD 2015 (2011)	Required (0 - 72 h)	Obtained (0 - 72 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	72
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35 %.	≤35 %	33.1 %
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 10 %.	≤10 %	4.3 %

For yield, the parameters for the 3 parameter logistic CDF model are estimated as: b0: 53.393, b1: 8.991;

For growth rate, the parameters for the logit analysis are estimated as slope b: 2.46938; intercept a: -

According to the statistical parameters; F(2, 6) = 147.118; p(F) < 0.001;  $R^2 = 0.910$  for yield. After non-linear regression no lack of fit was detected for the function (p(F|Lack of Fit) = 0.069

For growth rate, statistical parameters for goodness of fit are:  $Chi^2(22) = 0.54119$ ;  $p(Chi^2)$ : 1.000; F(1,22) = 97.922, p(F) < 0.001;  $R^2 = 0.817$ .

Therefore, the obtained  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  calculations are considered valid. The values are presented in the table below.

Considering yield, there is a statistically significant difference to control at test concentrations 3.2, 10.0, 18, 23, and 56 mg/L. No statistically significant effect is determined for the intermediate test concentration of 5.6 mg/L. As this does not follow a dose response scenario and continuous effects are observed from 10.0 mg/L and all higher concentration levels, the NOEC is set to 5.6 mg/L for yield.

For growth rate, % inhibition at 72 hours was -0.7, -1.5, 6.9, 2.4, 21.7, 74.8, 79.2 and 86.8% compared to the control for test concentrations 1.0, 1.8, 3.2, 5.6, 10, 18, 32, and 56 mg a.s.//, respectively. However, statistically significant effects have been determined for all test concentrations, except for the two lowest levels. Even inhibition of 6.9 and 2.4% at 3.2 and 5.6 mg/L are statistically determined to show an effect. Based on the fact that the inhibition values at these test item concentrations were below 10% these significances were considered to be not scientifically relevant according to Heger et al (1998).

Recovery of mean measured test concentrations ranged from 94 to 106% of nominal. Therefore, endpoints are based on nominal.

Table 0-18: Re-calculated EC10, EC20, EC50, NOEC and LOEC values based on nominal concentrations

Endpoint (0 – 72 hours)	S Glyphosate ac	Glyphosate acid [mg a.s./L]			
	Yield.	Growth rate			
EC ₁₀ (95% CI)	5,22,(2.44 - 6.70)	1.87 (1.18 – 2.62)			
EC ₂₀ (95% CI)	638 (3.90 – 7.73)	2.98 (2.86 – 5.26)			
EC ₅₀ (95% CI)	(7.58 – 10.4)	13.5 (10.8 – 20.7)			
NOEC	5.6	5.6			
LOEC	10.0	10.0			

CI = confidence interval

# III. CONCLUSION

# 3. Assessment and conclusion

# Assessment and conclusion by applicant:

The validity criteria according to the current guideline OECD 201 were met and this study is considered valid.

The calculated 12 h-  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  values are 5.22, 6.38 and 8.99 mg a.s./L, respectively for yield and 187, 2.98, and 13.5 mg a.s./L for growth rate, respectively, based on glyphosate acid. NOEC was determined to be 5.6 mg a.s./L for yield as well as for growth rate. The statistical parameters showed that these values can be considered reliable for use in the risk assessment.

# **Assessment and conclusion by RMS:**

## 1. Information on the study

Data point	CA 8.2.6.2/008
Report author	\$\tag{\text{\text{\$\bar{g}^{\text{\$\bar{g}^{\text{\$\bar{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\text{\$\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\color{g}^{\cin}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
Report year	1987
Report title	The Toxicity of Glyphosate Technical to Skeletonema costation
Report No	1092-02-1100-3
<b>Document No</b>	-
<b>Guidelines followed in study</b>	Guideline 123-2, U.S. EPA – FIFRA (Growth and Reproduction of Aquatic Plants, Tier 2)
Deviations from current test guideline	Deviations from the guideline OECD 201 (2011).  Major:  - The biomass in the control cultures increased by a factor of 3.6 instead of ≥16, and the mean coefficient of variation for section-by-section specific growth rates in the control cultures was 78.4% instead of ≤35%
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes GO O O O O O O O O O O O O O O O O O O
Acceptability/Reliability	Invalid S N
Category study in AIR 5 dossier (L docs)	Category 2b

2. Full summary
Executive Summary
The effects of glyphosate technical on Skeletonema costatum were evaluated in a 7-day static toxicity test. After a range-finding test, suspensions of Skeletonema costatum were exposed to six nominal concentrations encompassing 0.1, 0.2, 0.4, 0.8 d. 6 and 3.2 mg test item/L (measured: 0.24, 0.28, 0.48, 1.79 and 3.42 mg glyphosate technical/L). In addition, a control with the test medium (without test substance) was tested. The test flasks were inoculated with cells from a 7-days-old pre-culture of Skeletonema costatum with an initial test cell density of 104 cells/mL. The test was performed in 250 mL volumetric flasks, containing each 50 mL test solution. The test concentrations and the control were prepared in 3 replicates. The test flasks were placed in the incubator and maintained over several generations for 7 days. The temperature was measured daily and the salinity was adjusted to 30 % at test initiation. Cell counts were made using a Coulter counter on test days 2, 3, 4, and 7 after test initiation. On the basis of the mean cell count, the percentage inhibition was determined and the ECx values calculated using of the algal growth curve as determined by inverse estimation least squares linear regression. The effects of the test item on algal growth inhibition on day 7, relative to the control, ranged from 9.2 % for the lowest mean measured test concentration of 0.24 mg test item/L to 95.7 % for the highest test concentration of 3.42 mg test item/L. At the mean measured concentration of 0.28 mg test item/L, a sporadic growth increase of 13.6 % relative to control was observed.

The 7-day EC50 for Skeletonema costatum exposed to glyphosate technical was calculated to be 0.64 mg test item/L® &

Because the factor of exponential increase in biomass in the control cultures was <16 and the coefficient of ria guidelly si de la company variation for the section specific growth rate was >35%, the validity criteria according to the current guideline OECD 201 were not met and this study is not considered valid for risk assessment purposes.

# I. MATERIALS AND METHODS

# A. MATERIALS

# **Test material:**

Test item:	Glyphosate technical
Description:	White solid  NBP-3594465  96.6 %  1.2 % at 25 °C
Lot/Batch #:	NBP-3594465
Purity:	96.6 %
Water solubility	1.2 % at 25 °C
Vehicle and/or positive control:	Vehicle: filter-sterilized distilled denonized water
venicie and/or positive control.	Positive control: None
Test organism:	A C C
Species:	Skeletonema costatum
Initial cell concentration:	104 cells/mL
Source:	In-house culture
<b>Environmental conditions:</b>	20 ± 2° C
Temperature:	20 ± 2° C
Photoperiod:	14 h light (10sh ctark
Light intensity:	4306 ± 630 Lux
Salinity:	30 % 8 3 4
Conductivity:	Not stated
Hardness:	Not stated

B. STUDY DESIGN
Experimental dates: 20 April 1987 April 1987

# **Experimental treatments**

Prior to the main test, a range finding test was performed with six concentrations ranging between 0.001 and 100 mg test item/L. On the basis of the preliminary test results, the main test was performed with six nominal concentrations (0.1, 0.2, 0.4, 0.8, 1.6 and 3.2 mg test item/L) and three replicates per test item treatment group. Test concentrations were prepared by adding the required volumes of the stock solution to synthetic seawater (prepared by adding approximately 30 grams of a commercial salt mix to 1 L of distilled deionised water). A control with the test medium (without test substance) was tested under the same conditions as in the test groups. The test was performed in 250 mL volumetric flasks, containing each 50 mL test solution. Test algae were taken from a 7-day old stock culture and were aseptically added to the test medium to obtain a nominal initial concentration of 104 cells/mL. Flasks were kept in an incubator at a temperature of  $20 \pm 2$  °C. Flasks were manually shaken each working day.

# **Observations**

Cell counts were made using a Coulter counter on test days 2, 3, 4, and 7 after test initiation. Based on the mean reflection, the percentage inhibition was determined and the ECx values calculated using the algal test initiation and test termination for analysis of the active ingredient content in initial and aged test solutions. Samples were analysed for active substance using HPLC. Statistical calculations
To determine the ECx was probit. Invergrowth curve as determined by inverse estimation least squares linear regression. The temperature was

To determine the ECx values, the log of test concentration was plotted against percent inhibition expressed as probit. Inverse estimation least squares linear regression was used to determine the line of best fit and

the concentrations corresponding to 25 and 50 % inhibition and the associated 95 % confidence limits were calculated. Parameters of the regression line were determined using the SAS statistical package.

Glyphosate

# II. RESULTS AND DISCUSSION

# A. FINDINGS

The EC50 value is given below based on mean measured concentrations.

Table 0-19: Toxicity of glyphosate technical to Skeletonema costatum

Endpoint	Glyphosate technical [mg test ifem/L]
EC50 (7 day) (95% confidence limits)	0.64 (0.21 3.70)

Analytical data:
Chemical analyses were performed on samples of the test solutions to quantify glyphosate in the test solution. The mean measured concentrations were 0.24, 0.28, 0.48, 0.94, 1.79 and 3.42 mg glyphosate/L, corresponding to 240.0 %, 140.0 %, 120.0 %, 117.5 %, 111.9 % and 106.9 % of the nominal test concentrations of 0.1, 0.2, 0.4, 0.8, 1.6 and 3.2 mg glyphosate & espectively. Therefore, ecotoxicological endpoints were evaluated using measured concentrations of the test item.

# **B. OBSERVATIONS**

**B. OBSERVATIONS**The effects of the test item on algal growth inhibition on day 7, relative to the control, ranged from 9.2 % for the lowest mean measured test concentration of 0.24 mg test item/L to 95.7 % for the highest test concentration of 3.42 mg test item/L. At the mean measured concentration of 0.28 mg test item/L, a sporadic growth increase of 13.6 % relative to control was observed.

**Table 0-20:** Percentage growth inhibition of Skeletonema costatum exposed to glyphosate technical for 7 days

Nominal Measured concentrations concentrations [mg test item/L] [mg test item/L]		Mean number of algae cells (day 7) [× 1000 cells/mL]	Mean inhibition (7 days) [%]	
Control	Control	360.667	-	
0.1	0.24	327.333	9.2	
0.2	0.28	410.667	-13.6	
0.4	65 × 0.48	250.667	30.5	
0.8	S 6 0.94	76.333	78.8	
1.6	1.79	24.000	93.3	
3.2	3.42	15.667	95.7	

# III. CONCLUSIONS

The 7-day EC50 for Skeletonema costatum exposed to glyphosate technical was calculated to be 0.64 mg test item L, based on mean measured concentrations.

# 3. Assessment and conclusion

Assessment and conclusion by applicant:				
The validity criteria for the study were re- evaluated to the current guideline OECD 201 (2011).				
Validity criteria				
Validity criteria acc. to OECD 201 (2011)	Required (0 - 72 h)	Obtained (9 - 12 h)		
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	≥16	\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ\$\circ		
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35 %.	≤ 35 %	78.4 %		
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 10 %.	≤ 10 % 8 × 5 5 6	2.5 %		

The biomass in the control cultures increased by a factor of <16 (actual: 3.6), the coefficient of variance for section specific growth rates exceeded 35% (actual: 78.4%), for the whole test period it was ≤10 % (actual: 2.5 %). Because the factor of exponential increase in biomass in the control cultures was <16 and the coefficient of variation for the section specific growth rate was >35 %, the validity criteria according to the current guideline OECD 201 were not met and this study is not considered valid for risk assessment purposes.

in old of the state of the stat

# **Assessment and conclusion by RMS:**

# 1.

		0 14 8			
	1 Information on the start	\$ 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1.			
	1. Information on the study				
	Data point	£CA 8.2.6.2/009			
	Report author				
	Report year	1978			
	Report author Report year Report title	Toxicity of seven test materials to the marine alga, <i>Skeletonema</i> costatum			
	Report No	BP-78-4-031			
	Document No	-			
	Guidelines followed in study	Environmental Protection Agency: Bioassay procedures for the ocean disposal permit program (1976)			
	Deviations from current test	Deviations from the guideline OECD 201 (2011)			
	guideline	Major:  Report does not provide sufficient information			
	Budious avaluation	- Report does not provide sufficient information			
Š	Previous evaluation	Yes, accepted in RAR (2015)			
St. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020			

GLP/Officially recognised testing facilities	No, GLP was not compulsory at the time the study was performed
Acceptability/Reliability	Invalid
Category study in AIR 5 dossier (L docs)	Category 2b

# 2. Full summary Executive Summary

The effects of seven test items, two solid test items (Glyphosate, BN-78-44, and Glyphosate intermediate, BN-78-45) and five liquid test items (Comp. #1, BN-78-46, Comp. #2, BN-78-47, Comp. #3A, BN-78-48, Comp. #4, BN-78-49 and Comp. 5A) on *Skeletonema costatum*, were evaluated in a 36-hour static toxicity test. The test was performed using nominal concentration encompassing 0.6, 1.0, 4.8, 3.2 and 5.6 mg test item/L for Glyphosate, BN-78-44 and 3.2, 10, 32, 100, 320 and 560 mg test item/L for Glyphosate intermediate, BN-78-45). For the liquid test item (Comp. #1, BN-78-46; Comp. #2, BN-78-47; Comp. #3A, BN-78-48; Comp. #4, BN-78-49 and Comp. 5A.) the nominal concentration used were 0.6, 1.0, 3.2, 10, 32 and 56 % effluent. Duplicate cultures were employed for each of the test concentrations and control, except in the test with Comp. 5A, in which all test concentrations and the control were triplicate. The test solutions were prepared using deionised water. The initial cell concentration was  $2 \times 104$  cells/mL. Cell cultures were incubated for 96 hours at  $20 \pm 1$  °C.

Measurements of *in vivo* chlorophyll  $\alpha$  in cultures were performed and cell counts were made at 24, 48, 72 and 96 hours after the test initiation. Due to the nature of two of the test materials, Comp. #2, BN-78-47 and Comp. #3, BN-78-48, *in vivo* chlorophyll  $\alpha$  could not be accurately measured. Cell counts were the only growth measurement for both test items. The EC50 values were calculated in terms of chlorophyll  $\alpha$  measurements and cell counts.

For the test item Glyphosate, BN-78-44, all test concentrations led to a reduction in both chlorophyll  $\alpha$  content and the cell number, varying from 12% to 98%. For the test item Glyphosate intermediate BN-78-45, a reduction in chlorophyll  $\alpha$  content and the cell number were observed from the nominal concentrations of 320 mg test item/L (for chlorophyll  $\alpha$ ) and 10 mg test item/L (for cell number), respectively. At the highest test concentrations, the reductions in both chlorophyll  $\alpha$  content and the cell number varied from 95 % to 98 % for both solid test items.

For the liquid test items Comp. #3A, BN-78-48, Comp. #4, BN-78-49, and Comp. 5A, reductions in chlorophyll  $\alpha$  content and/or cell number were observed from the lowest test concentration (0.6 % effluent), except for Comp. 5A, for which the reduction in chlorophyll  $\alpha$  content was observed only at or above the concentration of 10% effluent. At the highest test concentration (56 % effluent), reductions in both chlorophyll  $\alpha$  content and the cell number varied from 88 % to 100 % for all liquid test items.

Validity of the study could not be checked due to lack of information given in the report. The study is therefore not used for risk assessment purposes.

# I. MATERIALS AND METHODS

# A. MATERIALS

Test material:	
, of ot	Glyphosate, BN-78-44 (white, crystalline solid)
	Glyphosate intermediate, BN-78-45 (fine, white powder)
Test item (Description):	Comp. #1, BN-78-46 (clear liquid)
	Comp. #2, BN-78-47 (clear liquid)
	Comp. #3A, BN-78-48 (murky liquid)
	Comp. #4, BN-78-49 (clear liquid)

	Comp. 5A. (clear liquid)			
Vehicle and/or positive control: Dodecyl sodium sulphate (DSS)				
Test organism:				
Species:	Skeletonema costatum			
Initial cell concentration	2 × 104 cells/mL			
Source:	Environmental Protection Agency's Protection Agency's Environmental Research Laboratory, Narragansett, Rhode Island, USA			
<b>Environmental conditions:</b>				
Temperature:	20 ± 1 °C			
Photoperiod:	Not stated			
Light intensity:	2000 Lux			
pH:	Glyphosate, BN-78-44, (82 - 8.5) Glyphosate intermediate, BN-78-45 (6.1 – 8.4) Comp. #1, BN-78-46 (7.6 – 8.4) Comp. #2, BN-78-47 (7.1 – 8.4) Comp. #3A, BN-78-48 (8.1 – 8.5) Comp. #4, BN-78-49 (8.0 – 8.9) Comp. 5A (8.2 – 8.5)			
Dissolved oxygen:	Not stated & A S			
Conductivity:	Not stated it will			
Hardness:	Not stated &			

B. STUDY DESIGN
Experimental dates: Not stated
Experimental treatments
Toxicity tests for the seven test materials were performed using nominal concentration encompassing 0.6, 1.0, 1.8, 3.2 and 5.6 mg test item (Life Syphosate, BN-78-44, and 3.2, 10, 32, 100, 320 and 560 mg test item/L for Glyphosate intermediate; BN-78-45). For the liquid test item (Comp. #1, BN-78-46; Comp. #2, BN-78-47; Comp. #3A, BN-78-48; Comp. #4, BN-78-49 and Comp. 5A.) the nominal concentration used were 0.6, 1.0, 3.2, 10, 32 and 56% effluent. Duplicate cultures were employed for each of the test concentrations and control, except in the test with Comp. 5A, in which all test concentrations and the control were triplicate. For solid test materials, appropriate amounts were added to deionised water; the pH was adjusted to 8.0, and the materials were finally added test containers to obtain appropriate concentrations. For liquid materials, the effluents were directly added into the test containers. To the prepared tests concentrations, the algal suspension was added to obtain an initial cell concentration of 2 × 104 cells/mL. Cell cultures were incubated for 96 hours at  $20 \pm 1$  °C.

Observations & Measurements of in vivo chlorophyll  $\alpha$  in cultures were performed by using a fluorometer and cell counts were made by a means of a haemocytometer and a standard microscope at 24, 48, 72 and 96 hours after the test initiation. Due to the nature of two of the test materials, Comp. #2, BN-78-47, and Comp. #3, BN-78-48, if yivo chlorophyll α could not be accurately measured. Cell counts were the only growth measurement for both test items. The EC50 values were calculated in terms of chlorophyll α measurements and cell counts. A separate test was conducted, in which cultures of the alga were exposed to the reference toxicant dodecyl sodium sulphate under the same test conditions stated above.

# Statistical calculations

The EC50 values were calculated by linear regression in a Probit data analysis. The salinity growth data

were analysed by Student's t-test at  $\alpha = 0.05$ .

## II. RESULTS AND DISCUSSION

# A. FINDINGS

The EC50 values are given below based on nominal concentrations.

Toxicity to Skeletonema costatum **Table 0-21:** 

Test materials		EC50 (96 h) (95% confidence interval) [% effluent or mg_test item/L]		
Claribaceta DN 79 44 (CL)	chlorophyll α	1.2 (0.6, 2.3)		
Glyphosate, BN-78-44 (CL)	cell counts	13 (9.7 2.5)		
Glyphosate intermediate	chlorophyll α	× 200 <320		
BN-78-45 (CL)	cell counts	140 (51 - 379)		
Comp. #1, BN-78-46	chlorophyll α	13 (6.1 - 27)		
	cell counts	15 (6.8 - 33)-		
Comp. #2, BN-78-47	chlorophyll α	n.d.		
Comp. #2, BN-76-47	cell counts	> 1<10		
Comp. #3A, BN-78-48	chlorophyll α	n.d.		
	cell counts	> 3.2 < 10-		
Comp. #4, BN-78-49	chlorophyll a	12 (6.8 - 23)		
	cell counts	19 (7.8 - 48)		
Comp. 5A.	chlorophyll a street street	14 (7.6 - 25)		
	cell counts of the country of the co	4.5 (2.2 - 9.1)		

n.d.= not determined

B. OBSERVATIONS

For the test item Glyphosate, BN 98.44, all test concentrations led to a reduction in both chlorophyll α content and the cell number, varying from 12 % to 98 %. For the test item Glyphosate intermediate, BN-78-45, a reduction in chlorophyll  $\alpha$  content and the cell number were observed from the nominal concentrations of 320 mg test item/L (for chlorophyll α) and 10 mg test item/L (for cell number). At the highest test concentrations, the reductions in both chlorophyll  $\alpha$  content and the cell number varied from 95 % to 98 % for both solid test items. For the liquid test items Comp. #3A, BN-78-48, Comp. #4, BN-78-49, and Comp. 5A reductions in chlorophyll  $\alpha$  content and/or cell number were observed from the lowest test concentration (0.6% effluent), except for Comp. 5A, for which the reduction in chlorophyll α content was observed only at or above the concentration of 10% effluent. At the highest test concentration (56 % effluent), reductions in both chlorophyll α content and the cell number varied from 88 % to 100 % for all liquid test items.

Table 9-22: Lethal effects of Glyphosate, BN-78-44, on Skeletonema costatum

Glyphosate, BN-78-44 jmg test item/L]	Control	0.6	1.0	1.8	3.2	5.6
Chlorophyll α (96 h) [%]	-	-12	-42	-84	-93	-98
Cell number [%] (96 h) [%]	-	-12	-35	-69	-90	-97

Glyphosate intermediate, BN-78-45 [mg test item/L]	Control	3.2	10	32	100	320	560
Chlorophyll α (96 h) [%]	-	+10	+7	+19	+10	-90 d	95
Cell number [%] (96 h) [%]	-	+44	-3	-7	-14	-89,17,0	-90

Lethal effects of Comp. #1, BN-78-46, Comp. #2, BN-78-47, Comp. #3A, **Table 0-24:** BN-78-48, Comp. #4, BN-78-49, and Comp. 5A on Skeletonema costatum 16.80.9

75 4 14	C 4 1	0.6	1.0	2.2	10	V 5020	<b>5</b> (	6.1.1	
Test items [% effluent]	Control	0.6	1.0	3.2	10 ×2	√  (532)°	56	Sal. b	
Comp. #1, BN-78-46									
Chlorophyll α (96 h) [%]	-	+2	-5	+10	333°	95	-100	-83 a	
Cell number [%] (96 h) [%]	-	+5	-21	+25%		-97	-99	-85 a	
Comp. #2, BN-78-47									
Chlorophyll α (96 h) [%]	-	-	- ,	( ' \( \frac{1}{2} \) ( \( \frac{1}2 \) ( \( \	-	-	-	-	
Cell number [%] (96 h) [%]	-	+7	-1 ₀ iii	8-50	-79	-80	-88 a	-	
	Comp. #3A, BN 78 48								
Chlorophyll α (96 h) [%]	-	- 3	20 19 9	-	-	-	-	-	
Cell number [%] (96 h) [%]	-	-200	& <u>}</u>	+11	-94	-99	-98	-48 a	
	Cor	np.#4, I	3N-78-49	)					
Chlorophyll α (96 h) [%]	-	C 400	+14	-10	-5	-74	-100	-	
Cell number [%] (96 h) [%]	- "0100	© <u>~</u> 24	+24	-16	-1	-68	-97	-	
Comp. 5A									
Chlorophyll α (96 h) [%]	21-43 OF	+8	+3	+5	-24	-97	-100	-	
Cell number [%] (96 h) [%]	10 110 110	-10	-15	-3	-56	-96	-100	-	

a significantly different (α=0.05) from the control

Lethal effects of the toxic reference Dodecyl sodium sulfate on Skeletonema **Table 0-25:** anal el

Dodecyl sodium sulfate [mg test item/L]	Control	1	2	3
Chlorophyll α (96 h) [%]	-	0	-57	-81
Cell number [%] (96 h) [%]	-	-4	-55	-79

CONCLUSION

The Conclusion of Seven glyphosate-related test items on Skeletonema costatum were studied in an acute toxicity test. For the solid test items (Glyphosate, BN-78-44, and Glyphosate intermediate, BN-78-45), the EC50 values varied from 1.2 mg test item/L to 320 mg test item/L. For the liquid test items (Comp. #1, BN-78-46, Comp. #2, BN-78-47, Comp. #3A, BN-78-48, Comp. #4, BN-78-49 and Comp. 5A.), the EC50 values varied between 1 % effluent to 19 % effluent.

Glyphosate Renewal Group AIR 5 – July 2020

b Salinity control

Assessment and conclusion

# Assessment and conclusion by applicant:

Validity of the study could not be checked due to lack of information given in the report. The study is not used for risk assessment.

Assessment and conclusion by RMS:	14.9

# 1. Information on the study

Data point	CA 8.2.6.2/010
Report author	0.80
Report year	1996
Report title	Alga, Growth Inhibition Test to Nitzschia palea
Report No	960606FH
<b>Document No</b>	-
<b>Guidelines followed in study</b>	OECD Guideline No 201 (1984)
Deviations from current test guideline	Deviations from the guideline OECD 201 (2011):  Major:  - the coefficient of variance for section specific growth rates exceeded 35 % (actual 72.7%).
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes K K K
Acceptability/Reliability	Invalid o
Category study in AIR 5 dossier (L docs)	Category 2b

2. Full summary

Executive Summary

The effects of glyphosate on Nitzschia palea were evaluated in a 96-hour static toxicity test, at seven nominal concentrations of 0.32, 1.0, 3.2, 10, 32, 100 and 320 mg test item/L and a control. Three replicate vessels were prepared per concentration level and control. The flask containing 10 mL of test or control medium were inoculated with algal cells to obtain an initial cell density of  $1.0 - 1.4 \times 104$  cells/mL. The temperature was measured continuously, and the pH was determined at the beginning and end of the test. At test start (0 k) and after 24, 48, 72 and 96 hours cell density was determined by chlorophyll-fluorescence growth rate (ErC) values were deducted from the was 4.47 mg test item/L. The NOEC (biomass & growth rate) were both determined to be 1.0 mg test item/L.

The validity criteria according to the current guideline OECD 201 were not met and this study is not considered valid for risk assessment purposes. and growth inhibition was calculated. EC10 and EC50 value for biomass (EbC) and growth rate (ErC)

I. MATERIALS AND METHODS

# A. MATERIALS

# **Test material:**

	,
Test item:	Glyphosate technical
Description:	White/crystalline
Lot/Batch #:	01/06/96 96.7 % Not specified 12g/L at 20 °C
Purity:	96.7 %
Density:	Not specified
Water solubility:	12g/L at 20 °C
Vehicle and/or positive control:	Vehicle: Cell growth medium Positive control: None
Test organism:	
Species:	Nitzschia palea (Kützing)
Initial cell concentration:	1.0 − 1.4 × 104 cells/mE
Source:	Nitzschia palea (Kützing)  1.0 – 1.4 × 104 cells/mE  Pflanzenphysiologisches Institut der Universität Göttingen, Göttingen, Germany
<b>Environmental conditions:</b>	S. J. J.
Temperature:	21.5 - 23.8 とてから
Photoperiod:	24 h light
Light intensity:	70 – 90 μE/m²2 s
Light quality:	Fluorescent tube, radium NL 58w/31, Spectralux Warmton
pH:  Conductivity:	7.78 8.72 (control replicates) 7.71 8.58 at 0.32, 1.0, 3.2 and 10 mg/L 6.43 - 7.74 at 32 mg/L 5.81 - 6.74 at 100 mg/L 3.20 - 3.22 at 320 mg/L
Conductivity:	not stated
Conductivity: Hardness:	not stated
SC 05 40	

B. STUDY DESIGN SEE Experimental Experimental dates: 14 October – 18 October 1996

# **Experimental treatments**

Prior to the main test, a range-finding test was performed using concentrations of 0.01, 0.1, 1.0, and 10 mg test item/L. The test flasks were inoculated with cells from a three-day-old pre-culture of Nitzschia palea to obtain an initial cell density of  $1.0 - 1.4 \times 104$  cells/mL.

On the basis of the preliminary test results, the main test was performed with seven test item treatment rates, 0.32 100, 3.2, 10, 32, 100 and 320 mg test item/L. A control with the test medium (without test District Couvettes

Solutions and the control were prepared

The temperature of the toxicity test.

Solutions

Observations

At test start (0 h) and after 24, 48, 72 and 96 hours growth of cell density was determined by chlorophyll-fluorescence and algal growth inhibition was calculated.

Glyphosate Renewal Group AIR 5 – July 2020 substance) was tested under the same conditions. The test was performed in 20 mL plastic cuvettes

At test start and test termination, samples of test media were taken for analysis of the active ingredient from 0.32, 1.0, 3.2, 10, 32, 100 and 320 mg test item/L treatments. All same 1. using a validated HPLC.

# Measured pH values were as follows:

Nominal conc. [mg/L]	Start	End 3
Control	7.78	8.72
0.32	7.84	8.58
1.0	7.81	8.58 % 0 %
3.2	7.77	8.240 100 100
10	7.71	7.97.8
32	6.43	9.7 <b>4</b> 5°
100	5.81	£ 674°
320	3.22	S 3.20
320 – pH adjusted	7.97	8.09

Statistical calculations
The EC10 and EC50 value for biomass (EbC) and growth rate (ErC) inhibition were calculated using Probit analysis whereas NOEC values were deducted from the dose response-relationship.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

The ErC50, EbC50 and NOEC values are given based on nominal concentrations.

Table 0-26: Toxicity of glyphosate to Nitzschia palea

Endpoint	Strike in	Glyphosate technical [mg test item/L]
0 - 96 h ErC50	2 18 X	11.90
0 – 96 h ErC10	10 13 13 13 13 13 13 13 13 13 13 13 13 13	3.11
0 - 96 h EbC50	200	4.47
0 - 96 h EbC10	35.	2.12
NOEC (growth rate)		1.0
NOEC (biomass)		1.0

The analytical recovery rates at the beginning of the test were in the range of 78 % and 108 % of the active substance. At the end of the test, recovery rates were in the range of 68 % and 98 %. Low recoveries of 68 % and 71 % respectively were found in the lowest test concentration and 76 % to 77 % recoveries were found at the test end for 10 mg test item/L. As the overall recovery rates were >80 %, the report presents data based on nominal concentrations.

# B. OBSERVATIONS

The results of the main test showed that the algal growth was completely inhibited at a nominal test item concentration of 320 mg test item/L No inhibition effects were observed at and below a concentration of Img test item/L. The effects on growth rate and biomass are below.

**Table 0-27:** Percentage inhibition of growth rate and biomass of Nitzschia palea exposed for 96 hours to glyphosate

Glyphosate technical [mg test item/L]	СрН	С	0.32	1.0	3.2	10	32	100	320
Biomass integral	4.86	213.76	219.03	215.39	90.75	17.88	-6.26	-11.76	-36.67
Inh. biomass (0-96 h) [%]	97.73	-	-2.47	-0.76	57.55	91.63	100	1.00%	100
Growth rate (0-96 h)	0.14	0.75	0.74	0.76	0.56	0.29	0.09	0.04	0.00
Rate related inhibition (0-96 h) [%]	81.89	-	1.07	-1.03	25.43	60.72	98898 98898	94.42	100

C = control; C pH = control pH (320 mg glyphosate/L pH adjusted); Inh. = inhibition

# III. CONCLUSION

The 96 h ErC50 for Nitzschia palea exposed to glyphosate was calculated to be 11.90 mg test item/L. The 96 h EbC50 for Nitzschia palea was 4.47 mg test item/L. The NOEC (biomass) and NOEC (growth rate) were both determined to be 1.0 mg test item/L.

# 3. Assessment and conclusion

# Assessment and conclusion by applicant:

Validity of the study was re-evaluated according to the current test guideline OECD 201 (2011) and EC10, EC20, and EC50, NOEC and LOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013. Due to the slow growth of test species, the study was extended to 96 hours, according to the guideline OECD 201 Therefore the validity criteria are applied to the time CHOCKET point 96 hours.

# Validity criteria

Validity criteria acc. to OECD 201 (adopted 2006)	Required (0 - 96 h)	Obtained (0 - 96 h)
The biomass in the control cultures should have increased exponentially by a factor of at least 16 within the 72-hour test period.	16	19.9
The mean coefficient of variation for section-by-section specific growth rates in the control cultures must not exceed 35 %.	≤ 35 %	72.7 %
The coefficient of variation of average specific growth rates during the whole test period in replicate solvent control cultures must not exceed 10 %.	< 10 %	2.0 %

The study was considered valid when compared to the guideline used at the time of study conduct. However, compared with the current control validity criteria, the biomass in the control cultures increased by a factor of > 16 (actual: 19.9), the coefficient of variance for section specific growth rates exceeded 35 % (actual: 72.7 %) and for the whole test period it was  $\leq 10$  % (actual: 2 %). Because the coefficient of variation for the section specific growth rate was > 35 %, the validity criteria according to guideline OECD 201 were not met and this study is not considered valid for risk assessment purposes.

# Assessment and conclusion by RMS:

# CA 8.2.7 Effects on aquatic macrophytes

Studies on effects of the active substance glyphosate and its relevant metabolites on aquatic macrophytes to fulfil the data requirements according to EU Regulation No 283/2013 are presented in the following:

Studies considering the effects of glyphosate on aquatic macrophytes were assessed for their validity to current and relevant guidelines for glyphosate and are presented in the following table. Where appropriate position papers are available as indicated in the table below, which contain details regarding the statistical re-evaluation of the study to current requirements. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are presented in this section below.

Table 8.2.7-1: Studies on toxicity of glyphosate to aquatic macrophytes

		1	T	200	1	1
Annex point	Study	Study type	Test species	Substance(s)	Status	Remark
CA 8.2.7/001	2002	7-day, static	Lemna minor	IPA salt	Valid	-
CA 8.2.7/002	2020	Position Paper	Lemna minor	AP A salt	Valid	-
CA 8.2.7/003	1999	14-d, semi static	Lemna gibba	IPA salt	Valid	-
CA 8.2.7/004	2020	Position Paper	Lemna gibba	IPA salt	Valid	-
CA 8.2.7/005	1996	14-d, semi static	Lemna gibba	Glyphosate acid	Valid	-
CA 8.2.7/006	2020	Position Paper	Lemna gibba	Glyphosate acid	Valid	-
CA 8.2.7/007	1987	14-d, static	Lemna gibba	Glyphosate Technical	Valid	-
CA 8.2.7/008	2020	Position Paper	Lemna gibba	Glyphosate Technical	Valid	-
CA 8.2.7/009	s, 1987	Toxicity to Lemna gibba	Lemna gibba	Glyphosate Technical	Invalid	Report not available
CA 8.2.7/010	, 20128	44-d, static	Myriophyllum aquaticum	Glyphosate acid	Valid	-
CA 8.2.7/011	,2012 5	14-d static	Myriophyllum aquaticum	AMPA	Valid	-
CA 8.2.7/012	2011, 7 2	7-d, semi- static	Lemna gibba	HMPA	Valid	-

Literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate on aquatic macrophytes are summarised in the table below. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. Each literature article summary is presented below according to the respective annex point. For discussions of literature regarding toxicity to aquatic macrophytes, please refer to document M-CP Section 10.2

Table 8.2.7-2: Literature on toxicity of glyphosate to aquatic macrophytes

Annex point	Study	Study type	Substance(s)	Status	Remark of
CA 8.2.7/013	Yanhui et al., 2015	OECD 221	Glyphosate		no analytical test
		7-d semi-static		restrictions	verifications

Endpoints of studies considered valid for glyphosate are shown in the table below. Glyphosate is an acid molecule, so it is often formulated as a salt. Ecotoxicological studies have been conducted with various forms of glyphosate, namely IPA salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate or glyphosate technical are automatically expressed as acid equivalent.

Table 8.2.7-3: Endpoints: Toxicity of glyphosate to aquatic macrophytes

				2		
Reference	Test item			Endpoint	EC ₅₀ ²	NOEC
			GLP	based on	(mg a.e./L)	(mg a.e./L)
	IPA salt	Lemna minor	7-d static	nom o	fronds	fronds
, 2002			Recalculated	SO S.C.	GR: 30.3	GR: 8.65
CA 8.2.7/001 ¹			endpoint &		Y: 16.5	Y: 18.0
			0,79	C.J.	Change in	Change in
			10 27 3	Î	Biomass: 32.1	Biomass:
			9 4 Hills			8.65
	ID 4 1	7 -11	GLP 7-d static Recalculated endpoint		г 1	
1000	IPA salt	Lemna gibba	14 d semi	gm	Fronds:	Fronds:
1999			Static M		GR: 34.8	GR: 14.7
CA 8.2.7/003 ¹		, di	Recalculated		Y: 28.1	Y: 14.7
		, since s	endpoint			
			based on 7-d			
		10,50,50	exposure			
, 1996	Glyphosate	Lemna gibba	14-d semi	nom	Fronds:	Fronds:
CA 8.2.7/005 ¹	acid	10,00°	static		GR: 36.0	GR:12.0
		70 8 3 1	Recalculated		Y:24.0	Y: 6.0
		2,70	endpoint			
	50	illi M	based on 7-d			
	20 5		exposure			
, 1987	CHVDHWSake .	Lemna gibba	14-d static	gm	Fronds:	Fronds:
CA 8.2.7/007 ¹	Technical 6		Recalculated		GR: 66.2	GR:16.6
	The of		endpoint		Y:25.0	Y: 16.6
	80 91 81		based on 7-d			
, i	Technical of		exposure			
, 2012	Glyphosate	Myriophyllum	14-d static	nom	Relative	Relative
CA 8.2.7/010	acid	aquaticum			increase:	increase:
2000	~				TSL: 78.7	TSL: 5.0
18 50					FW: 12.3	FW: <5.0
623					DW: 25.2	DW: 50.0
10, 9,					RL: 18.0	RL: <5.0
al Q islo						
-Silv Silv					Growth rate:	Growth rate:
10,40					TSL: 276	TSL: 5.0
11.10					FW: 23.4	FW: <5.0
8 80					DW: 30.2	
S CHE						
, 2012 CA 8.2.7/010					RL: 18.0 Growth rate: TSL: 276 FW: 23.4	RL: <5.0  Growth rate: TSL: 5.0

⁷ All endpoints are based on statistical re-evaluation provided in Position Papers: CA 8.2.7/002, CA 8.2.7/004, CA 8.2.7/006 and CA 8.2.7/008. Endpoint in **bold** used for risk assessment. a.e.: acid equivalents; nom: nominal; gm: geometric mean measured, GR: growth rate; Y: yield; TSL: total shoot length; FW: fresh weight; DW: dry weight; RL: root length.

Table 8.2.7-3: Endpoints: Toxicity of glyphosate to aquatic macrophytes

Reference	Test item	Species	Test design/	Endpoint	EC ₅₀ ²	NOEC. S
			GLP	based on	(mg a.e./L)	(mg a.e./£)

² According to the provisions of the new Guidance Document on Aquatic Ecotoxicology (2013), growth rate endpoints (ErC₅₀) shall be chosen for the risk assessment if available.

Endpoints of studies considered valid for AMPA and HMPA are shown in the table below.  Table 8.2.7-4: Endpoints: Toxicity of AMPA and HMPA to aquatic macrophytes  Reference Test item Species Test design/ Endpoint Ecse NOEC (mg/L)										
Reference	Test item	Species	Test design/ GLP	Endpoint based on	EC50 F (mg/L)	NOEC (mg/L)				
, 2012 CA 8.2.7/011	AMPA	Myriophyllum aquaticum	14-d static	gm	Relative increase:	Relative increase: TSL: 14.3 FW: 14.3 DW: 37.1 RL: 5.4 Growth rate: TSL: 14.3 FW: 14.3 DW: 37.1 RL: 5.4				
2011 CA 8.2.7/012	НМРА	Lemna gibba	7 Semi static	am	Fronds: <b>GR:&gt;123</b> Y:>123 Biomass: GR:>123 Y:>123	≥123				

am: arithmetic mean measured, gm: geometric mean measured; GR: growth rate; Y: yield; TSL: total shoot length; FW: fresh weight; DW: dry weight; RL: root length According to the provisions of the new Guidance Document on Aquatic Ecotoxicology (2013), E_rC₅₀ endpoints shall be

Endpoint in **bold** is used for risk assessment.

Study summaries are provided below.

# 1. Information on the study

Data point:	CA 8.2.7/001
Report author	
Report year &	2002
Report title	IPA Salt of Glyphosate: Effects on Lemna minor
Report No	CEMR-1873
Docoment No	-
Guidelines followed in study	OECD Guideline 221
Deviations from current test guideline	Deviation from guideline OECD 221 (2006): none.
Previous evaluation	Yes, accepted in RAR (2015)

chosen for the risk assessment if available

GLP/Officially recognised testing facilities	Yes	%
Acceptability/Reliability	Valid	
Category study in AIR 5 dossier (L docs)	Category 2a	A SINGO

# 2. **Full summary Executive Summary**

The effect of isopropylamine (IPA) salt of glyphosate on the growth of the duckweed Lemna minor was evaluated in a 7 day semi-static toxicity test at nominal concentrations of IPA salt of glyphosate of 2.92, 5.83, 11.7, 24.3, 48.6 and 97.2 mg/L, equivalent to 2.16, 4.32, 8.64, 18.0, 36.0 and 72.0 mg glyphosate acid/L. Furthermore, a negative control group with Lemna minor exposed to test medium without test

substance (negative control) was prepared in parallel.

The test vessels were 250mL glass beakers containing 150mL of the test of control medium. The vessels were continuously illuminated. The medium in each of the test vessels was renewed twice; day 2 and 4. Growth in each vessel was determined by counting the numbers of plants and fronds on three occasions during the definitive test and measuring the dry weights of the fronts after seven days. Some visible effects (chlorosis and dark frond) were noted for all concentrations  $\geq 14^{\circ}$ . Analytical samples for analysis of glyphosate were collected from the three highest samples at the start and end of the test and following each media renewal (fresh and old media). Glyphosate isopropylamine salt was not detected in the control group. The mean measured content of the IPA salt ranged between 96 and 104% of nominal, the results are therefore based on nominal concentrations. Based on sominal concentrations of IPA salt of glyphosate, growth of L. minor was significantly inhibited at 24.3 mg/L. Sout not affected at 11.7 mg/L. All validity criteria according to the OECD guideline 221 were fulfilled.

The lowest 7-day EC₅₀ for Lemna minor exposed to glyphosate IPA salt was calculated to be 25.5 mg/L, equivalent to 18.9 mg glyphosate acid/L. The 7-day NOEC for Lemna minor exposed to glyphosate IPA salt was determined to be 11.7 mg/L, equivalent to 8.64 mg glyphosate acid/L. The lowest observed effect concentration (LOEC) of the IPA salt of all you salt to Lemna minor measured over a 7 day exposure period was 24.3 mg/L, equivalent to 18.0 mg glyphosate acid/L.

According to the statistical reanalysis, the Fday ErC₅₀ was 30.3 mg a.e./L based on frond numbers at 7 days. The overall no-observed effect concentration (NOEC) of the IPA salt of glyphosate to Lemna minor over a 7-day exposure period was 8.65 mg as L. This study is considered valid for risk assessment purposes.

# I. MATERIALS AND METHODS

# A. MATERIALS 8 8 8 1. Test more

		This study is considered valid for risk assessment purposes.  EERIALS AND METHODS				
	Test item:	Glyphosate isopropylamine (IPA) salt				
	Description:	White powder				
	Lot/Batch#?	1002B				
	Purity:	97.1 % as IPA salt				
	2. Vehicle and/or positive control:	Positive control: none				
	3. Test organism:					
2	Species:	Lemna minor				
is suffered to the suffered to	Source:	Pond in Marlow, Buckinghamshire, UK				
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020				

4. Environmental conditions:		
Temperature:	20.5 – 22.8 °C	8
Photoperiod:	24 h fluorescence light	
Light intensity	6600 - 8100 Lux	J. J
pH:	6.06 - 6.96	6:49
5. Dates of experimental work	Sept 30 th to Nov 28 th 2002	

# **B. STUDY DESIGN AND METHODS**

- 1. Experimental treatments: On the basis of the results of a range finding test, the definitive test was performed with six concentration levels, 2.92, 5.83, 11.7, 24.3, 48.6 and 97.2 mg glyphosate IPA salt/L, equivalent to 2.16, 4.32, 8.65, 18.0, 36.0 and 72.0 mg glyphosate/L. Furthermore, a negative control group with Lemna minor exposed to culture medium (SIS) only was run in parallel. The medium in each of the test vessels was renewed on day 2 and 4. Three replicates were prepared with 9-10 fronds (in 3-4 colonies) were used for each test concentration and control. Temperatures and H values were measured in the test media were measured at the start of tests and at the end. In addition, temperature was monitored continuously. Analytical samples for analysis of glyphosate were collected at the start of the tests and at the end and following each media renewal. Samples were analysed using HPLC with fluorescence detection.
- 2. Observations: The numbers of fronds and colonies were counted on days 0 (start), 2, 4 and 7 during the definitive test. Dry weights of the fronds were determined at the end of the tests. The fronds from each vessel were collected, rinsed with de-ionised water and dried at 60 °C to a constant weight. The dry weights of fronds from each vessel were measured to  $\pm 0.1$  mg.
- 3. Statistical calculations: EC₅₀ values were calculated using the LC₅₀ program of Stephan *et al.*, 1986. The no-observed-effect concentration (NOEC) and the lowest- observed-effect concentration (LOEC) were based on statistical analysis of L. minor final Frond numbers, growth rate and area under growth curve values, as well as the final biomass, for the definitive test. Data were first tested for compliance with the assumptions of ANOVA in terms of normality of distribution and homogeneity. The treatment means were tested for significant difference from the control mean at  $\alpha$ =0.05 using the Dunnett's test.

# A. RESULTS AND DISCUSSION

# A. FINDINGS

Analytical data: Chemical analyses were performed on samples of the test media to quantify glyphosate in the test solution. The mean measured content of the test item always ranged between 80 and 120 % of A SILVE nominal.

Table 8.2.7-5: Analytical results

Nominal concentration of IPA salt [ mg/L]	0	2.92	5.93	11.7	24.3	48.6	97.2
Nominal concentration of glyphosate [ mg/L]	0	2.16	4.32	8.65	18.0	36.0	72.0
Day 0 concentration (fresh)	< 0.26	2.14	4.23	8.44	17.9	36.5	74.1
Day 3 concentration (old)	-	2.08	4.18	8.26	17.0	31.5	69.5
Day Concentration (fresh)	< 0.26	2.31	4.33	8.81	17.7	36.6	85.2
Day 7 concentration (old)	< 0.26	1.85	3.94	8.32	17.4	34.6	70.8
Mean measured [mg/L]	< 0.26	2.10	4.17	8.46	17.5	34.7	74.9
% of nominal	-	97	96	98	97	96	104

Table 8.2.7-6: L. minor colony and frond numbers

able 8.2	2.7-6: <i>L</i> .	. mino	r colon	y and f	rond n	umber	s			Page 40/ 01 84/
lominal concentration of PA salt of lyphosate mg/L)	Replicate number		umbers of L		-	No	imbers of L	emna fron	ds	M-CA, Section 8 Page 407 of 847  Page 407  Page
		Day 0	Day 2	Day 4	Day 7	Day 0	Day 2	Day 4	Day 7	
0	1 2 3	3 3 3	3 3 3	4 8 5	23 36 24	9 9 9	17 22 18	35 47 36	128 177 138	\$ 5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
2.92	1 2 3	3 3 3	3 3 3	4 5 6	19 23 24	9 10 9	17 17 20	29 37 44	114 137 154	
5.83	1 2 3	3 3 3	4 3 3	8 6 7	28 37 26	9 9 9	17 20 22	39 45 43	147 157 148	
11.7	1 2 3	3 4 3	3 4 4	6 9 7	27 47 29	9 10 10	20 28 23	36 51 38	152 172 110	
24.3	1 2 3	3 3 3	3 3 3	7 8 7	18 23 18	10 9 10	16 22 20	28 0 32 0 31 0	555 78 61	
48.6	1 2 3	3 3 3	3 4 3	4 6 5	9 11 8	9 9 9	14 22 15	19 6 26 10 19	24 34 24	
97.2	1 2 3	3 3 3	3 3 3	5 5 4	8 6 4	10 9 9	5 16 12 6	17 18 15	20 19 17	

Table 8.2.7-7: L. minor growth rates

	Nominat concentration of IPA salt of glyphosate (mg/L)	Replicate Number	Growth rate (0-7 days)	Frond doublings time (days)	everage growth rate (0-7 days)	Percent inhibition in growth rate relative to controls
	0	1 2 3	0.379 0.426 0.389	21.83 21.63 1.78	0.398	,
	2.92	1 2 3	\$363 ³ .(5) 0.384 5.63408.	1.91 1.85 1.71	0.381	4%
	5.83	1 1/1 1/2	© 0\$99 © 408 0.400	1.74 1.70 1.73	0.402	-1%
	11.7	78.30	0.360 0.406 0.348	1.92 1.71 1.99	0.371	7%
	24.3	00 0 11 3 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1	0.244 0.308 0.258	2.85 2.25 2.68	0.270	32%
	4800 O	1 2 3	0.140 0.190 0.140	4.95 3.65 4.95	0.157	61%
	8 67.2	1 2 3	0.099 0.107 0.091	7.00 6.49 7.63	0.099	75%
A STAND ON	Glyphosate Ro	enewal Group	) AIR 5 – July 20	020		

nex to Regu	ulation 283/2	2013		Glyphos	Page 408 of 847
able 8.2.	.7-8: L. n	ninor area ı	under grow	vth curves	io i
Nominal concentration of IPA salt of glyphosate (mg/L)	Replicate Number	Area under growth curves (0-7 days)	Average a.u.g.c. (0-7 days)	Percent inhibition in area under growth curve relative to controls	
0	1 2 3	27.65 30.87 28.19	28.90	-	
2.92	1 2 3	26.36 27.50 29.84	27.90	3 ,	
5.83	1 2 3	28.61 30.01 29.89	29.50	-2	
11.7	1 2 3	27.88 31.28 27.99	29.05	-1	
24.3	1 2 3	23.19 26.49 24.67	24.78	14	
48.6	1 2 3	18.99 22.96 18.93	20.29	30	
97.2	1 2 3	17.46 18.42 16.31	17.40	40	
able 8.2.	.7-9: L. n	ninor chang	ge in bioma	ISS OF THE STATE O	Page 408 of 847  Page 4
f IPA salt of glyphosate (mg/L)	Number	fronds over 7 days (g)	in biomass (0-7)	biomass increase relative to controls	
0	1 2 3	0.0342 0.0387 0.0343 0.0364 0.0362 0.0362 0.0364 0.0364 0.0364	5 50.0357 F 6	-	
2.92	1 2 3	0.0284 N 0.03302 0.0362	0.0309	13%	
5.83	1 2 3	0.0381 0.0334 0.00361	0.0342	4%	
11.7	1 0	0.0343 0.0393	0.0345	3%	

	Nominal concentration of IPA salt of glyphosate (mg/L)	Replicate Number	Total increase in dry weights of fronds over 7 days (g)	in biomass (0-7 < days) (7g)	Percent in fibition in biomass increase relative to controls
	0	1 2 3	0.0342 0.0387 0.0343	6 0.0357	-
	2.92	1 2 3	0.0284 W 0.03302 0.0362	<b>့် 0.030</b> 9	13%
	5.83	1 2 3	0.0381 0.0334 0.00361	0.0342	4%
	11.7	1 2 36	0.0343 0.0393 0.0298	0.0345	3%
	24.3	10 C	0.0178 0.0233 0.0218	0.0210	41%
	48.6.5	1 2 3	0.0147 0.0167 0.0122	0.0145	59%
ž	777 OC 17.	1 2 3	0.0125 0.0122 0.0121	0.0123	66%
COS NO ON SON ON O	Glyphosate F	Renewal Grou	ıp AIR 5 – July	2020	

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Visible effects were noted and described below for each concentration:

- 97.2 mg/L: some chlorosis and elongation of fronds, some fronds became very dark, algal growth apparent in all vessels on surface.
- 48.6 mg/L and 24.3 mg/L: some cholrosis and elongation of fronds, some very dark fronds.
- 11.7 mg/L: slight chlorosis and slight elongation of fronds.
- 5.83 mg/L and 2.92 mg/L: no visible effect in comparison with controls.

# **B. OBSERVATIONS**

The results of the definitive test showed no effect on frond growth at 11.7 mg IPA salt/L and partial and statistically significant inhibition at 24.3 mg IPA salt/L. At 48.6 and 97.2 mg IPA salt/L the inhibition of frond growth was greater at 81% and 87% inhibition for final frond numbers. The validity criteria according to guideline OECD 221 are fulfilled.

The endpoints given below are based on nominal concentrations of IPA salt of glyphosate and glyphosate acid.

Table 8.2.7-10: Toxicity of glyphosate IPA salt and glyphosate acid to Lemna minor

Endpoint	Glyphosate IPA-salt	Glyphosate acid [mg/L]
EC _{50, frond number} (7 day)	25.5 (C.I.: 11, 1 - 73,4)	18.9 (C.I.: 8.2 – 54.4)
NOEC _{frond number} (7 day)	19.75	8.65
EC _{50, biomass} (7 day)	46.2 (C.L.: 18.6 – 1673)	34.2 (C.I.: 13.8 – 1239)
NOEC biomass (7 day)	5° 6° 6° 7° 7° 7° 7° 7° 7° 7° 7° 7° 7° 7° 7° 7°	8.65
EC ₅₀ , area under growth curve (7 day)	Not calculable	Not calculable
NOEC area under growth curve (7 day)	11.7	8.65
EC _{50, growth rate} (7 day)	42.6 (C.I.: 26.3 – 87.8)	31.6 (C.I.: 19.5 – 65.0)
NOEC growth rate (7 day)	11.7	8.65

C.I.: confidence interval

The lowest observed effect concentration (LOEC) of the IPA salt of glyphosate to *Lemna minor* measured over a 7 day exposure period was 24.3 mg IPA salt/L, equivalent to 18.0 mg glyphosate acid/L. The overall no-observed effect concentration (NOEC) of the IPA salt of glyphosate to *Lemna minor* measured over a 7-day exposure period was 11.7 mg/L, equivalent to 8.65 mg glyphosate acid/L. The lowest 7 day EC₅₀ was 25.5 mg/L with 95 % confidence limits of 11.1 to 73.4 mg/L measured from final frond numbers at 7 days, equivalent to 18.9 mg glyphosate acid/L (8.22 – 54.37 mg a.s./L).

# III. CONCLUSIONS

# Assessment and conclusion by applicant:

The lowest 7 day  $EC_{50}$  was 25.5 mg/L with 95% confidence limits of 11.1 to 73.4 mg/L measured from final front numbers at 7 days, equivalent to 18.9 mg glyphosate acid/L (8.22 – 54.37 mg a.s./L).

The overall no-observed effect concentration (NOEC) of the IPA salt of glyphosate to *Lemna minor* measured over a 7 day exposure period was 11.7 mg/L, equivalent to 8.65 mg glyphosate acid/L.

Statistical re-analysis of endpoints has been performed to comply with Commission Regulation (EU) 283/2013 to determine 7-day EC₁₀, EC₂₀ and EC₅₀ endpoints.

The percent recovery nominal test concentrations are presented below.

Analytical ver	Analytical verification of test item									
D	Nominal concentration of glyphosate acid equivalent [mg/L]									
Parameter	2.16	4.32	8.65	18.0	36.0	72.0				
	Measure	Measured concentration of glyphosate acid equivalent [mg/L] (% of nominal)								
Day 0	2.14 (99)	4.23 (98)	8.44 (98)	17.0 (94)	36.5 (101)	74.1 (193)				
Day 2 aged	2.08 (96)	4.18 (97)	8.26 (95)	17.7 (98)	31.5 (88)	69,5 (97)				
Day 2 fresh	2.31 (107)	4.33 (100)	8.81 (102)	17.4 (97)	36.6 (102)	85.2 (118)				
Day 7 fresh	1.85 (86)	3.94 (91)	8.32 (96)	17.5 (97)	34.6 (96)	70.8 (98)				
Geometric mean	2.088	4.167	8.455	17.398	34.737	74.657				
		Equivalence i	in IPA salt nom	inal concentra	ion [mg/L]*					
	2.92	5.83	11.67	24.29	€ ³ ,848.58	97.17				

^{*} conversion factor from IPA salt to acid equivalent has been stated as 0.741 by RMS

Analytical recovery of the test item ranged from 86 to 118% throughout the study. Therefore, calculated endpoints will be based on nominal concentrations.

Details of statistical re-evaluation are given in the position paper EA 8.2.7/002.

The 7 day ECx values for yield and growth rate based on from numbers has been calculated based on the nominal concentrations and are provided the table below?

# 7-d ECx values for Yield, Growth Rate

7-day endpoints	Nominal concentration of glyphosate acid equivalent [mg/L]						
	NOEC	EC; (95% CI)	EC ₂₀ (95% CI)	EC ₅₀ (95% CI)			
Yield (Frond number)	18.0	7.80 (3.21 – 10.7)	10.3 (5.77 – 13.2)	16.5 (13.1 – 19.9)			
Growth rate (Frond number)	8.65 🔊	8 16 (5.38 – 12.4)	12.8 (8.65 – 18.9)	30.3 (18.7 – 48.6)			
Growth rate (Biomass)	8.65	\$.72 (0.09 – 12.54)	10.3 (0.71 – 19.1)	32.1 (16.6 – 94.3)			

According to the statistical reanalysis the 7 day ErC₅₀ was 30.3 mg a.e./L based on frond numbers at 7

The overall no-observed effect concentration (NOEC) of the IPA salt of glyphosate to Lemna minor over a 7-day exposure period was 8.65 mg a.e./L.

The validity criteria according to the current guideline OECD 221 were met and this study is considered valid for risk assessment purposes.

<b>Assessment</b>	and conclusion	on by RMS:
	7 %	

# 1. Information on the study

<u></u>	
Data point	CA 8.2.7/002
Report author	
Report year	2020
Report title	Statistical evaluation (non-GLP) of the study CEMS-1873 on the toxicity of Glyphosate isopropylamine (IPA) salt to Lemna minor under static conditions
Report No	110054-008
Document No	-
<b>Guidelines followed in study</b>	OECD Guideline 221
Deviations from current test guideline	Not applicable
Previous evaluation	No, not previously submitted.
GLP/Officially recognised testing facilities	No, not conducted under GLP (GEP is not compulsory for statistical evaluation)
Acceptability/Reliability	Valid
Category study in AIR 5 dossier (L docs)	Category 1

2. Full summary
Executive Summary
A statistical evaluation addressing the calculation of valid 7 day NOEC, EC₁₀, EC₂₀ and EC₅₀ values was conducted for the study CEMS-1873 ( 80 % , 2002) to fulfill the data requirements according to regulation EU 283/2013. Furthermore, the validity criteria for the study were re- evaluated according to the current guideline OECD 221 (2006).

Analyses were performed using software ToxRatPro Version 3.3.0. The validity criteria according to the current guideline OECD 221 (2006) were met (doubling time: 1.7 days, mean growth rate: 0.398/d) this study is considered valid for risk assessment purposes.

Based on the nominal concentration of gryphosate the 7-day endpoints EC₁₀, EC₂₀ and EC₅₀ values were calculated as follows: 7.80, 10.3 and 16.5 mg a.e./L for yield (frond number), respectively; 8.16, 12.8, and 30.3 mg a.e./L for growth rate (frong number), and 5.72, 10.3, and 32.1 mg a.e./L for change in biomass. The NOEC was determined to be 8.65 mg a.e./L.

# I. MATERIALS AND METHODS

# A. MATERIALS

ToxRatPro Version 3.3.0 Software:

Original report details

Study number? § **CEMR-1873** 

Substance: 8 Glyphosate isopropylamine (IPA) salt

Title: IPA Salt of Glyphosate: Effects on Lemna minor

Completion date: 05-Dec-2002

Test guideline(s): OECD Guideline 221 (Draft version, 2002), re-evaluated according to OECD 221

> (2006)Yes

CEM Analytical Services Limited (CEMAS), Berkshire, UK

Sinon Corporation, Taichung, Taiwan, R.O.C.

Testing facility:
Sponsor: Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

# **B. STUDY DESIGN**

# Dates of work: May 2020

Validity of the study was evaluated according to the current test guideline OECD 221 (2006) and 7 days EC₁₀, EC₂₀, and EC₅₀ values were calculated to fulfil the data requirements according to regulation EU 283/2013.

The study CEMS-1873 (

2002) was statistically evaluated for the effects of

Glyphosate isopropylamine (IPA) salt on the organism Lemna minor. The organisms were exposed for 7 days to the following concentrations of Glyphosate isopropylamine (IPA) salt: 2.92, 5.83, \$1.9, 24.3, 48.6 and 97.2 mg glyphosate IPA salt/L, equivalent to 2.16, 4.32, 8.65, 18.0, 36.0 and 72.0 mg glyphosate acid/L. Additionally, a control was tested in parallel. The frond count data as well as change in biomass data for the individual control and treatment group replicates will be used to calculate the ECx values.

The analytical data from the study report were checked to ensure the appropriate mean measured or nominal exposure concentrations were used in the ECx calculations.

# Statistical calculations

Models providing best fit to the respective data were selected and are as follows: In order to derive the 7-day Effect Concentrations that have 10, 20 and 50% effects on yield and growth rate for frond number, a 3-parameter logistic CDF (Cumulative Distribution Function) model and a 3 parameter normal CDF model was used, respectively.

To estimate the effects on yield for change in biomass, probit analysis with linear maximum likelihood regression was used.

For yield and growth rate, the NOEC was determined by Multiple Sequentially-rejective Welsh-t-test after Bonferroni-Holm Correction (one sided smaller, p > 0.01)

All statistical evaluations and checks for validity criteria were performed using the software ToxRatPro Version 3.3.0.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

The percent recovery nominal test concentrations between 4 and 7 days are presented below.

Table 8.2.7-11: Analytical verification of test item

Parameter	Nominal concentration of glyphosate acid equivalent [mg a.e./L]								
	2.16	ري 4.32	8.65	18.0	36.0	72.0			
	Measured	Measured concentration of glyphosate acid equivalent [mg/L] (% of nominal)							
Day 0	2.14 (99)	4.23 (98)	8.44 (98)	17.0 (94)	36.5 (101)	74.1 (103)			
Day 2 aged	2.08(96)	4.18 (97)	8.26 (95)	17.7 (98)	31.5 (88)	69.5 (97)			
Day 2 fresh	ুই ইনি (107)	4.33 (100)	8.81 (102)	17.4 (97)	36.6 (102)	85.2 (118)			
Day 7 fresh	1.85 (86)	3.94 (91)	8.32 (96)	17.5 (97)	34.6 (96)	70.8 (98)			
Geometric mean	2.088	4.167	8.455	17.398	34.737	74.657			

The mean measured content of the test item always ranged between 80 and 120 % of nominal. Therefore, the endpoints given below are based on nominal concentrations of glyphosate IPA salt, expressed as glyphosate acid equivalent.

# Considering frond numbers:

For yield, the parameters for the 3 parameter logistic CDF model are estimated as b0: 136.975, b1: 16.476 and b2: 2.937.

According to the statistical parameters; F(2, 4) = 101.777; p(F) = <0.001;  $R^2 = 0.997$  the  $EC_{10}$  and  $EC_{20}$ . and EC₅₀ calculations should be considered valid.

After non-linear regression no lack of fit was detected for the function (p(F|Lack of Fit) = 0.632) For growth rate, parameters for the 3 parameter normal CDF model are estimated as b0: 0.400, b1: 0.911, and b2: 0.445.

According to the statistical parameters; F(2, 4) = 101.205.117; p(F) = <0.001;  $R^2 = 0.0.989$  the EC₁₀ and EC₂₀, calculations should be considered valid.

After non-linear regression no lack of fit was detected for the function (p(F|Lack of Fit) = 0.177.

# Considering change in biomass:

The parameters for the logit model are estimated as slope b: 1.71104; Intercept 2.57759.

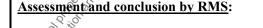
Statistical parameters for goodness fit are:  $Chi^2(15) = 0.27989$ ;  $p(Chi^2)$ ; 1.600; F(1,15) = 14.751, p(F)<0.001;  $R^2 = 0.787$  the  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$ , calculations should therefore be considered valid.

The obtained 7-day EC₁₀, EC₂₀ and EC₅₀ values for the effect of Glyphosate sopropylamine (IPA) salt on yield and growth rate, considering frond numbers for Lemna minor is presented in the table below.

Table 8.2.7-12: 7-day ECx values for Yield, Growth Rate

7-day endpoints	No	Nominal concentration of glyphosate acid equivalent [mg a.e./L]					
	NOEC	EC ₁₀ (95% CI)	EC ₂₀ (95% CI)	EC ₅₀ (95% CI)			
Yield (Frond number)	18.0	7.80 (3.21 – 40,7)	10.3 (5.77 – 13.2)	16.5 (13.1 – 19.9)			
Growth rate (Frond number)	8.65	8.16 (5.38 - 12.4)	12.8 (8.65 – 18.9)	30.3 (18.7 – 48.6)			
Change in biomass	8.65	5.72 (0.09 - 12.54)	10.3 (0.71 – 19.1)	32.1 (16.6 – 94.3)			

CI = confidence interval


The validity criteria according to the current guideline OECD 221 were met and this study is considered valid.

# III. CONCLUSION

# Assessment and conclusion by applicant:

Based on the nominal concentration of glyphosate the 7-day endpoints EC₁₀, EC₂₀ and EC₅₀ values were calculated as follows 7.80, 10.3, and 16.5 mg a.e./L for yield (frond number), respectively; 8.16, 12.8, and 30.3 mg a.e./Loor growth rate (frond number), and 5.72, 10.3, and 32.1 mg a.e./L for change in biomass. The NOES was determined to be 8.65 mg a.e./L.

The statistical parameters demonstrate that these values can be considered reliable/valid and therefore considered for rosk assessment purposes.



# 1. Information on the study

Data point:	CA 8.2.7/003
Report author	10 to
Report year	1999
Report title	Glyphosate 62% IPA-Salt, aquatic plant toxicity test using Lennia gibba
Report No	980909FH
Document No	- 58,0
<b>Guidelines followed in study</b>	Guideline ASTM E 1415- 91 (June 1991)
Deviations from current test guideline	Deviations from guideline OECD 221 (2006) Solutions:  - The study was performed for 14 days instead of 7.
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing facilities	Yes
Acceptability/Reliability	Valid
Category study in AIR 5 dossier (L docs)	Category 2a

# 2. **Full summary**

Executive Summary

The effects of glyphosate isopropylamine salt on growth of Lemna gibba were evaluated in a 14 day semi-static toxicity test. Based on the results of a range finding test, the definitive test was performed with five concentration levels of glyphosate IPA-sale 6.25, 12.5, 25, 50 and 100 mg test item /L and a control with 3 replicates per test item treatment using three plants per replicate (four fronds each). Renewal of the test media was performed on day 2, 4, 7, 9 and 1. A reference substance (zinc chloride) was equally tested at 1.0, 3.2 and 10 mg/L. The number of fronts affected was determined on day 0, 7 and 14. Observation of change in colour, break-up of plants and destruction of roots was conducted on day 7 and 14. Dry biomass weight was determined on day 14 (end of the test).

Analysis of the test concentration was carried out on day 4 and day 11(freshly prepared media) and on day 7 and 14 (3 day old test media). All test concentrations and control replicates were analysed. Result showed an increase of growth of Lemma gibba at nominal concentrations of 6.25, 12.5 and 25 mg test item/L. Glyphosate isopropylamine salt was found to significantly inhibit the growth of *Lemna gibba* after 14 days at or above concentrations of 50 mg IPA salt /L.

The EC₅₀ values for inhibition of front number and dry weight after 14 days were 53.56 mg IPA salt/L (equivalent to 33.425mg glyphosate/L) and 62.59 mg IPA salt /L (equivalent to 39.06 mg glyphosate/L) respectively. The NQEC was determined to be 25 mg IPA salt /L equivalent to 15.60 mg glyphosate/L.

Analytical recovery of the test item ranged from 78 to 113 % from 4 to 7 days. Therefore, calculated endpoints will be based on geometric mean concentrations.

According to the statistical reanalysis, the 7 day ErC₅₀ is 34.8 mg a.e./L with 95% confidence limits of 29.7 to 41.3 mg a.e./L for frond number parameter at 7 days.

exposure period was 14.7 mg
The validity criteria according to the validity criteria according to the validity of the validity criteria according to the validity of the valid The overall no-observed effect concentration (NOEC) of the IPA salt of glyphosate to Lemna gibba over a 7-day exposure period was 14.7 mg a.e./L.

The validity criteria according to the current guideline OECD 221 were met and this study is considered

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

# I. MATERIALS AND METHODS

# A. MATERIALS

# 1. Test material:

Test item:	Glyphosate 62 % IPA-Salt
name	Glyphosate Isopropylamine Salt
Description:	Clear, liquid, yellowish
Lot/Batch #:	Clear, liquid, yellowish 22-9754
Purity:	62.4 % glyphosate acid
Density:	1.2355 g/mL
2. Vehicle and/or positive control:	Positive control: Zinc chloride
3. Test organism:	50 50 50
Species:	Lemna gibba
Source:	Bundesanstalt für Gewässerkunde, Koblenz, Germany
4. Environmental conditions:	
Temperature:	25 ± 2 °C
Photoperiod:	24 h florescence light
Light intensity	around 4200 + 6700 lux
pH:	$7.5 \pm 0.9$ $5.5$
Conductivity:	not stated
Hardness:	not stated
5. Experimental dates of work:	Sept 30 th 1989 to Feb 3 rd 1999

B. STUDY DESIGN AND METHODS

1. Experimental treatments: Based on the results of a range finding test, the definitive test was performed with five concentration levels, \$25, \$25, \$25, 50 and 100 mg test item/L with 3 replicates per test concentration. Three control replicates (without test substance) were tested under the same conditions. Three plants per replicate were used. The plants were placed in 500 mL test vessels, which already contained the 300 mL 20X-AAP sest media prepared according to the guideline. The pH of the test medium was adjusted prior to the test. Three uniformly healthy-looking plants with 4 fronds each were used in each test vessel. The test was conducted under semi-static conditions with renewal of test media on day 2, 4, 7, 9 and 11. The reference substance (zinc chloride) was equally tested at 1.0, 3.2 and 10 mg/L.

# 2. Observations:

Biological data: The amount of the plants and fronds affected were determined on day 0, 7 and 14. Every frond that visibly projected beyond the edge of a parent frond was counted as separate frond. Observation of change in colour, break-up of plants and destruction of roots were made on day 7 and 14. Dry biomass weight was determined on day 14.

Physical data: The pH values were measured on day 0, 2, 4, 7, 9, 11 and 14. The room temperature in the test chamber was measured and recorded continuously. Sampling and analysis of the test concentration were carried out on day 4 and day 11(freshly prepared media) and on day 7 and 14 (3 day old test media). All test concentrations and control replicates were analysed.

Statistical calculations:  $EC_{50}$  and  $EC_{90}$  values of frond number inhibition after day 7 and 14 were calculated by Probit analysis. The NOEC values were determined by calculation of statistical significance using one-way analysis of variance (ANOVA) and Dunnett's test for inhibition of frond number and biomass dray weight, respectively, at  $\alpha = 0.05$ .

# II. RESULTS AND DISCUSSION

# A. FINDINGS

The 14d EC₅₀ and NOEC values are given below based on nominal concentrations.

Table 8.2.7-13: Toxicity of glyphosate isopropylamine salt to Lemna gibba

Endpoint	IPA s	alt [mg/L]	Glyph	osate (mg/L]
	Frond number	Biomass dry weigh	Frond number	Biomass dry weight
		7d	,5,4	10 Kg
EC ₅₀	56.26			8
95% confidence limit	45.53 - 69.53			
NOEC	25		37,00	
		14d	1,01,10°	
EC ₅₀	53.56	62.59	33.42	39.06
95% confidence limit	42.91 - 66.85	47.94 - 81.73	26.78 - 41.71	29.91 51.00
NOEC	25	25	15.60	15.60

Analytical data: In freshly prepared test media the recoveries of the glyphosate varied between 78 % and 86 % for day 4 and 94 % to 113 % for day 11. In the aged test media (3 days old), 106 % to 113 % of the glyphosate were recovered for day 7 and 87 % to 04 % for day 14. As the mean measured content of the glyphosate always ranged between 80 and 120 % of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the IPA salt of the Table 8.2.7-14: Analytical results

Test substance	Glyphosate nominal	Day (new ro	edia)	Day (old m		Day (new n		Day (old m	
nominal [mg IPA salt/L]	[mg/L]	Measured		Measured conc. [ mg/L]	% of nominal	Measured conc. [mg/L]	% of nominal	Measured conc. [mg/L]	% of nominal
Control	-	`≪ kob		< LOD		< LOD		< LOD	
100	62.4	48.67	78	67.08	108	62.25	100	54.34	87
		53.12	85	66.29	106	58.88	94	57.09	91
50	31.2	26.87	86	33.44	107	31.34	100	29.32	94
		26.33	84	33.91	108	31.8	102	29.17	93
25	515.6	12.76	82	17.00	108	15.90	102	15.10	97
	60.	12.54	80	17.12	110	15.32	98	14.64	94
12.5	7.8	6.72	86	8.29	106	8.26	106	8.01	103
8 10 10 10 10 10 10 10 10 10 10 10 10 10		6.57	84	8.49	109	8.20	105	7.75	99
10.5 5 6 6.25	3.9	3.37	86	4.20	108	4.39	113	3.93	101
		3.21	82	4.42	113	4.10	105	4.06	104

Limit of detection of glyphosate: new media = 0.90 mg/L, old media = 0.81 mg/L.

# **B. OBSERVATIONS**

Observations: Increase of growth was found at nominal concentrations of 6.25, 12.5 and 25 mg IPA sait/L. Glyphosate isopropylamine salt was found to significantly inhibit the growth of *Lemna gibba* after A days at or above a concentration of 50 mg test item/L. Front number inhibition values after day 14 as well as biomass dry weight inhibition are presented below.

Table 8.2.7-15: Frond numbers and inhibition values (day 0/14)

			Control	Test item [mg/L]				
Test item (IPA salt)				10 (X X			100	
Glyphosate				3.90	7.80	15.60 \$	31.20	62.40
Frond number	Mean	Day 0	12.0	12.0	12.0	12.00 12.00 12.00	12.0	12.0
Frond number	Mean	Day 14	535.0	776.7	757.3	875.7	119.3	20.7
Increase of frond number	Mean	Day 14	523.0	764.7	745.3	863.7	107.3	8.7
Inhibition	Mean±SD	[%]	-	$-46 \pm 14.0$	-433±312.9	$-65 \pm 15.4$	$79 \pm 7.5$	98 ± 1.1

Table 8.2.7-16: Dry weight after 14 days and inhibition values										
Control Test item [mg/L]										
Test item (IP.	A salt)			6.25	12.5	25	50	100		
Glyphosate				× 3.90°	7.80	15.60	31.20	62.40		
Biomass dry weight [mg]	Mean	Day 14	48.9	65.2	66.0	69.0	18.7	6.6		
Inhibition	Mean±SD	[%]	THE THE STATE OF THE	-33± 10.8	-35± 9.8	-43± 12.8	62± 15.4	86± 2.7		

The doubling time of frond numbers in the control was less than 2.5 days (60 h), corresponding to approximately a seven-fold increase in seven days. The validity criteria according to the current guideline OECD 221 are therefore fulfilled. The EC₅₀ values for inhibition of front number and dry weight after 14 days were 53.56 mg PA salt/L (equivalent to 33.42 mg glyphosate/L) and 62.59 mg IPA salt/L (equivalent to 39.06 mg/glyphosate/L) respectively. The NOEC was determined to be 25 mg IPA salt/L, equivalent to 15.60 mg gtyphosate/L.

# III. CONCLUSIONS

# Assessment and conclusion by applicant:

Glyphosate isopropylamine salt was found to significantly inhibit the growth of *Lemna gibba* after 14 days at or above a nominal concentration of 50 mg IPA salt/L. The EC₅₀ values for inhibition of front number and dry weight after 14 days were 53.56 mg IPA salt/L (equivalent to 33.42 mg glyphosate/L) and 62.59 mg IPA salt/L (equivalent to 39.06 mg glyphosate/L) respectively.

Statistical re-analysis of endpoints has been performed to comply with Commission Regulation (EU) 283/2013 to determine 7-day EC₁₀, EC₂₀ and EC₅₀ endpoints.

The percent recovery nominal test concentrations between 4 and 7 days are presented below.

Table 8.2.7-17: Analytical verification of test item between 4 and 7 days

				20.0							
D (	Nominal concentration of glyphosate acid equivalent [mg/L]										
Parameter	3.9	7.8	15.6	5 ² ,5 [©] 31.2	62.4						
	Measured co	oncentration of gl	yphosate acid equi	valent [mg/L] (%	of nominal)						
Day 4	3.37 (86)	6.72 (86)	12.76 (82)	26.87 (86)	48.67 (78)						
Day 4 new	3.21 (82)	6.57 (84)	12.54 (80)	26.33 (84)	53.12 (85)						
Day 7 and	4.2 (108)	8.29 (106)	(177(199)	33.44 (107)	67.08 (108)						
Day 7 aged	4.42 (113)	8.49 (109)	× 12.12 (110)	33.91 (109)	66.29 (106)						
4 - 7 days Geometric mean	3.8	7.5	14.7	29.9	58.2						

Analytical recovery of the test item ranged from \$\infty\$ to 113 % from 4 to 7 days. Therefore, calculated endpoints will be based on geometric mean concentrations.

Details of statistical re-evaluation are given in the position paper CA 8.2.7/004.

The 7-day endpoints for yield and growth rate based on frond numbers have been calculated based on the geometric mean concentrations and are provided in the table below:

Table 8.2.7-18: 7-d endpoints for Yield frond number, Growth Rate frond number based on geometric mean measured concentrations

	Oliv						
7-day endpoints	Š	glyphosate [mg a.e./L]					
	NOEC	EC ₁₀ (95% CI)	EC ₂₀ (95% CI)	EC ₅₀ (95% CI)			
Yield (Frond number)	14.7	6.42 (3.38 – 9.45)	11.1 (7.16 – 15.9)	28.1 (19.3 – 52.0)			
Growth rate (Frond number)	14.7	12.8 (9.59 – 15.8)	19.1 (15.4 – 22.6)	34.8 (29.7 – 41.3)			

According to the statistical reanalysis, the 7 day ErC₅₀ is 34.8 mg a.e./L with 95% confidence limits of 29.7 to 41.3 mg a.e./L for frond number parameter at 7 days.

The overall no-observed effect concentration (NOEC) of the IPA salt of glyphosate to *Lemna gibba* over a 7-day exposure period was 14.7 mg a.e./L.

The varidity criteria according to the current guideline OECD 221 were met and this study is considered valid for risk assessment purposes.

# Assessment and conclusion by RMS:

# Page 419 of 847

# 2. Information on the study

	Total 0.0 7 (0.0)
Data point	CA 8.2.7/004
Report author	
Report year	2020
Report title	Statistical evaluation (non-GLP) of the study TLA60871 on the toxicity of Glyphosate 62% IPA-Salt to <i>Lemna gibba</i> under static conditions.
Report No	110054-009
Document No	- J.
<b>Guidelines followed in study</b>	Guideline ASTM E 1415- 91 (June 1991)
Deviations from current test guideline	Not applicable
Previous evaluation	No, not previously submitted.
GLP/Officially recognised testing facilities	No, GLP is not compulsory for statistical evaluation
Acceptability/Reliability	Valid Salas
Category study in AIR 5 dossier (L docs)	Category 1

2. Full summary
Executive Summary
A statistical evaluation addressing the calculation of valid 7-day EC₁₀, EC₂₀, EC₅₀ and NOEC values was conducted for the study TLA60871 ( 1999) to fulfill the data requirements according to regulation EU 283/2013. Futhermore, the validity criteria for the study were re- evaluated according to the current guideline OECD 221 (2006).

Analyses were performed using software ToxRatPro Version 3.3.0. The validity criteria according to the current guideline OECD 221 (2006) were met, this study is considered valid for risk assessment purposes. The 7-day EC₁₀, EC₂₀, EC₅₀ and NOEC values are calculated for yield (frond number) and growth rate (frond number) based on the geometric mean measured concentrations of glyphosate acid equivalents. The 7-day endpoints of EC₁₀, EC₂₀ and EC₅₀ values were estimated to be 6.42, 11.1, and 28.1 mg a.e./L for yield (frond number), and 12.8, 191, and 34.8 mg a.e./L for growth rate (frond number), respectively.

# I. MATERIALS AND METHODS

# A. MATERIALS

State of Sta Software: ToxRatPro Version 3.3.0

Original report details

Study number? & 980909FH

Substance: 8 Glyphosate 62% IPA-Salt

Title: Glyphosate 62% IPA-Salt, aquatic plant toxicity test using Lemna gibba

Completion date: 12-Feb-1999

Test guideline(s): Guideline ASTM E 1415- 91 (June 1991)

Testing facility: DR. U. NOACK-LABORATORIUM, Sarstedt, Germany

Sponsor: Feinchemie Schwebda GmbH, Köln, Germany

# **B. STUDY DESIGN**

# Dates of work: May 2020

Validity of the study was evaluated according to the current test guideline OECD 221 (2006) and 7-day EC₁₀, EC₂₀, EC₅₀ and NOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

1999) was statistically evaluated for the effects of Glyphosate 62 % The study TLA60871 ( IPA-Salt on the organism Lemna gibba, as the report only provides 14-day endpoints. According to current test guidelines and EFSA Aquatic Guidance (2013), this study type requires a 7-day endpoint.

The organisms were exposed for 14 days to the following concentrations of Glyphosate 62 % IPA-Salt: 6.25, 12.5, 25, 50 and 100 mg test item/L, corresponding to 3.9, 7.8, 15.6, 31.2 and 22.4 mg glyphosate/L. Additionally, a control was tested in parallel. The frond count data for the individual control and treatment

group replicates will be used to calculate the ECx values.

The analytical data from the study report were checked to ensure the appropriate mean measured or nominal exposure concentrations were used in the ECx calculations.

Statistical calculations

Models providing best fit to the respective data were selected and are as follows:

In order to derive the 7-day Effect Concentrations that have 10, 20 and 50% effect on yield (frond number), and growth rate (frond number) of the test subjects (EC₁₀, and EC₅₀ values), a Probit analysis using linear maximum likelihood regression for yield and growth rate (frond number) analysis was performed. For determination of the no-observed-effect concentration (NOEC), Williams Multiple Sequential t-test Procedure was used (one-sided smaller; p=0.05).

All statistical evaluations and checks for validity enteria were performed using the software ToxRatPro Version 3.3.0.

Endpoints based on biomass cannot be determined, as no data for day 7 is available.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

The doubling time of frond numbers in the control was less than 2.5 days (60 h), corresponding to approximately a seven-fold increase in seven days. The validity criteria according to the current guideline OECD 221 (2006) are therefore fulfilled.

The percent recovery of nominal test concentrations between 4 and 7 days are presented below.

Table 8.2.7-19: Analytical verification of test item between 4 and 7 days

Parameter -	Nominal concentration of glyphosate ¹ [mg a.e./L]									
	3.9	7.8	15.6	31.2	62.4					
	Measured co	oncentration of gl	yphosate acid equ	ivalent [mg/L] (%	of nominal)					
Day 4 navy	3.37 (86)	6.72 (86)	12.76 (82)	26.87 (86)	48.67 (78)					
Day 4 new	3.21 (82)	6.57 (84)	12.54 (80)	26.33 (84)	53.12 (85)					
Day 7 aged	4.2 (108)	8.29 (106)	17 (109)	33.44 (107)	67.08 (108)					
Day 7 aged	4.42 (113)	8.49 (109)	17.12 (110)	33.91 (109)	66.29 (106)					
4 - 7 days Geometric mean	3.8	7.5	14.7	29.9	S 58.2					

¹ Test concentrations based on active ingredient glyphosate as stated in the study report.

Analytical recovery of the test item ranged from 78 to 113% of nominal from 4 to 7 days duration. Therefore, calculated endpoints will be based on geometric mean measured concentrations.

The parameters for the logit model are estimated as slope b: 3.42368; intercept a: -4.96199 for yield (frond numbers).

The parameters for the Weibull analysis using linear maximum likelihood regression are estimated as slope b: 4.34953; intercept a: -7.06993 for growth rate (frond numbers).

Statistical parameters for goodness of fit are:  $Chi^2(13) = 0.01737$ ;  $p(Chi^2)$ : 1.000; F(1,13) = 32.754, p(F) < 0.001;  $R^2 = 0.716$  the  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  for yield and  $Chi^2(13) = 0.23866$ ;  $p(Chi^2)$ : 1.000; F(1,13) = 101.124; p(F) < 0.001;  $R^2 = 0.886$  the  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  for growth rate, calculations should therefore be considered valid.

The obtained 7-day  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  and  $EC_{50}$  and  $EC_{50}$  and  $EC_{50}$  are presented in the table below. The dose response curve obtained from the analysis of the effect of Glyphosate 62% IPA-Salt on the parameters being analysed of *Lemna gibba* is presented below.

Table 8.2.7-20: 7-day endpoints for Yield (frond number) and Growth Rate (frond number) based on geometric mean measured concentrations.

7-day endpoints	of dictionists	Glyphosate [mg a.e./L]						
××	NOEC	EC ₁₀ (95% CI)	EC ₂₀ (95% CI)	EC ₅₀ (95% CI)				
Yield (Frond number)	14.7	6.42 (3.38 – 9.45)	11.1 (7.16 – 15.9)	28.1 (19.3 – 52.0)				
Growth rate (Frond number)	14.7	12.8 (9.59 – 15.8)	19.1 (15.4 – 22.6)	34.8 (29.7 – 41.3)				

CI: confidence interval

The validity criteria according to the current guideline OECD 221 were met and this study is considered valid.

# III. CONCLUSION

# Assessment and conclusion by applicant:

The 7-day EC₁₀, EC₂₀, EC₅₀ and NOEC values are calculated for yield (frond number) and growth rate (frond number) based on the geometric mean measured concentrations of glyphosate acid equivalents.

The 7-day endpoints of  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  values were estimated to be 6.42, 11.1, and 28.1 mg a.e./L for yield (frond number), and 12.8, 19.1, and 34.8 mg a.e./L for growth rate (frond number), respectively.

The statistical parameters presented showed that these values can be considered reliable and therefore considered for risk assessment.

# Assessment and conclusion by RMS:

# 1. Information on the study

Data point:	CA 8.2.7/005
Report author	17 6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Report year	1996
Report title	Glyphosate acid: Toxicity to duckweet (Lemna gibba)
Report No	AB0503/L
Document No	-
Guidelines followed in study	EPA FIFRA Subdivision J Guideline 123-2
Deviations from current test guideline	Deviations from the guideline OECD 221 (2006): Minor: - The study was performed for 14 days instead of 7.
Previous evaluation	Yes, accepted in RAR (2015).
GLP/Officially recognised testing facilities	Yes Significant Specific Speci
Acceptability/Reliability	Valid & S
Category study in AIR 5 dossier (L docs)	Category 2a o S

2. Full summary
Executive Summary
The effects of Glyphosate acid on growth of Lemna gibba were evaluated in a 14 day semi-static toxicity test. The test was performed with eight concentration levels, 0.75, 1.5, 3.0, 6.0, 12, 24, 48 and 96 mg a.e./L and a control with 3 replicates per test concentration using three plants per replicate (four fronds each). The number of fronds affected was determined after 2, 5, 7, 9, 12 and 14 days. Observation of toxicity symptoms were recorded on these dates, too. Sampling and analysis of the test concentration were carried out at test start and on day 5,9 and 14.

Result showed a significant inhibition of frond number growth of Lemna gibba at nominal concentrations of 6.00 mg a.e./L and significant tissue weight inhibition at 12.0 mg a.e./L.

In conclusion, Glyphosate acid was found to significantly inhibit the growth of *Lemna gibba* after 14 days at or above a nominal concentration of 6 mg a.e./L. The 14-d EC₅₀ value for inhibition of front number was 12 mg a.e./L (95% CL= 11- 14) and for tissue dry weight 20 mg a.e./L (95% CL= 18 – 22). The NOEC was determined to be 3.0 and 6.0 mg a.e./L for frond number and weight increase, respectively.

In the factor of the statistical parameters presented above showed therefore considered for risk assessment purposes. Statistical re-analysis of endpoints has been performed. Based on the mean measured concentration of glyphosate acid the endpoints for 7-day EC₁₀, EC₂₀ and EC₅₀ values were calculated as follows: 10.5, 14.2 and 24.0 mg a.e./L for yield (frond number), respectively; 13.3, 18.7 and 36.0 mg a.e./L for growth rate

The statistical parameters presented above showed that these values can be considered reliable and

# I. MATERIALS AND METHODS

# A. MATERIALS

# 1. Test material:

Glyphosate acid Test item: Description: White solid

Lot/Batch #: P24 95.6 % Purity:

2. Vehicle and/or positive control: Positive control: none

3. Test organism:

Species: Lemna gibba, Strain G3

A STATE OF THE STA In-house culture originally obtained from University of Source:

4. Environmental conditions:

Waterloo, Canada

24.6 – 25.0 °C

24 h illumination

5000 lux

Freshly prepared test media: 3.6 – 4.7 Temperature: Photoperiod:

Light intensity

pH:

Old test media: 3.6 -5.8

17th Jan to 31st Jan 1996 5. Dates of experimental work:

B. STUDY DESIGN AND METHODS

1. Experimental treatments: The toxicity test on Econna gibba was performed with eight concentration levels, 0.75, 1.5, 3.0, 6.0, 12, 24, 48 and 96 mg a ext with 3 replicates per test concentration. Three control replicates (without test substance) were tested under the same conditions as the test groups.

The plants were placed in 400 mL test vessels, which already contained 160 mL of Hoagland's M-medium prepared according to Hillman (1961). The test was conducted under semi-static conditions with renewal of the test medium after 5 and 9 days. Three uniform healthy-looking plants with 4 fronds each were used in each test vessel.

2. Observations: The number of plants and fronds were counted after 2, 5, 7, 9, 12 and 14 days. Also symptoms of toxicity (eg. pale frond colouration, emergence of stunted new frond growth, reduced root growth and unnatural floating on the solution surface) were recorded on these dates. At test end the weight of the dried plant tissue (at 60°°C) was recorded. The pH was measured in the old and the new test medium (new= day 0, 5 and 9, old day 5, 9 and 14). Temperature in the test chamber was recorded daily and light intensity once a week

Analytical control measurements of the actual concentration of the test item were performed by means of HPLC analysis at test start and after 5 and 9 d (after test medium renewal).

3. Statistical calculations: The  $EC_{50}$  and its 95% confidence interval were calculated by moving average angle method using Stephan's method. The NOEC values were determined by calculation of statistical significance using one-way analysis of variance (ANOVA) and Dunnett's test for inhibition of frond number and biomass dry weight, respectively, at p = 0.05.

# A. FINDINGS

A. FINDINGS
The 14-d EC₅₀, NOEC and LOEC values are given below based on nominal concentrations.

Table 8.2.7-21: Toxicity of Glyphosate acid to Lemna gibba

Endpoint		Glyphosate acid [mg/L]	
	Frond number	Biomass dry weigh	Visual observed effects
14-d EC ₅₀ (95% CL)	12 (11 – 14)	20 (18 – 22)	- 8.12
NOEC	3.0	6.0	185,50
LOEC	6.0	12	%; <u>(</u> )

Analytical data: Analytical control measurements were performed in the freshly prepared (day 0, 5 and 9) and the old (day 5, 9 and 14) test media. The measured concentrations of glyphosate acid in the fresh media ranged from 90 - 108% of nominal and in the old media from 87 - 102% of nominal (overall mean measured: 93 – 100% of nominal). As the mean measured content of the glyphosate acid always ranged between 80 and 120% of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the glyphosate acid.

Table 8.2.7-22: Analytical results

Day sample taken	Nominal concentration of glyphosate acid [mg/L]								
	0.75	1.5	3.0	<b>8.0</b>	12	24	48	96	
		Mea	asured cog	centration	of glyphos	sate acid [r	ng/L]		
0 (fresh)	0.68	1.4	2.9	3.6	12	23	46	92	
5 (spent)	0.65	1.3	2.88	5.5	12	24	49	96	
5 (fresh)	0.65	1.4	28 × 0	5.4	12	22	48	92	
9 (fresh)	0.75	1.5	3:0	6.0	13	25	50	100	
14 (spent)	0.75	1.4	2.9	5.6	12	23	47	98	
Mean measured [mg/L]	0.70	1.4K 0	2.9	5.6	12	23	48	96	
% of nominal	93	5 193, T	97	93	100	96	100	100	

B. OBSERVATIONS
The increase in frond number was significantly inhibited starting with a nominal test concentration of 6.0 mg a.e./L when compared to the control. The growth of the plant tissues dry weight was significantly reduced at 12 mg a.e.A. 24, 48 and 96 mg a.e./L dose related symptoms like pale frond colouration, emergence of stunted new Frond growth, reduced root growth and unnatural floating on the solution surface were observed from day 2 onwards. Visually observed effects were apparent at concentrations of 3.0 mg/L The second of th and above. Therefore overall NOEC is 1.5 mg a.e./L.

Table 8.2.7-23: Frond numbers, increase in frond numbers and inhibition compared to the control

Test item rate [mg/L]			Increase in frond numbers	Inhibition [%]				
	Day 2	Day 5	Day 7	Day 9	Day 12	Day 14	(Day $0 - 14$ )	100
Control	21	48	85	134	222	327	315	1117.0 -
0.75	23	47	79	125	232	343	331	0
1.5	23	45	78	113	220	323	311 O	1
3.0	21	48	78	120	206	300	288	9
6.0	21	49	81	116	198	269	, S 25 7 S	18 ¹
12	20	44	74	105	148	173	, E 1	49 ¹
24	16	28	44	59	82	91 %	je j	75 ¹
48	15	21	24	28	28	300	Ø 18	94 ¹
96	13	14	15	16	18	59.75° 6'	5	981

						4.1			
48	15	21	24	28	28	30	% %	18	94 ¹
96	13	14	15	16	18	59.75° 58	, `	5	981
ignificant inl <b>Γable 8.2.7</b>	hibition comp	n dry wei to the con	ght of pla	ant tissue	after 14	d, main i	ncrea	se in dry	981  7 weight and
Test item		after	troi e dry weigh 14 day 1g]	ıt S	Mean inc. [mg]	rease		Inhil	oition 6]
Contro	ol		).7	9 11 12 10 1 13 10	39.2				_
0.75		51	1.3	1, 10, 9	49.8			(	0
1.5		49	9.8 zer ² 2		48.3			(	0
3.0		44	الم الم الم	1000	42.5			(	0
6.0		40	0.3 110 110		38.8				1
12		2	18 July		28.3			2	81
24		Q 10	5.5		15.0			6	21
48		\$ 5 6 6 6 1 S	.0		4.5			8	91

All validity criteria according to OECD 221 were fulfilled, as the doubling time of frond number in the critera, ce less the ce less t control were less than 2.4 d.

# III. CONCLUSIONS

Glyphosate

# Assessment and conclusion by applicant:

Glyphosate acid was found to significantly inhibit the growth of Lemna gibba after 14 days at or above a nominal concentration of 6 mg a.e./L. The 14-d EC₅₀ value for inhibition of front number was 12 mg a.e./L (95% CL= 11- 14 mg test item/L) and for tissue dry weight 20 mg a.e./L (95% CL= 18 \$\approx 22 mg) a.e./L). The 14-d NOEC was determined to be 3.0 and 6.0 mg a.e./L for frond number and weight increase, respectively.

Statistical re-analysis of endpoints has been performed to comply with Commission Regulation (EU) 283/2013 to determine 7-day EC₁₀, EC₂₀ and EC₅₀ endpoints. Details of statistical re-evaluation are given

283/2013 to determine 7-day EC ₁₀ , EC ₂₀ and EC ₅₀ endpoints. Details of statistical re-evaluation are given in the position paper CA 8.2.7/006.  The 7 day ECx values for yield and growth rate based on frond numbers has been calculated based on										
	nominal concentrations and are provided the table below.  Table 8.2.7-25: 7-d ECx values for Yield and Growth Rate									
7-day endpoints		Concentration	on of glyphosate acid [mg/	L]						
	NOEC	EC ₁₀ (95% CI)	EC ₂₀ (95% CI)	EC ₅₀ (95% CI)						
Yield Frond number	6.0	10.5 (6.76-13.4)	14.2 (10.5-17.1)	24.0 (20.6-27.5)						
Growth rate	12.0	13.3 (10.6-16.7)	(15.1-23.3)	36.0 (27.5-46.8)						

The validity criteria according to the current guideline OECD 221 were met and this study is considered valid for risk assessment purposes.

# THE STATE OF THE S Assessment and conclusion by RMS:

# 1. Information on the study

· ·	4 10 3
Data point	©A8.2.7/006
Report author	
Report year	2020
Report title	Statistical evaluation (non-GLP) of the study BL5662/B on the toxicity of Glyphosate acid to <i>Lemna gibba</i> under static conditions
Report No	110054-010
Document No	-
Guidelines followed in study	EPA FIFRA Subdivision J Guideline 123-2
Deviations from current test guideline	Not applicable
Previous evaluation	No, not previously submitted.
GLP/Officially recognised testing facilities	No, GLP is not compulsory for statistical evaluation
Acceptability/Reliability	Valid
Category study in AIR 5 dossier (L docs)	Category 1

# 2. **Full summary**

# **Executive Summary**

A statistical evaluation addressing the calculation of valid 7-day EC₁₀, EC₂₀, EC₅₀, and NOEC values was 1996) to fulfill the data requirements according to conducted for the study BL5662/B ( regulation EU 283/2013. Futhermore, the validity criteria for the study were re- evaluated according to the current guideline OECD 221 (2006).

Analyses were performed using software ToxRatPro Version 3.3.0. The validity criteria according to the current guideline OECD 221 (2006) were met, this study is considered valid for risk assessment purposes. Based on the mean measured concentration of glyphosate acid the endpoints for 7-day EC₁₆ EC₂₀ and EC₅₀ values were calculated as follows: 10.5, 14.2 and 24.0 mg a.e./L for yield (frond numbers) respectively; 13.3, 18.7 and 36.0 mg a.e./L for growth rate (frond number), respectively.

# I. MATERIALS AND METHODS

# A. MATERIALS

Software: ToxRatPro Version 3.3.0

Original report details

Study number: AB0503/L

Author:

Substance: Glyphosate acid

Glyphosate acid: Toxicity to duckweed (Lemna gibba) Title:

Completion date: 31-Jan-1996

Test guideline(s): EPA FIFRA Subdivision J Guideline \$23-2

GLP:

Testing facility: Brixham Environmental Laboratory, Zeneca Limited, Brixham Devon, UK

Sponsor: Zeneca Agrochemicals, Surrey, UK

# **B. STUDY DESIGN**

Dates of work: May 2020

**Dates of work:** May 2020
Validity of the study was evaluated according to the current test guideline OECD 221 (2006) and 7-day EC₁₀, EC₂₀, EC₅₀ and NOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

The study BL5662/B ( 1996) was statistically evaluated for the effects of Glyphosate on the organism *Lemna gibba* G3 as the report only provides 14 day endpoints. According to current test guidelines and EFSA Aquatic Quidance (2013), this study type requires a 7-day endpoint.

The organisms were exposed for 14 days to the following concentrations of Glyphosate acid: 0.75, 1.5, 3.0, 6.0, 12, 24, 48 and 26 mg a.e./L. Additionally, a control was tested in parallel. The frond count data for the individual control and treatment group replicates will be used to calculate the ECx values.

# Statistical calculations

Models providing best fit to the respective data were selected and are as follows:

In order to derive the 7-day Effect Concentrations that have 10, 20 and 50% effects on yield (frond number), growth rate (frond number), growth rate (frond area), and growth rate (biomass) of the test subjects (EC10, EC₂₀ and EC₅₀ values), a non-linear regression model the 3-parameter logistic CDF analysis for yield and the 3-parameter normal CDF growth rate (frond number) analysis was performed.

For determination of the no-observed-effect concentration (NOEC), Williams Multiple Sequential t-test Procedure was used (one-sided smaller; α=0.05).

All statistical evaluations and checks for validity criteria were performed using the software ToxRatPro

All statistical Version 3.3.0.

Endpoints based on biomass cannot be determined, as no data for day 7 is available.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

# **Results**

The doubling time of frond numbers in the control was less than 2.5 days (60 h), corresponding to approximately a seven-fold increase in seven days. The validity criteria according to the current guideline OECD 221 (2006) are therefore fulfilled.

The percent recovery of nominal test concentrations between 4 and 7 days are presented below.

Table 8.2.7-26: Analytical results

					~ ~	- 20 01		
Day samula takan	Nominal concentration of glyphosate acid [mg/L]							
Day sample taken	0.75	1.5	3.0	6.0	12,5	© 24	48	96
		Measured concentration of glyphosate acid [mg/L]						
0 (fresh)	0.68	1.4	2.9	5.6	[ 0 KD	23	46	92
5 (spent)	0.65	1.3	2.8	5,5	12	24	49	96
5 (fresh)	0.65	1.4	2.8	(B.40) (S	12	22	48	92
9 (fresh)	0.75	1.5	3.0	E.W.	13	25	50	100
14 (spent)	0.75	1.4	-176	& <b>₹</b> .6	12	23	47	98
Mean measured [mg/L]	0.70	1.4	2000	5.6	12	23	48	96
% of nominal	93	93	11.84.10	93	100	96	100	100

The measured concentrations of glyphosate acid in the fresh media ranged from 90 – 108 % of nominal and in the old media from 87 - 102% of nominal (overall mean measured: 93 - 100% of nominal). As the mean measured content of glyphosate acid always ranged between 80 and 120 % of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations.

The parameters for the 3 parameter logistic CDF model are estimated as b0: 68.792, b1: 23.999 and b2: 2.653 for yield. According to the statistical parameters F (2, 6) = 218.135; p(F) = <0.001; R² = 0.986 the EC₁₀, EC₂₀ and EC₅₀ for yield (frond number) calculations should be considered valid.

The parameters for the parameter normal CDF model are estimated as b0: 0.272, b1: 1.124, and b2: 0.338 for growth rate. According to the statistical parameters; F(2, 6) = 456.502; p(F) = <0.001;  $R^2 = 0.985$  for growth rate the  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  calculations should be considered valid.

After non-linear regression no lack of fit was detected for the function (p(F|Lack of Fit) = 0.605 for yield and 0.799 for growth rate.

The 7-day EC₂₀, EC₂₀ and EC₅₀ values obtained from the analysis of the effect of Glyphosate acid on the parameters being analysed of *Lemna gibba* are presented in the table below.

Table 8.2.7-27: 7-day ECx values for Yield and Growth Rate

7-day endpoints	Concentration of glyphosate acid [mg/L]							
8 30	NOEC	EC ₁₀ (95% CI)	EC ₂₀ (95% CI)	EC ₅₀ (95% CI)				
Yield (frond number)	6.0	10.5 (6.76-13.4)	14.2 (10.5-17.1)	24.0 (20.6-27.5)				
Growth rate	12.0	13.3 (10.6-16.7)	18.7 (15.1-23.3)	36.0 (27.5-46.8)				

CI: confidence interval

The validity criteria according to the current guideline OECD 221 were met and this study is considered. valid.

# III. CONCLUSION

# **Assessment and conclusion by applicant:**

The 7-day EC₁₀, EC₂₀ and EC₅₀ values are calculated for yield (frond number) and growth rate (frond number) based on the nominal concentration of glyphosate acid.

Based on the mean measured concentration of glyphosate acid the endpoints for 7-day EC₁₀, EC₂₀ and EC₅₀ values were calculated as follows: 10.5, 14.2 and 24.0 mg a.e./L for yield (frond number), respectively; 13.3, 18.7 and 36.0 mg a.e./L for growth rate (frond number), respectively.

The statistical parameters presented above showed that these values can be considered reliable and therefore considered for risk assessment purposes.

# **Assessment and conclusion by RMS:**

# 1. Information on the study

		E . S &				
	Data point:	CA 8.2.7/907				
	Report author	J. C.				
	Report year	1987 1 1				
	Report title	The Toxicity of Glyphosate Technical to Lemna gibba				
	Report No	1092-02-1100-5				
	Document No	\$ ill				
	Guidelines followed in study	Guideline 123-2, U.S. EPA – FIFRA (Growth and Reproduction of Aquatic Plants, Tier 2)				
	Deviations from current test guideline	Deviations from guideline OECD 221 (2006):				
	guideline	Minor:				
		- The study was performed for 14 days instead of 7.				
	7,10,80	- Dry weights are not reported				
	Previous evaluation	Yes, accepted in RAR (2015)				
	GLP/Officially recognised testing facilities	Yes				
	Acceptability/Reliability	Valid				
	Category study in AIR 5 dossier (L docs)	Category 2a				
Š	2. Full summary Executive Summary					
Xis .	The effects of glyphosate technic	al on growth of <i>Lemna gibba</i> were evaluated in a 14 day static toxicity				
10, 8	test. The definitive test was perfor	med with five concentration levels, encompassing 5, 9, 16, 28 and 50 mg				
	glyphosate/L (measured: 4.28, 9.	02, 16.6, 29.0 and 49.4 mg glyphosate/L) in triplicates. Furthermore, a				
The state of the s	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020				

control group with Lemna gibba exposed to test medium, without test substance (negative control) was tested.

Three 4-frond colonies and one 3-frond colony, taken from 7-day old stock cultures were aseptically added to 200 mL test medium for a total of 15 fronds per vessel. The pH of the test medium was adjusted prior to the test. Frond counts were made on day 0, 2, 4, 7, 9, 11 and 14 after test initiation. Every frond visibly projecting beyond the edge of the parent frond was counted. The temperature was measured daily and the pH was adjusted to  $7.5 \pm 0.1$  at test initiation.

As results, the effects of the test item on frond growth inhibition on day 14, relative to the control, ranged from 14.2 % for the measured test concentration of 16.6 mg glyphosate/L to 85.6% for the highest measured test concentration of 49.4 mg glyphosate/L. At or below the measured test concentration of 9.02 mg glyphosate/L, no inhibition effects of the test item on frond's development were observed. All validity criteria according to the OECD guideline 221 were fulfilled.

Analytical recovery of the test item ranged from 99 to 104% on day 0 and from 71 to 104% on day 14.

Analytical recovery of the test item ranged from 99 to 104% on day 0 and from 71 to 104% on day 14. Therefore, calculated endpoints will be based on geometric mean measured concentrations. Statistical reanalysis of endpoints has been performed. The calculated  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  values are 18.2, 20.3, and 25.0 mg a.e./L, respectively for yield (frond number) and 20.8, 31.9, and 66.2 mg a.e./L for growth rate (frond number).

The statistical parameters presented showed that these values can be considered reliable and therefore considered for risk assessment purposes.

# I. MATERIALS AND METHODS

# A. MATERIALS

# 1. Test material:

Test item:	Glyphosate
Description:	White solid
Lot/Batch #:	NBP-3594465
Purity:	96.6 %
Water solubility	1.2 % at 25 °C
2. Vehicle and/or positive controls	none
3. Test organism:	
Species:	Lemna gibba G3
Source:	In-house culture
4. Environmental conditions:	
Temperature:	25 ± 2 °C
Photoperiod:	24 h florescence light
Light intensity	4198 - 5813 Lux
pH:	$7.5 \pm 0.1$
Conductivity:	Not stated
Hardness:	Not stated
5. Dates of experimental works:	March 30 th to April 13 th 1987

# B. STUDY DESIGN AND METHODS

1. Experimental treatments: On the basis of the results of a range finding test, the definitive test was performed with five concentration levels, 5, 9, 16, 28 and 50 mg glyphosate/L (prepared using 20X-AAP

medium), with 3 replicates per test concentration. Furthermore, a control group with Lemna gibba exposed to test medium (without test substance) was tested in three replicates under the same conditions as the test groups. Three 4-frond colonies and one 3-frond colony, taken from 7-day old stock cultures were aseptically added to each test vessel, for a total of 15 fronds per vessel. The plants were placed in 1000 mL test vessels, which already contained the 200 mL test media. The pH of the test medium was adjusted prior to the test. The test was conducted under static conditions.

- 2. Observations: Frond counts were made on day 0, 2, 4, 7, 9, 11 and 14 after test initiation. In order to eliminate subjective decisions on frond maturity, every frond visibly projecting beyond the edge of the parent frond was counted. Fronds were not removed from the test vessels for counting. For each nominal test concentration, the mean measured value on day 0 and day 14 was calculated, based on the mean measured test concentrations. Mean frond count values at test termination for each test concentration were expressed as a percent relative to that in the control. On the basis of the mean frond count values, the percentage inhibition was determined and the ECx values calculated by inverse estimation least squares linear regression. The temperature was measured daily and the pH was adjusted to \$5.5 \pm 0.1 at test initiation. Samples of test media were made at test initiation and test termination for analysis of the active ingredient content in initial and aged test solutions. Samples were analyzed for active substance using HPLC.
- 3. Statistical calculations: To determine the EC_x values, the log of measured test concentration was plotted against percent inhibition expressed as probit. Inverse estimation least squares linear regression was used to determine the line of best fit and the concentrations corresponding to 25 and 50 percent inhibition and the associated 95 % confidence limits were calculated. Parameters of the regression line were determined using the SAS statistical package.

# II. RESULTS AND DISCUSSION

# A. FINDINGS

The EC₅₀ value is given below based on mean measured concentrations.

Table 8.2.7-28: Toxicity of glyphosate technical to Lemna gibba

Endpoint		mg glyphosate/L	
EC ₂₅ (14 day)	10 8° 10	18.0	
EC ₅₀ (14 day)		25.5	

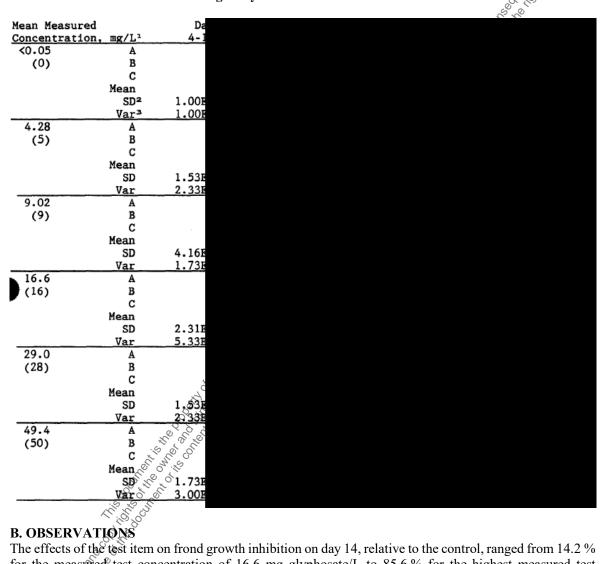

Analytical data: Chemical analyses were performed on samples of the test solutions to quantify glyphosate in the test solution. The mean measured concentrations were 4.28, 9.02, 16.6, 29.0 and 49.4 mg glyphosate/L, corresponding to 85.6 %, 100.2 %, 103.8 %, 103.6 % and 98.8 % of the nominal test concentrations, respectively. The mean measured content of the test item always ranged between 80 and 120 % of nominal Newertheless, the ecotoxicological endpoints were evaluated using mean measured concentrations of the test item.

Table 8.2.7-29: Analytical results

Parameter	Nominal concentration of glyphosate [mg/L]					
	0	5	9	16	28	50

	Measured concentration of glyphosate [mg/L]					
Day 0 Concentration	< 0.05	5.01	9.35	16.8	28.8	49.5
Day 14 Concentration	< 0.05	3.54	8.69	16.5	29.1	49.4
Mean measured [mg/L]	< 0.05	4.28	9.02	16.6	29.0	49.40
% of nominal	-	85.6	100.2	103.7	103.6	28.8

Table 8.2.7-30: Frond counts during assay



The effects of the test item on frond growth inhibition on day 14, relative to the control, ranged from 14.2 % for the measured test concentration of 16.6 mg glyphosate/L to 85.6 % for the highest measured test concentration of 49.4 mg glyphosate/L. At or below the measured test concentration of 9.02 mg glyphosate/k, no inhibition effects of the test item on frond's development were observed.

Table 8.2.7-31: Percentage growth inhibition of Lemna gibba exposed to glyphosate for 14 days

Nominal concentrations [mg glyphosate/L]	Control	5	9	16	28	500
Measured concentrations [mg glyphosate/L]	-	4.28	9.02	16.6	29.0	9.4 49.4
Mean number of fronds on Day 7	169	181	182	172	105	77
Mean number of fronds on Day 14	665	676	688	572	195	108
Mean inhibition (14 days) [%]	-	-1.8	-3.6	14.2	&7 <del>5</del> .4	85.6

The doubling time of frond number in the control was less than 2.5 days (2,) fold in 2 days in the test), and the frond number in the control was more than seven-fold after seven days approx. 11.3 folds in 7 days in the test). The validity criteria according to guideline OECD 221 are therefore fulfilled.

#### III. CONCLUSIONS

#### Assessment and conclusion by applicant:

Assessment and conclusion by applicant: The 14-day EC₅₀ for *Lemna gibba* exposed to glyphosate technical was calculated to be 25.5 mg/L.

Statistical re-analysis of endpoints has been performed to comply with Commission Regulation (EU) 283/2013 to determine 7-day  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  endpoints.

The percent recovery nominal test concentrations are presented below.

Table 8.2.7-32: Analytical verification of test atem

D.	, or it	Nominal	concentratio	oncentration of glyphosate [mg/L]			
Parameter	031431	offi 5	9	16	28	50	
	12 11 11 12 12 12 12 12 12 12 12 12 12 1	Measured	concentratio	on of glyphos	ate [mg/L]		
Day 0 Concentration	&0 <u>,</u> 05	5.01	9.35	16.8	28.8	49.5	
Day 0 % of nominal	4 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	100	104	105	103	99	
Day 14 Concentration	< 0.05	3.54	8.69	16.5	29.1	49.4	
Day 14 % of nominal	-	71	97	103	104	99	
Geometric mean mg/L	-	4.2	9.0	16.6	28.9	49.4	

Analytical recovery of the test item ranged from 99 to 104% on day 0 and from 71 to 104% on day 14. Therefore, calculated endpoints will be based on geometric mean measured concentrations.

Details of statistical re-evaluation are given in the position paper CA 8.2.7/008

The 7 day Ex values for yield and growth rate based on frond numbers has been calculated based on the geometric mean concentrations and are provided in the table below:

Table 8.2.7-33: 7-d ECx values for Yield and Growth Rate

7-day endpoints	Geometric mean concentration of glyphosate acid [mg/L]			cid [mg/L]
	NOEC	EC ₁₀ (95% CI)	EC ₂₀ (95% CI)	EC ₅₀ (95% CI)
Yield Frond number	16.6	18.2 (15.3 – 21.5)	20.3 (17.3 – 23.7)	25.0 (20.7 – 30.2)

M-CA, Section 8 Page 434 of 847

Growth rate	16.6	20.8 (10.9 – 28.9)	31.9 (21.0 – 40.4)	66.2 (55.0 – 77.7)

The validity criteria according to the current guideline OECD 221 were met and this study is considered valid for risk assessment purposes.

	7 6 7
Assessment and conclusion by RMS:	0 10
	60° (50°
	1/2 1/10

# Information on the study

Data point	CA 8.2.7/008
Report author	5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Report year	2020
Report title	Statistical evaluation (non-GLP) of the study 1092-02-1100-5 on the toxicity of Glyphosate to <i>Lemna gibba</i> under static conditions
Report No	110054-011
Document No	- 50 50
Guidelines followed in study	Guideline 123-2, U.S. EPA - FIFRA (Growth and Reproduction of Aquatic Plants, Tier 2)
Deviations from current test guideline	Not applicable of the second s
<b>Previous evaluation</b>	No, not previously submitted.
GLP/Officially recognised testing facilities	No, GLP is not compulsory for statistical evaluation
Acceptability/Reliability	Valide S
Category study in AIR 5 dossier (L docs)	Sategory 1

2. Full summary
Executive Summary
A statistical evaluation addressing the calculation of valid 7-day EC₁₀, EC₂₀, EC₅₀, and NOEC values was conducted for the study 1092-02-1100-5 ( 1987) to fulfil the data requirements according to regulation EU 283/2013. Futhermore, the validity criteria for the study were re- evaluated according to the current guideline OECD 221 (2006).

Analyses were performed using software ToxRatPro Version 3.3.0. The validity criteria according to the current guideline QECD 221 (2006) were met, this study is considered valid for risk assessment purposes. The calculate ££2₁₀, EC₂₀ and EC₅₀ values are 18.2, 20.3, and 25.0 mg a.e./L, respectively for yield (frond number) and 20.8, 31.9, and 66.2 mg a.e./L for growth rate (frond number).

#### I. MATERIALS AND METHODS

# **A.MATERIALS**

ToxRatPro Version 3.3.0

Software:

Software:

Stur Original report details

Study number: 1092-02-1100-5 Author:

Substance: Glyphosate

Title: The Toxicity of Glyphosate Technical to Lemna gibba

Completion date: 13-Apr-1987

Guideline 123-2, U.S. EPA – FIFRA (Growth and Reproduction of Aquatic Plants, Test guideline(s):

Tier 2)

GLP: Yes

Testing facility: Malcolm Pirnie, Inc, White Plains, NY 10602, USA

Sponsor: Monsanto Agricultural Company, Chesterfield, MO 63198, USA

#### **B. STUDY DESIGN**

Dates of work: May 2020

Validity of the study was evaluated according to the current test guideline OECD 221 (2006) and 7-day EC₁₀, EC₂₀, EC₅₀ and NOEC values were calculated to fulfil the data requirements according to regulation EU 283/2013.

1987) was statistically evaluated for the effects of Glyphosate on The study 1092-02-1100-5 ( the organism Lemna gibba G3 as the report only provides 14-day endpoints. According to current test guidelines and EFSA Aquatic Guidance (2013), this study type requires a 7-day endpoint.

The organisms were exposed for 14 days to the following concentrations of Glyphosate: 5, 9, 16, 28 and 50 mg glyphosate/L (mean measured: 4.28, 9.02, 16.6, 29.0 and 49.4 mg glyphosate/L). Additionally, a control was tested in parallel. The data used for this evaluation were obtained from original study report.

The analytical data from the study report were checked to ensure the appropriate mean measured or nominal exposure concentrations were used in the ECx calculations. The state of

Statistical calculations
Models providing best fit to the respective data were selected and are as follows:

In order to derive the 7-day Effect Concentrations that have 10, 20 and 50% effects on growth rate and yield of the test subjects (EC10, EC20 and EC50), a Probit analysis using linear maximum likelihood regression for yield (frond number) and a non-linear regression analysis of 3-parameter normal CDF (Cumulative Distribution Function) for growth rate (frond number) was performed. For determination of the no-observed-effect concentration. Williams Multiple Sequential t-test Procedure was used (one-sided smaller; p=0.05).

All statistical evaluations and checks for validity criteria were performed using the software ToxRatPro Version 3.3.0.

Endpoints based on biomass cannot be determined, as no data for day 7 is available.

#### II. RESULTS AND DISCUSSION

# A. FINDINGS

#### Results

The doubling time of frond number in the control was less than 2.5 days (2.1 fold in 2 days in the test), and the Frond number in the control was more than seven-fold after 7 days (approx. 11.3 folds in 7 days in the test). The validity criteria according to guideline OECD 221 are therefore fulfilled.

The percent recovery nominal test concentrations are presented below.

## Table 8.2.7-34: Analytical verification of test item

D		Nominal co	oncentration o	of glyphosate	[mg a.e./L]	
Parameter	0	5	9	16	28	50 8
		Measured c	oncentration	of glyphosate	e [mg a.e./L]	
Day 0 Concentration	< 0.05	5.01	9.35	16.8	28.8	49.5
Day 0 % of nominal	-	100	104	105	103	F.99
Day 14 Concentration	< 0.05	3.54	8.69	16.5	29.1	49.4
Day 14 % of nominal	-	71	97	103	104	[©] 99
Geometric mean [mg/L]	-	4.2	9.0	16.6	28.9	49.4

Analytical recovery of the test item ranged from 99 to 104% on day 0 and from 71 to 104% on day 14. Therefore, calculated endpoints will be based on geometric mean measured concentrations.

The parameters for the 4 parameter normal CDF model are b0: 162.4, \$1,37,259, b2: 0.109, b3: 61.678 for yield. According to the statistical parameters F(3,2) = 108.669; p(F) < 0.001;  $R^2 = 0.950$  the  $EC_{10}$ ,  $EC_{20}$  and EC₅₀ calculations for yield (frond number) should be considered validations

For growth rate, the parameters for the 3 parametric logistic CDF model are estimated as b0: 0.357, b1: 66.209, and b2: 1.895. According to the statistical parameters  $\mathbb{P}(3.2) = 79.795$ ; p(F) <0.001;  $\mathbb{R}^2 = 0.919$ the EC₁₀, EC₂₀ and EC₅₀ calculations for growth rate (frond minutes) should be considered valid. After nonlinear regression no lack of fit was detected for the function (p) Eack of Fit) = 0.004 for growth rate (frond number).

The obtained EC₁₀, EC₂₀ and EC₅₀ values are presented in the table below. The dose response curve obtained from the analysis of the effect of Glyphosate on Neld (frond number) being analysed of Lemna gibba G3 s presented below.

Table 8.2.7-35: 7-day ECx values for Yield and Growth Rate is presented below.

10, 10, 10, 10,

7-day endpoints	Geometric mean concentration of glyphosate acid [mg/L]			
	NOEC	EC ₂₀ (95% CI)	EC ₅₀ (95% CI)	
Yield (frond number)	16.6 18.2 (15.3 – 21.5)	20.3 (17.3 – 23.7)	25.0 (20.7 – 30.2)	
Growth rate	16.6 20.8 (10.9 – 28.9)	31.9 (21.0 – 40.4)	66.2 (55.0 – 77.7)	

CI: confidence interval

#### III. CONCLUSION

# Assessment and conclusion by applicant:

The calculated EC₁₀, EC₂₀ and EC₅₀ values are 18.2, 20.3, and 25.0 mg a.e./L, respectively for yield (frond number) and 20.8, 31.9, and 66.2 mg a.e./L for growth rate (frond number).

The statistical parameters presented showed that these values can be considered reliable and therefore considered for risk assessment purposes.

# Assessment and conclusion by RMS:

1. Information on the study

	1. Information on the study	
	Data point	CA 8.2.7/009
	Report author	jjor
	Report year	1987
	Report title	The toxicity of glyphosate technical to <i>Lemna gibba</i> .
	Report No	The toxicity of glyphosate technical to <i>Lemna gibba</i> .  XX-88-416  No information mentioned in the Monograph 2001.  No. GLP was not compulsory at the time the study was performed.
	<b>Document No</b>	-
	<b>Guidelines followed in study</b>	No information mentioned in the Monograph 2001.
	GLP	No, GLP was not compulsory at the time the study was performed
	Previous evaluation	Not accepted in RAR (2015)
	Short description of	
	study design and	Toxicity of technical glyphosate (purity >94%) to aquatic plants (Lemna gibba).
	observations	
	Short description of results	No information mentioned in the Monograph 2001.
	Reasons for why the	No study report available and no information mentioned in the
	study is not considered	Monograph 2001, so these data were considered as not acceptable in
	relevant/reliable or not	the Monograph 2001.
	considered as key study	the Monograph 2001.
	Reasons why the study report is not available for submission	The notifier does not have access to this study report. Since the study was part of the earlier data package available to the former RMS of the
		active substance glyphosate, the AGG would have to send a "request for administrative assistance (Art. 39 of Regulation (EC) No.
		1107/2009 to the BVL.
	Category study in AIR 5	
	dossier (L docs)	
	Category study in AIR 5 dossier (L docs)	
TO BOOK THE WARRENT TO BE THE	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

1. Information on the stud
----------------------------

1. Information on the stat	ay .
Data point:	CA 8.2.7/010
Report author	
Report year	2012
Report title	Effect of MON77973 (Glyphosate acid) on the Growth of Myriophyllum aquaticum in the Presence of Sediment. Test with a subsequent Recovery Period.
Report No	CHE-015/4-80/A
Document No	-
Guidelines followed in study	(2008): Aquatic Macrophyte Risk Assessment for Pesticides, SETAC AMRAP
Deviations from current test guideline	Deviations from guideline: none
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes The State of t
Acceptability/Reliability	Valid
Category study in AIR 5 dossier (L docs)	Category 2a

# 2. Full summary Executive Summary

The toxicity of Glyphosate acid on growth of Myriophyllum aquaticum was evaluated in a 14 day static toxicity test, with subsequent 7 day recovery test, performed at concentrations of 5.0, 15.8, 50, 158 and 500 mg glyphosate/L, equivalent to 5.87, 185, 587, 185.4 and 587 mg glyphosate acid/L. A negative control (Smart & Bako medium) was prepared in parallel.

Two sets of vessels (exposure and recovery set) were prepared, with each set comprising three replicates for each test concentration and six replicates for the controls. Test vessels were 2-L beakers, each containing five individual plants potted in individual pots containing artificial sediment. Plant length, fresh weight, dry weight and root length were determined in all vessels. Plant length was recorded at test start and after 3, 7, 10 and 14 days and after 2 days (recovery vessels). At test start and test end, fresh weight of each plant was determined. Dry weight was determined at test initiation using 25 additional plants and at test end on the tested plants. At the end of the test all plants were harvested and the root length was assessed semi-quantitatively in terms of length of the main root. After 14 days, all plants in recovery vessels were transferred to vessels containing dilution water only to assess recovery following exposure.

Test media were analysed for Glyphosate acid content at test start and end of exposure and recovery periods. The measured concentrations ranged from 92.0 - 100.6% of nominal. Glyphosate acid was not detected in the control group.

Relative to the control group, at the highest treatment rate (500 mg glyphosate acid/L) there was 100 % growth inhibition based on fresh weight. At 500 mg Glyphosate acid/L fresh weight increase was inhibited by 100 %, shoot length increase by 70.8 % and growth rate by 57.1 %. The recovery period demonstrated that *Myriophyllum aquaticum* pre-exposed to up to 50.0 mg Glyphosate acid/L were able to recover to control levels of growth, in untreated culture medium within 7 days of transfer.

The study fulfilled the validity criteria of achieving at least 50% increase in control plant growth in terms of length within 7 days of test initiation. The test was therefore considered to be valid.

Glyphosate acid significantly inhibited the fresh weight of *Myriophyllum aquaticum* after 14 days at a nominal concentration of <5.0 mg glyphosate acid/L. Shoot length was inhibited at or above nominal concentrations of 5.0 mg glyphosate acid/L. The 14-d EC₅₀ value for fresh weight inhibition was 12.3 mg glyphosate acid/L and for shoot length it was 78.7 mg glyphosate acid/L. *Myriophyllum aquaticum* preexposed for 14 days to up to 50.0 mg glyphosate acid/L were able to recover in untreated culture medium after a 7 day recovery period.

# I. MATERIALS AND METHODS

# A. MATERIALS

# 1. Test material:

	(A. 182)
Test item:	Glyphosate acid (MON77973)
Description:	White crystalline powder
Lot/Batch #:	White crystalline powder  GLP-0807-19475-T  85.2% Glyphosate
Purity:	85.2% Glyphosate
2. Vehicle and/or positive control:	85.2% Glyphosate  Positive control: none
3. Test organism:	, , , , , , , , , , , , , , , , , , ,
Species:	Positive control: none  Myriophyllum aquaticum
Source:	Institut für Gewässerschutz, MESOCOSM GmbH, Neu- Ulrichstein 5, D-35315 Homberg (Ohm), Germany
4. Environmental conditions:	\$ \doldo
Growth medium:	Smart & Bako medium
Artificial sediment:	Smart & Bako medium  4-5% peat 20% kaolin clay 75-76% quartz sand CaCO ₃ (if needed to adjust pH to 7.0 ± 0.5) Based on artificial soil used in OECD guideline 219 Moistening of sediment up to 30% with deionised water or nutrient medium (ammonium chloride and sodium phosphate)
Temperature:	18.0-20.5 °C
Photoperiod:	Steff light/8 h dark
Light intensity	6541-7097 lux
pH:  Oxygen saturation  S. Dates of experimental work:	Walues recorded at test start and end (in brackets) of 14 day  exposure period:  Controls = 7.99 (8.14-9.06)  5 mg/L = 8.06 (8.77-10.0)  15.8 mg/L: = 7.99 (8.96-9.96)  50.0 mg/L = 7.36 (7.35-9.13)  158 mg/L = 3.84 (4.88-5.28)  500 mg/L = 2.80 (3.29-3.43)  Values at start and end of 7 day recovery period:  Recovery period start = 7.95  Recovery period end = 8.17 - 9.48  14 day exposure period:  92 - 94% at the start of the test  114 - 193% at the end of the test  7 day recovery period:  96% at the start of the test  95 - 131% at the end of the test
5. Dates of experimental work:	Sept 27 th to Oct 11 th 2010
C. STEEL STE	1

# **B. STUDY DESIGN AND METHODS**

Page 440 of 847

1. Experimental treatments: The toxicity test on Myriophyllum aquaticum was performed with six so concentration levels of 5.0, 15.8, 50, 158 and 500 mg glyphosate/L, equivalent to 5.87, 18.5, 58.7, 185.4 and 587 mg Glyphosate acid/L, with 3 replicates per test concentration. Six control replicates (without test substance) were tested under the same conditions as the test groups. Two sets of vessels (exposure and recovery) were prepared at the start of the test

The plants were planted in small plastic plant pots into sediment and placed in glass beakers (test wessels), containing 2 L Smart & Bako medium. The test was conducted under static conditions. Five plants were added to each test and control replicate.

After 14 days exposure plants in the recovery set of Myriophyllum aquaticum replicates, exposed to the same concentration levels, were transferred into freshly prepared test medium without test item to determine the potential recovery after an exposure event.

2. Observations: Plant length, fresh weight, dry weight and root length were determined in all vessels. Plant length was recorded at test start and after 3, 7, 10 and 14 days. At test start and test end, fresh weight of each plant was determined. Dry weight was determined at test initiation using 25 additional plants and at test end on the tested plants (dried at 105 °C for 24 h). At the end of the test all plants were harvested and the root length was assessed semi-quantitatively in terms of length of the main root. Temperature in the test chamber was recorded continuously. Oxygen content, pH and dight intensity was recorded at test start and after 14 days.

Analytical control measurements of the actual concentration of the alyphosate acid were performed by means of LC/MS-MS analysis at test start, after 14 (after exposure phase) and 21 days (after recovery

3. Statistical calculations: The EC₁₀, EC₂₀ and EC₅₀ and EC₅₀ and fixe 95% confidence interval were calculated by Probit analysis modified for continuous data. The NOEC values were determined by calculation of statistical significance using one-way analysis of variance (ANOVA), followed by Williams' t-test, Dunnett's t-test or Welch's t-test ( $\alpha = 0.05$ ).

# II. RESULTS AND DISCUSSION

#### A. FINDINGS

Analytical data: Analytical control measurements of the actual concentration of the glyphosate acid were performed at test start and after 14 days. The measured concentrations ranged from 92.0 - 100.6 % of nominal. As the mean measured content of the test item always ranged between 80 and 120 % of nominal, the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

Additional analytical measurements were made at the end of the 7 d recovery period (at day 21). The measured concentration in the test media were < LOQ at the lowest test concentrations and between 1.7 and 2.1 % of the test media concentrations at the end of the growth test.

Table 8.2.7-36: Analytical results

Nominal [mg/L]	Test start 14 d growth test		End of test 14 d growth test		End of 7 d recovery test	
68,11	Measured	% of	Measured	% of	Measured	% of
6 6	[mg/L]	nominal	[mg/L]	nominal	[mg/L]	nominal
Control &	< LOQ -	-	<loq< td=""><td>-</td><td>&lt; LOQ</td><td>-</td></loq<>	-	< LOQ	-
5.0	4.95	99.1	4.86	97.2	< LOQ	-
15.8	15.4	97.4	14.5	92.0	0.32	2.1
50.0 50 50	49.8	99.6	49.6	99.3	1.03	2.1
158	149	94.3	157	99.2	2.73	1.7
500	488	97.6	503	100.6	8.70	1.7
Pore water 500 mg/L	-	-	95.1	19.0	28.8	5.8

LOQ = 0.25 mg/L

Page 441 of 847

The EC₅₀, EC₂₀ and NOEC values after 14 day growth inhibition test are given below based on nominal concentrations.

**Table 8.2.7-37: 14-day endpoints** 

Endpoint		27,50		
	14 Day EC ₁₀	14 Day EC ₂₀	14 Day EC ₅₀	14 Day NOEC
Shoot length/relative increase	n.d.	4.05 (0.82 - 9.35) 1	78.7 (46.1 - 146)	5.0
Shoot length/growth rate	2.401 (0.31-6.76)	12.1 (3.55-24.2)	276 (159 664)	5.0
Fresh weight/relative increase	n.d.	1.72 (0.88 - 2.75) 1	12.3 (9.195 15.8)	<5.0
Fresh weight/ growth rate	n.d.	3.60 (1.85 - 5.69) 1	23.4 (15.2 30.9)	< 5.0
Dry weight/relative increase	3.061 (0-10.7)	6.31 (0 - 17.6)	25,2 (2,61 - 151)	50.0
Dry weight/ growth rate	3.681 (0-12.8)	7.58 (0 - 21.1)	30.2 mg/L (3.54-191)	50.0
Root length/relative increase	n.d.	3.26 1	(5.19 - 43.0)	<5.0
Root length/growth rate	n.d.	n.d.	>500	<5.0

, , ,	3.681 (0-12.8)	7.58 (0 - 21.1)	30,2 mg/L (3.54-1			
Root length/relative increase	n.d.	3.26 1	18.0 (5.19 - 43.0	0) <5.0		
Root length/growth rate	n.d.	n.d.	>500	< 5.0		
CI = 95% confidence interval  1 extrapolated, lowest test concentration was 5.0 mg/L.  n.d. not determined  The EC = EC = and NOEC values after 7 day regularly period are given below based on nominal						
Table 8.2.7-38: 7-day endpoints						
Endnaint	illo il	Glyphosate	acid [mg/L]			
Endpoint	7 Day EC10	7 Day EC ₂₀	7 Day EC ₅₀	7 Day NOEC		
	26.0 (.14.0-	41.2 (26.5-54.2)	99.5 (79.7-125)	50		
Shoot length/relative increase	37.1	41.2 (20.3-34.2)	99.3 (79.7-123)	30		
Shoot length/growth rate	29.5 (14.6-43.3)	46.9 (28.5-63.0)	114 (89.5-147)	50		
Shoot length/growth rate	29.5 (14.6-43.3)		` ′			
Shoot length/growth rate	29.5 (14.6-43.3)	46.9 (28.5-63.0)	114 (89.5-147)	50		
Shoot length/growth rate	29.5 (14.6-43.3)	46.9 (28.5-63.0) n.d	114 (89.5-147) n.d.	50 158		
Shoot length/growth rate Fresh weight/relative increases Fresh weight/ growth rate	29.5 (14.6-43.3) n.d.	46.9 (28.5-63.0) n.d n.d	114 (89.5-147) n.d. n.d.	50 158 158		
Shoot length/growth rate  Fresh weight/relative increase  Dry weight/relative increase	29.5 (14.6-43.3) n.d. n.d.	46.9 (28.5-63.0) n.d n.d n.d	114 (89.5-147) n.d. n.d. n.d.	50 158 158 ≥500		

n.d.: not determined due to mathematical reasons or inappropriate data

# B. OBSERVATIONS

Glyphosate Renew. There was a concentration dependent effect on growth, root length, fresh and dry weight of Myriophyllum aquaticum. Growth was significantly reduced at 5.00 mg glyphosate/L, fresh weight at <50 mg Glyphosate acad/L, dry weight at 50.0 mg Glyphosate acid/L and root length at <50 mg Glyphosate acid/L during the A day exposure test. In the subsequent recovery test; it was shown that Myriophyllum aquaticum, preexposed to up to 50.0 mg Glyphosate acid/L were able to recover to control levels of growth in untreated

Table 8.2.7-39: Percentage of inhibition of shoot length of Myriophyllum aquaticum exposed for 14 days to glyphosate acid

Test parameters		Glyphosate acid [mg/L]				
Test parameters	5.0	15.8	50.0	158	5000	
Inhibition of shoot length increase (%)	19.2	29.9	55.9	50.3	70.8	
Inhibition of shoot length growth rate (%)	11.8	19.5	41.9	36.7	ِهُ 57.9	
Inhibition of fresh weight increase (%)	34.2	57.5	69.2	83.70 3	109	
Inhibition of fresh weight growth rate (%)	24.6	46.5	59.0	₹6.₹°	115	
Inhibition of dry weight increase (%)	-11.8	46.5	26.8	©: <b>32</b> .7	108	
Inhibition of dry weight growth rate (%)	-10.2	40.8	40.4	⁶ 92.4	114	
Inhibition of root length increase (%)	19.4	52.3	76.0	79.7	88.8	
Inhibition of root length growth rate (%)	2.0	7.0	(5,43,60°	15.1	21.1	

The study fulfils the validity criteria as stated in the study plan which follows the criteria established by the AMRAP working group, with an increase of biomass (shoot length) in controls was > 50 %, indicating that continuous growth was supported throughout the test duration. Furthermore, constant maintenance of temperature ( $20 \pm 2$  °C) was also achieved.

SHOO

# III. CONCLUSIONS

#### **Assessment and conclusion by applicant:**

Assessment and conclusion by applicant:
The mean measured content of the test item always ranged between 80 and 120% of nominal so the ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

The 14-d ErC50 value for fresh weight was 23.4 mg a.e./L and for shoot length it was 276 mg a.e./L. The study is considered valid and reliable for risk assessment purposes. - Ch / 1 / OF

Endpoint in glyphosate acid	14 Day EC ₅₀ [mg/L]	14 Day NOEC [mg/L]
Shoot length/relative increase	78.7	5.0
Shoot length/growth rate	276	5.0
Fresh weight/relative increase	12.3	<5.0
Fresh weight/ growth rate	23.4	<5.0
Dry weight/relative increase	25.2	50.0
Dry weight/ growth rate	30.2	50.0
Root length/relative increase	18.0	<5.0
Root length/growth rate	>500	<5.0

# Assessment and conclusion by RMS: A listing to leave the list of the leave the l

#### 1. Information on the study

<b>D</b>	G + 0.2 7(0) 1
Data point:	CA 8.2.7/011
Report author	
Report year	2012
Report title	Effect of AMPA (Aminomethylphosphonic acid) on the Growth of Myriophyllum aquaticum in the Presence of Sediment, with a subsequent Recovery Period
Report No	CHE-022/4-80/A
Document No	-
<b>Guidelines followed in study</b>	Maltby, L., et al. (2008): Aquatic Macrophyte Risk Assessment for Pesticides, SETAC AMRAP
Deviations from current test guideline	Deviations from guideline: none
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes E S S S S S S S S S S S S S S S S S S
Acceptability/Reliability	Valid STEP
Category study in AIR 5 dossier (L docs)	Category 2a

#### 2. **Full summary Executive Summary**

Silling The toxicity of Glyphosate acid on growth of Myrrophyllum aquaticum was evaluated in a 14 day static toxicity test, with subsequent 7 day recovery test, performed at concentrations of 1.0, 2.6, 6.4, 16, 40 and 100 mg AMPA/L. A negative control (Smart & Bako medium) was prepared in parallel.

Two sets of vessels (exposure and recovery set) were prepared, with each set comprising three replicates for each test concentration and six replicates for controls were used. Test vessels were 2-L beakers, each containing five individual plants potted in individual pots containing artificial sediment. Plant length, fresh weight, dry weight and root length were determined in all vessels. Plant length was recorded at test start and after 3, 7, 10 and 14 days and after 21 days (recovery vessels). At test start and test end, fresh weight of each plant was determined Dry weight was determined at test initiation using 25 additional plants and at test end on the tested plants. At the end of the test all plants were harvested, and the root length was assessed semi-quantitatively in terms of length of the main root. After 14 days, all plants in recovery vessels were transferred to vessels containing dilution water only to assess recovery following exposure.

Test media were analysed for AMPA content at test start, test end and at the end of the recovery period. The measured concentrations ranged from 75.5 - 102% of nominal. AMPA was not detected in the control group. Therefore the test was evaluated using the geometric mean measured concentrations.

Result showed a significant inhibition of fresh weight and shoot length at the lowest test concentration of >14.3 mg AMPA/L. The following recovery test demonstrated that Myriophyllum aquaticum pre-exposed to up to 5.4 mg AMPA/L were able to recover in untreated culture medium after a 7 day recovery period. The study falfaled the validity criteria of achieving at least 50% increase in control plant growth in terms of length within 7 days of test initiation. The test was therefore considered to be valid.

AMPA significantly inhibited the fresh weight and shoot length of Myriophyllum aquaticum after 14 days at a normal concentration of >14.3 mg AMPA/L. The 14-d EC₅₀ value for fresh weight inhibition was 70.8 mgAMPA/L and for shoot length > 94.6 mg AMPA/L. Myriophyllum aquaticum pre-exposed for 14 day n. to us to to up to 5.4 mg AMPA/L were able to recover in untreated culture medium after a 7 day recovery period.

I. MATERIALS AND METHODS

# A. MATERIALS

# 1. Test material:

	Test item:	AMPA (Aminomethylphosphonic acid)
		AMPA (Animomethylphosphonic acid)
•	Description:	White crystalline solids
	Lot/Batch #:	GLP-0905-19864A (recertified as GLP-11052)446-A)
	Purity:	AMPA (Aminomethylphosphonic acid)  White crystalline solids  GLP-0905-19864A (recertified as GLP-110521446-A)  98.5 %  Positive control: none
	2. Vehicle and/or positive control:	
	3. Test organism:	
	Species:	Myriophyllum aquaticum
	Source:	Institut für Gewässerschutz, MESOCOSM GmbH, Neu-
	4. Environmental conditions:	
	Growth medium:	Smart & Bako medium
	Artificial sediment:	Smart & Bako medium  4-5 % peat 20 % kaolin clay 75-76 % quartz sand CaCO ₃ (if needed to adjust pH to 7.0 ± 0.5) Based on artificial soil used in OECD guideline 219 Moistening of sediment up to 30 % with deionised water or nutrient medium (ammonium chloride and sodium phosphate)
	Temperature:	26.5° 21.0 °C
	Photoperiod:	16 h Tight/8 h dark
	Light intensity	7571 - 7903 lux
	pH:	Values recorded at test start and end (in brackets) of 14 day exposure period:  Controls = 7.91 (8.54–8.91)  0.88 mg/L = 8.06 (8.04-8.08)  2.23 mg/L: = 7.99 (8.05-8.11)  5.43 mg/L = 7.36 (8.05-8.07)  14.3 mg/L = 3.84 (7.90-7.99)  37.1 mg/L = 2.80 (7.75-7.79)  94.6 mg/l = 6.60 (7.23-7.33)  Values at start and end of 7 day recovery period:  Recovery period start = 7.97-9.04  Recovery period end = 8.18 – 9.28
	Oxygen saturation  5. Dates of experimental work:	95 – 97 % at the start of the test 101 – 138 % at the end of the test 7 day recovery period: 96 – 138 % at the start of the test
ļ		90 – 114 % at the end of the test
	Oxygen saturation  5. Dates of experimental work:  Glyphosate Renewal Group AIR 5 – July 2020	Aug 18 th to Sept 8 th 2011
	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

#### **B. STUDY DESIGN AND METHODS**

- 1. Experimental treatments: The toxicity test on *Myriophyllum aquaticum* was performed with six concentration levels of 1.0, 2.6, 6.4, 16, 40 and 100 mg AMPA/L with 3 replicates per test concentration. Six control replicates (without test substance) were tested under the same conditions as the test groups. The plants were planted in small plastic plant pots into sediment and placed in glass beakers (test vessels), containing 2 L Smart & Bako medium. The test was conducted under static conditions. Five plants were added to each test and control replicate. After 14 days exposure another set of *Myriophyllum aquaticum* replicates, exposed to the same concentration levels, was transferred into freshly prepared test medium without test item to determine the potential recovery after an exposure event.
- 2. Observations: Plant length, fresh weight, dry weight and root length were determined in all vessels. Plant length was recorded at test start and after 5, 8 and 14 days. At test start and test end, fresh weight of each plant was determined. Dry weight was determined at test initiation using 25 additional plants and at test end on the tested plants (dried at 105 °C for 24 h). At the end of the test all plants were harvested and the root length was assessed semi-quantitatively in terms of length of the main root. Temperature in the test chamber was recorded continuously. Oxygen content, pH and light intensity was at test start and after 14 days.

Analytical control measurements of the actual concentration of AMPA were performed by means of LC/MS-MS analysis at test start, after 14 and 21 days (after recovery phase).

3. Statistical calculations: The  $EC_{10}$ ,  $EC_{20}$  and  $EC_{50}$  and its 95 % confidence interval were calculated by Probit analysis modified for continuous data. The NOEC values were determined by calculation of statistical significance using one-way analysis of variance (ANOVA), followed by Dunnett's t-test or Welch's t-test (p = 0.05).

# II. RESULTS AND DISCUSSION

#### A. FINDINGS

Analytical data: Analytical control measurements of the actual concentration of AMPA were performed at test start, after 14 and 21 days (after recovery phase). The measured concentrations ranged from 75.5 – 102 % of nominal. Therefore the test was evaluated using the geometric mean measured concentrations. Measured concentrations of AMPA in the macrophyte growth inhibition test are depicted below.

Table 8.2.7-40: Analytical results

	Test start 14 d growth test		End of test 14 d	Mean measured	
Nominal [mg/L]	Measured [mg/L]	% of nominal	Measured [mg/L]	% of nominal	[mg/L]
Control	& TOO?	-	<loq< td=""><td>-</td><td>&lt; LOQ</td></loq<>	-	< LOQ
1.0	8 21.92	101.7	0.76	76.4	0.88
2.6	ii jii <b>3</b> .49	95.8	1.99	76.6	2.23
6.4	6.09	95.2	4.85	75.7	5.43
16	15.5	96.6	13.2	82.2	14.26
40	g 40.0	100.0	34.4	86.1	37.13
100	98.3	98.3	91.1	91.1	94.61

LOQ = limit of quantification = 0.5 mg/L

The EC₅₀ and NOEC values after 14-day growth inhibition test are given below based on geometric mean measured concentrations.

M-CA, Section 8

Page 445 of 847

**Table 8.2.7-41: 14-day endpoints** 

		ilot,		
Endpoint	14 Day EC ₁₀	14 Day EC20	14 Day EC ₅₀	14 Day
Shoot length/relative increase	1.3 (0.2-3.2)	5.8 (2.1-10.4)	103.31 (54.8-337)	્રેવે ફેર્
Shoot length/growth rate	6.1 (2.2-10.6)	22.5 (13.7-33.1)	> 94.6	£ 4.3
Fresh weight/relative increase	19.7 (11.3-26.9)	30.6 (21.0-38.3)	<b>70.8</b> (59.4-87.7)	14.3
Fresh weight/ growth rate	24.2 (14.5-32.2)	39.0 (28.4-47.5)	97.3 (81.8-126)	14.3
Dry weight/relative increase	33.9 (17.7-44.9)	42.0 (25.7-53.2)	63.2 (49.0-79.2)	37.1
Dry weight/ growth rate	38.4 (22.2-49.1)	47.6 (31.6-58.1)	72.0 (59.4-83.6)	37.1
Root length/relative increase	5.1 (4.0-6.2)	9.5 (7.9-11.0)	31.1 (28.1.34.6)	5.4
Root length/growth rate	17.0 (14.9-19.0)	35.9 (33.2-38.5)	150.1 (136.1-168.1)	5.4

Root length/relative increase	5.1 (4.0-6.2)	9.5 (7.9-11.0)	31.1 (28.1 34.6)	5.4		
Root length/growth rate	17.0 (14.9-19.0)	35.9 (33.2-38.5)	150.1 (136.1-168.1)	5.4		
1 extrapolated, highest test concentration was 94.6 mg AMPA/L 2 95% confidence intervals presented in brackets.						
The EC ₅₀ and NOEC values after 7 day recovery period are given below based on geometric mean measured concentrations.  Table 8.2.7-42: 7-day recovery endpoints						
Endpoint		AMPA	[mg/L] ¹			
	7 Day EC10	Day EC20	7 Day EC ₅₀	7 Day NOEC		
Shoot length/relative increase	7 Day EC ₁₀ 5.4 (0-15.7)	7 Day EC20	7 Day EC ₅₀ 78.2 (34.2-6082.1)	<b>7 Day NOEC</b> 37.1		
Shoot length/relative increase Shoot length/growth rate		20		-		
	5.4 (0-15.7)	13.5 (0.1-31.1)	78.2 (34.2-6082.1)	37.1		
Shoot length/growth rate	5.4 (0-15.7)	13.5 (0.1-31.1) 16.0 (0.2-35.3)	78.2 (34.2-6082.1) 92.8 (41.9-8310.6)	37.1 37.1		
Shoot length/growth rate Fresh weight/relative increase	5.4 (0-15.7) 6.4 (0-15.6) 1.4 (0-4.8) 1.3 (0-5.1)	13.5 (0.1-31.1) 16.0 (0.2-35.3) 3.0 (0-8.1)	78.2 (34.2-6082.1) 92.8 (41.9-8310.6) 12.6 (2.5-79.7)	37.1 37.1 5.4		
Shoot length/growth rate Fresh weight/relative increase Fresh weight/ growth rate	5.4 (0-15.7) 6.4 (0-13.6) 1.4 (0-4.8) 1.3 (0-5.1) 7.3 (	13.5 (0.1-31.1) 16.0 (0.2-35.3) 3.0 (0-8.1) 3.2 (0-8.7)	78.2 (34.2-6082.1) 92.8 (41.9-8310.6) 12.6 (2.5-79.7) 13.6 (2.8-87.3)	37.1 37.1 5.4 5.4		
Shoot length/growth rate Fresh weight/relative increase Fresh weight/ growth rate Dry weight/relative increase	5.4 (0-15.7) 6.4 (0-15.6) 1.4 (6-4.8)	13.5 (0.1-31.1) 16.0 (0.2-35.3) 3.0 (0-8.1) 3.2 (0-8.7) n.d.	78.2 (34.2-6082.1) 92.8 (41.9-8310.6) 12.6 (2.5-79.7) 13.6 (2.8-87.3) ≥ n.d.	37.1 37.1 5.4 5.4 ≥ 94.6		

¹ 95% confidence intervals presented in brackets.

#### B. OBSERVATIONS

There was a concentration dependent effect on growth, fresh and dry weight of Myriophyllum aquaticum. Growth and fresh weight was significantly reduced at >14.3 mg AMPA/L. In the subsequent recovery test show it is to the state of the it was shown that Myriophyllum aquaticum, pre-exposed to up to 5.4 mg AMPA/L were able to recover in untreated culture medium after a 7 day recovery period.

n.d.: not determined due to mathematical reasons or inappropriate data

Table 8.2.7-43: Percentage of inhibition of shoot length of *Myriophyllum aquaticum* exposed for 14 days to AMPA

Tost navameters	AMPA [mg/L]					
Test parameters	0.88	2.23	5.43	14.26	37.13	94.61
Inhibition of shoot length increase (%)	20.8	16.8	12.5	16.7	40.8	54.3
Inhibition of shoot length growth rate (%)	11.7	9.2	6.4	9.0	26.4	<u>రే 38.0</u>
Inhibition of fresh weight increase (%)	-14.1	-15.2	-7.0	-10.9	29,0,5	60.2
Inhibition of fresh weight growth rate (%)	-9.0	-9.4	-3.9	-6.9	S20.8	48.3
Inhibition of dry weight increase (%)	-47.5	-45.6	-7.1	1.450	4.6	79.9
Inhibition of dry weight growth rate (%)	-28.9	-26.5	-4.9	J4.68	-2.1	71.2
Inhibition of root length increase (%)	-13.1	-8.8	15.7	£ 26.4°	55.0	79.3
Inhibition of root length growth rate (%)	-3.5	-2.5	4.20	j [©] j <del>ð</del> .7	20.4	39.5

The study fulfils the validity criteria as stated in the study plan which follows the criteria established by the AMRAP working group; with an increase of biomass (shoot length) in controls was > 50 %, indicating that continuous growth was supported throughout the test duration. Furthermore, constant maintenance of temperature ( $20 \pm 2$  °C) was also achieved.

# III. CONCLUSIONS

# Assessment and conclusion by applicant:

The EC50 and NOEC values after 14-day growth inhibition test are given below based on geometric mean measured concentrations.

The 14-d ErC50 value for dry weight was 72.0 mg AMPA/L, fresh weight was 97.3 mg AMPA/L and for shoot length > 94.6 mg AMPA/L.

for shoot length > 94.6 mg AMPA/L. The study is considered valid so the following EC50 and NOEC can be used for risk assessment purposes:

Endpoint in AMPA	14 Day EC ₅₀ [mg/L]	14 Day NOEC [mg/L]
Shoot length/relative increase	103.31	14.3
Shoot length/growth rates Shoot length/growt	> 94.6	14.3
Fresh weight/relative increase	70.8	14.3
Fresh weight/ growth rate	97.3	14.3
Dry weight/relative increase	63.2	37.1
Dry weight/ growth rate	72.0	37.1
Root length/relative increase	31.1	5.4
Root length/growth rate	150.1*	5.4
1 extrapolated, highest test concentration was 94.6 m	ng AMPA/L	•

# Assessment and conclusion by RMS:

Page 448 of 847

1.	Information	on	the	stud	y

1. Information on the stud	S S
Data point:	CA 8.2.7/012
Report author	
Report year	2011
Report title	HMPA (hydroxymethylphosphonic acid): A 7-Day Static-Renewal Toxicity Test with Duckweed ( <i>Lemna gibba</i> G3)
Report No	139A-397
Document No	- <u>**</u> *********************************
<b>Guidelines followed in study</b>	OPPTS 850.4400, ASTM Standard Guide 1415 91 E (1991) OECD Guideline 221 (2006)
Deviations from current test guideline	Deviation from guideline OECD 221 (2006); none
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes Store of the second
Acceptability/Reliability	Valid
Category study in AIR 5 dossier (L docs)	Category 2a

#### 2. **Full summary Executive Summary**

The effects of HMPA (hydroxymethylphosphonic acid) on growth of Lemna gibba G3 were evaluated in a 7-day static-renewal toxicity test at nominal concentrations of 7.5, 15, 30, 60, and 120 mg HMPA/L, corresponding to mean measured concentrations of 7.4, 15, 30, 60 and 123 mg HMPA/L, respectively. A negative control was prepared in parallel. Three replicates were prepared per control and test item treatment using four plants (totalling 12 fronds) per replicate, each. The pH of the 20X AAP test medium was adjusted to 7.6 with 0.1 N NaOH. Renewal of the test media was performed on day 3 after test initiation. Direct counts of number of fronds were conducted on day 3, 5 and 7. Observations of chlorosis, necrosis, breakup of duckweed colonies, root destruction, death and any other abnormalities in plant or frond appearance were also performed at those times. Dry weight was determined at the beginning (representative sample) and at the end of the test (each vessel). EC₅₀ values were calculated based on replicate frond counts, biomass and growth rates based on front counts and biomass on day 7 of the test. Analysis of the test concentration was carried out at test initiation, on day 3 and at test termination on day 7. The mean measured content of the test item ranged between 99 and 103% of nominal concentrations. HMPA was not detected in the control group.

Percent inhibition of frond growth in the 7.4, 15, 30, 60 and 123 mg HMPA/L treatment groups at test termination was 9,815,-1, -7 and -20 %, respectively. Percent inhibition of growth rate based on frond and -8 %, respectively. Percent inhibition biomass in the 7.4, 15, 30, 60 and 123 mg HMPA/L treatment groups at test termination was -13, -25, -15, -20 and -33 %, respectively. Percent inhibition of growth rate based on biomass in the 7.4, 15, 30, 60 and 123 mg HMPA/L treatment groups at test termination was -5, -9, -6, -8 and -12 %, respectively.

Based on these results, the EC₅₀ for frond number, biomass and growth rates based on frond number and biomass for HMPA was determined to be >123 mg HMPA/L. After 7 days of exposure, there were no apparent treatment-related effects upon growth at any of the concentrations tested. The validity criteria according to guideline OECD 221 are fulfilled.

Since no inhibition effects of HMPA were observed on frond number, frond number growth rate, biomass and biomass growth rate of Lemna gibba after 7 days at all concentrations tested, the EC50 values after 7 days of exposure were all >123 mg HMPA/L, the highest concentration tested. The NOEC was determined to be  $\geq 123$  mg HMPA/L.

Page 449 of 847

#### I. MATERIALS AND METHODS

#### A. MATERIALS

1. Test material:	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Test item:	HMPA (hydroxymethylphosphonic acid)		
Description:	Solid		
Lot/Batch #:	GLP-1003-20448-A		
Purity:	97.0%		
2. Vehicle and/or positive control:	Positive control: none		
3. Test organism:			
Species:	Lemna gibba G3, up to 7 days old		
Source:	In-house culture		
4. Environmental conditions:			
Temperature:	23.7 – 25.4 °C		
Light intensity:	Continuous illumination, 4410 - 5250 lux		
pH:	7.1 - 8.0 at test start, $8.8 - 9.0$ at test termination		
Hardness:	20.88 mg (12 HPQ4/L)		
5. Dates of experimental work	June 10th 10 June 19th 2010		

B. STUDY DESIGN AND METHODS

1. Experimental treatments: On the basis of the results of a range finding test, the definitive test was performed at five concentration levels, 7.8, 45.30, 60, and 120 mg HMPA/L with 3 replicates per test concentration. Three control replicates (without test substance) were tested under the same conditions. Four plants totalling 12 fronds were added to each replicate test chamber. The plants were placed in 250 mL test vessels containing 100 mL 20X-AAP test media. The pH of the test medium was adjusted with 0.1N NaOH prior to the test. The test was conducted under a 7-day static-renewal test conditions. The renewal of the test media was performed on day 3 after test initiation.

#### 2. Observations:

Biological data: The toxicity of HMPA to duckweed was determined by direct counts of frond numbers and observations for choosis, necrosis, dead fronds and frond appearance were made on Days 3, 5 and 7. Dry weight was measured at the beginning of the test on a representative sample from the culture used to initiate the test. At the end of the test, dry weight was determined from each test vessel.

Physical data: The privalues were measured on day 0, 3, and 7. Temperature was measured continuously and recorded twice daily. Samples of the test solutions were collected from new solution of each experimental group at the beginning of the test, from new solutions and pooled old solutions at the end of the renewal period on Day 3, and from pooled test solutions at test termination to determine test substance

All test concentrations and control counts; biomass and growth rates based on trond counts and biomass are based on descriptive analysis of the data. The NOEC values were determined by calculation of statistical significance using one-way analysis of variance (ANOVA) and Dunnett's test for inhibition of frond number and biomass dry weight, respectively, at  $\alpha = 0.05$ . II. RESULTS

Interval and biomass are based on descriptive analysis of the data. The NOEC by calculation of statistical significance using one-way analysis of variance (ANG) for inhibition of frond number and biomass dry weight, respectively, at  $\alpha = 0.05$ .

#### A. FINDINGS

Analytical data: In freshly prepared test media the recovery of the active substance ranged between 92.5% and 103 %. In the aged test media (7 days old), 104 % to 110 % of the active substance was recovered. Samples from new and old test solution at Day 3 renewal ranged from 90.1 to 101 % and 96.9 to \$10.00%, respectively. The overall mean measured concentrations were within the range of 80 to 120 % of nominal however, the results were based on mean measured concentrations.

Table 8.2.7-44: Analytical results

Nominal concentration [mg HMPA/L]	7.5	15	30	60°	120
Day 0 concentration (fresh)	7.61	15.3	30.8	56.2	111
Day 3 concentration (spent)	6.89	14.3	27.00	55.3	121
Day 3 concentration (fresh)	7.36	14.5	30.0	64.3	126
Day 7 concentration (spent)	7.84	16.0	8 32.5	64.8	132
Mean measured [mg HMPA/L]	7.4	15 3	30	60	123
% of nominal	99	100	100	100	103

The overall mean measured concentrations were within the range of 80 to 120 % of nominal however, the results were based on mean measured concentrations. The EC₅₀ and NOEC values are given below based on mean measured concentrations.

Table 8.2.7-45: Endpoints

Endpoint ME COLOR	mg HMPA/L
EC _{50, frond number} (7 day)	>123
NOEC _{frond number} (7 day)	≥123
EC _{50, biomass} (7 day)	>123
NOEC biomass (7 day)	≥123
EC ₅₀ , growth rate (frond number) (7 day)	>123
NOEC growth rate (frond number) (Fday)	≥123
EC 50, growth rate (biomass) (7 day)	>123
NOEC growth rate (biomass) 7 days	≥123

# **B. OBSERVATIONS**

Observations: None of the parameters recorded, i.e. frond number, biomass, growth rate based on front number and growth rate based on biomass was found to be significantly different from the control (Dunnett's t-test [ $\alpha = 0.05$ ]); see the table below.

Table 8.2.7-46: Frond numbers and inhibition values of Lemna gibba G3 after 7 days of exposure to HMPA

Test item	Control		HN	IPA [mg/L	]	· Call
Nominal concentrations [mg HMPA/L]	-	7.5	15	30	60	3120
Mean measured concentrations [mg HMPA/L]	-	7.4	15	30	60	23
Mean frond number	145	158	166	147	156	174
Mean inhibition [%]	-	-9	-15	-1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	-20
Mean biomass [mg]	16.73	18.90	20.93	19.17	<b>2</b> 9.10	22.20
Mean inhibition [%]		-13	-25	A 5/1/2	-20	-33
Mean growth rate based on frond number	0.3531	0.3681	0.3751	© 0.9564	0.3656	0.3818
Mean inhibition [%]	-	-4	-6 20	10 10 -1	-4	-8
Mean growth rate based on biomass	0.3494	0.3679	0.3821	0.3699	0.3763	0.3909
Mean inhibition [%]	-	-5	11/1/2019	-6	-8	-12

The doubling time of frond numbers in the control was less than 2.5 days (1.96 days), corresponding to approximately a twelve-fold increase after seven days. The validity criteria according to the current guideline OECD 221 are therefore fulfilled.

# III. CONCLUSIONS

#### Assessment and conclusion by applicant:

The EC50 and NOEC values are given below based on mean measured concentrations.

Since no inhibition effects of HMPA was observed on the frond number, frond number growth rate, biomass and biomass growth rate of Lemma gibba G3 after 7 days at all concentrations tested, the EC50 values for frond number, frond number growth rate, biomass and biomass growth rate were all >123 mg HMPA/L, the highest concentration tested. The NOEC was determined to be ≥123 mg HMPA/L. The EC50 values for frond number frond number growth rate, biomass and biomass growth rate were all >123 mg HMPA/L, the highest concentration tested. The NOEC was determined to be ≥123 mg HMPA/L.

The validity criteria according to the current guideline OECD 221 were met and this study is considered valid for risk assessment purposes.

# Assessment and conclusion by RMS:

# Information on the study

	Data point:	CA 8.2.7/013
	Report author	Yanhui, T et al.
, s	Report year	2015
	Report title	Growth inhibition of two herbicides on Spirodela polyrhiza
,10 nd	Document No	ISSN: 1002-5480
	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul
. %.		

Guidelines followed in study	OECD 221	
<b>Deviations from current test</b>	Not reported	
guideline		
GLP/Officially recognised	No, not applicable	,
testing facilities		Š
Acceptability/Reliability:	Yes/Reliable with restrictions	24.5
	·	10 10

#### Full summary

The inhibitory activities of glyphosate on the aquatic macrophyte Spirodela polyrhiza, were studied in the laboratory by using quantity of the thallus as test indicator. The effects of glyphosate were tested in a semistatic exposure of 7 days at concentrations between 8.4 and 20.902 mg/L. The results showed that glyphosate had remarkable effects on the growth inhibition of Spirodela polyrhiza, and the inhibitory rate increased with higher concentrations. The 168 hour-EC₅₀ value was determined to be 12.817 mg/L.

Materials and Methods

Test materials and culture

The tested organism, Spirodela polyrhiza, was introduced from Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences.

The Spirodela polyrhiza was placed in a crystal dish with the volume of 300 mL (10 × 5cm). The Swiss standard (SIS) culture medium was added (see table below). The light was 9000 - 10 000 lx incandescent light, the temperature was  $24 \pm 2$  °C, and the culture medium was replaced every 7 days to maintain the stability of the concentration of the nutritional ingredients in the solution. It can only be used in the experiment after 14 days of continuous pre-culture. Before the experiment, enough 4-leaf Spirodela polyrhiza with good shape and similar shape and size were selected to carry out the experiment. The above experimental operations should be carried out in an ultra-clean work table to prevent culture medium Main instruments and test reagents for the test

Main instruments and reagents

Intelligent artificial all

Intelligent artificial climate box PRX-350B (Ningbo Saifu Experimental instrument Co., Ltd.), super clean worktable VS-1300L-U (Sujing Antai), biosafety cabinet BHC-1300 II A/B3 (Suzhou Antai); Glyphosate 96.8 % original drug (provided by Ministry of Agriculture Pesticide Inspection Institute), Dimethylformamide (Analytical Reagent, Beijing Chemical Plant), Twin 80 (Analytical Reagent, Beijing Chemical Plant)

Table 8.2.7-47: (SIS) culture medium component

Storage solution serial No.	Reagent	Storage solution concentration (g/L)	Concentration of culture medium (mg/L)
A is it is	NaNO ₃	8.5	85
7,10,80	$\mathrm{KH_{2}PO_{4}}$	1.34	13.4
B Silis	MgSO ₄ 7H ₂ O	15	75
C & &	CaCl ₂ ·2H ₂ O	7.2	36
Ď. Ž	Na ₂ CO ₃	4	20
Œ (c	Na ₂ EDTA·2H ₂ O	0.28	1.4
6.5	FeCl ₃ ·6H ₂ O	0.17	0.84
. F	H ₃ BO ₃	1	1
10° 30°	CuSO ₄ 5H ₂ O	0.005	0.005
	ZnSO ₄ 7H ₂ O	0.05	0.05
S S S S S S S S S S S S S S S S S S S	MnCl ₂ 4H ₂ O	0.2	0.2
	Na ₂ MoO ₄ 2H ₂ O	0.01	0.01
6	Co(NO ₃ ) ₂ 6H ₂ O	0.01	0.01

All storage solutions shall be kept in refrigerated and dark conditions, and the storage solution AE can be kept for 6 months, while the reserve liquid F can only be kept for 1 month. Prepare 1LSIS medium, take 10 mL stock solution A, 5 mL storage

solution B~E, 1 mL stock solution F into volumetric flask, add 900 mL distilled water, adjust pH to 6~7 with 1 mol/L HCl, and then use distilled water to 1L.

Allocation of test mother liquid: 0.1 g glyphosate was obtained by dissolving it in aseptic water, and the volume was fixed to 100 mL capacity bottle. And then 1 000 mg/L and the obtained. After sealing the above liquid with sealing film, put it in the refrigerator at 4°C for farther test.

#### Experimental Design

On the basis of the pre-test, a series of concentration gradients are set according to the equal ratio difference. The concentrations of glyphosate were 8.4, 10.08, 12.096, 14.515, 17.418, 20.902 and and solvent control group and blank control group. 200 mL (height > 2cm) culture solution containing different concentrations of glyphosate was added to the crystal dish with diameter 10 cm. Three selected Spirodela polyrhizas were put into the above toxic solution, sealed with an aseptic culture container ligated with a rubber band. 3 repeats were set up in each treatment, and finally they were randomly placed in an artificial climate box. The experimental conditions were consistent with the pre-culture conditions. In order to maintain the concentration of the test solution, semi-static culture was used in this experiment. PH was measured before replacing the culture test solution on the 3rd and 5th day, respectively. All the above operations should be operated under aseptic conditions to prevent culture medium pollution. The test period was seven days. After the experiment was over, the average specific growth rate worth blank control was calculated, and the growth inhibition percentage of each treatment group was associalculated.

Test Index
The number and growth condition of Spirodela polyrhizarin each treatment group were recorded every 2 days, and whether the culture medium was normal or not was also recorded. All clearly visible leaves should be counted. The increase of the number of Spirodela polyrhiza leaves indicated its growth, and the difference between each concentration group and the control group indicated the toxic effect.

#### Data Processing

*The average specific growth rate* ( $\mu$ )

The average specific growth rate in a specific period is to calculate the growth variables (leaf number, total leaf area) during the logarithmic growth period, and the following formula is used to calculate each repetition of the control and treatment.

$$I = \frac{\mu_c - \mu_t}{100\%}$$

Sandilling μ_c
In this: I - Average specific growth inhibition rate, %;

μ_c - control group μ mean value

μ_t - control group μ mean value

#### **Results**

In the process of effectiveness analysis, the solvent control group grew well and the solvent content was less than 100 µL/L In addition, the pH variation range (0.6 - 1.2) was not more than 1.5 before and after the replacement of the Spirodela polyrhiza culture solution. The average specific growth rates of leaf bodies in each blank treatment group were calculated to be 0.294 d⁻¹ and 0.317 d⁻¹, respectively, both > 0.275 d⁻¹. The average specific growth rate of leaves in each blank treatment group was 0.294 d⁻¹ and 0.317 d⁻¹, respectively. The above test results meet the requirements of Spirodela polyrhiza growth inhibition test in OECD, and the test system is effective.

Effect of glyphosate on the growth of Spirodela polyrhiza can be seen from the Figure below. Within acceptain range, the herbicide can inhibit the growth of Spirodela polyrhiza, and with the increase of the Sconcentration of the test solutions, the inhibition effect is strengthened.

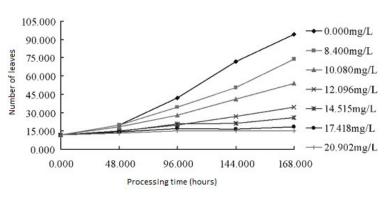



Figure 8.2.7-1: Inhibition of different concentrations of glyphosate on the growth of Spirodela The growth inhibition rates of glyphosate on the leaves of Spirodela polyrhiza can be seen from the table

below. The coefficient of variation of each treatment group changed a bit, and the growth inhibition rates on the leaves of Spirodela polyrhiza showed significant differences at different concentrations of the test solution. Within a certain range, the growth inhibition rates on the Leaves of the Spirodela polyrhiza increased with the increase of the concentration of the test solution.

Table 8.2.7-48: Inhibition rate of different concentrations of glyphosate on the growth of Spirodela polyrhiza

Treatment concentration	Coefficient of variation	Inhibition rate of growth*I
(mg/L)	<b>⊘</b> (%) ∅	(%)
0.000	£ 15359	$0.000 \pm 0.231$ g
8.400	2,707	$11.650 \pm 0.406$ f
10.080	£ 0 d.231	$26.926 \pm 0.153e$
12.096	£ 5.600	$48.512 \pm 0.489d$
14.515	4.980	$62.456 \pm 0.317c$
17.418	5°4° 5° 7.070	$78.548 \pm 0.257$ b
20.902	15.230	$88.113 \pm 0.307a$

^{*} indicates growth inhibition rate ± standarderror. In the same column of data, the same letter indicates that there is no significant difference at 0.05 level (P = 0.05).

difference at 0.05 level (P = 0.05). The EC₅₀ of glyphosate on the leaves of duckweed was calculated by using "SPSS Statistics 17.0" software. The EC₅₀, 95% confidence interval and linear equation of glyphosate for Spirodela polyrhiza were calculated (see table below). It can be seen from the correlation coefficient of the linear equation that the growth inhibition rate of the two herbicides on the Spirodela polyrhiza is a good linear relationship with the concentration of the test solution. The EC₅₀ of glyphosate to the Spirodela polyrhiza was 12.817 mg/L.

Table 8.2.7-49. Inhibitory medium concentration of glyphosate

	Test solution	EC ₅₀ (mg/L)	EC ₅₀ 95% confidence interval	Linear equation
	Glyphosate	12.817	12.256 - 13.388	$y = 5.928x - 6.567 R^2 = 0.993$
The Man And And And And And And And And And An	Conclusion			
NS OF TO DE	Glyphosate Renewal Group	AIR 5 – July 2020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

The results showed that glyphosate had remarkable effects on the growth inhibition of Spirodela polyrhiza, and the inhibitory rate increased with higher concentrations. The 7 day-EC₅₀ value was determined to be 12.817 mg/L.

#### III. CONCLUSIONS

## Assessment and conclusion by applicant:

The effects of glyphosate to the aquatic macrophyte Spirodela polyrhiza was tested single semi-static exposure of 7 days at concentrations between 8.4 and 20.902 mg/L. The 7 day-EC₅₀ value was Short

determined to be 12.817 mg/L.

This study was conducted to guideline but not to GLP. The test concentrations were not analytically verified and thus the exact exposure concentrations of the aquatic macrophyte are unknown. Therefore, the study should considered as reliable with restrictions.

6,8.0

CA 8.2.8 Further testing on aquatic organisms

Additional testing is not required considering the studies provided above.

Literature articles and peer-reviewed published data. Literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate on aquatic organisms are summarised in the table below. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. Each literature article summary is presented below according to the respective annex point. For discussions of literature regarding toxicity to amphibians, please refer to document M-CP Section 10.1 and 10.2.

Literature on aquatic organisms **Table 8.2.88-1** 

Annex point	Study	Study type	Substance(s)	Status	Remark
CA 8.2.8/001	Daam et al., 2019 Lethal toxicity of the herbicides acetocklor, anetryn, glyphosate and metribuzin to tropical frog farvae	OECD 241. ASTM E1439-12.	Glyphosate	Reliable with restrictions	Acute toxicity of glyphosate to larvae of <i>Physalaemus cuvieri</i> and <i>Hypsiboas pardalis</i> . The LC ₅₀ for <i>Physalaemus cuvieri</i> and <i>Hypsiboas pardali</i> was determined to be 115 mg a.s./L and 106 mg a.s./L, respectively.

A summary is provided below.

## Information on the study

Data point:	CA 8.2.8/001
Report author	Daam, M.A. et al.

Report year	2019
Report title	Lethal toxicity of the herbicides acetochlor, ametryn, glyphosate
	and metribuzin to tropical frog larvae
Document No	doi.org/10.1007/s10646-019-02067-5
	ISSN: 0963-9292
Guidelines followed in study	OECD (2015) Test No. 241: the larval amphibian growth and
	development assay
	ASTM (2013) Standard guide for conducting the frog embryo
	teratogenesis assay-Xenopus (FETAX). ASTM E1439-12
<b>Deviations from current test</b>	Not reported
guideline	
<b>GLP/Officially recognised testing</b>	No, not applicable
facilities	
Acceptability/Reliability:	Yes / Reliable with restrictions

# Full summary of the study according to OECD format 2.

The aim of this study was to evaluate the acute toxicity of the active ingredient glyphosate to tadpoles of two tropical frog species: Physalaemus cuvieri and Hypsiboas pardalis. The calculated 96 h LC50 (median lethal concentration; in mg a.s./L) values for P. cuvieri and II. parcialis were 115 and 106 mg a.s./L, respectively.

Materials and methods

Test species

Three or more egg masses from different parents of Physialaemus cuvieri and Hypsiboas pardalis were

collected from ponds at the Estação Biológica de Boraceia in Salesópolis, South-East Brazil (23°37'59"S, 45°31′59"W), which is located within a non-polluted, protected watershed. Egg masses were transported in sealed plastic bags containing water from the collection site to the laboratory of the School of Arts, Sciences and Humanities in the University of São Paulo. Hatched larvae were kept in 50 L plastic tanks filled with tap water filtered through an activated carbon granular filter. Tank water was renewed every other day. The temperature in the laboratory was controlled at  $25 \pm 2$  °C with natural photoperiod. Larvae were fed daily with a 3:1 ground mixture of rabbit chow (Purina Mills, LLC, USA; ~16% protein) and Tetra Min Fish Flakes (Tetra Werke, Melle, Germany; ~45% protein) ad libitum until the beginning of the experiments. The bioassays were conducted with Gosner stage 25 tadpoles. Only healthy individuals, as judged by external morphology and behavior, were selected for the experiments.

#### Lethality tests

Acute (96 h) bioassays were conducted to evaluate the sensitivity of *P. cuvieri* and *H. pardalis* to the pure active ingredients glyphosate (CAS Number 1071-83-6; Purity 99.2 %; Sigma-Aldrich). A semi-static design was adopted in which test solutions were renewed 48 h after the start of the experiment.

The tests were conducted under the same conditions as those described above, except that animals were not fed during the test. Based on the results of range-finding tests, five logarithmically-spaced test concentrations (all in mg a.i./L) were determined: Glyphosate: 84; 97; 112; 130; 150.

Test concentrations were prepared with stock solutions. Each treatment was conducted in quadruplicate, in which each replicate consisted of a glass jar containing 10 tadpoles in 1 L test solution. Every 24 h, water quality parameters (pH, temperature, conductivity, DO) were recorded using a multi-parameter meter (YSI 556), and dead individuals counted and removed.

#### Data analysis

The 96 h LC50, LOEC (lowest observed effect concentration) and NOEC (no observed effect concentration) were calculated based on the % mortality rates in the different treatments using the statistical programs PROBIT 1.5 and TSK 1.5. In all cases, the most appropriate statistical test was defined depending on the experimental design and the nature of the available data, following the recommendations of EPA. To test for interspecies differences in sensitivity, LC50 values for each compound and species were compared with a Z test using the formula proposed by EPA. Analyses of Variance (ANOVA) followed by post hoc tests were employed to test for treatment effects on physical-chemical variables ( over the experimental period) using the software PAST.

Survival was 100% in all control treatments. Water quality parameters were comparable in control replicates with a cofficient of variation of less than 4% for all parameters (all the control replicates).

The 96 h LC50 values generated and is presented in the table below, whereas the mortality levels of the individual treatments for P. cuvieri and H. pardalis are visualized in the Figures below.

Table 8.2.8-2: LC₅₀ (median lethal concentration; in mg/L) and the 95% confidence interval as determined for larval Physalaemus cuvieri and Hypsiboas pardalis after 96-h exposure to glyphosate.

	Physalaemus cuvieri	Figure	Hypsiboas & Fi	gure
Glyphosate	115 (112–119) ^b	1	106 H (8 + 109) 2	
^b Probit test		CO.		

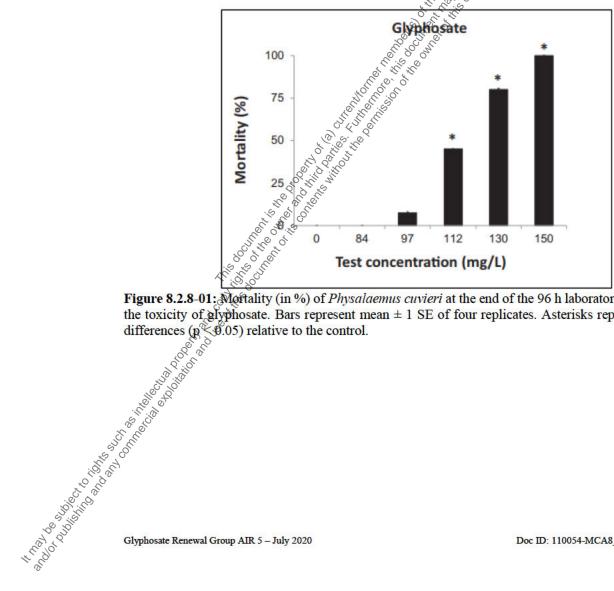



Figure 8.2.8-01: Mortality (in %) of Physalaemus cuvieri at the end of the 96 h laboratory tests evaluating the toxicity of glyphosate. Bars represent mean ± 1 SE of four replicates. Asterisks represent significant

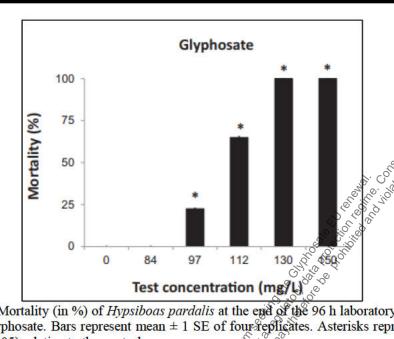



Figure 8.2.8-02: Mortality (in %) of Hypsiboas pardalis at the end of the 96 h laboratory tests evaluating the toxicity of glyphosate. Bars represent mean  $\pm$  1 SE of four replicates. Asterisks represent significant 1.10 differences (p < 0.05) relative to the control.

#### Conclusion

The LC50 for Physalaemus cuvieri and Hypsiboas pardelli was determined to be 115 mg a.s./L and 106 mg 100 a.s./L, respectively.

#### 3. Assessment and conclusion

Assessment and conclusion by applicant. de. The study investigated the acute toxicity of phosate to larvae of *Physalaemus cuvieri* and *Hypsiboas* pardalis. The LC50 for Physalaemus @vieri and Hypsiboas pardali was determined to be 115 mg a.s./L and 106 mg a.s./L, respectively.

Ö

The study was conducted according to portions of OECD 241. However, validity criteria were not reported. It is unknown if the larvae were exposed to any other chemicals as no analysis of watershed water was provided. There was no analytical verification of test concentrations reported. The study is considered as reliable with restrictions.

#### CA 8.3 Effects on Arthropods

Studies on effects of the active substance glyphosate on pollinators to fulfil the data requirements according

pollinators to fulfil the data requirements according to pollinator toxicology database has been summarised to evaluate acute and lot term toxicity of glyphosate and glyphosate salts. The results of these studies demonstrate that glyphosate and glyphosate salts are of low acute and long-term toxicity to honeybees and other pollinator species.

Glyphosate Renewal Grant Glyphosate Renewal Glyphosate Renewa An extensive regulatory pollinator toxicology database has been summarised to evaluate acute and longtemproxicity of glyphosate and glyphosate salts. The results of these studies demonstrate that glyphosate And Control of the Co

#### CA 8.3.1.1 Acute toxicity to bees

Studies considering the effects of glyphosate on pollinators were assessed for their validity to current and relevant guidelines for glyphosate and are presented in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are presented in this section below.

**Table 0-1:** Studies on acute oral and contact toxicity of glyphosate to pollinators

Annex point	Study	Study type	<b>Test species</b>	Substance(s)	Status 0	Remark
CA 8.3.1.1.1/001	, 2003	Acute oral	Apis mellifera L.	Glyphosate K-salt	Valid	-
CA 8.3.1.1.1/002	1998	Acute oral	Apis mellifera L.	Glyphosate acid	Valid	-
CA 8.3.1.1.1/003	, 1996	Acute oral	Apis mellifera L.	Glyphosate	Valid	-
CA 8.3.1.1.1/004	, 1995	Acute oral	Apis mellifera L.	Glyphosate acid	Valid	-
CA 8.3.1.1.1/005	, 1995	Acute oral	Apis mellifera L.	Glyphosate	Valid	-
CA 8.3.1.1.1/006	,1972	Acute oral	Apis mellifera L	Glyphosate technical and IPA-salt	Invalid	control mortality >10%
CA 8.3.1.1.1/007	, 2017a	Acute oral	Bombus S terrestris	Glyphosate IPA- salt	Valid	-
CA 8.3.1.1.2/001	, 2003	Acute contact	Apis mellifera L	Glyphosate K- salt	Valid	-
CA 8.3.1.1.2/002	, 2000	Acute contact	Apis mellifera L.	Glyphosate isopropylamine salt	Valid	-
CA 8.3.1.1.2/003	1998	contact :	Apis mellifera L.	Glyphosate acid	Valid	-
CA 8.3.1.1.2/004	1996	Acute Contact	Apis mellifera L.	Glyphosate	Valid	-
CA 8.3.1.1.2/005	1995	Acute contact	Apis mellifera L.	Glyphosate acid	Valid	-
CA 8.3.1.1.2/006	1995	Acute contact	Apis mellifera L.	Glyphosate	Valid	-
CA 8.3.1.1.2/007	1995 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Acute contact	Apis mellifera L.	Glyphosate technical and IPA-salt	Invalid	control mortality >10%
CA 8.3.1.1.2/008	, 2017a	Acute contact	Bombus terrestris	Glyphosate IPA- salt	Valid	-
CA 8.3.1.1.2/009	, 2017b	Acute contact	Osmia bicornis	Glyphosate IPA- salt	Valid	-

There are no literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the acute impact of glyphosate or its relevant metabolites on pollinator species. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to

species, please refer to document species, please refer to document is often formulated as a salt. Ecotoxicological studies have been conducted with various forms of glyphosate, namely IPA salt, K-salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been conducted with various forms of glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been conducted with various forms of glyphosate.

equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate or glyphosate technical are automatically expressed as acid equivalent

Table 0-2: Endpoints: Acute or al. 2.

	Reference	Test item	Species	Test design/ GLP	LD ₅₀ (µg a.e./bee)	NQED (frg a.e./bee)
	2003 CA 8.3.1.1.1/001	Glyphosate K- salt	Apis mellifera L.	Acute oral, 48 h	7OU.	-
	, 1998 CA 8.3.1.1.1/002	Glyphosate acid	Apis mellifera L.	48 h	6 2	≥182
	, 1996 CA 8.3.1.1.1/003	Glyphosate	Apis mellifera L.	Acute oral 48 h	>40	-
	, 1995 CA 8.3.1.1.1/004	Glyphosate technical	Apis mellifera L.	Acute oral,	>200	-
	, 1995 CA 8.3.1.1.1/005	Glyphosate	Apis mellifera L.	Acute oral,	116.67	-
	r, 2017 CA 8.3.1.1.1/007	Glyphosate IPA- salt	Bombus terrestris	Acute oral,	>412	≥412
	2003 CA 8.3.1.1.2/001	Glyphosate K- salt	Apis mellifera L.	Acute contact, 48 h	>100	-
	, 2000 CA 8.3.1.1.2/002	Glyphosate IPA- salt	Apis mellifera L.	Acute contact, 48 h	>61.3	-
	, 1998 CA 8.3.1.1.2/003	Glyphosate acid	Apis mellifera L.	Acute contact, 48 h	>103	-
	1996 CA 8.3.1.1.2/004	Glyphosate	Apis meltifera L.	Acute contact, 48 h	>20	-
	, 1995 CA 8.3.1.1.2/005	Glyphosate technical	Apis mellifera L.	Acute contact, 48 h	>200	-
	, 1995 CA 8.3.1.1.2/006	57,00	Åpis mellifera L.	Acute oral, 72 h	100	-
	2017 CA 8.3.1.1.2/008	Glyphosate JPA-	Bombus terrestris	Acute contact, 48 h	>461	≥461
	, 2017 CA 8.3.1.1.2/009	Glyphosate IPA-	Osmia bicornis	Acute contact, 48 h	>461	≥461
	a.e.: acid equivalents Endpoints in <b>bold</b> is used for ris  Study summaries are provided by the state of the	assessment				
So of the late of	Glyphosate Renewal Group AIR 5 – J	uly 2020		Doc ID: 1100	)54-MCA8_GRG	_Rev 1_Jul_2020

#### CA 8.3.1.1/1 Acute oral toxicity

#### 1. Information on the study

Data point	CA 8.3.1.1.1/001
Report author	10 mil
Report year	2003
Report title	Laboratory bioassays to determine acute oral and contact
	toxicity of MON 78623 to the honeybee, Apis mellifera
Report No	MON-02-10
Document No	-
<b>Guidelines followed in study</b>	EPPO guideline 170 (1992)
<b>Deviations from current test</b>	Deviations according to guideline OECD 213(1998):
guideline	Minor:
	- Relative humidity was slightly above the recommended range
	- No mortality assessment at 4 hours.
Previous evaluation	Yes, accepted in RAR (2015) 5 5
<b>GLP/Officially recognised testing</b>	Yes
facilities	
Acceptability/Reliability	Valid E E
Category study in AIR 5 dossier	Category 2a
(L docs)	% % %°

2. Full summary
Executive Summary
In a laboratory study, the acute oral toxicity of Exphosate K-salt to the honey bee, Apis mellifera L., was established. Following a range finding test, a definitive test was conducted exposing worker bees to nominal doses of 100 µg glyphosate acid equivalent bee.

Five replicate cages each containing 10 bees (50 bees per control or test group) were prepared for the test item treatment and for the control (50% sucrose only- no test substance). There were three replicates for each of the five reference item treatment groups also prepared. Mortality and sub-lethal effects were assessed 1, 3, 24 and 48 h after test initiation.

At 24 hours, there was a single becomportality in the control group, with two bee mortalities in the 100 µg a.e./bee test group. At 48 hours, there were a further two bee mortalities in the control with a three additional mortalities in the 100 µg a. be group. The overall control corrected mortality for oral toxicity was 4 %. There were no sub-lethal effects observed. All validity criteria according to OECD 213 were fulfilled.

In conclusion, the toxicity of glyphosate K-salt was tested in an acute oral toxicity test on honey bees. The LD₅₀ (48 h) was > 104 µg glyphosate acid equivalent/bee. Sidere Richard Constitution of the Constitutio

The study is considered valid so LD₅₀ >104  $\mu$ g a.e./bee can be used for risk assessment purposes.

# I. MATERIALS AND METHODS

#### A. MATERIALS

#### **Test material:**

Test item: MON 78623 Description: Amber liquid Lot/Batch #:

58 % K salt of glyphosate, equivalent to 47.3 % w/w glyphosate a.e. Purity:

Vehicle for test item: Farmon Blue (87.3% w/w alkyl phenol Vehicle and/or positive control:

ethylene oxide) / Positive control: Dimethoate technical grade

**Test organisms:** 

Species: Honey bee (Apis mellifera L.)

Adult worker bees Age:

Roselea Apiaries, East Wellow, Tampshire Source:

Diet/Food: 50 % w/v aqueous sucrose solution

**Environmental conditions:** 

Temperature: 25 - 26 °C

Humidity: 64 – 79 %

25 – 26 °C 64 – 79 % 24 hours darkness (except during observation) Photoperiod:

22 July 27 July 2002 **Experimental dates:** 

B. STUDY DESIGN

Experimental treatments
A range finding test was conducted using two replicate vessels – each containing 10 bees, at 0.1, 1, 10 and 100 μg a.e//bee and a 50 % w/v sucrose control group.

The definitive test was conducted at a single rate (100 µg test item/bee) and included a single control group (50 % w/v aqueous sucrose solution).

A toxic reference item (dimethoate) test was conducted in parallel at five test rates (0.200, 0.175, 0.150, 0.125 and 0.100 μg a.s./bee and oncluded a 50 % w/v sucrose control group.

Bees were exposed to the test item dispersed in 50% w/v sucrose solution, presented in in narrow glass vials, which were weighed before and after introduction into the three cages per treatment. In the definitive test with MON 78623, at the highest treatment level, the mean dose consumed was 104 µg a.e./bee.

#### **Observations**

Mortality and sub-lethal effects were assessed 1, 3, 24 and 48 h after test initiation.

#### Statistical calculations

Corrected mortality was calculated according to Abbott (1925). LC50 values were determined by Probit analysis and the 95% confidence interval by Chi-square goodness of fit test.

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

Toxicity of glyphosate K-salt to honey bees (Apis mellifera L.) in the oral toxicity test **Table 0-1:** toxicity test

Dose	Mean intake of		Mortal	ity [%]	0 ; S
[µg a.e./bee]	test item [μg a.e./bee]	1	3	24 h	48 h
Sucrose control	-	0	0		6
100	104	0	0	\$\frac{1}{4}\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\chi_0^2\c	10 (4)

In brackets the Abbot corrected mortality is given

B. OBSERVATIONS

No sublethal effects of bees were observed during the 48 hour rest period for the test concentration of 104 µg glyphosate acid equivalent/bee and in the sucrose control. 104 μg glyphosate acid equivalent/bee and in the sucrose control.

The corrected mortality after 48 h was 4%. The determined contact 48h LD₅₀ for the reference item dimethoate was 0.126 µg/bee for oral toxicity. These results are in line with published values, indicating Deviations according to guideline OECD 213(1998): See Sensitivity.

- Relative humidity was slightly above the re-

- Relative humidity was slightly above the recommended range
- No mortality assessment at 4 hours

These deviations are not expected to have a negative impact on the validity of the study.

All validity criteria according to OECD were fulfilled, since the average mortality in the control group did not exceed 10% and the LD₅₀ of the toxic standard meets the specified range.

# III. CONCLUSIONS

# Assessment and conclusion by applicant:

The toxicity of glyphosate acid was tested in an acute oral toxicity test on honey bees. The LD₅₀ (48 h) was >104 μg glyphosate acid equivalent/bee.

The study is considered valid so LD₅₀ >104  $\mu$ g a.e./bee can be used for risk assessment purposes.

	Assessment and conclusion by RMS:	
100 00 00 00 00 00 00 00 00 00 00 00 00		
S B	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

#### 1. Information on the study

Data point	CA 8.3.1.1.1/002
Report author	
Report year	1998
Report title	Glyphosate Acid: Acute Contact and Oral Toxicity to Honey Bees
	(Apis mellifera)
Report No	FN9700
Document No	- B';B'
Guidelines followed in study	EPPO guidelines (1992)
	OPPTS 850.3020 Draft OECD 213 (1997)
	Draft OECD 213 (1997)
<b>Deviations from current test</b>	Deviations from guideline OECD 213 (1998)
guideline	Minor:
	- The starvation of bees before test in triation was 2 h and 10 min,
	instead of 1-2 h.
Previous evaluation	Yes, accepted in RAR (2015)
<b>GLP/Officially recognised testing</b>	Yes
facilities	\$ 35° 6°
Acceptability/Reliability	Valid
Category study in AIR 5 dossier	Category 2a
(L docs)	E S E

#### 2. **Full summary**

#### **Executive Summary**

The acute oral toxicity of glyphosate acid to the honey bee *Apis mellifera* L., was determined in a definitive laboratory test with worker bees exposed to nominal doses of 0.0984, 0.984, 9.84, 103 and 206 µg glyphosate acid /bee, presented in 50 w/v sucrose syrup. A reference treatment (dimethoate) group was also

Three replicate cages, each containing 10 bees were prepared for the control and for each test item group and for the reference group. Mortality and sub-lethal effects were assessed 24 and 48 h after test initiation for oral toxicity.

No sub-lethal effects nor mortality of bees was observed after 48 hours of exposure, in the test item and the control groups. All validity criteria according to OECD 213 were fulfilled.

In conclusion, the 48 hour Lossite texicity value for oral exposure of honeybees to glyphosate acid was determined to be >182 µg test item/bee in the oral toxicity test, with a corresponding NOEL of ≥182 µg test item/bee.

The study is considered valid so LD₅₀ >182 µg a.s./bee and NOEL of  $\geq$ 182 µg a.s./bee can be used for risk assessment purposes

#### I. MATERIALS AND METHODS

# A. MATERIALS

# 1. Test material.

Technical Glyphosate acid Test item:

Description: White powder Lot/Batch #: TSC 0521/05148

Purity: 97.6 %

Descriț
Lot/Batc
Pur

2. Vehicle and/or positive control:
3. Test organisms: Vehicle for positive control: Triton X100

Positive control: Dimethoate (BASF 40 lot 083.10/96)

Species: Honey bee (Apis mellifera L.)

Age: Adult worker bees

Source: Own colony Diet/Food: Not stated

#### **Environmental conditions:**

Temperature:  $25 \pm 1$  °C

Photoperiod: 24 hours darkness (except during observation) 24 August to 04 September 1999

**Experimental dates:** 

B. STUDY DESIGN

Experimental treatments

The definitive test was conducted with 0.0984, 0.984, 9.84, 103 and 206 ag glyphosate acid/bee, dispersed in 50 % w/w or proper property of the first of the f in 50 % w/v aqueous sucrose solution. All test solutions were prepared using an initial stock solution prepared at 103 mg a.s./mL, using deionised water containing 500 mg/k Agral 90. In turn a stock solution at 9.84 mg a.s./mL was prepared and then serially diluted to achieve the required test concentrations. An aliquot of each test concentration (0.5 mL) was diluted to a 10 mL final volume using 50 % w/v sucrose solution. The control group received 50% w/v sucrose solution containing 0.5 mL of the 500 mg/L Agral 90.

In the toxic reference group, dimethoate was added to dejonised containing 1 g Triton X100/L to achieve 3.5 mg a.s./mL stock solution from which a dilution series was prepared. With a control group of bees receiving 50 % w/v sucrose solution containing 0.5 ml. Triton X100.

The bees collected from a local hive, were an aesthetised with carbon dioxide immediately before dosing and counted into the mesh covered petri dishes. Each group of 10 bees were offered control, test item or reference item containing feed solutions (@2 and s) in a glass feeder attached to the mesh cage. The feeders were weighed before and after introduction into the cages. The test was conducted in the dark, with bees held in an incubator at  $25 \pm 1$  °C and  $65.2 \pm 5\%$  relative humidity. Duration of uptake was 4 hours for the test item treatments, with all feeders being replaced with fresh feeders containing only 50 % sucrose Observations
Mortality and sub-lethal effects were assessed 4, 24 and 48 h after test initiation.

# Statistical calculations

Doses and LD₅₀ calculations were based on the analysed content of glyphosate acid. The mortality results were analysed using a probit programme.

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

Table 0-2: Toxicity of glyphosate acid to honey bees (Apis mellifera) in the oral toxicity test

Dose	Mean intake of		Mortality [%]	20 Miles
[µg test item/bee]	glyphosate acid [µg a.s./bee]	24 h	48 h	72.h
Control	-	0	0	B B 0
0.0984	0.0947	0	0	8 7 0
0.984	0.937	0	0 % %	0
9.84	9.7	0	0 0 0	0
103	81	0	W. 6 90	0
206	182	0	6 30 QC	0

#### **B. OBSERVATIONS**

There were no sub-lethal effects nor mortality of bees observed in the 48 hour test period. In the oral toxicity test the maximum nominal test level of 206 µg test item/bee) corresponded to an actual intake of 182 µg a.s./bee.

Deviations according to the current guideline OECD 213:

Deviations according to the current guideline OECD 213

The starvation of bees before test initiation was 2 h and 10 min, instead of 1-2 h. This does not affect the reliability of the study.

All validity criteria according to OECD 213 were fulfilled, since the average mortality in the control group did not exceed 10% and the LD₅₀ of the toxic standard meets the specified range. HT. CONCLUSIONS

# Assessment and conclusion by applicant:

20 0

The toxicity of glyphosate acid was tested in an acute oral toxicity test on honey bees. The LD₅₀ (48 h) was  $> 182 \mu g$  a.s./bee, with a corresponding NOEL of  $\ge 182 \mu g$  a.s./bee.

The study is considered valid so LD₅₀ >182 µg a.s./bee and NOEL of  $\geq$ 182 µg a.s./bee can be used for risk assessment purposes.

# Assessment and conclusion by RMS: The solid so

#### 1. Information on the study

Data point	CA 8.3.1.1.1/003
Report author	911
Report year	1996
Report title	Glyphosate: Acute contact and oral toxicity to honeybees
Report No	1413/3-1018
<b>Document No</b>	
Guidelines followed in study	EPPO Guideline No. 170: Test methods for evaluating the side-
	effects of plant protection products on honeybee (1992)
<b>Deviations from current test</b>	Deviations from guideline OECD 213 (1998):
guideline	Minor:
	- Mortality observation was not assessed at 4 hours
	- Relative humidity exceeded the recommended values
Previous evaluation	Yes, accepted in RAR (2015)
<b>GLP/Officially recognised testing</b>	Yes
facilities	0 8 4
Acceptability/Reliability	Valid St.
Category study in AIR 5 dossier	Category 2a
(L docs)	8 18 7.

2. Full summary

Executive Summary
In an acute laboratory study the oral toxicity of glyphosate to honeybee, Apis mellifera was tested. After a preliminary dose range-finding test, adult worker becavere treated with 1.25, 2.5, 5.0, 10, 20 and 40 µg glyphosate/bee in the oral test. Three replicate cages, containing 10 bees each, were used. Mortalities and sub-lethal effects were made 1, 4, 24 and 48 h after freatment. No mortalities or sub-lethal effects were seen in any treatment or controls over the 48 h definitive test period. The validity criteria according to current OECD guideline 213 are fulfilled.

The study is considered valid and the 24 and 48 hour oral LD₅₀ values for glyphosate were >40  $\mu$ g a.s./bee for oral exposure (nominal).

# MATERIALS AND METHODS

#### A. MATERIALS

**Test material:** 

Thorn out Test item: Glyphosate Description: White powder H95 D161A Lot/Batch #: 95.3 % Purity:

Vehicle: reverse-osmosis water Vehicle and or positive control:

Poistive control: formulated Dimethoate (BASF Dimethoate 40 EC)

Test organisms:

Species: Honey bee (Apis mellifera)

Age: Adult worker bees

Source: The Bee Farm, Wetherby, West Yorkshire, UK

Diet/Food: 50 % sucrose solution ad libitum

Acclimatisation: Not stated

## **Environmental conditions:**

Temperature: 24.5 - 25.8 °C

Relative humidity: 49.1 - 86.0 %

> Photoperiod: darkness

27 June – 06 July 1996 **Experimental dates:** 

#### **B. STUDY DESIGN**

Experimental treatments

To determine the test concentrations for the definitive study a range-finding test was performed. The nominal doses of glyphosate used for the range finding test was performed. nominal doses of glyphosate used for the range-finding test were 0, 0.04, 0.4, 4 and 40 µg a.s./bee for oral dosing.

The nominal doses of glyphosate used for the definitive oral test were 0 (2) (25, 25, 5.0, 10, 20 and 40 μg a.s./bee. Three replicate cages, containing 10 bees each, were used. The reference substance was prepared and dosed in the same media and manner as the test substance doses. The toxic standard test was run in concurrently with the range-finding test and shared the controls. The nominal doses of dimethoate were 0, 0.2, 0.4 and 0.8 μg a.s./bee in the contact test and 0, 0.1, 0.15 and 0.2 μg a.s./bee in the oral test. There were three replicate cages of 10 bees each at each dose level of the reference substance.

**Observations**Assessments of mortality and sub-lethal effects were conducted 2, 4, 24 and 48 hours after treatment.

#### Statistical calculations

Descriptive Statistics; the LD₅₀ values of the toxic standard, dimethoate, were calculated by Probit analysis.

# II. RESULTS AND DISCUSSION

#### A. FINDINGS

No mortalities or sub-lethal effects were seen in any treatment or controls over the 48 h definitive test period. The 48 h LD₅₀-value for dimethoate was calculated to be 0.146 µg a.s./bee (95% confidence limits: , LIE 0.131 to 0.161) for oral exposure.

Deviations according to the current guideline OECD 213:

- Mortality observation was not assessed at 4 hours
- Relative humidity exceeded the recommended values

These deviations are not expected to have a negative impact on the validity of the study which was valid at the time of conduct.

The test is considered to be valid according to OECD guideline 213 as mortality in the negative control did not exceed 10% after 48 hours. In addition, the LD₅₀ for the reference item met the specified range.

## III. CONCLUSIONS

## Assessment and conclusion by applicant:

The toxicity of glyphosate was tested in an acute oral toxicity test on honey bees. The oral LD₅₀ (24 h/48 h) values for glyphosate were >40 µg a.s./bee for oral exposure (nominal).

The study is considered valid so LD₅₀ >40  $\mu$ g a.e./bee can be used for risk assessment purposes.

Assessment and conclusion by RMS:	
	Z, Z
	الله الله الله الله الله الله الله الله

#### 1. Information on the study

	700
Data point	CA 8.3.1.1.1/004
Report author	
Report year	1995
Report title	Testing Toxicity to Honeybee - Apris mellifera L. (laboratory) according to EPPO Guideline No 170. Glyphosate (tec.)
Report No	95 10 48 065
Document No	- 12 6 8
<b>Guidelines followed in study</b>	EPPO Guideline No. 170
Deviations from current test guideline	Deviations from guideline OECD 213 (1998):  Minor:  - Mortality observation was not assessed at 4 hours.
Previous evaluation	Yes, accepted in RAR 2015
GLP/Officially recognised testing facilities	Yes general file of the second
Acceptability/Reliability	Valid_E
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary

Executive Summary

In a laboratory studio 11

tests 1 In a laboratory study, the acute oral toxicity of technical glyphosate to the honey bee, Apis mellifera L. was tested. Adult worker bees were exposed to two nominal test doses of 100 and 200 µg test item/bee.

In the test, three replicate cages, each containing 10 bees were used for the test item treatment, control and reference treatment. Mortality, poisoning symptoms and behavioural abnormalities were recorded 24 and 48 hours after treatment initiation.

Results showed a single bee mortality in the 100 µg a.s./bee treatment group at 24 hours, with no further mortality recorded at 48 hours at both the 100 and 200 µg a.s./bee treatment groups. In addition, no behavioural abnormalities were observed in test item groups and control groups during the whole test The state of the s period. All validity criteria according to the OECD guideline 213 was fulfilled.

The study is considered valid so LD₅₀ >200  $\mu$ g a.e./bee can be used for risk assessment purposes.

#### I. MATERIALS AND METHODS

#### A. MATERIALS

#### **Test material:**

Test item: Glyphosate technical

Description: Not stated Lot/Batch #: 01/07/95 Purity: 98.2 % a.s.

Dimethoate EC 400, containing 411,14 g,a,s Vehicle and/or positive control:

Extravon (surfactant)

Test organisms:

Species: Honey bee (Apis mellifera L.)

Age: Adult worker bees

Source: Purchase from the bee-keeper Mr. Weimann / Gottscheina

Diet/Food: 50% aqueous sucrose solution *ad libitum* (except for 1-2 hours

prior to oral test initiation

**Environmental conditions:** 

Temperature: 25 - 26 °C

Humidity:

Photoperiod:

21 August 0 September 1995 **Experimental dates:** 

B. STUDY DESIGN

Experimental treatments

The oral toxicity test was conducted with two pominal test doses of 100 and 200 µg a.s./bee. In addition, a control group was fed with 50% sucrose solution. Dimethoate was used a toxic reference, at test doses ranging from 0.20 to 0.40 µg/bee. The oral toxicity test was conducted in triplicate using 10 bees per replicate (30 bees), with the test item or reference item delivered to the bees in 50 % sucrose solution in feeding tubes, attached to the best cases. The bees were fed with 50 % aqueous sucrose solutions, containing appropriate concentrations of the test item.

## **Observations**

Mortality, poisoning symptoms and behavioural abnormalities were recorded 24 and 48 hours after test start.

## Statistical calculations

Descriptive statistics

## II. RESULTS AND DISCUSSION

The LD₅₀ value is given below based on nominal concentrations.

Table 0-5: Toxicity of technical glyphosate to honey bees in an oral toxicity tests

Endpoints (48 h)	Technical glyphosate [μg a.s./bee]	
Oral LD ₅₀	>200	

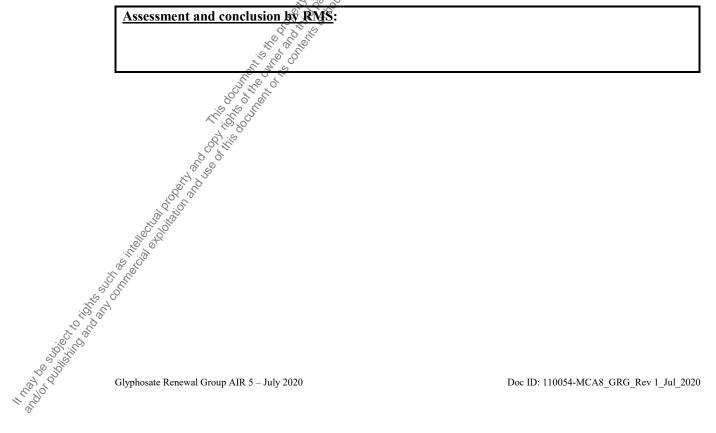
No biologically relevant mortality of bees was observed during the 48-hour test period for test concentrations of up to 200 µg a.s./bee, which was the highest concentration tested. In additional behavioural abnormalities were observed at any test item. For the toxic reference dimethoate, the highest test doses caused 83 % and 97 % mortalities for order and contact test representation. contact test respectively.

Table 0-3: Mortality of honey bees in an oral toxicity tests

Test	Time	Mortality [%]				
	[h]	Control	Control Technical glyphosate [µg a.s./bee]			xic reference
		-	100	200	W. High	chest test dose
Oral	24	0	3	0		83
	48	0	3	0	12 2 20 CO	83

Deviations according to the current guideline OECD 213:

- Mortality observation was not assessed at 4 hours.


This deviation is not expected to have a negative impact on the validity of the study.

The validity criteria according to the OECD guideline 213 were fulfilled as the mortality in the control was III. CONCLUSIONS <10 % at test termination.

## Assessment and conclusion by applicant:

Assessment and conclusion by applicant:
The toxicity of technical glyphosate was tested in an acute oral toxicity test on honey bees. The LD₅₀ (48 h) was > 200 µg a.s/bee.

The study is considered valid so LD₅₀>200 µg a.e./bee can be used for risk assessment purposes.



M-CA, Section 8 Page 472 of 847

#### 1. Information on the study

Data point	CA 8.3.1.1.1/005
Report author	
Report year	1995
Report title	Honey Bees (Apis mellifera L.), oral toxicity study in the
	laboratory with Glyphosate
Report No	141907
Document No	- 2,5
Guidelines followed in study	EPPO guidelines 22, 203 – 215 (1992)
<b>Deviations from current test</b>	Deviations from guideline OECD 213 (1998)
guideline	Minor:
	- Mortality observation was not assessed at 4 hours
	- Humidity was lower than the expected range: 34-37 % instead
	of 50-70 %
Previous evaluation	Yes, accepted in RAR (2015)
<b>GLP/Officially recognised testing</b>	Yes
facilities	
Acceptability/Reliability	Valid S S
Category study in AIR 5 dossier	Category 2a
(L docs)	E S E

2. Full summary

Executive Summary
In a laboratory study the acute oral toxicity of glyphosate technical material (96 % purity) to the honey bee, Apis mellifera L., was tested. Following a range finding test, a definitive test was conducted exposing worker bees to a single nominal dose of 121 aga. S/bee.

In the test, three replicate cages, each containing 10 bees, were used for the test item treatment, control and reference treatment. Mortality and paralysis effects were recorded at least at the following approximate time intervals: 30, 60, 90 and 120 minutes after treatment and 24, 48 and 72 hours after treatment.

No mortality of bees was observed during the 72 hours of exposure. In addition, no paralysis was observed in the test item and the control groups during the 72 hours test period. The validity criteria according to guideline OECD 213 are fulfilled 30 3

In an oral toxicity test, glyphosate had no effects on mortality of honey bees at concentrations of up to and including 116.67  $\mu$ g a.s./bee (mean (df = 3) actual consumed dose). Therefore, the oral LD₅₀ of glyphosate was determined to be >1\$6.67 ag a.s./bee.

The study is considered valid so LD₅₀ >116.7 µg a.e./bee can be used for risk assessment purposes.

#### I. MATERIALS AND METHODS

## A. MATERIA

Test material:

Test item: GLYFOSAAT (Spelling for report: GLYPHOSATE)

Description: White powder

Lot/Batch #: 22021 Purity: 96%

Vehicle: Tap water **Vehicle and/or positive control:** 

Positive control: Parathion 25 % liquid

#### **Test organisms:**

Species: Honey bee (Apis mellifera L.)

Age: Adult worker bees

Source: Research Centre for Insect Pollination and Beekeeping,

"Ambrosiushoeve"

Diet/Food: 50% aqueous sucrose solution ad libitum (except during oral

dosing and prior starvation)

#### **Environmental conditions:**

Temperature: 24 - 25 °C Humidity: 34 - 37 %

Photoperiod: 24 hours darkness (except during observation)

March 08 to March 16 1995 **Experimental dates:** 

B. STUDY DESIGN

Experimental treatments

Prior to the main test, a range-finding test was performed exposing bees to nominal concentrations of 1.0, 10, 51 and 101 μg a.s./10 μL sucrose solution. The definitive test was conducted as a limit test with a single nominal concentration of 121 µg a.s./10 µL sucrose solution. All test solutions were prepared in a 50 % sucrose solution. In addition, a water-treated control and a efference substance (Parathion 25 % liquid) were tested. Food was withheld from the bees for about one to two hours prior to the test. For the test, 10 bees per cage were exposed in triplicate and fed with the test substance suspension. Per group of 10 bees 100 µL test substance suspension was administered (10 all dest solution/bee).

#### **Observations**

Mortality, paralysis and any other abnormalities were recorded at least at the following approximate time intervals: 30, 60, 90 and 120 minutes after treatment and 24, 48 and 72 hours after treatment start.

## Validity criteria

For a test to be valid the following conditions apply:

- The average mortality for the total number of controls must not exceed 10 % at the end of the test.
- The LD₅₀ of the toxic standard meets the specified range.

# Statistical calculations

Descriptive statistics.

## II. RESULTS AND DISCUSSION

## A. FINDINGS

The bees were offered sugar solution containing a concentration of 121 µg a.s./bee. The mean (df = 3) amount of glyphosate consumed by the bees over 72 hours was 116.67 µg a.s./bee. A summary of the Selection of the select mortality is provided below.

Table 0-4: Toxicity of glyphosate to honey bees (Apis mellifera L.) in an oral toxicity test

D	T . 1 . C		N 1°. 10/1	200
Dose	Intake of test item		Mortality [%]	ijo.
[µg a.s./bee]	[µg a.s./bee]	24 h*	48 h*	72.h
Control (sugar solution)	-	0.00	3.33	12333 1333 1410
121	116.67	0	0	

^{*} Corrected for mortality in the negative control

#### **B. OBSERVATIONS**

No mortality of bees was observed at the in the 72 hour limit test at the test concentration of 121 µg a.s./bee. In addition, no paralysis was observed in the test item group and the control group during the 72 hours test ons according to the current guideline OECD 213 (1998):

Mortality observation was not assessed at 4 hours

Humidity was lower than the expected range: 34-37% instead of 50-70 % viation is not expected to have a pecative impact and the control of the current and the control of the current and the current guideline OECD 213 (1998): period.

Deviations according to the current guideline OECD 213 (1998):

This deviation is not expected to have a negative impact on the validity of the study.

All validity criteria according to OECD 213 were fulfilled, since the average mortality in the control group did not exceed 10 % (actual value: 3.33 %) and the 24-hour Do of the toxic standard meets the standard of less than 1.0 μg a.s./bee based on historical data (actual value: 0.4 μg a.s./bee).

In an oral toxicity test, glyphosate had no effects on mortality of honey bees at concentrations of up to and including 116.67 µg a.s./bee.

# The state of the s MÀ CONCLUSIONS

## Assessment and conclusion by applicant

The toxicity of glyphosate was tested in an acute oral toxicity test on honey bees. The LD₅₀ (72 h) was >116.67 µg a.s./bee.

The study is considered valid so  $LD_{50} > 116.7 \mu g$  a.e./bee can be used for risk assessment purposes.

# Assessment and conclusion by RMS:

#### 1. Information on the study

Data point	CA 8.3.1.1.1/006
Report author	
Report year	1972
Report title	The acute contact and oral toxicities of CP67573 and MQN2139
	to worker honey bees
Report No	HU85X094
Document No	- 28 10
<b>Guidelines followed in study</b>	Working Document 13 produced by the UK Pesticide Safety
	Precautions Scheme
<b>Deviations from current test</b>	Deviations from guideline OECD 213 (1998):
guideline	Major:
	- Mortality in the control was >10% at test termination
	Minor:
	- Only 2 replicates (10 replicates only for the highest
	concentration tested) per treatment group,
	- No additional solvent control was tested,
	- Mortality observation was not assessed at 4 hours
Previous evaluation	Yes, accepted in RAR (2015)
<b>GLP/Officially recognised testing</b>	No, GLP was not compulsory at the time the study was
facilities	performed.
Acceptability/Reliability	Invalid The State of the Invalid
Category study in AIR 5 dossier	Category 2b
(L docs)	

^{*} Two test materials were assessed in this study; namely \$\infty\$ \$\infty\$ \$\infty\$ \$\infty\$ and MON2139 (a 36% w/v formulation). MON2139 contains a surfactant that is not present in the representative formulation for the Annex I renewal. This summary therefore only contains

2. Full summary

Executive Summary

The acute oral toxicity of CP67573 (glyphosate technical) to young adult worker bees (Apis mellifera L.) determined in a limit tests performed at a nominal dose of 100 ug a.s./bee. The test comprised 10 replicate mesh cages, each containing 10 bees. In a parallel test, honey bees were exposed to a reference item in a dose response test using dimethoate at concentrations ranging from 0.048 to 0.117 µg dimethoate/bee. In both tests, the test substance was suspended in 20% sucrose and 0.2 mL was fed to each replicate of 10 bees. Control groups consisting of 2 cages of 10 bees were included alongside each of the tests.

Assessments of mortality were conducted after 24 and 48 hours. The validity criteria according to OECD guideline 213 were not fuffilled as mortality in the control was >10% at test termination.

In the 100 μg CP67.\$73 bee treatment group, at 24 and 48 hours, there was 46 % and 56 % mortality, with corresponding mortality in the control group of 10 % and 15 %, respectively.

This resulted in overall control corrected mortality levels of 40 and 48 % achieving a 48 hour LD₅₀ of 100 µg a.s./bee. The study is considered invalid as mortality in the control was >10 % at test termination.

#### I. MATERIALS AND METHODS

A. MATERIALS Test of the state of the state

Test material:

Test item: CP67573 (technical active ingredient)

Description: Not stated

Lot/Batch #: No batch details presented in report

Purity: Not stated

Density: Not stated

Vehicle: 50 % acetone

Vehicle and/or positive control: Positive control: Dimethoate

**Test organisms:** 

Species: Honey bee (Apis mellifera) Source: Experienced apiarist in Huntingdonshire, U.K. Bees were fed with 20 o/

Diet/Food: Bees were fed with 20 % sucrose

Acclimatisation: Not reported

**Environmental conditions:** 

Temperature:  $26 - 27 \, ^{\circ}\text{C}$ Relative humidity: Not reported

> Photoperiod: Not reported

**Experimental dates:** Not reported

B. STUDY DESIGN

Experimental treatments

Honey bees were exposed orally to CP67573 in a limit test conducted at 100 μg a.s./bee, in nylon coated 2 mm wire mesh tubes, with 11.5 cm high and 3.5 cm in diameter, closed by corks at both ends. Bees were placed in each cage and were fed with 20 % sucrose. For the oral toxicity tests, compounds were suspended in 20 % sucrose and 0.2 mL was fed to each replicate of 10 bees.

There were 10 cages per test item treatment, with two control cages containing 10 worker bees each. A reference item dose-response test (dimethoate) was conducted in parallel, at five test rates between 0.048 and 0.117 µg test item/bee, with two cages of ten bees per treatment and control group.

Mortality in the test or reference item treatment groups, were corrected for control mortalities using Abbot's correction, to give overall control corrected levels of mortality, on which the endpoint LD50 values were based.

## **Observations**

Observations
Mortality was recorded 24 and 72 hours after test initiation.

# Statistical calculations

Statistical calculations

Descriptive statistics LDs for dimethoate were obtained by graphical interpolation on probability/log paper, confidence limits were calculated according to Litchfield & Wilson (1949).

## II. RESULTS AND DISCUSSION

## A. FINDINGS

A summary of the mortality results is provided below.

Table 0.5: Toxicity of glyphosate to honey bees (Apis mellifera L.) in an oral toxicity test

	Endpoints (48 h)	CP67573 [μg a.s./bee]
S	$\sum_{k} \widetilde{\mathbb{D}}_{50}$ oral	100
Service of the servic	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Table 0-6: Oral toxicity of CP67573 to honey bees (Apis mellifera L.)

Exposure	Mor	tality [%]	Corrected mortality
	Control	100 μg/bee	[%]
oral (24 h)	10	46	40
oral (48 h)	15	56	48

B. OBSERVATIONS
In the test with CP67573, the corrected bee mortality did not reach or exceed 50% (max mortality was 48 %), resulting in overall control corrected mortality levels of 40 and 48% at 24 and 48 hour respectively, achieving a 48 hour LD₅₀ of 100 µg a.s./bee.

In the reference item test with dimethoate, a 48 hour oral exposure LD₅₀ value of 0.056 µg dimethoate/bee (95 % C.I. of 0.045 - 0.070 μg dimethoate/bee) was observed.

Deviations according to the current guideline OECD 213:

- ons according to the current guideline OECD 213:

  Only 2 replicates (10 replicates only for the highest concentration tested) per treatment group,

No additional solvent control was tested,
Mortality observation was not assessed at 4 hours
These deviations are not expected to have a negative impact on the validity of the study.

Mortality in the control was >10 % at test termination.

This deviation has a negative impact on the validity of the study.

The validity criteria according to the OECD guidelines 213 were not fulfilled as mortality in the control Ontolo III. CONCLUSIONS was >10 % at test termination.

## Assessment and conclusion by applicant:

The toxicity of CP67573 was tested in an acute oral toxicity test on honey bees. The oral LD₅₀ (48 h) were 100 µg a.s./bee.

The study is considered invalid as mortality in the control was >10% at test termination.

# Assessment and conclusion by RMS: S. J. S. J.

## Page 478 of 847

#### 1. Information on the study

Data point	CA 8.3.1.1.1/007
Report author	
Report year	2017
Report title	MON 0139: Acute Oral and Contact Toxicity to the Bumble Bee,
	Bombus terrestris L. under Laboratory Conditions
Report No	S16-06634
Document No	- 2,5
<b>Guidelines followed in study</b>	Based on the proposal for new OECD Guidelines Bumblebee,
	acute oral toxicity test (2016) and Bumblebee, acute contact
	toxicity test (2016)
<b>Deviations from current test</b>	Deviation from OECD guideline 247 (2017). none
guideline	Deviation from OLOD guideline 217 (2017), From
Previous evaluation	No, not previously submitted
<b>GLP/Officially recognised testing</b>	Yes
facilities	
Acceptability/Reliability	Valid St.
Category study in AIR 5 dossier	Category 1
(L docs)	8 6 7

#### Full summary of the study according to OECD format 2.

Executive Summary

The acute oral toxicity of MON 0139 to bumble bees (Bombus terrestris) was established in a 48 hour laboratory toxicity test, with bees exposed at five test rates (62.5, 125, 250, 500 and 1000 µg product/bumble bee, equivalent to 28.8, 57.6 1 18, 231 and 461 ug a.e./bumble bee, via oral ingestion in aqueous sucrose solution. In the main test, for the control and test group, there were 35 individually housed bumblebees, with application solutions (50 % w v sucrose solution) presented in plastic feeder syringes.

A reference item test was conducted in parallel with bumble bees exposed to dimethoate at 1.5 µg a.s./bumble bee, with exposure of 32 individually housed bumblebees via 50 % w/v sucrose solution in syringe feeders.

Mortality assessments were made at 4, 24 and 48 hours after application (after start of feeding in the oral toxicity test). Observations for sublethal effects were recorded at each observation interval.

There was 100 % mortality in the reference item test demonstrating the test system as being appropriate and the bumblebees were sensitive.

In the main study, the 48 hours oral LD₅₀ (Lethal Dose causing 50 % mortality) for MON 0139 was determined to be \$894 µg product/bumble bee (equivalent to >412 µg a.e./bumble bee). The NOED for mortality after 48 hours was determined to be ≥894 µg product/bumble bee (equivalent to ≥412 µg a.e./bumble bee).

The validity criteria for the control group in the main test and reference item mortality were met and thus, THE STATE OF THE S the test was considered valid.

Glyphosate

## A. MATERIALS Test Material

Test item: MON 0139

Lot/Batch #: GLP-1503-23921-T

Actual content of active Glyphosate: 46.1% (a.e.); 574.4 g/ml

ingredients:

Description:

Stability of test compound:

Reanalysis/Expiry date:

Density:

#### **Treatments**

Test rates: Oral toxicity test:

liquid / slightly yellow
Stable under standard conditions.
February 13, 2018
1.2460 g/cm³

Oral toxicity test:

Target doses: 62.5, 125, 250, 500 and 1000 µg prod./bumble bee, equivalent to 28.8, 57.6, 115, 231 and 46 kg/m a e /bumble bee

equivalent to 28.8, 57.6, 115, 231 and 461 µg a.e./bumble bee

Actual uptake: 56.9, 113, 226, 453 and 894 µg prod./bumble bee,

equivalent to 26.2, 52.1, 104, 209 and 412 μg a.e./bumble bee

Control: Pure 50% (w/v) aqueous sucrose solution

Toxic standard: BAS 152 11 I (dimethoate, analysed 405.2 g a.s./L)

> 1.5 µg a.s./bumble bee (target doses) 1.36 μg a.s./bumble bee (actual uptake)

Administration: Oral: ingestion in 50% was aqueous sucrose solution.

## Test organisms

Bombus terrestris E. (Hymenoptera: Apidae) Species:

Source: From healthy colony owned and maintained by Biobest Belgium, Ilse

Velden 18,2260 Westerlo, Belgium.

50% wyvaqueous sucrose solution Food: · LJES

#### Test design

ign

Test cage description: Nicot cages with plastic syringe feeders attached.

Replication 35%

No. of bees/arena:

Duration of test: 48 hours

## Environmental conditions

Temperature: 24.8 - 25.3°C Humidity:  $50.9 \pm 60.4\%$ 

Photoperiod: Darkness (except during application and observations)

10 April to 13 April 2017 **Experimental dates:** 

## B. STUDY DESIGN

## **Experimental treatments**

Starved for 2 hours until treatment, to ensure that the bees were equal in terms at the start of the test. Each bumblebee was offered 40 μL of the test material or toxic standard dispersed in aqueous sucrose solution. Treatments were calculated so that the target dose was contained in this 40 μL. The doses were measured into the feeding tubes and the weights of these were recorded before the doses were made available to the bumblebees. After four hours, the feeding tubes were Glyphosate Renewal Group AIR 5 – July 2020

replaced with similar tubes containing untreated 50 % w/v aqueous sucrose solution supplied *ad libitum*. All feeding tubes with test solutions were weighed in order to calculate actual mean consumption per beginner of the calculate actual mean consumption per bea

#### **Assessments**

Mortality was recorded 4 and 24 hours after application (after start of feeding in the oral toxicity test) and thereafter at 48 hours ( $\pm$  30 min). Behavioural abnormalities such as symptoms of poisoning in comparison to the control were recorded at each observation interval. In the reference item group behavioural assessments were not conducted as it was assumed that moribund and affected bumble bees of the reference item group would die by the end of the test.

#### Statistics

For the statistical evaluation the statistics program ToxRat professional, Version 3.2.1 was used. Multiple Fisher's exact test with Bonferroni-Holm adjustment (one-sided greater,  $\alpha = 0.05$ ) was used to evaluate whether there are significant differences between the mortality data of the control and the test item treatment groups in the oral toxicity test and to determine the NOED based on mortality.

The LD₅₀ with 95% confidence limits could not be calculated in the oral toxicity test since the observed mortalities were below 50% in all test item groups. Statistical evaluation was not necessary in the oral toxicity test, since no mortality occurred in any test item treatment group or the control group.

## II. RESULTS AND DISCUSSION

#### A. FINDINGS

In the control group fed with pure 50 % (w/v) aqueous sucrose solution, no mortality was observed at the final assessment after 48 hours. In the test item treatment group, no mortality was observed at any target dose 48 hours after start of feeding. No treatment related behavioural abnormalities were recorded during the 48 hour testing period at any target dose.

Table 0-7: Summary of oral acute toxicity of MON 0139 to the bumblebee			
MON 0139		Oral toxicity test	
	1	[µg product/bumble bee]	[µg a.e./bumble bee]
LD ₅₀ (24 h)	, E. C.	<i>\$</i> 894	>412
LD ₅₀ (48 h)	10 ill	<b>≥</b> 894	>412
NOED (48 h)	2 2 S	∕≥894	≥412

## Validity criteria

The study is considered valid since the control and reference item validity criteria were met:

The mean control mortality was  $\leq 10$  % at the end of the test;

The mean reference item mortality was  $\geq 50$  % at the end of the test

#### III. CONCLUSIONS

#### Assessment and conclusion by applicant:

The 48 hours oral LD₅₀ for MON 0139 was determined to be >894 µg product/bumble bee, equivalent to 412 µg a.e./bumble bee. The NOED for mortality after 48 hours was determined to be 894 µg product/bumble bee, equivalent to 2412 µg a.e./bumble bee.

The study is considered valid so LD₅₀ >412  $\mu$ g a.e./bumble bee and NOED  $\geq$ 412  $\mu$ g a.e./bumble bee can be used for risk assessment purposes.

	Assessment	and	conclusion	by	<b>RMS</b>	:
--	------------	-----	------------	----	------------	---

#### CA 8.3.1.1/2 Acute contact toxicity

#### 1. Information on the study

Data point:	CA 8.3.1.1.2/001
Report author	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Report year	2003
Report title	Laboratory bioassays to determine acute oral and contact
	toxicity of MON 78623 to the honey bee, Apis mellifera
Report No	MON-02-10
Document No	- " " " " " " " " " " " " " " " " " " "
<b>Guidelines followed in study</b>	EPPO guideline 170 (1992)
<b>Deviations from current test</b>	Deviations from guideline OECD 214 (1998):
guideline	Minor:
	- Relative humidity was slightly above the recommended range
	- No mortality assessed at 4 hours.
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing	Yes Rose
facilities	
Acceptability/Reliability:	Vando o
Category study in AIR 5 dossier	Category 2a
(L docs)	34, 2

2. Full summary

Executive Summary
In a laboratory study the acute contact toxicity of glyphosate K-salt to the honey bee, Apis mellifera L., were tested. Following a range finding test, a definitive test was conducted exposing worker bees to nominal doses of 100 µg glyphosate acid equivalent/bee.

Five replicate cages, each containing 10 bees, were used for the test item treatments, controls and three for the reference treatments. Mortality and sub-lethal effects were assessed 1, 3, 24 and 48 h after test initiation. Corrected mortality for contact toxicity was 0%. No sublethal effects were observed except for one bee one hour after test item application. All validity criteria according to OECD 214 were fulfilled.

on, to y is come by it is a come In conclusion, the toxicity of glyphosate K-salt was tested in an acute contact toxicity test on honey bees. The study is considered valid so  $LD_{50} > 100 \mu g$  a.e./bee can be used for risk assessment purposes

## I. MATERIALS AND METHODS

#### A. MATERIALS

#### **Test material:**

Test item: MON 78623 Description: Amber liquid

Lot/Batch #:

58 % K salt of glyphosate, equivalent to 47.3 % when glyphosate a.e. Purity:

Vehicle for test item: Farmon Blue (873% www alkyl phenol Vehicle and/or positive control:

ethylene oxide) / Positive control: Dimethoate technical grade

Test organisms:

Honey bee (Apis mellifera L.) Species:

Age: Adult worker bees

Roselea Apiaries, East Wellow Hampshire Source:

50 % w/v aqueous sucrose solution Diet/Food:

**Environmental conditions:** 

 $25 - 26 \, ^{\circ}\text{C}$ Temperature:

> Humidity: 64 - 79 %

24 hours darkness (except during observation) Photoperiod:

27 July 2002 **Experimental dates:** 

#### **B. STUDY DESIGN**

#### **Experimental treatments**

Following an initial range-finding test, the definitive test was conducted as a limit test with 100 µg glyphosate acid equivalent/bee, prepared in an appropriate carrier (0.05 % solution of the wetting agent Farmon Blue) and administered as a \$.0 \( \text{µL} \) droplet per bee (dorsal thorax) to each of ten bees in each of five cages per treatment. A relacio control containing 0.05 w/v solution of Farmon Blue and deionised water and a toxic reference solution containing dimethoate were run in parallel. During the observation method a 50 % w/v aqueous sucrose solution was provided.

## **Observations**

Mortality and sub-fethal effects were assessed 1, 3, 24 and 48 h after test initiation.

#### Statistical calculations

Corrected mortality was calculated according to Abbott (1925). LC₅₀ values were determined by Probit analysis and the 95 % confidence interval by Chi-square goodness of fit test.

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

Table 0-1: Toxicity of glyphosate K-salt to honey bees (Apis mellifera L.) in the contact toxicity

Dose	Mean intake of	Mortality [%]			
[µg a.e./bee]	test item [µg a.e./bee]	3	24 h	48 h	
Contact toxicity test					
Control	-	0	0	J. 200 10	4
Farmon Blue control	-	0	0	200	4
100	-	0	0	, 5° , 5° , 5° , 5°	2 (0)

In brackets the Abbot corrected mortality is given

In brackets the Abbot corrected mortality is given

B. OBSERVATIONS

Corrected mortality at 48 h was 0%. No sublethal effects were observed except for one bee one hour after test start, but it recovered by 3 h.

The determined contact 48h LD₅₀ for the reference item directhoate was 0.123  $\mu$ g/bee for contact toxicity. These results are in line with published values, indicating that the test insects were of suitable sensitivity.

Deviations according to the current guideline OECD 2145

- Relative humidity was slightly above the recommended range
- No mortality assessed at 4 hours.

These deviations are not-expected to have a negative impact on the validity of the study which was valid at the time of conduct.

All validity criteria according to OEGD 214 were fulfilled, since the average mortality in the control group did not exceed 10% and the LD₅₀ of the toxic standard meets the specified range.

## III. CONCLUSIONS

## Assessment and conclusion by applicant:

The toxicity of glyphosate was tested in an acute contact toxicity test on honey bees. The LD₅₀ (48 h) was >100 μg glyphosate acid equivalent/bee in the contact toxicity test.

The study is considered valid so LD₅₀ >100 µg a.e./bee can be used for risk assessment purposes.

# Assessment and conclusion by RMS:

#### Information on the study 1.

Data point	CA 8.3.1.1.2/002				
Report author	ijot				
Report year	2000				
Report title	Acute Contact Toxicity of GLIFOSATO IPA TECHNICO				
	NUFARM to Honey Bee (Apis mellifera L.)				
Report No	RF-D4.017/00				
Document No	- 2,5				
Guidelines followed in study	OECD Draft Proposal for a New Guideline: Horrey bees, Acute				
	Contact Toxicity Test (1996).				
<b>Deviations from current test</b>	Deviations from guideline OECD 214 (1998):				
guideline	Minor:				
	- Mortality observation was not assessed at A hours				
	- A water control and an undosed control were reported in chapter				
	5.7.4 (Experimental test), however results of only one (negative)				
	control group were reported.				
	- The temperature in test cages was higher than the expected				
	range: 27-31 °C instead of 25-22 °C.				
	- Humidity was lower than the expected range: 40-67% instead of				
	50-70 %				
	- 24-hour LD ₅₀ with dimethoate is slightly above the requested				
	range of 0.10-0.30 ug a.s./bee				
Previous evaluation	Yes, accepted in RAR (2015)				
<b>GLP/Officially recognised testing</b>	Yes O'E' Y'				
facilities	F. J. S.				
Acceptability/Reliability	Valid K & K				
Category study in AIR 5 dossier	Category 2a 2				
(L docs)					

2. Full summary

Executive Summary

In an acute laboratory study the contact toxicity of isopropylamine (IPA) salt of glyphosate to the honey bee, Apis mellifera L. was tested. Following a range finding test, adult worker bees were exposed to nominal dose rates of 10.0, 12.5, 24.6, 62.5 and 100.0 µg glyphosate IPA salt/bee. In addition, an untreated control was tested. Technical dimethoate was used as a reference item.

In the test, three replicate cages, each containing 10 bees, were used for the test item treatment, control and reference treatment. Mortality and sublethal effects were recorded at 24 and 48 hours after the treatment. No significant mortality of bees was observed during the 48 hours observation period. In addition, no sublethal effects were observed. The validity criteria according to guideline OECD 214 are fulfilled. In conclusion, under the conditions of the present test, the 48 hours contact LD₅₀ of was determined to be >100 µg glyphosate IPA salt/bee, equivalent to >61.3 µg a.e./bee.

This study is considered valid in spite of slightly higher LD₅₀ for the reference toxicant so o LD₅₀ >61.3  $\mu$ g a.e./bee can be used for risk assessment purposes.

Glyphosate Renewal Group AIR 5 – July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

#### I. MATERIALS AND METHODS

#### A. MATERIALS

**Test material:** 

Test item: Glyphosate isopropylamine salt (technical)

Description: Not stated

MJRT 02 S 201 04 Lot/Batch #:

Purity: 612.7 g/kg salt equivalent (analysed)

Density: Not stated

Positive control: technical dimethoate Vehicle and/or positive control:

**Test organisms:** 

Species: Honey bee (*Apis mellifera*)

Age: Adult worker bees from healthy colonies Source: Apiario Silva Unit, Piracicaba Brasil

Sucrose solution ad libitum Diet/Food:

At  $25 \pm 2$  °C and  $65 \pm 5$ % relative humidity between collection Acclimatisation:

of worker bees and test initiation (time span not stated)

**Environmental conditions:** 

27 – 31°C Temperature:

Relative humidity:

24 hours darkness Photoperiod:

05 June \$14 June 2000 **Experimental dates** 

## **B. STUDY DESIGN**

Experimental treatments

Based on the results of a range-finder test, bees in the main test were exposed to the nominal dose rates of 10.0, 12.5, 24.0, 62.5 and 100.0 ug glyphosate IPA salt/bee. The glyphosate concentration was analysed in each of the dosing solutions an addition, an undosed control was tested. Technical dimethoate was used as a reference item. The test was conducted with 3 replicates chambers (inverted petri dish (50 mm depth x 100 mm diameter) per test concentration/control and 10 bees per cage. Bees were anaesthetised with carbon dioxide and counted onto filters papers inside each petri dish in groups of 5 until all chambers contained 10 bees. Bees were exposed to either the test material, the reference toxicant, water or acetone, by administering 1.0 up of the appropriate substance to the ventral side of the thorax, using a micro syringe. After dosing the cages, a smaller inverted petri-dish containing sucrose solution was placed inside each chamber, and the chambers were covered with a 100-gauge mesh tissue 'lid' to prevent bee escape. All chambers were kept in darkness for 48 hours. Sucrose solution was available ad libitum throughout the whole test period.

#### **Observations**

Mortality and sublethal effects were recorded at 24 and 48 hours after treatment.

#### Validity criteria

For a test to be valid the following conditions apply:

- the average mortality for the total number of controls must not exceed 10% at the end of the test;
- the LD₅₀ of the toxic standard meets the specified range.

Descriptive statistics for the test item. Data on mortality for dimethoate were analysed using Trimmed Spearman-Karber Method. Spearman-Karber Method.

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

The measured test concentrations ranged between 90.35 and 103.5% of the nominal values o

Table 0-2: Analytical results

Nominal concentration (g glyphosate IPA salt/L)	Measured concentration (g/L)	Concentration expressed as % of nominal (%)	% of deviation from the nominal
Control	-	- 67.00	-
10	10.350	103.500 8	3.50
12.5	12.778	102 22 5	2.22
24	23.722	98,84,5	1.16
62.5	60.369	£ 26.59	3.41
100	90.350	£ 20.35	9.65

Analytical data: Analytical determination of the test concentrations showed that the deviation from the nominal concentrations was below 20 %. Therefore, the ecotoxicological endpoints were evaluated using 11,120 nominal concentrations of the test item.

A summary of the mortality is provided below.

Table 0-3: Toxicity of glyphosate IPA saft to honey bees (Apis mellifera) in a contact toxicity test

Dose Et & E	Mortality (mean o	Mortality (mean of 3 replicates) [%]		
[µg glyphosate IPA salt/bee]	24 h	48 h		
Control (undosed)	0.0	0.0		
20.0 PO.0	0.0	0.0		
بال _{ال} افي الم	0.0	0.0		
24.0	0.0	0.0		
(1 ¹ ,5 ¹ ,6 ¹ ) 62.5	0.0	0.0		
2 100.0	3.33	3.33		

Reference test. The determined 24 h LD₅₀ for the reference item was 0.34 μg dimethoate/bee and 48 h LD₅₀ Mo sub-lethal effects were observed up to a dose of 100 μg glyphosate IPA salt/bee, equivalence a.e./bee. The highest dose that showed no lethal effect was 62.5 μg glyphosate IPA salt/bee. for the reference item was 0.12 µg dimethoate/bee. These results show a toxicity level just above the ranges

No sub-lethal effects were observed up to a dose of 100 μg glyphosate IPA salt/bee, equivalent to 61.3 μg

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

The test is considered to be valid because the negative control mortality did not exceed 10 % (actual value: 0 %) and the 24-hour LD₅₀ of the toxic standard was slightly above the range of 0.10-0.30  $\mu$ g a.s./beg specified in the guideline 214 (actual value: 0.34  $\mu$ g dimethoate/bee).

The following points are deviated from the current guideline but are not expected to have any negative on the study validity:

- Mortality observation was not assessed at 4 hours
- A water control and an undosed control were reported in chapter 5.7.4 (Experimental test), however results of only one (negative) control group were reported.
- The temperature in test cages was higher than the expected range: 27-31 °C instead of  $25 \pm 2$  °C.
- Humidity was lower than the expected range: 40 67 % instead of 50 70 %

#### III. CONCLUSIONS

## Assessment and conclusion by applicant:

The toxicity of glyphosate IPA salt was tested in an acute contact toxicity test on honey bees. The LD₅₀ (48 h) was >100 µg glyphosate IPA salt/bee, equivalent to >613 µg a.e./bee.

This study is considered valid in spite of slightly higher LD₅₀ for the reference toxicant so o LD₅₀ >61.3 µg a.e./bee can be used for risk assessment purposes.

## **Assessment and conclusion by RMS:**

## 1. Information on the study

Data point:	¢C♠ 8.3.1.1.2/003
Report author	
Report year	1998
Report title	Glyphosate Acid: Acute Contact and Oral Toxicity to Honey Bees
	(Apis mellifera)
Report No	FN9700
Document No	-
Guidelines followed in study	EPPO guidelines (1992)
il il il	OPPTS 850.3020
2:8	Draft OECD 213 (1997) and Draft OECD 214 (1997)
Deviations from current test	Deviation from guideline OECD 214 (1998): none
guideline & &	
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing	Yes
facilities	
Acceptability/Reliability	Valid
Category study in AIR 5 dossier	Category 2a
(L'docs)	

#### 2. **Full summary**

## **Executive Summary**

In an acute laboratory study the contact toxicity of glyphosate acid to the honey bee, Apis mellifera L. was tested. Following a range finding test, a definitive test was conducted exposing female worker bees to nominal doses of 0.0984, 0.984, 9.84 and 103 µg glyphosate acid/bee.

Three replicate cages, each containing 10 bees, were used for the test item treatments, controls and reference treatments. Mortality and sub-lethal effects were assessed 4, 24 and 48 h after test initiation for contact

No mortality of bees or sub-lethal effects were observed after 48 hours of exposure in the test item and the control groups during the 48 hours test period. All validity criteria according to OECD 214 were fulfilled as mortality in the control group did not exceed 10% (actual 0%) and the LD₅₀ of the toxic standard met the specified range.

In conclusion, the toxicity of glyphosate acid was tested in an acute contact and an oral toxicity test on honey bees.

The study is considered valid so LD₅₀ >103  $\mu$ g a.s./bee can be used for risk assessment purposes.

## I. MATERIALS AND METHO

## A. MATERIALS

**Test material:** 

Technical Glyphosate acid Test item:

Description: White powder TSC 0521/05148 Lot/Batch #:

Purity:

Vehicle for test item: Agral 90

**Vehicle and/or positive control:** 

Positive control: Dimethoate (BASF 40 lot 083.10/96)

**Test organisms:** 

Species: Honey bee (Apis mellifera L.)

Adult worker bees

Source: Own colony

Diet/Food: Not stated

Environmental conditions:

Temperature:  $25 \pm 1$  °C

Humidity:  $65 \pm 5 \%$ 

Photoperiod: 24 hours darkness (except during observation)

Experimental dates: 24 August - 04 September 1998

## B. STUDY DESIGN

μg glyphosate acid/bee proper bee (dorsal thorax) to each of ten bees in each of three cages per per bee (dorsal thorax) to each of ten bees in each of three cages per per bee (dorsal thorax) to each of ten bees in each of three cages per per bee (dorsal thorax) to each of ten bees in each of three cages per per bee (dorsal thorax) to each of ten bees in each of three cages per parallel. During the observation method a 50 % w/v aqueous sucrose solution was provided. The definitive test was conducted with 0.0984, 0.984, 9.84 and 103 µg glyphosate acid/bee prepared in an as a 1.0 µL droplet per bee (dorsal thorax) to each of ten bees in each of three cages per treatment.. A control with 500 mg Agral 90/L and a toxic reference solution contains

#### **Observations**

Mortality and sub-lethal effects were assessed 4, 24 and 48 h after test initiation for contact toxicity.

#### **Statistical calculations**

Doses and LD₅₀ calculations were based on the analysed content of glyphosate acid. The mortality results were analysed using a probit programme (toxic reference treatment).

#### A. FINDINGS

II. RESULTS AND DISCUSSION

A. FINDINGS

Table 0-4: Toxicity of glyphosate acid to honey bees (Apis mellifera) in the contact toxicity test

Dose	Mean intake of		Mortality [%]		
[µg test item/bee]	glyphosate acid [µg a.s./bee]	24 h	₹ <b>48</b> h	72 h	
Contact toxicity test	Contact toxicity test				
Control	-	0 4 1	§ 0	0	
0.0984	•	2000	0	0	
0.984	•		0	0	
9.84	-	012 11 July	0	0	
103	-	16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	0	

B. OBSERVATIONS
No mortality of bees was observed in the 48 hours test period. No sub-lethal effects were observed in the test item group and the control group during the 48 hours test period.

All validity criteria according to OECD 214 were fulfilled, since the average mortality in the control group did not exceed 10% and the LD₅₀ of the toxic standard meets the specified range.

## III. CONCLUSIONS

## Assessment and conclusion by applicant:

The toxicity of glyphosate acid was tested in an acute contact toxicity test on honey bees. The LD50 (48 h) was >103 μg glyphosate acid/bee.

The study is considered valid so LD₅₀ >103  $\mu$ g a.s./bee can be used for risk assessment purposes.

	Assessment and conclusion by RMS:	
STOP OF STOP O		
	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

#### 1. Information on the study

Data point	CA 8.3.1.1.2/004		
Report author			
Report year	1996		
Report title	Glyphosate: Acute contact and oral toxicity to honeybees,		
Report No	1413/3-1018		
<b>Document No</b>	-		
Guidelines followed in study	EPPO Guideline No. 170: Test methods for evaluating the side-		
	effects of plant protection products on honeybee (1992)		
<b>Deviations from current test</b>	Deviations from guideline OECD 214 (1998): O		
guideline	Minor:		
	- Mortality observation was not assessed at 4 hours		
	- The relative humidity exceeded the recommended values		
Previous evaluation	Yes, accepted in RAR (2015)		
<b>GLP/Officially recognised testing</b>	Yes		
facilities	0 8 4		
Acceptability/Reliability	Valid Story		
Category study in AIR 5 dossier	Category 2a		
(L docs)	\$ \(\text{\$0,2}\)		

2. Full summary

Executive summary
In an acute laboratory study the contact toxicity of glyphosate to honeybee, Apis mellifera was tested. After a preliminary dose range-finding test, adult worker bees were treated with 0, 0.625, 1.25, 2.5, 5.0, 10 and 20 µg glyphosate/bee in the contact test. Three replicate cages, containing 10 bees each, were used. Mortalities and sub-lethal effects were made 1, 4, 24, and 48 h after treatment. No mortalities or sub-lethal effects were seen in any treatment or controls over the 48 h definitive test period. The validity criteria according to current OECD guideline 214 are fulfilled.

In conclusion the 24 and 48-hour oral LD₅₀ values for glyphosate were >20 µg a.s./bee for contact exposure (nominal).

## MATERIALS AND METHODS

## A. MATERIALS

**Test material:** 

Test item: Glyphosate White powder

Description: Lot/Batch #: H95 D161A

Purity: 95.3 %

Vehicle: Headland Enhance LF + reverse-osmosis water Vehicle and or positive control: Positive control: formulated Dimethoate (BASF Dimethoate

40 EC)

Test organisms:

Species: Honey bee (Apis mellifera)

Age: Adult worker bees

Source: The Bee Farm, Wetherby, West Yorkshire, UK

Diet/Food: 50 % sucrose solution ad libitum

Acclimatisation: Not stated

## **Environmental conditions:**

Annex to Regulation 283/2013

Temperature: 24.5 - 25.8°C Relative humidity: 49.1 - 86.0%

Photoperiod: darkness

**Experimental dates:** 27 June – 06 July 1996

#### **B. STUDY DESIGN**

## **Experimental treatments**

To determine the test concentrations for the definitive study a range-finding test was performed. The nominal doses of glyphosate used for the range-finding test were 0, 0.1, 1, 10 and 20 µg a.s./bee for contact dosing.

Bees were anaesthetised with carbon dioxide. Contact doses were applied as a 1.0 μL droplet of the test solution was placed on the dorsal thorax of each bee. The nomina doses of glyphosate used for the definitive test contact were 0, 0.625, 1.25, 2.5, 5.0, 10 and 20 µg a.s. bec. The nominal dose of 20 µg a.s./bee was given as a double droplet application ( $2 \times 1 \mu L$ ). Three replicate cages, containing 10 bees each, were used.

Observations
Assessments of mortality and sub-lethal effects were conducted, 4, 24 and 48 h after treatment.

#### Statistical calculations

Descriptive Statistics; the LD₅₀ values of the toxic standard, dimethoate, were calculated by Probit analysis.

# II. RESULTS AND DISCUSSION

#### A. FINDINGS

No mortalities or sub-lethal effects were seen in any treatment or controls over the 48 h definitive test period. The 48 h LD₅₀-value for dimethoate was calculated to be 0.452 μg a.s./bee (95 % confidence limits: 0.374 to 0.557) for contact exposure 8

Deviations according to the current guideline OECD 214:

- Mortality observation was not assessed at 4 hours
- The relative humidity exceeded the recommended values

These deviations are not expected to have a negative impact on the validity of the study which was valid at the time of conduct.

The test is considered to be valid according to OECD guideline 214 as mortality in the negative control did not exceed 10 % after 48 hours. In addition, the LD₅₀ for the reference item met the specified range.

#### II. CONCLUSIONS

## Assessment and conclusion by applicant:

The toxicity of glyphosate was tested in an acute contact toxicity test on honey bees. The contact LD₅₀ (24 h/48 h) values for glyphosate were >20 μg a.s./bee for contact exposure (nominal).

The study is considered valid so LD₅₀ >20 µg a.e./bee can be for risk assessment purposes

## Assessment and conclusion by RMS:

#### 1. Information on the study

Data point	CA 8.3.1.1.2/005
Report author	
Report year	1995
Report title	Testing Toxicity to Honeybee - Apis mellifera L. (laboratory) according to EPPO Guideline No 170. Glyphosate (tec.)
Report No	95 10 48 065
<b>Document No</b>	- 8,48,78
Guidelines followed in study	EPPO Guideline No. 170
Deviations from current test guideline	Deviations from guideline OECD 214 (1998): Minor: - Mortality observation was not assessed at 4 hours.
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes Karakara
Acceptability/Reliability	Waltd &
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary

Executive Summary

In a laboratory study, the acute contact toxicity of technical glyphosate to the honey bee, Apis mellifera L. 2. Full summary Executive Summary State of State was tested. Adult worker bees were exposed to two nominal test doses of 100 and 200 µg a.s/bee.

In the test, three replicate cages, each containing 10 bees were used for the test item treatment, control and reference treatment. Mortality, poisoning symptoms and behavioural abnormalities were recorded 24 and 48 hours after treatment initiation.

In the contact exposure test, there was no bee mortality recorded during the 48 hours test period at both test rates. In addition, no behavioural abnormalities were observed in test item groups and control groups during why ne study the whole test period. All validity criteria according to the OECD guideline 214 was fulfilled.

The study is considered valid so LD₅₀ >200  $\mu$ g a.e./bee can be used for risk assessment purposes.

#### I. MATERIALS AND METHODS

#### A. MATERIALS

#### **Test material:**

Test item: Glyphosate technical

Description: Not stated Lot/Batch #: 01/07/95 Purity: 98.2 % a.s.

Positive control: Dimethoate EC 400, containing 411.14 g

Vehicle and/or positive control:

Vehicle: Extravon (surfactant)

**Test organisms:** 

Species: Honey bee (Apis mellifera L.)

Source: Purchase from the bee-keeper Mr Weimann/Gottscheina

Diet/Food: 50 % aqueous sucrose solution ad libitum (except for 1 - 2

hours prior to oral test initiation)

**Environmental conditions:** 

Temperature: 25 - 26 °C

Photoperiod: 8 hours diffuse light/16 hours darkness

Humidity: 53 – 70 % The state of the state o 21 August = 01 September 1995 **Experimental dates:** 

#### **B. STUDY DESIGN**

#### **Experimental treatments**

The contact toxicity test was performed at two nominal test doses of 100 and 200 µg a.s./bee, with the test substance dissolved into a 1 % watery solution/surfactant Extravon. A negative control group where bees were exposed to 0.1 % Extravon only was also included. Dimethoate was used a toxic reference, at test doses ranging from 0.0313 to 1.0 µg/bee. The contact toxicity test was conducted in triplicate using 10 bees per replicate (30 bees). For contact toxicity test, test solutions containing appropriate concentrations of technical glyphosate were dosed to bees by thorax injection. After administration of the test substance, the bees were provided with 50% sucrose solution.

## **Observations**

Mortality, poisoning symptoms and behavioural abnormalities were recorded 24 and 48 hours after test

## Statistical calculations

Descriptive statistics

#### II. RESULTS AND DISCUSSION

## A. FINDINGS

The LD₅₀ value is given below based on nominal concentrations.

Table 0-5: Toxicity of technical glyphosate to honey bees in a contact toxicity tests

Endpoints (48 h)	Technical glyphosate [μg a.s./bee]	ijor.
Contact LD ₅₀	>200	Mar.

B. OBSERVATIONS

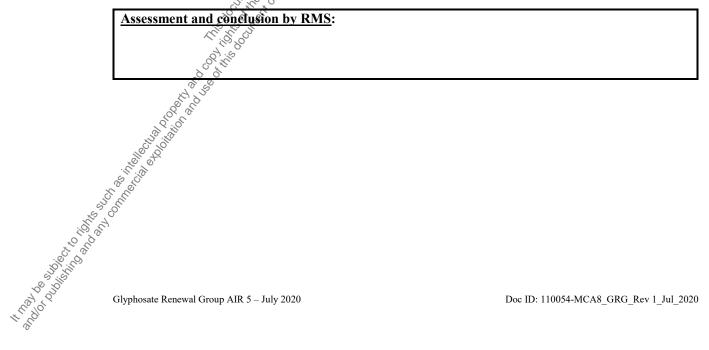
No biologically relevant mortality of bees was observed during the 48-hour test period for test concentrations of up to 200 µg a.s./bee, which was the highest concentration tested. In addition, no behavioural abnormalities were observed at any test item concentration and in the control groups. For the toxic reference dimethoate, the highest test doses caused 97 % mortalities for contact test.

Table 0-6: Mortality of honey bees in a contact toxicity tests

Table 0-6: Mortality of honey bees in a contact toxicity tests					
		Mortality [%]			
Test	Time [h]	Control	Technical glyphosate [μg a.s./bee] Toxic reference		Toxic reference [µg a.s./bee]
	[**]	1	100	200	Highest test dose
Contact	24	0	3	36 000	97
Contact	48	0	0		97

Deviations according to the current guideline OECD 214;

Mortality observation was not assessed at 4 hours, viation is not expected to have


This deviation is not expected to have a negative impact on the validity of the study.

The validity criteria according to the OECD guideline 214 was fulfilled as the mortality in the control was LED Sales in 214 was in <10 % at test termination.

## Assessment and conclusion by applicant:

The toxicity of technical glyphosate was tested in an acute contact toxicity test on honey bees. The LD₅₀ (48 h) was >200 μg a.s/bee.

The study is considered valid so LD₅₀ >200  $\mu$ g a.e./bee can be used for risk assessment purposes.



#### 1. Information on the study

Data point:	CA 8.3.1.1.2/006	
Report author	ijo	
Report year	1995	
Report title	Honey Bees (Apis mellifera L.), contact toxicity study in the	
	laboratory with Glyphosate	
Report No	142335	
<b>Document No</b>	- 3.5	
<b>Guidelines followed in study</b>	EPPO guidelines 22, 203 – 215 (1992)	
Deviations from current test guideline	Deviations from guideline OECD 214 (1998).  Minor:  - Mortality observation was not assessed at 4 hours  - Humidity was lower than the expected range: 34-40 % instead of 50-70 %  - Test extended to 72h with no rising of mortality of 10 %.  Additional assessment in regards to guideline requirement.  - Water control was not setup.	
Previous evaluation	Yes, accepted in RAR (2015)	
<b>GLP/Officially recognised testing</b>	Yes	
facilities	ji z z i	
Acceptability/Reliability	Valid Kalid	
Category study in AIR 5 dossier (L docs)	Category 2a	

2. Full summary

Executive Summary
In an acute laboratory study the contact toxical vol glyphosate technical material (96 % purity) to the honey bee, Apis mellifera L., was tested. Following a range finding test, adult worker bees were exposed to a single nominal dose of 100 μg a.s./bee.

In the test, three replicate cages, each containing 10 bees, were used for the test item treatment, control and reference treatment. Mortality and paralysis effects were recorded at least at the following approximate time intervals: 30, 60, 90 and 120 minutes after treatment and 24, 48 and 72 hours after treatment.

No mortality of bees was observed after 72 hours of exposure. In addition, no paralysis was observed in the test item and the control groups during the 72 hours test period. The validity criteria according to guideline OECD 214 are fulfilled.

In a contact toxicity test no effects of glyphosate on the mortality and the paralysis of honey bees were observed at concentrations up to and including 100 µg a.s./bee.

The study is considered valid so LD₅₀ >100  $\mu$ g a.e./bee can be used for risk assessment purposes.

#### I. MATERIALS AND METHODS

## A. MATERIA

Test material:

Test item: GLYFOSAAT (Spelling for report: GLYPHOSATE)

Description: White powder

Lot/Batch #: 22021

Purity: 96 %

Vehicle: Tap water

**Vehicle and/or positive control:** Positive control: Parathion 25 % liquid

## **Test organisms:**

Species: Honey bee (Apis mellifera L.)

Age: Naïve worker bees

Source: Research Centre for Insect Pollination and Beekeeping,

"Ambrosiushoeve"

Diet/Food: 50 % aqueous sucrose solution ad libitum (except during

treatment)

#### **Environmental conditions:**

Temperature: 24 - 25 °C Humidity: 34 - 40 %

Photoperiod: 24 hours darkness (except during observation)

20 March - 25 March 1995 **Experimental dates:** 

#### **B. STUDY DESIGN**

Experimental treatments

Prior to the main test, a range-finding test was performed exposing adult bees to nominal concentrations of 1.0, 10, 50 and 99 μg a.s./1 μL acetone. The definitive test was conducted as a limit test with a single nominal concentration of 100 µg a.s./1 µL acetone. All test solutions were prepared in an acetone solution. In addition, a control constituted of acetone and the reference substance (Parathion 25 % liquid) were tested. For the definite test, adult worker bees were exposed in triplicates (10 bees/test cage) to the test item, control and reference item. After the test substance was applied on the ventral part of the thorax of the bees with a micropipette (1mm³/bee), then the bees were provided with sucrose solution 50 %.

#### **Observations**

Mortality, paralysis and any other abnormalities were recorded at least the following approximate time intervals: 30, 60, 90 and 120 minutes after treatment and 24, 48 and 72 hours after treatment start.

#### Validity criteria

For a test to be valid the following conditions apply:

- the average mortality for the total number of controls must not exceed 10% at the end of the test;
- the LD₅₀ of the toxic standard meets the specified range.

## Statistical calculations

Descriptive statistics.

#### II. RESULTS AND DISCUSSION

# A. FINDINGS

The test solution containing a concentration of 100 µg a.s./bee was administered on the ventral part of the thorax of the bees. A summary of the mortality is provided below.

Table 67.5 Toxicity of glyphosate to honey bees (Apis mellifera L.) in a contact toxicity test

Dose of	Mortality [%]		
Dose of high a.s./bee]	24 h	48 h	72 h
Control (Acetone)	0.00	0.00	0.00
100	0	0	0

#### **B. OBSERVATIONS**

No mortality of bees was observed during the 72 hours test period for the test concentration of 100 ang a.s./bee. In addition, no paralysis was observed in the test item group and the control group during the 72 hours test period.

Deviations according to the current guideline OECD 214 (1998):

- Mortality observation was not assessed at 4 hours
- Humidity was lower than the expected range: 34-40 % instead of 50-70 %
- Test extended to 7 2h with no rising of mortality of 10 %. Additional assessment in regards to guideline requirement.

  • Water control was not setup.

  These deviations are not expected to have a negative impact on the validity of the study. guideline requirement.

All validity criteria according to OECD 214 were fulfilled, since the average mortality in the control group did not exceed 10 % (actual value: 0 %) and the 24-hour LD₅₀ of the textestandard meets the standard of less than 1.0 µg a.s./bee based on historical data (actual value: 0.4 µg a.s./bee)...

In an contact toxicity test, glyphosate had no effects on mortality of honey bees at concentrations of up to III. CONCLUSIONS and including 100 µg a.s./bee.

## Assessment and conclusion by applicant:

Assessment and conclusion by applicant:
The toxicity of glyphosate was tested in an acute contact toxicity test on honey bees. The LD₅₀ (72 h) was  $>100 \mu g$  a.s/bee.

The study is considered valid so  $LD_{50} > 100 \mu g$  a.e./bee can be used for risk assessment purposes.

## Assessment and conclusion by RMS:

#### 1. Information on the study

Data point	CA 8.3.1.1.2/007	
Report author	ii)	
Report year	1972	
Report title	The acute contact and oral toxicities of CP67573 and MQN2139	
	to worker honey bees	
Report No	HU85X094	
<b>Document No</b>	- 20 io	
Guidelines followed in study	Working Document 13 produced by the UK Pesticide Safety	
	Precautions Scheme	
<b>Deviations from current test</b>	Deviations from guideline OECD 214 (1998):	
guideline	Major:	
	- Mortality in the control was >10 % at test termination	
	Minor:	
	- Only 2 replicates (10 replicates only for the highest	
	concentration tested) per treatment group	
	- No additional solvent control was tested	
	- Duration of starvation was not reported	
	- Mortality observation was not assessed at 4 hours.	
Previous evaluation	Yes, accepted in RAR (2015)	
<b>GLP/Officially recognised testing</b>	No, GLP was not compulsory at the time the study was	
facilities	performed.	
Acceptability/Reliability:	Invalid & & & &	
Category study in AIR 5 dossier	Category 2b 3 6	
(L docs)		

^{*} Two test materials were assessed in this study; namely CP67573 and MON2139 (a 36% w/v formulation). MON2139 contains a surfactant that is not present in the representative formulation for the Annex I renewal. This summary therefore only contains information on CP67573 (glyphosate technical).

2. Full summary

Executive summary

The contact toxicity of CP67573 (glyphosate technical) to young adult worker bees (Apis mellifera L.) was determined in a limit tests performed at a nominal dose of 100 µg CP67573/bee. The test comprised 10 replicate mesh cages, each containing 10 bees. In a parallel test, honey bees were exposed to a reference item in a dose response test using dimethoate at concentrations ranging from 0.048 to 0.117 µg dimethoate/bee. In both tests, the test substance was applied as 1.0 µL drops onto the ventral thorax of CO₂ anaesthetised bees, dissolved in 50% acetone. Control groups consisting of 2 cages of 10 bees were included alongside each of the tests. Assessments of mortality were conducted after 24 and 48 hours. The validity criteria according to OECD guideline 214 were not fulfilled as mortality in the control was > 10% at test termination. 9,7%

In the 100 µg QP67573/bee treatment group, at 24 and 48 hours, there was 8 % and 38 % mortality, with corresponding mortality in the control group of 5 % and 15 % respectively.

This resulted in overall control corrected mortality levels of 3 and 27 % achieving a 48 hour LD₅₀ of Ref. MATERIALS

Test material: >100 μg CP67573/bee.

The study is considered invalid so endpoints cannot be used for risk assessment purposes.

## I. MATERIALS AND METHODS

Test item: CP67573 (technical active ingredient)

Description: Not stated

Lot/Batch #: No batch details presented in report

Purity: Not stated Density: Not stated

Vehicle: 50 % acetone

Vehicle and/or positive control: Positive control: Dimethoate

**Test organisms:** 

Honey bee (*Apis mellifera*) Species: Source: Experienced apiarist in Huntingdonshire UK

et/Food: Bees were fed with 20 % are

Diet/Food: Bees were fed with 20 % sucrose &

Diet/Food: Bees were fed with 20 % sucrose

Acclimatisation: Not reported

Environmental conditions:

Temperature: 26 – 27 °C

Relative humidity: Not reported

Photoperiod: Not reported

Experimental dates: Not reported

Not reported

Experimental treatments

Honey bees were exposed topically to CP67573 in a limit test conducted at 100 μ test item/bee, in nylon coated 2 mm wire mesh tubes, with 11.5 cm high and 3.5 cm in diameter, closed by corks at both ends. In coated 2 mm wire mesh tubes, with 11.5 cm high and 3.5 cm in diameter, closed by corks at both ends. In the contact toxicity test, CP67573 was dissolved in 50% acetone and was applied as 1.0 μL droplets (containing 100 g test item/L) to the ventral thorax of CO₂-anesthetised bees using a micro-applicator. There were 10 cages per test item treatment with two control cages containing 10 worker bees each. A reference item dose-response test (dimethoate) was conducted in parallel, at five test rates between 0.13 and 0.29 µg test item/bee, with two cages of ten bees per treatment and control group.

Mortality in the test or reference item treatment groups, were corrected for control mortalities using Abbot's correction, to give overall control corrected levels of mortality, on which the endpoint LD₅₀ values were based.

Observations
Mortality was recorded 24 and 72 hours after test initiation.

# Statistical calculations

Descriptive statistics: LD₅₀ for dimethoate were obtained by graphical interpolation on probability/log paper, confidence limits were calculated according to Litchfield & Wilson (1949).

## II. RESULTS AND DISCUSSION

## A. FINDINGS

A summary of the mortality results is provided below.

Table 0-8: Toxicity of glyphosate to honey bees (Apis mellifera L.) in a contact toxicity test

Endpoints (48 h)	CP67573 [μg a.s./bee]	
LD ₅₀ contact	>100	

Table 0-9: Contact toxicity of CP67573 to honey bees (Apis mellifera L.)

Exposure	Mortality [%]		Corrected mortality
	Control	100 μg a.s./bee	[%]
contact (24 h)	5	8	3
contact (48 h)	15	38	27 8 18

B. OBSERVATIONS
In the test with CP67573, the corrected bee mortality did not reach or exceed 50 % (max mortality was 27 %), resulting in overall control corrected mortality levels of 3 and 27 % at 24 and 48 hour respectively,

achieving a 48 hour LD₅₀ of >100  $\mu$ g CP67573/bee.

In the reference item test with dimethoate, a 48 hour contact exposure LD₅₀ value of 0.16  $\mu$ g dimethoate/bee (95 % C.I. of 0.14 - 0.19 μg dimethoate/bee) was observed.

Deviations according to the current guideline OECD 214:

- Only 2 replicates (10 replicates only for the highest concentration tested) per treatment group
- No additional solvent control was tested
- Duration of starvation was not reported
- Mortality observation was not assessed at 4 hours.

These deviations are not expected to have a negative impact on the validity of the study.

Mortality in the control was >10% at test termination.

This deviation has a negative impact on the validity of the study.

The validity criteria according to the OECD guideline 214 were not fulfilled as mortality in the control was >10% at test termination.

# Sili. CONCLUSIONS

## Assessment and conclusion by applicant:

The toxicity of glyphosate technical (CP67573) was tested in an acute contact toxicity test on honey bees. The LD₅₀ (48 h) was \$100 µg a.s./bee. The contact LD₅₀ for honey bees exposed to MON2139 were determined to be \$100 µg a.s./bee.

The study is considered invalid so endpoints cannot be used for risk assessment purposes.

# Assessment and conclusion by RMS: The Collision of the Co

#### 1. Information on the study

Data point:	CA 8.3.1.1.2/008	
Report author		
Report year	2017	
Report title	MON 0139: Acute Oral and Contact Toxicity to the Bumble Bee,	
	Bombus terrestris L. under Laboratory Conditions.	
Report No	S16-06634	
Document No	- 2.5	
Guidelines followed in study	Based on the proposal for new OECD Guidelines Rumblebee,	
	acute oral toxicity test (2016) and Bumblebee, acute contact	
	toxicity test (2016)	
<b>Deviations from current test</b>	Deviations from guideline OECD 246 (2017)	
guideline	Minor:	
	- analytical verification of dose is missing, however this was not	
	a requirement at the time of study conduct.	
Previous evaluation	No, not previously submitted	
GLP/Officially recognised testing	Yes	
facilities		
Acceptability/Reliability:	Valid	
Category study in AIR 5 dossier	Category 1	
(L docs)		

#### **Full summary** 2.

## **Executive Summary**

Bumblebees (Bombus terrestris) were exposed to MQN 0139 via contact administration, i.e. cuticular absorption following the application of a droplet of the dorsal body surface of a solution in deionised water. Adult bees were treated with 62.5, 125, 250, 500 and 1000 ug test item/bumble bee. Mortality was recorded 4 and 24 hours after application and thereafter at 48 hours (± 30 min). Behavioural abnormalities such as symptoms of poisoning in comparison to the control were recorded at each observation interval. No mortality was recorded at the end of the test in the 62.5, 250, 500 and 1000 µg test item/bumble bee treatment groups, however, 3.3% mortality (one dead bee) was observed in the 125 µg test item/bumble bee treatment. The 48 hours confect 1050 (Lethal Dose causing 50% mortality) for MON 0139 was determined to be > 1000 µg test term/bumble bee (equivalent to >461 µg a.e./bumble bee). The NOED for mortality after 48 hours was determined to be ≥1000 µg test item/bumble bee (equivalent to ≥461 µg a.e./bumble bee). The study was considered valid as there was no mortality in the control group and in the Test Material toxic reference group (dimethoate at 13 µg a.s./bumble bee) 100% mortality was observed. 

#### I. MATERIALS AND METHODS

MON 0139

GLP-1503-23921-T

Glyphosate: 46.1% (a.e.); 574.4 g/ml

liquid/slightly yellow

Stable under standard conditions.

Test ite.
Lot/Batch
Actual content of active ingredients:
Description:
Stability of test compound:
Reanalysis/Expiry date:
Denci February 13, 2018

 $1.2460 \text{ g/cm}^3$ 

Test rates: Target doses: 62.5, 125, 250, 500 and 1000 µg test item/bumble bee,

equivalent to 28.8, 57.6, 115, 231 and 461 ug a.e./bumble bee

Control: Deionised water

Toxic standard: BAS 152 11 I (dimethoate, analysed 405.2 g a.s./L)

13 μg a.s./bumble bee

Test organisms

Bombus terrestris L. (Hymenoptera: Apidae) Species:

From healthy colony owned and maintained by Biobest Belgium, Ilse Source:

Velden 18, 2260 Westerlo, Belgium.

Food: 50% w/v aqueous sucrose solution

Test design

Test cage description: Nicot cages

Replication: 30 No. of bees/arena:

Duration of test: 48 hours

**Environmental conditions** 

Temperature: 24.8 - 25.3°C  $50.9 \pm 60.4 \%$ Humidity:

Darkness (except during application and observations) Photoperiod:

10 April - 13 April 2017 **Experimental dates:** 

B. STUDY DESIGN

Experimental treatment
Adult worker bumblebees (Bombus terrestris) were exposed to MON 0139 via two routes of administration: (1) contact, i.e. cuticular absorption following the application of a droplet to the dorsal body surface of a solution in deionised water. To immobilise the bees during the course of treatment, they were anaesthetised using short bursts of CO₂.

Bumblebees were treated with one 2 ut drop of the test solution, control or toxic standard applied to the dorsal surface of the thorax using a micro applicator. The bumblebees were returned to the test unit, allowed to recover and kept in the CE room with a continuous supply of 50 % w/v aqueous sucrose solution.

#### **Assessments**

Mortality was recorded 4 and 24 hours after application (after application in the contact toxicity test) and thereafter at 48 hours (±36 min). Behavioural abnormalities such as symptoms of poisoning in comparison to the control were recorded at each observation interval. In the reference item group, behavioural assessments were not conducted as it was assumed that moribund and affected bumble bees of the reference item group would die by the end of the test.

#### **Statistics**

For the statistical evaluation the statistics program ToxRat professional, Version 3.2.1 was used. Multiple Holm adjustm contact toxicity test and to determine the D₅₀ with 95 % confidence limits could not be comortalities were below 50 % in all test item groups. Fisher's exact test with Bonferroni-Holm adjustment (one-sided greater,  $\alpha = 0.05$ ) was used to evaluate whether there are significant differences between the mortality data of the control and the test item treatment groups in the contact toxicity test and to determine the NOED based on mortality.

The £D₅₀ with 95 % confidence limits could not be calculated in the contact toxicity test since the observed Entire Control of the Control of the

## II. RESULTS AND DISCUSSION

#### A. FINDINGS

Table 0-10: Summary of contact acute toxicity of MON 0139 to the bumblebee

MON 0139	Contact toxicity test	
	[µg test item/bumble bee]	[μg a.e./bumble bee]
LD ₅₀ (24 h)	>1000	>461
LD ₅₀ (48 h)	>1000	>461
NOED (48 h)	≥1000	≥461

B. OBSERVATIONS
In the control group treated with deionised water, no mortality occurred during the 48 hours test period. In the test item treatment group, no mortality was recorded at the end of the 48 hours test period in the 62.5, 250, 500 and 1000 µg test item/bumble bee treatment groups. 3.3 % mortality was observed in the 125 µg test item/bumble bee treatment groups after 48 hours (corresponding to Tacad bumble bee). No behavioural abnormalities were recorded during the 48 hours testing period at any target dose.

Deviations according to the current guideline OECD 246 (2017).

ons according to the current guideline OECD 246 (2017). analytical verification of dose is missing, however this was not a requirement at the time of study conduct.

## Validity criteria

The study is considered valid since the control and reference item validity criteria were met:

The mean control mortality was  $\leq 10$  % at the end of the test (actual 0 % mortality)

The mean reference item mortality was ≥50 % at the end of the test (actual 100 % mortality)

# THE CONCLUSIONS

## Assessment and conclusion by applicant:

The 48 hours contact LD₅₀ for MON 0139 was determined to be >1000 µg test item/bumble bee, equivalent to >461 µg a.e. burnble bee. The NOED for mortality after 48 hours was determined to be ≥1000 µg test item/bumble bee, equivalent to ≥461 µg a.e./bumble bee.

The study is considered valid so LD₅₀>461 µg a.e./bumble bee and NOED  $\geq$ 461 µg a.e./bumble bee can be used for risk assessment purposes.

Assessment and conclusion by RMS:	
Assessment and Congrusion by Kivis.	
Glyphosate Renewal Group AIR 5 – July 2020	
Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202

#### 1. Information on the study

Data point	CA 8.3.1.1.2/009	
Report author		
Report year	2017	
Report title	MON 0139: Acute Contact Toxicity to the Solitary Bee, Osmia	
	bicornis under Laboratory Conditions	
Report No	S17-00083	
Document No	- 2,5	
<b>Guidelines followed in study</b>	Based on OEPP/EPPO 170 (4) (2010), OECD 214 (4998) and	
	the minutes of the ICPPR Non-Apis bees workshops (2014,	
	2015, 2016 and 2017)	
Deviations from current test guideline	No specific test guideline available.	
Previous evaluation	No, not previously submitted	
<b>GLP/Officially recognised testing</b>	Yes	
facilities		
Acceptability/Reliability	Valid	
Category study in AIR 5 dossier	Category 1	
(L docs)	\$ \(\text{\text{\$0.7}}\)	

2. Full summary

Executive Summary

Solitary bees (Osmia bicornis) were exposed to MON 0139 by topical application to the thorax following an adapted version of OECD 214. A hand operated micro-applicator was used for contact application of the treatment groups. Adult bees were treated with 62.5, 125, 250, 500 and 1000 µg glyphosate/bee. Three replicate cages each containing 10 bees each were used. Mortality was recorded 4 hours after application and thereafter at 24 hours and 48 hours (\$\frac{1}{2}\text{0}\text{min}\). Behavioural abnormalities such as symptoms of poisoning in comparison to the control were recorded at each observation interval. Mortality in all glyphosate treated groups was low and did not exceed 6.67% 48 hours after treatment. The 48 hours contact  $LD_{50}$  for MON 0139 was determined to  $\geq$  1000 µg test item/bee (equivalent to  $\geq$ 461 µg a.e./bee). The NOED for mortality after 48 hours was determined to be ≥1000 µg test item/bee (equivalent to ≥461 µg a.e./bee). The study was considered walid as there was no mortality in the control group and the toxic reference group (dimethoate at 10 ag a.s./bee) 86.7% mortality was observed.

I. MATERIALS AND METHODS

A. MATERIALS

Test Material

**Test Material** 

Test item: MON 0139

Lot/Batch #: GLP-1503-23921-T

Glyphosate: 46.1% (a.e.); 574.4 g/ml

liquid / slightly yellow

Stable under standard conditions.

Late of acti ingredient.
Description
Tability of test compound:
Reanalysis/Expiry date:
Density:

Treatments February 13, 2018

 $1.2460 \text{ g/cm}^3$ 

Test rates: 62.5, 125, 250, 500 and 1000 µg test item/bee, equivalent to 28.8, 57.6,

115, 231 and 461 µg a.e./ bee

Control: Deionised water

Toxic standard: BAS 152 11 I (dimethoate, analysed 405.2 g a.s./L)

Topical application in the torax of 2 µL droplet of the application solution Administration:

with a hand operated micro-applicator

**Test organisms** 

Species: Osmia bicornis (Linnaeus) (Hymenoptera: Apidae)

Commercial supplier (WAB-Mauerbienenzucht, Somentauweg 47, Source:

78467 D-Konstanz, Germany)

50% w/v aqueous sucrose solution containing 0.1% anise oil Food:

Test design

Test cage description: Plastic boxes 13 x 17 cm, height: 6cm

Replication: 10 No. of bees/arena: Duration of test: 48 hours

**Environmental conditions** 

Temperature:

Humidity:

rarget: 19.2 – 20.3 °C
Exposure: 19.1 – 20.4 °C
Target: 50 – 70 %
Exposure: 64 4 ¹ Deviations ≥2 hours without impact on the outcome of the study

16 hours light: 8 hours dark Photoperiod:

10 May to 12 May 2017 **Experimental dates:** THE STATE OF THE S

#### **B. STUDY DESIGN**

## **Experimental treatments**

Experimental treatments

Solitary bees were exposed to MON 0139 by topical application to the thorax. A hand operated microapplicator was used for application of the treatment groups. The application amount was 2 µL/bee. After anaesthetising the bees by cooling for ~ 1 hour in the refrigerator (~ 10°C) the 2 µL droplet of the application solution was applied individually to the dorsal side of the thorax of each bee. After the application, the bees were returned to the test units, allowed to recover and were fed with a continuous supply of 50 % w/v aqueous stronger solution with anise oil (0.1 %). Anise oil was used to attract the bees to the food source (phagostimulant).

#### **Assessments**

Mortality was recorded 4 hours after application and thereafter at 24 hours and 48 hours (± 30 min). Behavioural abnormalities such as symptoms of poisoning in comparison to the control were recorded at each observation interval. In the reference item group, behavioural abnormalities assessments were not conducted as it can be assumed that moribund and affected bees of the reference item group died by the end of the test.

Statistics Multiple Fisher's exact test with Bonferroni-Holm adjustment (one-sided greater,  $\alpha = 0.05$ ) was used to evaluate whether there are significant differences between the mortality data of the control and the test item Streatment group and to determine the NOED based on mortality. The LD₅₀ with 95% confidence limits could not be calculated since the observed mortalities were below 50 % in all test item groups. Statistical calculations were made by using the statistical program TOXRAT Professional 3.2.1.

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

In the control group treated with deionised water no mortality occurred during the 48-hour test period, After the 24 hour assessment two bees escaped through a hole in the lid of one cage of the control group. As none of the remaining bees showed any effects, and all the remaining bees in the control group survived the impact was deemed minor and the study objective was still achieved.

Table 0-11: Summary of contact acute toxicity of MON 0139 to solitary bee

MON 0139	Contact toxicity test	\$
	[µg test item/bee]	[µg a.e./bee]
LD ₅₀ (24 h)	>1000	>461,0 3,0
LD ₅₀ (48 h)	>1000	>461,5 3
NOED (48 h)	≥1000	≥461 ₀ \$

**B. OBSERVATIONS**Mortalities of 0.0, 0.0, 3.3, 6.7 and 6.7 % were recorded at the dose levels of 62.5, 125, 250, 500 and 1000 μg product/bee at the end of the 48-hour test period, respectively. No exceptional behavioural abnormalities were recorded throughout the test (one affect bee at the dose level of 62.5 µg test item/bee 48 hours after start of exposure).

#### Validity criteria

There was no bee mortality in the control group over the 48-hour duration of the test. In the reference item group of the contact toxicity test (deionised water containing dimethoate), 86.7% mortality was observed at the end of the 48 hours test period. Consequently, validity criteria for both control (average mortality  $\leq$  20%) and reference item mortality (mean mortality  $\geq$  50%) were met and the test was considered valid.

# HI. CONCLUSIONS

## Assessment and conclusion by applicant:

The 48 hours contact LD₅₀ for Sofitary Bee, Osmia bicornis exposed to MON 0139 was determined to be >1000 µg test item/bee, equivalent to >461 µg a.e./bee. The NOED for mortality after 48 hours was determined to be  $\ge 1000 \,\mu$ g test item/bee, equivalent to  $\ge 461 \,\mu$ g a.e./bee.

The study is considered valid so LD₅₀>461 µg a.e./bee and NOED ≥461 µg a.e./bee can be used for risk assessment purposes.

	2.0	
	Assessment and conclusion by RMS:	
	A STATE OF THE STA	
, so		
	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202
312		

## CA 8.3.1.2 Chronic toxicity to bees

Studies considering the effects of glyphosate on the chronic toxicity to bees were assessed for their validity to current and relevant guidelines and are presented in the following table.

Table 0.3.1.2-1: Chronic toxicity studies of glyphosate to pollinators

Annex point	Study	Study type	Test species	Substance(s)	Status	Remark
CA		Chronic	Apis	Glyphosate IPA-	Valid	
8.3.1.2/001	, 2017	adult	mellifera L.	salt	vand	

There are no literature articles and peer-reviewed published data considered to be reliable or reliable with restrictions with regards to the chronic impact of glyphosate of its relevant metabolites on bees. Full literature evaluation is provided in document M-CA Section. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. For discussions of literature regarding toxicity to bees, please refer to document M-CP Section 10.3.

Endpoints of studies considered valid are shown in the table below. Olyphosate is an acid molecule, so it is often formulated as a salt. Ecotoxicological studies have been conducted with various forms of glyphosate, namely IPA salt, K-salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate or glyphosate technical are automatically expressed as acid equivalent.

Table 8.3.1.2-3: Endpoints: Chronic toxicity of glyphosate to pollinators

Reference	Test item	Species 5	Test design/ GLP	LDD ₅₀ (μg a.e./bee/d)	NOEDD (μg a.e./bee/d)
, 2017 CA 8.3.1.2/001	Glyphosate	Apis mellifera	Chronic, adult 10 days	>179.9	179.9

a.e.: acid equivalents

Endpoints in **bold** is used for risk assessment

Study summaries are provided below.

## 1. Information on the study

200	
Data point	CA 8.3.1.2/001
Report author &	
Report year	2017
Report title	MON 0139: Chronic Oral Toxicity Test on the Honey Bee (Apis
2.5	mellifera L.) in the Laboratory
Report No	118401136
Document No	-
Guidelines followed in study	OECD (2016), Proposal for a New Guideline for the Testing of
& & C	Chemicals. Honey Bee (Apis mellifera L.), Chronic Oral Toxicity
	Test. 10 Day Feeding Test in the Laboratory, OECD Publishing,
3	Paris, February 2016
Deviations from current test guideline	Deviation from guideline OECD 245 (2017): none

S

Previous evaluation	No, not previously submitted	
GLP/Officially recognised testing	Yes	8
facilities		. To.:
Acceptability/Reliability	Valid	i,Coti
Category study in AIR 5 dossier	Category 1	JI II
(L docs)		24,00

2. Full summary

Executive Summary

To evaluate the chronic effects of the test item on honey bees, a 10 days chronic oral feeding test in the laboratory (dose response test) was performed. Young honey bees were provided with 5 concentrations (256, 640, 1600, 4000, 10000 mg a.s./kg) of the test item treated sugar solutions and libitum over a period of 10 days. An untreated control and a reference item (BAS 152 11 I; 400 % Light dimethoate) were included in this study. For the study 3 replicates per treatment were used, each consisting of 10 bees per test cage. The number of dead bees in each test replicate was assessed daily until test end (Day 0 - Day 10). Behavioural abnormalities were assessed daily until test end (Day 1 to Day 10). Sub-lethal effects such as symptoms of poisoning or any abnormal behaviour in comparison to the control were recorded. The food consumption per bee was calculated by the number of surviving bees per assessment and the amount of food consumed on the following assessment day. The quantification of the active ingredient glyphosate of the test item MON 0139 in the feeding solutions was performed using HPLC-method with UV-detection indicating actual doses of 5.6, 10.2, 38.6, 98.0 and 179.9 µg s. Dee/day (corrected for evaporative losses). Ten days following the start of chronic exposure 3.3 and 6.7 % mortality occurred in the 10000 and 640 ppm (179.9 and 10.2 μg a.s./bee/day) treatment groups, respectively. No mortality occurred in the other test item treatments (4000, 1600 and 256 mg a.s./kg feeding solution). There was 6.7 % mortality in the control (50 % w/v sucrose solution). No behavioural abnormalities occurred following treatment with MON 0139 at any time during the trial.

The chronic oral toxicity of MON 0139 was tested over 10 days.

The LC₅₀ value (10 days) was >10000 mg/a.s.kg/feeding solution.

The LDD₅₀ value (10 days) was >179.9 ag a.s. bee/day.

The NOEC and NOEDD values (10 days) were 10000 mg a.s./kg feeding solution and 179.9 µg a.s./bee/day, respectively.

The study is considered valid so LDD₅₀>179.9 μg a.s./bee/day and NOEDD of 179.9 μg a.s./bee/day can be used for the risk assessment purposes.

#### I. MATERIALS AND METHODS

#### A. MATERIALS

**Test Material:** MON 0139

GLP-1503-23921-T

Actual content of active Glyphosate: 46.1 % (w/w) 574.4 g glyphosate IPA salt/L (analytical),

> ingredients: according to certificate of analysis

Description: Slightly yellow liquid

Stability of test compound: Stable under standard conditions.

Reanalysis/Expiry date: February 13, 2018

> Density: 1.246 g/cm³ (according to Sponsor);

> > 1.24 g/cm³ (according to MSDS)

Treatments

Concentrations: 256, 640, 1600, 4000, 10000 mg a.s./kg feeding solution Test rates:

Nominal target dose per bee/day: 6.4, 16, 40, 100 and 250 µg a.s./bee/day

Actual dose per bee/day: 5.6, 10.2, 38.6, 98.0 and 179.9 µg a.s./bee/day

Page 509 of 847

Control: 50 % w/v sucrose solution (500 g sucrose/L deionised water)

BAS 152 11 I (nominally 400 g dimethoate/L; analytical 405.2 g/L) Toxic standard:

Administration: The bees in each test unit were fed ad libitum, via a single syringe

(feeder) attached to each test unit with a 50 % (w/v) sucrose solution

containing the treatments or control

## **Test organisms**

Species: Apis mellifera (Hymenoptera: Apidae)

Honey bee colonies, disease-free and queen-right, bred by ibacon. Source:

Food: 50 % w/v aqueous sucrose solution. On each day of the test, feeder

syringe was replaced with a new syringe containing freshly prepared sucrose solution only (control), or containing the test item or reference

item as required.

## Test design

Test cage description: Stainless steel chambers

Replication: No. of bees/arena: 10 Duration of test: 10 days

#### **Environmental conditions**

Temperature: 32 - 34 °C Humidity: 59 - 72 %

Darkness (except during observations) Photoperiod:

September 2017 20 June 2017 **Experimental dates:** A THE STATE OF THE

#### **B. STUDY DESIGN**

## **Experimental treatments**

To evaluate the chronic effects of the test item on honey bees, a 10 days chronic oral feeding test in the laboratory (dose response test) was performed. Young honey bees were provided with 5 concentrations of the test item treated sugar solutions ad libitum over a period of 10 days. An untreated control and a reference item (BAS 152 11 I; 400 %L dimethoate) were included in this study. For the study 3 replicates per treatment were used, each consisting of 10 bees per test cage. 27.1100

Observations

The number of dead bees in each test replicate was assessed daily until test end (Day 0 – Day 10). Behavioural abnormalities were assessed daily until test end (Day 1 to Day 10). Sub-lethal effects such as symptoms of poisoning or any abnormal behaviour in comparison to the control were recorded. The food consumption per bee was calculated by the number of surviving bees per assessment and the amount of food consumed on the following assessment day.

Analysis of The The quantification of the active ingredient glyphosate of the test item MON 0139 in the feeding solutions was performed using HPLC-method with UV-detection.

## Statistics

Levels of bee mortality in the test item groups were compared with mortality levels achieved in the control group. Since mortality in all test item treatment groups was < 50% the LC₅₀ / LDD₅₀ values could not be calculated and are therefore considered to be greater than the highest tested rate/dose (10000 ppm/179.9 µg a.s./bee/day). The NOEC/NOEDD of the test item was estimated using Fisher's Exact Test (pairwise comparison, one-sided greater,  $\alpha = 0.05$ ), which is a distribution-free test and does not require testing for normality or homogeneity prior to analysis. The software week to be a software we will be a software with the software wear we will be a software with the software we will be a software ToxRat Professional, Version 3.2.1, ® ToxRat Solutions GmbH.

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

The analytical recovery rates of the active ingredient glyphosate in the feeding solutions were as follows:

Table 0-2: Analytical recovery rates

	Recovery rate [%] 1	\$ \( \tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\tilde{\ti}
Concentration ²	Day 0 ³	Day 9 4 S S S S
10000	96	93
256	92	91,50,50

Recovery rate of the a.s. in feeding solution [ppm]

As the recoveries were within 100 %  $\pm$  20 % nominal concentrations were taken when calculating the dose per bee/day (including correction for evaporative loss).

B. OBSERVATIONS

Effects on honey bees

Over the 10 day chronic exposure period, there was 3.3 and 6.7% mortality in the 10000 and 640 ppm (179.9 and 10.2 µg a.s./bee/day) treatment groups, respectively. No mortality occurred in the other test item treatments (4000, 1600 and 256 mg ass./kg feeding solution). There was 6.7% mortality in the control (50%) w/v sucrose solution). Control mortality was not corrected to the mortality values in the test item treatment. The reference item (dimethoate) at a concentration of 1 ppm (1 mg dimethoate/kg feeding solution) corresponding to 0.015 µg a.s./bee/day caused 100% mortality at day 4.

For each treatment group, based on the actual amount of test solutions consumed (corrected for evaporative losses) within each treatment group, the daily mean doses were 179.9, 98.0, 38.6, 10.2 and 5.6 µg a.s./bee/day after 10 days. The maximum nominal dose levels of the test item (250 µg a.s./bee) could not be achieved, because the bees did not ingest the full targeted volume of treated 50% w/v sucrose solution. Food consumption varies among the treatment group. In the highest dose level (250 µg a.s./bee) the food consumption ranges between 103.7 µg a.s./bee (day 7-8) and 229.0 µg a.s./bee (day 9-10). In the other dose levels the pattern of consumption was more consistent. It is known that there is a high variation of food uptake by the bees within this test. Together with the trophallaxis of the bees the mean values at the end of the test (nga.s./bee/day) should be seen as the relevant reference point.

No behavioural abnormalities occurred following treatment with MON 0139 at any time during the trial.

² Nominal concentration of the a.s. in the feeding solution [ppm]

³ Day 0 = freshly prepared feeding solution on day 0

⁴ Day 9 = freshly prepared feeding solution on day 9

Table 0-3: Summary of chronic oral toxicity of glyphosate to the honeybee

Test Organism		Apis mellifera L.			
Exposure		Oral 10 days chronic exposure			
Treatment Group	Concentration [mg a.s./kg]	Dose Level ¹ [µg a.s./bee]	Mortality at day 10 2 [% Mean]		
Water control	0.0	0.0	6.7		
MON 0139	256	5.6	0.0 (n.s.)		
MON 0139	640	10.2	6.7 (n.s.)		
MON 0139	1600	38.6	0.0 (n.s.) 3		
MON 0139	4000	98.0	0,0 (n.s.)		
MON 0139	10000	179.9	33.(ja.s.)		
Reference Item	1.0	0.015	100.0		
Endpoint at test termi	ination (day 10)	, o 2			
LC50	LDD ₅₀	NOEC SO SO	NOEDD		
> 10000 mg a.s./kg	> 179.9 μg a.s./bee	10000 mg a.s. kg	179.9 μg a.s./bee		

¹ mean dose per bee per day; dose measured based on consumed feeding solution adjusted for evaporation

Statistic: Mortality: Fisher's Exact Test, pairwise comparison, one-sided greater,  $\alpha = 0.05$ 

NOEC/NOEDD: was estimated using Fisher's Exact Test (pairwise comparison, one-sided greater,  $\alpha = 0.05$ ). n.s. = no statistical significant difference compared to the control,

Validity criteria

The study is considered to be valid because it meets the criteria of OECD 245:

- the mean mortality of the control was \( \frac{1}{2} \) \( \lambda \) (6.7 \( \lambda \) on day 10)
- the reference item mortality was 50 % (actual: 100.0 % on day 4)

Ten days following the start of chronic exposure 3.3 and 6.7% mortality occurred in the 10000 and 640 ppm (179.9 and 10.2 µg a.s./bee/day) treatment groups, respectively. No mortality occurred in the other test item treatments (4000, 1600 and 256 mg a.s./kg feeding solution). There was 6.7% mortality in the control (50 % w/v sucrose solution). No behavioural abnormalities occurred following treatment with MON 0139 at any time during the trial. The LC₅₀ value (10 days) was > 10000 mg a.s./kg feeding solution. The LDD₅₀ value (10 days) was > 1,59.9 µg a.s./bee/day. The NOEC and NOEDD values (10 days) were 10000 mg a.s./kg feeding solution and 179.9 µg a.s./bee/day, respectively.

#### III. CONCLUSIONS

## Assessment and conclusion by applicant:

This chronic and toxicity study to honey bees (Apis mellifera L.) under laboratory conditions provides relevant and reliable endpoints.

The LC₅₀ value (10 days) was > 10000 mg a.s./kg feeding solution. The LDD₅₀ value (10 days) was >179.9 ug a.s./bee/day. The NOEC and NOEDD values (10 days) were 10000 mg a.s./kg feeding solution and 179.9 µg a.s./bee/day, respectively.

The study is considered valid so LDD50 >179.9 μg a.s./bee/day and NOEDD of 179.9 μg a.s./bee/day can be used for the risk assessment purposes.

#### Assessment and conclusion by RMS:

² Mortality at study termination 10 days after start of first feeding

#### CA 8.3.1.3 Effects on honeybee development and other honeybee life stages

Studies considering the effects of glyphosate on honeybee development and life stages were assessed for their validity to current and relevant guidelines for glyphosate and are presented in the following table.

Table 0.3.1.3-1: Studies on honey bee development and other honey bee life stages toxicity of glyphosate

Annex point	Study	Study type	Test species	Substance(s)	Status &	Remark
CA	,	Chronic	Apis	Glyphosate IPA-	Walid 30	-
8.3.1.3/001	2020	larvae	mellifera L.	salt	6600	

There are no literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate or its relevant metabolites on honeybee development and other honeybee life stages. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. For discussions of literature regarding toxicity to polliantors, please

refer to document M-CP Section 10.3.

Endpoints of studies considered valid are shown in the table below. Glyphosate is an acid molecule, so it is often formulated as a salt. Ecotoxicological studies have been conducted with various forms of glyphosate, namely IPA salt, K-salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report or by a conversion factor of & Al (for IPA salt). By nature of the glyphosate, endpoints of glyphosate or glyphosate technical are automatically expressed as acid equivalent.

Endpoints: honey bee development and other honey bee life stages toxicity Table 8.3.1.3-3: of glyphosate (

Reference	Test item Species	Test design/ GLP	LD ₅₀ (μg a.e./larva)	NOED (μg a.e./larva)
, 2020 CA 8.3.1.3/001	Glyphosate Apis mellifera	Chronic larvae, 22-day	-	80

a.e.: acid equivalents

Study summaries are provided below.

#### 1. Information on the study

	0%	
	Data point & &	CA 8.3.1.3/001
	Report author	
	Report year	2020
	Reportatite	MON 0139 - Repeated exposure of honey bee larvae (Apis
		mellifera L.) under laboratory conditions
	Report No	19 48 BLC 0068
	Document No	-
2	Guidelines followed in study	OECD (2016) No. 239 and Adaptations based on SCHMEHL et
Sign		al. (2016).
Aris A	Deviations from current test	Deviation from OECD 239 (2016) with adaptation
100	guideline	according to SCHMEHL et al., 2016: none
	Previous evaluation	No, not previously submitted
Jol Killes		
2,6	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020
. 812		

GLP/Officially recognised testing facilities	Yes	ä
Acceptability/Reliability	Valid	:.01.
Category study in AIR 5 dossier	Category 1	;;( ² ).
(L docs		20,10

#### 2. **Full summary**

Executive Summary
The chronic effects of MON 0139 (Glyphosate technical in the form of the IPA salt) on knowy bee larvae, was evaluated in a repeat dose laboratory dietary exposure test. Honey bee larvae collected from three different colonies, were exposed to MON 0139 administered at a constant concentration dose in the diet, at five doses of 5.1, 12.8, 31.9, 80 and 200 μg a.s./larva (corresponding to 11.0, 27.5, 68.7, 172 and 429 μg product/larva). An untreated control and a reference item (Dimethoate tech.) were also included in the definitive test. Three replicates per treatment, control or reference item group were prepared, each consisting of 12 larvae, using 48 well plates and polystyrene grafting cells. Cumulative mortality of honey bee larvae treated with the test item was assessed daily from Day 4 to Day 8, with cumulative mortality during the pupal phase assessed on day 15. All mortality was compared to the control. The adult emergence rate was assessed on day 22. Sublethal effects were assessed and recorded daily until test end. The level of glyphosate in the diet was measured using a HPLC-method with SV detection. In the test item groups, larval mortalities on D8 ranged between 0.0 and 8.3 %. Pupal mortalities on D15, ranged between 11.1 and 23.0 % in the test item treatment groups. Total mortalities on \$\infty\$22 ranged between 19.4 and 36.1 %. Mortality in the toxic reference was above 50% across all replicates on D8 (69.4 %). No sublethal effects (e.g. remaining food or small body size) were observed at the end of the feeding phase and no other observations occurred in any of the test item treatments on D22.

The ED₅₀ (successful adult emergence up to D22) was >200  $\mu$ g a.s./larva, equivalent to an EC₅₀ of >1262 mg a.s./kg diet.

The ED₂₀ was determined to be 195.7  $\mu$ g a.s./larva; which is equivalent to an EC₂₀ of 1235 mg a.s./kg diet. Values for ED₁₀ and EC₁₀ were 75.6 μg a.s./karya and 477 mg a.s./kg diet, respectively.

The respective NOED was 80 µg a.s./larva and the corresponding NOEC was 505 mg a.s./kg diet.

The study is considered valid so NOED of 30 ag a.e./larva can be used for risk assessment purposes.

## I. MATERIALS AND METHODS

#### A. MATERIALS

1. Test Material:

Spirit Out MON 0139 11494372

Lot/Batch#:

Actual content of active MON 0139 is a 62% technical solution comprising Glyphosate at

singredients: 46.5 % (w/w); 580 g/L, according to certificate of analysis

Description: Yellow liquid Reanalysis/Expiry date: 29 March 2021

Density: 1.2482 g/mL

2. Treatments

Concentrations: 32, 81, 202, 505 and 1262 mg a.s./kg diet Test rates:

Actual dose per larva: 5.1, 12.8, 31.9, 80 and 200 µg a.s./larva

Control: untreated diet B/C (aqueous sugar solution + royal jelly)

Toxic standard: Dimethoate tech. (analysed purity: 98.8% w/w)

treated diet B/C at a concentration of 48 mg a.i./kg food

Administration: Each larva was fed with 20 μL of artificial diet A on day 1, with 20 μL

of artificial diet B on day 3 and with  $30\mu L$ ,  $40\mu L$  and  $50~\mu L$  of diet C on

day 4, 5 and 6 respectively.

## 3. Test organisms

Species: Apis mellifera Subspecies: Buckfast (Hymenoptera: Apidae)

Source: Honey bee colonies, disease-free and queen-right, reared by Brochem

agrar.

Food: Artificial diets composed of royal jelly and sugar solution according to

the guideline requirements. On each feeding day of the test, freshly prepared diets only were administered to control, or containing the test

item or reference item as required.

## 4. Test design

Test cage description: Crystal polystyrene grafting cells were placed in 48 well plates

Replication: 3
No. of larvae/replicate: 12
Duration of test: 22 days

#### 5. Environmental conditions

Temperature: 34.0 - 34.8 °C

Humidity: D1-D8: 92 - 100%; D8 - D45: 80-82%; D15 - D22: 60-62%

Photoperiod: Darkness (except during observations)

6. Experimental dates: 16 September 2019 20 November 2019

#### **B. STUDY DESIGN AND METHODS**

## 1. Experimental treatments

To evaluate the chronic effects of the test item MON 0139 on honey bee larvae, a laboratory test (dose response test) after repeated exposure was performed. The test item was administered to the larvae at a constant concentration in the diet according to their growth, within a range of five increasing doses spaced by a factor of ≤3 An untreated control and a reference item (Dimethoate tech.) were included in this study. For the study 3 replicates per treatment, control or reference item were used, each consisting of 12 larvae. All test larvae were collected from three different colonies, each representing a replicate.

## 2. Observations

Number of dead larvae (an immobile larva or one which did not react to contact stimulus was noted as dead), daily on D4 to D8 (larvae mortality); number of dead pupae (larvae that had not transformed into pupae) on D15 (pupal mortality). Recording, e.g. of larger amounts of unconsumed food and/or discolourations and/or abnormal behaviour and/or substantially undersized larvae on D8 in order to support in the interpretation of mortality data. The test ended on D22 (final assessment) and the bees which emerged successfully were counted.

## 3. Analytical doses verification

Each final diet was sampled in duplicate for analysis and retained directly after diet preparation on each day of use. The test item stock solutions were sampled in parallel as a back-up in case of issues with the final diet analysis. The determination of the active ingredient was conducted by an in-house developed method using HPLC with MS/MS-detection. The analytical method was validated according to SANCQ 3029/99 rev. 4.

## 4. Statistics

Descriptive statistics were carried out; Step-down Cochran-Armitage Test Procedure (one-sided greater,  $\alpha \approx 0.05$ ) for determination of NOED/NOEC. ED/EC_{10/20/50} values were determined by Logit analysis using linear maximum likelihood regression.

## II. RESULTS AND DISCUSSION

#### A. FINDINGS

A. FINDINGS

The analytical recovery rates of the active ingredient glyphosate in the final diets ranged between 86.8 and 111 %. As the measured concentrations always ranged between 80 and 120 % of nominal the ecotoxicological endpoints were evaluated using nominal concentrations. Details are presented below:

Table 0-2: Analytical recovery rates

	ytical recovery rate	J		10 10 10 10 10 10 10 10 10 10 10 10 10 1
Sampling Day	Nominal concentration [µg a.s./L]	Nominal concentration [mg a.s./kg]	Measured concentration [mg a.s./kg]	Recovery rate
3			34.7	³⁵ 107
4	5.1	32.3	34.7 35.5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5	110
5	3.1	32.3	33,4 10 10	103
6			36.00	111
3			× 81.40	101
4	12.8	80.7	: ( ) 3 5 3 °	93
5			83.1	103
6			8 8 76.6	94.9
3			200	99.3
4	31.9	202	5 N 175	86.8
5	31.9	202 6 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	200	99.3
6			197	97.7
3		0, 2, 30	467	92.6
4	80	585 JE 0	477	94.6
5	80	ELECTION OF THE	462	91.6
6		This so	453	89.7
3		160.9	1098	87.0
4	200	30° E0° :9262	1186	94.0
5	200	1202	1316	104
6	_ (	S ( ) S	1196	94.8

No test item was detected in the control specimen.

B. OBSERVATIONS
On D8, a larval mortality of 2.8% was observed in the control. Pupal mortality (between D8 and D15) was 19.9 % in the control. The control group showed a total mortality of 22.2 % on D22 (larval mortality, pupal mortality, and adults not emerged by D22). In the test item groups, larval mortalities on D8 ranged between 0.0 and 8.3%. Papal mortalities ranged between 11.1 and 23.0% in the test item treatment groups. Total mortalities on D22 ranged between 19.4 and 36.1 %. Mortality in the toxic reference (AR) was above 50 % across all replicates on D8, being 69.4 %.

No sublethal effects, e.g. remaining food or small body size, were observed at the end of the feeding phase and no other observations occurred in any of the test item treatments on D22.

In the final assessment on D22, an adult emergence rate of 77.8 % was determined for the honey bees in and 80 an the control group. In the test item groups the adult honey bees emerged at rates ranging between 63.9 % and 80.6 % following an application of 200, 80, 31.9, 12.8 and 5.1 μg a.s./larva.

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Table 0-3: Toxicity of MON 0139 to larvae of Apis mellifera L. after repeated exposure

	Control			Test item			Tox. Ref.
Nominal concentrations [mg a.s./kg]	0	32	81	202	505	1262	48
Nominal doses [µg a.s./Larva]	0	5.1	12.8	31.9	80	200	6. 3.6
Larval mortality D3 to D8 abs. [%]	2.8	2.8	0	2.8	8.3	2.8	69.4
Larval mortality D3 to D8 corr. [%]	-	0	0	0	5.7	9. O 10. 10.	68.6
Pupal mortality D8 to D15 abs. [%]	19.9	11.9	11.1	20.2	20.4	2 0. %	24.4
Pupal mortality D8 to D15 corr. [%]	-	0	0	0.3	0.5	3.8	5.6
Total mortality D3 to D22 abs. [%]	22.2	19.4	25.0	25.0	33.30	36.1	88.9
Total mortality D3 to D22 corr. [%]	-	0	3.6	3.6	D. *O.	17.9	85.7
Adult emergence rate [%]	77.8	80.6	75.0	75.0	66.7	63.9*	11.1

Results are averages based on 3 replicates, containing 12 larvae each;

Results are averages based on 3 replicates, containing 12 larvae each; corr.: corrected mortality (according to SCHNEIDER-ORELLI 1947): test and reference item treated groups were corrected by control; negative values were set to "0"; calculations were performed with non-rounded values; CL: confidence limit; abs.: absolute mortality as counted from the results.

Endpoints	Nominal doses [μg a.s./Larya]	Endpoints	Nominal concentrations [mg a.s./kg]
ED ₅₀ ^{2,3}	>200, 500, 500	$EC_{50}^{2,3}$	>1262
ED ₂₀ ² (95% CL)	195.7 (83.9 456.7)	EC ₂₀ ² (95% CL)	1235 (530 - 2881)
ED ₁₀ ² (95% CL)	75.6 (38.8 - 147.3)	EC ₁₀ ² (95% CL)	477 (245 - 930)
NOED ¹	10 El 2 80	NOEC ¹	505

¹ Step-down Cochran-Armitage Test Procedure; alpha=0.05; one sided greater

# Validity criteria

All the validity criteria according to OECD No. 239 were fulfilled as:

- control prortality was  $\leq 15$  % on D8 (actual value 2.8 %)
- cumulative mortality in the reference item treatment group was ≥50 % on D8 (actual value 68.6 % corrected form control)
- adult emergence in the control was ≥70 % on D22,

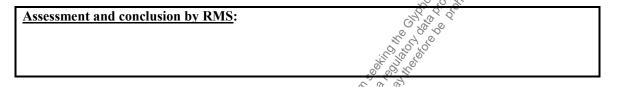
The study is reliable and can be considered as valid.

^{*} Statistically significant if compared to the control (Step-down Cochran-Armitage Test Procedure)

Table 0-4: Endpoints

² Logit analysis using linear max. likelihood regression

³ Calculated endpoint was beyond the tested range.


#### III. CONCLUSIONS

#### Assessment and conclusion by applicant:

This repeated exposure larval toxicity study with MON 0139 on honey bees larvae (Apis mellifera £.) under laboratory conditions provides relevant and reliable endpoints.

The ED₅₀ (successful adult emergence up to D22) was determined to be >200 μg a.s./larva; which is equivalent to an EC₅₀ of >1262 mg a.s./kg diet. The ED₂₀ was determined to be 195.7  $\mu$ g a.s./Ageva, which is equivalent to an EC₂₀ of 1235 mg a.s./kg diet. Values for ED₁₀ and EC₁₀ were 75.6 µg as./larva and 477 mg a.s./kg diet, respectively. The respective NOED was 80 µg a.s./larva and the corresponding NOEC was 505 mg a.s./kg diet.

The study is considered valid so NOED of 80 µg a.e./larva can be used for risk assessment purposes.



#### CA 8.3.1.4 Sub-lethal effects

Studies considering the sublethal effects of glyphosate or pollinators were assessed for their validity to current and relevant guidelines for glyphosate and are presented in the following table.

Table 0.3.1.4-1: Studies on sub-lethal toxicity of glyphosate to pollinators

Annex point	Study	Study type Test species	Substance(s)	Status	Remark
CA		bee brood Apis	Glyphosate IPA-	Valid	-
8.3.1.4/001	2012	feeding mellifera L.	salt		

There are no literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the sub-lethal impact of glyphosate or its relevant metabolites on pollinator species. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. For discussions of literature regarding toxicity to pollinators, please refer to document M-CP Section 10.3.

Endpoints of studies considered valid are shown in the table below. Glyphosate is an acid molecule, so it is often formulated as a salt. Ecotoxicological studies have been conducted with various forms of glyphosate, namely IPA salt, K-salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (A.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints Selection of the select of glyphosate or glyphosate technical are automatically expressed as acid equivalent.

Table 8.3.1.4-3:	<b>Endpoints: Sub-lethal toxicity of glyphosate to pollinators</b>

Reference	Test item	Species	Test design/GLP	LD ₅₀ (μg a.e./L)	NOAEL (μg a.e./L)
2012 CA 8.3.1.4/001	Glyphosate IPA-salt	Apis mellifera	Bee brood feeding test Field study	-	≥ 301000 (301 mg a.e./b)

a.e.: acid equivalents

Study summaries are provided below.

#### 1. **Information on the study**

Data point	CA 8.3.1.4/001			
Report author	EN TO G			
Report year	2012			
Report title	Glyphosate: Evaluating potential effects on honeybee brood			
_	(Apis mellifera) development			
Report No	V7YH1001			
<b>Document No</b>	- 3 8 2			
<b>Guidelines followed in study</b>	Oomen et al., 1993			
<b>Deviations from current test</b>	Deviations from guideline Oomen (1992):			
guideline	Minor:			
	- Some colonies were slightly smaller in terms of the number of			
	brood frames, but this was not considered to have a significant			
	impact on the study.			
	- Feeding period was extended up to 5 days. This extension of the			
	feeding period is not considered to have had an impact on the			
	validity of the study.			
Previous evaluation	Yes accepted in RAR (2015)			
GLP/Officially recognised testing	Yes			
facilities				
Acceptability/Reliability	Valid			
Category study in AIR 5 dossier	Category 2a			
(L docs)				

2. Full summary

Executive Summary

A field study with A field study was undertaken to determine the potential for toxicity to developing honey bee larvae and pupae to glyphosate (tested as the IPA salt) when fed directly to honey bee colonies. The IPA salt was selected as the test substance because it is representative of the active substance in glyphosate formulations and the appropriate for this terrestrial study. Three groups of four colonies were treated with 75, 150 and 301 mg a. Lof glyphosate in 1 litre of 50% w/v sucrose. One group of four colonies was fed with 1 litre 50 % w/w sucrose solution only and one group of four colonies was fed with the toxic reference fenoxycarb Glyphoset. ⁵
Glypho dispersed in 1 litre of 50 % w/v sucrose. Brood cells were marked in each colony (100 cells containing

day of dosing. Four to five day old larvae were sampled 4 and 7 days following start of dosing. Both dosing solution and larval samples were analysed for glyphosate content.

Measured glyphosate (a.e.) concentrations in the dosing solutions were within 11 % of the nominal doses. Mean measured glyphosate (a.e.) residues in larvae on 4 days were 13, 37 and 53 mg a.e./kg for the normal dose levels of 75, 150, and 301 mg a.e./L. Mean measured residues after 7 days were reduced with values of 1.7, 3.2 and 4.1 mg a.e./kg for the nominal dose levels of 75, 150, and 301 mg a.e./L. Glyphosate acid was not detected in the control group.

No biologically significant adult mortality was observed in any treatment group. Over a 16 day observation period after dosing, 2.0 dead pupae/colony were observed in the control and 1.3 - 2.8 dead pupae/colony were observed in the glyphosate treated colonies. Overall survival was 85% for marked eggs, 96% for marked young larvae and 96 % for marked old larvae in controls and 82-87 % for marked eggs, 87-94 % for marked young larvae and 94-95 % for marked old larvae in the glyphosate treated colonies.

The overall NOAEL for broad development of honey bees was the highest dose tested – 301 mg a.e./L (nominal) equivalent to 245 mg a.e./kg nominal when considering the density of the sucrose solution and 266 mg a.e./kg actually measured.

The study is considered valid so NOAEL of 301 mg a.e./L can be used in risk assessment purposes.

## I. MATERIALS AND METHODS

## A. MATERIALS

**Test material:** 

MON 0139 Test item:

Glyphosate isopropylamine salt Active substance:

62.27% Clyphosate isopropylamine salt

Active substance content: 46.14% glyphosate acid equivalent/L (measured)

> Description Clear pale yellow liquid Lot/Batch#: GLP-1104-21370-T

Vehicle: sucrose solution

Positive control: Fenoxycarb (750 mg a.s./L)

Apis mellifera L.

Not stated

UK national Bee Unit

Species:
Age:
Source:
Acclimatisation: not required

Vehicle and/or positive control:

Test organism:

Age:

Source:

Acclimatisation: Test system: Twenty standardised field colonies housed in a single

chamber wooden Smith hive with British standard frames each and headed by queens of similar age. The honey bee

colonies contained 12000 - 22500 adult bees and

consisted of 0.5-3 frames of brood, 0.5-2 frames of honey

and 0-1 frame of pollen.

Crop cultivated: Not applicable; the test site with no nearby flowering

crops and few flowering weeds, Dunnington, York, U.K.

Replication: 4 colonies/treatment and control

## **Environmental conditions:**

Temperature: 3.4 - 46.3 °C Relative humidity: 0 - 100 %

Average wind speed: 4.0 - 13.1 mph

Precipitation: 0.0 - 9.71 mm

Experimental dates: 21 June – 23 August 2011

B. STUDY DESIGN

Experimental treatments

Test system: Twenty standardised honey bee colonies, each equipped with a dead bee trap fitted to the front were used in this study. All colonies were placed on varroa floors and stieve inverte were placed on the were used in this study. All colonies were placed on varroa floors and sticks userts were placed on the trays to trap any fallen mites. Colonies were located on a test site at Durnington, York and allowed to fly freely, there were no nearby flowering crops and few flowering weeds (slower). Colonies were placed in groups according to treatment and placed at least 20 m apart from each other.

Experimental design: Up to 24 hours prior to dosing, 100 brood cells containing eggs, 100 cells containing 1-2 day old larvae and 100 cells containing 3-4 day old larvae were selected in each colony and marked using the Oomen et al. (1992)¹⁴ acetate overlay sheet method

Test doses: Dose setting was based on measured residues achieved in a glasshouse residues study after spray application onto *Phacelia* plants at 2.88 kg glyphosate a.e. ha. Considering that bee colonies used in the brood study may be up to 50% bigger than those used in the residue study, an additional calculation for the expected total daily intake of glyphosate residues was undertaken assuming that such colonies would collect 9 g pollen and 1944 mL nectar (see table below). Furthermore the determined residue content based on application of 2.88 kg a.e./ha was adjusted to reflect the lower application rate of 2.16 kg a.e./ha.

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

To the late of the ¹⁴ Oomen, P. A., De Ruijter, A., & Van der Steen J. (1992) Method for honeybee brood feeding tests with insect growth-regulating insecticides. Bulletin OEPP/EPPO Bulletin 22, 613-616.

Table 0-2: Exposure assessment of a brood study colony to glyphosate under two scenarios used to establish test doses for use in the brood study

Scenario	Daily intake of glyphosate residues in nectar (1944 g nectar/d) [mg]	Daily intake of glyphosate residues in pollen (9 g pollen/d) [mg]	Total daily intake of glyphosate residues [mg]	Uptake over 3 days [mg]	Adjustment from 2.88 kg a.c./ha to 2.16 kg a.c./fia [mg] ⁷
Day 1 maximum mean residues (31.3 μg a.e./g in nectar, 574 μg a.e./g in pollen)	60.8 1	5.2 ²	66.0	7. 80% 80% 80% 80%	148.5 ³
Mean residues over days 1-3 (15.5 μg a.e./g in nectar, 310 μg a.e./g in pollen)	30.3 4	2.8 5	33.1 2 2	99.3	74.5 ⁶

¹ Derived from 1.944 kg nectar consumed/day × 31.3 mg/kg = 60.8 mg glyphosate a.e.

Test item application: Three groups of colonies (i.e. four colonies per group) were treated with glyphosate isopropylamine salt added to 1 litre of 50% sucrose solution to achieve doses of 75, 150, and 301 mg a.e./L and one group was an untreated control, i.e. fed 1 irre 50% sucrose solution, only. In addition, one group was treated with the toxic reference fenoxycarb, dispersed in 1 L of 50% sucrose (750 mg a.s./L). Doses were administered by removing frames of stores from the colonies and placing a 1 litre glass container containing the treatment solution within the brood chamber.

Observations

The content of dead bee traps was counted daily during the brood assessment period. All colonies were assessed within one week prior to do sing and within weeks 1, 2 and 3 after dosing, including counts of the number of combs of adults, brood, stores and pollen as well as behavioural or physical abnormalities. The uptake of each sucrose solution was checked daily and the container removed when empty or after 5 days. On day 7 the marked brood cells (eggs, young and old larvae) were assessed for mortality and appearance. On day 13 brood cells marked as containing old larvae, on day 15 cells previously containing young larvae and on day 16 cells previously containing eggs, were assessed. Cells were uncapped; the bee removed carefully with forceps and the age of bee was assessed, weighed and observed for deformities. The temperature and humidity were recorded continuously using a data logger; local (within 10 km) weather data was also collected.

## Residues analysis

Analysis of glaphosate acid in larvae samples was conducted following extraction with acetonitrile:water (1:4, v/v) Clean up by solid phase extraction on C18 and derivatisation as FMOC-glyphosate and a second clean up solid phase extraction on Oasis HLB, methanolic elution) by HPLC-MS/MS. Analysis of glyphosate acid in treated sugar solution samples was conducted following extraction with aceforfitrile:water (1:4, v/v), solid phase extraction on Oasis HLB, methanolic elution and derivatisation as EMOC-glyphosate by HPLC-MS/MS. Limit of quantification (LOQ) and limit of detection (LOD) were and 0.3 mg/kg, respectively. Freshly prepared test treated sucrose solution samples were retained for analysis. On day 4 and 7, samples of ten 4-5 day old larvae were collected from each colony for residue analysis.

² Derived from 0.009 kg pollen consumed/day  $\times$  574 mg/kg = 5.2 mg glyphosate a.e.

³ Value of 148.5 mg was rounded to 150 mg to achieve the nominal mid-dose concentration in brood study

⁴ Derived from 1.944 kg nectar consumed/day  $\times$  15.5 mg/kg = 30.3 mg glyphosate a.e.

⁵ Derived from 0.009 kg pollen consumed/day  $\times$  310.1 mg/kg = 2.8 mg glyphosate a.e.

⁶ Value of 74.5 was rounded to 75 mg to achieve the nominal low-dose concentration in brood study

⁷ The determined residue content based on application of 2.88 kg a.e. hawas adjusted to reflect the lower application rate of 2.16 kg a.e./ha.

## Data analysis

Brood mortality was analysed using a generalised linear model (Logit distribution) and an ANOVA for pupae weight data to determine NOAEL statistically.

#### II. RESULTS AND DISCUSSION

#### A. FINDINGS

A. FINDINGS

Analytical data: Residues in samples of sucrose treatment solutions were within 11 % of nominal doses. The nominal dose of 75 mg glyphosate a.e./L (corresponding to 61 mg glyphosate a.e./kg) was confirmed to be 65.7 mg glyphosate a.e./kg. The nominal dose of 150 mg glyphosate a.e./L (corresponding to 122 mg glyphosate a.e./kg) was confirmed to be 135 mg glyphosate a.e./kg. The nominal dose of 301 mg glyphosate a.e./L (corresponding to 245 mg glyphosate a.e./kg) was confirmed to be 266 mg glyphosate a.e./kg. (Conversion from nominal dose rate in mg a.e./L to nominal dose rate in mg/kg was based on a density of 50 % w/v sucrose solution of 1.23 kg/L.)

Residues in larvae sampled from the hive on day 4 and day 7 ranged from 7.9 to 18.4 and below LOQ to 3 mg glyphosate a.e./kg, respectively on the dose 75 mg a.e./L, from 26.3 to 53.2 and 1.9 to 4.9 mg glyphosate a.e./kg, respectively on the dose 150 mg a.e./L and from \$3.1 to 82.1 and 3.2 to 6.3 mg glyphosate a.e./kg, respectively on the dose 301 mg a.e./L, confirming that larvae were exposed to the test item provided in the sugar solution and consumed it.

B. OBSERVATIONS

Consumption of treated sucrose solution: The control colonies consumed between 0.625 and 1.0 L of

untreated sucrose. In the glyphosate treated colonies at least 3 of 4 colonies consumed the total volume of treated sucrose.

Bee brood assessments:

Table 0-3: Survival of marked brood exposed to glyphosate isopropylamine salt

Dose rate [mg/L]	CHE CHE CHE	75	150	301
Mean dose consumed [mg]	Control	73 ± 2	138 ± 12	255 ± 46
7-d old cells marked as eggs [%]	87.3 ± 1.9	$84.8 \pm 4.0$	87.5 ± 2.7	$86.2 \pm 3.3$
16-d old cells marked accepts [%]	$85.0\pm2.0$	$82.3 \pm 3.3$	$86.8 \pm 2.7$	$84.2 \pm 3.9$
7-d old cells marked as young larvae	$96.4 \pm 3.0$	$93.5 \pm 1.8$	$91.5 \pm 4.3$	$95.0 \pm 1.8$
16-d old cells marked as young slawae	$95.9 \pm 3.1$	$93.5 \pm 1.8$	$86.5 \pm 4.3$	$90.0 \pm 5.4$
7-d old cells marked as old larvae [%]	$97.0 \pm 0.4$	$96.8 \pm 0.5$	96.8 ± 1.7	95.3 ± 2.9
16-d old cells marked as old larvae [%]	$95.8 \pm 1.3$	94.8 ± 1.1	94.3 ± 1.0	$95.3 \pm 2.9$

No significant statistical difference in brood development (eggs, young larvae, old larvae) was observed for all glyphosate treatment groups compared to control (p<0.05).

Table 0-4: Pupae weight at final assessment

Dose rate [mg/L]		75	150	301
Mean dose consumed [mg]	Control	73 ± 2	138 ± 12	255 ± 46.5
Pupae marked as eggs [mg]	$127.5 \pm 0.7$	$124.7 \pm 0.8$	$126.7 \pm 0.6$	135.7± 0.6
Pupae marked as young larvae [mg]	$128.4 \pm 0.6$	$128.3 \pm 1.0$	124.4 ± 0.85	125.4 ± 0.6
Pupae marked as old larvae [mg]	$128.9 \pm 0.4$	$121.2 \pm 0.5$	122.6 + 0.5	$125.6 \pm 0.4$

There were no significant effects of the treatment on the mean weight of the exposed pupae. No biologically significant adult mortality was observed in any treatment group. No adverse effects on colonies were observed in any treatment group apart from an apparent decline in the number of bees and brood in the fenoxycarb treated colonies in the later stages of the study.

In the fenoxycarb toxic reference treated colonies, the overall survival of marked cells was 20 % for marked eggs, 0 % for marked young larvae and 12 % for marked old larvae, meeting the validity criterion for the toxic reference (>40 % effect on all stages).

- Deviations according to the guideline Oomen (1992):

  Some colonies used in the study ware this war. Some colonies used in the study were slightly smaller in terms of the number of brood frames, but this was not considered to have a significant impact on the study as all were viable colonies at the start of the study and a sufficient number of brood cells was available for detailed observations.
  - Feeding period was extended up to 5 cays (commonly consumed within 24 hours). This extension of the feeding period is not considered to have had an impact on the validity of the study.

# ှို့၏ii. conclusion

SI TR

#### Assessment and conclusion by applicant:

A colony feeding study was undertaken to determine the potential for toxicity to developing honey bee larvae and pupae to glyphosate (tested as the IPA salt) when fed directly to honey bee colonies. The overall NOAEL for broad development of honey bees was the highest dose tested – 301 mg a.e./L (nominal) equivalent to 245 mg a.e./kg nominal when considering the density of the sucrose solution and 266 mg a.e./kg actually measured.

The study is considered valid so NOAEL of 301 mg a.e./L can be used in risk assessment purposes.

# Assessment and conclusion by RMS:

## ©A 8.3.2 Effects on non-target arthropods other than bees

Non-target arthropods studies were conducted with the representative formulated product MON-52276 rather than the active substance, as permitted in Commission Regulation (EU) No 283/2013. Data for the effects of the formulated product MON-52276 on non-target arthropods are summarised in document M-CP Section 10.3.2.1 and Section 10.3.2.2.

## CA 8.3.2.1 Effects on Aphidius rhopalosiphi

Standard and extended toxicity studies have been submitted with the formulated product on *Aphidius rhopalosiphi* and can be found in document M-CP, Section 10.3.2.1 and Section 10.3.2.2.

## CA 8.3.2.2 Effects on Typhlodromus pyri

Standard and extended toxicity studies have been submitted with the formulated product on *Pyphlodromus* pyri and can be found in document M-CP, Section 10.3.2.1 and Section 10.3.2.2.

## CA 8.4 Effects on Non-Target Soil Meso- and Macrofauna

Studies on effects of the active substance glyphosate and its relevant metabolites on soil organisms; earthworms, collembolans and soil mites to fulfil the data requirements according to EU Regulation No 283/2013 are presented in the following.

#### CA 8.4.1 Earthworms – sub-lethal effects

Earthworm studies have been summarised to evaluate long-term toxicity of glyphosate salts and the glyphosate metabolite AMPA. The results of these studies demonstrate that glyphosate, glyphosate salts and AMPA are of low toxicity to earthworms.

Studies considering the chronic toxicity of glyphosate to carrinworms were assessed for their validity to current and relevant guidelines and are presented in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are presented in this section below.

Table 8.3.2.2.4.1-1: Studies on sub-lethal toxicity of glyphosate and metabolites to earthworms

110 W 10

Annex point	Study	Study type	Test species	Substance(s)	Status	Remark
CA 8.4.1/001	, 2009	56 d C	Eisenia andrei	Glyphosate IPA salt	Valid	-
CA 8.4.1/002	2000	56 days chronic	Eisenia fetida	Glyphosate IPA salt and AMPA	Valid	-
CA 8.4.1/003	2003	56 days chronic	Eisenia fetida	AMPA	Valid	-
CA 8.4.1/004	2002	56 days chronic	Eisenia fetida	AMPA	Invalid	-

Literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate on soil organisms are summarised in the table below. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. Each literature article summary is presented below according to the respective annex point. For discussions of literature regarding toxicity to soil organisms, please refer to document M-CP Section 10.4.

Table 8.3.2.2.4.1-2: Literature on sub-lethal toxicity of glyphosate and metabolites to earthworms

Annex point	Study	Study type	Substance(s)	Status	Remark

CA 8.4.1/005	Von Mérey et al., 2016	Mérey et al., OECD 222; 56 days chronic		Relevant and reliable	Evaluates potential effects on earthworms soil mites, springtails and soil microorganisms.	
<b>7.</b> 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

Endpoints of studies considered valid for glyphosate are shown in the table below. Glyphosate is an acid molecule, so it is often formulated as a salt. Ecotoxicological studies have been conducted with various forms of glyphosate, namely IPA salt, K-salt, glyphosate technical and glyphosate acid. It order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent burty of the test item if stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate or glyphosate technical are automatically expressed as acid equivalent.

Table 8.4.1-3: Endpoints: Sub-lethal toxicity of glyphosate to earthworks

Reference (Data owner)	Test item	Species	Test design	EC50 (mg a.e./kg dry soil)	NOEC (mg a.e./kg dry soil)
, 2009 CA 8.4.1/001	Glyphosate IPA salt	Eisenia andrei	56 d chronic	> 473	≥ 473
, 2000 CA 8.4.1/002	Glyphosate IPA salt	Eisenia fetida	56 d chronic	-	≥ 21.31

a.e.: acid equivalent
Endpoints in **bold** is used for risk assessment

Endpoints of studies considered valid for AMP As are shown in the table below.

**Table 8.4.1-4:** Endpoints: Sub-lethal toxicity of AMPA to earthworms

		8.00			
Reference (Data owner)	Test item	Species	Test design/ GLP	EC ₅₀ (mg/kg dry soil)	NOEC (mg/kg dry soil)
2000 CA 8.4.1/002	ANT A CO	Eisenia fetida	56 d chronic	-	≥ 28.12
, 2003 CA 8.4.1/003	S AMPA	Eisenia fetida	56 d chronic	567.2	Recalculated in RAR 2015: 131.90

Endpoints in **bold** is used for risk assessment

Study summaries are provided below.

#### 1. Information on the study

Data point	CA 8.4.1/001
Report author	STOTIL COL
Report year	2009
Report title	MON0139 - Sublethal toxicity to the earthworm Eisenia fetida
Report No	09 10 48 056 S
<b>Document No</b>	- [3]
Guidelines followed in study	OECD 222 (2004)
Deviations from current test guideline	Deviation from the guideline OECD 222 (2016); none
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes State of the s
Acceptability/Reliability	Valid FOR SOLUTION
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary

Executive Summary

The effects of MON0139 (glyphosate isopropylamine salt) on Eisenia fetida were tested in a 56 days sublethal laboratory test with regard to the parameters mortality, behavioural and pathological symptoms, body weight change and reproduction in OECD soil containing 10 % sphagnum peat. The test was conducted with five nominal test concentrations of 30, 50, 100, 500 and 1000 mg test item/kg dry soil, equivalent to an analysed content of 19.1, \$1,9,\$3.8, 319.1, and 638.1 mg glyphosate isopropylamine salt/kg dry soil, respectively (i.e. 14.2, 23.6, 47.28, 236.4, 472.8 mg glyphosate acid equivalent/kg dry soil, respectively). In addition, a control group was exposed to soil mixed with deionised water only.

After 56 days, the test item caused no mortality at the tested concentrations of 30, 500 and 1000 mg MON0139/kg dry soil. 2.5 % mortality was observed at 50 and 100 mg MON0139/kg dry soil. No mortality occurred in the control group. No effects on behaviour (including feeding activity) of the worms were observed during the test. The test item caused no statistically significant change in biomass when compared to the control group. All validity criteria according to the OECD guideline 222 were fulfilled. The study is valid so  $EC_{50} > 473$  mg a.e. kg dry soil and  $NOEC \ge 473$  mg a.e./kg dry soil will be used in the regulatory risk assessment for earthworms exposed to glyphosate technical.

## I. MATERIALS AND METHODS

#### MATERIÀLS A.

## 1. Test material:

Test item: MON0139 (glyphosate isopropylamine salt)

Description: Pale yellow liquid Lot/Batch #: A8B60170S0

Purity: 63.81 % w/w glyphosate isopropylamine salt (analysed)

62 % w/w glyphosate isopropylamine salt (nominal) 47.28 % w/w glyphosate acid equivalent (analysed)

2. Vehicle and/or positive control: Vehicle: deionised water

Positive control: Nutdazim 50 FLOW (carbendazim, SC 500),

tested in a separate study

3. Test organism:

Species: Earthworm (Eisenia fetida andrei)

Age: Adults, approx. 3 months old with clitellum

Weight: 304 - 472 mg

Source: In-house rearing (originally from W. Neudorff CmbH KG, An

der Mühle 3, 31860 Emmerthal, Germany).

Air-dried and finely ground horse manure & Food:

Approx. 24 hours in the artificial substrate Acclimation period:

4. Environmental conditions:

Temperature: 18.6 - 21.8 °C

16 h light (600 Lux)/ 8 h dark Photoperiod:

Soil pH: 6.1 - 6.2 (test start); 6.0 - 6.0 (test termination)

Soil moisture content: 35.1 - 35.2% (test start); 34.6 - 34.8% (test termination)

B. STUDY DESIGN AND METHODS
1. Experimental treatments: A sublethal test was conducted with five nominal test concentrations of 30, 50, 100, 500 and 1000 mg test item/kg dry soil, equivalent to an analysed content of 19.1, 31.9, 63.8, 319.1, and 638.1 mg glyphosate isopropylamine salt/kg arx/soil, respectively. In addition, a control group was exposed to soil mixed with deionised water only. The test concentrations were prepared by dispersing an exactly weighed amount of the test item in dejonised water (stock solutions) and thereafter diluted to obtain different test concentrations, which were thoroughly mixed with the artificial soil, achieving desired test concentrations with a final nominal water content of 40 - 60 % of WHC. The artificial soil substrate was composed of 10 % sphagnum peat, 20 % kaolin clay, 69.5 % industrial quartz sand and 0.5 % calcium carbonate. Four replicate test containers (test item) and 8 replicate test containers (control) with 810 g soil (wet weight) and 5 cm soil depth were prepared for each treatment group. 10 adult earthworms were exposed per replicate for 56 days

As a toxic reference, earthworms were exposed in a separate study to Nutdazim 50 FLOW (carbendazim, SC 500). The results are in line with the OECD requirements (65 % and 92 % of reduction in the number of juveniles at concentrations of and 10 mg product/kg dry soil respectively).

2. Observations: At test initiation, individual fresh weight and behavioural responses of earthworms were recorded. Behavioural and pathological symptoms including feeding activity were observed on a weekly basis. Four weeks after test initiation, number of surviving adult earthworms and fresh weight of surviving adult earthworms per replicate were recorded. At test termination (8 weeks after test initiation), number of surviving juveniles per replicate, were observed.

The behavioural and pathological symptoms, including morphological alterations were observed 4 and 8 weeks after est initiation. Water content and pH measurements were performed at test initiation and at test termination. The temperature was continuously recoded throughout the test.

3. Statistical calculations: Fisher's Exact Binomial Test and Dunnett's t-test were used for mean comparison. For statistical evaluation of the biomass change, mean fresh weight of surviving worms was used

#### II. RESULTS AND DISCUSSION

#### **FINDINGS** A.

	.4.1-2: Sublethal effects of MON013	9 (glyphosa	nte isopro	pylamin	e salt) on	earthwo	rm.
MON013	39 [mg test item/kg soil d.w.]	Control	30	50	100	500 d	€\$1000
Mortality	of adult worms after 4 weeks (%)	0	0	2.5	2.5	0,5	0
Mean bio	omass change (%)	+40.7	+46.7	+39.8	+41.8	+37,5	+36.3
Mean nu	mber of juveniles after 8 weeks	79.0	78.5	83.8	71.85	£0.3	74.3
CV %		18.7	19.1	15.0	34.1	is 28.7	22.1
Change o	of reproduction compared to control (%)	-	0.6	-6.0	2 9.2 F	-1.6	6.0
EC	Test item (MON0139)		>	1000 mg	kg dry soil		
glyphosate isopropylamine salt > 63.81/kg dry soil							
NOEC	Test item (MON0139)	1000 mg/kg dry soil					
NOEC	glyphosate isopropylamine salt	638 Pkg dry soil					

B. OBSERVATIONS
The test item MON0139 caused no mortality at concentrations of 30, 500 and 1000 mg MON0139/kg dry soil. 2.5 % mortality was observed at concentrations of 300 and 1000 mg MON0139/kg dry soil. No mortality (0%) occurred in the control group. No effects on behaviour (including feeding activity) of the worms were observed during the test. The test item caused no statistically significant change in biomass (change in fresh weight after 4 weeks relative to mittal fresh weight) when compared to the control. The validity criteria according to guideline OECD 222 are fulfilled as each replicate (containing 10 adults) has produced  $\geq 30$  juveniles by the end of the test in the control and the coefficient of variation of reproduction was  $\leq 30$  % in the control. Also, the adult mortality over the initial 4 weeks of the test was  $\leq$  10 % in the control.

## AL CONCLUSIONS

## Assessment and conclusion by applicant:

The effects of glyphosate on mortality and reproduction of earthworms were assessed following application of MON0139 under laboratory conditions.

The EC₅₀ of MON0139 for earthworm reproduction was determined to be > 1000 mg test item/kg dry soil, corresponding to \$638.1 mg glyphosate isopropylamine salt/kg dry soil. The overall NOEC was determined to be 3000 mg/kg dry soil, corresponding to 638.1 mg glyphosate isopropylamine salt/kg dry soil, corresponding to  $\geq$  473 mg a.e./kg dry soil.

The study is 8a and so EC₅₀ > 473 mg a.e./kg dry soil and NOEC  $\geq$  473 mg a.e./kg dry soil can be used in risk assessment for earthworms exposed to glyphosate IPA salt.

## Assessment and conclusion by RMS:

#### 1. Information on the study

Data point:	CA 8.4.1/002
Report author	
Report year	2000
Report title	A laboratory investigation of the effects of glyphosate and its breakdown product AMPA on reproduction in the earthworm Eisenia fetida
Report No	CEMR-1173
<b>Document No</b>	Not available
<b>Guidelines followed in study</b>	ISO 11268-2 (1998)
Deviations from current test guideline	Deviations from guideline OECD 222 (2016).  Minor:  - Test design for NOEC required at least 5 concentrations (only 2 of each in this study) and 8 replicates for the negative control (only 4 in this study).
<b>Previous evaluation</b>	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes Solo No.
Acceptability/Reliability:	Valid S No. 100
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary

Executive Summary

The effects of the isopropylamine (IPA) salt of glyphosate and the metabolite aminomethylphosphonic acid (AMPA) on the earthworm Eisenia fetida were tested in a 56-day chronic laboratory test with regard to the parameters mortality, development of body weight and reproduction. The test was conducted with two test concentrations of glyphosate IPA salt 45.76 and 28.79 mg/kg dry soil (equivalent to 4.27 and 21.31 mg glyphosate acid equivalent/kg dry/soft) and two test concentrations of AMPA (5.62 and 28.12 mg/kg dry soil) in OECD soil containing 10 % peat. Furthermore, a negative and three concentrations of a positive control (Benlate®) were tested

Only one adult worm died during the test at the lowest concentration of glyphosate IPA salt (5.76 mg/kg dry soil) tested and thus was not considered to be dose-related. Furthermore, no significant difference in body weight change compared to the untreated controls was noted for adult worms exposed to the glyphosate IPA salt or AMPA at any of the concentrations tested in this study.

No significant differences were observed between the mean juvenile production for the untreated control worms and specimens exposed to glyphosate IPA or AMPA at any concentration tested. Similarly, no significant differences were observed between the numbers of unhatched cocoons present at day 56 in the untreated controls and those in both concentrations of glyphosate IPA salt or AMPA. All validity criteria according to the OECD guideline 222 were fulfilled. The study is valid so NOEC ≥ 21.31 mg a.e./kg dry APA: soil will be used in the regulatory risk assessment for earthworms exposed to glyphosate technical and NOEC \$28.12 mg/kg dry soil will be used in the regulatory risk assessment for earthworms exposed to

#### I. MATERIALS AND METHODS

## A. MATERIALS

#### 1. Test material:

**Test item 1:** MON 0139

Description: Clear liquid

Lot/Batch #: A9C 281

Purity: 62 % Isopropylamine (IPA) salt of glyphosate (45.9 %

glyphosate acid equivalent)

**Test item 2:** AMPA (aminomethylphosphonic acid)

Description: White crystalline powder

Lot/Batch #: PIT-8912-1385-A

Purity: 99.1 %

Vehicle: deionised water

2. Vehicle and/or positive control: Positive controls: Benjate (50 % w/w benomyl)

Reference item (in a separate study): 2-chloroacetamide

3. Test organism:

Species: Earthworm (Essenia fetida fetida)

Age: Adults, 7-10 months old Weight: 386 - 477 mg (test initiation)

Source: In-house culture based on a stock of worms obtained from

Blades Biological, UK

Food: Cattle manure

Acclimation period: Earthworms were acclimatised to the artificial soil for a period days at 16-22.5 °C.

4. Environmental conditions:

ions: 18 – 22 °C

Photoperiod: 16 h light: 8 h dark

Soil temperature: 18.4 – 19.6 °C

Soil moisture content: 37.9 % (60 % of the water holding capacity) (test initiation);

29.6 - 31.1 % (test termination)

## B. STUDY DESIGN AND METHODS

1. Experimental treatments: The test was conducted with two test concentrations of glyphosate IPA salt (5.76 and 28.79 mg/kg dry soil, equivalent to 4.27 and 21.31 mg glyphosate acid equivalent/kg dry soil) and two test concentrations of AMPA (5.62 and 28.12 mg/kg dry soil). The test item was dissolved in deionised water and the solution was mixed with the water used for adjusting the soil moisture to 60% of the water holding capacity. Afterwards, the solution was mixed into the artificial soil substrate (10% peat; 20% ctay, 70% silica sand and calcium carbonate to obtain a pH of 5.5-6.5). 1 g cow manure/100 g dry soil was added as feed. Four replicate test containers with 600 g dry soil were prepared for each treatment group. The adult earthworms were exposed for 56 days per replicate. Earthworms were fed with manure on day 1, 4, 21 and 28. Soil moisture was adjusted once a week by adding deionised water. A negative control was treated with deionised water only. As positive control, earthworms were exposed to three concentrations of Benlate® (2.66, 5.93 and 13.28 mg/kg dry soil). Temperature and light intensity were recorded daily during

the test period. pH and soil temperature were determined at the beginning and the end of the test in one of the replicate vessels at each concentration. Soil moisture content was determined at day 0, 1, 7, 14, 21, 23, 28, 35, 42 and 56. Furthermore, toxicity of 2-chloroacetamide to *Eisenia fetida* was tested in a separate 14 day reference study.

#### 2. Observations:

Mortality and reproduction: The replicates were examined for live and dead adult worms after 28 days at which time all adult worms were removed and the soil was replaced in the vessels. After a further 28 days, the contents of the beakers were examined for juvenile worms and cocoons.

Mean body weights: All surviving earthworms per replicate were weighed as a group and average individual weights were calculated prior to test initiation and at day 28 after application.

3. Statistical calculations: Mean percent changes in weights of live worms at 28 days and mean juvenile production per surviving adult worm at day 56 were tested for significant (a = 0.05) inhibition compared to the controls using the Dunnett's Test (one tailed comparison) in the computer program TOXSTAT Release 3.0. The same test, but with a two-tailed comparison, was employed to test for significant differences between mean numbers of un-hatched cocoons because the test substances may have inhibited cocoon production or/and cocoon viability (cocoons may have been produced but unable to hatch). Each set of data was tested for normality before carrying out the parametric multiple comparison procedure using the Chi-square test and the Shapiro Wilks test, the data were also tested for homogeneity of variance using both the Hartley and the Bartletts tests provided in the program TOXSTAT Release 3.0.

## II. RESULTS AND DESCUSSION

#### A. FINDINGS

Table 8.4.1-3: Summary of the effects of glyphosate IPA salt, AMPA and the positive control Benlate® on Eisenia fetida

	Adult			orms Juvenile production (at day 56)			
Treatment [mg/kg dry soil]		Percentage mortality of adult worms (at day 28)	Mean percent weight change (at day 28)	Mean number of juveniles per surviving worm	Coefficient of variation	Mean number of unhatched cocoons per surviving worm	
Contr	Control		+ 22	31.0	10	0.1	
	2:66	0	+ 23	26.0 *	15	0.1	
Benlate®	5.93%	0	+ 12 *	7.8 *	23	2.2 *	
	13.28	0	- 24 *	0.0 *	0	0.7	
Glyphosate(1)	§ 5.76	2.5	+ 14	26.2	25	0.3 ^(N)	
(as IPA salt)	28.79	0	+ 20	28.5	12	0.3 ^(N)	
A NAO. 40	5.62	0	+ 24	26.0	3	0.3 ^(N)	
AMPA	28.12	0	+ 24	29.4	16	0.4 ^(N)	

^{*} statistically (P = 0.05) different from controls.

M-CA, Section 8

Page 531 of 847

glyphosate was tested as the IPA salt,

The numbers of unhatched cocoons present at the end of the test in the glyphosate and AMPA treatments were slightly higher than the controls but statistical analysis proved that this was probably due to random chance alone and was probably not due to the presence of glyphosate or AMPA.

#### В. **OBSERVATIONS**

Mortality: Only one adult worm died during the test at the lowest concentration of glyphosate IPA salt (5.76 mg/kg dry soil). This was not considered to be dose-related since no mortalities were observed at higher concentrations.

Mean body weight: No significant difference in body weight change compared to negative control was noted for adult worms at any concentration or test item treatment.

Behaviour: No abnormal behaviour when compared to untreated controls was observed for adult worms at any concentration or test item treatment.

Reproduction: No significant differences were observed between mean juvenile production for untreated control worms and worms exposed to glyphosate IPA salt, at any concentration tested. Similarly, for worms exposed to AMPA no significant difference from the negative control was seen in terms of juvenile production. No significant differences were observed between number of unhatched cocoons present at day 56 in negative control and both concentrations of glyphosate IPA sait, Similarly, for AMPA, no significant difference from the control was observed in terms of numbers of inhatched cocoons.

Positive control: The adult worms exposed to 5.93 and 13.28 mg Benlate dry soil showed a significantly reduced growth when compared to negative control at day 28. A significant reduction in juvenile production compared to negative control was seen for 2.66, 5.93 and 13.28 mg Benlate®/kg dry soil. At 5.93 mg Benlate®/kg dry soil a significantly increased number of unhatched coons was observed when compared to the negative control.

Reference study with 2-chloroacetamide: The 14 day LC₅₀ was determined at 39.4 mg/kg dry soil (95 % confidence limits; 36.0 - 43.1 mg/kg dry soil).

The resulting endpoint values are given below.

Table 8.4.1-4: Toxicity of Glyphosate IPA salt and AMPA to Eisenia fetida 17:50

Endpoints	16 '50' D	Test item [mg/kg dry soil]
I.C.	Glyphosate (as IPA salt)	> 28.79
LC ₅₀	AMPA SLIS SE	> 28.12
EC ₅₀	Glyphosate (as IPA salt)	> 28.79
EC50	AMPA EL STO	> 28.12
NOEC	Glyphosate (as IPA salt)	≥ 28.79 (21.31 mg glyphosate a.e./kg dry soil)
NOEC	AMPA SO SO	≥ 28.12

The following point deviated from the current OECD guideline:

Test design for NOEC required at least 5 concentrations (only 2 of each in this study) and 8 replicates for the negative control (only 4 in this study).

This deviation is not expected to have any impact on the study validity in that case.

The validity criteria according to guideline OECD 222 are fulfilled as each replicate (containing 10 adults) have produce  $\delta \geq 30$  juveniles by the end of the test in the control and the coefficient of variation of reproduction was  $\leq 30$  % in the control. Also, the adult mortality over the initial 4 weeks of the test was  $\leq$ The state of the s 10 % in the control.

## III. CONCLUSIONS

## Assessment and conclusion by applicant:

The effects of glyphosate and the metabolite AMPA on mortality and reproduction of Eisenia fetida after 56 days of exposure were assessed under laboratory conditions.

Glyphosate, tested as glyphosate IPA salt, and the metabolite aminomethylphosphonic acid (AMPA) had no significant effect on growth or reproduction of Eisenia fetida after 56 days of exposure at concentrations up to 28.79 mg glyphosate IPA salt/kg dry soil (21.31 mg glyphosate acid equivalent/kg dry soil) and 28.12 mg AMPA/kg dry soil. Therefore, the NOEC was determined to be ≥ 28.79 mg glyphosate IPA salt/kg dry soil (≥ 21.31 mg glyphosate acid equivalent/kg dry soil (≥ 28.12 mg AMPA/kg dry soil.

The study is valid so NOEC  $\geq$  21.31 mg a.e./kg dry soil can be used in risk assessment for earthworms exposed to glyphosate IPA salt and NOEC ≥ 28.12 mg/kg dry soil cars be used in risk assessment for earthworms exposed to AMPA.

The state of the s

## Assessment and conclusion by RMS:

#### 1. Information on the study

CA 8.4.1/003 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				
A STATE OF THE STA				
2003				
Laboratory determination of the side-effects of aminomethyl phosphonic acid (AMPA) on the reproductive performance of				
earthworms (Eisenia fetida) using artificial substrate				
01-64-077-ES				
©ECD draft document (January 2000): Earthworm Reproduction Test  — Proposal for a new guideline				
Deviations from guideline 222 (2016): none				
Yes, accepted in RAR (2015)				
Yes				
Valid				
Category 2a				

The aim of the study was to determine the effects of AMPA (aminomethyl phosphonic acid) on the reproduction of earthworms (*Eisenia fetida*) maintained under laboratory conditions on artificial substrate containing 10 % sphagnum peat for 56 days. The test was conducted with eight nominal test concentrations encompassing 58.6, 87.8, 131.9, 198.1, 297.1, 445.5, 668.5 and 1002.5 mg test item.¹⁷

Glyphorat. 7

mixed into the soil substrate. The water content was adjusted to about 50 % of maximum water holding capacity (WHC). Negative control soil was treated with untreated water only. As a toxic references earthworms were exposed to carbendazim at concentrations of 1.0, 2.2 and 5.0 mg/kg dry soil. The test comprised four replicates for each test concentration and toxic reference concentration and eight replicates for the control. The adults were exposed to the test item in the artificial soil substrate for four weeks. Thereafter mortality and mean weight of the survivals were observed. The adults were discarded and after additional four weeks of the test units in the climatic chamber the number of juveniles were assessed. No test item related mortality was observed up to 1000 mg AMPA/kg dry soil.

The NOEC based on biomass deviation was determined to be 297.1 mg AMPA/kg dry soil and the NOEC based on reproduction was determined to be 198.1 mg AMPA/kg dry soil. The EC55 was 562.7 mg AMPA/kg soil. A NOEC of 131.90 mg test item/kg dry soil was suggested for the parameter biomass and number of juveniles. The study is considered valid so EC₅₀ of 562.7 mg/kg dry soft and NOEC of 131.9 mg/kg dry soil will be used for risk assessment of earthworms exposed to AMPA

## I. MATERIALS AND METHODS

#### A. MATERIALS

1. Test material:

Test item: AMPA (Aminomethyl phosphonic acid)

Description: White powder

A0164351 Lot/Batch #:

> Purity: 99.7 % (analysed)

> > Vehicle: water

2. Vehicle and/or positive control: Positive control: Carbendazim (99.6%)

3. Test organism:

Species Earthworm (Eisenia fetida)

Synchronized adults, > 2 months

Weight: 300 - 600 mg

Source: In-house rearing (Phytosafe S.A.R.L, 2, rue Marx Dormory,

64000 Pau, France)

Food: 5 g ground cow manure moisten with 6 mL water once per

week (days 1, 7, 14, 21 and 28)

Acclimation period: Not reported

4. Environmental conditions:

Temperature: 19.0 − 21.5 °C

Photoperiod: 12 h light (416 - 595 Lux)/ 12 h dark

Soil pH: Control 6.0 (test start), 6.9 (test termination)

Test item: 5.7 - 6.0 (test start), 6.3 - 6.8 (test termination) Reference item: 6.0 (test start), 6.9 - 7.0 (test termination)

Soil moisture content: Control 43.9 % WHC (water holding capacity, at test

termination)

Test item: 44.3 - 46.2 % WHC (at test termination) Reference item: 44.6 – 45.9 WHC (at test termination)

November 12th, 2002 to January 08th, 2003 5. Experimental work dates:

## **B. STUDY DESIGN AND METHODS**

## **Experimental treatments**

A sublethal test was conducted with eight nominal test concentrations and one untreated water control The test substance was prepared by dispersing 10.0249 g of the test item in 500 mL water. Thereafter eight samples containing 1.46, 2.19, 3.29, 4.94, 7.41, 11.11, 16.67 and 25.0 mL test solution were thoroughly mixed into the artificial soil, achieving desired test concentrations of 58.6, 87.8, 131.9, 198.1, 297 £, 445.5, 668.5 and 1002.5 mg test item/kg dry soil, with a final nominal water content of 50% of WHE.

Test units contained 500 g of the oven dried weight artificial soil substrate incorporated into \$\text{2.5}\text{0} 2 L glass containers, composed of 10% sphagnum peat; 20% kaolinite clay and 70% fine sand, each Four replicate test containers (test item and reference groups) and 8 replicate test containers (control group) were prepared for each treatment group. 10 adult earthworms were exposed per replicate for 56 days.

As a toxic reference, earthworms were exposed to carbendazim at concentrations of 1.0, 2.2 and 5.0 mg test item/kg dry soil, respectively.

Observations

Four weeks after test initiation, percent mortality and mean weight of the surviving adult earthworms were

recorded. At test termination (8 weeks after test initiation), the number of surviving juveniles were determined.

Measurements of pH values were performed at test initiation and at test termination. The soil moisture was recorded at test end. Corresponding percent water holding capacity was calculated. The temperature in the climatic chamber was reported without any detailed information on the respective measurements.

#### **Statistical calculations**

Tangfort

Tangfo For statistical evaluation of the biomass deviation and production of juveniles, F-variance analysis was Reference of the state of the s considered ( $\alpha = 0.01$ ). EC₅₀ values including 95% confidence intervals were calculated using Excel calculations. EC₅₀ calculations were based on untransformed data due to low confidence of log values.

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

## II. RESULTS AND DISCUSSION

#### A. FINDINGS

Table 8.4.1-5: Observed effects of AMPA to Eisenia fetida

Componential	Observations					
Concentrations [mg test item/kg dry soil]	Mean mortality [%]	Number of uveniles [Mean ±SD]				
	Со	ntrol	, 20, 10 , 10			
0.0	0.0	- 9.5	120.6 ± 12.4			
	AN	MPA				
58.6	0.0	-11.0	(5° 5° 114.8 ± 12.1			
87.8	0.0	-10.0	112.5 ± 9.8			
131.9	0.0	-11.5	$110.0 \pm 14.8$			
198.1	0.0	-16.80	$109.0 \pm 11.2$			
297.1	0.0	-1,188,00	$93.8 \pm 10.2$			
445.5	0.0	\$22.3 ₂	$66.8 \pm 3.4$			
668.5	2.5	ii 832,4	$41.0 \pm 3.2$			
1002.5	0.0	5 34.2	$16.3 \pm 6.3$			
	Carbo	endazim 8				
1.0	0.0	-9.3	$56.3 \pm 14.9^{a}$			
2.2	2.5	-12.6	$9.5 \pm 5.8$			
5.0	2.5	-33.3	$0.3 \pm 0.5$			

SD: standard deviation

Table 8.4.1-6: Toxicity to Eisenia fetida exposed to AMPA

	Parameter &	AMPA [mg/kg dry soil]
	Biomass deviation	
	NOEC STROS	297.1
	LOEC & SON	445.5
	Reproduction	
	EC ₅₀ (95 % CI)	562.7 (381.2 – 744.1)
	NQEG	198.1
	<b>ÉQEC</b>	297.1
100 00 00 00 00 00 00 00 00 00 00 00 00	B. OBSERVATIONS  There was no mortality in the the test item treated group and item group.  Mean percent of biomass deviloss of biomass was similar t	control and a single mortality in the 668.5 mg test item/kg concentration of l in the 2.0 and the 5.0 mg test item/kg dry soil concentration of the reference itation was -9.5 % in the control group. In the test item treatment groups, the o the control, ranging from -10.0 to -11.8% in the concentrations between  Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

^a Percent reduction of the production of juveniles was slightly higher than 50% initially postulated as a maximum. The EC₅₀, NOEC and LOEC value are given below based on nominal concentrations.

58.6 and 297.1 mg test item/kg dry soil, with an exception for the 198.1 mg test item/kg dry soil test item so with a higher loss in biomass. The loss of biomass was significantly higher for the treatment concentrations of 445.5, 668.5 and 1002.5 mg test item/kg dry soil compared with the control.

Glyphosate

Table 8.4.1-7: Percent biomass deviation after 28 days of exposure of adult earthworms to AMPA

Concentrations [mg test item/kg	Replicates						Biomass deviation		
dry soil]	1	2	3	4	5	6	7	8 👌	? (*9% ± SD]
	dry soil] 1 2 3 4 5 6 7 8 5 Control [%]								
0.0	-9.5	-9.1	-6.0	-10.8	-12.8	-12.9	-4.0	V	$-9.5 \pm 3.1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
58.6	-12.5	-9.5	-8.3	-13.8			NO 310 31	30	$-11.0 \pm 2.6$
87.8	-11.1	-9.8	-9.1	-9.9		8	Se die dill		$-10.0 \pm 0.8$
131.9	-16.5	-11.4	-12.7	-5.5		CH S	, % Ø .		$-11.5 \pm 4.6$
198.1	-13.9	-16.3	-21.1	-16.0		0, 201,00	© T		$-16.8 \pm 3.0$
297.1	-8.1	-14.7	-17.4	-7.1	8	10 10 10 10 10 10 10 10 10 10 10 10 10 1			$-11.8 \pm 5.0$
445.5	-21.7	-24.8	-19.5	-23.2	11,0				-22.3 ± 2.3*
668.5	-35.6	-27.9	-29.2	-36.6	0111190				-32.4 ± 4.4*
1002.5	-32.2	-34.4	-36.6	-33.4	IS CALL				-34.2 ± 1.9*
			Carb	endazîm(					
1.0	-11.2	-10.4	-6.2	29.30° 5					-9.3 ± 2.2
2.2	-16.1	-9.7	-19.3	\$ -5:3 ₁					$-12.6 \pm 6.3$
5.0	-40.5	-35.0	-29.1	28.6					$-33.3 \pm 5.6$

SD: standard deviation,

Mean number of juveniles was 120.6 in the control group, the coefficient of variations was 10.3 %. The production of juveniles was significantly reduced for treatment concentrations ranging between 297.1 and 1002.5 mg AMPA/ kg dry soil. Table 8.4.1-8: Number of juveniles after 56 days of exposure to AMPA

Concentrations	-6	1, 21, 15, 15, 15, 15, 15, 15, 15, 15, 15, 1	)`	Number of	CV					
[mg test item/kg dry soil]		\$\text{2}	3			7 8		juveniles [Mean ± SD]	in %	
Control Control										
0.0	127	105	125	112	136	134	104	122	$120.6 \pm 12.4$	10.3
200	AMPA									
58.6	104	122	128	105					$114.8 \pm 12.1$	10.5
87.8	104	121	121	104					$112.5 \pm 9.8$	8.7
131,9	124	106	119	91					$110.0 \pm 14.8$	13.4
1.98.1	119	94	107	116					$109.0 \pm 11.2$	10.3
297.1	88	109	90	88					93.8 ± 10.2*	10.9
445.5	64	71	64	68					66.8 ± 3.4*	5.1
445.5	45	39	38	42					41.0 ± 3.2*	7.7
1002.5	18	9	24	14					16.3 ± 6.3*	39.0
	Carbendazim									

SD: standard deviation,
*= statistically significant different from the control according to F-variance analysis.

Concentrations	Replicates								Number of		
[mg test item/kg dry soil]	1	2	3	4	5	6	7	8	juveniles [Mean ± SD]	in%	
1.0	49	74	62	40					$56.3 \pm 14.9^{a}$	26.5	
2.2	8	18	7	5					9.5 ± 5.8	61.1	
5.0	0	1	0	0					$0.3 \pm 0.5$	200	

Glyphosate

SD: standard deviation; CV= Coefficient of variation

## Validity of the test according to the current OECD guideline:

- y of the test according to the current OECD guideline:

  Control mortality < 10% (achieved: 0.0%)

  Production of juveniles in the control > 30 per unit (actual values ranging from 104 to 136)
- Coefficient of variation of reproduction in the control  $\leq 30\%$  (achieved: 10.3%)

Therefore, all validity criteria according to guideline OECD 222 are folialed.

Moisture content was not monitored throughout the test as requested by the test guideline. However, moisture was in an acceptable range at the end of the test and control criteria passed. Therefore, this is only a minor deviation and has not affected the integrity of the study.

# III. CONCLUSIONS

## **Assessment and conclusion by applicant:**

Assessment and conclusion by applicant:
The NOEC based on biomass was determined to be 297.1 mg AMPA/kg dry soil and the NOEC based on reproduction was determined to be 198 1 mg AMPA/kg dry soil. The EC₅₀ was 562.7 mg AMPA/kg in the state of th

Statistical re-evaluation was performed by the RMS (ToXRatPro, Version 2.10) in the RAR 2015. Percent biomass deviation at the end of the exposure period of the adults were re-analysed. Treatments State of the state were compared by the t-test procedure after Williams. Significance was  $\alpha = 0.05$ .

^{*=} statistically significant different from the control according to F-variance analysis

a Percent reduction of the production of juveniles was slightly higher than 50% initially postulated as a maximum.

Table B.9.6-9: Biomass change (%) after 28d of exposure of adult earthoworms to **AMPA** 

	AMPA (mg/kg dry soil)								
No.	control	58.6	87.8	131.9	198.1	297.1	445.5	668.5	1002.5
1	90.5	87.5	88.9	83.4	86.1	91.9	78.3	64.4	67.2
2	90.9	90.5	90.2	88.6	83.7	85.3	75.2	72.1	65.6
3	94	91.7	90.9	87.3	78.9	82.6	80.5	70.8	63.4
4	89.2	86.2	90.1	94.5	84	92.9	76.7	63.4	66.6
Replicates	4	4	4	4	4	4	4	4	4 8
Mean	91.2	89.0	90.0	88.5	83.2*	88.2*	77.7*	67.7*	65,9
Std.Dev	2.0	2.6	0.8	4.6	3.0	5.0	2.3	4.4	(10) (1)
CV%	2.2	2.9	0.9	5.2	3.7	5.7	2.9	6.5	197 0 1.250

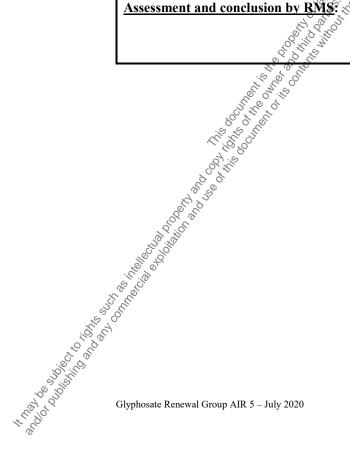

^{*}statistically significant different from the control

Table B.9.6-10: Number of earthworm juvenils after 56 days exposure to AMPA

							~~~		
	AMPA (mg/kg dry soil) Control 58.6 87.8 131.9 198.1 297.1 445.5 668.5 1002.5								
No.	control	58.6	87.8	131.9	198.1	297.1	445.5	668.5	1002.5
1	116	104	104	124	119	88	36450 39	45	18
2	119	122	121	106	94	109	70	39	9
3	135	128	121	119	107	96 0	864	38	24
4	113	105	104	91	116	C88 0 0	68	42	14
Replicates	8	4	4	4	4 8	180 X	4	4	4
Mean	120.6	114.8	112.5	110.0	109.00	93.8	66.8*	41.0*	16.3*
Std.Dev	12.4	12.1	9.8	14.8	11,0	93.8° 10.2	3.4	3.2	6.3
CV%	10.z3	10.5	8.7	13.4		10.9	5.1	7.7	39.0

RMS changed from 8 to 4 replicate values in the control (taking into account a mean of two values) and reported the biomass deviation as a mean percentage.

A NOEC of 131.90 mg test item/kg dry soil was suggested for the parameter biomass and number of juveniles. The study is considered valid so EC₅₀ of 562.7 mg/kg dry soil and NOEC of 131.9 mg/kg dry soil, can be used for risk assessment of earthworms exposed to AMPA.

1. Information on the study

Data point	CA 8.4.1/004
Report author	
Report year	2002
Report title	AMPA - Earthworm (Eisenia fetida), effects on reproduction
Report No	RRR84121
Document No	-
Guidelines followed in study	DIN ISO 11268-2: 1998: Soil quality – effects of pollutants on earthworms – Part 2: Determination of effects on reproduction
Deviations from current test guideline	Deviations from the guideline OECD 222 (2016). Major: - Coefficient of variation in the reproduction rate for control was 38 % instead of <30 % required. Minor: - 3 test item concentrations were tested instead of at least 5 - 4 replicates for the negative control used instead of 8 - Food was added just before application instead of 1 day after application
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes S S S S S S S S S S S S S S S S S S S
Acceptability/Reliability	Invalid & & &
Category study in AIR 5 dossier (L docs)	Category 2b

2. Full summary

Executive Summary

In a laboratory study, adult earthworms (Eisenia fetida) were exposed for 56 days to three test concentrations of AMPA in artificial soil containing 10% sphagnum peat and observed for mortality, growth, and reproduction. A negative control group was maintained concurrently. Four replicate test chambers were maintained in each treatment with 10 worms in each test chamber. Nominal test concentrations were 0.79, \$.94 and 19.7 mg AMPA/kg dry soil. After 28 days, number and weight of surviving adult worms was determined. After a further 28 days the reproduction rate was determined by counting the numbers of juvenile earthworms and cocoons in each test vessel.

No mortality was observed in any treatment group. The body weight of the earthworms exposed to AMPA were not statistically different when compared to the control up to and including the highest test concentration of 1957 mg AMPA/kg dry soil. There were no statistically significant effects on reproduction were observed up to and including the highest test concentration of 19.7 mg/kg dry soil. No behavioural abnormalities were observed in any of the treatment groups.

The coefficient of variation for reproduction in control groups was higher than 30 % at the end of the test. The validity criteria according to guideline OECD 222 are therefore not considered fulfilled. The noobserved effect-concentration (NOEC) of AMPA for mortality, growth and reproduction of the earthworm Eisenia ferida was found to be 19.7 mg test item/kg dry soil, which was the highest concentration tested. However, due to the guideline deviations, the study is considered invalid and not acceptable for risk asses, but the state of the sta assessment.

I. MATERIALS AND METHODS

A. **MATERIALS**

1. Test material:

Test item: AMPA (aminomethyl phosphonic acid)

Description: White powder Lot/Batch #: FA005563

Purity: 99 %

2. Vehicle and/or positive control:

3. Test organism:

Earthworm (Eisenia fetida) Species:

synchronized adults with clitellum, 4 months Age:

Weight: 300 - 600 mg

Source: Biologische Bundesanstalt (BBA), Braunschweig,

Germany

Food: Dried litter of stinging nettle and porridge oats

2 days in artificial soil under test conditions Acclimation period:

4. Environmental conditions:

Temperature:

Relative humidity

Photoperiod: 46 h light / 8 hours dark (400 - 800 lux)

pH 5.45 - 5.57 (test start), 6.03 - 6.30 (test termination) Water contents 46.11-51.53%

STUDY DESIGN AND METHODS B.

1. Experimental treatments: Clitellate adult earthworms were exposed to the test substance in an artificial soil substrate (OECD 207, 10% Sphagnum-peat, air dried, finely ground; 20 % kaolin clay, 69 % industrial quartz sand and 0.43 % calcium carbonate). Four replicate test chambers were maintained in each treatment, with 10 worms in each test chamber. Nominal test concentrations of 0.97, 3.94 and 19.7 mg AMPA/kg dry soil were thoroughly mixed into the soil substrate. The water content was adjusted to about 50 % of maximum water holding capacity (WHC) using demineralised water. Negative control soil was treated with demineralised water only.

As a toxic reference, earthworms were exposed in a separate study to Derosal flüssig (31.5 % carbendazim). The adult earthworms were exposed to the test item for 4 weeks; the adult worms were counted, removed and weighed per replicate. The remaining soil was returned to the reproductive test for additional 4 weeks. Thereafter, juvenites were counted. Temperature and relative humidity were monitored continuously. Water content and pH were determined at the beginning and the end of the test.

2. Observations: The adult earthworms were exposed to the test item for 4 weeks, after which the artificial soil was emptied onto a tray and the adult worms were counted, removed and weighed per replicate after Ladividual weight of the earthworms was recorded at day 28 after application.

Reproduction was recorded 8 weeks after the test initiation as mean number of juveniles per test container and replicate.

Glynbosot. To they were washed under tap water and dried on filter paper. Missing worms and the earthworms, which

3. Statistical analysis: As data for body weight changes and the reproduction were normally distributed and homogeneous, the Dunnett's test was used (multiple comparison, two-sided for weight and one sided smaller for reproduction, $\alpha = 0.05$). NOEC and EC-values for reproduction were determined by regression analysis in an appropriate dose-response function.

II. RESULTS AND DISCUSSION

A. FINDINGS

Table 8.4.1-9: Effects of AMPA on survival, growth and reproduction of Eisenia fetida

Test	Control	AMPA [mg test item/kg try soil]				
Test parameter	Control	0.79	3.94	19.7		
Mortality (day 28) [%]	0	0	90° 10° 10° 10° 10° 10° 10° 10° 10° 10° 1	0		
Weight change (day 28) [%] ¹⁾	-	+10.71	(F) 39°	+7.14		
No. of juveniles (day 56)	60 ± 23	64 ± 23	61, ±°5	68 ± 10		
CV [%]	38	36	8 1 1 1 1 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	14		
Reproduction [%] of control (56 days) ¹⁾	-	+7	+2	+13		

¹⁾ negative values indicate a decrease, positive values an increase when compared to the control

The LC_{50} and NOEC values are given below based on nominal concentrations.

Endpoints	AMPA [mg test item/kg dry soil]	Reference item [mg/kg]
LC ₅₀ (28 d)	**************************************	>5.04
NOEC _{mortality} (28 d)	19.7	5.04
EC _{50, biomass} (28 d)	>19.7	n.d.
NOEC _{biomass} (28 d)	19.7	1.26
EC _{50, repro} (56 d)	>19.7	2.9 (2.60 - 3.23)
NOEC _{repro} (56 d)	19.7	1.26

B. OBSERVATIONS

No pathological symptoms or chances in behaviour of the adult earthworms were notes in any of the test item treatments and the control. During test period, body weights of earthworms in treated and control groups slightly increased or remained at starting level. No mortality was observed in any of the treatment groups and in the control. Different test item concentrations had no effects on the number of offspring. There was no statistically significant difference between the treated groups and the control.

The LC_{50} -value of the reference test item was determined to be 2.9 mg/kg dry substrate. Each control replicate containing 10 adults produced \geq 30 juveniles and adult mortality in the control treatments after four weeks did not exceed 10%. The coefficient of variation for reproduction in control groups was higher than 30% at the end of the test. The validity criteria according to guideline OECD 222 are therefore not considered fulfilled.

III. CONCLUSIONS

Assessment and conclusion by applicant:

The no-observed-effect-concentration (NOEC) of AMPA for mortality, growth and reproduction of the earthworm Eisenia fetida was found to be 19.7 mg test item/kg dry soil, which was the highest concentration tested.

However, due to the following deviations, the study is considered invalid and not acceptable for risk assessment:

- 3 test item concentrations were tested instead of at least 5
- 4 replicates for the negative control used instead of 8
- Food was added just before application instead of 1 day after application. Coefficient of variation in the reproduction rate for control was 38% instead of <30% required.

Assessment and conclusion by RMS:

1. Information on the study

	\$ 8.8
1. Information on the study	
1. Information on the study	
Data point:	CA 8.4.1/005 8 8 8
Report author	von Mérey, Goet al
Report year	2016
Report title	Glyphosate and aminomethylphosphonic acid chronic risk
	assessment for soil biota
Document No	DOL 10.1002/etc.3438
	E4\$\$N: 1552-8618
Guidelines followed in study	ØECD 222; OECD 226; OECD 232; OECD 216
Deviations from current test	Earthworm cocoons were not counted, in accordance with
guideline	¢O€CD 222.
GLP/Officially recognised testing	No, not applicable
facilities	
Acceptability/Reliability:	Yes/Reliable

Full summary of the study according to OECD format 2.

The exposure risk from Ayphosate and the primary soil metabolite aminomethylphosphonic acid (AMPA) on representative species of earthworms, springtails, and predatory soil mites and the effects on nitrogentransformation processes by soil microorganisms were assessed under laboratory conditions based on internationally recognized guidelines. For earthworms, the reproductive no-observed-effect concentration (NOEC) was 472.8 mg glyphosate acid equivalent (a.e.)/kg dry soil, which was the highest concentration tested, and 198.1/mg/kg dry soil for AMPA. For predatory mites, the reproductive NOEC was 472.8 mg a.e./kg dry soil for glyphosate and 320 mg/kg dry soil for AMPA, the highest concentrations tested. For springtails, the reproductive NOEC was 472.8 mg a.e./kg dry soil for glyphosate and 315 mg/kg dry soil for AMPA, the highest concentrations tested. Soil nitrogen-transformation processes were unaffected by glyphosate and AMPA at 33.1 mg a.e./kg dry soil and 160 mg/kg dry soil, respectively. Comparison of these endpoints with worst-case soil concentrations expected for glyphosate (6.62 mg a.e./kg dry soil) and AMPA (6.18 mg/kg dry soil) for annual applications at the highest annual rate of 4.32 kg a.e./ha indicate TO STATE OF THE ST very low likelihood of adverse effects on soil biota.

M-CA, Section 8 Page 544 of 847

Materials and methods

Annex to Regulation 283/2013

Test substances

Glyphosate (N-phosphonomethylglycine) is an acidic substance, which is manufactured and formulated as a salt to increase the solubility in water and compatibility with other formulation components. In water, AMPA is highly soluble (56 g/L at 20 °C), whereas neither glyphosate nor AMPA is significantly soluble in common organic solvents. Therefore, no cosolvent was required, and both stock solutions of exphosate and AMPA test items were prepared in deionized water (5 - 20 Mohm at 25 °C). Two batches of AMPA analytical reference standards with purity of 98.7% (synthesized by Chemir) and 99.7 % (Across Organics BVBA) were dissolved in deionized water. For soil nitrogen-transformation tests, stock solutions of glyphosate acid technical grade (96.59 % purity; Monsanto Europe) were prepared by direct addition of test item to deionized water. For all other tests, glyphosate isopropylamine salt (nominal burity 62 % w/w, measured purity 63.81 ± 0.29 % w/w; MON 0139), corresponding to 45.9% w/w glyphosate a.e. (measured 47.28 ± 0.21 % w/w; Monsanto Europe), were prepared in deionized water.

Earthworm reproduction tests

The earthworm reproduction test with glyphosate was conducted according to OECD guideline 222. For

AMPA, an earthworm reproduction test was conducted according to the QECD 222. Both testing guidelines are equivalent in terms of the procedures employed during the tests (soil pH, temperature, lighting regime, soil composition and humidity, rearing, feeding quantities, test design, endpoints, number of replicates, growth stage of worms at test initiation, and so on). Therefore to avoid repetition, the procedures used in the glyphosate study only are described.

Glyphosate - Earthworm reproduction test. In the earthworm reproduction glyphosate study Eisenia fetida (Haplotaxida: Lumbricidae, Savigny, 1826) were used as the test species. Mature adult E. fetida (~3 mo old with clitellum), weighing between 300 mg and 600 mg, were obtained from an age-synchronized stock culture from the test facility and reared under ambient laboratory conditions in the test facility. The original breeding animals were purchased from W. Neudorff. A detailed description of earthworm culturing is provided in Annex 4 of OECD 222. The E. fetida were reared in the laboratory on standard breeding medium (1:1:1 mixture of straw, horse manure, and peat; straw and horse manure were purchased from farmers, and peat was purchased from Torfwerk Moorkultur Ramsloh); no exposure to the test item was allowed prior to use in testing. Testing was conducted in artificial soil, equivalent to the soil in which the worms were originally cultured. The test aims to evaluate effects on adult body weight and survival percentage (according to treatment) during an initial 4-wk adult exposure period. Effects on juvenile production were then assessed at the end of a 4-wk period that followed directly after adult removal from the test. Behavior (including feeding activity) and pathological symptoms (e.g., lethargy, morphological alterations) of adults and juveniles were also assessed.

On the day before the test start earthworms (from aged-synchronized batches, to ensure that similar-sized earthworms were used) were acclimated to test conditions in a separate batch of artificial soil supplemented with pasteurized horse manure, purchased from farmers and collected from horses not treated with growth promoters, nematicides, or other veterinary products - also used as the food source during testing. On test start day, volumes of the test solution (prepared by direct addition of glyphosate isopropylamine to deionized water) were mixed into bulk samples of artificial soil, to achieve nominal glyphosate soil concentrations of \$4.48 mg a.e./kg dry soil, 23.64 mg a.e./kg dry soil, 47.28 mg a.e./kg dry soil, 236.4 mg a.e./kg dry soil, and 472.8 mg a.e./kg dry soil. Glyphosate test concentrations were selected to cover the range and exceed field exposure concentrations. A toxic reference test was also performed in a separate test with carbendazim (Nutdazim 50 Flow, SC 500) at concentrations of 5 mg/kg dry soil and 10 mg/kg dry soil.

Test vessels were filled with the appropriate treated soil (810 g wet wt corresponding to 600 g dry wt). Groups of 10 individually weighed earthworms were randomly assigned to replicates within each treatment group, with a total of 40 earthworms used per treatment group divided equally between 4 replicates. For the control group (water only), 80 worms were used, divided equally between 8 replicates. Groups of 10 earthworms were placed onto the assigned replicate soil surface and closed with perforated transparent lids (Following a brief burrowing period) to reduce evaporative water loss, allow gaseous exchange, and prevent worms from escaping the replicate vessels. Test vessels were then randomly positioned in an environmental test chamber under continuous light (to maintain worms in the soil). On day 1 and weekly thereafter for the

4-wk adult exposure period, 5 g of air-dried finely ground horse manure was scattered on the soil surface so of each test vessel and wetted with 5mL of deionized water. The amount of manure applied each week (up to 5 g) was dictated by feeding activity.

After 4 wk, adult earthworms were removed from the vessels by emptying the contents of each replicate vessel onto a tray and removing the adult worms. Care was taken not to remove any cocoons from the soil. Cocoons were not counted, in accordance with OECD 222. It can be reasonably assumed that effects on cocoon numbers would lead to effects on numbers of juveniles; hence, the endpoint number of juveniles accounts for effects at earlier life stages of earthworm progeny. All worms were rinsed with denormal water and dried on filter paper before recording body weights (by replicate and by treatment). Behavioral (including feeding activity) and pathological symptoms were also recorded during the exposure period and at the time of adult removal. The adult worms were then discarded. The soil in each replicate vessel was then mixed carefully with 5 g of manure, and the mixture was returned to the vessels. The test continued for a further 4 wk. At test termination (8 wk after adult addition) the number of surviving juveniles in each test vessel was recorded on manual inspection of the substrate. Soil was emptied on the lower edge of a white tray (30 cm × 40 cm). Subportions of the soil were spread in the middle of the tray, resulting in a thin layer of soil of approximately 10 cm × 10 cm. The subportion was examined thoroughly for juvenile worms, after which it was moved to the upper edge of the tray. This procedure was repeated until the entire soil from a vessel was examined. The entire procedure was repeated until there were no additional juvenile counts in 2 consecutive counting procedures, resulting in an average of 5 counting procedures per vessel. The counting tray and soil samples were illuminated using a fiber opticalight source connected with a double gooseneck light guide. The water content and pH of the artificial soil were determined. Adult body weights and the effects on reproduction (juvenile numbers) were analyzed using a lower-tailed Dunnett's multiple comparisons test ($\alpha = 0.05$). The Kolmogorov-Smirnov test and Cochran's test procedure were used, respectively, to test the biomass data for normality and homogeneity of variance. Survival was analyzed with a 1-sided Fisher's exact binomial test with Bonfergoni correction ($\alpha = 0.05$).

AMPA - Earthworm reproduction tests. The procedures used during the AMPA earthworm study are considered equivalent to those employed in the glyphosate earthworm reproduction study described above in Glyphosate—Earthworm reproduction test. Mature adult E. fetida (~3mo old with clitellum), weighing between 300 mg and 600 mg, were obtained from an age-synchronized stock culture from the test facility and reared under ambient laboratory conditions in the test facility. A detailed description of earthworm culturing is provided in Annex 4 of OECD 222.

In the AMPA earthworm reproduction study, mature (clitellated) adult E. fetida were exposed to AMPA (99.7 % purity; Acros Organics BVBA) mixed into artificial soil at nominal soil concentrations of 58.6 mg AMPA/kg dry soil, 87.8 mg AMPA/kg dry soil, 131.9 mg AMPA/kg dry soil, 198.1 mg AMPA/kg dry soil, 297.1 mg AMPA/kg dry soil, 445.5 mg AMPA/kg dry soil, 668.5 mg AMPA/kg dry soil, and 1002.5 mg AMPA/kg dry soil. A control group was prepared using deionized water only. A toxic reference test was also performed in parallel using earthworms from the same batch, exposed to carbendazim at concentrations of 1.0 mg active substance (a.s./kg dry soil, 2.2 mg a.s./kg dry soil, and 5.0 mg a.s./kg dry soil. For effects on biomass and production of juveniles, homogeneity was tested with the Brown-Forsythe and Bartlett tests. Dunnett's multiple comparison test was conducted using GraphPad Prism, Ver 6.03, because a continuous response could not be observed for all the test concentrations, as recommended by the OECD 222 test guideline and the OECD statistical guidance. The 50% effect rate on reproduction was calculated using GraphPad Prism.

Soil predatory mite reproduction test

The soil predatory mite reproduction tests for glyphosate and AMPA were both conducted according to OECD guideline 226 predatory mite (Hypoaspis [Geolaelaps] aculeifer) reproduction test in soil. The procedures used in the 2 studies were identical. Full details of the procedures are presented for glyphosate

production test. The glyphosate soil predatory mite reproduction test was conducted using glyphosate isopropylamine salt (MON 0139). Survival of mites (*H. aculeifer*) and their reproductive performance were evaluated at 4 nominal concentrations, equivalent to 50 mg MON 0139/kg dry soil, 100 mg MON 0139/kg dry soil, and 1000 mg Glyphosate.

MON 0139/kg dry soil (= 23.64 mg a.e./kg dry soil, 47.28 mg a.e./kg dry soil, 236.40 mg a.e./kg dry soil, 🔊 and 472.80 mg a.e./kg dry soil, respectively). A negative control with deionized water only was also included. A toxic reference test was performed in parallel using dimethoate EC400 (422.4 g/L; Perfekthion) at concentrations of 4.1 mg active ingredient (a.i.)/kg dry soil, 5.12 mg a.i./kg dry soil, 6.4 mg a.i./kg dry soil, 8.0 mg a.i./kg dry soil, and 10 mg a.i./kg dry soil. Mites were reared in the laboratory under another the laboratory under an conditions on a mixture of plaster of paris, activated charcoal, and deionized water (8:1:9). Adults with no more than a 3-d age difference were used at the start of the test. No exposure of the mites to glyphosate was allowed prior to the test. Each treatment group contained 40 mites divided equally between 4 replicate vessels, with the control group comprising 8 replicates, each containing 10 mites. In addition, Fest vessels without mites were included with each test concentration and in the control group for soil of measurements. Glass bottles (100mL nominal volume) with screw tops were filled with 20 g (dry wt) artificial soil at the required test concentrations. Cheese mites were added as a food source to the surface of the soil, and vessels were then covered to prevent mites from escaping. Bottles were opened every second day during the 14-d test for the addition of food and to allow aeration. At the end of the test (day 19), the parental mites and juveniles were counted, after extraction using a MacFayden high-gradientextractor (heat/light extraction

method). This was achieved by adding the soil substrate from each test vessel into a canister placed inverted onto the extraction system. Soil substrate was retained within the canister using a plastic net (2mm mesh size) on the bottom. Beneath the canister was a funnel attached to a collecting flask with 25mL of a fixing liquid. A temperature gradient was created between the upper and the lower parts of the system, by circulating heated air in the canister area and cooled air in the coffection area. Over the 48-h extraction time, the following regime was applied: 25 °C for 12 h, 35 °C for 12 h, and 45 °C for 24 h. During this time, adults and juveniles moved down through the soil away from the heat source and fell through the funnel into the fixing liquid. Extraction efficiency was determined to be 95% in a separate extraction using vessels containing a known number of juvenile and adult mites in untreated substrate. Water content and pH were determined at test start and end. Statistical analysis was performed with the software ToxRat Professional 2.10. A 1-sided Fisher exact binomial test with Bonferroni-Holm correction for mortality and

a 1-sided Dunnett multiple comparisons test for reproduction ($\alpha = 0.05$) were used to compare the control with independent test item groups. Abbott's formula was used to correct for control mortality. AMPA - Soil predatory mite reproduction test with AMPA was conducted at 5 nominal application rates, equivalent to 40 mg test item/kg dry soil, 80 mg test item/kg dry soil, 160 mg test item/kg dry soil, 240 mg test item/kg dry soil, and 320 mg test item/kg dry soil. A negative control (deionized water only) group was also included. All procedures and observations in the test with AMPA were as described for the mite (QECD 226) test with glyphosate in Glyphosate—Soil predatory mite reproduction test. A reference test was performed with dimethoate EC400 (414.8 g/L) at test concentrations of 0 mg a.i./kg dry soil, 4.1 mg a.i./kg dry soil, 5.12 mg a.i./kg dry soil, 6.4 mg a.i./kg dry

soil, 8.0 mg a.i./kg dry soil, and 0 mg a.i./kg dry soil.

Springtail reproduction tests. The springtail reproduction tests for glyphosate and AMPA were both conducted according to OECD guideline 232. The procedures used in the 2 studies were identical. Full details of the procedures are presented for glyphogate only. Springtails used in these studies were originally purchased from Biologische Bundesanstalt in May 2000 and reared in the laboratory of the test facility under ambient laboratory conditions.

Glyphosate - Springtail reproduction test. The springtail reproduction test conducted for glyphosate was conducted using glyphosate isopropylamine salt. Survival of springtails (Folsomia candida) and their reproductive performance were evaluated at 5 nominal application rates of 32 µL MON 0139/kg dry soil, 50 μL MON 0139/kg dry soil, 100 μL MON 0139/kg dry soil, 500 μL MON 0139/kg dry soil, and 1000 μL MON 0139/kg dry soil (= 15.1 mg a.e./kg dry soil, 23.6 mg a.e./kg dry soil, 47.3 mg a.e./kg dry soil, 236 A ring a.e./kg dry soil, and 472.8 mg a.e./kg dry soil, respectively). A negative control with deionized water only was also included. In a reference toxicity test with Betosip (15.7 % phenmedipham), concentrations of 50 mg/kg dry soil, 100 mg/kg dry soil, 200 mg/kg dry soil, and 400 mg/kg dry soil were tested. Each treatment group, including the control group, comprised 50 mites divided equally between 5 replicate vessels. For each treatment group and for the control group, 2 test vessels without springtails were provided for pH measurement purposes. Glass containers (150 mL nominal volume) were filled with

30 g (wet wt) of the required treated or control soil. Springtails were reared in the laboratory under ambient conditions on a mixture of plaster for stucco activated charges and a condition of the required treated or control soil. item was allowed prior to testing. Juvenile springtails, 10 d to 12 d old and from a synchronized cohort, were added to each test vessel and then covered with a glass lid for 28 d, following which the surviving adults and juveniles were counted. Water content and pH were determined at test start and end. Adult and juvenile springtails were counted at test end. Statistical analysis was performed with the software ToxRat Professional 2.10. A 1-sided Fisher exact binomial test with Bonferroni correction ($\alpha = 0.05$) and Welch's t test ($\alpha = 0.05$), because of non-heterogeneity of variance, were used to compare the control with the independent test item groups for significance of parental mortality and reproductive reduction, respectively. Abbott's formula was used to correct for control mortality.

AMPA = Springtail reproduction test. The springtail reproductive test for AMPA was conducted with AMPA (98.7 % purity) mixed into artificial soil at 5 nominal application rates, equivalent to 30 mg/kg dry soil, 54 mg/kg dry soil, 97.2 mg/kg dry soil, 175 mg/kg dry soil, and 315 mg/kg dry soil. The negative control used deionized water only. In a separate toxic reference test with 100% exystalline boric acid (BDH Prolabo) mixed with the soil, also included in the test design, the sensitivity of the population was determined with test concentrations of 0 mg/kg dry soil, 44 mg/kg dry soil, 67 mg/kg dry soil, 97.2 mg/kg dry soil, 150 mg/kg dry soil, and 225 mg/kg dry soil. The procedures used during the Springtail reproduction study were essentially equivalent to those used in the springtail test with glyphosate (described in Glyphosate - Springtail reproduction test) with the following exceptions: Each treatment group comprised 40 springtails (10 per test vessel), whereas the control group comprised 8 replicates. Statistical evaluation was performed with ToxRat Professional 2.10. A 1-sided Fisher exact binomial test with Bonferroni correction and a 1-sided Dunnett test were used to compare the control with independent test item groups. Mortality of adult springtails

Soil nitrogen-transformation tests
Soil nitrogen-transformation tests were conducted with glyphosate and AMPA according to OECD guideline 216 and performed according to good laboratory practice. The procedures used in the 2 tests were identical, although tested rates differed. Full details of procedures used are presented for glyphosate only. Glyphosate - Soil nitrogen-transformation test. The soil nitrogen-transformation test for glyphosate was conducted using glyphosate acid (96.59% purity; Monsanto Europe) applied at 2 soil concentrations, 6.62 mg a.e./kg dry soil and 33.1 mg a.e./kg dry soil. The tested rates were equivalent to 1 and 5 times the maximum predicted environmental concentration in soil following a worst-case application of glyphosate to bare soil in the EU. Each treatment group and the control comprised 3 replicate test vessels. The control was treated with water only. Field-collected soil was used (LUFA standard soil, type 2.3). On collection, the soil was manually cleared of large objects, such as stones and parts of plants, and then moist-sieved to a particle size ≤ 2 mm. The soil was stored under aerobic conditions in the dark at 4 ± 2 °C until required for use.

Glyphosate was prepared in defonized water and then mixed into a bulk sample of soil at the start of the test. The soil moisture content was 40 % (± 5 %) of the maximum water holding capacity. During the test, the weight of a moisture control vessel maintained under the same test conditions was used as a guide to correct for test vessel water loss. Control and treated bulk samples of soil were amended with ground lucerne meal (0.5 %) as a nitrogen source with a C to N ratio of 16:4:1. Bulk samples were then subsampled (\sim 500 g) into replicate vessels and incubated at 20 ± 2 °C for 28 d. All containers were covered with a perforated lid to avoid evaporative water loss and stored in the dark. Soil (10 g) was taken from 1 replicate from each treatment for pH (water) determination at the start and end of the Glyphosate - Soil nitrogentransformation study. An additional soil sample was taken from 1 replicate per treatment for moisture and dry matter content determination at the end of the study. As soon as possible after dosing (day 0) and after 7 d, 14 d, and 28 d, a 50-g soil sample (based on dry wt) was removed from each replicate to determine Analyzed using a Bran+Luebbe Autoanalyzer AA3 system.

Solution from control were not considered to be biologically significant.

ANNIPA - Soil nitrogen-transformation test. In the soil nitrogen-transformation test conducted for AMPA, the bulk samples of field-sampled soil were prepared at AMPA (98.7% purity) soil concentrations of 40 mg/kg dry soil, 80 mg/kg dry soil, 160 mg/kg dry soil, 320 mg/kg dry soil, and 640 mg/kg dry soil.

Glyphania To Glyphania

addition, a negative control (nontreated soil) was tested. Although conducting reference tests and use of so positive controls are not guideline requirements, in a separate reference test with dinoterb (2-tert-butyl-4,6) dinitrophenol, 99.9 % purity; Sigma-Aldrich Chemie), test concentrations of 6.8 mg/kg dry soil, 16 mg/kg dry soil, and 27 mg/kg dry soil were applied, in addition to the control (0 mg/kg dry soil), with 3 replicates per treatment group.

Results

Glyphosate - Earthworm reproduction test

There was 0 % mortality of adult E. fetida at glyphosate concentrations of 14.18 mg ae./kg dry soil, 236.4 mg a.e./kg dry soil, and 472.8 mg a.e./kg dry soil. Mortality (2.5%) was observed at \$3.64 mg a.e./kg dry soil and 47.28 mg a.e./kg dry soil, which is considered incidental background mortality given the 10 % validity criterion for adult mortality in the control (p > 0.3). No statistically significant differences were detected for adult biomass (p > 0.05; Figure A below) and for the numbers of inventiles produced at each of the treatment groups when compared to the control (p > 0.05; Figure A below). Adult and juvenile feeding behavior was also not adversely affected over the duration of the test (56 d). The resulting noobserved-effect concentration (NOEC) for effects on reproduction was determined therefore to be the maximum test concentration of 472.8 mg a.e./kg dry soil.

In the reference test with carbendazim, juveniles were reduced by \$500 and 92 % at 5 mg reference item/kg

dry soil and 10 mg reference item/kg dry soil, respectively. The control treatment had a mean number of 143 juveniles, whereas 5 mg/kg dry soil and 10 mg/kg dry soil treatments with carbendazim had a mean number of 51 juveniles and 11 juveniles, respectively. These reference test values show that the test system was appropriate to detect toxic effects on earthworm reproduction. The validity criteria, namely adult mortality < 20 % and number of juveniles per replicate 30 in the control treatment, and coefficient of variance between control replicates < 30 % were all met. The guideline requirements for water content, temperature, and pH were all met.

AMPA - Earthworm reproduction test

In the earthworm reproduction study with AMPA, there were no significant effects on E. fetida adult mortality across concentrations compared to the control (p > 0.22). In all treatment groups, all 10 adults survived the treatments, except for 1 mortality in a single replicate of the 668.5 mg/kg dry soil treatment (Figure B below). Adult earthworm biomass was significantly lower compared to the control at the 445.5 mg AMPA/kg dry soil, 668.5 mg AMPA/kg dry soil, and 1002.5 mg AMPA/kg dry soil test concentrations (p < 0.0001; Figure B below). Adult biomass at 198.1 mg AMPA/kg dry soil was also significantly lower than the control (p=0.007), but at 297.1 mg AMPA/kg dry soil there was no significant difference (p > 0.802) because the biomass (in percentage of control) was 88.5 % and 88.2 % in the 131.9 mg AMPA/kg dry soil and the 297.1 mg AMPA/kg dry soil treatment groups, respectively. The effect at 198.1 mg AMPA/kg dry soil is therefore considered to not be treatment-related. Juvenile production was not significantly affected at concentrations up to 198.1 mg/kg dry soil (p > 0.342). At 297.1 mg AMPA/kg dry soil and higher concentrations juvenile E. fetida numbers decreased significantly compared to the control (p = 0.0033). The resulting NOEC for effects on reproduction therefore was concluded to be 198.1 mg/kg dry soil with a reproductive lowest-observed effect concentration (LOEC) at 297.1 mg AMPA/kg dry soil The calculated 50% effective concentration (EC50) value for AMPA on earthworm survival was \$1000 mg/kg dry soil. The reproduction EC50 value was calculated at 654.7 mg AMPA/kg dry soil (95% confidence interval 610.9 - 705.5 mg/kg dry soil). The resulting regression equation was y = -0.1108 (£ 0.005) AMPA mg/kg + 122.6 (± 2.271), with an R² of 0.92. The reference test item carbendarian resulted in decreased biomass of 33.3 % at 5.0 mg/kg dry soil and no reproduction, showing that the test system was sensitive to pesticide application. The validity criteria and guideline requirements

so significant effects were observed on soil mite survival (p > 0.3) or reproduction (p > 0.05) up to and including the highest test concentration (472.8 mg a.e./kg dry soil; Figure C below) after 14 d of continuous exposure. All validity criteria and guideline recommendations were met. In the reference test with dimethoate the EC50 on reproduction was determined to be 4.9 mg a.i./kg dry

demonstrated the sensitivity of the test system to detect reproductive toxicity in soil mites. The NOEC was therefore set at the highest test concentration.

AMPA - Soil predatory mite reproduction test

No significant effects were observed on soil mite survival (p > 0.1) or reproduction (p > 0.05) up to and including the highest test concentration (320 mg AMPA/kg dry soil; Figure D below). All validity criteria and guideline recommendations were met. The reference test with dimethoate showed that the test was sensitive at detecting reproductive toxicity in soil mites. The NOEC for AMPA was therefore concluded to be at the highest test concentration, 320 mg/kg dry soil.

Glyphosate - Springtail reproduction test

No significant effects were observed on springtail survival (p > 0.5) or reproduction (p > 0.05) up to and including the highest test concentration (472.8 mg a.e./kg dry soil; Figure E below). The validity criteria and guideline recommendations were all met. In the reference test with phenoedipham, the EC50 on reproduction was determined to be 28.4 mg phenmedipham/kg dry soil, which demonstrates that the test system was sensitive for reproductive toxicity. The NOEC for glyphosate was therefore concluded to be the highest test concentration.

AMPA - Springtail reproduction test

No significant effects were observed on springtail survival (p > 0.5) or reproduction (p > 0.06, α = 0.01) up

to and including the highest test concentration (315 mg AMPA/kg fry soil; Figure F below). The validity criteria and the guideline recommendations were all met. In the reference test with boric acid, the EC50 for reproduction was determined to be 108.6 mg/kg dry soil, demonstrating sensitivity to reproductive toxicity of the test system. The NOEC for AMPA was therefore concluded to be the highest test concentration.

Glyphosate - Soil nitrogen transformation test
Nitrogen-transformation rates in the soil treated at glyphosate rates equivalent to 6.62 mg a.e./kg dry soil and 33.1 mg a.e./kg dry soil were - 0.13% and 2.13% different compared to the control between day 14 and day 28, respectively (Figure G below). The validity criterion of < 15% variation between control treatments was met in the test. As the rates of nitrate formation between the control and the treated groups were < 25 % on day 28, glyphosate can be evaluated as having no long-term influence on nitrogen transformation in LUFA soils at concentrations ≤ 33.9 mg. a.e./kg dry soil. No reference test was conducted, in line with the OECD guideline.

AMPA - Soil nitrogen-transformation test

Stimulation of nitrogen-transformation rates was observed across all treatments on day 7 and day 14, which was possibly linked to the high levels of nitrogen and phosphorus released from the degradation of AMPA in the biologically active soil. Only in the 2 highest test concentrations did the increase exceed 25 % compared to the control at 28 d. The test was therefore prolonged from 28 d to 56 d for the 2 highest test concentrations, 320 mg/kg/dry soil and 640 mg/kg dry soil (Figure H below). At 56 d, the deviation from the control was 26.7 % at 320 mg/kg dry soil and 43.1 % at 640 mg/kg dry soil. The reference test results with dinoterb showed increases of 37.6 % at 6.8 mg/kg dry soil, 51.4 % at 16.00 mg/kg dry soil, and 27.1 % To so the at 27 mg/kg dry soit. The validity criterion of < 15% variation between controls was met at all sampling

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

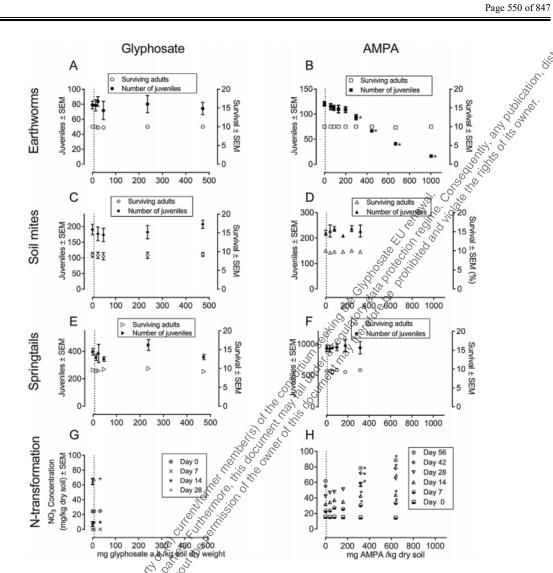


Figure 8.4.1-1: Chronic risk assessment for glyphosate (left) and aminomethylphosphonic acid (AMPA; right) in soil. Number of surviving adults (28 d) and number of juveniles (56 d) in earthworms exposed to glyphosate (A) and AMPA (B), (* statistically significant effect $[p \le 0.05]$ compared with control treatment), in soil predatory mites (Hypoaspis aculeifer) exposed to glyphosate (C) and AMPA (D) for 14 d, and in springtails (Folsomia candida) exposed to glyphosate (E) and AMPA (F) for 28 d. Effects on nitrogen transformation in Soil treated with glyphosate (G) and AMPA (H) for 0 d, 7 d, 14 d,28 d, 42 d, and 56 d (* > 25 % effect compared with control treatment). Vertical dotted line in each graph indicates the worst-case predicted environmental concentration of glyphosate/AMPA. Vertical bars indicate standard and on the state of the state o miles of the state error of the mean (SEM).

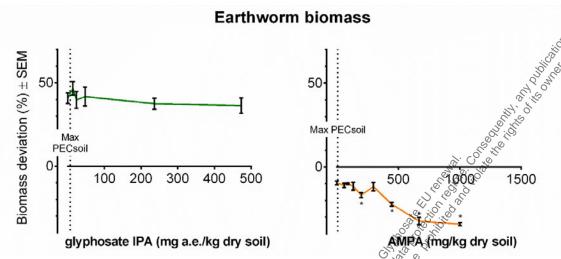


Figure 8.4.1-2: Effects of glyphosate (A) and AMPA (B) on earthworm blomass after 28 d of exposure. The vertical dotted line indicates the predicted environmental concentration for AMPA and glyphosate. An asterisk next to a data point indicates a significant difference (P < 0.05) when compared against the control treatment.

Risk assessment

The chronic effects of exposure to glyphosate and the major soil metabolite AMPA to representative taxonomic groups of soil macroorganisms and nitrogen transformation were assessed following standard practices outlined under Annex VI Uniform Principles of the EU's Plant Protection Products Regulation (EC) No 1107/2009. At soil concentrations relevant to recommended glyphosate field application rates, no significant adverse effects were observed in any of the test species or systems exposed to glyphosate or AMPA. The risk assessment for soil macroorganisms in the EU compares the lowest NOEC achieved for each of the taxonomic groups with worst-case initial predicted soil concentrations (soil PECinitial) achieved directly following a bare soil application and the potential for accumulation in soil following applications over multiple years to the same field (soil PEC_{accu}) The ratio of the endpoint to the predicted soil concentration is determined (toxicity exposure ratio = NOEC - PEC_{initial}) and compared against trigger values in accordance with Annex VI Inform Principles of the EU's Plant Protection Products Regulation 1107/2009. Where trigger values are exceeded, a low exposure risk may be concluded. The long-term trigger value of 5 using NOECs derived from laboratory tests accounts for uncertainty related to interspecies sensitivity, predicted exposure estimates, and extrapolation from laboratory to field exposure.

For glyphosate and AMPA, the initial soil concentration (PECinitial) at a soil depth of 5 cm has been determined based on a bare soil application (without foliar/crop interception), at the maximum cumulative annual application rate of 4.32 kg glyphosate a.e./ha for the EU. The risk of glyphosate and AMPA residues accumulating in soil over multiple years is considered by deriving the PEC_{accu} value. This is the sum of the PEC_{initial} and plateau concentrations in soil, achieved in the top 5 cm (tillage depth for permanent crops) soil layer, following applications to bare soil at the maximum cumulative annual application rate (4.32 kg a.e./ha) each year for 10 yr.

It is important to mention that a single application rate of 4.32 kg glyphosate a.e./ha is not supported in the representative use rate but rather represents the recommended maximum cumulative (total) annual application rate for all uses and, therefore, a very conservative worst-case approach.

For exposure of soil mites, springtails, and earthworms to glyphosate in soil, the achieved chronic endpoints except the worst-case predicted glyphosate PEC_{initial} and PEC_{accu} soil concentration by factors of 82 and 71, respectively.

For exposure of soil mites, springtails, and earthworms to AMPA in soil, the achieved chronic endpoints Sexceed worst-case AMPA PEC_{initial} soil concentrations by factors of between 97 and 491, whereas the chronic endpoints exceed the PEC_{accu} soil concentrations by factors of between 32 and 162.

For soil nitrogen transformation, the endpoints achieved for glyphosate and AMPA (33.1 mg a.e./kg dry soil [glyphosate] and 160 mg a.e./kg dry soil [AMPA]) both achieved a < 25 % effect on nitrogentransformation rates following a 28-d soil exposure to either glyphosate or AMPA. These soil exposure rates exceed the worst-case predicted PEC_{initial} soil concentrations by factors of 6 (glyphosate) and 78 (AMPA). The achieved endpoints also exceed the PEC_{accu} soil concentrations, by factors of 5 for glyphosate and 26 for AMPA.

For the soil mite, springtail, and earthworm reproduction chronic endpoints, the toxicity exposure ratio values exceed the EU Regulation No 546/2011 Annex VI trigger (5), indicating that for the ecotoxicologically relevant endpoints achieved for survival and reproduction, the use of glyphosate according to label recommendations is unlikely to result in adverse effects inside the treated area for soil biota - from exposure to both glyphosate and AMPA.

For the soil microbial community, relative to expected field application rates for exposure to glyphosate there is at least a 5-fold safety margin. For exposure to AMPA, a 26-fold safety margin applies. The observed increases in nitrate concentrations at the higher test concentrations are expected to be related to the large quantity of nitrogen and phosphate provided to the microbes via degradation of AMPA in the biologically active soil.

Table 8.4.1-1. Glyphosate and aminomethylphosphonic acid chronic risk assessment for soil organisms^a

Test species	Test item	Test duration (d)	Endpoint type	NOEC (mg a.e. or AMPA/kg		PEC _{accu} (mg a.e./kg soil)	TER _{initial}	TER _{accu}
Earthworm	Glyphosate IPA salt	56	Adult mortality	472.8	2.04	6.62	82	71
			Biomass	472.8	1.0 × 4.		82	71
			Reproduction	472.8	Co Cl.		82	71
	AMPA	56	Adult mortality	1002.5	2.04	6.18	491	162
			Biomass	297 (C),		146	48
			Reproduction	198.1	0		97	32
Soil mite	Glyphosate IPA salt	14	Adult mortality	0472-8 35	5.76	6.62	82	71
			Reproduction	\$20 \$320 \$320 \$472.8			82	71
	AMPA	14	Adult mortality	20 S	2.04	6.18	157	52
			Reproduction	320			157	52
Springtail	Glyphosate IPA salt	28	Adult mortalis	472.8	5.76	6.62	82	71
			Biomass	472.8			82	71
	AMPA	28	Adult mortality	315	2.04	6.18	154	51
			Biomass	472.8 315 315			154	51
N-transformation	Glyphosate acid	28	Effect/<25%	33.1	5.76	6.62	6	5
	AMPA	28	Effect <25%	160	2.04	6.18	78	26

a.e. = acid equivalent; AMPA = aminometa yphosphonic acid; IPA = isopropylamine; NOEC = no-observed-effect concentration; PEC_{accu} = accumulative predicted environmental concentration, cumulative worst-case application of 4.32 kg a.e./ha of glyphosate for 10 yr; $PEC_{initial}$ = initial predicted environmental concentration, assuming single worst-case application of 4.32 kg a.e./ha of glyphosate; TER_{accu} = toxicity to exposure ratio (= NOEC - PEC_{accu}); $TER_{initial}$ = toxicity to exposure ratio (= NOEC - $PEC_{initial}$).

Conclusion

The risks from exposure to glyphosate and the primary soil metabolite AMPA at levels that exceed commercial application rates were evaluated against a battery of representative soil macroorganisms and microorganisms under controlled laboratory conditions. Results from the present studies demonstrate that the potential impact to beneficial soil macro-organisms and nutrient cycling soil microorganisms under environmentally relevant exposure scenarios is low.

3. Assessment and conclusion

Assessment and conclusion by applicant:

The aim of the paper was to evaluate potential effects of Glyphosate, Glyphosate salt and AMPA on earthworm, soil mites, springtails and soil micro-organisms.

Glyphosate Renewal Group AIR 5 – July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

The studies have been conducted according to recognised guidelines and validity criteria were presented. Test substance information, test organism origin, study designs and toxicity effects were adequately described. The study is considered reliable.

CA 8.4.2 Effects on non-target soil meso- and macrofauna (other than earthworms)

Studies considering the toxicity of glyphosate to soil organisms (other than earthworms) were assessed for their validity to current and relevant guidelines for glyphosate, glyphosate salts and the metabolite AMPA and are presented in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are presented in this section below.

CA 8.4.2.1 Species level testing

Regulatory studies have been conducted with Folsomia candida and Hypoaspis aculeifer to evaluate the toxicity of glyphosate, glyphosate salts and the glyphosate metabolite AMPA on soil macrofauna. The results of these studies demonstrate that glyphosate, glyphosate salts and AMPA are of low toxicity to soil Se Sing macrofauna.

Studies on toxicity of glyphosate and metabolites to soil organisms other Table 0.4.2.1-1: than earthworms

Study	Study type	Test species	Substance(s)	Status	Remark
		19,01.6			
, 2010	28 d	Folsomia &	Glyphosate	Valid	-
		candida S	IPA salt		
2009	14 d	Hypoaspas	Glyphosate	Valid	-
		acıAeifer	IPA salt		
, 2010	28 d	Folsomia	AMPA	Valid	-
	10 %	candida			
2010	14 d 50 45	Йуроаѕріѕ	AMPA	Valid	-
	10,0,10 10,0,10	aculeifer			
	, 2010 2009 , 2010	, 2010 28 d 2009 14 d , 2010 28 d	, 2010 28 d Folsowia candida 2009 14 d Hyposispis acutejfer , 2010 28 d Folsomia candida 2010 14 d Hyposispis	, 2010 28 d Folsonia Glyphosate candida IPA salt 2009 14 d Hypraspis Glyphosate iPA salt , 2010 28 d Folsonia AMPA 2010 14 d Hypoaspis AMPA	, 2010 28 d Folsonia Glyphosate IPA salt 2009 14 d Hypraspis Glyphosate Valid 2010 28 d Folsonia AMPA Valid 2010 14 d Hypraspis AMPA Valid

Literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate on soil organisms (other than earthworms) are summarised in the table below. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. Each literature article summary is presented below according to the respective annex point. For discussions of literature regarding toxicity to soil organisms other than otherworms, please refer to document M-CP Section 10.4.

Table 0.4.2.1 Literature on toxicity of glyphosate and metabolites to soil organisms other than earthworms

	Annexpoint	Study	Study type	Substance(s)	Status	Remark
	CA 8.4.2.1/005	Von Mérey et al.,	OECD 226:	Glyphosate IPA	Relevant and	Evaluates potential
	10.00	2016	Hypoaspis	salt and	reliable	effects on earthworm,
	8 10		<i>aculeifer</i> and	AMPA		soil mites, springtails
S	Allie		OECD 232:			and soil micro-
ď	5		Folsomia			organisms.
,			candida			

Table 8.4.2.1-3:

					Page 554 of 847
Endpoints of studies of	considered valid for gly	phosate are sho	own in the table be	elow.	
Table 8.4.2.1-3:	Toxicity of glyphos than earthworms)	sate to non-tar	get soil meso- an	d macrofaun	Page 554 of 847
Reference (Data owner)	Test item	Species	Test design/ GLP	EC ₅₀ (mg a.e./kg dry soil)	NOEC (mg a.e./kg dry soil)
, 2010 CA 8.4.1/001	Glyphosate IPA salt	Folsomia candida	Chronic, 28-day	> 58 0. 10	≥ 587
2009 CA 8.4.1/002	Glyphosate IPA salt	Hypoaspis aculeifer	Chronic, 14-day	\$473 \$1473	≥ 473

a.e.: acid equivalents

Endpoints in **bold** is used for risk assessment

Endpoints of studies considered valid for AMPA are shown in the table below.

Toxicity of AMPA to non-target soil meso- and macrofauna (other than Table 8.4.2.1-4: earthworms)

Reference (Data owner)	Test item	Species of 5th	Test design/ GLP	EC ₅₀ (mg/kg dry soil)	NOEC (mg/kg dry soil)
2010 CA 8.4.2.1/003	AMPA	Folsomia Eandida	Chronic, 28-day	>315	≥315
2010 CA 8.4.2.1/004	AMPA	Hypoaspis aculeifer	Chronic, 14-day	>320	≥ 320

Study summaries are provided below.

1. Information

(1 %) %	
Data point	CA 8.4.2.1/001
Report author The Solution	
Report year	2010
Report title	MON0139 – Effects on the reproduction of the collembolans <i>Folsomia candida</i>
Report No.	09 10 48 057 S
Document No	-
Guidefines followed in study	ISO 11267 (1999)
Deviations from current test guideline	Deviations from guideline OECD 232 (2016): Minor: - 5 replicates were used for the test item treatment groups and the control, instead of 4 in the test item group and 8 in the control - 10 % sphagnum peat was used instead of 5 %

CA, Section 8	
ge 555 of 847	

	- 30 g wet weight per test vessel was used instead of 30 g dry weight.
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes
Acceptability/Reliability	Valid
Category study in AIR 5 dossier (L docs)	Category 2a
2. Full summary	\$ \(\sigma_{\text{i}}^{\text{i}} \)
Executive Summary	y and named vative inhibition of Clymbaseta is an in 1997 of the solt to Followic

2. **Full summary**

Executive Summary

In a laboratory study the toxicity and reproductive inhibition of Glyphosate isopropylamine salt to *Folsomia* candida was tested. Juvenile springtails, approximately 10 - 12 days old, were exposed to 35, 50, 100, 500 and 1000 µL glyphosate isopropylamine salt/kg dry soil (equivalent to 19, 29, 59, 294 and 587 mg glyphosate acid equivalent/kg dry soil) and to a control with deionised water. A toxic reference (Betosip) was tested in a separate study.

50 springtails (10/ test vessel) per test concentration and control were put in a glass container on artificial soil with incorporated test item and adults and juveniles counted after 28 days. All validity criteria according to OECD 232 were fulfilled. The study is considered valid and the NOEC ≥ 587 mg a.e./kg dry soil will be used in the regulatory risk assessment for Folsonia exposed to glyphosate technical.

I. MATERIALS AND METHODS

MATERIALS A.

1. Test material:

Glyphosate isopropylamine salt Test item:

Description Pale yellow liquid Lot/Batch #. **₹8B60170S0**

> Nominal: 62% w/w glyphosate isopropylamine salt (corresponding to 45.9% w/w glyphosate acid equivalent) Analysed: $63.81 \pm 0.29\%$ w/w glyphosate isopropylamine salt (corresponding to $47.28 \pm 0.21\%$ w/w glyphosate acid

> > equivalent)

Vehicle: deionised water 2. Vehicle and/or positive control:

Positive control: Betosip (Phenmedipham EC 157 g/L)

3. Test organisms

Species: Folsomia candida (Willem)

Juvenile springtails (10 – 12 d old)

In-house culture originally obtained from Biologische Source:

Bundesanstalt (BBA), Berlin, Germany

Diet/Food: Approximately 2 mg granulated dry yeast at test start and after

14 days

4 Environmental conditions:

Temperature: 20.4 - 21.1 °C

Composition of artificial soil 10% sphagnum peat

20% kaolin clay 0.5% calcium carbonate

69.5% quartz sand Deionised water

Soil water content: Test start: 34.9 – 35.2% (54.4 – 54.9% of WHC)

Test end: 34.5 – 34.7% (53.8 – 54.1% of WHC)

Test start: 6.01 - 6.08

Test end: 5.79 - 5.91

Photoperiod: 16 hours light / 8 hours darkness

with Folsomia candida at five application rates of 35, 50, 100, 500 and 1000 μL MON0139/kg dry soil (19, 29, 59, 294 and 587 mg glyphosate acid equivalent/kg dry soil). In addition, a blank control with deionised water and a toxic reference (Betosip) were conducted. Each test item concentration and the control were tested with 50 springtails (10/ test vessel). For each test item concentration and for the control group 2 test vessels without springtails were provided for measurement purposes. The springtails were put in a glass container (~150 mL) containing 30 g (wet weight) artificial soil with the requested test item concentrations and covered with a glass lid for 28 days. Four weeks after introducing the test organisms the parental and juvenile collembolans were counted.

- 2. Observations: Water content and pH were determined at test start and end. Adults and juvenile springtails were counted at test end.
- 3. Statistical calculations: Fisher's Exact Binomial test with Bonferroni Correction for significance of parental mortality. Welch-t-test ($p \le 0.05$) for significance of reproductive reduction. Statistical program: ToxRat Professional 2.10 (2009).

II. RESULTS AND DISCUSSION

FINDINGS A.

Table 0-2: Mortality and reproductive reduction of Folsomia candida after application of MON0139 in a 28 days faboratory study

Test rate [µL MON0139/kg dry soil]	Test concentration Img glyphosate a.e./kg dry soil]	Mortality of parental collembolans after 4 weeks [%]	Corrected mortality 1) [%]	Mean number of juveniles after 4 weeks [%]	Reduction of reproduction compared to control [%]	Coefficient of variation [%]
Control	Control	4	-	397.2	-	14.2
38	19	6	2	355.6	10	14.3
6550°	29	6	2	384.6	3	38.4
100 kg	59	2	-2	344.4	13	10.8
500	294	0	-4	446.4	-12	20.0
1000	587	8	4	358.8	10	12.1

¹⁾ calculated with Abbott 1925

Reference test:

After treatment with the reference item Betosip (Phenmedipham EC 157 g/L) at concentrations of 50, 100, 200 and 400 mg test item/ kg dry soil an EC₅₀ of 181.0 mg Betosip/kg dry soil was determined.

B. OBSERVATIONS

No statistically significant effects on parental mortality (Fishers's Exact Binomial Test, p > 0.05) or the number of offspring (Welch-t-test, p > 0.05) compared to the control was found.

The LC₅₀ and EC₅₀ values as well as the NOEC are given below based on nominal concentrations.

Endpoints	MON0139 [μL test item/kg dry soil]	Glyphosate acid equivalent [mg a.e./kg dry soil]
NOEC (mortality)	1000	587
NOEC (reproduction)	1000	587
EC ₅₀ (28 d)	> 1000	> 587

Reference test:

The EC₅₀ reproduction with the reference item Betosip (Pheamedicham EC 157 g/L) demonstrated the sensitivity of the test system.

All validity criteria according to OECD 232 were fulfilled since the mean adult mortality did not exceed 20 %, the mean number of juveniles per vessel was \$\geq 000\$ and the coefficient of variation of juveniles was less than 30 %.

III. CONCLUSIONS

Assessment and conclusion by applicant:

The effects of glyphosate on mortality and reproduction of *Folsomia candida* were assessed following application of MON0139 under laboratory conditions.

The 28-day EC₅₀ was > 1000 µL MON0139/kg dry soil (>587 mg glyphosate acid equivalent/kg dry soil). The NOEC was \geq 1000 µL MON0139/kg dry soil (\geq 587 mg glyphosate acid equivalent/kg dry soil), the highest tested concentrations, since MON0139 had no negative effect on the test organisms. There were some deviations to the current guideline. However, these deviations did not affect the scientific validity of the study.

The study is considered valid and NOEC \geq 587 mg a.e./kg dry soil can be used in risk assessment for *Folsomia* exposed to glyphosate IPA salt.

Assessment and conclusion by RMS:		
675		
(8, 8, 1)		
R Cigor		

1. Information on the study

Data point:	CA 8.4.2.1/002
Report author	
Report year	2009
Report title	MON0139 – Effects on the reproduction of the predatory mite Hypoaspis aculeifer
Report No	09 10 48 058 S
Document No	
Guidelines followed in study	OECD 226 (2008)
Deviations from current test guideline	Deviations from guideline OECD 226 (2016). Minor: - Four concentrations of the test item were tested instead of at least five for a NOEC test design.
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes
Acceptability/Reliability:	Valid Store
Category study in AIR 5 dossier (L docs)	Category 2a

2. **Full summary**

Executive Summary

Service of the servic In the laboratory study the toxicity and reproductive inhibition of MON0139 to Hypoaspis aculeifer was tested. Adult mites were exposed to 50, 100, 500 and 1000 mg MON0139/kg dry soil (equivalent to 23.64, 47.28, 236.40 and 472.80 mg glyphosate acid equivalent/kg dry soil) and to a control with deionised water. A toxic reference (Perfekthion) was tested in a separate study.

40 mites (10/test vessel) per test concentration and 80 mites per control (10/test vessel) were put in a glass bottle on artificial soil with incorporated test item and adults and juveniles counted after 14 days. The test item MON0139 caused no statistically significant mortality of adult Hypoaspis aculeifer at the end of the 14-day exposure period. Also, no significant decrease in reproduction was observed. All validity criteria according to OECD 226 were fulfilled. The study is considered valid so EC₅₀ > 473 mg a.e./kg dry soil and NOEC \geq 473 mg a.e./kg dry/soft will be used in the regulatory risk assessment for *Hypoaspis* exposed to A No. of the state glyphosate technical.

I. MATERIALS AND METHODS

A. MATERIAL

1. Test material:

Test item: MON0139 (glyphosate isopropylamine salt)

Description: Pale yellow liquid Lot/Batch #: A8B60170S0

> Purity: Nominal: 62 % w/w glyphosate isopropylamine salt

> > (corresponding to 45.9 % w/w glyphosate acid equivalent) Analysed: 63.81 ± 0.29 % w/w glyphosate isopropylamine salt

(corresponding to 47.28 ± 0.21 % w/w glyphosate acid

equivalent)

Vehicle: deionised water 2. Vehicle and/or positive control:

Positive control: Perfekthion (Dimethoate, EC 400, 422.4 g/E

analysed)

3. Test organisms:

Species: Hypoaspis aculeifer (Canestrini)

Age: Adult mites

Source: In-house culture originally obtained from Katz Biotech AG,

15837 Baruth, Germany

Tyrophagus putrescentiae (Schrank) were fed every 2 days, Diet/Food:

before and during the test

4. Environmental conditions:

19.7 − 21.9 °C Temperature:

5 % sphagnum peat Composition of artificial soil

20 % kaolin clay

0.3 % calcium carbonate 74.7 % 74.7 % quartz sand

Deionised water

Test start: 18.79 2021% (47.52 – 51.11 % of WHC) Soil water content:

Test end: 18.65 20.11 % (47.17 – 50.87 % of WHC)

pH Test start: 5.9^G

Test end: 5.3

16 hours light \$\tilde{\psi}\$ 8 hours darkness Photoperiod:

Light intensity: 11/2

B. STUDY DESIGN AND METHODS

1. Experimental treatments: MONQY39 was evaluated for mortality and reproductive reduction in a test with Hypoaspis aculeifer at four application rates of 50, 100, 500 and 1000 mg MON0139/kg dry soil (equivalent to 23.64, 47.28, 236.40 and 472.80 mg glyphosate acid equivalent/kg dry soil). In addition, a control with deionised water and a toxic reference (Perfekthion, 422.4 g/L dimethoate) were tested.

Each test item concentration was tested with 40 mites (10/test vessel), while the control group consisted of 80 mites (10/test vessel). For each test item concentration and for the control group 2 test vessels without mites were provided for measurement purposes.

The mites were put in class bottles with screw tops of 100 mL containing 20 g (dry weight) artificial soil with the requested test stem concentrations and closed. Test vessels were opened every two days for food supply and aeration Two weeks after introducing the test organisms the parental and juvenile mites were counted.

- 2. Observations: Water content and pH were determined at test start and end. Temperature was recorded continuously. Adult and juvenile mites were counted at test end.
- 3. Statistical calculations: Fisher's Exact Binomial test with Bonferroni Correction for significance of parental mortality. Dunnett-t-test (p \leq 0.05) for significance of reproductive reduction. Statistical program: ToxRat Professional 2.10 (2009).

II. RESULTS AND DISCUSSION

A. FINDINGS

Table 0-3: Mortality and reproductive reduction of *Hypoaspis aculeifer* after application of MON0139 in a 14 day laboratory study

Test rate

Test rate

Mortality of Comments

Test rate

Test rate [mg MON0139/ kg dry soil]	Test rate [mg a.e./ kg dry soil]	Mortality of adults after 14days [%]	Corrected mortality 1) [%]	Mean number of juveniles after 14 days [%]	Reduction of reproduction compared to control	Coefficient of variation [%]
Control	Control	8.8	-	190.5	1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (8.9
50	23.64	10	1.4	176.8	jo jo ja	12.3
100	47.28	12.5	4.1	173.5	8.9	12.4
500	236.40	10.0	1.4	182.3	⋄ 4.3	11.7
1000	472.80	7.5	-1.4	205.80 6	-9.1	6.3

¹⁾ calculated with Abbott 1925

Reference test:

After treatment with the reference item Perfekthion (Directhoate, EC 400, 422.4 g/L analysed) at concentrations of 4.1, 5.12, 6.40, 8.00 and 10.00 mg a.s./kg dry soil an EC₅₀ (reproduction) of 4.9 mg test item/kg dry soil was concluded.

B. OBSERVATIONS

The test item MON0139 caused no statistically significant mortality (Fishers's Exact Binomial Test, p >

0.05) of the adult Hypoaspis aculeifer at the end of the 14-day exposure period. Also, no significant decrease in reproduction was observed (Durnett-t-test, p > 0.05).

The EC₅₀ value and the NOEC are given below.

Endpoints		MON0139 [mg/kg dry soil]	Glyphosate acid equivalent [mg/kg dry soil]
NOEC		1000	472.80
EC ₅₀ (14 d)	SI IO A	> 1000	>472.80

Reference test:

The EC₅₀ (reproduction) with the reference item Dimethoate EC 400 was in line with the range defined in the guideline to demonstrate the sensitivity of the test system.

All validity criteria according to OECD 226 were fulfilled, as adult mortality in the control treatments did not exceed 20 %, the mean number of juveniles per replicates was > 50 at test end and the coefficient of MOS STATE OF THE S variation of the number of juveniles per replicate was not higher than 30 % at test end.

III. CONCLUSIONS

Assessment and conclusion by applicant:

The effects of MON0139 on mortality and reproduction of *Hypoaspis aculeifer* were assessed for 14 days under laboratory conditions.

The 14-day EC₅₀ was >1000 mg MON0139/kg dry soil (473 mg glyphosate acid equivalent/kg dry soil). The NOEC was ≥ 1000 mg test item/kg dry soil (≥ 473 mg glyphosate acid equivalent/kg dry soil), the highest tested concentration, since MON0139 had no negative effect on the test organisms.

The study is considered valid so $EC_{50} > 473$ mg a.e./kg dry soil and $NOEC \ge 473$ mg a.e./kg dry soil can be used in risk assessment for *Hypoaspis* exposed to glyphosate IPA salt.

ill of o

Assessment and conclusion by RMS:

1. Information on the study

<u> </u>	0. % 7.
Data point	CA 8.4.2.1/003
Report author	8 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Report year	2010
Report title	AMPA – Effects on the Reproduction of the collembolans Folsomia
	candida & S. S. S. S.
Report No	10 10 48 054 \$
Document No	Not available
Guidelines followed in study	OECD 232 (2009)
	ISO 11267 (1999)
Deviations from current test	Deviations from guideline OECD 232 (2016)
guideline	\$\display \text{\text{if}}
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised	Yes
testing facilities	
Acceptability/Reliability	valid
Category study in AIRS	Category 2a
dossier (L docs)	

Full summary 2.

Executive Summary

In the laboratory study the toxicity and reproductive inhibition of AMPA to Folsomia candida was tested. Juvenila springtails, 9-12 days old, were exposed to 30, 54, 97.2, 175 and 315 mg test item/kg dry soil and to a control with deionised water. A toxic reference (100% boric acid) was tested in a separate study. Mo statistically significant effects on parental mortality and number of offspring were observed. All validity criteria according to OECD 232 were fulfilled. The study is considered valid so EC₅₀ > 315 mg/kg dry soil and NOEC ≥ 315 mg/kg dry soil will be used in the regulatory risk assessment for Folsomia exposed **

Glyphosote P in a gla. 28 days. No static criter

AMPA.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: AMPA (Aminomethylphosphonic acid)

Description: White crystalline solid Lot/Batch #: GLP-0908-19984-A

Purity: 98.7 %

Vehicle: deionised water

2. Vehicle and/or positive control:

Positive control: Reference item. Boric acid (100%)

3. Test organisms:

Species: Folsomia candida (Willem)

Age: Juvenile springtails (9 12 d'old)

Source: In-house culture originally obtained from Biologische

Bundesanstalt (BBA), Berlin, Germany

Diet/Food: Approximately 2 mg granulated dry yeast at test start and after

14 days

4. Environmental conditions:

Temperature: 20.4 – 22.0 °C

Composition of artificial soil 5 % splragnum peat

20% kaolin clay

0.3% calcium carbonate

74.7% quartz sand

Deionised water

Soil water content: Test start: 24.9 – 25.1 % (57.8 – 58.2 % of WHC)

Test end: 24.3 – 25.0 % (56.4 – 58.0 % of WHC)

Soil pH: Test start: 5.78 – 5.98 (test start)

Test end: 5.60 - 5.78

Photoperiod: 16 hours light / 8 hours darkness

Light intensity: 750 lux

B. STUDY DESIGN AND METHODS

- 1. Experimental treatments: AMPA at five concentrations, 30, 54, 97.2, 175 and 315 mg test item/kg dry soil, was evaluated for mortality and reproductive reduction in a test with *Folsomia candida*. In addition, a control with deignised water and a toxic reference (100 % boric acid) were conducted. Each test item concentration was tested with 40 springtails (10/ test vessel), while the control group consisted of 8 replicates. For each test item concentration and for the control group 2 test vessels without springtails were provided for measurement purposes. The springtails were held in a glass container (~150 mL), containing 30 g (wet weight) artificial soil including the requested test item concentrations and covered with a glass lid for 28 days. Four weeks after introducing the test organisms the parental and juvenile collembolans were counted.
- Observations: Water content and pH values were determined at test start and end. Adults and juvenile springtails were counted at test end as well as physiological or pathological symptoms.
- 3. Statistical calculations: Fisher's Exact Binomial test with Bonferroni Correction for significance of parental mortality Dunnett-t-test ($p \le 0.05$) for significance of reproductive reduction Statistical program:

ToxRat Professional 2.10 (2009).

II. RESULTS AND DISCUSSION

A. FINDINGS

A. FINDINGS Table 0-4: Morin a 28-day lab	rtality and reproc		n of <i>Folsomia can</i>		ation of AMPA
AMPA [mg test item/kg dry soil]	Mortality of parental collembolans after 4 weeks	Corrected mortality 1) [%]	Mean number of juveniles after 4 weeks [%]	Reduction of reproduction. compared to control	Coefficient of variation [%]
Control	6.3	-	931	10 10 - 110.	15.1
30	5.0	-1	925	37.00 PI	11.6
54	7.5	1	934	5 6 0	5.2
97.2	2.5	-4	946	-2	11.8
175	7.5	1	973	-4	20.1
315	2.5	-4	9390 5	-1	21.3

¹⁾ calculated with Abbott 1925

Reference test:

After treatment with the reference item boric acid at concentrations of 44, 67, 97.2, 150 and 225 mg test item/kg dry soil an EC₅₀ of 108.6 mg test item/kg dry soil.

B. OBSERVATIONS
No statistically significant effects on parental mortality (Fishers's Exact Binomial Test, p > 0.05) or the number of offspring (Dunnett-t-test, p > 0.05) compared to the control was found.

The LC₅₀ and EC₅₀ values as well as the NOEC are given below based on nominal concentrations.

Endpoints	AMPA [mg/kg dry soil]
NOEC (mortality)	315
NQEC (reproduction)	315
. LC ₅₀ (28 d)	> 315
EC ₅₀ (28 d)	> 315

The EC₅₀ reproduction with the reference item boric acid was in line the expected result defined in the guideline to demonstrate the sensitivity of the test system (about 100 mg test item/kg dry soil).

All validity criteria according to OECD 232 were fulfilled, since the mean adult mortality did not exceed 20 %; the mean number of juveniles per vessel was \geq 100 and the coefficient of variation of juveniles was less than 30 %.

III. CONCLUSIONS

Assessment and conclusion by applicant:

The effects of AMPA on mortality and reproduction of Folsomia candida were assessed for 28 days under laboratory conditions.

The 28-day LC₅₀ and EC₅₀ were > 315 mg test item/kg dry soil. The NOEC was ≥ 315 mg/AMPA/kg dry soil, the highest tested concentration, since AMPA had no negative effects on the test organisms.

The study is considered valid so $EC_{50} > 315 \text{ mg/kg dry soil}$ and $NOEC \ge 315 \text{ mg/kg dry soil}$ can be used in the regulatory risk assessment for Folsomia exposed to AMPA.

	2 6 2
Assessment and conclusion by RMS:	

1. Information on the study

Data point:	CA 8.4.2.1/004
Report author	S. J. S.
Report year	2010
Report title	AMPA – Effects on the Reproduction of the Predatory Mite <i>Hypoaspis</i> aculeifer
Report No	10 10 48 053 \$ \$ \$
Document No	- [6,0,5
Guidelines followed in study	OECD 226 (2008)
Deviations from current test guideline	Deviations from guideline OECD 226 (2016): Minor: A combined approach design (determination of NOEC and EC ₅₀) was conducted with only 5 test item concentrations and a spacing factor of 2 (8 concentrations and spacing factor not exceeding 1.8 are required).
	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes
Acceptability/Reliability	Valid
Category study in ALR 5 dossier (L docs)	Category 2a

Full summary of the study according to OECD format 2. Executive Summary

In the laboratory study the toxicity and reproductive inhibition of AMPA to Hypoaspis aculeifer was tested. Adult mites were exposed to 40, 80, 160, 240 and 320 mg test item/kg dry soil and to deionised water only

a separate study.

1. In a separate study.
1. In a separate study.
1. In a separate study.
1. In a separate study.
1. In

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: AMPA (Aminomethylphosphonic acid)

Description: White crystalline solid Lot/Batch #: GLP-0908-19984-A

Purity: 98.7 %

Vehicle: deionised water

eme Dimethoate EC 400 item. 2. Vehicle and/or positive control: Positive control: Reference

(414.8 g/L analysed)

3. Test organisms:

Species: Hypoaspis aculeifer (Canestrini)

Age: Adult mites

Source: In-house culture originally obtained from Katz Biotech AG,

15837 Baruth, Germany

Diet/Food: Tyrophagus putrescentiae (Schrank) were fed every 2 days,

before and during the test

4. Environmental conditions:

19.7 – 21.8°C Temperature:

5 % sphagnum peat Composition of artificial soil

20% kaolin clay 0.3 % calcium carbonate 74.7% quartz sand Deionised water

Soil water content: Test start: 17.40- 18.07 % (47.81 – 49.64 % of WHC)

Test end: 17.10 – 17.55 % (46.98 – 48.22 % of WHC)

H A PH Test start: 5.8 - 6.1

Test end: 5.4 - 6.3

Photoperiod: 16 hours light / 8 hours darkness

Light intensity: 472 lux

B. STUDY DESIGNAND METHODS

- 1. Experimental treatments: AMPA was evaluated for mortality and reproductive reduction in a test with Hypoaspis acule feet at five test item concentrations of 40, 80, 160, 240 and 320 mg test item/kg dry soil. In addition, a control with deionised water and a toxic reference (Dimethoate EC 400) were conducted. Each test item concentration was tested with 40 mites (10/test vessel), while the control group consisted of 80 mites (10) (est vessel). For each test item concentration and for the control group 2 test vessels without mites were provided for measurement purposes. The mites were put in glass bottles with screw tops of 100 mL, each containing 20 g (dry weight) artificial soil with the requested test item concentrations and closed. Every two days test vessels were opened for food supply and aeration. Two weeks after introducing the test organisms the parental and juvenile mites were counted.
- 2. Observations: Water content and pH were determined at test start and end. Adults and juvenile mites were counted at test end. The temperature was continuously measured and recorded.

3. Statistical calculations: Fisher's Exact Binomial test with Bonferroni Correction for significance of parental mortality. Dunnett-t-test (p \leq 0.05) for significance of reproductive reduction. Statistical programs ToxRat Professional 2.10 (2009).

II. RESULTS AND DISCUSSION

A. FINDINGS

Table 0-5: Mortality and reproductive reduction of Hypoaspis aculeifer after application of AMPA in a 14 day laboratory study

Test concentration [mg test item/kg dry soil]	Mortality of adults after 14 days [%]	Corrected mortality 1) [%]	Mean number of juveniles after 14 days [%]	Reduction of reproduction compared to control [%]	Coefficient of variation [%]
Control	0.0	-	220.6	5 6 0 -	13.3
40	5.0	5.0	228.0	Jo 3.3	20.7
80	2.5	2.5	236.3	-7.1	7.7
160	2.5	2.5	2093	5.2	6.0
240	0.0	0.0	237.30	-7.5	9.9
320	2.5	2.5	22 4 .5	-3.1	20.7

¹⁾ calculated with Abbott 1925

Reference test:
After treatment with the reference item Dimethode EC 400 at concentrations of 4.1, 5.12, 6.40, 8.00 and 10.00 mg a.s./kg dry soil and EC₅₀ (reproduction) of 6.6 mg test item/kg dry soil was concluded.

B. OBSERVATIONS
The test item AMPA caused no statistically significant mortality (Fishers's Exact Binomial Test, p > 0.05) of the adult Hypoaspis aculeifer at the end of the 14-day exposure period. Also, no significant decrease in reproduction was observed (Durnett-test, p > 0.05).

The EC₅₀ value and the NOEC are given below based on nominal concentrations.

Endpoints	AMPA [mg/kg dry soil]		
NOEC NOEC	320		
EC ₅₀ (14 d)	> 320		

Reference test:

The EC₅₀ (reproduction) with the reference item Dimethoate EC 400 was in line with the range defined in the guideline to demonstrate the sensitivity of the test system.

and a spacing factor of 2 (8 concentrations and spacing factor of 2 (8 concentrations and spacing factor of 2 (8 concentrations and spacing the design is in line with the requirement for determination of NOEC only. A combined approach design (determination of NOEC and EC₅₀) was conducted with only 5 test item sconcentrations and a spacing factor of 2 (8 concentrations and spacing factor not exceeding 1.8 are required). Since an ECc could not be colored at 1.8 are required). Since an EC₅₀ could not be calculated and would be greater than the highest test concentration, All validity criteria according to OECD 226 were fulfilled, as adult mortality did not exceed 20 %, the mean number of juveniles per replicate was > 50 at test end and the coefficient of variation of the number of juveniles per replicate was not higher than 30 % at test end.

III. CONCLUSIONS

Assessment and conclusion by applicant:

The effects of AMPA on mortality and reproduction of *Hypoaspis aculeifer* were assessed for 14 days under laboratory conditions.

The 14-day EC₅₀ was > 320 mg test item/kg dry soil. The NOEC was \ge 320 mg AMPA kg dry soil, the highest tested concentration, since AMPA had no negative effect on the test organisms.

The study is considered valid so $EC_{50} > 320$ mg/kg dry soil and $NOEC \ge 320$ mg/kg dry soil can be used in risk assessment for *Hypoaspis* exposed to AMPA.

Assessment and conclusion by RMS:

1. Information on the study

	(6) (7)
Data point:	CA 8.4.2.1/60\$
Report author	von Mérey G. et al.
Report year	2016 6 6 6
Report title	Glyphosate and aminomethylphosphonic acid chronic risk
	assessment for soil biota
Document No	DQI: 10.1002/etc.3438
	É-ISSN: 1552-8618
Guidelines followed in study	QECD 222; OECD 226; OECD 232; OECD 216
Deviations from current test	Earthworm cocoons were not counted, in accordance with
guideline	OECD 222.
GLP/Officially recognised testing	No, not applicable
facilities & & & & & & & & & & & & & & & & & & &	
Acceptability/Reliability	Yes/Reliable

2. Full summary of the study according to OECD format

The exposure risk from glyphosate and the primary soil metabolite aminomethylphosphonic acid (AMPA) on representative species of earthworms, springtails, and predatory soil mites and the effects on nitrogentransformation processes by soil microorganisms were assessed under laboratory conditions based on internationally recognized guidelines. For earthworms, the reproductive no-observed-effect concentration (NOEC) was 472.8 mg glyphosate acid equivalent (a.e.)/kg dry soil, which was the highest concentration tested, and 498.1 mg/kg dry soil for AMPA. For predatory mites, the reproductive NOEC was 472.8 mg a.e./kg dry soil for glyphosate and 320 mg/kg dry soil for AMPA, the highest concentrations tested. For springtails, the reproductive NOEC was 472.8 mg a.e./kg dry soil for glyphosate and 315 mg/kg dry soil for AMPA, the highest concentrations tested. Soil nitrogen-transformation processes were unaffected by glyphosate and AMPA at 33.1 mg a.e./kg dry soil and 160 mg/kg dry soil, respectively. Comparison of these endpoints with worst-case soil concentrations expected for glyphosate (6.62 mg a.e./kg dry soil) and AMPA (6.18 mg/kg dry soil) for annual applications at the highest annual rate of 4.32 kg a.e./ha indicate very low likelihood of adverse effects on soil biota.

Materials and methods

Test substances

Glyphosate (N-phosphonomethylglycine) is an acidic substance, which is manufactured and formulated as a salt to increase the solubility in water and compatibility with other formulation components. In water, AMPA is highly soluble (56 g/L at 20 °C), whereas neither glyphosate nor AMPA is significantly soluble in common organic solvents. Therefore, no cosolvent was required, and both stock solutions of exphosate and AMPA test items were prepared in deionized water (5 - 20 Mohm at 25 °C). Two batches of AMPA analytical reference standards with purity of 98.7 % (synthesized by Chemir) and 99.7% (Across Organics BVBA) were dissolved in deionized water. For soil nitrogen-transformation tests, stock solutions of glyphosate acid technical grade (96.59 % purity; Monsanto Europe) were prepared by direct addition of test item to deionized water. For all other tests, glyphosate isopropylamine salt (nominal burity 62 % w/w, measured purity 63.81 ± 0.29 % w/w; MON 0139), corresponding to 45.9 % w/w glyphosate a.e. (measured 47.28 ± 0.21 % w/w; Monsanto Europe), were prepared in deionized water.

Earthworm reproduction tests

The earthworm reproduction test with glyphosate was conducted according to OECD guideline 222. For

AMPA, an earthworm reproduction test was conducted according to the QECD 222. Both testing guidelines are equivalent in terms of the procedures employed during the tests (soil pH, temperature, lighting regime, soil composition and humidity, rearing, feeding quantities, test design, endpoints, number of replicates, growth stage of worms at test initiation, and so on). Therefore to avoid repetition, the procedures used in the glyphosate study only are described.

Glyphosate - Earthworm reproduction test. In the earthworm reproduction glyphosate study *Eisenia fetida* (Haplotaxida: Lumbricidae, Savigny, 1826) were used as the test species. Mature adult E. fetida (~3 mo old with clitellum), weighing between 300 mg and 600 mg, were obtained from an age-synchronized stock culture from the test facility and reared under ambient laboratory conditions in the test facility. The original breeding animals were purchased from W. Neutorff A detailed description of earthworm culturing is provided in Annex 4 of OECD 222. The E. fetida were reared in the laboratory on standard breeding medium (1:1:1 mixture of straw, horse manure, and peat; straw and horse manure were purchased from farmers, and peat was purchased from Torfwerk Moorkultur Ramsloh); no exposure to the test item was allowed prior to use in testing. Testing was conducted in artificial soil, equivalent to the soil in which the worms were originally cultured. The test aims to evaluate effects on adult body weight and survival percentage (according to treatment) during an initial 4-wk adult exposure period. Effects on juvenile production were then assessed at the end of a 4-wk period that followed directly after adult removal from the test. Behavior (including feeding activity) and pathological symptoms (e.g., lethargy, morphological alterations) of adults and juveniles were also assessed.

On the day before the test start earthworms (from aged-synchronized batches, to ensure that similar-sized earthworms were used) were acclimated to test conditions in a separate batch of artificial soil supplemented with pasteurized horse manure, purchased from farmers and collected from horses not treated with growth promoters, nematicides, or other veterinary products - also used as the food source during testing. On test start day, volumes of the test solution (prepared by direct addition of glyphosate isopropylamine to deionized water) were mixed into bulk samples of artificial soil, to achieve nominal glyphosate soil concentrations of \$4.48 mg a.e./kg dry soil, 23.64 mg a.e./kg dry soil, 47.28 mg a.e./kg dry soil, 236.4 mg a.e./kg dry soil, and 472.8 mg a.e./kg dry soil. Glyphosate test concentrations were selected to cover the range and exceed field exposure concentrations. A toxic reference test was also performed in a separate test with carbendazim (Nutdazim 50 Flow, SC 500) at concentrations of 5 mg/kg dry soil and 10 mg/kg dry soil.

Test vessels were filled with the appropriate treated soil (810 g wet wt corresponding to 600 g dry wt). Groups of 10 individually weighed earthworms were randomly assigned to replicates within each treatment group, with a total of 40 earthworms used per treatment group divided equally between 4 replicates. For the control group (water only), 80 worms were used, divided equally between 8 replicates. Groups of 16 earthworms were placed onto the assigned replicate soil surface and closed with perforated transparent fids (following a brief burrowing period) to reduce evaporative water loss, allow gaseous exchange, and prevent worms from escaping the replicate vessels. Test vessels were then randomly positioned in an environmental test chamber under continuous light (to maintain worms in the soil). On day 1 and weekly

thereafter for the 4-wk adult exposure period, 5 g of air-dried finely ground horse manure was scattered on the soil surface of each test vessel and wetted with 5ml of deionized and wetted with 5ml each week (up to 5 g) was dictated by feeding activity.

After 4 wk, adult earthworms were removed from the vessels by emptying the contents of each replicate vessel onto a tray and removing the adult worms. Care was taken not to remove any cocoons from the soil. Cocoons were not counted, in accordance with OECD 222. It can be reasonably assumed that effects on cocoon numbers would lead to effects on numbers of juveniles; hence, the endpoint number of juveniles accounts for effects at earlier life stages of earthworm progeny. All worms were rinsed with denormal water and dried on filter paper before recording body weights (by replicate and by treatment). Behavioral (including feeding activity) and pathological symptoms were also recorded during the exposure period and at the time of adult removal. The adult worms were then discarded. The soil in each replicate vessel was then mixed carefully with 5 g of manure, and the mixture was returned to the vessels. The test continued for a further 4 wk. At test termination (8 wk after adult addition) the number of surviving juveniles in each test vessel was recorded on manual inspection of the substrate. Soil was emptied on the lower edge of a white tray (30 cm × 40 cm). Subportions of the soil were spread in the middle of the tray, resulting in a thin layer of soil of approximately 10 cm × 10 cm. The subportion was examined thoroughly for juvenile worms, after which it was moved to the upper edge of the tray. This procedure was repeated until the entire soil from a vessel was examined. The entire procedure was repeated until there were no additional juvenile counts in 2 consecutive counting procedures, resulting in an average of 5 counting procedures per vessel. The counting tray and soil samples were illuminated using a fiber opticalight source connected with a double gooseneck light guide. The water content and pH of the artificial soil were determined. Adult body weights and the effects on reproduction (juvenile numbers) were analyzed using a lower-tailed Dunnett's multiple comparisons test ($\alpha = 0.05$). The Kolmogorov-Smirnov test and Cochran's test procedure were used, respectively, to test the biomass data for normality and homogeneity of variance. Survival was analyzed with a 1-sided Fisher's exact binomial test with Bonfergoni correction ($\alpha = 0.05$).

AMPA - Earthworm reproduction tests. The procedures used during the AMPA earthworm study are considered equivalent to those employed in the glyphosate earthworm reproduction study described above in Glyphosate—Earthworm reproduction test. Mature adult E. fetida (~3mo old with clitellum), weighing between 300 mg and 600 mg, were obtained from an age-synchronized stock culture from the test facility and reared under ambient laboratory conditions in the test facility. A detailed description of earthworm culturing is provided in Annex 4 of OECD 222.

In the AMPA earthworm reproduction study, mature (clitellated) adult E. fetida were exposed to AMPA (99.7% purity; Acros Organics BVBA) mixed into artificial soil at nominal soil concentrations of 58.6 mg AMPA/kg dry soil, 87.8 mg AMPA/kg dry soil, 131.9 mg AMPA/kg dry soil, 198.1 mg AMPA/kg dry soil, 297.1 mg AMPA/kg dry soil, 445.5 mg AMPA/kg dry soil, 668.5 mg AMPA/kg dry soil, and 1002.5 mg AMPA/kg dry soil. A control group was prepared using deionized water only. A toxic reference test was also performed in parallel using earthworms from the same batch, exposed to carbendazim at concentrations of 1.0 mg active substance (a.s./kg dry soil, 2.2 mg a.s./kg dry soil, and 5.0 mg a.s./kg dry soil. For effects on biomass and production of juveniles, homogeneity was tested with the Brown-Forsythe and Bartlett tests. Dunnett's multiple comparison test was conducted using GraphPad Prism, Ver 6.03, because a continuous response could not be observed for all the test concentrations, as recommended by the OECD 222 test guideline and the OECD statistical guidance. The 50 % effect rate on reproduction was calculated using GraphPad Prism.

Soil predatory mite reproduction test

The soil predatory mite reproduction tests for glyphosate and AMPA were both conducted according to OECD guideline 226 predatory mite (Hypoaspis [Geolaelaps] aculeifer) reproduction test in soil. The procedures used in the 2 studies were identical. Full details of the procedures are presented for glyphosate

production test. The glyphosate soil predatory mite reproduction test was conducted using glyphosate isopropylamine salt (MON 0139). Survival of mites (*H. aculeifer*) and their reproductive performance were evaluated at 4 nominal concentrations, equivalent to 50 mg MON 0139/kg dry soil, 100 mg MON 0139/kg dry soil, and 1000 mg Glyphosate.

MON 0139/kg dry soil (= 23.64 mg a.e./kg dry soil, 47.28 mg a.e./kg dry soil, 236.40 mg a.e./kg dry soil, 🔊 and 472.80 mg a.e./kg dry soil, respectively). A negative control with deionized water only was also included. A toxic reference test was performed in parallel using dimethoate EC400 (422.4 g/L; Perfekthion) at concentrations of 4.1 mg active ingredient (a.i.)/kg dry soil, 5.12 mg a.i./kg dry soil, 6.4 mg a.i./kg dry soil, 8.0 mg a.i./kg dry soil, and 10 mg a.i./kg dry soil. Mites were reared in the laboratory under another the laboratory under an conditions on a mixture of plaster of paris, activated charcoal, and deionized water (8:1:9). Adults with no more than a 3-d age difference were used at the start of the test. No exposure of the mites to glyphosate was allowed prior to the test. Each treatment group contained 40 mites divided equally between 4 replicate vessels, with the control group comprising 8 replicates, each containing 10 mites. In addition, Fest vessels without mites were included with each test concentration and in the control group for soil of measurements. Glass bottles (100mL nominal volume) with screw tops were filled with 20 g (dry wt) artificial soil at the required test concentrations. Cheese mites were added as a food source to the surface of the soil, and vessels were then covered to prevent mites from escaping. Bottles were opened every second day during the 14-d test for the addition of food and to allow aeration. At the end of the test (day 19), the parental mites and juveniles were counted, after extraction using a MacFayden high-gradientextractor (heat/light extraction method). This was achieved by adding the soil substrate from each test vessel into a canister placed inverted onto the extraction system. Soil substrate was retained within the canister using a plastic net (2 mm mesh size) on the bottom. Beneath the canister was a funnel attached to a collecting flask with 25 mL of a fixing liquid. A temperature gradient was created between the upper and the lower parts of the system, by circulating heated air in the canister area and cooled air in the coffection area. Over the 48-h extraction time, the following regime was applied: 25 °C for 12 h, 35 °C for 12 h, and 45 °C for 24 h. During this time, adults and juveniles moved down through the soil away from the heat source and fell through the funnel into the fixing liquid. Extraction efficiency was determined to be 95% in a separate extraction using vessels containing a known number of juvenile and adult mites in untreated substrate. Water content and pH were determined at test start and end. Statistical analysis was performed with the software ToxRat Professional 2.10. A 1-sided Fisher exact binomial test with Bonferroni-Holm correction for mortality and a 1-sided Dunnett multiple comparisons test for reproduction ($\alpha = 0.05$) were used to compare the control with independent test item groups. Abbott's formula was used to correct for control mortality.

AMPA - Soil predatory mite reproduction test with AMPA was conducted at 5 nominal application rates, equivalent to 40 mg test item/kg dry soil, 80 mg test item/kg dry soil, 160 mg test item/kg dry soil, 240 mg test item/kg dry soil, and 320 mg test item/kg dry soil. A negative control (deionized water only) group was also included. All procedures and observations in the test with AMPA were as described for the mite (QECD 226) test with glyphosate in Glyphosate—Soil predatory mite reproduction test. A reference test was performed with dimethoate EC400 (414.8 g/L) at test concentrations of 0 mg a.i./kg dry soil, 4.1 mg a.i./kg dry soil, 5.12 mg a.i./kg dry soil, 6.4 mg a.i./kg dry soil, 8.0 mg a.i./kg dry soil, and 0 mg a.i./kg dry soil.

Springtail reproduction tests. The springtail reproduction tests for glyphosate and AMPA were both conducted according to OECD guideline 232. The procedures used in the 2 studies were identical. Full details of the procedures are presented for glyphosate only. Springtails used in these studies were originally purchased from Biologische Bundesanstalt in May 2000 and reared in the laboratory of the test facility under ambient laboratory conditions.

Glyphosate - Springtail reproduction test. The springtail reproduction test conducted for glyphosate was conducted using glyphosate isopropylamine salt. Survival of springtails (Folsomia candida) and their reproductive performance were evaluated at 5 nominal application rates of 32 µL MON 0139/kg dry soil, 50 μL MON 0139/kg dry soil, 100 μL MON 0139/kg dry soil, 500 μL MON 0139/kg dry soil, and 1000 μL MON 0139/kg dry soil (= 15.1 mg a.e./kg dry soil, 23.6 mg a.e./kg dry soil, 47.3 mg a.e./kg dry soil, 236 A ring a.e./kg dry soil, and 472.8 mg a.e./kg dry soil, respectively). A negative control with deionized water only was also included. In a reference toxicity test with Betosip (15.7% phenmedipham), concentrations of 50 mg/kg dry soil, 100 mg/kg dry soil, 200 mg/kg dry soil, and 400 mg/kg dry soil were tested. Each treatment group, including the control group, comprised 50 mites divided equally between 5 replicate vessels. For each treatment group and for the control group, 2 test vessels without springtails were provided for pH measurement purposes. Glass containers (150mL nominal volume) were filled with

30 g (wet wt) of the required treated or control soil. Springtails were reared in the laboratory under ambient conditions on a mixture of plaster for stucco activated charges and a condition of the required treated or control soil. item was allowed prior to testing. Juvenile springtails, 10 d to 12 d old and from a synchronized cohort, were added to each test vessel and then covered with a glass lid for 28 d, following which the surviving adults and juveniles were counted. Water content and pH were determined at test start and end. Adult and juvenile springtails were counted at test end. Statistical analysis was performed with the software ToxRat Professional 2.10. A 1-sided Fisher exact binomial test with Bonferroni correction ($\alpha = 0.05$) and Welch's t test ($\alpha = 0.05$), because of non-heterogeneity of variance, were used to compare the control with the independent test item groups for significance of parental mortality and reproductive reduction, respectively. Abbott's formula was used to correct for control mortality.

AMPA = Springtail reproduction test. The springtail reproductive test for AMPA was conducted with AMPA (98.7 % purity) mixed into artificial soil at 5 nominal application rates, equivalent to 30 mg/kg dry soil, 54 mg/kg dry soil, 97.2 mg/kg dry soil, 175 mg/kg dry soil, and 315 mg/kg dry soil. The negative control used deionized water only. In a separate toxic reference test with 100% exystalline boric acid (BDH Prolabo) mixed with the soil, also included in the test design, the sensitivity of the population was determined with test concentrations of 0 mg/kg dry soil, 44 mg/kg dry soil, 67 mg/kg dry soil, 97.2 mg/kg dry soil, 150 mg/kg dry soil, and 225 mg/kg dry soil. The procedures used during the Springtail reproduction study were essentially equivalent to those used in the springtail test with glyphosate (described in Glyphosate - Springtail reproduction test) with the following exceptions: Each treatment group comprised 40 springtails (10 per test vessel), whereas the control group comprised 8 replicates. Statistical evaluation was performed with ToxRat Professional 2.10. A 1-sided Fisher exact binomial test with Bonferroni correction and a 1-sided Dunnett test were used to compare the control with independent test item groups. Mortality of adult springtails

Soil nitrogen-transformation tests
Soil nitrogen-transformation tests were conducted with glyphosate and AMPA according to OECD guideline 216 and performed according to good laboratory practice. The procedures used in the 2 tests were identical, although tested rates differed. Full details of procedures used are presented for glyphosate only. Glyphosate - Soil nitrogen-transformation test. The soil nitrogen-transformation test for glyphosate was conducted using glyphosate acid (96.59% purity; Monsanto Europe) applied at 2 soil concentrations, 6.62 mg a.e./kg dry soil and 33.1 mg a.e./kg dry soil. The tested rates were equivalent to 1 and 5 times the maximum predicted environmental concentration in soil following a worst-case application of glyphosate to bare soil in the EU. Each treatment group and the control comprised 3 replicate test vessels. The control was treated with water only. Field-collected soil was used (LUFA standard soil, type 2.3). On collection, the soil was manually cleared of large objects, such as stones and parts of plants, and then moist-sieved to a particle size ≤ 2 mm. The soil was stored under aerobic conditions in the dark at 4 ± 2 °C until required for use.

Glyphosate was prepared in defonized water and then mixed into a bulk sample of soil at the start of the test. The soil moisture content was 40% (± 5%) of the maximum water holding capacity. During the test, the weight of a moisture control vessel maintained under the same test conditions was used as a guide to correct for test vessel water loss. Control and treated bulk samples of soil were amended with ground lucerne meal (0.5%) as a nitrogen source with a C to N ratio of 16:4:1. Bulk samples were then subsampled (\sim 500 g) into replicate vessels and incubated at 20 ± 2 °C for 28 d. All containers were covered with a perforated lid to avoid evaporative water loss and stored in the dark. Soil (10 g) was taken from 1 replicate from each treatment for pH (water) determination at the start and end of the Glyphosate - Soil nitrogentransformation study. An additional soil sample was taken from 1 replicate per treatment for moisture and dry matter content determination at the end of the study. As soon as possible after dosing (day 0) and after 7 d, 14 d, and 28 d, a 50-g soil sample (based on dry wt) was removed from each replicate to determine NH₂, NO₂, and NO³. Soil extracts were prepared by adding 250mL of 2 M KCl, then shaking for 2 h and centrifuging for 15 min. The supernatant was analyzed using a Bran+Luebbe Autoanalyzer AA3 system. Effects below 25 % deviation from control were not considered to be biologically significant.

AMPA - Soil nitrogen-transformation test. In the soil nitrogen-transformation test conducted for AMPA, the bulk samples of field-sampled soil were prepared at AMPA (98.7% purity) soil concentrations of 40 mg/kg dry soil, 80 mg/kg dry soil, 160 mg/kg dry soil, 320 mg/kg dry soil, and 640 mg/kg dry soil. In

addition, a negative control (nontreated soil) was tested. Although conducting reference tests and use of so positive controls are not guideline requirements, in a separate reference test with dinoterb (2-tert-butyl-4,6) dinitrophenol, 99.9 % purity; Sigma-Aldrich Chemie), test concentrations of 6.8 mg/kg dry soil, 16 mg/kg dry soil, and 27 mg/kg dry soil were applied, in addition to the control (0 mg/kg dry soil), with 3 replicates per treatment group.

Results

Glyphosate - Earthworm reproduction test

There was 0 % mortality of adult E. fetida at glyphosate concentrations of 14.18 mg ae./kg dry soil, 236.4 mg a.e./kg dry soil, and 472.8 mg a.e./kg dry soil. Mortality (2.5%) was observed at \$3.64 mg a.e./kg dry soil and 47.28 mg a.e./kg dry soil, which is considered incidental background mortality given the 10 % validity criterion for adult mortality in the control (p > 0.3). No statistically significant differences were detected for adult biomass (p > 0.05; Figure A below) and for the numbers of inventiles produced at each of the treatment groups when compared to the control (p > 0.05; Figure A. Berow). Adult and juvenile feeding behavior was also not adversely affected over the duration of the test (56 d). The resulting noobserved-effect concentration (NOEC) for effects on reproduction was determined therefore to be the maximum test concentration of 472.8 mg a.e./kg dry soil.

In the reference test with carbendazim, juveniles were reduced by \$25 and 92 % at 5 mg reference item/kg

dry soil and 10 mg reference item/kg dry soil, respectively. The control treatment had a mean number of 143 juveniles, whereas 5 mg/kg dry soil and 10 mg/kg dry soil treatments with carbendazim had a mean number of 51 juveniles and 11 juveniles, respectively. These reference test values show that the test system was appropriate to detect toxic effects on earthworm reproduction. The validity criteria, namely adult mortality < 20 % and number of juveniles per replicate 230 in the control treatment, and coefficient of variance between control replicates < 30 % were all met. The guideline requirements for water content, temperature, and pH were all met.

AMPA - Earthworm reproduction test

In the earthworm reproduction study with AMPA, there were no significant effects on E. fetida adult mortality across concentrations compared to the control (p > 0.22). In all treatment groups, all 10 adults survived the treatments, except for 1 mortality in a single replicate of the 668.5 mg/kg dry soil treatment (Figure B below). Adult earthworm biomass was significantly lower compared to the control at the 445.5 mg AMPA/kg dry soil, 668.5 mg AMPA/kg dry soil, and 1002.5 mg AMPA/kg dry soil test concentrations (p < 0.0001; Figure B below). Adult biomass at 198.1 mg AMPA/kg dry soil was also significantly lower than the control (p=0.007), but at 297.1 mg AMPA/kg dry soil there was no significant difference (p > 0.802) because the bromass (in percentage of control) was 88.5% and 88.2% in the 131.9 mg AMPA/kg dry soil and the 2974 mg AMPA/kg dry soil treatment groups, respectively. The effect at 198.1 mg AMPA/kg dry soft is therefore considered to not be treatment-related. Juvenile production was not significantly affected at concentrations up to 198.1 mg/kg dry soil (p > 0.342). At 297.1 mg AMPA/kg dry soil and higher concentrations juvenile E. fetida numbers decreased significantly compared to the control (p = 0.0013). The resulting NOEC for effects on reproduction therefore was concluded to be 198.1 mg/kg dry soil, with a reproductive lowest-observed effect concentration (LOEC) at 297.1 mg AMPA kg dry soil. The calculated 50% effective concentration (EC50) value for AMPA on earthworm surviyal was > 1000 mg/kg dry soil. The reproduction EC50 value was calculated at 654.7 mg AMPA/kg dry soil (95 % confidence interval 610.9 - 705.5 mg/kg dry soil). The resulting regression equation was $y = -0.1108 (\pm 0.005)$ AMPA mg/kg + 122.6 (± 2.271), with an R² of 0.92. The reference test item carbendazim resulted in decreased biomass of 33.3% at 5.0 mg/kg dry soil and no reproduction, showing that the test system was sensitive to pesticide application. The validity criteria and

so significant effects were observed on soil mite survival (p > 0.3) or reproduction (p > 0.05) up to and including the highest test concentration (472.8 mg a.e./kg dry soil; Figure C below) after 14 d of continuous exposure. All validity criteria and guideline recommendations were met. In the reference test with dimethoate the EC50 on reproduction was determined to be 4.9 mg a.i/kg dry

demonstrated the sensitivity of the test system to detect reproductive toxicity in soil mites. The NOEC was therefore set at the highest test concentration.

AMPA - Soil predatory mite reproduction test

No significant effects were observed on soil mite survival (p > 0.1) or reproduction (p > 0.05) up to and including the highest test concentration (320 mg AMPA/kg dry soil; Figure D below). All validity criteria and guideline recommendations were met. The reference test with dimethoate showed that the test was sensitive at detecting reproductive toxicity in soil mites. The NOEC for AMPA was therefore concluded to be at the highest test concentration, 320 mg/kg dry soil.

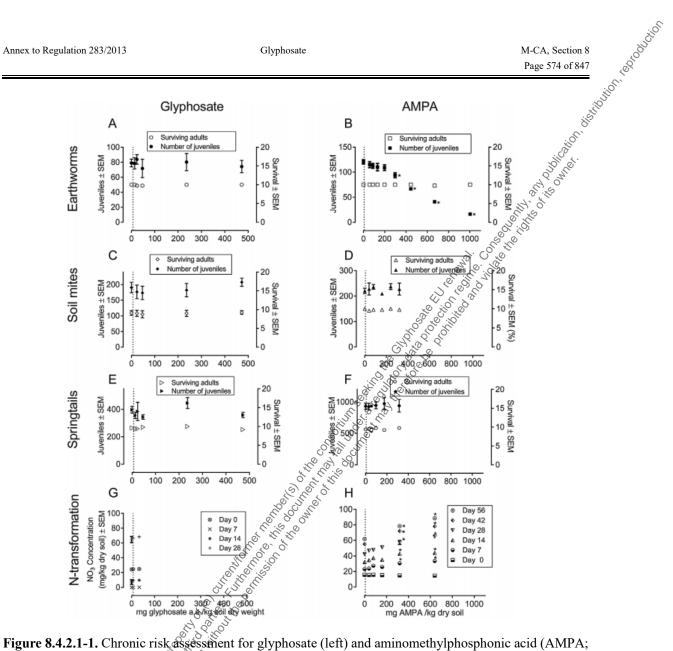
Glyphosate - Springtail reproduction test

No significant effects were observed on springtail survival (p > 0.5) or reproduction (p > 0.05) up to and including the highest test concentration (472.8 mg a.e./kg dry soil; Figure E below). The validity criteria and guideline recommendations were all met. In the reference test with phenoedipham, the EC50 on reproduction was determined to be 28.4 mg phenmedipham/kg dry soil, which demonstrates that the test system was sensitive for reproductive toxicity. The NOEC for glyphosate was therefore concluded to be the highest test concentration.

AMPA - Springtail reproduction test

No significant effects were observed on springtail survival (p > 0.5) or reproduction (p > 0.06, $\alpha = 0.01$) up

to and including the highest test concentration (315 mg AMPA/kg fry soil; Figure F below). The validity criteria and the guideline recommendations were all met. In the reference test with boric acid, the EC50 for reproduction was determined to be 108.6 mg/kg dry soil, demonstrating sensitivity to reproductive toxicity of the test system. The NOEC for AMPA was therefore concluded to be the highest test concentration.


Glyphosate - Soil nitrogen transformation test
Nitrogen-transformation rates in the soil treated at glyphosate rates equivalent to 6.62 mg a.e./kg dry soil and 33.1 mg a.e./kg dry soil were - 0.13% and 2.13% different compared to the control between day 14 and day 28, respectively (Figure G below). The validity criterion of < 15% variation between control treatments was met in the test. As the rates of nitrate formation between the control and the treated groups were < 25 % on day 28, glyphosate can be evaluated as having no long-term influence on nitrogen transformation in LUFA soils at concentrations ≤ 33.9 mg a.e./kg dry soil. No reference test was conducted, in line with the OECD guideline.

AMPA - Soil nitrogen-transformation test

Stimulation of nitrogen-transformation rates was observed across all treatments on day 7 and day 14, which was possibly linked to the high levels of nitrogen and phosphorus released from the degradation of AMPA in the biologically active soil. Only in the 2 highest test concentrations did the increase exceed 25 % compared to the control at 28 d. The test was therefore prolonged from 28 d to 56 d for the 2 highest test concentrations, 320 mg/kg/dry soil and 640 mg/kg dry soil (Figure H below). At 56 d, the deviation from the control was 26.7 % at 320 mg/kg dry soil and 43.1 % at 640 mg/kg dry soil. The reference test results with dinoterb showed increases of 37.6 % at 6.8 mg/kg dry soil, 51.4 % at 16.00 mg/kg dry soil, and 27.1 % at 27 mg/kg dry soit. The validity criterion of < 15% variation between controls was met at all sampling

To so the Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

right) in soil. Number of surviving adults (28 d) and number of juveniles (56 d) in earthworms exposed to glyphosate (A) and AMPA (B), (* statistically significant effect $[p \le 0.05]$ compared with control treatment), in soil predatory mites (Hypoaspis aculeifer) exposed to glyphosate (C) and AMPA (D) for 14 d, and in springtails (Folsomia candida) exposed to glyphosate (E) and AMPA (F) for 28 d. Effects on nitrogen transformation in Soil treated with glyphosate (G) and AMPA (H) for 0 d, 7 d, 14 d,28 d, 42 d, and 56 d(* > 25 % effect compared with control treatment). Vertical dotted line in each graph indicates the worst-case predicted environmental concentration of glyphosate/AMPA. Vertical bars indicate standard and on the state of the state o miles of the state error of the mean (SEM).

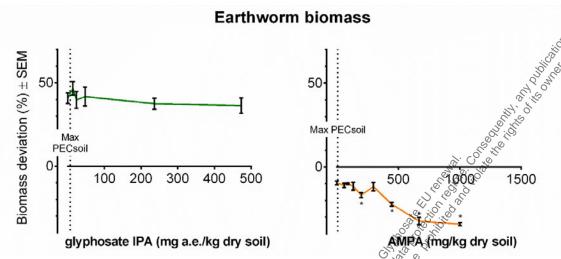


Figure 8.4.2.1-2. Effects of glyphosate (A) and AMPA (B) on earthworth biomass after 28 d of exposure. The vertical dotted line indicates the predicted environmental concentration for AMPA and glyphosate. An asterisk next to a data point indicates a significant difference (P < 0.05) when compared against the control treatment.

Risk assessment

The chronic effects of exposure to glyphosate and the major soil metabolite AMPA to representative taxonomic groups of soil macroorganisms and nitrogen transformation were assessed following standard practices outlined under Annex VI Uniform Principles of the EU's Plant Protection Products Regulation (EC) No 1107/2009. At soil concentrations relevant to recommended glyphosate field application rates, no significant adverse effects were observed in any of the test species or systems exposed to glyphosate or AMPA. The risk assessment for soil macroorganisms in the EU compares the lowest NOEC achieved for each of the taxonomic groups with worst-case initial predicted soil concentrations (soil PECinitial) achieved directly following a bare soil application and the potential for accumulation in soil following applications over multiple years to the same field (soil PEC_{accu}) The ratio of the endpoint to the predicted soil concentration is determined (toxicity exposure ratio = NOEC - PEC_{initial}) and compared against trigger values in accordance with Annex VI Inform Principles of the EU's Plant Protection Products Regulation 1107/2009. Where trigger values are exceeded, a low exposure risk may be concluded. The long-term trigger value of 5 using NOECs derived from laboratory tests accounts for uncertainty related to interspecies sensitivity, predicted exposure estimates, and extrapolation from laboratory to field exposure.

For glyphosate and AMPA, the initial soil concentration (PEC initial) at a soil depth of 5 cm has been determined based on a bare soil application (without foliar/crop interception), at the maximum cumulative annual application rate of 4.32 kg glyphosate a.e./ha for the EU. The risk of glyphosate and AMPA residues accumulating in soil over multiple years is considered by deriving the PEC_{accu} value. This is the sum of the PEC_{initial} and plateau concentrations in soil, achieved in the top 5 cm (tillage depth for permanent crops) soil layer, following applications to bare soil at the maximum cumulative annual application rate (4.32 kg a.e./ha) each year for 10 yr.

It is important to mention that a single application rate of 4.32 kg glyphosate a.e./ha is not supported in the representative use rate but rather represents the recommended maximum cumulative (total) annual application rate for all uses and, therefore, a very conservative worst-case approach.

For exposure of soil mites, springtails, and earthworms to glyphosate in soil, the achieved chronic endpoints except the worst-case predicted glyphosate PEC_{initial} and PEC_{accu} soil concentration by factors of 82 and 71, respectively.

For exposure of soil mites, springtails, and earthworms to AMPA in soil, the achieved chronic endpoints Sexceed worst-case AMPA PEC_{initial} soil concentrations by factors of between 97 and 491, whereas the chronic endpoints exceed the PEC_{accu} soil concentrations by factors of between 32 and 162.

For soil nitrogen transformation, the endpoints achieved for glyphosate and AMPA (33.1 mg a.e./kg dry soil [glyphosate] and 160 mg a.e./kg dry soil [AMPA]) both achieved a < 25 % effect on nitrogen-

transformation rates following a 28-d soil exposure to either glyphosate or AMPA. These soil exposure rates exceed the worst-case predicted PEC_{initial} soil concentrations by factors of 6 (glyphosate) and 78 (AMPA). The achieved endpoints also exceed the PEC_{accu} soil concentrations, by factors of 5 for glyphosate and 26 for AMPA.

For the soil mite, springtail, and earthworm reproduction chronic endpoints, the toxicity exposure ratio values exceed the EU Regulation No 546/2011 Annex VI trigger (5), indicating that for the ecotoxicologically relevant endpoints achieved for survival and reproduction, the use of glyphosate according to label recommendations is unlikely to result in adverse effects inside the treated area for soil biota - from exposure to both glyphosate and AMPA.

For the soil microbial community, relative to expected field application rates for exposure to glyphosate there is at least a 5-fold safety margin. For exposure to AMPA, a 26-fold safety margin applies. The observed increases in nitrate concentrations at the higher test concentrations are expected to be related to the large quantity of nitrogen and phosphate provided to the microbes via degradation of AMPA in the biologically active soil.

Table 8.4.2.1-1. Glyphosate and aminomethylphosphonic acid chronic risk, assessment for soil organisms^a biologically active soil.

Test species	Test item	Test duration (d)	Endpoint type	NOEC (mg a.e. or AMPA/kg soil)		PEC _{accu} (mg a.e./kg soil)	TER _{initial}	TER _{accu}
Earthworm	Glyphosate IPA salt	56	Adult mortality	472.8 472.8	2 2 26	6.62	82	71
	POSITION AND THE PROPERTY OF T		Biomass	472.8	10-7		82	71
			Reproduction	472.8	, o , o ,		82	71
	AMPA	56	Adult mortality	1002.5	2.04	6.18	491	162
			Biomass	297.1 5	Ø		146	48
			Reproduction	472.8 472.8 1002.5 297.1 198.45	2.04		97	32
Soil mite	Glyphosate IPA salt	14	Adult mortality	472.807 80	5.76	6.62	82	71
			Reproduction	6472.8			82	71
	AMPA	14	Adult mortality	(S) (S200)	2.04	6.18	157	52
			Reproduction	\$ 5 320 \$ 5 320 \$ 5 320			157	52
Springtail	Glyphosate IPA salt	28	Adult mortality	200 5 320 5 520 520	5.76	6.62	82	71
			Biomass &	472.8			82	71
	AMPA	28	Adult mortality	.හ ර 315	2.04	6.18	154	51
			Biomass	315			154	51
N-transformation	Glyphosate acid	28	Effect < 25%	33.1	5.76	6.62	6	5
	AMPA	28	Effect 25%	160	2.04	6.18	78	26

a.e. = acid equivalent; AMPA = aminomethylphosphonic acid; IPA = isopropylamine; NOEC = no-observed-effect concentration; PEC_{accu} = accumulative predicted environmentation, cumulative worst-case application of 4.32 kg a.e./ha of glyphosate for 10 yr; PEC_{initial} = initial predicted environmental concentration, assuming single worst-case application of 4.32 kg a.e./ha of glyphosate; TERaccu = toxicity to exposure ratio (= NOEC - PECaccu); TERinitial = toxicity to exposure ratio (= NOEC - PECinitial).

Conclusion

The risks from exposure to glyphosate and the primary soil metabolite AMPA at levels that exceed commercial application rates were evaluated against a battery of representative soil macroorganisms and microorganisms under controlled laboratory conditions. Results from the present studies demonstrate that the potential impact to beneficial soil macro-organisms and nutrient cycling soil microorganisms under environmentally relevant exposure scenarios is low.

3. Assessment and conclusion

Assessment and conclusion by applicant:

The aim of the paper was to evaluate potential effects of Glyphosate, Glyphosate salt and AMPA on earthworm, soil mites, springtails and soil micro-organisms.

The studies have been conducted according to recognised guidelines and validity criteria were presented. Test substance information, test organism origin, study designs and toxicity effects were adequately described. The study is considered reliable.

CA 8.5 Effects on Nitrogen Transformation

A regulatory database on toxicity to soil nitrogen transformation has been summarised to evaluate toxicity of glyphosate and AMPA. The results of these studies demonstrate that glyphosate and AMPA are of low toxicity to soil microflora.

Studies considering the effects of glyphosate on soil microflora were assessed for their validity to current and relevant guidelines for glyphosate and are presented in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are presented in this section below.

Studies on toxicity of glyphosate to soil nitrogen transformation **Table 0.5-1:**

Annex point	Study	Study type	Test species	Substance(s)	Status	Remark
CA 8.5/001	2014	Nitrogen- mineralisation	Soil microorganisms	Glyphosate acid	Valid	-
CA 8.5/002	, 2000	Nitrogen cycle Carbon cycle	Soil (Soil) (Soi	Glyphosate technical	Invalid	Validity criteria for variation in control replicates not met
CA 8.5/003	1995	Nitrogen cycle Carbon cycle	Soil microorganisms	Glyphosate	Invalid	-
CA 8.5/004	2010	Nitrogen and Carbon mineralisation	Soil microorganisms	AMPA	Valid	Not sufficient information provided to check for validity criteria

Literature articles and peer reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate on soil microflora are summarised in the table below. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. Each literature article summary is presented below according to the respective annex point. For discussions of literature regarding toxicity to soil microflora, please refer to document M-CP Section 10.5.

Literature on toxicity of glyphosate to soil nitrogen transformation

		Study	Study type	Substance(s)	Status	Remark
	CA 8.5005	Von Mérey et al.,	OECD 222;	Glyphosate IPA	Relevant and	Evaluates potential
	llegi glott	2016	56 days	salt and	reliable	effects on earthworm,
	10, 07		chronic	AMPA		soil mites, springtails and soil micro-
8	CA 8.500\$					organisms.
carro.	Stri					
**O 10						
S. M. C.						
AND	Glyphosate Renewal	Group AIR 5 – July 2020			Doc ID: 110054-M	ICA8_GRG_Rev 1_Jul_2020
1.90						

Endpoints of studies considered valid for glyphosate are shown in the table below. Glyphosate is an acid molecule, so it is often formulated as a salt. Ecotoxicological studies have been conducted with various forms of glyphosate, namely IPA salt, K-salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted toxicid equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test near if stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate or glyphosate technical are automatically expressed as acid equivalent.

Table 8.5-3: Endpoints: Toxicity of glyphosate to soil nitrogen transformation

Reference (Data owner)	Test item	Test design/ GLP	Endpoint (mg a.e./kg dry soil)	Endpoint (kg a.e./ha)
, 2014 CA 8.5/001	Glyphosate technical (MON 77973)	Nitrogen mineralisation, 28-days	NOEC 33.1	NOEC ≥ 24.83

a.e.: acid equivalents

Endpoint in **bold** used for risk assessment

Endpoints of studies considered valid for AMPA are shown in the table below.

Table 8.5-4: Endpoints: Toxicity of AMPA to soil nitrogen transformation

Reference (Data owner)	Test item	Test design/ GLP	Endpoint (mg/kg dry soil)	Endpoint (kg/ha)
,, 2010 CA 8.5/004	AMPA	Nitrogen and Carbon mineralisation, 56-days	NOEC = 160	NOEC = 120

Study summaries are provided below.

	16,70,	4
	Data point	©CA 8.5/001
	Report author	
	Report year	2014
	Report title	Glyphosate technical (MON77973): Effect on Soil Microbial
	8,2,8	Nitrogen Transformations
	Report No Kill Kill Sill	CEMR-6237
	Document No	-
	Guidelines followed in study	OECD Guideline 216 (2000)
	Deviations from current test	Deviation from the guideline OECD 2016 (2000): None
	guideline ()	
	Previous evaluation	Yes, accepted in RAR (2015)
	GLP/Officially recognised	Yes
	testing facilities	
	Acceptability/Reliability	Valid
	Category study in AIR 5	Category 2a
	dossier (L docs)	
	8	
10 8	3	
in the second		
83.18		
16 16 16 16 16 16 16 16 16 16 16 16 16 1	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8 GRG Rev 1 Jul 2020
" Licylo	1 3	
. 9.		

Page 579 of 847

2. **Full summary**

Executive Summary

The effects of Glyphosate technical (MON 77973) on the nitrogen transformation pathways were assessed in a LUFA standard soil type 2.3. The transformation rates were determined in replicate soil samples steated with MON 77973 at rates of 6.62 and 33.1 mg acid equivalent/kg dry soil (equivalent to 1 and 5 × the onitial Predicted Environmental Concentration in soil) and compared to a control (deionised water). The products of the process of nitrification (nitrate, ammonium and nitrite) were extracted from the soil on Day 0, 7, 14 and 28 after treatment.

As the average rate of production of nitrate (mg/kg/day) from Day 14 to Day 28 between the reatment rates of MON 77973 (6.62 and 33.1 mg a.e./kg dry soil) and control is less than 25% at Day 28, the test item can be evaluated as having no long-term influence on nitrogen transformation in soils

The study is considered valid and NOEC ≥ 33.1 mg a.e./kg dry soil (corresponding to 24.8 kg a.e./ha) can be used in risk assessment for micro-organisms exposed to glyphosate technical

I. MATERIALS AND METHODS

A. MATERIALS

Test material:

Test item: MON 77973

Description:

White Powder GLP-0807 Lot/Batch #:

96.59 % Glyphosate Acid Purity:

Vehicle: deignised water Vehicle and/or positive control:

Positive control: none

Test system:

Sandy loam soil "LUFA standard soil 2.3" (Batch number

Source: LUFA-Speyer, Obere Langgasse 40, 67346 Speyer, Germany Water holding capacity: 36.2 % (g water/100 g dev a ii)

Water content: $35 \pm 5 \%$

Org. Carbon: 0.67%

Microbial biomass: 4.35% to Core

Clay (< 0.002 mm): $5.9 \pm 2.5 \%$

Silk (0.002 - 0.050 mm): $33.9 \pm 0.0 \%$

Sand (0.050 - 2.0 mm): $60.3 \pm 2.5 \%$

Acclimation: 35% ($\pm 5\%$) of MWHC at 20 ± 2 °C for 5 days

Environmental conditions:

Temperature: 20 ± 2 °C

pH: 6.0 - 6.6 (range between Day 0 and Day 28)

Water content: 42 % of MWHC Photoperiod: 24 hours darkness

Experimental Dates: 20 September - 24 October 2013

on in the state of Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

B. STUDY DESIGN AND METHODS

Experimental treatments

Soil samples were bulk dosed with MON 77973 at nominal rates equivalent to 1 and $5 \times PEC_{plateau}$ 6,62 and 33.1 mg a.e./kg dry soil, respectively).

Five days before the start of the exposure phase, the soil moisture content was nominally adjusted to 35 % $(\pm 5\%)$ of the MWHC. The soil was placed in the test cabinet in the dark at 20 ± 2 °C. On the day of dosing, the moisture of the soil was adjusted to 40 % (±5%) of the MWHC with deionised water with the appropriate dose of test item. Three replicates (each of them contained 500 g dry weight equivalent of soil) were prepared for the control treatment (deionised water) and the test item treatments Each replicate of soil was transferred to plastic test vessels (2 L). The test soil was amended with Accerne (2.5 g of lucerne/500 g of soil) to the control and treatment groups on Day 0. Additionally 300 g (dry weight equivalent) of soil was prepared which had no lucerne amendment to serve as the unamended control sample. The moisture content of soil samples was maintained during the test at 40 % of the maximum water holding capacity of the soil with a range of \pm 5%.

Inorganic ammonium, nitrate and nitrite were extracted from each sub-sample of soil with 2 M potassium chloride solution (250 mL) and shaking for 2 hours. The extract was separated from the soil by centrifugation (15 minutes, 2500 rpm). Approximately 20 mL of the supernatant was stored refrigerated prior to analysis. Each extract was analysed for nitrate, ammonium and nitrite using the Bran + Luebbe

Autoanalyser AA3 system.

Observations
As soon as possible after treatment, a sub-sample of soil was taken from each replicate for the determination of nitrate, nitrite and ammonium concentration. Further, sub-samples were taken after 7, 14 and 28 days. All samples were analysed for nitrate, ammonium and patrite on Day 28. Concentrations of nitrate (as TON) and ammonium were measured (mg/kg dry soil) from Day 0 to Day 28. The nitrite values were not reported as no nitrite-N was detected, and therefore considered not to have nitrite present in any of the extracted soil solutions. Changes in concentration of nitrate and nitrate transformation rates (mg/kg/day) over the duration of the study were measured. The changes indicate production from 0 - 7, 7 - 14 and 14 - 28 days were also determined.

Statistical calculations

Shapiro-Wilks and Bartlett's Test followed by Dunnett's two-tailed test (α = 0.05). ... s two-tailed tes

A. FINDINGS

Table 8.5-2: Effects of MON 77973 on soil nitrogen transformation

		8	Nitrogen concentration % deviation from [mg/kg soil]		from control	
Concentration in MON 77973 Control		6.62 mg/kg dws	33.1 mg/kg dws 6.62 mg/kg dw		33.1 mg/kg dws	
	Nitrate transformation rates					
Day 0-7	-3.47	-3.51	-3.56	+1.26	+2.52	
🔊 ်Day 7-14	+1.04	+1.34	+1.39	+29.47	+33.68	
Day 14-28	+4.10	4.09	+4.18	-0.13	+2.13	
		Nitrat	te (NO ₃ -)			
Day 0	24.3	24.6	24.9	+1.23	+2.47	

Table 8.5-2: Effects of MON 77973 on soil nitrogen transformation

		0	ncentration g soil]	% deviation	from control
Concentration in MON 77973	Control	6.62 mg/kg dws	33.1 mg/kg dws	6.62 mg/kg dws	33.1 mg/kg/dws
Day 7	0	0	0	-	11 15 O
Day 14	7.3	9.4	9.7	+28.77	£\$32.88
Day 28	64.6	66.7	68.3	+3.25	+5.73
		Ammon	ium (NH4 ⁺)	8 16 7	%
Day 0	7.0	7.0	6.6	19 6 6	-5.71
Day 7	2.4	2.4	2.4		0
Day 14	1.8	1.7	1.7	£ 5.56	-5.56
Day 28	0.8	0.8	0.8	0 2 2 0	0

dws: dry weight soil

B. OBSERVATIONS

Statistical analysis showed there was no significant difference (p<0.05) between the treatment rates of 6.62 and 33.1 mg a.e./kg dry soil and the control treatment for after the production from Day 14 to 28.

As the difference in nitrate production between the treatment rates of MON 77973 (6.62 and 33.1 mg a.e./kg dry soil) and control is less than 25% at Day 28, the test item can be evaluated as having no long-term influence on nitrogen transformation in soils at concentrations ≤33.1 mg a.e./kg dry soil.

The variation within the control treatment ranged from -4.2 to 2.6 % at Day 0; from -0.9 to 1.8 % at Day 7; from -49.5 to 26.3 % at Day 14 and from -7.1 to 5.4 % at Day 28.

The changes in nitrate production were determined between each time point and not on the whole test from 0-28 days.

Validity criteria
The validity criterion according to OECD 216 guideline was met at study termination, as the variation between replicate control treatments did not vary by more than $\pm 15\%$ at Day 28 for nitrogen transformation (actual values from -7.1 to 5.4 %).

III. CONCLUSIONS

Assessment and conclusion by applicant:

The study provides relevant and reliable endpoints to be used in the regulatory risk assessment for Glyphosate. At soil concentrations of 6.62 and 33.1 mg glyphosate acid equivalent/kg dry soil, there were 25% effect at Day 28 in nitrogen transformation, so MON 77973 is expected to have no longterm influence on the nitrogen transformation pathways in soils up to and including a test concentration ₹33.1 mg glyphosate acid equivalent/kg dry soil.

The study is considered valid and NOEC ≥ 33.1 mg a.e./kg dry soil (corresponding to 24.8 kg a.e./ha) can be used in risk assessment for micro-organisms exposed to glyphosate technical.

^{- =} inhibition, + = stimulation

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.5/002
Report author	671 0.57 002
-	2000
Report year	2
Report title	Side-Effects of Glifosate Técnico Nufarm on soil microflora: Carbon
	and Nitrogen Cycles
Report No	RF-D1.113/99
Document No	- 20 40 40 40 40 40 40 40 40 40 40 40 40 40
Guidelines followed in study	Instituto Brasileiro do Meio ambiente e dos Recursos naturais
·	Renováveis_Ibama, portaria Normativa no 84 of October, 15 1996
Deviations from current test	Deviations from guidelines OECD 216 (2000) and OECD 217 (2000):
guideline	Major:
	- Nitrogen cycle evaluation should have been prolonged until deviation
	from control dropped under £25 %.
	Minor:
	- Detail of soil storage and pre-incubation period are not reported.
	- The alfalfa amendment was also added in samples used for carbon
	cycle.
	- Carbon cycle was assessed for one hour instead of 12 consecutive
	hours.
	- The assessments after 7 days were missing for both nitrogen and
	carbon eyeles
Previous evaluation	Not accepted in RAR (2015) for nitrogen
	Yes, accepted in RAR (2015) for carbon
GLP/Officially recognised	Yes 5
testing facilities	
Acceptability/Reliability	Invalid
Category study in AIR 5	Category 2b
Category study in AIR 5 6 6 dossier (L docs)	
11,00	

2. Full summary

Executive Summary

The effects of glyphosate technical on soil carbon cycle and nitrogen cycle were investigated in two soil types, a "Typic Hapludox" and a "Rhodic Hapludox" under laboratory conditions. The test substance was in addition, negative dry soil equivalent for all treatments, except for control in covered glass flasks. Soil samples were removed from the jars 0, 14 and 28 days after treatment and analysed for soil dry mass, pH, nitrite, nitrate, ammoniacal nitrogen and short term respiration. The results showed no adverse effects of glyphosate technical on soil carbon cycle for both concentrations tested after 28 days. In addition, all validity criteria according to OECD 217 were fulfilled. For the soil nitrogen cycle test however, the validity criteria according to OECD 216 were not followed. applied at two concentration rates of 2.4 and 4.8 kg test item/ha in three replicates. In addition, negative

the variation between replicate control samples was more than \pm 15 %. Therefore, no consistent conclusions could be drawn from the study. The study is therefore considered invalid.

I. MATERIALS AND METHODS

MATERIALS

1. Test material:

Test item: Glyphosate technical

Description: White powder Lot/Batch #: 037-919-113

> 95 % a.s. (nominal), 95.49 % a.s. (measured) Purity:

2. Vehicle and/or positive control: Vehicle: deionised water

Positive control: none

3. Test system:

Soil LE (Typic Hapludox) and LR (Rhodic Hapludox)

Source: Not stated

Water content of soil: Not stated

Water holding capacity Not stated

pH: 5.5 (LR), 7.0 (LF)

Organic matter: 31 g/md³ (ER) and 20 g/dm³

Microbial biomass: 2.63 mg C/g soil (LR), 2.24 mg C/g soil (LE)

Clay (< 0.002 mm): 39 % (LR), 24 % (LE)

Silt (0.002 mm - 0.063 mm): 10%(LR), 9% (LE)

Sand (0.063 – 2.00 mm): \$1%(LR), 67 % (LE)

4. Environmental conditions:

аките: 39 – 22°C Temperature

5.53 - 6.27 (LR); 6.34 - 6.84 (LE)

Water content: 40-60 % of WHC Photoperiod: 24 hours dark

STUDY DESIGN AND METHODS В.

1. Experimental treatments: The test substance was applied at two concentration rates of 2.4 and 4.8 kg test item/ha using three replicates per concentration. In addition, negative controls (without test item) with or without organic matter amendment were tested. 150 g soil samples were amended with organic matter at a rate of 0.5 % dry soil equivalent for all treatments, except for control without organic matter amendment, Soils were incubated at a temperature range of 19 to 22 °C in the dark in covered glass flasks. Soil samples were removed from the jars, 0, 14 and 28 days after treatment and analysed for soil dry mass, pH, nitrite, nitrate, ammoniacal nitrogen and short term respiration test.

2. Observations:

Nitrogen cycle: For the preparation of soil extract for ammonium-N analysis, 10 g of soil was placed in 250 mL wide-mouth bottle, to which 100 mL of 2M KCl was added. 1 mL of the filtered aliquot containing between 0.5 and 12 μg of NH₄+-N was placed into 25 mL volumetric flasks. 1 mL EDTA, 2 mL phenol nitroprussid and 4 mL hypochlorite buffer were successively added. The concentration of NH₄+-N was thereafter determined using a photometric method at 636 nm. For nitrate-N and nitrite-N analysis, 10 g of soil was placed in a 500 mL Erlenmeyer flask, then 0.5 g of CaSO₄ and 250 mL distilled water were added.

For the analysis of nitrate-N, an aliquot of 25 mL of the extract was pipetted into 10 mL round bottom flask so and 0.05 g of CaCO₃ was added. Subsequently, 2 mL of phenoldisulfonic acid (25 g phenol in 150 mL of concentrated H₂SO₄) was added. After 10 min, 20 mL of distilled water was added. The nitrates N concentration was determined using a Hach Model DR 2010 absorbance spectrophotometer at 410 nm For the analysis of nitrite-N, an aliquot of 25 mL of the extract was pipetted into a 25 mL cell. The visual absorbance of each sample was determined at 507 nm using a Hach Model DR 2010 absorbance spectrophotometer.

Carbon cycle: 2 g of soil samples were placed in 50 mL Erlenmeyer flasks, adding 0.5 mL of 2 µmol/mL of glucose- ¹⁴C. In order to absorb CO₂ evolved from glucose degradation by soil microorganisms, a small glass flask (1 mL) was hung from the rubber cap, containing 0.2 mL of NaOH. After one hour of incubation in dark conditions, the glucose degradation was then stopped. The NaOH and fifter paper strips were Autiple of the part of the par transferred into scintillation vials. The radioactivity was assessed in a Liquid Scintillation Analyzer Packard model Tri-carb 1900, during 5 min/sample.

3. Statistical calculations: Results were evaluated using Duncan's Multiple range Test at $\alpha = 0.01$. Company of the party of the par

II. RESULTS AND DISCUSSION

FINDINGS A.

Table 8.5-3: Effects of glyphosate technical on soil nitrogen cycle

			Glyphosate technical	[kg test it	em./ha]	5
		Control	2.4		48 × 1	
		[mg N/kg dry soil]	[mg N/kg dry soil]	Dev. a	[mg N/kg dry soil]	Dev. a
		Soil:	LR (Rhodic Hapludox)			
	Ammonium	22.66	21.61	-4.6	\$ \$24.31 \$ \$ 0.40	+7.3
Day 0	Nitrite	0.30	0.29	-3.3	0.40	+33.3*
	Nitrate	22.51	22.54	+0.0	23.11 37.50	+2.7
	Ammonium	27.34	34.92		§ 37.50	+37.2*
Day 14	Nitrite	0.29	0.21	§ -23.6*	0.23	-20.7
	Nitrate	30.02	36.47	00000	44.10	+46.9*
	Ammonium	13.13	11.32 50 50	©-13.8	9.38	-28.6*
Day 28	Nitrite	0.26	0.24	-7.7	0.24	-7.7
	Nitrate	18.39	24516	+31.4*	34.61	+88.2*
		Soil	: LE (Typic Hapludox)			
	Ammonium	30.01	27.87	-7.1	34.72	+15.7*
Day 0	Nitrite	0.32	1 10 10	-15.6	0.27	-15.6*
	Nitrate	22.58	0.27 5 22.74	+0.7	23.34	+3.4
	Ammonium	26.19	22.60	-13.7	24.50	-6.5
Day 14	Nitrite	0.26	0.29	+11.5	0.27	+3.8
	Nitrate	21.78	39.26	+80.3*	41.01	+88.3*
	Ammonium	0.32 22.58 26.19 0.26 21.78 16.82	18.71	+11.2	18.72	+11.3
Day 28	Nitrite	~ 0×40°	0.24	-40.0*	0.26	-35.0*
	Nitrate	18:39	31.67	+72.2*	25.77	+40.1*

^{* =} Deviation from control according to OECD Guideline 216
- = inhibition, + = stimulation

Table 8.5-4: Effects of glyphosate technical on soil carbon cycle

	Glyphosate technical [kg test item/ha]						
	Control	2.4		4.8	30		
	Soil respiration b	Soil respiration b Dev. a		Soil respiration b	Dex. a		
		Soil: LR (Rhodic Hap	ludox)		11 S		
Day 0	9.00	8.33	-7.4	9.06	÷0.7		
Day 14	16.06	16.19	+0.8	16.76	+4.4		
Day 28	15.13	14.63	-3.3	16.530 100 100	+9.3		
		Soil: LE (Typic Hapl	udox)	17. 68. E			
Day 0	12.80	13.00	+1.6	×1136	-9.7		
Day 14	16.69	20.16	+20.8	₹ [©] ₹ [®] 7, 3 [®] 6	+5.2		
Day 28	16.43	18.06	+9.9	Ø \$ 47.26	+5.1		

a - = Deviation from the control
b = Activity of soil microorganism in mmoles metabolized glucose/g soil/h
- = inhibition, + = stimulation

B. OBSERVATIONS

No adverse effects of glyphosate technical on soil carbon cycle were observed for both concentrations

28 days after application. In addition all validity exitations are all validity exitations. 28 days after application. In addition, all validity criteria according to OECD 217 were fulfilled. For the soil nitrogen cycle test validity criteria according to OECD 216 were not fulfilled, as the variation between replicate control samples was more than ± 15 %.

LE CONCLUSIONS

Assessment and conclusion by applicants

The test item glyphosate technical caused no significant adverse effects on soil carbon cycle at test concentrations of 2.4 and 4.8 kg test item/ha, 28 days after treatment.

All validity criteria according to DECD 217 were fulfilled. For the soil nitrogen cycle test however, the validity criteria according to QECD 216 were not fulfilled, as the variation between replicate control samples was more than ± \$5%. Therefore, no consistent conclusions could be drawn from the study. The study is therefore considered invalid.

Assessment and conclusion by RMS:

20 05

Information on the study 1.

Data point:	CA 8.5/003
Report author	
Report year	1995
Report title	The Effects of Glyfosaat on Soil Respiration and Nitrification
Report No	141885
Document No	-
Guidelines followed in study	BBA-Guideline: Richtlinien für die amtliche Prüfung von Pflanzenschutzmitteln Teil VI 1-1 (2. Auflage). Auswirkungen auf die Aktivität der Bodenmikroflora", (März, 1990)
Deviations from current test guideline	Deviations from guidelines OECD 216 (2000) and OECD 217 (2000): Major: - No indication on the variation between replicate control samples Minor: - Biomass carbon content was not mentioned (should be at least 1% of total organic carbon) - Day 7 assessment is missing - Nitrogen transformation rate was not calculated (mg nitrate/kg dry soil/day) - Respiration rate was not calculated (mg carbon dioxide/kg dry soil/h or mg oxygen/dry soil/h) - The Westmaas soil did not reach the sand percentage of at least 50 %
Previous evaluation	Not accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes Figure
Acceptability/Reliability	Invalid & S
Category study in AIR 5 dossier (L docs)	Category

2. Full summary

Executive Summary

The effect of glyphosate on soil respiration and soil nitrification was investigated in two different agricultural soil types, a loamy sand soil and a loamy soil. The test substance was applied at concentration rates of 2.16 kg glyphosate/ha equivalent to 2.88 mg a.s./kg dry soil and 10.8 kg glyphosate/ha equivalent to 14.4 mg a.s./kg dry soil representing the maximum recommended application rate and five-fold the maximum recommended application rate. 40 g triplicate samples of each treatment were removed for analysis on day 0, 14, 29, 56 and 91 after treatment for loamy sand soil (Speyer soil 2.3) and on day 0, 14, 29 and 56 for loamy soil (Westmaas soil).

In both the loamy sand soil and the loamy soil, no treatment related effects on soil microbial respiration and nitrogen transformation were observed over the duration of the test.

ot poor y is there y is there y is the poor is the poo It is not possible to conclude on the study validity according to current OECD guideline requirements. The study is therefore considered invalid.

I. MATERIALS AND METHODS

A. MATERIALS

Test material:

Test item: Glyphosate White powder Description:

Lot/Batch #: 22021 Purity: 96 %

Vehicle and/or positive control: Vehicle: water

Positive control: Dinosebacetate

Test system:

Soil Speyer Soil 2.3 (loamy sand soil) and Westmaas soil (loamy

Source: Speyer Soil 2.3 was originated from Offenbach in Rheinland-

Pfalz, "Im Bildgärten", Nr 510 and 510/2, Germany.

Westmaas soil was originated from ROC Westmaas, the

Netherlands.

Water content of soil: 5.5 - 8.6 % (Speyer Soil 2.3)

pH: 6.4 (Speyer Soit 2.3) 7.4 (Westmaas soil)

Total Org. C: 1.22 % (Speyer Soil 2.3); 1.23 % (Westmaas soil)

Clay (< 0.002 mm): 9.5 % (Speyer Soil 2.3); 17.5 % (Westmaas soil)

Silt (0.063 mm > 0.002 mm): 29.6 % (Speyer Soil 2.3); 50.6 % (Westmaas soil)

60.9% (Speyer Soil 2.3); 31.9 % (Westmaas soil) Sand ($\geq 0.063 - 2.00 \text{ mm}$):

Environmental conditions:

20 ±2 °C Temperature:

6.8 – 9.0 (Speyer Soil 2.3), 7.1 – 7.9 (Westmaas soil)

Water content: 550 % WHC

Photoperiod: Not specified

Incubation period:

Experimental Dates: Not stated

B. STUDY DESIGN

Experimental treatments

Glyphosate was tested at two treatment concentrations, the maximum field rate of 2.16 kg glyphosate/ha (equivalent to 2.88 mg glyphosate/kg dry soil) and at 5 × the maximum field rate, 10.8 kg glyphosate/ha (equivalent to \$4.4 mg glyphosate/kg dry soil) using 3 replicates. In addition, a negative control and a toxic reference were tested. To determine soil respiration and soil nitrification, treated and untreated soils were incubated at a water content of 50 % WHC in 100 mL Erlenmeyer flasks at 20 ± 2 °C. The flasks were covered with cotton wool. For soil nitrification, each soil group was amended with 0.5 % lucerne meal

Soil microflora respiration: 40 g samples (based on the dry weight) of sieved soil samples were incubated per treatment. After 0 - 3 hours, 14, 29, 56 and 91 days, each soil sample was amended by 500 mg glucose. The amount of glucose to be added was determined during the microbial biomass determination. CO₂ was collected in Ba(OH)₂ traps during 24 hours (T = 0, 14, 29 and 56 days) or 16 hours.

amount of CO₂ formed was determined by titration of the contents of the traps.

Soil nitrification: 40 g samples (based on the dry weight) of sieved soil were amended with lucerne meather (41.7 % C; 2.9 % N) and incubated. Soil samples were taken after 0 - 3 hours, 14, 29, 56 and 91 days. was determined at the day of application, after 29 days and at each sampling day after 29 days.

The soil water content was checked at weekly intervals. If necessary, the water content was adjusted with Milli-Q water.

The microbial biomass was measured, but there were no indications whether its carbon content was at least 1% of the total soil organic carbon.

Statistical calculations

The results were statistically evaluated at $\alpha=0.05$ using Dunnett's test. For data with outliers the Bonferroni t-test was used at $\alpha=0.05$.

II. RESULTS AND DISCUSSION

A. FINDINGS

The control samples showed the showed the samples showed the samples

A. FINDINGS

The control samples showed that the respiration and nitrification of both soils were sufficient at the start of the test.

Table 8.5-5: Effects of glyphosate on soil nitrification in Speece Soil 2.3 (loamy sand soil)

		Nitrogen concentration [mg N/kg soil]: % deviation from control ¹				rom control ¹⁾
-		Control	2.88 mg /kg dws	14.4 mg/kg dws	2.88 mg/kg dws	14.4 mg/kg dws
<u> </u>				Nitrate		
	Day 0	2.33	1.41	\$ \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	-40*	-36*
	Day 14	8.30	5.23	6.12	-37	-26
	Day 29	5.14	4.55 _{Jil} os	4.94	-11	-4
	Day 56	5.58	5.41	7.20	-3	+29*
	Day 91	12.78	7.45	6.30	-42	-51
Ī			Sold ill	Nitrite		
	Day 0	0.42	0.47 K	0.41	+11	-2
	Day 14	0.022	(\$\),(\$\).(\)21	0.021	-6	-6
Ī	Day 29	0.032	0.044	0.039	+38*	+23
	Day 56	0.048	0.058	0.061	+19	+26
Ī	Day 91	0.019	0.018	0.017	-4	-9
Ī		87.18	io a	Ammonium		
	Day 0	1,81,5	1.96	2.11	+8	+16
Ī	Day 14	×9 883	0.883	1.003	0	+14
Ī	Day 29	0.624	0.776 2.29 0.340 lation from control (at $\alpha = 0.05$)	0.666	+24*	+7
Ī	Day 56	1.59	2.29	2.04	+44*	+28
	DWOR	0.352	0.340	0.492	-3	+40*

Table 8.5-6: Effects of glyphosate on soil nitrification in Westmaas soil (loamy soil)

	Nitr	ogen concentration [1	mg N/kg soil]:	% deviation from control ¹⁾						
	Control	2.88 mg/kg dws	14.4 mg/kg dws	2.88 mg./kg dws	14.4 mg/kg dws					
			Nitrate		£ 150					
Day 0	41.0	35.9	34.2	-13						
Day 14	40.1	35.3	35.9	-12	્રુઝ સ્વે0					
Day 29	32.5	29.4	24.8	-10	. CO * 24*					
Day 56	29.9	33.6	29.3	+13	©: 50° -2					
	Nitrite , S									
Day 0	2.34	2.38	1.86	+2 0 0 0	-20					
Day 14	0.026	0.022	0.019	815 to 1811	-26					
Day 29	0.040	0.038	0.039	6 3 4 6 X	-2					
Day 56	0.040	0.042	0.033	15 15 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-16					
			Ammonium	\$ 8 H						
Day 0	10.9	10.4	9.41	-4	-13*					
Day 14	0.688	0.685	0.640	0	-7					
Day 29	0.624	0.776	0.666		+7					
Day 56	0.372	0.369	0.363	-1	-2					

	Day 56	0.372	0.369	0.363	-1	-2						
	dws = dry wei 1) - = inhibition * = Significan Table 8.5-	ght soil n; + = stimulat tly different fr 7: Effects 0	tion om control (at $\alpha = 0.05$) of glyphosate on so	ng/l00g soil] 14.4 mg/kg dws								
		Bio	omass concentration	mg/100g soil]	% deviation	from control ¹⁾						
		Control	2.88 mg/kg dws	14.4 mg/kg dws	2.88 mg/kg dws	14.4 mg/kg dws						
	Speyer Soil 2.3 (loamy sand soil)											
	Day 0	22	15 636 T	28	+68	+28						
	Day 14	54.9	58.0	71.4	+6	+30*						
	Day 29	67.9 ج	73.2	69.6	+8	+2						
	Day 56	94.6	89.5	88.9	-5	-6						
	Day 91	30.1008	30.7	33.6	+2	+11						
		of Cold Hills	We	stmaas soil (loamy soi	l)							
	Day 0	J 167	103	94	-4	-12						
	Day 14	106	87.0	102	-18*	-3						
	Day 29	102	109	105	+7	+3						
100 00 00 00 00 00 00 00 00 00 00 00 00	dws = drywei 1) - inhibition * Significan B. OBSER Soil microf loamy sand Glyphosate Ren	ght soil n; + = stimulat tly different fr VATIONS lora respirat soil or loan ewal Group AIF	tion from control (at $\alpha = 0.05$) tion: No significant my soil.	effect on the microb		e determined in either ICA8_GRG_Rev 1_Jul_2020						

The biomass was evaluated but the respiration rates were not calculated (mg carbon dioxide/kg dry soil/h so or mg oxygen/dry soil/h). The percent deviation from the control is based on the respiration rates per house in the current guideline, so the respiration rate cannot be evaluated according to the current guideline requirements in this study.

Soil nitrification: In the control treatments of the loamy sand soil, the amount of nitrate increased from 2.33 mg N/kg soil at the beginning of the exposure to 12.78 mg N/kg dry soil after 91 days, whereas the amount of ammonia decreased from 1.81 mg N/kg dry soil to 0.352 mg N/kg dry soil. This increase is also reflected in the two treatment concentrations. No treatment related effects on nitrogen transformation were observed during the exposure. Differences observed between treated and untreated soils fall within natural soil variability. In contrast to that, total amount of mineralised nitrogen slightly decreased in the loamy soil treatments and control. In the control treatments, ammonia decreased from 10.9 mg N/kg dry soil to 0.372 mg N/kg dry soil. This decrease of mineralised nitrogen may be attributed to anaerobic nitrogen denitrification caused by insufficient homogenisation of soil samples, due to an extremely sticky soil texture. No treatment related effects on nitrogen transformation were observed during the experiments.

The nitrogen content was evaluated but the nitrogen transformation rate was not calculated (mg nitrate/kg dry soil/day). The percentage deviation from the control is based on the natiogen transformation rate per day in the current guideline, so the nitrate formation rate cannot be evaluated according to the current guideline requirements in this study.

The toxic standard had significant effects on soil nitrification in both loamy sand soil and loamy soil and also on soil respiration in both types.

The validity criteria according to guideline OECD 216 and OECD 217 require a variation of less than ± 15 % between replicate control samples for nitrogen transformation and soil respiration. In the study report, only mean values are provided; therefore, it is not possible to give any indication about validity.

III. CONCEUSIONS

Assessment and conclusion by applicant;

Glyphosate had no significant long term settemental effect on microbial biomass and nitrogen content in soil at concentrations of 2.88 and 14.4 mg/kg dry soil. It is not possible to conclude on the study validity according to current OECD guideline requirements. The study is therefore considered invalid.

Assessment and conclusion by RMS:

John John

1. Information on the study

	. 0
Data point	CA 8.5/004
Report author	
Report year	2010
Report title	AMPA - Effects on the Activity of Soil Microflora (Nitrogen and Carbon Transformation Tests)
Report No	10 10 48 010 C/N
Document No	
Guidelines followed in study	OECD 216 (2000) OECD 217 (2000)
Deviations from current test guideline	Deviations from guidelines OECD 216 (2000) and 217 (2000): Minor: - Deviation from nitrate formation rate is anissing.
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes
Acceptability/Reliability	Valid State
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary

Executive Summary

The effects of AMPA on soil nitrogen transformation and soil carbon transformation were investigated in a loamy sand soil. The test substance was applied at concentration rates of 40, 80, 160, 320 and 640 mg test item/kg dry soil using three replicates per treatment. In addition, a negative control (untreated soil) was tested. A reference item was tested in a separated study.

The results showed no adverse effects of the test item 28 days after application on nitrogen and carbon transformation in soil up to and including a test concentration of 160 mg test item/kg dry soil. Due to measured deviations of > 25% observed in the treatment groups treated with 320 and 640 mg test item/kg dry soil, 28 days after application, the test was prolonged to 56 days for both treatment levels. After the test prolongation, the measured variations of nitrogen and carbon transformations of >25% could be observed until the end of the study (\$6 days). All validity criteria according to OECD 216 and 217 were fulfilled. The study is considered valid so NOEC of 160 mg/kg of dry soil (corresponding to 120 kg/ha) can be used in risk assessment for micro-organisms exposed to AMPA.

I. MATERIALS AND METHODS

A. MATERIALS

Test item: AMPA (Aminomethylphosphonic acid)

Description: White crystalline solid Lot/Batch #: GLP-0908-19984-A

> Purity: 98.7 %

Te.
Description of the control: Vehicle: deionised water

Positive control: Dinoterb

Test system:

Soil Loamy sand soil "Wassergut Canitz" (agricultural soil)

Source: Field "Schag 34/3" in the municipality of Canitz, Saxony,

Germany.

Glyphosate

Water content of soil: 11.30 % (g water/100 g dry soil) Water holding capacity 36.56 % (g water/100 g dry soil)

Microbial biomass: 2.37 % to C_{org}.

Clay (< 0.002 mm): 9.1 %

Silt (≥0.002 mm - 0.063 mm): 40.2 % Sand ($\geq 0.063 - 2.00 \text{ mm}$): 50.7 %

Environmental conditions:

molding capacity 36.56 % (g water/100 g dry soil)

pH: 6.3

Total Org. C: 1.43 %

crobial biomass: 2.37 % to Corg.

y (< 0.002 mm): 9.1 %

m - 0.063 mm): 40.2 %

063 - 2.00 mm): 50.7 %

itions:

Temperature: 19.7 - 21.8 °C

pH: 5.9 - 6.3

Water content: 41.46 - 44.71 % of WHC (nitrogen transformation test)

41.84 - 45.09 % of WHC (carbon transformation test)

41.84 – 45.09 % of WHE (carbon transformation test)

Photoperiod: 24 hours darkness

Experimental work dates: 20 May to 15 July 2010

B. STUDY DESIGN

Experimental treatments

The test substance was applied at concentration rates encompassing 40, 80, 160, 320 and 640 mg test item/kg dry soil. In addition, a negative control (untreated soil) was tested. Three replicate soil samples were prepared for each treatment rate and the control for the carbon transformation and nitrogen transformation tests.

Soil carbon transformation: For each explicate a sub-sample of 1000 g dry soil was mixed with deionised water. Water was added to the soft to achieve a water content of approximately 45% WHC. Water content was adjusted weekly to the required range of 40-50% of WHC. The prepared soil was transferred to steel test vessels (4 L) and incubation was carried out at 19.7 – 21.8°C in a climatic room.

Soil nitrogen transformation, Sub-samples of 200 g dry soil were weighed into each test vessel (500 mL wide mouth glass flask) Lucerne meal (5 g/kg dry soil) was then added to provide 1.0 g Lucerne meal per 200 g dry soil. One additional soil sample (without Lucerne meal) was used for determination of initial NH₄-N- and NO₃-N content. The initial NH₄-N and NO₃-N content was 0.01 mg and 1.48 mg/100 g dry soil, respectively Incuration of the prepared soil was carried out in wide-mouth glass flasks (500 mL) at 19.7 – 21.8°C in a climatic room.

Observations

Observations Soil carbon transformation was determined for a measurement period of 12 hours on sampling days 0 (3 hours after application), 7, 14, 28, 42 and 56 days after application. On each sampling occasion, 160 g samples of soil (dry soil) were taken, mixed with glucose using a hand-stirrer and placed into glass reaction flasks (500 mL). Then, glass vessels containing 18 mL of 1 M NaOH solution were Soil nitrogen transformation: Soil samples (10 g dry soil per replicate) were sampled at intervals of 3 hours, 7, 14, 28, 42 and 56 days after application and NH₄-N, NO₃-N and NO₂-N contents were determined. Soil was extracted by adding 50 mL 1 M KCl solution to the equivalent of 10 g dry soil. Quantitative

determination of mineralized nitrogen was performed using an Autoanalyzer II.

Statistical calculations

Two-sided Students t-test for homogenous variances at $\alpha = 0.05$. For carbon transformation, a two-sided Welch t-test for inhomogeneous variance was additionally performed.

II. RESULTS AND DISCUSSION

A. FINDINGS AND OBSERVATIONS

28 days after application, no adverse effects on nitrogen content and carbon transformation were observed up to and including a test concentration of 160 mg test item? up to and including a test concentration of 160 mg test item/kg dry soil. After the prolongation of the test to 56 days for the test concentrations 320 and 640 mg test item/kg dry soil, the measured variations of nitrogen content and carbon transformations of >25% could be observed till the end of the study (56 days). This can be most likely attributed to the high phosphorus/nutrient content in AMPA.

Table 8.5-8: Effects of AMPA on soil nitrogen transformation

		AMPA [mg test item/kg dry soil]												
	Control	4	0	8	80		160 00 00		320		10			
	NO ₃ -N	NO ₃ -N	Dev. a	NO ₃ -N	Dev. a	NO ₃ -N	S Dev. a	NO ₃ -N	Dev. a	NO ₃ -N	Dev. a			
Day 0	15.7	15.5	-1.1	15.7	0.2	15.4	-1.9	14.9*	-4.9	14.6*	-6.6			
Day 7	23.1	23.6	2.5	27.3*	18.5	5 25.85	11.7	30.5*	32.2	33.5*	45.2			
Day 14	32.2	34.6	7.5	37.4*	16.3	£35.9*	9.2	42.9*	33.3	43.9*	36.5			
Day 28	42.2	46.8*	10.7	47.7*	13,8	\$1.0*	20.8	57.4*	35.8	65.0*	53.8			
Day 42	55.4	-	-		O. T. T.	-	-	72.1*	30.2	78.1*	41.1			
Day 56	61.9	ı	ı	- 1505		-	-	78.4*	26.7	88.6*	43.1			

^a - = Deviation from the control based on NO₃-nitrogen content

Table 8.5-9: Effects of AMPA on soil carbon transformation

				1000								
			AMPA [mg test item/kg dry soil] Control 80 160 320 640									
			9 6 64	0	8	80 16		50 320		640		
		O ₂ a risk	O2 a	Dev. b	O ₂ ^a	Dev. b	O ₂ ^a	Dev. b	O ₂ ^a	Dev. b	O ₂ ^a	Dev. b
	Day 0	() × . ()	<∞11.9	-0.8	11.4*	-5.3	11.1*	-8.0	10.8*	-10.4	10.1*	-16.2
	Day 7	11,300	11.0*	-7.1	10.3*	-13.2	9.9*	-16.9	9.5*	-20.2	8.4*	-29.7
	Day 14	41.F	10.9*	-7.0	10.6*	-9.1	9.9*	-15.4	9.1*	-22.6	8.0*	-31.3
	Day 28	S 10.9	10.0*	-7.9	9.5*	-12.9	8.9*	-18.5	8.1*	-25.7	7.0*	-35.3
	Day 420	10.7	-	-	ı	-	1	-	7.9*	-26.6	6.8*	-37.0
	Day 56	10.1	-	-	ı	-	1	-	7.4*	-26.1	6.2*	-38.8
	Devi Signif Inhomoge	gen consumption ation from the icantly different eneous variance tion, + = stimu	control nt from co es at $\alpha = 0$	ntrol (two- .05, respec	sided Stud tively)	lent- t test (or two-side	ed Welch-t	-test, for h	omogenou	s or	
100 Me o o o o o o o o o o o o o o o o o o	Glyphosate	Renewal Group	AIR 5 – Jul	ly 2020				Γ	Doc ID: 110	054-MCA8_	_GRG_Rev	1_Jul_2020

^{* =} Significantly different from control (two-sides) Statement t test for homogenous variances at $\alpha = 0.05$)

⁻ = inhibition, + = stimulation

[🞏] Significantly different from control (two-sided Student- t test or two-sided Welch-t-test, for homogenous or

In a different test, 28 days after application the toxic standard dinoterb caused effects of +37.6 %, +51.4 % and +27.1 % on nitrogen content and -30.5 %, -34.5 % and -28.8 % on carbon transformation at concentrations of 6.80, 16.0 and 27.0 mg dinoterb/kg dry soil respectively, and thus demonstrates the

All validity criteria according to OECD 216 and 217 were fulfilled, as the variation between replicate control samples was less than \pm 15 %.

III. CONCLUSIONS

Assessment and conclusion by applicant:
The test item AMPA caused no adverse effects on soil nitrogen content and on soil carbon transformation up to and including a test concentration of 160 mg test item/kg dry soil at the end of the 28-day incubation

The study is considered valid so NOEC of 160 mg/kg of dry soil (corresponding to 120 kg/ha) can be used in risk assessment for micro-organisms exposed to AMPA.

.00

Assessment and conclusion by RMS:

1. Information on the study

	0 2 2
Data point:	CA 8.5/005 () () ()
Report author	von Mérey, G. et al.
Report year	2016
Report title	Glyphosate and aminomethylphosphonic acid chronic risk
	assessment for soil biota
Document No	DQT: \$0.4002/etc.3438
	E-ISSN: 1552-8618
Guidelines followed in study	OECD 222; OECD 226; OECD 232; OECD 216
Deviations from current test	Earthworm cocoons were not counted, in accordance with
guideline	OECD 222.
GLP/Officially recognised	No, not applicable
testing facilities	
Acceptability/Reliability:	Yes/Reliable

2. Full summary of the study according to OECD format

The exposure risk from glyphosate and the primary soil metabolite aminomethylphosphonic acid (AMPA) on representative species of earthworms, springtails, and predatory soil mites and the effects on nitrogentransformation processes by soil microorganisms were assessed under laboratory conditions based on internationally recognized guidelines. For earthworms, the reproductive no-observed-effect concentration (NOEC) was \$\frac{47}{2}.8\$ mg glyphosate acid equivalent (a.e.)/kg dry soil, which was the highest concentration tested, and 198.1 mg/kg dry soil for AMPA. For predatory mites, the reproductive NOEC was 472.8 mg a.e./kg dry soil for glyphosate and 320 mg/kg dry soil for AMPA, the highest concentrations tested. For springtails, the reproductive NOEC was 472.8 mg a.e./kg dry soil for glyphosate and 315 mg/kg dry soil tested. Soil

at 33.1 mg a.e./kg dry soil

AMPA (6.18 mg/kg dry soil) for annual application very low likelihood of adverse effects on soil biota. for AMPA, the highest concentrations tested. Soil nitrogen-transformation processes were unaffected by glyphosate and AMPA at 33.1 mg a.e./kg dry soil and 160 mg/kg dry soil, respectively. Comparison of Sthese endpoints with worst-case soil concentrations expected for glyphosate (6.62 mg a.e./kg dry soil) and AMPA (6.18 mg/kg dry soil) for annual applications at the highest annual rate of 4.32 kg a.e./ha indicate

Materials and methods

Test substances

Glyphosate (N-phosphonomethylglycine) is an acidic substance, which is manufactured and formulated as a salt to increase the solubility in water and compatibility with other formulation components. In water, AMPA is highly soluble (56 g/L at 20 °C), whereas neither glyphosate nor AMPA is significantly soluble in common organic solvents. Therefore, no cosolvent was required, and both stock solutions of exphosate and AMPA test items were prepared in deionized water (5 - 20 Mohm at 25 °C). Two batches of AMPA analytical reference standards with purity of 98.7% (synthesized by Chemir) and 99.7 % (Across Organics BVBA) were dissolved in deionized water. For soil nitrogen-transformation tests, stock solutions of glyphosate acid technical grade (96.59% purity; Monsanto Europe) were prepared by direct addition of test item to deionized water. For all other tests, glyphosate isopropylamine salt (nominal purity 62 % w/w, measured purity 63.81 ± 0.29 % w/w; MON 0139), corresponding to 45.9 % w/w glyphosate a.e. (measured 47.28 \pm 0.21 % w/w; Monsanto Europe), were prepared in deionized water.

Earthworm reproduction tests

The earthworm reproduction test with glyphosate was conducted according to OECD guideline 222. For

AMPA, an earthworm reproduction test was conducted according to the QECD 222. Both testing guidelines are equivalent in terms of the procedures employed during the tests (soil pH, temperature, lighting regime, soil composition and humidity, rearing, feeding quantities, test design, endpoints, number of replicates, growth stage of worms at test initiation, and so on). Therefore to avoid repetition, the procedures used in the glyphosate study only are described.

Glyphosate - Earthworm reproduction test. In the earthworm reproduction glyphosate study *Eisenia fetida* (Haplotaxida: Lumbricidae, Savigny, 1826) were used as the test species. Mature adult E. fetida (~3 mo old with clitellum), weighing between 300 mg and 600 mg, were obtained from an age-synchronized stock culture from the test facility and reared under ambient laboratory conditions in the test facility. The original breeding animals were purchased from W. Neutorff A detailed description of earthworm culturing is provided in Annex 4 of OECD 222. The E. fetida were reared in the laboratory on standard breeding medium (1:1:1 mixture of straw, horse manure, and peat; straw and horse manure were purchased from farmers, and peat was purchased from Torfwerk Moorkultur Ramsloh); no exposure to the test item was allowed prior to use in testing. Testing was conducted in artificial soil, equivalent to the soil in which the worms were originally cultured. The test aims to evaluate effects on adult body weight and survival percentage (according to treatment) during an initial 4-wk adult exposure period. Effects on juvenile production were then assessed at the end of a 4-wk period that followed directly after adult removal from the test. Behavior (including feeding activity) and pathological symptoms (e.g., lethargy, morphological alterations) of adults and juveniles were also assessed.

On the day before the test start earthworms (from aged-synchronized batches, to ensure that similar-sized earthworms were used) were acclimated to test conditions in a separate batch of artificial soil supplemented with pasteurized horse manure, purchased from farmers and collected from horses not treated with growth promoters, nematicides, or other veterinary products - also used as the food source during testing. On test start day, volumes of the test solution (prepared by direct addition of glyphosate isopropylamine to deionized water) were mixed into bulk samples of artificial soil, to achieve nominal glyphosate soil concentrations of \$4.48 mg a.e./kg dry soil, 23.64 mg a.e./kg dry soil, 47.28 mg a.e./kg dry soil, 236.4 mg a.e./kg dry soil, and 472.8 mg a.e./kg dry soil. Glyphosate test concentrations were selected to cover the range and exceed field exposure concentrations. A toxic reference test was also performed in a separate test with carbendazim (Nutdazim 50 Flow, SC 500) at concentrations of 5 mg/kg dry soil and 10 mg/kg dry soil.

Test vessels were filled with the appropriate treated soil (810 g wet wt corresponding to 600 g dry wt). Groups of 10 individually weighed earthworms were randomly assigned to replicates within each treatment group, with a total of 40 earthworms used per treatment group divided equally between 4 replicates. For the control group (water only), 80 worms were used, divided equally between 8 replicates. Groups of 16 earthworms were placed onto the assigned replicate soil surface and closed with perforated transparent fids (following a brief burrowing period) to reduce evaporative water loss, allow gaseous exchange, and prevent worms from escaping the replicate vessels. Test vessels were then randomly positioned in an environmental test chamber under continuous light (to maintain worms in the soil). On day 1 and weekly

thereafter for the 4-wk adult exposure period, 5 g of air-dried finely ground horse manure was scattered on the soil surface of each test vessel and wetted with 5ml of deionized and wetted with 5ml each week (up to 5 g) was dictated by feeding activity.

After 4 wk, adult earthworms were removed from the vessels by emptying the contents of each replicate vessel onto a tray and removing the adult worms. Care was taken not to remove any cocoons from the soil. Cocoons were not counted, in accordance with OECD 222. It can be reasonably assumed that effects on cocoon numbers would lead to effects on numbers of juveniles; hence, the endpoint number of juveniles accounts for effects at earlier life stages of earthworm progeny. All worms were rinsed with denormal water and dried on filter paper before recording body weights (by replicate and by treatment). Behavioral (including feeding activity) and pathological symptoms were also recorded during the exposure period and at the time of adult removal. The adult worms were then discarded. The soil in each replicate vessel was then mixed carefully with 5 g of manure, and the mixture was returned to the vessels. The test continued for a further 4 wk. At test termination (8 wk after adult addition) the number of surviving juveniles in each test vessel was recorded on manual inspection of the substrate. Soil was emptied on the lower edge of a white tray (30 cm × 40 cm). Subportions of the soil were spread in the middle of the tray, resulting in a thin layer of soil of approximately 10 cm × 10 cm. The subportion was examined thoroughly for juvenile worms, after which it was moved to the upper edge of the tray. This procedure was repeated until the entire soil from a vessel was examined. The entire procedure was repeated until there were no additional juvenile counts in 2 consecutive counting procedures, resulting in an average of 5 counting procedures per vessel. The counting tray and soil samples were illuminated using a fiber opticalight source connected with a double gooseneck light guide. The water content and pH of the artificial soil were determined. Adult body weights and the effects on reproduction (juvenile numbers) were analyzed using a lower-tailed Dunnett's multiple comparisons test ($\alpha = 0.05$). The Kolmogorov-Smirnov test and Cochran's test procedure were used, respectively, to test the biomass data for normality and homogeneity of variance. Survival was analyzed with a 1-sided Fisher's exact binomial test with Bonfergoni correction ($\alpha = 0.05$).

AMPA - Earthworm reproduction tests. The procedures used during the AMPA earthworm study are considered equivalent to those employed in the glyphosate earthworm reproduction study described above in Glyphosate—Earthworm reproduction test. Mature adult E. fetida (~3mo old with clitellum), weighing between 300 mg and 600 mg, were obtained from an age-synchronized stock culture from the test facility and reared under ambient laboratory conditions in the test facility. A detailed description of earthworm culturing is provided in Annex 4 of OECD 222.

In the AMPA earthworm reproduction study, mature (clitellated) adult E. fetida were exposed to AMPA (99.7% purity; Acros Organics BVBA) mixed into artificial soil at nominal soil concentrations of 58.6 mg AMPA/kg dry soil, 87.8 mg AMPA/kg dry soil, 131.9 mg AMPA/kg dry soil, 198.1 mg AMPA/kg dry soil, 297.1 mg AMPA/kg dry soil, 445.5 mg AMPA/kg dry soil, 668.5 mg AMPA/kg dry soil, and 1002.5 mg AMPA/kg dry soil. A control group was prepared using deionized water only. A toxic reference test was also performed in parallel using earthworms from the same batch, exposed to carbendazim at concentrations of 1.0 mg active substance (a.s./kg dry soil, 2.2 mg a.s./kg dry soil, and 5.0 mg a.s./kg dry soil. For effects on biomass and production of juveniles, homogeneity was tested with the Brown-Forsythe and Bartlett tests. Dunnett's multiple comparison test was conducted using GraphPad Prism, Ver 6.03, because a continuous response could not be observed for all the test concentrations, as recommended by the OECD 222 test guideline and the OECD statistical guidance. The 50% effect rate on reproduction was calculated using GraphPad Prism.

Soil predatory mite reproduction test

The soil predatory mite reproduction tests for glyphosate and AMPA were both conducted according to OECD guideline 226 predatory mite (Hypoaspis [Geolaelaps] aculeifer) reproduction test in soil. The procedures used in the 2 studies were identical. Full details of the procedures are presented for glyphosate

production test. The glyphosate soil predatory mite reproduction test was conducted using glyphosate isopropylamine salt (MON 0139). Survival of mites (*H. aculeifer*) and their reproductive performance were evaluated at 4 nominal concentrations, equivalent to 50 mg MON 0139/kg dry soil, 100 mg MON 0139/kg dry soil, and 1000 mg.

MON 0139/kg dry soil (= 23.64 mg a.e./kg dry soil, 47.28 mg a.e./kg dry soil, 236.40 mg a.e./kg dry soil, 🔊 and 472.80 mg a.e./kg dry soil, respectively). A negative control with deionized water only was also included. A toxic reference test was performed in parallel using dimethoate EC400 (422.4 g/L; Perfekthion) at concentrations of 4.1 mg active ingredient (a.i.)/kg dry soil, 5.12 mg a.i./kg dry soil, 6.4 mg a.i./kg dry soil, 8.0 mg a.i./kg dry soil, and 10 mg a.i./kg dry soil. Mites were reared in the laboratory under another the soil. conditions on a mixture of plaster of paris, activated charcoal, and deionized water (8:1:9). Adults with no more than a 3-d age difference were used at the start of the test. No exposure of the mites to glyphosate was allowed prior to the test. Each treatment group contained 40 mites divided equally between 4 replicate vessels, with the control group comprising 8 replicates, each containing 10 mites. In addition, Fest vessels without mites were included with each test concentration and in the control group for soil of measurements. Glass bottles (100mL nominal volume) with screw tops were filled with 20 g (dry wt) artificial soil at the required test concentrations. Cheese mites were added as a food source to the surface of the soil, and vessels were then covered to prevent mites from escaping. Bottles were opened every second day during the 14-d test for the addition of food and to allow aeration. At the end of the test (day 19), the parental mites and juveniles were counted, after extraction using a MacFayden high-gradientextractor (heat/light extraction method). This was achieved by adding the soil substrate from each test vessel into a canister placed inverted onto the extraction system. Soil substrate was retained within the canister using a plastic net (2mm mesh size) on the bottom. Beneath the canister was a funnel attached to a collecting flask with 25mL of a fixing liquid. A temperature gradient was created between the upper and the lower parts of the system, by circulating heated air in the canister area and cooled air in the coffection area. Over the 48-h extraction time, the following regime was applied: 25 °C for 12 h, 35 °C for 12 h, and 45 °C for 24 h. During this time, adults and juveniles moved down through the soil away from the heat source and fell through the funnel into the fixing liquid. Extraction efficiency was determined to be 95% in a separate extraction using vessels containing a known number of juvenile and adult mites in untreated substrate. Water content and pH were determined at test start and end. Statistical analysis was performed with the software ToxRat Professional 2.10. A 1-sided Fisher exact binomial test with Bonferroni-Holm correction for mortality and a 1-sided Dunnett multiple comparisons test for reproduction ($\alpha = 0.05$) were used to compare the control with independent test item groups. Abbott's formula was used to correct for control mortality.

AMPA - Soil predatory mite reproduction test with AMPA was conducted at 5 nominal application rates, equivalent to 40 mg test item/kg dry soil, 80 mg test item/kg dry soil, 160 mg test item/kg dry soil, 240 mg test item/kg dry soil, and 320 mg test item/kg dry soil. A negative control (deionized water only) group was also included. All procedures and observations in the test with AMPA were as described for the mite (QECD 226) test with glyphosate in Glyphosate—Soil predatory mite reproduction test. A reference test was performed with dimethoate EC400 (414.8 g/L) at test concentrations of 0 mg a.i./kg dry soil, 4.1 mg a.i./kg dry soil, 5.12 mg a.i./kg dry soil, 6.4 mg a.i./kg dry soil, 8.0 mg a.i./kg dry soil, and 0 mg a.i./kg dry soil.

Springtail reproduction tests. The springtail reproduction tests for glyphosate and AMPA were both conducted according to OECD guideline 232. The procedures used in the 2 studies were identical. Full details of the procedures are presented for glyphosate only. Springtails used in these studies were originally purchased from Biologische Bundesanstalt in May 2000 and reared in the laboratory of the test facility under ambient laboratory conditions.

Glyphosate - Springtail reproduction test. The springtail reproduction test conducted for glyphosate was conducted using glyphosate isopropylamine salt. Survival of springtails (Folsomia candida) and their reproductive performance were evaluated at 5 nominal application rates of 32 µL MON 0139/kg dry soil, 50 μL MON 0139/kg dry soil, 100 μL MON 0139/kg dry soil, 500 μL MON 0139/kg dry soil, and 1000 μL MON 0139/kg dry soil (= 15.1 mg a.e./kg dry soil, 23.6 mg a.e./kg dry soil, 47.3 mg a.e./kg dry soil, 236 A ring a.e./kg dry soil, and 472.8 mg a.e./kg dry soil, respectively). A negative control with deionized water only was also included. In a reference toxicity test with Betosip (15.7% phenmedipham), concentrations of 50 mg/kg dry soil, 100 mg/kg dry soil, 200 mg/kg dry soil, and 400 mg/kg dry soil were tested. Each treatment group, including the control group, comprised 50 mites divided equally between 5 replicate vessels. For each treatment group and for the control group, 2 test vessels without springtails were provided for pH measurement purposes. Glass containers (150mL nominal volume) were filled with

30 g (wet wt) of the required treated or control soil. Springtails were reared in the laboratory under ambient conditions on a mixture of plaster for stucco activated charges and a condition of the required treated or control soil. item was allowed prior to testing. Juvenile springtails, 10 d to 12 d old and from a synchronized cohort, were added to each test vessel and then covered with a glass lid for 28 d, following which the surviving adults and juveniles were counted. Water content and pH were determined at test start and end. Adult and juvenile springtails were counted at test end. Statistical analysis was performed with the software ToxRat Professional 2.10. A 1-sided Fisher exact binomial test with Bonferroni correction ($\alpha = 0.05$) and Welch's t test ($\alpha = 0.05$), because of non-heterogeneity of variance, were used to compare the control with the independent test item groups for significance of parental mortality and reproductive reduction, respectively. Abbott's formula was used to correct for control mortality.

AMPA = Springtail reproduction test. The springtail reproductive test for AMPA was conducted with AMPA (98.7 % purity) mixed into artificial soil at 5 nominal application rates, equivalent to 30 mg/kg dry soil, 54 mg/kg dry soil, 97.2 mg/kg dry soil, 175 mg/kg dry soil, and 315 mg/kg dry soil. The negative control used deionized water only. In a separate toxic reference test with 100% exystalline boric acid (BDH Prolabo) mixed with the soil, also included in the test design, the sensitivity of the population was determined with test concentrations of 0 mg/kg dry soil, 44 mg/kg dry soil, 67 mg/kg dry soil, 97.2 mg/kg dry soil, 150 mg/kg dry soil, and 225 mg/kg dry soil. The procedures used during the Springtail reproduction study were essentially equivalent to those used in the springtail test with glyphosate (described in Glyphosate - Springtail reproduction test) with the following exceptions. Each treatment group comprised 40 springtails (10 per test vessel), whereas the control group comprised 8 replicates. Statistical evaluation was performed with ToxRat Professional 2.10. A 1-sided Fisher exact binomial test with Bonferroni correction and a 1-sided Dunnett test were used to compare the control with independent test item groups. Mortality of adult springtails

Soil nitrogen-transformation tests
Soil nitrogen-transformation tests were conducted with glyphosate and AMPA according to OECD guideline 216 and performed according to good laboratory practice. The procedures used in the 2 tests were identical, although tested rates differed. Full details of procedures used are presented for glyphosate only. Glyphosate - Soil nitrogen-transformation test. The soil nitrogen-transformation test for glyphosate was conducted using glyphosate acid (96.59% purity; Monsanto Europe) applied at 2 soil concentrations, 6.62 mg a.e./kg dry soil and 33.1 mg a.e./kg dry soil. The tested rates were equivalent to 1 and 5 times the maximum predicted environmental concentration in soil following a worst-case application of glyphosate to bare soil in the EU. Each treatment group and the control comprised 3 replicate test vessels. The control was treated with water only. Field-collected soil was used (LUFA standard soil, type 2.3). On collection, the soil was manually cleared of large objects, such as stones and parts of plants, and then moist-sieved to a particle size ≤ 2 mm. The soil was stored under aerobic conditions in the dark at 4 ± 2 °C until required for use.

Glyphosate was prepared in defonized water and then mixed into a bulk sample of soil at the start of the test. The soil moisture content was 40% (± 5%) of the maximum water holding capacity. During the test, the weight of a moisture control vessel maintained under the same test conditions was used as a guide to correct for test vessel water loss. Control and treated bulk samples of soil were amended with ground lucerne meal (0.5%) as a nitrogen source with a C to N ratio of 16:4:1. Bulk samples were then subsampled (\sim 500 g) into replicate vessels and incubated at 20 ± 2 °C for 28 d. All containers were covered with a perforated lid to avoid evaporative water loss and stored in the dark. Soil (10 g) was taken from 1 replicate from each treatment for pH (water) determination at the start and end of the Glyphosate - Soil nitrogentransformation study. An additional soil sample was taken from 1 replicate per treatment for moisture and dry matter content determination at the end of the study. As soon as possible after dosing (day 0) and after 7 d, 14 d, and 28 d, a 50-g soil sample (based on dry wt) was removed from each replicate to determine NH₂, NO₂, and NO³. Soil extracts were prepared by adding 250mL of 2 M KCl, then shaking for 2 h and centrifuging for 15 min. The supernatant was analyzed using a Bran+Luebbe Autoanalyzer AA3 system. Effects below 25% deviation from control were not considered to be biologically significant.

AMPA - Soil nitrogen-transformation test. In the soil nitrogen-transformation test conducted for AMPA, the bulk samples of field-sampled soil were prepared at AMPA (98.7% purity) soil concentrations of 40 mg/kg dry soil, 80 mg/kg dry soil, 160 mg/kg dry soil, 320 mg/kg dry soil, and 640 mg/kg dry soil. In

M-CA, Section 8 Page 600 of 847

addition, a negative control (nontreated soil) was tested. Although conducting reference tests and use of so positive controls are not guideline requirements, in a separate reference test with dinoterb (2-tert-butyl-4,6) dinitrophenol, 99.9% purity; Sigma-Aldrich Chemie), test concentrations of 6.8 mg/kg dry soil, 16 mg/kg dry soil, and 27 mg/kg dry soil were applied, in addition to the control (0 mg/kg dry soil), with 3 replicates per treatment group.

Results

Glyphosate - Earthworm reproduction test

There was 0 % mortality of adult E. fetida at glyphosate concentrations of 14.18 mg ae./kg dry soil, 236.4 mg a.e./kg dry soil, and 472.8 mg a.e./kg dry soil. Mortality (2.5%) was observed at \$3.64 mg a.e./kg dry soil and 47.28 mg a.e./kg dry soil, which is considered incidental background mortality given the 10 % validity criterion for adult mortality in the control (p > 0.3). No statistically significant differences were detected for adult biomass (p > 0.05; Figure A below) and for the numbers of inventiles produced at each of the treatment groups when compared to the control (p > 0.05; Figure A below). Adult and juvenile feeding behavior was also not adversely affected over the duration of the test (56 d). The resulting noobserved-effect concentration (NOEC) for effects on reproduction was determined therefore to be the

maximum test concentration of 472.8 mg a.e./kg dry soil.

In the reference test with carbendazim, juveniles were reduced by \$500 and 92 % at 5 mg reference item/kg dry soil and 10 mg reference item/kg dry soil, respectively. The control treatment had a mean number of 143 juveniles, whereas 5 mg/kg dry soil and 10 mg/kg dry soil treatments with carbendazim had a mean number of 51 juveniles and 11 juveniles, respectively. These reference test values show that the test system was appropriate to detect toxic effects on earthworm reproduction. The validity criteria, namely adult mortality < 20 % and number of juveniles per replicate 30 in the control treatment, and coefficient of variance between control replicates < 30 % were all met. The guideline requirements for water content, temperature, and pH were all met.

AMPA - Earthworm reproduction test

In the earthworm reproduction study with AMPA, there were no significant effects on E. fetida adult mortality across concentrations compared to the control (p > 0.22). In all treatment groups, all 10 adults survived the treatments, except for 1 mortality in a single replicate of the 668.5 mg/kg dry soil treatment (Figure B below). Adult earthworm biomass was significantly lower compared to the control at the 445.5 mg AMPA/kg dry soil, 668.5 mg AMPA/kg dry soil, and 1002.5 mg AMPA/kg dry soil test concentrations (p < 0.0001; Figure B below). Adult biomass at 198.1 mg AMPA/kg dry soil was also significantly lower than the control (p=0.007), but at 297.1 mg AMPA/kg dry soil there was no significant difference (p > 0.802) because the biomass (in percentage of control) was 88.5% and 88.2% in the 131.9 mg AMPA/kg dry soil and the 2974 mg AMPA/kg dry soil treatment groups, respectively. The effect at 198.1 mg AMPA/kg dry soft is therefore considered to not be treatment-related. Juvenile production was not significantly affected at concentrations up to 198.1 mg/kg dry soil (p > 0.342). At 297.1 mg AMPA/kg dry soil and higher concentrations juvenile E. fetida numbers decreased significantly compared to the control (p = 0.0033). The resulting NOEC for effects on reproduction therefore was concluded to be 198.1 mg/kg dry soil with a reproductive lowest-observed effect concentration (LOEC) at 297.1 mg AMPA/kg dry soil The calculated 50% effective concentration (EC50) value for AMPA on earthworm survival was \$1000 mg/kg dry soil. The reproduction EC50 value was calculated at 654.7 mg AMPA/kg dry soil (95% confidence interval 610.9 - 705.5 mg/kg dry soil). The resulting regression equation was $y = -0.1198 \approx 0.005$) AMPA mg/kg + 122.6 (± 2.271), with an R² of 0.92. The reference test item carbendazina resulted in decreased biomass of 33.3% at 5.0 mg/kg dry soil and no reproduction, showing that the test system was sensitive to pesticide application. The validity criteria and guideline requirements

so significant effects were observed on soil mite survival (p > 0.3) or reproduction (p > 0.05) up to and including the highest test concentration (472.8 mg a.e./kg dry soil; Figure C below) after 14 d of continuous exposure. All validity criteria and guideline recommendations were met. In the reference test with dimethoate the EC50 on reproduction was determined to be 4.9 mg a.i/ka decomposition.

demonstrated the sensitivity of the test system to detect reproductive toxicity in soil mites. The NOEC was therefore set at the highest test concentration.

AMPA - Soil predatory mite reproduction test

No significant effects were observed on soil mite survival (p > 0.1) or reproduction (p > 0.05) up to and including the highest test concentration (320 mg AMPA/kg dry soil; Figure D below). All validity criteria and guideline recommendations were met. The reference test with dimethoate showed that the test was sensitive at detecting reproductive toxicity in soil mites. The NOEC for AMPA was therefore concluded to be at the highest test concentration, 320 mg/kg dry soil.

Glyphosate - Springtail reproduction test

No significant effects were observed on springtail survival (p > 0.5) or reproduction (p > 0.05) up to and including the highest test concentration (472.8 mg a.e./kg dry soil; Figure E below). The validity criteria and guideline recommendations were all met. In the reference test with phenoedipham, the EC50 on reproduction was determined to be 28.4 mg phenmedipham/kg dry soil, which demonstrates that the test system was sensitive for reproductive toxicity. The NOEC for glyphosate was therefore concluded to be the highest test concentration.

AMPA - Springtail reproduction test

No significant effects were observed on springtail survival (p > 0.5) or reproduction (p > 0.06, $\alpha = 0.01$) up

to and including the highest test concentration (315 mg AMPA/kg fry soil; Figure F below). The validity criteria and the guideline recommendations were all met. In the reference test with boric acid, the EC50 for reproduction was determined to be 108.6 mg/kg dry soil, demonstrating sensitivity to reproductive toxicity of the test system. The NOEC for AMPA was therefore concluded to be the highest test concentration.

Glyphosate - Soil nitrogen transformation test
Nitrogen-transformation rates in the soil treated at glyphosate rates equivalent to 6.62 mg a.e./kg dry soil and 33.1 mg a.e./kg dry soil were - 0.13% and 2.13% different compared to the control between day 14 and day 28, respectively (Figure G below). The validity criterion of < 15% variation between control treatments was met in the test. As the rates of nitrate formation between the control and the treated groups were < 25 % on day 28, glyphosate can be evaluated as having no long-term influence on nitrogen transformation in LUFA soils at concentrations ≤ 33.9 mg a.e./kg dry soil. No reference test was conducted, in line with the OECD guideline.

AMPA - Soil nitrogen-transformation test

Stimulation of nitrogen-transformation rates was observed across all treatments on day 7 and day 14, which was possibly linked to the high levels of nitrogen and phosphorus released from the degradation of AMPA in the biologically active soil. Only in the 2 highest test concentrations did the increase exceed 25 % compared to the control at 28 d. The test was therefore prolonged from 28 d to 56 d for the 2 highest test concentrations, 320 mg/kg/dry soil and 640 mg/kg dry soil (Figure H below). At 56 d, the deviation from the control was 26.7 % at 320 mg/kg dry soil and 43.1 % at 640 mg/kg dry soil. The reference test results with dinoterb showed increases of 37.6 % at 6.8 mg/kg dry soil, 51.4 % at 16.00 mg/kg dry soil, and 27.1 % Control of the state of the sta at 27 mg/kg dry with The validity criterion of < 15 % variation between controls was met at all sampling

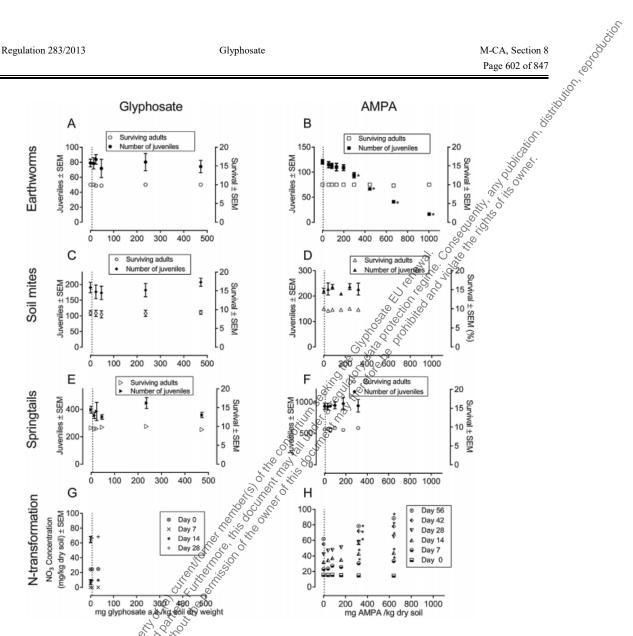


Fig. 1. Chronic risk assessment for glyphosate (left) and aminomethylphosphonic acid (AMPA; right) in soil. Number of surviving adults (28d) and number of juveniles (56 d) in earthworms exposed to glyphosate (A) and AMPA (B), (* statistically significant effect $[p \le 0.05]$ compared with control treatment), in soil predatory mites (Hypoaspis aculeifer) exposed to glyphosate (C) and AMPA (D) for 14 d, and in springtails (Folsomia candida) exposed to glyphosate (E) and AMPA (F) for 28 d. Effects on nitrogen transformation in soil treated with gryphosate (G) and AMPA (H) for 0 d, 7 d, 14 d,28 d, 42 d, and 56 d(* > 25 % effect 1 cone oncern oncern on the low of the l compared with control (reatment). Vertical dotted line in each graph indicates the worst-case predicted environmental concentration of glyphosate/AMPA. Vertical bars indicate standard error of the mean

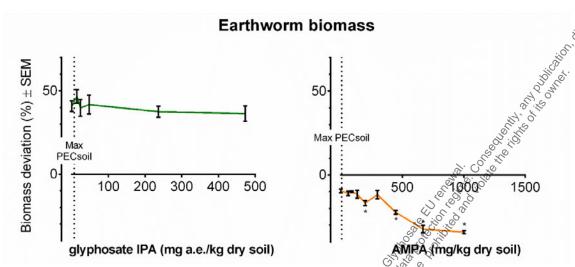


Fig. 2. Effects of glyphosate (A) and AMPA (B) on earthworm biomass after 28 d of exposure. The vertical dotted line indicates the predicted environmental concentration for AMPA and glyphosate. An asterisk next to a data point indicates a significant difference (P < 0.05) when compared against the control treatment.

Risk assessment

The chronic effects of exposure to glyphosate and the major soil metabolite AMPA to representative taxonomic groups of soil macroorganisms and nitrogen transformation were assessed following standard practices outlined under Annex VI Uniform Principles of the EU's Plant Protection Products Regulation (EC) No 1107/2009. At soil concentrations relevant to recommended glyphosate field application rates, no significant adverse effects were observed in any of the dest species or systems exposed to glyphosate or AMPA. The risk assessment for soil macroorganisms in the EU compares the lowest NOEC achieved for each of the taxonomic groups with worst-case initial predicted soil concentrations (soil PECinitial) achieved directly following a bare soil application and the obtential for accumulation in soil following applications over multiple years to the same field (Soil PECaccu) The ratio of the endpoint to the predicted soil concentration is determined (toxicity exposure ratio = NOEC - PEC_{initial}) and compared against trigger values in accordance with Annex VI Uniform Principles of the EU's Plant Protection Products Regulation 1107/2009. Where trigger values are exceeded, a low exposure risk may be concluded. The long-term trigger value of 5 using NOECs derived from laboratory tests accounts for uncertainty related to interspecies sensitivity, predicted exposure estimates, and extrapolation from laboratory to field exposure.

For glyphosate and AMPA the initial soil concentration (PEC_{initial}) at a soil depth of 5 cm has been determined based on a bare soil application (without foliar/crop interception), at the maximum cumulative annual application rate of 4.32kg glyphosate a.e./ha for the EU. The risk of glyphosate and AMPA residues accumulating in soil over multiple years is considered by deriving the PECaccu value. This is the sum of the PEC_{initial} and platear concentrations in soil, achieved in the top 5 cm (tillage depth for permanent crops) soil layer, following applications to bare soil at the maximum cumulative annual application rate (4.32 kg a.e./ha) each year for 10 yr.

It is important to mention that a single application rate of 4.32 kg glyphosate a.e./ha is not supported in the representative use rate but rather represents the recommended maximum cumulative (total) annual application rate for all uses and, therefore, a very conservative worst-case approach.

For exposure of soil mites, springtails, and earthworms to glyphosate in soil, the achieved chronic endpoints exceed the worst-case predicted glyphosate PEC_{initial} and PEC_{accu} soil concentration by factors of 82 and 71, respectively.

Forexposure of soil mites, springtails, and earthworms to AMPA in soil, the achieved chronic endpoints exceed worst-case AMPA PEC_{initial} soil concentrations by factors of between 97 and 491, whereas the Schrönic endpoints exceed the PEC_{accu} soil concentrations by factors of between 32 and 162.

For soil nitrogen transformation, the endpoints achieved for glyphosate and AMPA (33.1 mg a.e./kg dry soil [glyphosate] and 160 mg a.e./kg dry soil [AMPA]) both achieved a < 25 % effect on nitrogentransformation rates following a 28-d soil exposure to either glyphosate or AMPA. These soil exposure rates exceed the worst-case predicted PECinitial soil concentrations by factors of 6 (glyphosate) and 78 (AMPA). The achieved endpoints also exceed the PEC_{accu} soil concentrations, by factors of 5 for glyphosate and 26 for AMPA.

For the soil mite, springtail, and earthworm reproduction chronic endpoints, the toxicity exposure ratio values exceed the EU Regulation No 546/2011 Annex VI trigger (5), indicating that for the ecotoxicologically relevant endpoints achieved for survival and reproduction, the use of glyphosate according to label recommendations is unlikely to result in adverse effects inside the treated area for soil biota - from exposure to both glyphosate and AMPA.

For the soil microbial community, relative to expected field application rates for exposure to glyphosate there is at least a 5-fold safety margin. For exposure to AMPA, a 26-fold safety margin applies. The observed increases in nitrate concentrations at the higher test concentrations are expected to be related to the large quantity of nitrogen and phosphate provided to the microbes via degradation of AMPA in the biologically active soil.

Table 8.4.2.1-1: Glyphosate and aminomethylphosphonic acid chronic risk assessment for soil organisms^a

		Test	Endpoint	NOEC	PRCinition	PECaccu		
Test species	Test item	duration (d)	type	(mg a.e. or AMPA/kg soil)	30 2 0	(mg a.e./kg soil)	TER _{initial}	TER _{accu}
Earthworm	Glyphosate IPA salt	56	Adult mortality	472.8	5.76	6.62	82	71
	And the second second second second		Biomass	472.8	Kin of		82	71
			Reproduction	472.8	, 80 T.		82	71
	AMPA	56	Adult mortality	1002.5	0 02.04	6.18	491	162
			Biomass	297.1	. 100		146	48
			Reproduction	198.1			97	32
Soil mite	Glyphosate IPA salt	14	Adult mortality	4728 1	5.76	6.62	82	71
			Reproduction	472.8 3 8			82	71
	AMPA	14	Adult mortality	0,300, 10,	2.04	6.18	157	52
			Reproduction	(5) (320)			157	52
Springtail	Glyphosate IPA salt	28	Adult mortality	\$200 452.8 \$72.8	5.76	6.62	82	71
			Biomass	Ø 0 372.8			82	71
	AMPA	28	Adult mortality	(315 315 315	2.04	6.18	154	51
			Biomass	315			154	51
N-transformation	Glyphosate acid	28	Effect \$25%	33.1	5.76	6.62	6	5
	AMPA	28	Effect 2500.	33.1 160	2.04	6.18	78	26

a.e. = acid equivalent; AMPA = aminomethyphosphonic acid; IPA = isopropylamine; NOEC = no-observed-effect concentration; PEC_{accu} = accumulative predicted environmental concentration, cumulative worst-case application of 4.32 kg a.e./ha of glyphosate for 10 yr; PEC_{initial} = initial predicted environmental concentration, assuming single worst-case application of 4.32 kg a.e./ha of glyphosate; TER_{accu} = toxicity to exposure ratio (= NOEC - PEC_{accu}); TER_{initial} = toxicity to exposure ratio (= NOEC - PEC_{initial}).

Conclusion

The risks from exposure to glyphosate and the primary soil metabolite AMPA at levels that exceed commercial application rates were evaluated against a battery of representative soil macroorganisms and microorganisms under controlled laboratory conditions. Results from the present studies demonstrate that the potential impact to beneficial soil macro-organisms and nutrient cycling soil microorganisms under environmentally relevant exposure scenarios is low.

3. Assessment and conclusion

Assessment and conclusion by applicant:

The aim of the paper was to evaluate potential effects of Glyphosate, Glyphosate salt and AMPA on earthworm, soil mites, springtails and soil micro-organisms.

The studies have been conducted according to recognised guidelines and validity criteria were presented. Test substance information, test organism origin, study designs and toxicity effects were adequately described. The study is considered reliable.

CA 8.6 Effects on Terrestrial Non-Target Higher Plants

Studies on the effects of the active substance glyphosate on vegetative vigour and seedling emergence of terrestrial non-target plants are available and are presented

CA 8.6.1 Summary of screening data

Screening data is not considered to be required, since toxicity of glyphosate and the representative product MON 52276 (see MCP section 10.6.2) to terrestrial non-target plants is adequately addressed within the framework of vegetative vigour and seedling emergence tests with 10 different representative plant species.

CA 8.6.2 Testing on non-target plants

Studies considering the effects of glyphosate on terrestrial non-target plants, were assessed for their validity to current and relevant guidelines for glyphosate and are presented in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for all studies are presented in this section below.

Studies on toxicity of glyphosate to terrestrial non-target higher plants **Table 8.6.2-1:**

Annex point	Study	Study type	Test species (8)	Substance(s)	Status	Remark
CA 8.6.2/001		21 d	Solanum S.S. lycopersicum	Glyphosate	Valid	-
	, 1994	vegetative		technical		
		vigour	Glycine max			
			Lactuca sativa			
			Raphanus sativus			
		, o	Cucmis sativus			
			Brassica oleracea			
		25 43 8 6 E	Avena sativa			
			Lolium perenne			
		10 5. 00	Zea mays			
		5 10 5 10 C	Allium cepa			
CA 8.6.2/002	, 1994	\$1 d 0	Onion	Glyphosate	Invalid	Emergence
	ي خ	vegetative	Field corn	technical		rate is not
	00	vigour	Oat			available
	20	Zio.	Wheat			
	T. M. S.	Ş	Soybean			
	1000 11		Radish			
	Co. Fill II.		Cucumber			
			Sunflower			
	4.2.2		Tomato			
	2:50		Carrot			

There are no literature articles or peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate or its relevant metabolites on non-target terrestral plants. Full literature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document. For discussions of literature regarding toxicity to non-target terrestrial plants, please refer to document M-CP Section 10.6.

Endpoints of studies considered valid are shown in the table below. Glyphosate is an acid molecule, so it is often formulated as a salt. Ecotoxicological studies have been conducted with various forms of glyphosate, namely IPA salt, K-salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent acid. stated in the report or by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate or glyphosate technical are automatically expressed as acid equivalent.

Table 8.6.2-2:

Table 8.6.2-2:	Endpoint: To	xicity of glyphosate s	to terrestrial	non-target higl	ner plants
Reference (Data owner)	Test item	Species	Test design/ GLP	ER ₅₀ (g a.e./ha)	NOER (g a.e./ha)
1994 CA 8.6.2/001	Glyphosate technical	Solanum lycopersicum Glycine max Lactuca sativa Raphanus sativus Cucmis sativus Brassica oleracea Avena sativa Lolium perenne Zea mays Allium cepa	Vegetative vigour, 21-day	146 January Constants	78.5 (tomato and corn)

a.e.: acid equivalents

Study summaries are provided below.

1. Information on the study

	Data point:	CA 8.6.2/001 6 6
	Report author	
	Report year	1994 8 8 8
	Report title	Tier & Vegetative Vigor Nontarget Phytotoxicity Study Using Glyphosate
	Report No	93235
	Document No	20
	Guidelines followed in study	EPA Guidelines, Subdivision J, Series 123-1 (b)
	Deviations from current test guideline	Deviations from test guideline OECD 227 (2006): Minor: - Five plant per 4 inches pot instead of one or two for bigger plants as corn, soybean, tomato, cucumber No reference substance or historical data were mentioned in the report Temperature rose above 22±10 °C, the light period was less than 16 h per day and the hygrometry dropped under 70±25 %.
	Previous evaluation	Yes, accepted in the RAR (2015)
	GLP/Officially recognised testing facilities	Yes
	Acceptability/Reliability	Valid
8.	Category study in AIR 5 dossier (L docs)	Category 2a
Solve of the solve	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

2. **Full summary**

Executive Summary

A vegetative vigour study was conducted exposing six dicotyledonous (soybean, lettuce, cabbage, cucumber, radish and tomato) and four monocotyledonous (oat, ryegrass, corn and onion) plant specific to seven nominal test concentrations of glyphosate, encompassing 0.0785, 0.1569, 0.3138, 0.6276, 2329, 2.5778 and 5.0436 kg a.e./ha. In addition, one negative control group (treated with deionized water) was tested. Each test concentration was applied in four replicates containing five plants each. In addition radish and tomato were tested using five further nominal concentrations of 0.0049, 0.0099, 0.0202, 0.0392 and 0.0785 kg a.e./ha. Plant height was recorded prior to treatment and 21 days after treatment. Phytotoxicity ratings were recorded 7, 14, and 21 days after treatment. 21 days after treatment, plant material was dried at approximately 100 °C for a minimum of 48 hours and dry weight was recorded.

Result showed significant effects of glyphosate treatments on visual phytotoxicaty. Plant height and plant dry weight in all crops. Except for soybean and onion, glyphosate treatments significantly affected plant survival of all species tested. The validity criteria according to the OECD 227 were fulfilled.

The study is considered valid so EC₅₀ of 146 g a.e./ha and a NOEC of 78.5 g/a.e./ha can be used in risk assessment.

I. MATERIALS AND METALODS

MATERIALS Α.

1. Test material:

Glyphosate (N-phosphonomethylglycine) Test item::

Description: White powder

RUD 9302-4778-T (technical) Lot/Batch #:

RUD-9203-3961-A (analytical standard)

96.6% (technical) Purity:

99.8 % (analytical standard)

Sill to the sill t 2. Vehicle and/or positive control;

Species: sources

Vehicle: deionised water Positive control: none

3. Test organism:

6 Dicotyledons:

- soybean: Azlin Seed Co. - lettuce: Germain's Seed Co.

- cabbage, radish and tomato: Burpee Seed Co.

- cucumber: Carolina Seed Co.

4 Monocotyledons:

- corn and onion: Burpee Seed Co. - cucumber: Carolina Seed Co.

- oat: Northrup King

- Ryegrass: Omni Seed Co

4. Environmental conditions:

 $19 \, ^{\circ}\text{C} - 44 \, ^{\circ}\text{C}$ (base test)

Temperature: $17 \, ^{\circ}\text{C} - 40 \, ^{\circ}\text{C}$ (test continuation)

40% - 90% (base test)

Relative humidity: 37% - 90% (test continuation)

Approx. 14 h light/ 10 h dark at 38212 – 45639 Lux (base test)

Approx. 13 h light/ 11 h dark at 24542 – 19052 Lux (test Photoperiod:

continuation)

Soil pH: 7.9

Soil organic matter content: 1.1 %

- B. STUDY DESIGN AND METHODS
 1. Experimental treatments: Prior to treatment, seedlings were grown in plastic pots (approx. 10 cm x 10 cm x 7.6 cm) completely filled with a 11/2 line in a 2. cm x 7.6 cm) completely filled with soil/perlite mixture. Soybean, cucumber, oat and corn were planted at a depth of 2.5 cm while the remaining six crops were planted at a depth of 1.3 cm. Each freatment/crop combination was replicated four times. Prior to treatment, seedlings were grown to 1-3 true leaves and then thinned to five plants of uniform height per pot. The plants were treated with seven nominal concentrations, encompassing 0.0785, 0.1569, 0.3138, 0.6277, 1.2329, 2.5780 and 5.0438 kg are that In addition, one negative control group (treated with deionized water) was tested. All applications of glyphosate were performed indoors with a spray booth equipped with a single TeeJet 8001-E nozzle and a compressed air cylinder. After treatment plants were placed in greenhouse. During the first 48 hours after treatment, pots were hand watered to prevent the test item from being washed off. As a no-observable effect concentration level was not reached for radish and tomato, a test continuation was initiated for both species using five nominal concentrations, encompassing 0.0049, 0.0099, 0.0202, 0.0392 and 0.0785 kg a.e./ha and a control.
- 2. Observations: Plant height was recorded prior to treatment and 21 days after treatment. Phytotoxicity ratings were recorded 7, 14, and 21 days after treatment. 21 days after treatment, surviving plants were cut at soil level and dry weight was recorded. Prior to application, samples (10 mL) of each test solution were collected and analysed immediately by HPLC method to verify the concentrations of the test item in the test solutions.
- 3. Statistical calculations: Analysis of variance, followed by a one-tailed Dunnett's multiple comparison test were used for data analysis. The EC_x values were determined using regression analysis (TableCurve™ Curve Fitting Software).

II. RESULTS AND DISCUSSION

FINDINGS AND OBSERVATIONS A.

Visual phytotoxicity, plant neight and plant dry weight of all crops were significantly affected by ·\$1 glyphosate treatments.

Table 8.6.2-3: Effects of glyphosate on survival, plant height and plant dry weight at 21DAT (all No. No. species, test 1)

	110.80	Glyphosate [kg a.e./ha]										
S	0.0785	0.1569	0.3138	0.6277	1.2329	2.5780	5.0438					
	Mean effect on plant survival [% deviation from control]											
Soybean State	0	0	0	0	0	0	-15					
Lettuce	0	0	0	0	0	-60*	-95*					
Radish	0	0	0	-20*	-70*	-100*	-100*					
Tomato	0	0	0	-55*	-100*	-100*	-100*					
E yeumber	0	0	0	0	0	-20	-75*					
Cabbage	0	0	0	0	0	-15*	-60*					
Oat	0	0	0	0	-5	-15	-25*					
Ryegrass	0	0	0	0	-5	-25*	-50*					

Table 8.6.2-3: Effects of glyphosate on survival, plant height and plant dry weight at 21DAT (all species, test 1)

			Glyp	hosate [kg a.d	e./ha]		:00
	0.0785	0.1569	0.3138	0.6277	1.2329	2.5780	5.0438
Corn	0	0	0	0	-25*	-85*	70*
Onion	0	0	0	0	0	0	4.9.0
	Mea	n effect on pl	ant height [%	deviation fr	om control]		D. C.
Soybean	0	-7	-3	-10	-52*	-69*** ***	-80*
Lettuce	9	-1	-1	-7	-50*	686***	-99*
Radish	-11	-16*	-41*	-68*	-89*	*00-1000	-100*
Tomato	-9*	-11*	-32*	-88*	-100*	-100*	-100*
Cucumber	2	4	-12	-38*	-44*,000	-66*	-91*
Cabbage	-7	-5	-14	-10	61-52* Q	-74*	-91*
Oat	0	-6	-8	-16	5° 246*	-77*	-82*
Ryegrass	4	1	5	-1 <u>ji</u>	\$\int_{\int}^{\infty}22*	-68*	-80*
Corn	-2	-4	-7	-1 K	3 -79*	-97*	-92*
Onion	-2	0	-8	5000	-27*	-40*	-48*
	Mean	effect on plan	t dry weight	[% deviation	from control]	
Soybean	4	-5	-10	₹32*	-66*	-82*	-92*
Lettuce	12	7	-4,5,8	-35*	-83*	-97*	-100*
Radish	-25*	-24*	-63 200	-85*	-96*	-100*	-100*
Tomato	-11*	-37*	69*	-98*	-100*	-100*	-100*
Cucumber	6	1	€ 60-14	-39*	-63*	-85*	-96*
Cabbage	-5	-3 orth	£ 24*	-43*	-87*	-96*	-98*
Oat	-3	-20145	JE -17*	-29*	-66*	-92*	-94*
Ryegrass	39		27	3	-38*	-91*	-97*
Corn	2	12/ 8/01	-14	-23	-91*	-99*	-98*
Onion	4 5	Sil 15	-10	11	-41*	-71*	-83*

Onion	4 5 1	-10	11	-41*	-71*	-83*
* = Significantly dif	ferent from the contro	ol (p < 0.05)				
	SE STEEL SE					
	To of the					
Table 8.6.2-4: E	ffects of glyphos	ate on survival, p	olant height and	l plant dry w	eight (test	2)
	.8 8 8					
Glyphosate [kg a.e./ha]						
4	0.0049	0.0099	0.0202	0.039	2	0.0785
Mean effect on plant survival [% deviation from control]						
Radish	0	0	0	0		0
Tomato &	0	0	0	0		0
Mean effect on plant height [% deviation from control]						
Radish	-3	0	3	-2		-3
Tomato	5	-2	7	0		2
Mean effect on plant dry weight [% deviation from control]						
Radish	15	13	7	4		-9
Tomato	54	33	33	34		5

Analytical results: The average recovery of glyphosate in test media ranged from 100 % to 107 % and 105 % to 110 % of the nominal test concentrations for the first test and the test continuation, respectively. As the mean measured content of the test item always ranged between 80 and 120% of nominal in both tests, ecotoxicological endpoints were evaluated using nominal concentrations of the test item.

Except for soybean and onion, a significant effect on mortality was observed for all species exposed to glyphosate. The resulting EC₅₀ and NOEC values are presented in the table below.

Table 8.6.2-5: Toxicity of glyphosate to monocotyledonous and dicotyledonous plants

Crop	Endpoint [kg a.e./ha] (21 days)				
	Phytotoxicity		Percentage survival	<i>b</i> .	
	NOEC	EC ₂₅	NOEC	EC ₅₀	
Ryegrass	0.6277	2.578	1.2329	4.5955	
Corn	0.0785	0.8855	₅ € 0.62,37	1.6813	
Onion	0.6277	> 5.0438	5,0438	> 5.0438	
Soybean	0.3138	> 5.0438	5.0438	> 5.0438	
Lettuce	0.3138	1.5692	1.2329	2.8021	
Cucumber	0.1569	2.9142	2.5780	4.0351	
Cabbage	0.6277	3.2505	1.2329	4.5955	
Oat	0.6277	4.9318	2.5780	> 5.0438	
Radish	0.1569	0.4932	0.3138	0.9191	
Tomato	0.0785	0.2914	0.3138	0.5156	

Table 8.6.2-5: Toxicity of glyphosate to monocotyledonous and dicotyledonous plants (continued)

Crop	Endpoint [kg a.e./ha] (21 days)					
	Plant height			Dry weight		
	NOEC <	EC25	EC ₅₀	NOEC	EC25	EC50
Ryegrass	0.6277	ઈ હોંગે.0760	2.3538	0.6277	0.8967	1.3450
Corn	0.627	© 0.4708	0.9191	0.6277	0.4147	0.7510
Onion	0.6275	1.3450	> 5.0438	0.6277	0.9527	1.7934
Soybean	0.6277	0.6389	1.5692	0.3138	0.4708	0.9751
Lettuce	0.6277	0.7173	1.3450	0.3138	0.4483	0.7622
Cucumber	© .3128	0.5160	1.4571	0.3138	0.4596	0.8967
Cabbage 8	© 0.6277	0.7510	1.4571	0.1569	0.3363	0.7398
Oat Sign	0.6277	0.6164	1.3450	0.1569	0.4259	0.8743
Radish	0.0785	0.1569	0.3587	0.0392	0.1569	0.2466
Tomato	0.0392	0.2242	0.3363	0.0392	0.1009	0.1457

U.3363 0.0392 0.1009 0.1457

The validity criteria according to the OECD 227 were fulfilled. The seedling emergence was at least 70 % factual values from 80 to 99 %). In the control, the plants did not exhibit visible phytotoxic effects; the mean plant survival is at least 90 % for the duration of the study (actual value 100 %); environmental conditions for a particular species were identical and growing media contain the same amount of soil matrix,

Page 611 of 847

support media, or substrate from the same source.

III. CONCLUSIONS

Assessment and conclusion by applicant:
The lowest (worst case) 21 day EC₅₀ values of glyphosate were observed for tomato plants and were calculated to be 0.5156, 0.3363 and 0.1457 kg a.e./ha for survival, plant height and dry weight, respectively. The lowest 21-day NOEC values were determined to be 0.0785 kg a.e./ha/tomato and corn), 0.3138 kg a.e./ha (tomato and radish), 0.0392 kg a.e./ha (tomato and radish), and 0.0392 kg a.e./ha (tomato) respectively for visual phytotoxicity, survival, dry weight and plant height:

The study is considered valid so EC₅₀ of 146 g a.e./ha and a NOEC of 78.5 g a.e./ha can be used in risk assessment.

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.6.2/002		
Report author	\$ 5 E		
Report year	1994		
Report title	LX1146-02 (Glyphosate techn.) Tier II Non-Target plant hazard evaluation – Terrestrial vegetative vigor		
Report No	14625B018 & & & &		
Document No	236 GLY , T , C , C , C , C , C , C , C , C , C		
Guidelines followed in study	EPA Guidelines, Subdivision J, Series 123-1 (b)		
Deviations from current test guideline	Deviations from the test guideline OECD 227 (2006): Major: No data on seedling emergence were reported. No analytical verification was performed. Minor: Five plant per 6 inch pot instead of one or two for bigger plants as corn, soybean, tomato, cucumber. Phytotoxicity and mortality at 21 DAT were missing for initial test. No reference substance or historical data are mentioned in the report. Temperature rose above and below 22±10 °C and light period was under 16 h per day.		
Previous evaluation	Not accepted in RAR (2015)		
GLP/Officially recognised testing facilities	Yes		
Acceptability Reliability:	Invalid		
Category study in AIR 5 dossier (E docs)	Category 3b		

Full summary

Executive Summary

A vegetative vigour study was conducted exposing six dicotyledonous (carrot, cucumber, radish, soybean, sunflower, tomato) and four monocotyledonous (field corn, oat, onion, wheat) plant species to five nominal test concentrations of glyphosate, encompassing 0.0056, 0.0112, 0.0235, 0.0471 and 0.0930 kg a.e./ha in

four replicates per treatment. In addition, a negative control group treated with deionized water was tested. The application was performed using a single nozzle hand-held, CO₂ pressurized sprayer. Because of poor rate response in most crops, five additional treatment rates were included, encompassing 0.0930, 0.1861, 0.3721, 0.5582 and 0.7442 kg a.e./ha.

Seedling number and plant height were recorded 7 days before treatment (6 DBT for the continuation test), on the day of treatment, 14 days after treatment (13 DAT for the continuation test) and 28 DAT (21 DAT for the continuation test). For the dry weight measurements, plants within a treated replicate were harvested 21 or 28 DAT and dried for a minimum of 24 h at approximately 100°C. Plant survival observations and phytotoxicity were recorded at 7, 14 and 28 DAT for initial test and 6, 13 and 21 DAT for the continuation

Plant height, plant dry weight and survival were significantly affected by glyphosate treatments in all species tested. Among monocotyledonous species, oat was most tolerant to glophosate, while all other species exhibited approximately the same level of sensitivity to glyphosate. Among disotyledonous species, sunflower and radish were most sensitive for glyphosate, whilst tomato, carrot and soybean showed a moderate sensitivity to glyphosate. Cucumber was the most tolerant species to glyphosate. For phytotoxicity, monocots and dicots were also affected by glyphosate treatments. The lowest 21-day NOEC value was observed for plant height and visual phytotoxicity and determined to be 0.0930 kg a.e./ha. Not all the validity criteria according to the OECD 227 were fulfilled, no data on seedling emergence in control group were reported.

I. MATERIALS AND METHODS

Α. **MATERIALS**

1. Test material:

Glyphosate technical Test item::

Solid white Description: 206-JAK 19-1 Lot/Batch #:

> Purity: 98.5 % (technical)

Positive control: none positive Wehicle: deionised water 2. Vehicle control:

3. Test organism:

Source: Species 6 6 Dicotyledons:

- Burpee Seed, Warmister, PA: carrot, cucumber, radish, tomato

- Farmers supply, Co., Valdosta, GA: sunflower

- Pineland Plantation, Newton; GA: soybean

4 Monocotyledons:

- Burpee Seed, Warmister, PA: onion, oat

- Farmers supply, Co., Valdosta, GA: field corn, wheat

4. Environmental conditions:

Temperature: Approx. $11.7^{\circ}C - 37.8^{\circ}C$

70 % - 94 % Relative humidity:

> 10 h light / 14 h dark, 43-336 Wm⁻² (approx. 3071– 24000 Lux for Photoperiod:

sunlight)

Soil pH: 5.5 - 5.6

Soil organic matter content: 0.94 - 1.5 %

B. STUDY DESIGN AND METHODS

1. Experimental treatments: Prior to treatment, seedlings were grown in plastic pots (approx. 15 cm round) containing approximately 1 kg of pasteurised sandy soil. Small seeds (carrot, onion, radish and tomato) were planted at a depth of 0.5 to 1 cm and large seeds (field corn, wheat, oat, cucumber, sunflower and soybean) were planted at a depth of 1 to 1.5 cm. Soybean seeds were inoculated with commercial Phizobium japonicum. Four replicate pots for each treatment were prepared for each species tested. At least 7 days prior to application, seedlings were grown to 1-3 true leaves and then thinned to five plants per replicate and their height recorded. The plants were treated with 5 nominal concentrations (adjusted to test item purity), encompassing 0.0056, 0.0112, 0.0235, 0.0471 and 0.0930 kg a.e./ha. In addition, one negative control group (treated with deionized water) was tested. Application was performed using a single nozzle hand-held CO₂ pressurized sprayer, starting with the water control. Plants were not watered during the first 24-hour period to avoid wetting the plants foliage and dislodging spray residue. Because of poor rate response in most crops, a test continuation was initiated at five additional concentration rates, encompassing 0.0930, 0.1861, 0.3721, 0.5582 and 0.7442 kg a.e./ha.

- 2. Observations: Plant height were recorded 6 or 7 days before treatment (DBT), on the day of treatment, 13 or 14 days after treatment (DAT) and 21 or 28 DAT. For day weight measurements, plants were harvested 21 or 28 DAT and dried for a minimum of 24 h at approximately 100°C. Plant survival observations were recorded 7 DAT (6 DAT for the continuation test); 14 DAT (13 DAT for the continuation test) and 28 DAT (21 DAT for the continuation test). Phytotoxicity was evaluated 7, 14 and 21 DAT for initial test and 6, 13 and 21 DAT for the continuation test.
- 3. Statistical calculations: Data were analysed using two way ANOVA and an LSD test was performed as post-hoc. The actual EC_x values were estimated by regression analysis using Lotus 1,2,3 Software.

II. RESULTS AND DISCUSSION

Α.

FINDINGS and OBSERVATIONS ight, dry weight and a Plant height, dry weight and survival Height, dry weight and survival of plants were significantly affected by glyphosate treatments in all species tested. Among the monocotyledonous species, oat was most tolerant to glyphosate while all other species exhibited approximately the same level of sensitivity to glyphosate. Among the dicotyledonous species, sunflower and radish were the most sensitive species, whilst tomato, carrot and soybean exhibited moderate sensitivity to glyphosate. Cucumber was the most tolerant species to glyphosate.

Visual phytotoxicity: Visual phytotoxicity was generally expressed within 13 days after the treatment and did not substantially increase by 21 days. Onion exhibited tip burn (necrosis at the leaf tip and margins) at 0.7442 kg a.e./ha but no visual phytotoxicity at any of the lower rates. Oat exhibited visual phytotoxicity at a rate of 0.3721 koace./ha, whereas wheat and field corn showed signs of visual phytotoxicity at rates as lower as 0.1861 kg ac./ha. For phytotoxicity, onion was the most tolerant monocot while other monocots tested showed approximately the same level of sensitivity to glyphosate. Glyphosate caused multiple shoots to develop at the soil line; higher application rates caused necrosis at the leaf tips. Despite the levels of visual injust observed on field corn, wheat and oat for all concentration tested, the plant height and dry weight were not significantly affected by glyphosate treatments.

For dicots visual phytotoxicity occurred within 13 DAT and did no increase significantly by 21 days.

Table 8.6.2-6: Effects of glyphosate on height, dry weight and survival of non-target plants at 21 DAT (test continuation, all species)

Crop		(-	Glyphosate [kg a.	e./ha]	. 53
	0.0930	0.1861	0.3721	0.5582	0.7442
	Mean p	lant height [% d	eviation from co	ntrol]	27.50
Onion	-20.34*	-20.67*	-13.03*	-10.67*	3253*
Field corn	2.50*	-15.48*	-15.94*	-28.17*	¥4.76*
Oat	6.50	13.93	9.68	1.72	S 8 0.27
Wheat	-4.77*	-22.43*	-22.98*	-23.77****	-37.89*
Soybean	5.41	-5.41*	-35.33*	-48.36*	-49.72*
Radish	-14.64*	-33.67*	-23.16*	-100.00*>	-100.00*
Cucumber	5.66	-7.03*	-27.96*	~-28.53*	-32.86*
Sunflower	25.92*	-47.28*	-62.93*	£100.00*	-100.00*
Tomato	-1.49*	-17.54*	-28.73*	30.60*	-43.28*
Carrot	0.48	-12.28*	-22.66*	-35.34*	-40.62*
	Mean plar	nt dry weight [%	deviation from		
Onion	-39.06	-50.00	-12.50	3.13	-34.38
Field corn	-5.83*	-24.27*	°-33.01°	-45.63*	-53.88*
Oat	5.77	-9.62	13.46	-20.19	-11.06*
Wheat	-18.33*	-34.58*	5-50.00*	-45.28*	-45.14*
Soybean	-8.90	-10.99*	-33.51*	-46.86*	-49.21*
Radish	-29.07*	-54,46*	-57.36*	-100.00*	-100.00*
Cucumber	12.60	13.39	-11.81	20.73	10.43
Sunflower	0.00	50.22*	-57.24*	-100.00*	-100.00*
Tomato	-18.10	31,3-14.21*	-44.83*	-55.17*	-62.93*
Carrot	13.04	& 33.70	30.43*	46.74*	50.72*
	1 2		deviation from co	ontrol]	
Onion	-5,00 21 5	0.00	0.00	-5.00	-5.00
Field corn	×(0.00) ×(0)	0.00	0.00	0.00	0.00
Oat	0.00	0.00	0.00	-5.00	-5.00
Wheat	\$ 6.00	-5.00	0.00	-15.00	-20.00
Soybean	0.00	0.00	0.00	-5.00	0.00
Radish	0.00	-40.00*	-80.00*	-100.00*	-100.00*
Cucumber &	0.00	0.00	-10.00*	-40.00*	-20.00*
Sunflower &	0.00	-25.00*	-55.00*	-100.00*	-100.00*
Tomato	0.00	0.00	0.00	0.00	0.00
Carrot	5.26	0.00	5.26	-5.26	-5.26
* = significantly different	when compared to	the control ($\alpha = 0.0$	55)		
Soybean Radish Cucumber Sunflower Tomato Carrot *= significantly different Glyphosate Renewal Group AI	R 5 – July 2020			Doc ID: 110054-MCA8	3_GRG_Rev 1_Jul_2020

Crop		Glyphosate [kg a.e./ha]					
	0.0056	0.0112	0.0235	0.0471	0.0930		
	Mear	n plant height [%	deviation from co	ntrol]	THE OWN		
Onion	-2.68	-10.92	-15.52	-11.30	20.31*		
	Mean p	lant dry weight [9	% deviation from (control]	13 18 18 18 18 18 18 18 18 18 18 18 18 18		
Onion	-19.23	-26.92	-19.23	-13.46	వ ^{్ర} చ [©] -28.85		
Radish	-33.33	-20.99	-23.46	33.33	-4.94*		

^{* =} significantly different when compared to the control ($\alpha = 0.05$)

When comparing the 21-day data, carrot was the most tolerant dicot with a NOEC of $0.3721 \, \text{kg}$ a.e./ha and exhibited no phytotoxicity at rates below $0.5582 \, \text{kg}$ a.e./ha. The only injury observed from the glyphosate was slight chlorosis and stunting for carrot. With the exception of soybean (NOEC = $0.1861 \, \text{kg}$ a.e./ha), the NOEC for dicots was $0.0930 \, \text{kg}$ a.e./ha. For radish and sunflower, mortality was observed at the two highest rates tested and significant treatment effects were also noted in plant height and dry weight. The resulting EC₅₀ and NOEC values are presented in the table below.

Table 8.6.2-8: Toxicity of glyphosate to monocotyledonous and dicotyledonous pants

Crop		Endpoint [kg a.e./ha]					
	2	Survival					
	NOEC	EC25	EC ₅₀				
Onion	0.7442	> 0.7442	> 0.7442				
Field corn	0.7442	> 0.7442	> 0.7442				
Oat	0.744250 60 60	> 0.7442	> 0.7442				
Wheat	0.74425 [1]	> 0.7442	> 0.7442				
Soybean	@7442°	0.7442	> 0.7442				
Radish	£ 60,000 600 600 600 600 600 600 600 600	0.1412	0.2488				
Cucumber	8 121 Q 3721	0.6277	> 0.7442				
Sunflower	20.1861	0.1939	0.3508				
Tomato	^ල ුල් 0.7442	> 0.7442	> 0.7442				
Carrot	0.7442	> 0.7442	> 0.7442				

n.d. = not determined

Table 8.6.2-9: Toxicity of glyphosate to monocotyledonous and dicotyledonous pants

		Endpoint [kg a.e./ha]				ilot.
Crop		Dry weight			Plant height	
	NOEC	EC25	EC ₅₀	NOEC	EC25	EC 50
Onion	0.0930	n.d.	n.d.	0.0930	0.7442	2 7442
Field corn	0.0930	0.297	0.6400	0.0930	0.4607	§ § 0.7442
Oat	0.7442	> 0.7442	>0.7442	0.7442	> 0.7442	>0.7442
Wheat	0.0930	0.195	0.6478	0.0930	0.4696	> 0.7442
Soybean	0.1861	0.3262	0.6759	0.1861	(D.3587 ³	0.6591
Radish	0.0930	0.0942	0.2623	0.0930	0.2802	0.6904
Cucumber	0.7442	> 0.7442	> 0.7442	0.1861	(6) (0.51	> 0.7442
Sunflower	0.0930	0.1524	0.2959	0.0930	0.1816	0.2993
Tomato	0.1861	0.2443	0.5335	0.0930	0.4069	> 0.7442
Carrot	0.3721	0.3284	0.6512	@1861°	0.4349	> 0.7442

n.d. = not determined

The validity criteria according to the OECD 227 were followed, except the fact that no data on seedling emergence in control group were reported.

III. CONCLUSIONS

Assessment and conclusion by applicant?

The lowest (worst case) 21 day EC₅₀ values of glyphosate were determined for radish and were calculated to be 0.2488 and 0.2623 kg a.e./ha for survival and dry weight, respectively.

The lowest (worst case) 21 day BC50 value of glyphosate was determined for sunflower and was calculated to be 0.2993 kg a.e./ha for plant height.

The lowest 21-day NOEC value was observed for plant height and visual phytotoxicity and determined to be 0.0930 kg a.e./ha. Not all of the validity criteria according to the OECD 227 were fulfilled, because no data on seedling emergence in control group were reported. Due to these limitations, the study is therefore considered invalid for risk assessment purposes.

Assessment and conclusion by RMS:

Inowever, a report has been prepared to further address the impact on A Practical Approach to Biodiversity Assessment (TRR0000305).

(2020) Glyphosate: Indirect effects via trophic interaction and (2) to inform risk assessors and managers on Biodiversity Assessment (TRR0000305).

risk mitigation options that are protective of aquatic and terrestrial biodiversity. The outcome of the present biodiversity assessment for glyphosate is summarized for the different environmental compartments and taxa where appropriate in the document M-CP Section 10.

CA 8.8 Effects on Biological Methods for Sewage Treatment

Studies on effects of the active substance glyphosate on sewage to fulfil the data requirements according to EU Regulation No 283/2013 are presented in the following.

The results of these studies demonstrate that glyphosate is of low toxicity to biological methods for sewage treatment.

Studies considering the effects of glyphosate on biological methods for sewage treatment were assessed for their validity to current and relevant guidelines for glyphosate and are presented in the following table. Studies previously evaluated in either the monograph 2001 or the RAR 2015 were also included in this assessment. Study summaries for these studies are presented in this section below.

Studies on toxicity of glyphosate to biological methods for sewage treatment **Table 0.8-1:**

Annex point	Study	Study type	Test species	Substance(s)	Status	Remark
CA 8.8/001	2000	Growth inhibition test	Pseudomonas prinda	Glyphosate	Invalid	Multiplication factor of control inoculum not provided
CA 8.8/002	, 1990	Respiration (Activated Studge bacteria	Glyphosate	Valid	

There are no literature articles and peer-reviewed published data considered to be relevant and reliable or reliable with restrictions with regards to the impact of glyphosate or its relevant metabolites on biological methods for sewage treatment. Full iterature evaluation is provided in document M-CA Section 9. A summary of previously evaluated peer reviewed literature from the RAR 2015 is also available in Annex M-CA 8-01 to this document

Endpoints of studies considered valid are shown in the table below. Glyphosate is an acid molecule, so it is often formulated as a salt. Ecotoxicological studies have been conducted with various forms of glyphosate, namely PA saft, K-salt, glyphosate technical and glyphosate acid. In order to make a direct comparison of toxicity between studies, all endpoints from these studies have been converted to acid equivalents (a.e.). This conversion has been made either by the acid equivalent purity of the test item if stated in the report of by a conversion factor of 0.741 (for IPA salt). By nature of the glyphosate, endpoints of glyphosate of glyphosate technical are automatically expressed as acid equivalent.

Table 8.8-32 Endpoints: Toxicity of glyphosate on biological methods for sewage treatment

	Reference (Data owner)	Test item	Species	Test design/ GLP	EC ₅₀ (mg a.e./L)	NOEC (mg a.e./L)
e) vo	, 1990 A 8.8/002	Glyphosate technical	Activated sludge bacteria	Oxygen consumption of activate sludge over 3 h	> 100	100
	a.e.: acid equivalents					
10 70 B	Glyphosate Renewal Group AIR 5 – July 2020			Doc ID: 11	0054-MCA8_GR	G_Rev 1_Jul_2020

Study summaries are provided below.

1. Information on the study

Data point:	CA 8.8/001
Report author	5.5
-	"A. g.
Report year	2000
Report title	Glyphosate technical: Determination of toxicity to <i>Pseudomonas</i>
	putida & S
Report No	AH0149/A
Document No	-
Guidelines followed in study	Water quality - Pseudomonas putida growth inhibition test
	(Pseudomonas cell multiplication inhibition test) International
	Standard ISO 10712: 1995.
Deviations from current test	Deviation from the current ISO guideline:
guideline	Major:
	- The control inoculum multiplication factor cannot be evaluated (at
	least 60 is required within the test period)
	Minor:
	- Only two replicates were setup for each test item dilution instead of
	three.
	- The test solutions were maintained at 27±0.5 °C instead of 23±1 °C.
Previous evaluation	Not accepted in RAR (2015)
GLP/Officially recognised	Yes still out
testing facilities	
Acceptability/Reliability	Invalid
Category study in AIR 5	Category
dossier (L docs)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

2. Full summary

Executive Summary

The effects of glyphosate on Pseudomonas putida growth inhibition were evaluated in a 16-hour static toxicity test. The test concentrations of 1.0, 3.2, 10, 32, and 100 mg/L in test medium were prepared in duplicate and sterile conditions in conical flasks. Flasks containing 1.0, 3.2, 10, 32, and 100 mg/L (single replicates) of the reference toxic substance (3,5-dichlorophenol) and three control flasks were also prepared. Four mL growth medium 1 mL inoculum and deionised water were added to obtain a final volume of 50 mL test solution. After shaking at 27.0±0.5°C (in an incubator) for 16±1 hours the optical density of the contents of each flask were measured with a spectrophotometer. The 16-h IC₅₀ for Pseudomonas putida glyp,
ing and like
an exposed to glyphosate technical was >100 mg a.e./L based on nominal concentration. The NOEC after 16 h was 100 mg are. L., however the study is considered invalid.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate technical

Aspect: White solid Lot/Batch #: R061837P30

> Purity: 97.6 %

Vehicle: deionised water 2. Vehicle and/or positive control:

Positive control: 3,5-dichlorophenol

3. Test organism:

Pseudomonas putida, strain NCIMB9494 Species:

National Collections of Industrial and Marine Bacteria Ltd., Source of organisms:

4. Environmental conditions:

Temperature:

Aberdeen, UK

27.0±0.5 °C

May 11, 2000 (first run) and May 17, 2000 to May 18, 2000 5. Experimental dates:

B: STUDY DESIGN AND METHODS

B: STUDY DESIGN AND METHODS

1. Experimental treatments: The effects of glyphosate on Pseudomonas putida growth inhibition were evaluated in a 16-hour static toxicity test. The test concentrations of 1.0, 3.2, 10, 32, and 100 mg/L in test medium were prepared in duplicate and sterile conditions in conical flasks. These test solutions were prepared by adding the appropriate amount of a 500 mg/L stock solution (0.125 g glyphosate in 250 mL deionised water) directly into the flasks. Flasks containing 1.0, 3.2, 10, 32, and 100 mg/L (single replicates) of the reference toxic substance (3,5-dieflorophenol) and three control flasks were also prepared. Four mL growth medium, 1 mL inoculum and deformsed water were added to obtain a final volume of 50 mL test solution. After shaking at 27.0±0.5% cm an in incubator) at 150 rpm for 16±1 hours the optical density of the contents of each flask were measured at 600 nm with a Uvikon 930 spectrophotometer.

A. RESULTS AND DISCUSSION

A. FINDINGS

The effects of glyphosate on Rseudomonas putida are shown below.

Table 8.8-2: Effects of glyphosate on Pseudomonas putida

Nominal concentration [mg test item/L]	Mean optical density	Mean % inhibition
Control 355	0.859	-0
1.0	0.836	3
3.2	0.838	2
10 6 20	0.842	2
32	0.868	0
100	0.878	0
3,5-DCP 1.0	0.839	2
3,5-DCP 3.2	0.857	0
3,5-DCP 10	0.851	1

Table 8.8-2: Effects of glyphosate on Pseudomonas putida

Nominal concentration [mg test item/L]	Mean optical density	Mean % inhibition
3,5-DCP 32	0.055	94
3,5-DCP 100	0.047	95

B. OBSERVATIONSBased on the obtained results, the IC₅₀ is > 100 mg/L and the highest concentration at which no effect was observed (NOEC) to be 100 mg/L. The reference substance 3,5-dichlorophenol gave an C₅₀ of 18 mg/L.

The following validity criterion was fulfilled according to the guideline:

The EC₅₀ of the reference substance 3,5-dichlorophenol was between 10 mg/L and 30 mg/L (actual value: 18 mg/L)

The following points deviated from the current guideline requirements.

- The inoculum concentration was given as 0.532. Then 1 mb of this inoculum was added to each final 50 mL test solution (including the control solution). The control inoculum concentration was measured as 0.859 at the end of the test but the initial optical density of the control solution was not provided, so it is not possible to conclude on the study validity according to guideline requirements.
- Only two replicates were setup for each test item dilution. The guideline requires three parallel batches for each dilution step.
- The test solutions were maintained at $27\pm0.5^{\circ}$ C for 16 hours instead of 23 ± 1 °C.

It is not possible to conclude on the study validity, regarding the requested control inoculum multiplication factor so the study is not considered as valid for the risk assessment.

HI CONCLUSIONS

Assessment and conclusion by applicant:

The 16-h IC₅₀ for *Pseudomonas putida* exposed to glyphosate technical was >100 mg a.e./L based on nominal concentration. The NOEC after 16 h was 100 mg a.e./L.

It is not possible to conclude on the study validity regarding the requested control inoculum multiplication factor so the study is considered invalid for risk assessment purposes. Nevertheless, the results of the study are in line with the additional sludge study (CA 8.8/002)

Assessment and conclusion by RMS:

1. Information on the study

Data point:	CA 8.8/002
Report author	
Report year	1990
Report title	Assessment of the acute toxicity of glyphosate technical of aerobic waste-water bacteria
Report No	277830
Document No	
Guidelines followed in study	OECD No.209 (1984)
Deviations from current test guideline	Deviation from the guideline OECD 209 (2010). Minor: - Only one replicate in each treatment concentration - No indication on the dissolved oxygen concentration
Previous evaluation	Yes, accepted in RAR (2015)
GLP/Officially recognised testing facilities	Yes
Acceptability/Reliability	Valid Store
Category study in AIR 5 dossier (L docs)	Category 2a

2. Full summary

Executive Summary

The effects of glyphosate technical on activated sludge were determined in a 3-hour exposure laboratory study. Activated sludge from a domestic waster-water treatment plant was exposed to the test item at concentrations of 3.2, 10, 32, 50, and 100 mg./L, 2 untreated controls and a toxic reference (3,5-dichlorophenol at concentrations of 3.2, 10, 32, and 50 mg/L). After 180 minutes of aeration at 22°C, samples were taken from the test hasks for oxygen measurement over a period of up to 10 minutes. The inhibitory effect of the test item is expressed as oxygen consumption per minute. This study is considered valid and the EC₅₀ > 100 mg a.e./L and the NOEC of 100 mg a.e./L can be used in risk assessment for micro-organisms exposed to glyphosate technical.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test material:

Test item: Glyphosate technical

Aspect: White solid Lot/Batch #: 229-Jak-5-1

Purity: 98.9 %

Vehicle: distilled water 2. Vehicle and/or positive control:

Positive control 3,5-dichlorophenol

3. Test system:

Test system: Activated sludge

> Source: Domestic waste-water treatment plant (ARA, Sissach,

> > Switzerland

Nutrient solution: Synthetic sewage feed

Dry sludge concentration: 4 g/L

Test vessel: 500 mL glass flasks

4. Environmental conditions:

Temperature: 20-25°C until use. 22°C during the test.

pH: 7.5-7.7

5. Experimental dates: July 19, 1990 (3 hours duration)

B: STUDY DESIGN AND METHODS

1. Experimental treatments: The effects of glyphosate technical on activated studge were determined in a 3-hour exposure laboratory study. Activated sludge from a domestic waste-water treatment plant was exposed to the test item at concentrations of 3.2, 10, 32, 50, and 100 mg/L, 2 replicates of untreated controls and a toxic reference (3,5-dichlorophenol at concentrations of 1.0, 3.2, 10, 32, 50, and 100 mg/L). A stock solution of 500 mg/L was prepared by dissolving glyphosate in distilled water. The sludge was sieved, centrifuged and the solid material resuspended in tap water and again centrifuged. This procedure was repeated a further 2 times. An aliquot of the final sludge suspension was made up with Soerensen buffer to 1 liter. To that mixture, 50 mL OECD recommended synthetic sewage feed were added.

Glass flasks were filled with appropriate aliquots of stock solutions, water and activated sludge up to 500 mL final volume and aerated with an air flow of about 0.2 10 minute.

- **2. Observations:** After 180 minutes of aeration at 22°C, samples were taken from the test flasks for oxygen measurement over a period of up to 10 minutes. The inhibitory effect of the test item is expressed as oxygen consumption per minute. Respiration rate was expressed as percent inhibition relative to the control.
- 3. Statistical calculations: EC values were calculated using linear regression.

II. RESULTS AND DISCUSSION

A. FINDINGS

The influence of glyphosate on oxygenconsumption of activate sludge is presented below.

Table 8.8-3: Influence of glyphosate on oxygen consumption of activate sludge

Nominal concentration [mg test item/L]	Oxygen consumption [mg O2 per litre per min]	Mean [deviation]	Inhibition [%]
Control	1.02	1.085	-
Control in the control	1.15	(12.7%)	-
3.2	1.16	•	-6.9
10	1.09	-	-0.5
32	1.15	-	-6.0
50	1.09	-	-0.5
100	1.17	-	-7.8
3,5-DCP 1.0	1.11	-	-2.3
3.5-DCP 3.2	1.07	-	1.4
3,9-DCP 10	0.38	-	65.0
3,5-DCP 32	0.07	-	93.5
3,5-DCP 50	0.05	-	95.4

B. OBSERVATIONS

No inhibition of the respiration rate of the sludge was observed (-7.8%) at the highest concentration of Who . glyphosate of 100 mg a.e./L. The EC_{50} for the toxic reference 3,5-DCP was found to be 8.6 mg/L.

The validity criteria were fulfilled according to OECD 209 (2010):

- the coefficient of variance for oxygen uptake in the control replicates was not more than 30 % (actual value: 12.7%)
- the EC₅₀ of 3,5-dichlorophenol was in the expected range (actual value: 8.6mg/L).
- Control oxygen uptake rate was more than 20 mg/g of activated sludge (dry weight of suspended solids) in an hour. Based on 4 g/L dry sludge concentration with a dilution ratio of 200 mL in 500 mL final solution and oxygen uptake of 1.085 mgO₂/L.min.

500 mL final solution and oxygen uptake of 1.085 mgO₂/L.min.

The following points deviated from the current guideline requirements but are not expected to have impact on the study validity:

- Only one replicate in each treatment concentration instead of 5 replicates.
- No indication on the dissolved oxygen concentration. It should be maintained above 60 70 %saturation. The air-flow was 0.2 L/min instead of 0.5 to 1 L/min recommended due to foam.

III. CONCLUSIONS

Assessment and conclusion by applicant:

The EC₅₀ for waste-water micro-organisms exposed to glyphosate was determined to be >100 mg/L. The NOEC for waste-water micro-organisms exposed to glyphosate was determined to be 100 mg/L.

This study is considered valid and the EC₅₀ > 100 mg a.e./L and the NOEC of 100 mg a.e./L can be used in the risk assessment for micro-organisms exposed to glyphosate technical.

Assessment and conclusion by RMS:

Monitoring Data **CA 8.9**

Available monitoring data for glyphosate and its metabolites in soil, water, sediment and air are presented and discussed in detail in MCA Section 7.5

Glyphosate Annex M-CA 8-01: PUBLIC LITERATURE RAR 2015 Annex to the Documen Mof the technical section 16:

ECOTOXICOLOGY

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

The late of the la

Action

in the Renewal Assessment:

rature arricles as part of the B.6.

AT 2015 have been included in this an.

If Unantherites during the AIR S TuI evious EU evaluations.

X 1, is an exact copy of the literature informational tenereding the present amore, please note:

articles and not regulatory studies.

and to the former Monograph glyphosate 19982

anugh in the RAR Vol 3 October 2015, then those sentences are also highlighted in the RAR Vol 3 October 2015, then those sentences are also highlighted in the RAR Vol 3 October 2015, then those sentences are also given table in the present amore.

A was given in italic style in the RAR Vol 3 October 2015, then those sentences are also given table in the present amore.

- Then, short 201 of the life of

B.9 Ecotoxicology

B.9.13 Evaluation of peer-reviewed literature regarding ecotoxicity of glyphosate B.9.13.1 Purpose and matter of subject of the literature survey

Background

Article 8.5 of the regulation 1107/2009/EC stipulates the addition of open, peer-reviewed scientific literature with a submission of a dossier approval of an active substance in the European Union. Literature that was published within the last 10 years before the submission should be included. For this reason, the notifier Glyphosate Task Force (GTF) provided the available peer-reviewed literature from the public domain that refers to effects of glyphosate, the glyphosate-salt, its relevant metabolites and the representative formulation MON52276 to the regulatory bodies. This survey reviews the literature provided under Section 6, Point 8 of the dossier. The relevance of peer-reviewed literature that has been submitted by the notifier for consideration in the environmental risk assessment of the active ingredient glyphosate was assessed. Moreover, also several Non-Governmental Organization (NGO) provided also peerreviewed literature from the public domain that refers to effects of glyphosate and glyphosate- based products.

Process of retrieving literature by the Notifier-search strategy and data bases

The pre-selection of the studies that were subjected by the notified to in-deep reliability and relevance analysis after Klimisch et al. (1997) was reviewed. For this purpose, the criteria of Carr and Bleeke (2012) to rank the available literature were adjusted where appropriate. In RMS opinion, the strictly formal criteria employed by the notifier according to Klimisch et al. (1997), would possibly not cover all environmental impacts that have been described in publicly available fiterature in direct relationship to glyphosate use. In particular the following evaluation-steps were performed:

- 1. Revision of identified and submitted literature
- 2. Evaluation of the notifier's selection for detailed description with the cumulative bibliography
- 3. Supplement of relevant studies
- 4. Evaluation of the published literature regarding significance of results, the quality of statistical evaluation, plausibility of conclusions after EFSA 2011a (complemented by Klimisch et al. (1997) and Küster et al. (2009, 2010) & &
- 5. Assessment and supplementation of the evaluation of the notifier after Klimisch et al. 1997, as found in DocMIIA, section 6 point 8 (Anonymous 2012a, in the following 'DocM')
- 6. Summary of the results and evidence on outstanding publications regarding the ERA of glyphosate

Methodology of the literature search B.9.13.1

Process of retrieving literature by the notifier B.9.13.2

The notifier GTF conducted systematic literature research as stipulated by Article 8.5 of the regulation 1107/2009 © For the period between the years 2001 and 2011. The notifier did not proceed exactly after EFSA (2011a).

Abstracts Plus' were queried for Glyphosate- or its metabolites detail. The results that were obtained by querying the databases for glyphosate-specific keywords were further filtered for the question of focusing on the fate and the characterization of unintended effects of glyphosate. In each of the years 2001 and 2011, between about 200 and 300 papers were identified summing up to 2.770 citations in total (80% peer-reviewed).

The area of ecotoxicology was covered by 483 peer reviewed publications that came with the submission of the dossier. Additional 180 publications were cited in the text, but t were not submitted (coded 'relo_nosub_cit', see below), referring e.g. to an Earth Open Source publication on glyphosate effects (Antoniou 2011), mainly older than 10 years and therefore not necessarily included in the submission.

B.9.13.3 Procedures of sighting and classifying the submitted literature by RMS

Steps of the procedure

- DocMIII, pp. 288-651, (glyphapplic_007) was scanned systematically, and all the references to the literature found were marked and labelled unambiguously in the pdf. Bookmarks with chapter headers and identity numbers for easy lookup were added to the pdf.
- Bookmarks for ease of navigation were also added to DocL (glyphapplic 016).
- Unique identity-numbers were assigned to each of the literature entries of DocM, DocL and the pdf-files of the submitted peer-reviewed publications. Notation is as follows:
 - o glyphapplic = essential documents submitted by the notifier with the application for renewal of approval as substantial part
 - o glyphnosubm = documents that were not submitted with the application but cited in the text of DocM as supplementary data
 - o glyphecotox = literature submitted with the application
- The exact sources (journal/issue/pages) necessary to identify a publication, which were provided by DocL (glyphapplic_016) were added to the original reference list of the managing body BVL. This was necessary for all of the publications.
- The information on the relevance and reliability given by the notifier on available literature was added to the references (relevance, reliability, Klimisch rating).
- Citations were added to the references that were not submitted but cited in the text of DocM (glyphnosubm xxx).
- Non-classified literature by the notifier (rel1_sub_nocit+norev) was assigned in a screening to the best-fit test area (e.g. fish amphibians, soil microbes, see chapter 'References').
- Comprehensive analysis and classification of the open literature.

Completion and assignment of 'assessment-area' categories

It was desired to follow the notifier's categorisation in general. These are the 13 chapters of the survey at hand (sub-structure of Annex B.9). The literature was categorised as 'birds', 'fish', 'amphibians', 'aquatic invertebrates', 'aquatic plants including algae', 'bees', 'terrestrial non-target arthropods', 'soil microbial community', 'plant disease and plant nutrient status', 'earthworms and soil macro-organisms', 'terrestrial non-target plants', 'POEA' and 'DART/ED'.

However, to characterise the main topics of a study it has been necessary to introduce some new classes of study topics, especially for the studies that were completely out of the scope of the ERA. The assignment has been done for \$31 studies that were submitted but neither cited nor reviewed in DocM (290 were rated rel1_sub_nocm+norev).

- Other: not assignable to a category
 - Soil Organisms: Collembolans, soil mites, additional to 'Earthworms' category
 - **General**: not assignable to a certain category, e.g. 'general consideration of herbicide use on terrestrial ecosystems'
- Reptiles
- Molluscs
- **Fate:** falsely assigned by the notifier to the 'ecotoxicology' category
- Soil quality: includes indicators of soil quality other than organism related

- Aquatic Microbes
- Monitoring
- Vertebrates/Mammals
- NTP: studies not assigned by the notifier, were classified 'NTP' while dealing with the effectiveness of herbicides to antagonize weeds. This was because the studies could give indication of the sensitivity range of weed species.
- Modelling
- Genotoxicity
- Pathogens: Refers to the section 'plant disease', which was dealt with by the notifier in the fate section of DocM (Anonymous 2012b).

Analysis of reliability and relevance of peer-reviewed literature B.9.13.4

Notifier

The notifier explained how studies were evaluated introducing an (arbitrary) categorization of the publications (taken from the definitions of Carr and Bleeke 2012). The notifier described the strategy of filtering and classifying the available literature as reproduced below from DocM (Anonymous 2012a).

'The peer-reviewed publications were divided into the four key disciplines within the submission that address exposure and hazard (toxicology, ecotoxicology, residues and environmental fate). Some publications contained information relevant to more than one technical discipline. In some cases, the disciplines originally assigned during the search process were revised to match the disciplines within the submission (for example, publications on effects of glyphosate on soil microorganisms were classified as 'environmental fate' in the original literature search but were reclassified as 'ecotoxicology' for the submission). The peer-reviewed publications identified for inclusion during the literature search were reviewed within each discipline and classified into one of the categories listed below by the notifier.

Category 0 publications

These are publications in which glyphosate is only mentioned as an example substance or is discussed/studied in a context that is not relevant or related to any of the regulatory sections or the exposure/hazard assessments within this submission; the publication is therefore outside of the scope of this submissions

Category 1 publications. These are publications that discuss glyphosate in a context relevant or related to the regulatory dossier sections and the conclusions fall within the conclusions of the exposure/hazard assessment. The publication is submitted with minimal or no comment or discussion.

Category 2 publications

These are publications that discuss glyphosate in a context relevant or related to the regulatory dossier sections and have conclusions that call into question the endpoints/conclusions in the exposure/hazard assessment. Additionally, Category 2 also includes publications with conclusions that support the risk/hazard assessment, and may be included in discussion of other relevant publications. For selected Category 2 publications, an OECD Tier-II type summary is provided in Addition to a reliability assessment according to Klimisch et al 1997 5 (Klimisch rating); limited comments and critical remarks are provided, as appropriate.

Category 3 publications

These are publications that discuss glyphosate in a context relevant or related to (1) non-regulatory endpoints that need to be addressed as per new Regulation (EC) 1107/2009; (2) sensitive allegations that have emerged or could emerge in the media; or (3) the regulatory dossier sections and have conclusions that are in disagreement with endpoints/conclusions in the exposure/hazard assessment (although the experimental design seems relevant at first glance). An OECD Tier-IF type summary was provided and a Klimisch rating assigned, and supplemented with critical review and discussion.

Category 'E' publications

These are peer-reviewed publications that were cited in the Earth Open Source document. This category includes publications that were already captured by the notifier literature search and are addressed within the appropriate discipline, as well as publications that were out of scope of the search (primarily as a result of being published prior to 2001). Publications already captured in the literature search are assigned a Category 1, 2 or 3 rating (as appropriate) in addition to a Category 'E' rating. An OECD Tier-II type summary has been prepared and a Klimisch rating assigned for each of the Category E publications. All Category 'E' publications are reviewed within the appropriate discipline, with most of the reviews provided within the toxicology dossier under Section IIA 5.10.'

For notifier relevance category (2 and) 3 studies, a formal and more of less comprehensive evaluation based on Klimisch et al. (1997) on the reliability of a study was conducted by the notifier. There are 4 categories: 'reliable without restriction', 'reliable with restriction', 'not reliable' and 'not assignable'. The relevance categories triggering the Klimisch evaluation are indicated by column 'UBA Classification study according to notifier treatment' in the comprehensive reference list (refer to chapter 7 and MS Excel sheet attached).

Rapporteur member state

Based on the general criteria of Klimisch et al. (1995), Küster et al. (2009) aimed to further develop and specify the demands on the reliability of peer-reviewed literature data, in particular for regulatory requirements on the ERA of pharmaceuticals. The categories of Küster et al. (2009) were taken over as follows:

- Category I

Data are reliable without restriction according to the instructions in the EMEA guideline (EMEA 2008) and are therefore usable within the environmental risk assessment. This category includes data from the literature or reports,

- Which were carried out or generated according to internationally accepted test guidelines (e.g. OECD, ISO).
- In which the test parameters documented are based on a specific (e.g. national) testing guideline (e.g. DIN).
- Months all parameters described are closely related/comparable to a guideline which in inethod.

Category II

Data are reliable with restriction and are usable within the environmental risk assessment. This category includes data from the literature or reports

- In which the test parameters documented do not totally comply with the respective test guideline, but are sufficient to evaluate the data.
- In which investigations are described which cannot be subsumed under a testing guideline, but which are nevertheless well documented, plausible and scientifically acceptable.

Category III

CESTADO DE LA CONTROL DE LA CO Data are not reliable and are not usable within the environmental risk assessment. This category includes data from the literature or reports,

Where the documentation is not sufficient for an assessment.

Which were carried out or generated using a non-accepted method or which are not well documented, plausible and scientifically acceptable?

Which are only listed in short information (e.g. abstracts, summaries, data safety) sheets) or non-peer-reviewed literature (e.g. dialogue).

sheets) or non-peer-reviewed literature (e.g. diploma/master thesis).

The evaluation criteria set by Küster et al. (2009) were further refined by international groups of regulators, leading to the latest publicly available initiative on the harmonication. Kase et al. (2012). The reliability and the relevance of literature underlie separate examination. Therefore, even not reliable data can have supporting character. Test data with high reliability and high relevance will have high weight in risk assessment. Test data with either high reliability or high relevance could function as supportive evidence in risk assessments: see Küster et al. (2012).

RMS opted for following evaluation criteria:

Figure B.9.13-1: Assignment of literature data to categories of high and low reliability and relevance for ERA. Modified after Klimisch et al. (1997).

There are criteria to identify 'critical', 'supporting' data and 'low weight data' for the risk assessment. Critical data are data of sensitive species, typically including endpoint for risk assessment (as long as they are reliable and relevant). Supporting data are not described as critical datasince they may suffer from deficiencies. All reliable and relevant data are used. These include studies using less sensitive species/endpoints, studies using non-standard statistical methods. This can help e.g. identifying sensitive taxa, results and conclusions can be combined for risk assessment and for derivation of uncertainty. All available toxicity data, both critical and supporting are subject to assessment and are reported. Uncertainty levels in risk assessment are estimated by the use of critical and supporting data and extrapolation from all available data.

Finally, the information provided by the experimental studies that were evaluated has been summarized in tables and concluded for its use in ERA. The table below shows a blank table with dummy records that Solution of the state of the st was developed for the particular use in this study.

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Table B.9.13-1:Blank general evaluation table with dummy records used as a form to be filled in this survey

litID Assessment	Author	Year	Title	Source	
area					Mills of.
		Reliabili	ty	· · · · · · · · · · · · · · · · · · ·	2002
Purpose of the study	, Description of end	points		7	F. 18
Test compound, app	lication procedure, e	exposure period, prot	ocol		,
Experimental approa	ach, Statistical design	n, test environment		3, 3	JOSEP .
Test organisms				ζξ΄,,ω`	
Biological effects				'9. O %	
Relevance of the st	udy for Environme	ntal Risk Assessme	nt, appropriatei	ness of study endpoints	
	-	Biological Rel		10,00,0	
1 Is an appropriate t	est species/ life-stage			4.5.80	
2 Is the magnitude of		al significance, e.g. i	s a very small sta	ntistically significant	
	gical manifestation le growth or reproduc	tion?	20	gene induction vs.	5***
		Environmental 1	Relevance	2, 0,	
1 Is the substance te	sted representative a	nd relevant for the si	ibstance being a	ssessed?	
2 Do the tested concavailable)?	entrations relate to n	neasured or predicted	l environmental	concentrations (if	
3 Have parameters i conditions)?	nfluencing the endpo	oints been considered	l adequately (e.g	. pH, temperature, light	2000
Concluding weight	of evidence/propos	6	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		
Type of informatio weight)	n (Critical, support	ing, low	\$		
Consideration/cond	luding score	A HILL SO	•		

B.9.13.5 Assessment of the open literature submitted

The literature on the ecotoxicological effects of glyphosate, the glyphosate salt, its metabolites and diverse commercial formulations was categorized according to 12 areas. The areas of risk assessment were covered for birds, fish, amphibians, aquatic invertebrates, aquatic plants including algae, terrestrial non-target arthropods, soil microbes, plant diseases and plant nutrient status, earthworms and soil macroorganisms, terrestrial non-target plants, the special case of polyethoxylated tallowamines as surfactive additives and endocrine disruption/reproductive toxicity.

For the whole area of ecotoxicological studies, the notifier submitted many studies that were rated category 1 or 2 and were therefore not considered for further analysis. Some studies were labelled category 3 (DocL) but not processed further in the text. Those studies were not categorised in one of the twelve areas nent cole gives

ole g of risk assessment and were for this reason not listed in the overview paragraph of each section. The following table gives an overview on the total dataset and the structure of the classification by the notifier.

Table B.9.13-2: Classification of glyphosate related open, peer-reviewed literature that is used by this evaluation according to its submission, citation and revision status. Frequencies of the Sign submitted peer-reviewed data is given.

Category	Notifier relevance, submittance, citation, review status	No. of publications
Category 0: not submitted, but cited in DocM	rel0 nosub cit	180 K.S.
Category 0: not submitted and cited in DocM	rel0 nosub nocit	26 6 3. 0 6
Category 1: submitted and cited but not reviewed	rel1 sub cit+norev	16 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
Category 1: submitted only, not used and	rel1 sub nocit+norev	\$\frac{\partial \text{290}}{\text{50}}\$
Category 2: Submitted and revied in DocM	rel2 sub cit+rev	
Category 2: submitted only, not used and	rel2_sub_nocit+norev	106 5 11
Category 3: not submitted, but used in DocM	rel3 nosub cit+rev	<u>11</u>
Category 3: Submitted and reviewed in DocM	rel3 sub cit+rev	<u>59</u>
Category 3: submitted only, not used and	rel3 sub cit+rev rel3 sub nocit+norev	<u>14</u>
Official documents provided with the application,	submit notifier	<u>19</u>
	Total number of studies submitted with	694

B.9.13.6 Assessment of the open literature from Non-Governmental Organization (NGO)

In total, over 100 studies on ecological risk assessment were cited and submitted by NGOs. All submitted publications were evaluated by RMS Out of the submitted publications, over 60 studies were recognized as overlapping with publications submitted by the notifer. Relevant and reliable studies (UBA2) have been described in the above mentioned evaluation table and have been considered for the literature review process

B.9.13.7 Effects on birds (KIIA 8.16)

ption and ption All of the four submitted publications regarding the toxicity of glyphosate to birds have been subjected to detailed description and evaluation in the following.

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Oliveira et al. (2007)

glyphecotox_001	Oliveira,	2007	Effects of the herbicide	Reprod Toxicol 23 (2):182-91		
Birds+DART/ED	AG, Telles	2007	Roundup on the	DOI:		
Dilus DARI/ED	LF, Hess		epididymal region of			
	RA,		drakes Anas platyrhynchos.	10.1010/j 1cp10t0x.2000.12.003.		
	Mahecha		drakes mas placy my nemos.	E.S.		
	GAB,			14.9		
	Oliveira CA					
			Reliability	10.1016/j reprotox.2006.1\$004.		
Purpose of the study	7		Test in vivo the hypothesis	hat glyphosate affects the		
Description of endpo				ry protein (StAR) and aromatase		
			activities responsible for and	drogenic and estrogenic hormones		
			in birds	13 6 E		
Test compound, app	lication procedur	re,		lymal regions; morphometric,		
exposure period			histochemical analyses (enz			
			immunohistochemical analy			
				and hormone level analyses		
			(testosterone, estradiol) wer	e performed		
Experimental approa	ach, Statistics, tes	st		a 360 g glyphosate /L; 480 g/L		
environment			isopropylamine salt,			
Test organisms				ion of 2 water diluted solutions		
D: 1 : 1 cc .				oundup via gavage for 15 days		
Biological effects	1 C F :	. 1D: 1	0 1 1	Non-GLP STATE OF THE PROPERTY		
Relevance of the stu	dy for Environm		ssessment, appropriateness of study endpoints			
1.7			Biological Relevance			
1 Is an appropriate test species/ life-stage(s)				The maltard duck as a standard model species is considered appropriate for the respective research question.		
studied? 2 Is the magnitude of effects of significance						
				were below the relevant NOELs		
to cause a (population	on) relevant errec	1.	in standard tests (201 mg ai	ets on the endocrine system and		
		S. T. T. O.	the reproductive tract of ma	le individuals are considered		
			relevant for the population i			
3 Is the ecotoxicolog	gical manifestation	on level	The endpoints reflect a broa	d range of possible deformations		
appropriate for the a	ssessment?	on level	of the male reproductive sys			
		Č ŽÍ ŠĒn	vironmental Relevance			
1 Is the substance te	sted representativ			Roundup formulation that was not		
relevant for the subs				further specified (e.g. surfactants used). The effects could not		
		ST.	be assigned to the active ing			
2 Do the tested conc			PEC_{SW} FOCUS step 1 = 0.1			
predicted environme	V- 0 V-					
3 Have parameters i		ndpoints	Environmental parameters a	nd the conditions of animal		
been considered adequately			ental period were not mentioned,			
Considered adequately		but the study was conducted under the ethical principles of the				
G 1 1: ::3	0.8	•	researching University.			
Concluding weight	evidence/propo	osed		re for reproductive studies via		
action	•			aptake is criticized by the notifier.		
action				For the mallard duck as an aquatic dabbling bird it is assumed acceptable as a worst case exposure scenario.		
Type of information	(Critical summer	tina	Supporting information	aposure scenario.		
low weight)		ung,				
Consideration/concluding score			UBA2			

Eason, T.H., Scanlon, P.F. (2007)

glyphecotox_358	Scanlo	, T.H., on,	2002	Effects of Atrazine and Glyphosate ingestion on	Zeitschrift F Jagdwissens	chaft 48:281-	
	P.F.			body weight and	285	JD HOT	
				nutritional well-being of		400	
				Coturnix quail		4. 16.	
				Reliability			
Purpose of the study				project was to test the effects of			
Description of endpoin	its			a) of ingesting foods treated w	ith Glyphosate. A	trazine was	
				ne experimental design.	NO. O	TO TO THE PERSON OF THE PERSON	
T	-4			yer weight, body fat content f calculating the exposure con-	Control in	C. 1.11	
Test compound, applic procedure, exposure pe				d in definite body weight related			
procedure, exposure po	21100	concent	rations in	n the food items? Of 347, 1388	and 3470 som h	ave heen	
		mention	ed The	calculations were based on red	ormended field s	annlication rates	
				supplier's labels, but have nex			
		The con	nmon na	me of the test compound 'glyr	hosate' was missr	elled as	
		'glycopl	nosphate	e' in the German and English s	ummaries.		
Experimental approach	ı			s, 10 male quails used for each		nents.	
Test organisms		Adult m	ale, Japa	anese quail, (Coturnix Japonica	i)		
Biological effects				phosate reported.			
Relevance of the study	for Env	rironment		Assessment, appropriateness of	f study endpoints		
Biological Relevance							
1 Is an appropriate test species/ life-stage(s) studied?							
				ause a (population) relevant e	ffect?	-/-	
3 Is the ecotoxicologic	al manif	festation l		propriate for the assessment?		-/-	
Environmental Relevance							
				vant for the substance being as		-/-	
				den vironmental concentration	s?	-/-	
				eroconsidered adequately?		_/-	
Concluding weight of				of the paper suggests that the			
evidence/proposed ac	tion			animal toxicological testing ar			
		permission to kall in sum 72 vertebrate organisms. The study was not further considered relevant after checking the experimental design.					
Type of information		Low	ca feren	ant after checking the experim	entai design.		
(Critical, supporting,	low	LOW-WE	igut 				
weight)	IOW	6,11,2	23				
Consideration/conclu	ding 💐	IBA3					
score	Z 2	Low we					
Stoleson et al. (2011)							
glyphocotox 6149	Stologon	CII	2011	Ton-voor response of	Forest Feelogs	and	

	glyphecotox_6148	Stoleson, S.H., Ristau, T.E., deCalesta, D.S., Horsley, S.B.	2011	Ten-year response of bird communities to an operational herbicide- shelterwood treatment in a northern hardwood forest	Forest Ecology and Management 262 (7):1205- 1214. DOI: 10.1016/j foreco.2011.06.017.				
		Reliability							
ſ	Purpose of the	Long-term monitoring study of bird occurrence in a 'Shelterwood system' after seed cut							
	study	and herbicide application (a silvicultural system in which overstory trees are removed in a							
25	Description of	series of cuts designed to achieve a new, even-aged stand under the shelter of remaining							
35	endpoints	trees, http://en.wikipedia.org/wiki/Shelterwood cutting).							
70	,	Fixed-radius point counts of birds at two points per plot: overall abundance, abundance of							
``		migratory guilds,	nesting	guilds, vegetation cover, avian	community similarity				

	Test compound, application procedure,		resprayed with a tank mix containing 364 ml glyphosate neturon methyl (Oust ®) in 38 l water per ha zed split-plot experimental design, half of each of 10 plots ride in August of 1994, remaining 5 plots as controls 1994 (pre-treatment period) and 1994-2004 (post-treatment period)
	exposure period		
	Experimental approach,	Repeated measures randomi	zed split-plot experimental design, half of each of 10 plots
	Statistics, test	Time-series between 1992-1	zed split-plot experimental design, half of each of 10 plots ide in August of 1994, remaining 5 plots as controls 994 (pre-treatment period) and 1994-2004 (post-treatment
	environment	period)	74. 9
		Statistics:	odels to model the effects of year, site, herbicide treatment
		Generalized linear mixed mo	etation and avian target variables. Site as a random effect,
		and year herbicide treatmen	t and cutting sequence as fixed effects
		Shannon Evenness scores w	ere modelled using a Beta distribution and a logit link function,
			a Gaussian distribution and identity link, regetation cover distribution and identity link, whereas bird abundances were
		modelled using a Poisson dis	stribution and a log link function (Little et al., 2006).
		maximum-likelihood (REM	L) method and the Kenward Roger procedure to adjust the
		denominator degrees of free	dom irs with significant differences between control and
			e conducted using Tukey-Kramer tests
		Multiple regression analyses	to determine the effects of understory vegetation variables
			and shrub birds, and the effects of overall bird abundance and similarity of avian communities pre- and post-treatment. We
		used analysis of similarities	to test the null hypothesis that avian community structure did
			een herbicide and control plots.
	Test organisms	Naturally occurring North A	merican bird species, vegetation
	Biological effects	Long-term monitoring study	of bird occurrence in a 'Shelterwood system' after seed cut
		and herbicide application (a	silvicultural system in which overstory trees are removed in a
		series of cuts designed to actives, http://en.wikipedia.org	heive a new, even-aged stand under the shelter of remaining
		Fixed-radius point counts of	birds at two points per plot: overall abundance, abundance of
		migratory guilds, nesting gu	ids, vegetation cover, avian community similarity
	Relevance of the stud		sessment, appropriateness of study endpoints ogical Relevance
	1 Is an appropriate te	est species/ life-stage(s)	The 'natural' composition of plant and bird species at all
	studied?		life stages has been analysed. This level of complexity is
	2 Is the magnitude of	f effects of significance to	highly appropriate for ERA.
	cause a (population)		,
	3 Is the ecotoxicolog appropriate for the as	ical manifestation level	Endpoints refer to population and ecosystem level effects
	appropriate for the as	- S - W - C -	onmental Relevance
		sted representative and	Since a tank mix has been tested consisting of a mixture of
	relevant for the subst	ance being assessed?	glyphosate and sulfometuron methyl, the effects could not be assigned to a single substance. The toxicity of the mixture
	co ^Q ,		used can be estimated assuming a 'concentration addition
	14,50		model', probably leading to glyphosate as the determining
			factor (analysis not conducted within the scope of this survey).
	2 Do the tested concepredicted environme.	entrations relate to ntal concentrations?	Yes, the tank mixture was applied at recommended application rates
	3 Have parameters in	nfluencing the endpoints	The statistical design (GLM) included time, herbicide
	been considered adec	quately?	treatment, site, cutting sequence as explanatory variables in a model; so ecologically potential influencing factors in this
Š			design have been adequately considered.
75.7	9		
10, 2			
E. W. SKII			
SON SON	Glyphosate Renewal Group	AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020
	Glyphosate Renewal Group	AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020
STOR OF STORY OF STOR	Glyphosate Renewal Group	AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Concluding weight of evidence/proposed	The silvicultural practice of shelterwood systems and		
action	thus the experimental approach is quite specific for		
	North American practices and not transferable to		
	European agricultural practices. Nevertheless, the		
	authors describe an impressive example of indirect		
	North American practices and not transferable to European agricultural practices. Nevertheless, the authors describe an impressive example of indirect effects of herbicides on 'ecosystem level' and the		
	complexity of an assessment that is not covered by		
	'standard ERA' by far. The transferability is further		
	restricted by the use of a tank mixture of two her bicides.		
	The study is recommended to be considered as an		
	example of indirect effects and profound statistical		
	analysis of monitoring data.		
Type of information (Critical, supporting, low	Supporting information		
weight)	12 6 16 16 16 16 16 16 16 16 16 16 16 16 1		
Consideration/concluding score	UBA2		

Sullivan, T.P., Sullivan, D.S. (2003)

		•	* 11 0	
glyphecotox_615		2003	Vegetation management and	Environ. Rev. 11 (1):37-59.
	T.P.,		ecosystem disturbance:	DOI: 10.1139/a03-005.
	Sullivan,		impact of glyphosate	
	D.S.		ecosystem disturbance: impact of glyphosate herbicide on glant and	
			animal diversity in	
			terrestrial systems	
			Reliability	
Purpose of the stu		Compre	hensive review on effects of Glyp	hosate on the biodiversity of
Description of en	dpoints	NTP, N'	TA, birds and mammals under the	general assumption of a
		relativel	y non harmful environmental imp	act of the substance within
			on management practices	
			abundance, numbers (richness) an	
Test compound, a			sible to describe in detail, since the	
procedure, expos	are period		tion, not an original experimental	work
			tion rates:	
	w.	Forest e	cosystems: between 1.1 and 3.3 kg	g Glyphosate/ha once a year
		Agricult	ture/Wetland: variable dose-rates,	nor further specified by the
	40,4	authors		
Experimental appress environment	roach, Statistics	Conside	red only: Measures within 'vegeta	
test environment	. 45 LOS COS	manager	ment' programs for enhancing cro	p production (not the same as
	E. 2. 18	weed co	ontrol in European countries)	
	CILLIO TO	Peer-rev	viewed journal publications describ	
	80 51 61	small m	ammals, large mammalian herbivo	
,	Light Con	forests of	or agricultural landscapes. Consider	
	7:5	Studies	must provide numbers and compo on) in terrestrial ecosystems	sition of species (for richness
	9, 11,	For hird	s, 7 studies have been analysed, the	as total number of replicate
	©` ©	cituation	ns was 10 for statistical comparison	
26/23	9	relative	changes compared to the pre-treat	
S. F.		control a	and treatment	ment period and between
Test organisms	roach, Statistics	Birds (se	ongbirds and waterfowl)	
Biological effects	<u> </u>		rm (mainly first year after applica	tion) effects on species
10-54°			s (decline) and abundance (increase	
11.10			(increase)	*
			whole study periods, most effect	s disappeared
				ontrols and treatments over several
<u> </u>			the studies	
£,				
Test organisms Biological effects Glyphosate Renewal G				
Glyphosate Renewal G	roup AIR 5 – July 2020		Doc	: ID: 110054-MCA8 GRG Rev 1 Jul 2020
GIJPHOSAIC REHEWAI O	Toup Time 5 July 2020			. 13. 110054-10010_GRG_REV 1_Jul_2020

Relevance of the study for Environr	nental Risk A	ssessment, appropriateness of study endpoints	
	Bio	ological Relevance	
1 Is an appropriate test species/ life-stage(s) studied?	Communit studies hav	ies of naturally occurring bird species in field monitoring we been assessed over 2-4 years, which could be ecologically want	
2 Is the magnitude of effects of significance to cause a (population) relevant effect?	Since the methodology was not described in detail for each of the studies the statistical significance could not be judged. The studies were conducted on population level and could therefore considered relevant on this particular level of organisation		
3 Is the ecotoxicological manifestation level appropriate for the assessment?	Population manifestati	changes over time is amongst the highest possible levels of ion	
	Envir	ronmental Relevance	
1 Is the substance tested representative and relevant for the substance being assessed?		The test substances were not uniform and not described in more detail than the mere mentioning of "gyphosate" as the test substance.	
2 Do the tested concentrations relate to predicted environmental concentrations?		Yes, because recommended field rates have been tested	
3 Have parameters influencing the endpoints been considered adequately?		-/- <u>if</u> 1, 0 ,	
Concluding weight of evidence/praction	oposed	The paper deals with the impact of the Anglo-Saxon practice of managing the vegetation for purposes of enhancing forest and other crop yields. This includes especially the control of roadside vegetation and intends the maintenance of ecological processes in terrestrial ecosystems. However, the review shows the transiency and indirectness of effects of Gyphosate treatments on the biodiversity of birds, most probably mediated by ephemeral changes of the (shrub) vegetation.	
Type of information (Critical, suplew weight)	porting,	Supporting information	
Consideration/concluding score	, total	0.1842	

B.9.13 7.1 Summary of the relevant literature on birds

There was no critical data that must imperatively be included in an environmental risk assessment for the active substance glyphosate. It was not possible to distinguish between the effect of the technical glyphosate and the surface active substances added to the commercial formulations by the experimental designs used. Two publications gave clues on indirect effects of glyphosate use on the biodiversity of birds on a regional scale in a long-term by subtle alterations of the vegetation structure.

B.9.13.8 Effects on other terrestrial vertebrates

B.9.138.1 Summary of the relevant literature on terrestrial vertebrates

rets e substantial de la constantial de la const Please refer to sections regarding amphibians and to the summary of the relevant literature on surface active substances in glyphosate-based formulations (Vol. 3; chapters B.9.9.2 and B.9.11).

B.9.13.9 Effects on aquatic organisms

B.9.13 9.1 Fish (KIIA 8.16)

Filizadeh, Y., Islami, H.R. (2011)

glyphecotox_007	Filizac Y., Isla H.R.		2011	Toxicity determination of three sturgeon species exposed to glyphosate	Iranian Journal of Fisheries Sciences 10 (3):383-392		
				D - P - L 2P4-	10,10		
Purpose of the study Description of endp		formula	ition round	Reliability the acute toxicity (lethal concentration towards three juvenile Sturged ing behaviour (not analysed)			
Test compound, application procedur exposure period	re,	Roundu	undup formulation (not further specified) with 41 weight (Glyphosate, itent of POEA not specified n-GLP, protocol resembles acute fish toxicity testing after guideline OECD				
Experimental approach, Statistics, test environment Dose-response study, 10 doses between 10 and 100 mg as 7L, irregular spacing non-geometric series; three treatment replicates with 8 fishes each; mortality we recorded after 6, 12, 24, 48, 96, 168 hours; static exposure in 100L replicate ta Finney's Probit regression and 95% confidence from the formula of LC ₅₀ ; comparison between species by One-way and VA and Tukey's post-hoc test, tested for normality by Kolmogorov-Smirney-test				h 8 fishes each; mortality was posure in 100L replicate tanks its for derivation of LC ₅₀ ;			
Test organisms Biological effects							
Relevance of the stu	idy for E	nvironm		Assessment, appropriateness of st	tudy endpoints		
stage(s) studied? 2 Is the magnitude of	I Is an appropriate test species/ life- stage(s) studied? The test species are considered of temperate to sub-tropical origin and generally as suitable for an indication of intrinsic sensitivity as the standard species in ERA. The juveniles could be considered most sensitive stages. 2 Is the magnitude of effects of significance to 7-						
3 Is the ecotoxicolog appropriate for the a	gical ma	nifestațio					
	Environmental Relevance						
representative and relevant for proportion the substance being assessed?			oportion o	not be judged because a detailed do f surfactant in the respective form	ulation is unknown.		
			otifier was ere.	ed environmental concentration of about 0.1 mg a.i./L and thus far be	elow the concentrations tested		
the endpoints been considered adequately? differences in wa effects beyond the			ot indicated fferences if fects beyon	ons in oxygen, ammonia and nitrited how the SD was calculated (all some water parameters occurred treated the toxic effects of Glyphosate	systems, only controls?). If ment related, this could cause		
Concluding weight of evidence proposed action The description of the study is deficient; however, the LC ₅₀ 's 96 hou after exposure (20-26 mg a i./L) are below the acute studies provided the notifier and are located rather near the chronic toxicity of a full cycle test (25.7 mg/L). Because the content of POEA that is usual grossly determining the toxicity of Roundup formulations was not stated by the authors, the study could not be taken into account as additional or critical information on the ERA of the active substance glyphosate.				he acute studies provided by chronic toxicity of a full life t of POEA that is usually lup formulations was not be taken into account as			

Type of information (Critical, supporting,	Low weight	
low weight)		;
Consideration/concluding score	UBA3	Z.

Guilherme et al. (2010)

glyphecotox_008	Guilherme,	2010	European eel (Anguilla	Archives of Environmental		
	S., Gaivão,		anguilla) genotoxic and	Contamination and		
	I., Santos,		pro-oxidant responses	Toxicology 62 (4):107-117.		
	M.A.,		following short-term	DOI: 10.1907/s00244-011-		
	Pacheco, M.		exposure to Roundup® a	96864.5		
			glyphosate-based herbicide.	96869.5		
			Reliability			
Purpose of the study			oxicity and oxidative stress indica			
Description of			vant concentrations after short ter			
endpoints	Genotoxici	ity: Come	t assay: strand breaks, alkali labik	sites expressed in a Genetic		
); ENA - erythrocytic nuclear abr			
			catalase activity, glutathione S-tra			
			thione reductase) and non-enzym	atic (total glutathione content)		
TD			eroxidation (LPO)	, 405 /T (260 /T 2000/		
Test compound,	Glypnosate	as Koun	dup with isopropylammonium-sal	t 485 g/L (360 g/L = 30.8 %)		
application procedur exposure period	Evposure f	70 PUE <i>P</i> For 1 and 3	A as surfactant. S B days. Application procedure not	described in detail		
exposure period	Non GI D	but proce	dures were well described and ref	Caranaed to other paer reviewed		
	protocols,		0 % 5%	creneed to other peer-reviewed		
Experimental			and 3 days of 6 fishes in each of	six 20L aquaria; divided into 2		
approach, Statistics,	treatment r	enlicates	for control, 58 µg Roundup/L (equ	ials 18 ug glyphosate/L) and		
test environment	116 ug Ro	undun/L (36 ug glyphosate/L).	and to pg gryphesure. 2) und		
Test organisms			la arguilla, average length 25 cm.	, average weight 32 g		
Biological effects			nage with increasing exposure tim			
			Cornet assay; for ENA more pror			
			ve stress was recorded.			
Relevance of the stu-	dy for Environm	ental Rist	Assessment, appropriateness of s	study endpoints		
	6		Biological Relevance			
1 Is an appropriate			species that can be considered bot			
test species/ life-	of cold and	l warm tei	mperate environments, and is thus	perate environments, and is thus most suitable to cover worst-		
stage(s) studied?	case expos					
2 Is the magnitude of effects of significant			of the experiment was poor in fac			
to souse a (nonulatio	re preprieate i		nould be taken as averages for furt y but suspected that 1 aquarium e			
relevant	renlicates					
to cause a (population relevant effect?	pseudo-ren	licates. T	he replication was not considered	independent. Hence, it was not		
	 OF DOSSIBLE TO 	judge the	replicate fish per treatment have be the replication was not considered reliability of the data analyses.			
3 Is the ecotoxicological manifestation level appropriate for the assessment?	The endpo	<i>3</i> C	ared can be taken as early warning			
ecotoxicologica	oxidative s		e individual level but could not be			
manifestation level	for populat	tions of ee	els and other temperate fishes in a	real environment.		
appropriate for the						
((()						
			vironmental Relevance			
1 Is the substance tes			Commercial formulation con	taining POEA		
relevant for the subs			A condition A of the condition A	1 (mars DEC and 1 (GZ		
2 Do the tested conc	entrations relate	to ma ²		nd (max. PEC surface water 677		
predicted environme	mai concentratio	шѕа	step 1 scenario, the concentra	ifier of 101 µg/L in a FOCUS		
3 Have parameters in	nfluencing the or	ndnointe		rs were not measured explicitly		
been considered ade		iapoilits	during the experimental period			
2 Do the tested concentration of the predicted environments of the				c ID: 110054-MCA8_GRG_Rev 1_Jul_2020		

Concluding weight of evidence/proposed action	The study is well conducted, except for the statistical evaluation. Regardless, the results can be taken as an indicator of genotoxic but not of oxidative stress effects of realistically low water concentrations in fish. Study describes physiological parameters, no mortality endpoints are stated.
Type of information (Critical, supporting, low weight)	supporting information
Consideration/concluding score	UBA2

Hued, A.C. et al. (2012)

	Fish	Hued, A.C., Oberhofer, S., de los Ángeles Bistoni, M.	2012	Exposure to a Commercia Glyphosate Formulation (Roundup) Alters Normal Gill and Liver Histology and Affects Male Sexual Activity of Jenynsia multidentata (Anablepidae Cyprinodontiformes)	Environmental Contamination and
	Purpose of the study Description of endpoints	multidental Glyphosate liver histor	ta after ac LC ₅₀ after athologic	of the neotropical, South-Ame ute and subchronic exposure t er 96h, Male sexual activity af	to sublethal concentrations of fer 7d and 28d of exposure, gill and of toxicity experiments; scores from 0-
	Test compound, application procedure exposure period	25.3 % sur Application Non-GLP, cited	Static exposure for 96h, 7d and 28d ated and referenced in the literature		
	Experimental approach, Statistics, test environment	96 h, dupli duplicate Subchronic female) for No clear in	testing: (7 and 28 dication i	ontrol and treatment groups, 4 0.5 mg Roundup/L of two groundays f the duplicates of the treatme	5, 60, and 100 mg Roundup/L for male, 4 female fishes per ups of 9 individuals (5 male, 4 nts have been the replicates for for the testing procedures and for the
	Test organisms	Jenynsia m (means ± S was 0.58 ±	Ds) were		and female fish standard lengths 6 mm, respectively. The mean weight or female fish.
	Biological effects	LC ₅₀ (96h) significantle exposure. Several dos acute tests, exposure gresults, the mg Rounds	= 19.02 m y lower n se-depend for the su roup; since total histo	ag Roundup/L = 14.2 mg a.i./I umbers of copulations per ma ent pathological alterations of abchronic testing the effects we the single histological endpo	L; subchronic exposure caused
Selection of the select	Biological effects Biological effet Biological effet Biological effet Biological effet Biological effet Biol	AIR 5 – July 2020			Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020
1					

	Relevance of the study for Environmental Risk A	** *
	Biol 1 Is an appropriate test species/ life-stage(s) studied?	The species has a special mode of reproduction, as being sexually dimorphic (male differentiate a gonopodium if needed) and livebearers. It could be seen as a well suited model for sexual behaviour of males as claimed by the authors, but the species is very unlikely a taxonomically and behaviourally representative of temperate European fish species. It is therefore considered as not relevant for ERA.
	2 Is the magnitude of effects of significance to cause a (population) relevant effect?	Yes
	3 Is the ecotoxicological manifestation level appropriate for the assessment?	The histological endpoints 'gill' and 'liver' measured could serve as indicators of general individual yitahty (stress level) of an organism and its reproduction fitness. It has been shown that the sexual system of males was affected. This could have severe effects on the stability of a fish population on the long term.
	Envire	onmental Relevance
	1 Is the substance tested representative and relevant for the substance being assessed?	Although not specified precisely, the tested formulation is likely to content POEA as surfactant. This causes limited validity regarding effects of Glyphosate that does not contain POEA.
	2 Do the tested concentrations relate to predicted environmental concentrations?	Most of the concentrations tested in the acute testing exceeded environmentally realistic concentrations by far. The concentration of 500 µg/L tested in the subchronic test
	3 Have parameters influencing the endpoints been considered adequately?	The environmental parameters have been holding constant, the right cycle was 12:12 hours light/dark. There was no measurement of e.g. water quality parameters that could cause additional stress concealing toxicant effects.
	Concluding weight of evidence/proposed action	The environmental parameters have been holding constant, the light cycle was 12:12 hours light/dark. There was no measurement of e.g. water quality parameters that could cause additional stress concealing toxicant effects. There are some obscurities in the description of the statistics and the test substance. The study could be taken as a further source of information that realistic concentrations of Glyphosate in surface waters could have a pronounced long-term effect on the populations of fishes. It is not distinguishable if the effect on the endpoints was due to the active ingredient glyphosate or (more likely) to the surfactant that was contained at 15.3 % of the formulation. supporting information
	Type of information (Critical supporting, low weight)	supporting information
	Consideration/concluding/score	UBA2
	Type of information (Critical, supporting, low weight) Consideration/concluding score Glyphosate Renewal Group AIR 5 – July 2020	
Solitor Solito	Glyphosate Renewal Group AIR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Kelly et al. (2010)

glyphecotox_01	Kelly,	2010	Synergistic effects of	Journal of Applied Ecology Volume:		
Fish	D.W., Poulin, R., Tompkins,		glyphosate formulation and parasite infection on fish malformations	47 Issue: 2 Pages: 498-504 Url: http://onlinelibrary.wiley.com/doi/10/1 111/j.1365-2664.2010.01791.x/pdf		
	D.M., Townsend		and survival	DOI: 10.1111/j.1365- 2664.2010.01791.x ISSN: 1365-2664		
	, C.R.		Reliability	(online)		
Purpose of the stud			s of multiple stressors, i.e. th	e combined effect of glyphosate and		
Description of endpoints	fish (onl	ly the 1st o	es Telogaster opisthorchis or of two independent experimental deformation of juvenile fis			
Test compound,	Glyphos	sate 360 (c	commercial formulation, Rav	vensdown, New Zealand), 360 mg a.i/L,		
application	10-20 %	POEA su	ırfactant	vere provided via the intermediate host		
procedure, exposur period		pyrgus an	tipodarum snails	vere provided was the intermediate nost		
Experimental		ic potentia	of the herbicide glyphosate	is assumed to enhance the disastrous		
approach, Statistics test environment				Fined treatments, 8-fold replicated in 32 st. No parasite, no glyphosate, 2) parasite,		
test environment	no glypł	nosate, 3)	No parasite, 0.36 mg glyplo	sate/L, 4) Parasite, 0.36 mg glyphosate/L Proot transforming the data and then		
		g ANOVA		her's protected least significant difference		
Test organisms			anomalus freshwater fish, T ted host snalls Potamopyrgu	elogaster opisthorchis trematode infection s antipodarum		
Biological effects	combina	ation treat		rasite treatments alone, but for the were more frequent in parasitized fish		
Relevance of the st			Risk Assessment, appropriateness of study endpoints			
	•		Biological Relevance			
1 Is an appropriate test species/ life-stage(s) studied? 2 Is the magnitude of effects of significance to cause a (population) relevant effect?			Zealand freshwater fish share The effects described in the	ndication that juvenile stage sof New ould be less suitable for ERA than others is study regarding the synergistic effect		
			were clear			
3 Is the ecotoxicolo level appropriate for			•	nation are relevant endpoints		
1 To 4b to 4 4	Si the to	4-4:	Environmental Relevance			
1 Is the substance t and relevant for the assessed?			formulations that contain F	tudy is only valid for glyphosate POEA		
2 Do the tested con				d be seen as the ,upper edge' of the		
predicted environm				ncentration in real surface waters		
3 Have parameters endpoints been con	sidered adequ		not been regarded by the ar			
Concluding weigh evidence proposed			ecotoxicological theory: r on the endpoints observed the factors are not consid	general mechanism of the many multiple stressors act additively d; It is of limited value for ERA because lered separately and safety factors es caused by synergisms or enhanced		
Type of information	on (Critical,		low weight			
supporting, low w	eight)		-			
Consideration/con	icluding score	<u> </u>	UBA3			
evidence proposed Type of informatic supporting, low w Consideration/con	up AIR 5 – July 2	0020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2		

Salbego et al. (2010)

	glyphecotox_020 Fish	Salbego, J., Pretto, A., Gioda, C.R., de Menezes, C.C., Lazzari, R., Radunz Neto, J., Baldisserotto, B., Loro, V.L.	2010	Herbicide formulation with glyphosate affects growth, acetylcholinesterase activity, and metabolic and hematological parameters in piava (Leporinus obtusidens)	Arch Environ Contam Toxicol 58 (3):740-5, DOI: 10.1007800244- 009-94645.
		, : :	Relia	bility	
	Purpose of the study Description of endpoints	and various metabo Leporinus obtuside Weight gain, condi	m glyphosate blic and hem ens (Piva) tion factor (erythrocyte samples	e exposure on growth, Acetylchold atological endpoints in the omniver weight * length-3), daily food con- counts, total leukocyte counts and	nesterase activity prous fish sumption Hematocrit,
	Test compound, application procedure exposure period	Acetylcholinestera Glyphosate as the icontained 48% of to not stated. Exposure time 90 cowater renewal confor 8 days by chemical remained nearly conformation.	se activity fi sopropylam he acid equi lays litions: ever ical analysis onstant over	om homogenates of brain and musine salt in the commercial formula valent of the salt content of POEA y 4 days water exchange, water cos of glyphosate and the main metal the test period of 8 days to check for measurements were realistic be	tion ,Roundup' that A in the formulation nc. were followed polite AMPA: For appropriate
	Experimental approach, Statistics, test environment 2 replicate 250 L tanks for the control, 1 mg Roundup/L, 5 mg Roundup/L,				ys 30 and 60, 90 individuals Blood tissues
	Test organisms	Omnivorous fish L		tusidens (Piva)	
	Biological effects	No mortality, no ef significantly reduce experimental perio Significant effects Roundup/L (equals Most metabolic and	fects on coned, dose- and recorded. have been of 0.48 mg a.d hematolog	dition factor and daily food consu- d time dependent weight and lengt bserved at the lower concentration	h gains over the whole of 1 mg
	Relevance of the ethic	for Environmental Ris	ak Accessmo	ent, appropriateness of study endpo	ninte
	-O * v	ly for Environmental Kis		- 11 1	omis
	1 Is an appropriate test species life-stage(s) studied?		sh species is	Relevance indigenous for few rivers in Brazi e for general ecotoxicological effe	
×	2 Is the magnitude of effects of significance to cause a (population relevant effect?	e Zebrafish (43.2 mg		cant effects around the NOEC of g	lyphosate for
Silve of the state	Glyphosate Renewal Group	AIR 5 – July 2020		Doc ID: 110054-1	MCA8_GRG_Rev 1_Jul_2020

3 Is the ecotoxicological manifestation level	The authors propose to take enzymatic activities and the hematological parameters as indicators for exposure to glyphosate rather than as assessment endpoints. It remained unclear whether the endpoints measured could be taken as good indicators of the					
appropriate for the assessment?	individual fitness of a f	individual fitness of a fish, which would affect the population integrity in the end.				
	Environmental Relevance					
1 Is the substance tested representative and relevant for the substance being assessed?		There was some confusion and obscurities regarding the indication of the test substance as glyphosate or Roundup in the text.				
2 Do the tested concentrate predicted environmental		Glyphosate concentrations exceed expectable surface water conc. by far (at least Factor 10) as reported by the paper.				
3 Have parameters influe been considered adequate		No Sala Sala Sala Sala Sala Sala Sala Sal				
Concluding weight of e	vidence/proposed	Physiological endpoints measured do not contribute to an				
action	• •	ERA and the species is not representative for common				
		protection goals. There was go indication of the				
		percentage content of tallow amine surfactants within the				
		Roundup formulation tested.				
Type of information (C low weight)	ritical, supporting,	low weight				
Consideration/concludi	ng score	UBA3				

Tierney et al. (2006)

_	1	701	B B	1 200 6 7	1,77	
	phecotox_022	Tierney, K.	.B., Ross,	2006	Changes in juvenile	Environ Toxicol
Fis	sh	P.S., Jarra	rd, H.E.,	So chil	coho salmon electro-	Chem 25 (10):2809-
		Delaney, K	.R.,	2018	olfactogram during	17
		Kennedy, C	C.J.	8, 12, 12°	and after short-term	
			, si ^c	10,0	exposure to current-	
			all to	\$. <u></u>	Changes in juvenile coho salmon electro- olfactogram during and after short-term exposure to current- use pesticides	
				A Itelianiii	·.,	
	rpose of the study		Effects of gly	phosate on the	ne olfactory sense of the co	ho salmon by recording
Des	escription of endpo	ints			er exposure to an odorant	
					ntial of olfactory sensory n	
				e (in mV), de	etermination of a median in	hibitory concentration
		Q	(IC50)			
					ides in a joint approach, the	
		50	compounds h		led for strengthen the statis	
Tes	st compound, appl	ication 3	Glyphosate te		ty 99 %) was directly adde	
pro	acadura avnocura	period o	concentration			en well below the LC50 of
		12 12 02	22 mg a.1./L f			assume an enhanced effect
	Zing.	Kits Cill.	of the usually		etants (e.g. POEA)	
		80	Exposure for		post exposure 60 minutes	
Exp	perimental approa	eh,	Fish were fixe		flow-through system and e	
Sta	atistics, test environ	nment		d olfactorily	stimulated by 2 second-pul	ses of L-serine as the
	41/2/5		odorant	2 5 10 15	20.25 120 : 1 :	. 2 . 5 . 10
	Le la				, 20, 25, and 30 min during	g exposure; at 2, 5, 10,
	atistics, test environmental appropriation				min post-exposure. sides, $N = 18$; $N = 6$ for each	h of the treatments
	NO NOT				nents: Two-way (time and	
3	16, 7g,				nce followed by a Holm-Si	
100	· · · · · · · · · · · · · · · · · · ·				posure potential) were fitte	
8 %	O.		exponential d		posure potentiar, were fitte	a to a unice- parameter
35 RT 00	st organisms				Oncorhynchus kisutch	
S Pic	ological effects				OG occurred at 1 mg a.i./L	that is far below the
Sep Bic	ological criccis				i. The IC50 was 10.9 mg/L	
100			mg/L) 2 min a			(5570 01, 0.72 10.0
<i>U</i>			<i>& 2) 2 11</i> 1111 (Jap		
Bic Glyph						
					_	
Glyph	hosate Renewal Group	AIR 5 – July 2	020		Doc ID: 110	054-MCA8_GRG_Rev 1_Jul_2020

Relevance of the study for Envir	onmental Risk A	Assessment, appropriateness of study endpoints				
	Biological Relevance					
1 Is an appropriate test species/ life-stage(s) studied?	Yes					
2 Is the magnitude of effects of significance to cause a (population) relevant effect?	The study was very thoroughly designed and conducted. Despite the fact that no standardised guideline was followed, the results appear to be reliable. There was a relatively high number of replicates and the findings are emphasised by analysing time series, which allows for an assessment of the persistence of an effect.					
3 Is the ecotoxicological manifestation level appropriate for the assessment?	The authors state the main importance of the olfactory sense for the salmons survival. It is not discussed if the extent and duration of a reduction of the EOG may have ecological consequences to natural populations of salmons. The experimental assembly was very artificial and could cause stress whilst preventing behavioural responses of the fish (e.g. avoidance of exposure). The transferability into realistic scenarios seems to be difficult.					
		ronmental Relevance				
1 Is the substance tested represer relevant for the substance being		Glyphosate was tested as the rechnical substance, bearing in mind the enhanced toxicity of formulations containing surfactants such as POEA. The results are considered relevant for ERA				
2 Do the tested concentrations re predicted environmental concent		It relates more to the standard toxicity endpoints than to environmental concentrations.				
3 Have parameters influencing the been considered adequately?	ne endpoints	-/- <u>ii 8 ii</u> 6 <u>ii</u> 6 <u>ii</u> 6 ii 6 ii 6 ii 6 ii 6				
Concluding weight of evidence/proposed action Very interesting and well conducted study with a comprehensive description of the experimental design and statistics. The endpoints are considered ecologically relevant, but the validity and relevance are lowered by the artificial design.						
Type of information (Critical, supporting, low weight)						
Consideration/concluding score UBA2						

Soso et al. (2007)

	Fish H	Barcellos, E.J.G., Barcellos, E.J.G., Ranzáni Pañva, M.A., Kreutz, L.C., puevedo, R.M., puziliero, D., Lima, M., da Silva, L.B., ttter. F., Bedin, A.C., Finco, J.A.	2007	Chronic exposure to sub-lethal concentration of a glyphosate-based herbicide alters hormone profiles and affects reproduction of female Jundia (Rhamdia quelen)	Environmental Toxicology and Pharmacology 23 (3):308-313. DOI 10.1016/j.etap.2006.11.008.
	7,0 15°	_		iability	
	Purpose of the study		effect of a	glyphosate based herbicide	on hormones of female
	Description of	Rhamdia quelen			
	endpoints			and liver-somatic index (LS	
				e (T) concentrations; swim- notransferase), ALT (alanin	
	Test compound,				day of the experimental period,
3.	application	Renewal experiment,	Water cond	centration: 3.6 mg a.i./L	
i cy c	procedure, exposure				
Kin.	period				
Son Action of the Son Action o	Glyphosate Renewal Group A	IR 5 – July 2020		Doc II	D: 110054-MCA8_GRG_Rev 1_Jul_2020

	Experimental		ment and sampling date were sampled prior to glyphosate inoculation			
	approach, Statistics,	and at 1, 10, 20, 30 and	40 days following exposure			
	test environment	Student's t-test or ANO	VA followed by Tukey's multiple range test			
	Test organisms	Adult Jundia, Rhamd	ia quelen, a South American catfish, 400-600 g body weight			
	Biological effects	No significant difference	ces between control and treatment groups for both GSI and LSI at any			
		of the sampling dates;	slightly higher concentrations of cortisol at day 20 and 40, lower conc. of			
			differences in testosterone levels, fertility parameters were only			
	D 1 0.1 1.1	significantly lowered in the treatment group for the endpoint 'transferred swim-up fry				
	Relevance of the study f		Assessment, appropriateness of study endpoints			
			Biological Relevance			
	1 Is an appropriate	As reproduction parame	eters have been tested.			
	test species/ life-	As reproduction parameters have been tested.				
	stage(s) studied?		المراكبين			
	2 Is the magnitude of		the treatment group have been slightly higher from the start of the			
	effects of significance	experiment. The autho	rs argue that fish have been generally stressed by the experimental			
	to cause a (population)		d lead to non-representative responses to additional stress events (such sors). The very indiscernible or inconsistent effects might be of minor			
	relevant	ecological meaning.	5015). The very monocermore of mechanisteric ett singht of of million			
	effect?		(S) (S) (S)			
	3 Is the	Since not only biochen	nical endpoints as indicators have been measured but also the realised			
	ecotoxicological	reproduction rate as the	e number of viable fry has been measured, a comparison of different ppropriate assessment is possible.			
	manifestation level	enupomis and mus an a				
	appropriate for the					
	assessment?		11 10 10 10 10 10 10 10 10 10 10 10 10 1			
	17.1 1		vironmental Relevance			
	1 Is the substance tested		Except of the indication that the glyphosate formulation consists of ,water-dispersible granules' (WG), no further specification of the test			
	relevant for the substance	e being assessed?	substance was made			
	2 Do the tested concentr	ations relate to	The single concentration used is far above expectable concentrations			
	predicted environmental		in the environment (roughly around 500 µg a.i./L).			
	3 Have parameters influ					
	endpoints been consider		Not 8 8			
	Concluding weight of e	evidence/proposed	The design of the study as a limit-test makes the interpretation of			
	action					
		Stories Proposed	effects at elevated concentrations. An extrapolation to lower doses			
		(g) (h)	would most probably not reveal significant effects, in the given			
		7,0,20	statistical design. The POEA content of the formulation was not stated.			
	Type of information (C	Critical, Control of the control of	supporting			
	supporting, low weight	e) Rid ill				
	Consideration/conclud	ing score	UBA2			
		11, 4, 10,				
	_	SUL MIS CO				
	.\$					
	2007					
		JE CONTRACTOR OF THE PARTY OF T				
	1 ig 2	50-				
	21.18					
	200 111					
	74 60					
	6736					
	1020					
	, cin like					
<i>હ</i>						
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Glyphosata Panaural Comma All	2.5 _ July 2020	Dec ID: 110054 MCAS, CBC, Pay 1, I-J. 2020			
STORY OF THE STORY	Glyphosate Renewal Group AIF	R 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020			
St. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co	Glyphosate Renewal Group AIF	R 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020			
St. Co. Co. Co. Co. Co. Co. Co. Co. Co. Co	Consideration/conclud	R 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020			

De Menezes et al. (2011)

glyphecotox_338 Fish	De Menezes, C.C., da Fonseca, M.B., Loro, V.L., Santi, A., Cattaneo, R., Clasen, B., Pretto, A., Morsch, V.M.	2011	Roundup Effects on Oxidative Stress Parameters and Recovery Pattern of Rhamdia quelen	Archives of Environmental Contamination and Toxicology 60 (4):665 671. DOI: 10.1007/s00244-010-9574- 6.				
D 0.1 1		Reliabil						
Purpose of the study Description of endpoint	was tested on enzyme quelen) Lipid peroxidation (LI carbonylation both in Oxidative stress by Ca by Glutathion S-transf nonprotein thiols)	PO, thiobaliver, braitalase enz	arbituric acid reactive span and muscle tissues zymatic activity, by Sapels, by nonenzymatic and	growide dismutase activity, tioxidants (ascorbic acid,				
Test compound,		up 48%'	(control, 0.45 ing a i./L,	0.95 mg a.i/L), containing				
application procedure,	POEA as surfactant		Hill To do	. 1. 4				
exposure period	After 4 days, 50% wat	er renewa	al an new application of	a.i. to maintain exposure				
	exposure)	ecinea, bi	it measured concentration	ons prove the sufficient				
Experimental approach. Statistics, test	Exposure for 8 days, r 3 treatments, 2 replica	Exposure for 8 days, recovery period in clean water for further 8 days 3 treatments, 2 replicate 250 L tanks, 8 sish per tank						
environment		Two-way ANOVA, followed by Tukey's post-hoc test, N = 8 was taken as the						
Test energians		replication in statistical tests						
Test organisms Biological effects		Juvenile <i>Rhamdia quelen</i> Tisk (mean 20 g weight, 11 cm length) from aquaculture Oxidative stress markers, as Lipid peroxidation and protein carbonyl levels, were						
	Data for 5 antioxidant (GST, which decrease	significantly affected in most tissues after the exposure period, but returned to the control level after the recovery period Data for 5 antioxidant endpoints showed only very few deviations from control (GST, which decreased during exposure and increased after recovery periods), this was during the exposure and the recovery period						
Relevance of the study		Environmental Risk Assessment, appropriateness of study endpoints						
	Biolo Biolo							
1 Is an appropriate test		Yes, since juveniles are often recognized as the most sensitive life-stages of fish						
species/ life-stage(s) studied?	10 10 18 18 18 18 18 18 18 18 18 18 18 18 18	species towards chemical stressors						
2 Is the magnitude of	Overall, there was littl	Overall, there was little indication of significant responses towards the stressor						
effects of significance to cause a (population) relevant effect?	chronic test design), a	Roundup48'. The experimental period was relatively short-termed (acute to sub- chronic test design), and thus a population relevant effect could not be extrapolated by the results of this experiment.						
3 Is the ecotoxicological manifestation level	Principally, biomarker	Principally, biomarkers of stress could be taken as general indicators of toxic						
manifestation level	action of a test compo	action of a test compound that could have an effect at higher levels of organisation,						
appropriate for the			e of uncertainty for the					
assessment?	taken as a hint that the	to population level, which is relevant for ERA is unknown. The results could be taken as a hint that the substance is detoxified by the test organisms, which could lead to highly reactive Oxygen species.						
W. S.			Relevance					
1 Is the substance tested representative and relevant for the substance being assessed?		The test substance was Roundup containing POEA. The surfactants are likely to cause a significant portion of the observed effects						
2 Do the tested concentrations relate to predicted environmental concentrations?		The concentrations tested were far above expectable in the environment but at the suppliers' recommended concentrations in flooded rice cultures in tropical regions. The concentrations within the ERA in Europe are derived from non-rice cultures and thus not transferable without further considerations to the tested scenario.						

3 Have parameters influencing the endpoints	None
been considered adequately?	×
Concluding weight of evidence/proposed	There was little indication of adverse effects of the
action	There was little indication of adverse effects of the tested formulation on biomarker concentrations in different tissues of <i>Rhamdia quelen</i> at elevated
	different tissues of Rhamdia quelen at elevated
	concentrations compared to predicted environmental
	concentrations after spray application of Glyphosate.
	The findings support the classification of Glyphosate
	even in a formulation containing the potentially more
	toxic POEA as non to moderately toxic towards fish.
	Nevertheless, it cannot be distinguished between the
	effect of POEA and glyphosate.
Type of information (Critical, supporting,	Supporting
low weight)	12/20/20
Consideration/concluding score	UBA2

Kreutz et al. (2011)

	glyphecotox_434 Fish	Kreutz, L.C., Barcellos, L.J.G., de Faria Valle, S., de Oliveira Silva, T., Anziliero, D., dos Santos, E.D., Pivato,	2011	Altered bacmatological and immunological parameters in silver catfish (Rhamdia quelen) following short term exposure to sublethal	Fish Shellfish Immunol 29 (4):694-7. DOI: 10.1016/j.fsi.2010
		M., Zanatta, R.		concentration of glyphosate	.06.003.
		, Zanucca, 10.	Reliat		1
	Purpose of the study Description of endpoints	immunological respons Number of erythrocyte circulating cells, phago	l doses of ses of Silv s, lympho cytic inde	glyphosate was tested on haemato	rtes, immature al peroxidase,
	Test compound,			e (N-phosphonomethyl glycine, 36	
	application	10% of the LC ₅₀ after	6 hours c	of silver catfish was tested = 0.730	mg a.i./L, static
	procedure, exposure period	exposure period for ha endpoints were measur	ematolog	ical parameters was 96 hours, imm	nunological
	Experimental approach, Statistics, test environment		icate tank	es, but replication used for statistics	s was 7 (fish
	Test organisms		lings of s	ilver catfish (<i>Rhamdia quelen</i>), 18	±8 g weight for
			juveniles	s of 80-100 g for haematological st	tudies,
	Biological effects Republication of the state of the sta	Total leukocytes, lymp significantly lower (p < significantly higher (p Haematocrit, monocyte not different between the significant reduction (p No effect on bactericid Natural bacterial agglum A. hydrophila was significant reduction (p No effect on bactericid Natural bacterial agglum A. hydrophila was significant reduction (p No effect on bactericid Natural bacterial agglum A. hydrophila was significant reduction (p No effect on bacterial agglum A. hydrophila was significant reduction (p No effect on bacterial agglum A. hydrophila was significantly agglum	(0.01), ar (0.01) as and neu are groups (0.05) cal activity tination ti ificantly is red after	of phagocytic index after 24h, no e of the phagocytic index after 24h, no e of the measured against formalin-inaction (p < 0.05) in glyphosate explanation (p	ture cells were al plasma proteins were ffect after 10 days ctivated pathogenic osed fingerlings,
Second Se	Glyphosate Renewal Group	AIR 5 – July 2020		Doc ID: 110054-M	ICA8_GRG_Rev 1_Jul_2020

Relevance of the stu	dy for Environmental Ris	k Assessmer	nt, appropriateness of study	y endpoints		
	•	Biological l	** *	×		
1 Is an appropriate test species/ life-stage(s) studied?	yes	yes idi				
2 Is the magnitude of effects of significant to cause a (population relevant effect? 3 Is the ecotoxicological manifestation level	error probability, who significant deviation thus a high reliability. A common methodo blood cells to higher environmental risk of	The threshold for considering observed effects as significant was set to 1% Type F error probability, which points together with the numerous positive and negative significant deviations from the control level to a low variability of measurements and thus a high reliability of the statistics. A common methodology of transferring concentrations of immunological relevant blood cells to higher levels of organisation and thus to draw conclusions for an environmental risk on population level is scarcely available. Assuming large interspecies				
appropriate for the assessment?	a well-established re	differences in critical concentrations leading to an effect on an individual and the lack of a well-established reference system for Rhamdia quelen, there is no indication of the results of this study for an ERA.				
Environmental Relevance						
1 Is the substance tested representative and relevant for the substance being assessed? Yes, for glyphosate without surfactant addition.						
	centrations relate to In the of expectable concentrations (PEC surface water about ental concentrations?					
3 Have parameters i been considered ade	influencing the endpoints equately?		t conditions have been held st the experimental units.	d sufficiently constant		
Concluding weight action	Concluding weight of evidence/proposed action The study could be taken as supplementary information that environmentally relevant concentrations of glyphosate could induce subtle changes of the haematological status of fish. It could not be assessed if those changes have the potential to affect the health status of an individual and thus to cause effects relevant for a whole population.					
Type of informatio weight) Consideration/cond	Type of information (Critical, supporting, low Supporting					
Constuct atton/cone	cluding score	ÜBA2				
Kreutz et al. (20	Consideration/concluding score Consideration/concluding score					
glyphecotox_436 Fish	Kreutz L.C., S Barceflos, L.J.G., Silva, F.O.	2008	Acute toxicity test of agricultural pesticides on silver	Fish Shellfish Immunol 30 (1):51-7. DOI: 10.1016/i fsi.2010.09.012.		

Kreutz et al. (2008)

	Fish B	Kreutz, L.C., Sarceflos, L.J.G., Sarceflos, L.J.G., Silva, F.Q., Sazifierol, D., Jartins, D., Sorenson, M., Garteninghe, A., da ilva, L.B.	2008	Acute toxicity test of agricultural pesticides on silver catfish (<i>Rhamdia quelen</i>) fingerlings	Fish Shellfish Immunol 30 (1):51-7. DOI: 10.1016/j fsi.2010.09.012.
	200	T	Reliab		
	Purpose of the study			different pesticides (among	
	Description of		rmined for s	silver catfish (Rhamdia que	elen) fingerlings
	endpoints	Mortality after 96 h	1 27 1 1 1 1 1 1 2 2 2 2 2		
	Test compound,		ndup (N-phosphonomethylglycine), (360g L ⁻¹)		
	application procedure,	2, 4, 8, 16, 32 mg a.i	./L under sta	itic conditions	
	exposure period	210 6	1 1'-4'1.		
V	Experimental		rlings uniformly distributed in 21 40-L plastic aquaria rations, 3 replicates per treatment; 96 hours exposure period		
والم	approach, Statistics,		ion period, 20 % water exchange per day, after treatmet exchange was		
6.2%	Stest environment	stopped	on period, 20	0 % water exchange per da	y, after treatmet exchange was
,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Test organisms	Rhamdia quelen (silv	ver catfish) f	fingerlings, 60-day-old mix	ed-sex fingerlings
		weighing between 2	and 4g		
STOP OF STOP O	Glyphosate Renewal Group A	IR 5 – July 2020		Doc ID: 1	10054-MCA8_GRG_Rev 1_Jul_2020

	Biological effects LC ₅₀ after 96	hours = 7	7.3 (6.5 – 8.2) mg a.i./L
			Assessment, appropriateness of study endpoints
	,		ological Relevance
	1 Is an appropriate test species/ life-stage(s) studied?	The 509	% lethal dose was deduced from a 'useful' and usual statistical and could thus be considered as relevant for the population of atfish as other acute mortality studies
	2 Is the magnitude of effects of	Yes, as	mortality under laboratory conditions and course exposure is
	significance to cause a (population) relevant effect?		nly agreed
	3 Is the ecotoxicological manifestation level appropriate for	design a	% lethal dose was deduced from a 'useful' and usual statistical and could thus be considered as relevant for the population of
	the assessment?		atfish as other acute mortality studies
	1 Is the substance tested representative a relevant for the substance being assessed	ınd	Yes, most probably the Roundup formulation contained POEA as surfactants, which could also explain the elevated toxicity of the test item compared to other studies with different fish species reported in the literature (cited herein).
	2 Do the tested concentrations relate to predicted environmental concentrations	?	Not relevant, since that was an acute dose-response test design to derive an LC50 from a Probit distribution.
	3 Have parameters influencing the endp been considered adequately?	oints	Conditions in the test containers have been maintained at non-harmful ranges
	Concluding weight of evidence/proporaction	sed	The LC ₅₀ for the exposure of R. quelen reported here is far below toxicities reported from other acute studies with fish under laboratory conditions. This is most
			probably due to the composition of the tested formulation of glyphosate (Roundup), as discussed by the authors as well. The study can be seen as additional evidence of enhanced toxicity caused by the POEA in glyphosate formulations. However, the study is not suited to trigger the aquatic risk assessment of glyphosate.
	Type of information (Critical, suppor	ting,	supporting
	low weight)	ting,	S. S.
	Consideration/concluding score	JI JI S	SUBA2
	Type of information (Critical, supported weight) Consideration/concluding score		
Sold of the sold o	Glyphosate Renewal Group AIR 5 – July 2020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Folmar et al. (1979)

Annex to Regulation 283/2013

	glyphnosubm_012	Folmar, LC, Sanders HO, Julin AM	1979	Toxicity of the Herbicide Gly		Archives of Environments Contamination	al ži		
		110,0 41111 11111		and Several of	Its	Contaminatio	on and o		
				Formulations and Aquatic	to Fish	Toxicology 8:	269-3 78		
				Invertebrates.		His	25.10		
			Relial	oility			S		
	Purpose of the study	Comparison of the ac					lated		
	Description of endpoints	herbicidal product 'F Mortality of rainbow							
	chaponits	determination of LC					cuds,		
		daphnids were tested	(also after	: 48h).	(1 4) S	to the			
		The paper is mainly referred in the POEA section of the literature survey in DocM for the comparison between surfactant POEA and the active substance glyphosate.							
		The year of publicati	The year of publication was beyond the 10-years scope of the literature collection						
		and thus discarded b	and thus discarded by the notifier. Here, the acute laboratory part of the study is reported only with no consideration of						
		temperature effects	atory part	of the study is repaired I	borted only wi	th no consideration. Addition	tion of al tests		
		regarded avoidance	behaviour,	reproductive po	tential and st	ream drift of d	ifferent		
		organisms.		£ , o , i	s)				
	Test compound, application procedure,	Technical glyphosate (360.32 g/L), surfact		lamine salt, 480.4	42 g/L), Roun	dup with surfac	tant		
	exposure period	Protocol: Methods re	commend			ommittee on Me	ethods		
		for Toxicity Tests wi	for Toxicity Tests with Aquatic Organisms 1975)						
	Experimental	Static exposure of fix The exact number an				anto studios wa	ara not		
	approach, Statistics,	reported in the public	cation space	of concentrations	tested in the a	acute studies we	ere not		
	test environment	reported in the publication of the second of					water		
		temperature (other sp Methods of Litchfiel		ovan ta dariva I (C50's (and (E	C50's for			
		invertebrates)	Cand will	oxon to derive L	C50 8 (allu (E	C30 \$ 101			
	Test organisms	Rainbow trout (Onco							
		(Pimephales prome)	s), Chann	el catfish (<i>Ictalur</i>	us punctatus),	, Bluegills (<i>Lepo</i>	omis		
	Biological effects	The paper reports ac	ute LC ₅₀ -v	alues for four fish	n species (in m	ng/L)			
		of the site	Glyph	osate acid	Roundup	POEA			
		Species	24h	96h	24h 96		96h		
		Oncorhynchus mykis Pimephales promela		97.0	8.3 8. 2.4 2.		2.0		
		Actalurus punctatus	130.0	130.0		3.0 18.0	13.0		
	8	Lepomis macrochiru	s 150.0	140.0	6.4 5.		3.0		
	Relevance of the study	for Environmental Risk	Assessmer		s of study end	lpoints			
	1 Is an appropriate tes		iological l	Relevance nly standard test s	snecies have h	neen tested			
	studied?	i species/ inc-stage(s)	1 05, 11141	my standard test s	species nave t	een iesieu			
	2 Is the magnitude of			point mortality in					
	to cause a population) relevant effect?	of biological significance indeed and a widely accepted assessment aspect for the aquatic environment.						
	3 Is the ecotoxicologic	cal manifestation level		above points 1 an		milciit.			
	appropriate for the ass	essment?							
	a listhe substance test	Env		al Relevance	the DOE A arra	footont tools	al arada		
2	relevant for the substa	nce being assessed?		parison between te and the formul					
25	Sii.	5	key conc	ern on the use of	the herbicide	glyphosate. It al	llows		
18, 87	,			ring out the toxici surfactant and act			a		
50 60			I IIIAtai C S	arraciant and act	ive ingredicili	•			
Jil Jillo									
Signature of the state of the s									
"E2/101	Glyphosate Renewal Group A	AIR 5 – July 2020			Doc ID: 11005	54-MCA8_GRG_R	ev 1_Jul_2020		
4 60									

0.D. d d d d	TT1 1				
2 Do the tested concentrations relate to	The tested concentrations were not reported in the publication,				
predicted environmental concentrations?	which is a strong deficit and could be regarded the only reason				
	to reject the revision of the results.				
3 Have parameters influencing the endpoints	PH and temperature were tested systematically. At suboptimal				
been considered adequately?	conditions of pH and temperatures the toxicity of the				
	surfactant and Roundup in particular. was increased.				
Cancluding weight of evidence/prepased	The paper is considered one of the key publications on the				
Concluding weight of evidence/proposed					
action	enhancing effect of adding tallow amine surfactants to				
	glyphosate-based herbicides and could not be ignored even				
	in a recent risk assessment. Since the concentration series				
	and the spacing factors were not described appropriately,				
	the study has formally a low reliability. Nevertheless, it could				
	be shown that most of the toxicity of the product was due to				
	the POEA. Nowadays, products formulated by means of				
	POEA are not expected to be neither notified nor registered				
	in the future. The publication supports this practice.				
	Note: the review in glyphnosidomit 340 falsely reports that				
	here the glyphosate acid was tested, whereas the IPA salt				
	was applied.				
Type of information (Critical, supporting, lo	w weight) Supporting				
	200				
Consideration/concluding score	UBA2 X				
	S. Z. S.				

Evrard et al. (2010)

	I			~ · · · · ·	
	glyphecotox_367	Evrard, E.,	2010	Impacts of mixtures	Comparative Biochemistry
	Fish	Marchand, J.,	of the	of herbicides on	and Physiology Part C:
		Theron, M.,	10,00	molecular and	Toxicology and
		Pichavant-Rafini,	2010	physiological	Pharmacology 152 (3):321-
		K., Durand, G., Quiniou, L.,		responses of the	331. DOI:
		Quiniou, L.,	N. off.	European flounder	10.1016/j.cbpc.2010.05.009.
		Laroche, J.		Platichthys flesus	
		of distributions	Re	liability	
	Purpose of the study			lup Ultra) and its first metal	
	Description of			European flounder (Platica	hthys flesus) using genetic
	endpoints	transcription patter			
					ate transcripts identified by
				sis) as indicators of liver in	
		Nine gene transcri			nocysteine methyltransferase
	Zi [®]	(BHMT) transcrip			taxin (LECT2) transcript; α-
		2-macroglobulin to		nti thrombin III transcript;	
	1			transcript; ATP synthase Fo	subunit 6 transcript;
	.00;	cytochrome B tran			
	808	Blood parameters		ysiological 'condition facto	
				ns [nominal] over 62 days of	
	application procedur				ntities of surfactants and the
	exposure period			ug/L] plus AMPA 2.27 μg/I	
				15 μg L [1.25 μg/L]+ AMP.	
	exposure period	1 1	/L – [0.5 µ	g/L]+ acetochlor 0.36 μg/L	$[0.5 \mu g/L] + 2,4D 0.23 \mu g/L$
	- 01 ot	[0.5 µg/L]		. 1 . 6 6.1	1 1 (1 1 0
	Experimental		treatment	were taken from one of the	three tanks (control, G,
3.	approach, Statistics,	GAMA2)		2 1: 1 6	15 22 62 1 6
(S)	test environment		r exposure	e, 3 sampling dates after exp	osure 15, 32, 62 days after
La sing.	Tast anassisma	treatment	. (Dl =4; =1,41	4	
"0 "9 g	Test organisms	European flounder	(Pianchir	iys fiesus)	
Service of the servic	Glyphosate Renewal Group	o AIR 5 – July 2020		Doc II	D: 110054-MCA8_GRG_Rev 1_Jul_2020

D: 1 : 1 cc .	D 1:	1 C C 1 DIDITE A 1' L' E1 Cl '				
Biological effects	Results reported here only for G-tank: BHMT, Apolipoprotein E1, Chemotaxin,					
		TPase were highly significantly altered 62 days after exposure at				
		No impacts on physiological indices				
Relevance of the study f		Assessment, appropriateness of study endpoints				
		Yes The extrapolation from gene transcript alteration to 100000000000000000000000000000000000				
1 Is an appropriate test species/ life-stage(s) Yes studied?						
2 Is the magnitude of eff to cause a (population) r		The extrapolation from gene transcript alteration to populations of corresponding fish species or even all is should be proven by experiments that address the question of				
		population vitality at the same test concentrations which is not discussed by the authors				
3 Is the ecotoxicological appropriate for the asses		See point 2 above				
Environmental Relevance						
1 Is the substance tested		Two different difficulties with the test diminish the relevance				
relevant for the substance		of the test for an ERA: a complex mixture was tested and the				
		composition regarding surfactants is unknown. The				
		combination AMPA + glyphosate could be taken as				
		representative for glyphosate because AMPA is the main				
		metabolite and the measured concentration of glyphosate is				
		assigned the relevant final concentration				
2 Do the tested concentr	rations relate to	Conc. are far below highest expectable PECinis and thus of				
predicted environmental		high environmental relevance.				
3 Have parameters influ		No particular test design to check for influencing parameters				
been considered adequat		1 11000 0				
Concluding weight of e	evidence/proposed	Main finding: Low concentrations of glyphosate are suited				
action	• •	to alter the gene expression patterns of the liver of European				
		flounders.				
		There are many uncertainties in transferring the results				
of this study to populations of fish, which is the relevant						
organisational level for an environmental risk assessmen						
		simple and a complex mixture has been tested so far, that				
		causes a limited use of the results.				
Type of information (C low weight)	Critical, supporting,	Supporting				
Consideration/conclud	ing score	UBA2				

		a Ricial with		
·	Cavalcante et al. (2008)			
	glyphecotox_316 Cavalcar	nte, 2008	Genotoxic effects of	Mutation Research-Genetic
	D.G.S.M	·	Roundup® (R) on the	Toxicology and Environmental
	Martinez	z,	fish Prochilodus lineatus	,g.
	C.B.R.,			DOI
	Sofia, S.I	н.	D 1: 1:1:4	10.1016/j mrgentox.2008.06.010.
	D	TD1 : 0:1	Reliability	
	Purpose of the study		is work was to evaluate the ge	
				to the herbicide for differentperiods,
				nd the occurrence of erythrocytic
-			malities (ENAs).	/ of alymbosota Manganta Duog!1
			(360 g glypnosate L-1 or 41% ®® concentration	% of glyphosate, Monsanto Brazil
~	exposure period			esponds to 75% of the LC50 of this
230	exposure period	herbicide to F		capones to 1570 of the Leso of this
75 10	r		50 of Roundup® was 13.69 m	ıσ L=
(10) 42. I	<u> </u>	THE JOH EC.	o of frounday was 15.05 in	.5 2
A CO	Glyphosate Renewal Group AIR 5 – Jul	y 2020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020
` %				

Evmonimontal annuacah	Call wishility assa	y for erythrocytes and gill cells using the trypan blue exclusion					
Experimental approach,							
Statistics, test		comet assaywas performed according to Singh et al. and Speit					
environment		h some modifications as described by Vanzella et al. Two-tailed					
	Student t test. Diff	Student t test. Differences between meanswere considered significant when p					
	0.05.	200					
Test organisms	Juveniles of Proch	nilodus lineatus (Valenciennes, 1847), with 9.6±5.4 g and					
	9.7±1.81cm (mean	n±S.D., N= 50), were supplied by the Hatchery Station					
Biological effects	In the micronucle	ustest micronucleus (MN) and erythrocytic nuclear					
	abnormalities (EN	IA) were not significantly different from the respective					
	negative controls.						
		ved significant effects towards DNA damage in crythrocytes.					
Relevance of the study for		Assessment, appropriateness of study endpoints					
		ological Relevance					
1 Is an appropriate test spe	cies/ life-stage(s)	The test species are considered of temperate to sub-tropical					
studied?		origin. Indication of species variability for the standard in					
		ERA.					
2 Is the magnitude of effects of significance		Cell viability, nuclear abnormalities dependent on repair					
to cause a (population) rele		mechanisms No. 10 No. 1					
3 Is the ecotoxicological m		Traditionally, survival, growth and					
appropriate for the assessm	nent?	reproduction of individuals are chosen as endpoints					
		of the classic laboratory tests for ecotoxicity. No mortality					
		assessed, low relevance for traditional ERA					
		ronmental Relevance					
1 Is the substance tested re		Commercial formulation, the tested formulation is likely to					
relevant for the substance l	being assessed?	content POEA as surfactant. This causes limited validity					
		regarding effects of Glyphosate that does not contain POEA.					
2 Do the tested concentrati	ons relate to	Testing exceeded environmentally realistic concentrations.					
predicted environmental co	oncentrations?	El So M					
3 Have parameters influen	cing the endpoints	nd o					
been considered adequately	y?	10. 9.					
Concluding weight of evid	ence/proposed	Physiological study with the commercial formulation. No					
action	ence/proposed	distinction between the activie substance and surfactants.					
Type of information (Critical, supporting, low \emptyset		Supporting information					
weight)	, 11 20 5. 10 V	LIDAA					
Consideration/concluding	score in a siling in the second	UBA2					

	Consideration/concluding score	96,110	UDAZ			
	Langiano et al. (2008)	S				
	grypnecotox_452 agaigiano,	2008	Toxicity and effects of a	Comparative Biochemistry		
	V.dC.,		glyphosate-based herbicide	and Physiology Part C:		
	Martinez, C.B.R.		on the Neotropical fish Prochilodus lineatus	Toxicology & Pharmacology 147 (2):222-231		
	8 12.5.11		Reliability	117 (2).222 201		
	Purpose of the study		oxicity of Roundup® to P. lineatus			
	Description of endpoints		this fish at biochemical, physiolog			
	, 8° 8°		after acute exposure to sub-lethal concentrations of the herbicide			
	Test compound, application procedur exposure period	e, //.	5 and 10 mg L-Roundup®			
	Experimental approach, Statistics, tes	t Pa	arameteres observed mortality ans	histological alterations,		
	environment		nysiology, Student's t-test, ANOVA			
×	Test organisms	N	eotropical fish Prochilodus lineatu	us		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	şe e e e e e e e e e e e e e e e e e e					
	Glyphosate Renewal Group AIR 5 – July 2020		Do	e ID: 110054-MCA8_GRG_Rev 1_Jul_2020		

Biological effects		sure to sub-lethal concentrations of			
		dup® promoted an increase in plasma glucose, indicating a			
		l response to stress. The induction of liver catalase activity			
		tes the activation of antioxidant defenses, probably due to			
	increa	sed hydrogen peroxide generation. Roundup® exposure also			
	induce	sed hydrogen peroxide generation. Roundup® exposure also ded a variety of liver histological alterations that might impaired all organ functioning.			
		LC50 of Roundup® was 13.69 mg L-			
<u> </u>	Risk A	ssessment, appropriateness of study endpoints			
Biological Relevance					
1 Is an appropriate test species/ life-stage(s))	The test species are considered of temperate to sub-tropical			
studied?		origin. Indication of species variability for the standard in			
		ERA.			
2 Is the magnitude of effects of significance	e to	Parameteres observed mortality any histological alterations			
cause a (population) relevant effect?					
3 Is the ecotoxicological manifestation level	el	Traditionally, survival, growth and			
appropriate for the assessment?		reproduction of individuals are chosen as endpoints			
		of the classic laboratory tests for ecotoxicity			
Environmental Relevance		2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
1 Is the substance tested representative and		Commercial formulations, the tested formulation is likely to			
relevant for the substance being assessed?		content POEA as surfactant. This causes limited validity			
		regarding effects of Glyphosate that does not contain POEA			
2 Do the tested concentrations relate to		Testing exceeded environmentally realistic concentrations			
predicted environmental concentrations?					
3 Have parameters influencing the endpoin	its	nd v j s			
been considered adequately?					
Concluding weight of evidence/proposed		Prochilodus lineatus is more sensitive to Roundup® than			
action		rainbow trout (Oncorhynchus mykiss) and Atlantic			
		salmon (Salmo salar). Physiological study with the			
	d	commercial formulation . No distinction between the activie			
T. 0: 0 : (0::: 1	100	substance and surfactants			
Type of information (Critical, supporting, l weight)	om l	Supporting information			
Consideration/concluding score	A Sol	UBA2			
(D) C	·				

Ferreira et al. (2010)

	weight)		, OF 3	0.8				
	Consideration/conclu	iding score	10 8. 0	UB.	A2			
	Ferreira et al. (2	010)	10 0 11 10 11 11 10 11 11 10 10 11 11 10 10	1				
	glyphecotox_376	Ferreira, D., da Motta, A.C., Kreutz, L.C., T C., Loro, V.L., Barcellos, L.J.C	Coni,	2010	Assessment of oxidative stress in Rhamdia quelen exposed to agrichemicals	Chemosphere 79 (9):914- 921. DOI: 10.1016/ j.chemosphere.2010.03.024.		
	27	is .			liability			
	Purpose of the study Description of endpoints			Verification whether MP, Gly, and Teb are potential oxidative stress				
				inducers in R. quelen,				
			and whether their effects could provoke histopathological changes in the liver of this fish species.					
	Test compound, appl	ication			rmulation containing the h			
	Test compound, appl procedure, exposure	phosphonomethylglycine). 6.6% of the LC50–96h, as previously determined by Kreutz et al. (2008 (glyphosate based herbicide (1.21 mg L 1 of Roundup® TM).)						
as S			Physio ANOV		tudy evaluating oxidative	stress, enzymitic repsonses,		
62.76	Test organisms		R. que	len				
Constitution of the consti	Glyphosate Renewal Group	AIR 5 – July 2020			Doc	ID: 110054-MCA8_GRG_Rev 1_Jul_2020		

Biological effects	Surviva	l rate eas not altered at taht concentrations. Glyphosate	
Biological criccis	containing product did not alter reactive substances in liver, but		
	decrease in CAT activity, no visible histological changes		
		· · ·	
Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints			
	E	Biological Relevance	
1 Is an appropriate test species/ life-sta	ige(s)	American species. Indication of species variability for the	
studied?		standard in ERA.	
2 Is the magnitude of effects of signific	cance	No visible histological changes	
to cause a (population) relevant effect?	•		
3 Is the ecotoxicological manifestation	level	No visible histological changes. Traditionally, survival, growth	
appropriate for the assessment?		and reproduction of individuals are chosen as endpointsf the	
		classic laboratory tests for ecotoxicity	
	Env	rironmental Relevance	
1 Is the substance tested representative and		Commercial formulation not stated No information about	
relevant for the substance being assessed?		surfactants.	
2 Do the tested concentrations relate to		0.185 mg/l probably realitsic worse case concentrations	
predicted environmental concentration	s?	A 2 40	
3 Have parameters influencing the		nd o o	
endpoints been considered adequately?	?	2000	
Concluding weight of evidence/proposed		No visible histological changes, Indication for general fitness	
action		18 18 18 18 18 18 18 18 18 18 18 18 18 1	
Type of information (Critical, supporting,		Supporting information	
low weight)	3,		
Consideration/concluding score		UBA2	
		20° 31' 8°	

Haller et al. (2003)

	low weight)					
	Consideration/concluding score		UBA2			
	Haller et al. (200	3)	2002			
	glyphecotox_399	Haller, W.T., Stocker, R.K.	2003 ¹ 3	Toxicity of 19 adjuvants to juvenile Lepomis macrochirus (bluegill sunfish)	Environmental Toxicology and Chemistry 22 (3):615- 619	
			S Rel	iability		
	Purpose of the study	Ni		its, many used as surfactant	s for aquatic herbicide	
	Description of endpo	. ~ ~		e applied in static bioassay		
		o . o . s		macrochirus) for 96 h to de		
			ncentrations (L	C50).		
	Test compound, appl procedure, exposure	ication MC	ON 0818			
	Experimental approa	ch, Sur	Surfactants are added to the tank mix			
	Statistics, test environ	ument as	as a percentage (v/v) of the total volume, in contrast to herbicide			
	Experimental approach Statistics, test environment		application rates,			
	Test organisms		egill sunfish	. 11	1. 1. 1.050	
	Biological effects		noxylated tallo ues of 1.6 and	w amine products were the	most toxic, having LC50	
	800	Sex			96-h LC50 values of 4.0 to	
	Biological effects Relevance of the study for Environn		Seven alcohol/glycol-based surfactants had 96-h LC50 values of 4.0 to 11.6 ppm			
	S. F.	pol	polysiloxane- or siliconebased			
	al ide	sur	surfactants had toxicities of 18.1 to 29.7 ppm limonene-			
	C. J. O. HO	bas	based products had LC50 values of 10.2 and			
	10° 40'	30.	30.2 ppm.			
	c. ' a\0	ly for Environmenta		nent, appropriateness of stu	dy endpoints	
%	0 0		Biologic	al Relevance		
	Is an appropriate te studied?			nis macrochirus		
!(g) 42.,	2 Is the magnitude of effects of signi-		nce mortal	ity		
310 800	to cause a (population	n) relevant effect?				
Solve Color	Glyphosate Renewal Group	AIR 5 – July 2020		Doc II	D: 110054-MCA8_GRG_Rev 1_Jul_2020	

3 Is the ecotoxicological manifestation level	While toxicity of adjuvants has not been a focus of concern
appropriate for the assessment?	for aquatic applications, the data reported here will give
	resource managers guidance into the acute toxicities of some of
	the commercially available adjuvants and assist in the
	development of invasive plant management programs with an
	acceptable margin of safety.
En	vironmental Relevance
1 Is the substance tested representative and	POEA: MON 0818
relevant for the substance being assessed?	JO KE
2 Do the tested concentrations relate to	nd
predicted environmental concentrations?	2. C. C. C.
3 Have parameters influencing the	nd of the state of
endpoints been considered adequately?	
Concluding weight of evidence/proposed	Monsanto's MON 0818 and Entry II are 68 to 73% and
action	35% ethoxylated tallow amine surfactants, respectively, that have
	been used in glyphosate formulations. The material safety data
	sheet for MON 0818 lists 96-lotoxicity to bluegill sunfish at 1.3
	ppm, similar to the 1.6-ppm LC ₅₀ obtained in this study.
Type of information (Critical, supporting,	Supporting informations & &
low weight)	
Consideration/concluding score	UBA2
	£ 0 0

Zhidenko et al. (2007)

glyphecotox_670	Zhidenko, A.A., Kovalenko, Y.M.	2007 The influence of Roundup® on the dynamics of histological changes in organs of carps	Hydrobiological Journal 43 (2):93-99	
Purpose of the study Description of endpoi	nts under the	Reliability from of the dynamics of histological parar action of Roundup® (0.004 mg/dm3) and bonal deviations in fish were the aim of this	d their possible influence	
Test compound, appli procedure, exposure p	cation Roundup	®		
Experimental approact Statistics, test environ Test organisms	mont of of vo	cal observations	200_300 g	
Biological effects	Action of leads to a taken pla	Two-year-old carps (<i>Cyprinus carpio L.</i>) weighing 200–300 g Action of Roundup® at its 0.004 mg/dm3 contents in water environment leads to ambiguous alterations in organs of carp. The least deviations have taken place in the brain and gills, insignificant abnormalities were in the		
Test organisms Biological effects Relevance of the stu	Action of leads to a taken pla intestine are the m Histologi and vacue changes a formation Roundup dy for Environmental	and the greatest were in the muscles and l ost sensitive. c changes in the liver of carp, which are colar-drop dystrophy, lead to the death of hand, as a consequence, to the functional live of bilestones. The muscle fiber hypotrop ® leads to destructive changes in skeletal	connected with the granular nepatocytes and to necrotic wer failure and to the ohy under the influence of	
Relevance of the stu	Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints			
	st species/ life-stage(s)	Cyprinus carpio L		
Is the magnitude of to cause a (population	effects of significance n) relevant effect?	Histologic changes in the liver of carp with the granular and vacuolar-drop d death of hepatocytes and to necrotic consequence, to the functional liver fa	ystrophy, lead to the hanges and, as a	
stydied? Is the magnitude of to cause a (population Glyphosate Renewal Group	AIR 5 – July 2020		0054-MCA8_GRG_Rev 1_Jul_2020	

3 Is the ecotoxicological manifestation level	Histological observations are Indication for general fitness.
appropriate for the assessment?	Survival, growth and reproduction of individuals are chosen as
	endpoints of the classic laboratory tests for ecotoxicity
En	vironmental Relevance
1 Is the substance tested representative and	Although not specified precisely, the tested formulation is
relevant for the substance being assessed?	likely to content POEA as surfactant. This causes limited
	validity regarding effects of Glyphosate that does not contain
	POEA.
2 Do the tested concentrations relate to	Environmentally realistic concentrations have been used
predicted environmental concentrations?	(0.004 mg/l)
3 Have parameters influencing the	nd a. Constitution
endpoints been considered adequately?	3 o. 6
Concluding weight of evidence/proposed	Action of Roundup® and environmentally realistic
action	concentrations leads to alterations in organs of carp which
	might lead to functional changes in organ function.
Type of information (Critical, supporting,	Supporting information
low weight)	76, 6, 90
Consideration/concluding score	UBA2
	4 4 6

Ortiz-Ordoñez et al. (2003)

	low weight)			. Are	6, 90,	
	Consideration/concluding score		UBA2	O A	8	
				10 17 W	o`	
	Ortiz-Ordoñez e	et al. (2003)			Effect of West bimat	
	glyphecotox_532	Ortiz-Ordoi	iez, E.,	2011	Effect of Yerbimat	Archives of Environmental
	871	Uría-Galicia	, ,		Herbicide on Lipid	Contamination and
		Ruiz-Picos,			Peroxidation, Catalase	Toxicology 61 (3):443-452.
		Duran, A.G.	.S.,		Activity, and	DOI: 10.1007/s00244-011-
		Trejo, Y.H.,		20	Histological Damage	9648-0.
		Sedeño-Díaz	z, J.E.,	Of S	in Gills and Liver of	
		López-Lópe	z, E.	OLINE,	the Freshwater Fish	
			Ś	6.0.0	Goodea Atripinnis	
		Ţ	all o		iability	
	Purpose of the study Description of endpo				cute toxicity and , evaluate osure to Yerbimat.	biochemical parameters
	Test compound, appl	lication	In Mexico.	one of t	he most widely used glyph	osate-based herbicides is
	procedure, exposure	period	Yerbimat, v	which ha	ns agricultural as well as aq	uatic weed control
		S	application	S		
	Experimental approa	ich,	static b	ioassay a	at 96 h (LC50)	
	Statistics, test enviro	nment 🧬 👸	chronic &	which has agricultural as well as aquatic weed control as bioassay at 96 h (LC50) c exposure (75 days) Analysis v.1.5 software.		
	Experimental approach, Statistics, test environment Control Chronic Chronic Probit		– Probit	Analysis v.1.5 software.		
	Test organisms Goodea at		Goodea atr $3.0 \pm 0.5 \text{ g}$	ripinnis (6.0 ± 0.5 cm standard lengt	h and
	Biological effects	8,9,8	The 96-h L		ue was 38.95 ± 0.33 mg/L.	
	Zing.		Yerbimat in			T activity in the gills of 9.88
	4	80	and 53.3%		of the LC50	, 0
			nd 1/5 of t	he LC50	, respectively, compared to	the control
	200		group.			
	EL KI		Hypertroph			mal structure of the gills, and
	gill filame		gill filamer			al size of the cells at 30–75
			days of exp	xposure, hepatic cells displayed increasing vacuolation, in which		
	2130 XOU		vacuoles in		in both number and size, a	nd nuclei were displaced
	Biological effects The 96-h LC Yerbimat inc and 53.3% a nd 1/5 of the group. Hypertrophy gill filaments days of expo vacuoles inc toward the c Reference of the study for Environmental Ris				* ·	
	Relevance of the sti	idy for Enviro			ssment, appropriateness	of study enapoints
×	8	. /1:0			al Relevance	
	Is an appropriate test species/ life-stage(s) studied?		-stage(s)	Mexican fish species		
E 18 18 18 18 18 18 18 18 18 18 18 18 18	2 Is the magnitude of effects of significance		Histological alterations in the gills and liver that might			
, 10 d	to cause a (population) relevant effect?			impair	normal organ functioning	
To the local distriction of the local district	Glyphosate Renewal Group	o AIR 5 – July 202	0		Doc II	D: 110054-MCA8_GRG_Rev 1_Jul_2020

3 Is the ecotoxicological manifestation level	Mortality and biochemical alterations, Indication for general
appropriate for the assessment?	fitness
En	vironmental Relevance
1 Is the substance tested representative and	Commercial formulation, probably containing relevant toxic
relevant for the substance being assessed?	surfanctants, probably POEA.
2 Do the tested concentrations relate to	close to those environmental values estimated
predicted environmental concentrations?	£.45
3 Have parameters influencing the	nd ind
endpoints been considered adequately?	20°, 8°
Concluding weight of evidence/proposed	Biochemical damage, as evidenced by high LPX and CAT
action	inhibition in gill tissue, was apparent following chronic Yerbimat
	exposure, indicative of damage due to oxidative stress, might
	lead to cellular damage and death
Type of information (Critical, supporting,	Supporting information
low weight)	,
Consideration/concluding score	UBA2
	1 0 E

Cattaneo et al. (2003)

l l d C d D Cl		2011	S . 1 . 6 . 6 . 6	Du. c	
glyphecot Cattaneo, R., Claser		2011	Toxicological	Bulletin of	
ox_315 Loro, V.L., de Menezes,			Responses of Cyprinus	Environmental	
C.C., Pretto, A.,			carpio Exposed to a	Contamination and	
Baldisserotto, B., Sai	π,		Commercial	Toxicology 87 (6):597-	
A.L., de Avila, L.A.			Formulation	602. doi: 10.1007/s00128-	
		D.	Containing Glyphosate	011-0396-7.	
D 0.1 1	TE1 00		Piability		
			nmercial glyphosate herbici		
Description of endpoints			ne activity of acetylcholineste		
			ative stress were studied in (
Test compound, application			g/L of isopropylamine salt of		
procedure, exposure period			Shyphosate and 594 g/L of ir		
			f 0 (without herbicide), 0.5, 2		
Experimental approach,			6 h to 0.0, 0.5, 2.5, 5.0 and 10		
Statistics, test environment			period in water without her		
Q.			e) were obtained, two-way A	NOVA followed by	
Tukey-Kramer multiple range tests.					
Test organisms Cyprinus carpio					
Biological effects					
Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints					
Biological Relevance					
1 Is an appropriate test species/ life-stage(s)					
studied?					
2 Is the magnitude of effects of significance			E in brain and muscle. The i		
to cause a (population) relevant effective	et?		nt lead to an accumulation of	acetylcholine, causing the	
			ulation of the receptors.		
3 Is the ecotoxicological manifestati	on level	Indi	Indication for general fitness		
appropriate for the assessment?					
, 0 ⁷ , 0°			ental Relevance		
1 Is the substance tested representative and			Commercial herbicide formulation containing the active		
relevant for the substance being assessed?			ingredient glyphosate. It also contains the surfactant,		
I is the substance tested representative and relevant for the substance being assessed?			POEA, which is known to be more toxic than		
\$ 50			glyphosate to fish.		
2 Do the tested concentrations relate	to	Prob	ably exceed worse case cond	centrations.	
predicted environmental concentration					
3 Have parameters influencing the e	ndpoints	nd			
been considered adequately?					

Concluding weight of evidence/proposed action	Short-term exposure can affect their physiological conditions, nevertheless no discrimination between glyphosate and POEA possible.	2
Type of information (Critical, supporting,	Supporting information	
low weight)		1911 of .
Consideration/concluding score	UBA2	16,24
		8 15

Modesto et al. (2003)

	1 3 5 3 .	2010	E 60 1 0	S	
glyphecotox_511	Modesto,	2010 Effects of Roundup® Chemosphere & (6):781-787. D			
	K.A.,		Transorb on fish:	10.1016/j.chemosphere.2010.07.005	
	Martinez,		Hematology,	4.5.80	
	C.B.R.		antioxidant defenses		
			and	20, 12, 21, 11	
			acetylcholinesterase	14 20 0	
			activity	6 8 8	
			Reliability	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Purpose of the study		2010 Effects of Roundup® Transorb on fish: Hematology, antioxidant defenses and acetylcholinesterase activity The objective of this work was to evaluate its effects on hematological			
Description of endp		and blochemical parameters of ϕ . Theatus.			
Test compound, app			up® Transorb_ (480 g.gly		
procedure, exposure	period	concen	trations 1 and 5 mg/Ewas	used)	
Experimental approx	ach, Statistics,	Blood	samples for hematological	analysis, liver for antioxidants	
test environment		analysi	s, and brain and muscle for	or acetylcholinesterase (AChE)	
		determ	ination		
Test organisms		Neotro	pical fish Prochilodus line	atus.	
Biological effects			mortality in any of the ex		
		groups	Hematologic alterations	appeared only after 96 h exposure,	
		when f	ish showed an increase in	the hematocrit and in the number of	
		both red and white blood cells, lipid peroxidation			
		(LPO) returned to control levels after 24 and 96 h exposure to RDT			
Relevance of the st	udy for Environm	imental Risk Assessment, appropriateness of study endpoints			
		17 .6"	iological Relevance	v 1	
1 Is an appropriate t	est species/ life-	Morfal	ity and enzymativ parame	ters	
stage(s) studied?	The species into	N. J.	ioj unu onizjinuor purumo		
2. Is the magnitude of	of effects of	The ex	posure to RDT for 96 h le	d to an inhibition	
significance to cause	e a (population)	of AC		at rates which may not be considered a	
2 Is the magnitude of significance to cause relevant effect?	The state of the s	life-thr	eatening situation.	an raise which may not be constanted a	
2 1 41		Indicat	ion for general fitness		
manifestation level	annromriate for	marcat	ion for general nations		
the assessment?	13,40,0				
and descentions.	application and	Env	ironmental Relevance		
1 Is the substance te	sted			rcial formulation probably containing	
representative and re		surfactants. Limited validity regarding effects of Glyphosate that does			
substance being asse		not contain the same surfactant.			
2 Do the tested cond		Exceeding the predicted concentrations			
to predicted environ			o mi promote concent	·	
concentrations?					
3 Have parameters i	nfluencing the	nd			
endpoints been cons	idered				
adequately?	140104				
adequatery:					

ection 8	.(
1 of 847	.00

Concluding weight of	Hematological parameters in fish can significantly change in response
evidence/proposed action	towards chemical stressors; however, these alterations are
	non-specific to a wide range of substances. after 24 and 96 h the
	antioxidant defenses were apparently enough to combat ROS, preventing the occurrence of oxidative damage. The exposure to RDF for 96 h led to an inhibition of AChE in brain and muscle but at rates.
	preventing the occurrence of oxidative damage. The exposure to RDT
	for 96 h led to an inhibition of AChE in brain and muscle but at rates.
	which may not be considered a life-threatening situation.
Type of information (Critical,	Supporting information
supporting, low weight)	NE THE
Consideration/concluding score	UBA2
	/ Coles ille

Evrard et al. (2003)

	glyphecotox_367	Evrard, E.,	2010	Impacts of mixtures	Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 152 (3):321- 331. DOI: 10.1016/j.cbpc.2010.05.009.			
	- / -	Marchand, J.,		of herbicides on	Pand Physiology Part C:			
		Theron, M.,		molecular and	Toxicology and			
		Pichavant-Rafini,		nhysiological 45 5	Pharmacology 152 (3):321-			
		-		responses of the	221 DOI:			
		K., Durand, G.,		responses of the 37 %	331. DOI:			
		Quiniou, L.,		European flounder	10.1016/j.cbpc.2010.05.009.			
		Laroche, J.		Platichthys flesus				
			Re	eliability J.				
	Purpose of the study		ie cirects (i a simple handere of a gryp	mosate casea formatation			
	Description of endpo	ints ar	id AMPA a	and of a more complex mixt	rure of herbicides			
		(g	lyphosate/	AMPA/mecoprop/acetochlo	or/2,4D) were explored on the			
		m	olecular ar	dphysiological responses o	of the European flounder			
		P	latichthys_f	tesus &	_			
	Test compound, appl			Atra solution contains the m	nonoisopropylamine			
	procedure, exposure			bhosate and surfactants that				
	F			ntified in terms of chemical				
					corresponding percentage of			
				olution was 0.0055% in the				
					5.7 p.105ato/11111/1 talik (G			
			crank) nominal					
			concentrations of 2 μg L–1 glyphosate (from Roundup® solution) and 2 μg L–1 AMPA; this was known as the G tank					
	E		2 L-1 Alvii	A, this was known as the C	1 (2 1 f			
	Experimental approac	ch, Statistics,		re sampled after 0, 15, 32 ar				
	test environment	10,50, 2 Z		subtractive hybridization, n				
		Residence B		es and physiological measu	rements, Principal			
		. 5 6 6 C	omponent.	Analysis				
	Experimental approactest environment	ch, Statistics & S	CA).					
	Test organisms Biological effects Relevance of the stu	ch, Statistics, S B C (I J C C G G G G G G G G G G G	Juvenile flounders <i>P. flesus</i> (n=300, length=7–12 cm)					
	Biological effects	S S S T	Thus, no significant difference was detected in the variation					
	Kils	Kith Cill		hysiological parameters bet				
		5,80		s during the experiment; exp				
	io s	is at		ine tested, namely BHMT, a				
	8 8	cl		was altered by both types o				
	19, 60	ge	enes being	implicated in stress response	e, but also in multiple			
	6.79	bi	ochemical	pathways linked to the				
	68,0	re	sponses to	abiotic and biotic factors of	the experimental			
	al Q'ijO'	er	environment (light, salinity, social interaction, feeding).					
	Relevance of the stu	dy for Environmenta		essment, appropriateness				
	10 of			cal Relevance				
	~ '	st species/ life-stage(s)		pean flounder <i>Platichthys flo</i>	21120			
~		st species/ inc-stage(s)	Luio	bean flounder T tatteninys fie	esus			
్రస్	2 Is the magnitude of	affacts of significance	laval	of assessment is not approp	riata for nonulation laval			
يني ز	to cause a (population	o) relevant effect?		tsn LC_{50} stated	riate for population level			
	to cause a (population	i) relevant effect:	effec	ISH LC50 stated				
,0,0								
.60.00								
"AD Kill"								
10° 3/11°								
4,0	Glyphosate Renewal Group	AIR 5 – July 2020		Doc I	D: 110054-MCA8_GRG_Rev 1_Jul_2020			
" (L. 410,		-						
Son Solve On								

3 Is the ecotoxicological manifestation level	Traditionally, survival, growth and
appropriate for the assessment?	reproduction of individuals are chosen as endpoints
	of the classic laboratory tests for ecotoxicity
Env	vironmental Relevance
1 Is the substance tested representative and relevant for the substance being assessed?	Commercial formulation Roundup® Ultra
2 Do the tested concentrations relate to predicted environmental concentrations?	Environmentally relevant concentrations of herbicides (* \(\pi\) \(\pi\) \(\pi\)
3 Have parameters influencing the endpoints been considered adequately?	nd ga ja
Concluding weight of evidence/proposed	Significant alterations of liver gene expressions were detected
action	for contaminated vs control fishes, particularly at the levels of
	methionine metabolism, lipid transport and metabolism,
	immunity and respiratory chain
Type of information (Critical, supporting,	Supporting information
low weight)	
Consideration/concluding score	UBA2

Smith et al. (2003)

	glyphecotox_602	Smith, B.C	C., Curran,	2004	Toxicity of four	Bulletin of Environmental		
	_	C.A., Brov	wn, K.W.,		surfactants to	Contamination and		
		Cabarrus,	, J.L., Gown,	~	zjyvenile rainbow	Toxicology 72 (3):647-654.		
		J.B., McIr	ıtyre, J.K.,	20	trout:	DOI 10.1007/s00128-004-		
		Moreland	, E.E., Wong,	(5) 20	Emplications for	0292-5.		
		V.L., Gras	ssley, J.M.,	10 JI	ouse over water			
		Grue, C.E	, ,		Emplications for Suse over water			
				Reliabili	ity			
	Purpose of the study		Comparison of 4	≥surfactar	nts using effect on surv	vival and behaviour as		
	Description of endpo		endpoints	:101				
	Test compound, appl		R-11, Li 700, Ha	ŠTEN, A	gri DEX			
	procedure, exposure		2,42,01					
	Experimental approach		96h static acute	test(USEI	PA 1996)			
	Statistics, test environ		EL COLOTE					
	Test organisms		Quccorhynchus	mykiss				
	Biological effects	202	Erratic swimmin	g, , onbot	om gilling, inability to	maintain horizontal		
		.5	orinetation					
		of Mis	°R11: LC50 96h =	= 6ppm L	i700:			
		THE OF	LC50 96h = 17p	pm HAS	ΓEN:			
	5	9 7 8	LC50 96h = 74p	pm				
	Zi ^s	dy for Envi	Agrı DEX : LC5	Circorhynchus mykiss Erratic swimming, , onbotom gilling, inability to maintain horizontal orinetation R11: LC50 96h = 6ppm Li700: LC50 96h = 17ppm HASTEN: LC50 96h = 74ppm Agri DEX: LC50 96h = 271ppm				
	Relevance of the stu	of study endpoints						
	869	,		Biological Relevance				
	1 Is an appropriate te studied?	st species/ li	fe-stage(s) Onccorhynchus mykiss					
	2 Is the magnitude of	effects of si	ignificance to	ce to yes				
	cause a (population)			-				
	3 Is the ecotoxicolog	ical manifes	tation level	Specific Surfactant toxicity has limited validity regarding				
	appropriate for the as	sessment?				ent surfactants. Nevertheless,		
				shows significance to evaluate on product level.				
8					Relevance			
SIL	Is the substance tes	ted represen	tative and	Surfacta	ant toxicity was assess	ed		
115 J	relevant for the subst							
	2 Do the tested conce			No MW	/ stated			
E. S.	predicted environmen	ntal concenti	rations?					
10 00 00 00 00 00 00 00 00 00 00 00 00 0	Glyphosate Renewal Group	AIR 5 – July 2	020		Doc II	D: 110054-MCA8_GRG_Rev 1_Jul_2020		

3 Have parameters influencing the endpoints	nd
been considered adequately?	*
Concluding weight of evidence/proposed	Surfactant apos envrionmental hazard, displaying non-
action	specific narcosis.
Type of information (Critical, supporting, low	Supporting information
weight)	76 27
Consideration/concluding score	UBA2

Kreutz et al. (2003)

	glyphecotox_436		L.C., Barcellos,	2008	Acute toxicity test Fish Shellfish Immunol		
	_	L.J.G., S	Silva, T.O.,		of agricultural pesticides on silver 10:1016/j fsi.2010.09.012. catfish (Rhamdia quelen) fingerlings		
		Anzilier	ol, D., Martins,		pesticides on silver 10.1016/j fsi.2010.09.012.		
		D., Lore	nson, M.,		catfish (Rhamdia		
			nghe, A., da		quelen) fingerlings		
		Silva, L.					
		,			5,50,50		
		I.		Reliabil	ity		
	Purpose of the study		Investigate the a	acute toxicit	y and the v v		
	Description of endpo		lethal concentra	tion (LC50)	of four herbicides, two fungicides		
			and two insection	eides to silve	er carfish fingerlings		
	Test compound, appl	ication	Roundup®, 540	0-2160g/ha	S 10 10 10 10 10 10 10 10 10 10 10 10 10		
	procedure, exposure		•	,×,	& B & B & B & B & B & B & B & B & B & B		
	Experimental approa		For the LC ₅₀ de	terminations	210 fingerlings		
	Statistics, test enviro				ig 21 40-L plastic aquaria,		
					or equal to 1g /L, according to		
					or Technical Rules (ABNT).		
			Each product w	as tested usi	ing 5 to 6 different		
			concentrations,	with repet	citions each.		
	Test organisms		Rhamdia queler	1.5			
	Biological effects				3; Lethargy, swimming at the water surface and		
				ing (mainly vertical swimming) were the main behavioral			
			changes observe	rved. Risk Assessment, appropriateness of study endpoints			
	Relevance of the stu	ıdy for En					
			Right Bi	Biological Relevance			
	1 Is an appropriate test species life-stage(s) studied?			Rhamdia quelen			
	2 Is the magnitude of	f effects of	significance	Mortality was observed and LC 50 determined.			
	to cause a (populatio						
	3 Is the ecotoxicolog			yes			
	appropriate for the	ssessment?					
	11.1.1.1.	· S 1		nvironmental Relevance			
	1 Is the substance les			Roundup® Transorb is a commercial formulation probably			
	relevant for the subst	tance being	g assessed?	containing surfactants. Limited validity regarding effects of			
	2.5.1		1		that does not contain the same surfactant.		
	2 Do the tested conce			Recommended application rates were tested, pobabyl			
	predicted environme				the predicted environmental concentration.		
	3 Have parameters in endpoints been consi Concluding weight action	nnuencing dered adea	tne nuately?	nd			
	Concluding weight	of evidence	e/proposed	The 96-h L	.C ₅₀ determined for the		
	action		F. al. and		-based herbicide Roundup®→, in <i>R. quelen</i>		
ν.	0.00) was much lower than that for the active substance		
ين	ELL.			glyphosate			
15 1	Type of information	ı (Critical	, supporting.	Supporting information			
10 00	low weight)	(======================================	, F F		g · · · · · · · · · · · · · · · · · · ·		
TO TO THE POST OF	Glyphosate Renewal Group	AIR 5 – July	y 2020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202		

B.9.13 9.2 Invertebrates (KIIA 8.16)

Dutra et al. (2011)

	glyphecotox_121	Dutra, B.K., Fernandes, F.A., Failace, D.M., Oliveira, G.T.	2011	energy metaboreproductive t castroi (Crusta Dogielinotidae	ndup®(R) rmulation) in the blism and raits of Hyalella acea, Amphipoda,	Ecotoxicology 20: 255-263		
				Reliability				
	Purpose of the study Description of endpoints			The objective of this investigation was to examine the effects of Roundup® (glyphosate formulation) on the Biochemical composition, levels of lipoperoxidation, Na ⁺ /K ⁺ ATPase activity and reproductive traits in the <i>Hyalella castroi</i> .				
	Test compound, app procedure, exposure		Round	ıp®, glyphosate i	formulation &			
	Experimental approtest environment	ach, Statistics,	control to 0.36; period of determine levels of The nur	led conditions for 0.52, 1.08 and 2 of exposure the cination of glycogo of lipoperoxidation ber of reproduce	Mong/I of glyphosate in mals were immediate on, proteins, lipids, trig on, and Na ⁺ /K ⁺ ATPase trive pairs, ovigerous for	period they were exposed for 7 days. After the tely frozen for glycerides, cholesterol, activity. emales and eggs in the		
	TD .				n) was counted in each	day.		
	Test organisms Biological effects		All con	Hyalella castro All concentrations of Roundup® induced significant decreases in all biochemical parameters and Na ⁺ /K ⁺ ATPase activity, and significant				
		8 8.8	increase in lipoperoxidation levels. No mating pairs, ovigerous females, or eggs in the marsupium were observed in the groups treated with the pesticide; these animals did not pair in the laboratory during all time of treatment. Survival rate 48% at 2.16 mg/l of glyphosate.					
	Relevance of the stu	idy for Environmen	tal Risk Assessment, appropriateness of study endpoints					
		16 8 16 V	Biological Relevance					
	1 Is an appropriate t	Ser. 27. 18.			Physiologigal parameters and reproductive parameters			
	2 Is the magnitude of (population) relevan		cance to cause a		animals did not pair in the laboratory during all time of treatment-7 changes in trophic structure of limnic environments			
	3 Is the ecotoxicolo assessment?	gical manifestation	level app	ropriate for the	Survival rate 48% at 2.16 mg/l of glyphosate.			
		·	Environmental Relevance					
	1 Is the substance to substance being ass		and relev	ant for the	Commercial formulation. The conclusion from this study is only valid for glyphosate formulations that contain			
	2 Do the tested cond	centrations relate to	nredicted	l environmental	POEA.	eted environmental		
	concentrations?				concentrations	bed environmental		
×	3 Have parameters					noludino gunzivol		
	Concluding weight	or evidence/prop	osea actio	on	Pyhsiological study, in EC50 approx. at 2.16 changes in trophic struenvironments	mg/l of glyphosate.		
Solo Color C	Glyphosate Renewal Grou	p AIR 5 – July 2020			Doc ID: 1100	054-MCA8_GRG_Rev 1_Jul_2020		

M-CA, Section 8 Page 665 of 847

Type of information (Critical, supporting, low weight)	supporting	×
Consideration/concluding score	UBA2	

Achiorno et al. (2008)

glyphecotox_110	Achiorno, C.L., de Villalobos, Ferrari, L.	C., 2008		he herbicide glyphosat es nobilii (Gordiida, pha)	Ecotoxicology (2041)20:255–263	
		<u> </u>	Reliability		(0 0 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Purpose of the study Description of endpoints			The objects different co formulated	The objective of this study is to evaluate the effect of different concentrations of glypnosate (technical grade and formulated product) on <i>Chordodes mobilii</i> (Gordiida, Nematomorpha).		
Test compound, application procedure, exposure period			35.2% (w/v	technical grade, 95% (v v) (formulated Gly),	, , , , ,	
Experimental approach, Statistics, test environment			larvae(prep Test organ concentrati	Bioassays were performed with embryos and larvae(preparasitic stage), andadults (postparasitic stage). Test organisms were exposed for a short period of time to concentrations ranging between 0.1 and 8 mg a.e. l_1 of glyphosate (technical and formulated).		
Test organisms			C. nobilii.			
Biological effects	L. f F		Embryo de infective ca mg/L form	Embryo development was not inhibited, decrease in the infective capacity of larvae, Adult exposed for 96 h to 1.76 mg/L formulated Gly shown a mortality of 50%.		
Relevance of the stud	ly for Environ		47.60	propriateness of study e	ndpoints	
		Big	ological Relev			
2 Is the magnitude of (population) relevant	1 Is an appropriate test species/ life-stage(s) studies 2 Is the magnitude of effects of significance to cau (population) relevant effect? 3 Is the ecotoxicological manifestation level appro			e a Adult exposed for 96 h to 1.76 mg/L formulated Gly shown a mortality of 50%.		
	. 60 G	Envir	ronmental Re	levance		
assessed?	1 Is the substance tested representative and relevant assessed? 2 Do the tested concentrations relate to predicted expressions.			stance being Common Months Exception Common	nmercial product for reality parameter reed predicted rironmental centrations.	
3 Have parameters in	fluencing the	andpoints been	n considered s		centrations.	
Concluding weight of evidence/proposed a	of action	The minimum concentration tested(0.1 mg a.e. l_1 Gly.) decreased larval infectivity. This value is below the guidance level for glyphosate in freshwatersystems (0.24 mg l_1 Gly), established to protect the aquatic biota in Argentina.				
supporting, low weight) Consideration/concl	uding	UBA2				
Score						

Brausch, J.M., Smith, P.N. (2007)

glyphecotox_113	Brausch, J.M., Smith, P.N.	surfa labo	city of ethoxylated ta actant formul ratory and for shrimp, The	ations ield c	s to ollected	Archives of Environmental Contamination and Toxicology 52 (2):217-2210 DOI 10.1007/s00244-006-0151-y.			
		platy	rurus		•	0151-y.			
			Reliability			2.8			
	Description of endpoints thr			The objective of this study was to evaluate the toxicity(48-b.LC ₅₀) of three POEA surfactants to a freshwatermacroinvertebrate potentially exposed to POEA as it entersthe environment.					
Test compound, app procedure, exposure			tant formulati 15, respectivel		8.6%, 99.8	%, and \$9.4% pure for T-5,			
Experimental approtest environment	nt POEA formulations were used for testing with average amine ratios of 5:1 (Surfonic T-3 Surfactant), 10:1 -10 Surfactant), and 15:1 (Surfonic T-15 Surfactant). Serial stock solution with final nominal concentrations of 0.01, 0, 1,000, 10,000 µg/L for all three formulations of POEA treatment levels. Each formulation was testedon three ins of shrimp consisting of five acute toxicity tests (L1, C1, G2) and replicated three times for a total of 15 toxicity tests on.								
Test organisms		Thamnoceph	alus platyurus	Crus	stacea,Ano	straca)			
Biological effects	with 48-h LC toxicity incre				rmulations were found to be extremely toxic to <i>T. platyurus</i> 50 concentrations as low as 2.01 μg/ L for 15:1. POEA ased as the fallowamine chain length was reduced, whereas in length appeared to only slightly increase toxicity				
Relevance of the stu	dy for Environme	ental Risk Asse	ssment, appro	priate	ness of stu	dy endpoints			
			gicalRelevan	ce					
1 Is an appropriate t									
2 Is the magnitude of (population) relevant	nt effect?	No. Maries							
3 Is the ecotoxicolo the assessment?	gical manifestatio	n level appropi	rate for	iate for -/-					
the assessment!		Finviron	mental Relev	ance					
1 Is the substance te				POE	A				
substance being asso 2 Do the tested condenvironmental conc	centrations related	o predicted		-/-					
3 Have parameters in adequately?	3 Have parameters influencing the endpoints been co				nsidered nd				
Concluding weight	POEA was very toxic to <i>T. platyurus</i> with average 48-h LC50s of 2.01, 2.70, and 5.17 µg/L for POEA surfactantshaving an oxide:tallowamine ratio of 15:1, 10:1, and 5:1,respectively. Some deficiencies in data reporting								
weight)	, , 11	orting, low	supporting						
Consideration/con	Consideration/concluding score				UBA2				

Brausch et al. (2007)

glyphecotox_114	Brausch, J.M., Blake, B., Smith, P.N.	2007 Acute and Sub-Lethal Toxicity of Three POEA Surfactant Formulations to Daphnia magna.			Conta	tin of Environmental amination and ology. Volume: 78 6 Pages: 510-514		
				eliability				
Purpose of the study Description of endpoints				In this study, <i>Daphnia magna</i> was used to examine the lethal and sub-lethal toxicity of three POEA formulations consisting of 5:1, 10:1, and 15:1 average oxide:tallowamine.				
Test compound, app period				POEA formulations consistir average oxide:tallowamine.	47.5	\$10:1, and 15:1		
Experimental appro environment	ach, Statistics, test	t .		48h, test conc: 0,01- 10μg/L	SO SO SO	Ç		
Test organisms				= 117 11111 1111 1111 1111 1111 1111 11	~			
Ç					All formulations inhibited growth at concentrations between 100 and 500 µg/L. The formulation consisting of 10:1 was the most concelly toxic with a 48-h LC50 value of 97.0 µg/L and 13:1 was least toxic at 849.4 µg/L.			
11010 141100 01 1110 011	orginia zarvarenina			ical Relevance	a) •11ap			
1 Is an appropriate t	est species/ life-st			of A sir		ves		
				a (population) relevant effect	0 1 0			
				ate for the assessment?		yes		
	<u> </u>			nental Relevance	L	J		
1 Is the substance to	sted representativ			or the substance being assesse	ed?	surfactant		
				ronmental concentrations?		nd		
				nsidered adequately?		yes		
Concluding weight of evidence/proposed action					POEA was very toxic to <i>Daphnia magna</i> POEA 15:1= 0.85 mg/L, POEA 10:1=0.097 mg/L POEA 5:1= 0.18mg/L			
Type of information (Critical, supporting low weig			ght) supporting					
Consideration/concluding score			UBA2					

Le et al. (2010)

	glyphecotox_122	2010	Effects of glyphosate and methidathion on the expression of the Dhb, Vtg, Arnt, CYP4 and CYP314 in Daphnia magna	Chemosphere 79: 67-71		
	S. L.		liability			
2	Purpose of the study Description of endpoints Test compound, application procedure, exposi	g se e	n this study, the expression of five senes was quantified and analyzed usemiquantitative RT-PCR to study the expression in <i>Daphnia magna</i> after sesticides, glyphosate and methidate Glyphosate, FLUKA, probably tech	using a le changes in their exposure to known lion.		
E SU	Speriod		Gryphosate, i Borer, producty technical, not stated			
	Experimental approach, Statistics, test environment	e	Standard US EPA protocol (2002) to determine the lethal endpoint caused byGlyphosate, concentrations: 190, 202, 214, and 234 mg/L, for 24 h probit method			
Se Ve	Glyphosate Renewal Group AIR 5 – July 2020		Doc ID: 110054	4-MCA8_GRG_Rev 1_Jul_2020		

Test organisms	Daphnia i	падпа						
Biological effects								
	Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints							
Biological Relevance								
1 Is an appropriate test species/ life-stage(s) studied?	_			yes joli of				
2 Is the magnitude of effects of significance to cause	a (populat	ion) relev	ant effect?	nd 2001				
3 Is the ecotoxicological manifestation level appropr	riate for the	assessme	ent?	yes view				
Environmental Relevance								
1 Is the substance tested representative and relevant for the substance being assessed?			Not clarified, probably glyphosate technical.					
2 Do the tested concentrations relate to predicted environmentrations?		-/-	10 10 10 10 10 10 10 10 10 10 10 10 10 1					
3 Have parameters influencing the endpoints been coadequately?		-/-	8, 8,					
Concluding weight of evidence/proposed action			Tested substance not specified					
Type of information (Critical, supporting, low weight) Low v			eight & o					
Consideration/concluding score								

Bringolf et al. (2007)

	Bringolf et al. (2		f. R.B	2007	Acute a	UBA3	e toxicity of	Environmental	
	8,18	Cope, W Mosher, Barnhar	Bringolf, R.B., Cope, W.G., Mosher, S., Barnhart, M.C., Shea, D.		V.G., glyphosa S., glochidia et, M.C., Eampsilis		unds to eniles of	Toxicology and Chemistry Volume: 26 Number: 10 Pages: 2094-2100	
					<u>e</u> liability				
	Purpose of the study Description of endpo		(MON 0818)	several gl	yphosate fo	e, its formulations ormulationswas ove freshwater mu	s, and a surfactant determined for early assel.		
	Test compound, Roundup®, its active ingredien						ent, the technical-grade isopropylamine (IPA) salt MON 0818 (the surfactant in Roundup®		
	Experimental approach, Acute and chronic toxicity test						ts were performed with a newly established and Materials (ASTM) standard guide for reshwater mussels.		
	Test organisms & Campsilis siliquoidea (Unionic						dae)		
	Biological effects Relevance of the structure of the str	GEC ₅₀ values 48h (mg/L)acute Glyphosate technical >200 (glochidia) Glpyhosate IPA=5 (glochidia) Aquastar® >148(glochidia) Roundup®=2.9(glochidia) MON0818 =0.5(glochidia)			ochidia)		3.8 7		
	Relevance of the stu	dy for En	vironmental R			ppropriaten			
	8, 2,				ical Rele				
	()					with a new Testing an	wly established And Materials (AS	American Society of STM) standard guide is with freshwater	
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Glyphosate Renewal Group	p AIR 5 – Ju	uly 2020				Doc ID: 110054	4-MCA8_GRG_Rev 1_Jul_202	

Environmental Relevance								
1 Is the substance tested representative and relevant for	See above							
the substance being assessed?	E.							
2 Do the tested concentrations relate to predicted								
environmental concentrations?								
3 Have parameters influencing the endpoints been	yes 10 miles							
considered adequately?	£.45							
Concluding weight of evidence/proposed action	MON 0818 was most toxic of the compounds							
	tested and the 48-h median effective							
	concentration (0.5 mg/L) for L. siliquoidea							
	EC50 values are taken into account:							
Type of information (Critical, supporting, low weight)	Critical							
Consideration/concluding score	UBA1							

Tsui, M.T.K., Chu, L.M. (2004)

				~ .		
	glyphecotox_018	Tsui, M.T.K.,	2004	Comparative to	oxicity of Society of	Arch. Environm. Contam.
		Chu,		glyphosate-base	ed herbicides:	Toxicol.46, 316-323
		L.M.		aqueous and se	diment	
				porewater expo	sures	
				aqueous and se porewater expo	rall call.	
				Reliability	9 8	
	Purpose of the study					nree formulations based on
	Description of endpo					coundup®) were compared
		l u	ising a w	ater-column organ	iism (cladoceran: C	eriodaphnia dubia) and a
		t	enthic or	ganism (amphipo	d: Hyalella azteca).	In addition, Roundup®
		1	31active®	and Koundup® v	vere spiked into a c	lean sediment which was
						s to study the effect of
						2.1%) on their sediment
						ater or porewater prepared
				contaminated sedi		
	Test compound, app				salt of glyphosate	
	procedure, exposure					osate 41%, 0-20 POEA)
					isopropylamine salt	t of glyphosate 41%,
		Q 8 8	urfactant			
	Experimental approx Statistics, test environmental Test organisms	nch,	DSEPA g	uideline 2000		
	Statistics, test enviro	onment & & &				
	Test organisms	% 0 %	Ceriodaphnia dubia, Hyalella azteca			
	Biological effects	Solution 1	The concentration units for the glyphosate-based herbicides were based on			
	1,0					e acid) throughout the study.
	Relevance of the stu	dy for Environm	ental Ris	k Assessment, app	propriateness of stud	dy endpoints
	6	.5		Biological Releva	ance	
	1 Is an appropriate t	est species/ life-s	tage(s) st	udied?		yes
	2 Is the magnitude of	f effects of signif	ficance to	cause a (populat	ion) relevant effect?	yes
	3 Is the ecotoxicolog	gical manifestation	n level a	ppropriate for the	assessment?	yes
	, 8°, 8°,			vironmental Rel		
	1 Is the substance te	sted representativ	e and rel	evant for the	Commercial form	nulations probably showing
	substance being asse	essed?				een the inclsion of toxic and
	10 49				less toxic surfact	tants.
	2 Do the tested conc	entrations relate	to predic	ted		
	environmental conce		1			
3	Have parameters i		dpoints l	peen considered	yes	
>	No Paramistors 1		P			
2	adequately?					
4	Have parameters i adequately? Concluding weight Glyphosate Renewal Group	of evidence/pro	posed ac	tion EC50	values are taken in	to account

Type of information (Critical, supporting, low weight)	supporting	
Consideration/concluding score	UBA2	ill in the second

Chen et al. (2004)

Annex to Regulation 283/2013

glyphecotox_120	Chen, C.Y., Hathaway, K.M., Folt, C.L.	2004	Multiple stress Vision (R) herb food on zooplar larval amphibia forest wetlands	icide, pH, and ikton and	Environmental Toxicology and Chemistry 23 (4):823- 831	
	1		W. 5 6			
Purpose of the study Description of endp			the herbic pHand for formulated concentrate	ide Visiont (glyphod level, were kar d level, were kar d product Vision v ions (0.75 and 75), a (pH 5.5 and 75), a	earth program, interactions of osate) with two stressors, nined. Effects of the ere tested at two test 0 mgacid equivalent/L), two and under high and low food	
Test compound, apperiod	plication procedure	stations of an order of an ord				
Experimental appro environment	ach, Statistics, test	as Survival, reproduction, and development time asured; SAS LIFETESTt (SAS, Ver 8, Cary, NC, airwise comparisons of survival responses in each at were made using a log-rank test.				
Test organisms			Simocepho	alus vetulus		
Biological effects		.5.		0.75 to 1.5 mg a.e./		
Relevance of the str	udy for Environme	(/1"	_0 .0	•	ıdy endpoints	
			Biological Releva	nce		
1 Is an appropriate					Simocephalus vetulus	
2 Is the magnitude						
3 Is the ecotoxicolo	gical manifestation	ndewel a	ppropriate for the			
	0, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	S E.	nvironmental Rel	reproduction		
1 Is the substance to substance being ass		Vision®Commercial formulation containing POEA. Commercial formulation. The conclusion from this study is only valid for glyphosate formulations that contain POEA.				
2 Do the tested con environmental cond	entrations?	_				
3 Have parameters considered adequate	ely?	nd				
Concluding weigh					e taken into account.	
Type of information		orting, l	low weight)	supporting		
Consideration/con	cluding score			UBA2		

Mensah et al. (2011)

glyphecotox_123	Mensah, P.K., Muller, W.J., Palmer, C.G.		Acute toxicity of Roundup® herbicide to three life stages of the freshwater shrimp Caridina nilotica (Decapoda: Atyidae)	the I	ics and Chemistry of Carth, Parts A/B/C 36 (5):905-909		
	•	L	Reliability		TILL O		
Purpose of the study Description of endp	oints		The toxicity of the herbicide using three different life stage Caridina nilotica, a prevalent freshwater ecosystems.	The toxicity of the herbicide Roundup® was assessed using three different life stages of the freshwater shrimp Caridina nilotica, a prevalent species in South African			
Test compound, app period	•		a.e./L (contains 480 g isopror registered and distributed by Ltd.),	Roundup® active ingredient: 360 g syphosate (glycine) a.e./L (contains 480 g isopropylamine salt of glyphosate/L, registered and distributed by Monsanto South Africa (Pty) Ltd.).			
Experimental approach, Statistics, test environment			0,1.7, 2.6, 4.1, 6.4 and 8 mg/post hatching(dph)) 0, 1.7, 2.6, 4.1, 6.4, 8 and 10 dphand < 20 dph);	0, 1.7, 2.6, 4.1, 6.4, 8 and 10 mg/L for juveniles (>7 dphand < 20 dph); 0, 5.4, 8.4, 1351, 20 5, 32 and 50 mg/L for adults(>40			
Test organisms			Caridina illotica (Decapoda: Atyidae) is the most common of four indigenous freshwater caridean species found in the South Africa				
Biological effects		L 250 mg/L 48h neonates = 4.45 L 250 mg/L 48h juvenile = 9.39 DC50 mg/L 48h Padults=37.12	LC50 mg/L 96h neonates = 2.54 LC50 mg/L 96h juvenile = 6.96 LC50 mg/L 96h adults=25.507				
Relevance of the stu	ıdy for Environme	ental Risk	Ressment, appropriateness of study endpoints				
	·		iological Relevance				
1 Is an appropriate t	est species/ life-st				yes		
2 Is the magnitude of	of effects of signif	icance to	cause a (population) relevant effects	?	mortality		
			propriate for the assessment?		yes		
	691	Env	ironmental Relevance				
1 Is the substance tested representative and relevant for the substance being assessed?			Commercial formulation. The	Commercial formulation containing POEA,Roundup®. Commercial formulation. The conclusion from this study is only valid for glyphosate formulations that contain POEA.			
2 Do the tested conducted environments 3 Have parameters in the second conducted and the second	ental concentration	ns?					
been considered ade	quately?				12.1		
Concluding weight of evidence/proposed action			The neonates of <i>C. nilotica</i> were found to be most sensitive with a mean 96 h LC ₅₀ of 2.5 mg/L,				
Type of information low weight)	on (Critical, supp	orting,	supporting				
Consideration/con	cluding score		UBA2				

Zeynep SARIGÜL11 (2009)

glyphecotox_124	Zeynep SARIGÜL11	2009		oxicity of the e Glyphosate on nagna*	JOURNA AGRICU SCIENC 204-208	AL OF ULTURAL ES 2009, 15 (2)		
		•	Relia	bility	•	SKILL O		
Purpose of the study Description of endp	oints		In ther Da	In this study, median lethal concentrations (LC50) of herbicide Roundup, which contains 48% glyphosate, on Daphnia magna for 24 and 48 hours were determined.				
Test compound, app period	_	_		Roundup®				
Experimental approach, Statistics, test environment			star (0.0 gro	The experiment has been conducted with the method of static bioassay on two series five different concentrations (0.0115; 0.018; 0.021; 0.028; 0.032) and one control group have been used. The LC50 values have been calculated with the method of probit analysis.				
Test organisms				phniamagna 🛒 🂢	, O			
Biological effects			gly 0.0 mg wh 0.0	Experimental results showed that the concentration of the glyphosatewhich killed 50 % of Daphnia magna was 0.019 mg/L (95% confidence interval=0.012 mg/L-0.024 mg/L) for 24 hours, but the concentration of the glyphosate which killed \$0 % of Daphniamagna was 0.012 mg/L (%95 confidence interval=0.001 mg/L-0.016 mg/L) for 48 hours				
Relevance of the stu	ıdy for Environme	ntal Risl		nt, appropriateness o	f study endpoin	ts		
			4, 0	Relevance	J 1			
1 Is an appropriate t	est species/ life-sta			3	yes	<u> </u>		
				(population) relevant effect? yes				
				ate for the assessment?				
		, S E à	vironmen	tal Relevance				
1 Is the substance to	ested representative	and rel	evant for th	for the substance being assessed? Commercial formulation. The conclusion from the study is only valid for glyphosate formulations that contain POEA.		ormulation. The onclusion from this udy is only valid or glyphosate ormulations that		
2 Do the tested cond	centrations relate to	o predict	ted environ	mental concentrations	s? ye	es		
3 Have parameters						xygen low		
Concluding weight	t of evidence/prop	osed ac	tion	EC50 values formulation	EC50 values taken in to account for the			
Type of information	n Critical, suppo	orting, l	ow weight	supporting				
Consideration con	cluding score		UBA2					

ON THE STATE OF TH

Conners, D.E., Black, M.C. (2004)

glyphecotox 325	Conners,	2004	Eval	uation of l	ethality and	Arch	ives of Environmental	
	D.E., Black,				the freshwater		amination and	
	M.C.				ckia imbecillis	Toxic	cology 46 (3):362-371&	
			(Biva	alvia : Uni	onidae) exposed		10.1007/s00244-003	
					ombination to	3003		
					in lawn care		77.0	
]	Reliability			10.8th	
Purpose of the study	y			In this stu	dy, we evaluated the	e letha	l and genotoxiceffects	
Description of endp	oints			of chemic	als used in lawn car	e on a	n early life stage	
					iter mussels (Utterba			
Test compound, app	plication procedure	e, exposi	ıre				undup; 18.0% active	
period					t; Monsanto Compa	ny)		
Experimental appro	ach, Statistics, test	t		Johnson e	et al. (1993).		E CONTRACTOR OF THE CONTRACTOR	
environment					200	16 16	ř	
Test organisms							average length 54.7	
					ageheight 26,9 mm)	o [©]		
Biological effects				LC ₅₀ 18.3				
Relevance of the stu	udy for Environme	ental Ris	k Asse	ssment, ap	propriateness of stud	dy end	points	
Biological Relevance & A STATE CONTROL OF THE PROPERTY OF THE								
1 Is an appropriate t	test species/ life-st	age(s) st	udied?)	The Egg.		U. imbecillis mussels	
2 Is the magnitude of	of effects of signifi	icance to	cause	a (populat	ion) relevant effect?	?	Parameter observed	
				و			mortality	
3 Is the ecotoxicolo	gical manifestation						mortality	
				mental Re	levance			
1 Is the substance to	ested representative	e and rel	evant	for the of a	Commercial formu	ulation	. Commercial	
substance being asso	essed?			20, 27, 60	formulation. The conclusion from this study is			
			Z.	1800	only valid for glyphosate formulations that			
			et s	for the	contain POEA.			
2 Do the tested concenvironmental conc	centrations relate t	o predic	ted 🚕	, 0,	1 redicted chylrollinental conchetrations might			
environmental conc	entrations?	الغ		5	be lower (for one indication per area).			
3 Have parameters i	influencing the end	dpoints l	een		nd			
considered adequate		100 Co	, Q		7070 1			
Concluding weight	t of evidence/prop	osed ac	tion		LC 50 taken into account			
	(tr)	80, 01,						
Type of information	on (Critical, supp	orting, l	ow we	eight)	supporting			
\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								
Consideration/concluding score					UBA2			
	11 61 6							
Frontera et al.	Frontera et al. (2011) glyphecotox 378 Frontera 2011 Effects of Clyphosate and Archives of							
glyphecotox 378	Frontera,	2011	Effe	cts of Glvn	hosate and	Arcl	nives of	
S.) buccoroy_0,0	11	Polyovyothylor				_	monmontal	

	glyphecotox_378	Frontera, J.L., Vatnick, I., Chaulet, A., Rodriguez, E.M.	2011	Polyoxyethylenamine on Growth and Energetic Reserves in the Freshwater Crayfish Cherax quadricarinatus (Decapoda, Parastacidae)		Archives of Environmental Contamination and Toxicology 61 (4):590-598. DOI 10.1007/s00244-011- 9661-3.			
	*% 42]	Reliability				
Γ	Purpose of the study				Sublethal effects of a 50-day	exposure to glyphosate acid			
Description of endpoints and polyoxyethylenan					and polyoxyethylenamine (PC				
35					3:1 mixture, on the growth and energetic reserves in				
700					muscle, hepatopancreas and hemolymph ofgrowing				
5					juvenile crayfish were examined.				

Test compound application precedure of	vnogura All stock colution	ns of glyphosate (as acid) and				
Test compound, application procedure, e						
period		urity; Sigma, St. Louis, Missouri) were by dissolving the appropriate amount of				
	the chemicals in					
E	the chemicals in	distilled water.				
Experimental approach, Statistics, test environment		Sign of the state				
Test organisms		ile C. quadricarinatus				
Relevance of the study for Environmenta 1 Is an appropriate test species/ life-stage	experimental gro concentration of amine) at a conc (3.75 mg/l POE 30 mg/l (7.5 mg physiological pa levels or body-w al Risk Assessment, appropria Biological Relevance (s) studied?	No mortality was observed in any of the experimental groups during the experiment (glyphosate at a concentration of 22.5 mg/l., POEA (polyoxyethylene amine) at a concentration of 7.5 mg/l.; a mixture of 15 mg/l (3.75 mg/l POEA and 11.25 mg/l glyphosate and a mixture of 30 mg/l (7.5 mg/l POEA and 22.5 mg/l glyphosate). Other physiological parameters like oxygen consumption, glycogen levels or body-weight gain were affected. sessment, appropriateness of study indpoints or				
2 Is the magnitude of effects of significant relevant effect?	nce to cause a (population)	Mortality was not affected				
3 Is the ecotoxicological manifestation le assessment?						
	Environmental Relevance	6				
1 Is the substance tested representative as substance being assessed?	nd relevant for the	Commercial formulation				
2 Do the tested concentrations relate to p	redicted environmental	Predicted environmental concnetrations				
concentrations?	E S. J. Co	might be lower (for one indication per				
	EL SO M	area).				
3 Have parameters influencing the endpoadequately?	ints been considered					
	Physiollogical traits are affect	ed, which might affect fitness. The				
		lipid reserves, as observed in the				
		wer protein levels and decreasedsomatic				
(P)	prowth in juvenile crayfish C.					
Type of information (Critical,	Supporting					
supporting, low weight)						
	ŬBA2					

Mottiera (2013)

	Mottiera Bouchart		2013	Effects pof glyphosate –based herbicides on embryo-larval	Aquatic Toxicology 128- 129 (2013),67-78		
	Serpentii Lebela, J	nia,		development and	, , ,		
	Lebela, J	hac,		metamorphosis in the Pacific			
	Costil			oyster , Crassostrea gigas			
	3		Reliability				
	Purpose of the			t, the present study aimed to assess the			
	study Description of			omethylphosphonic acid (AMPA) and			
	endpoints		oundup Express® (REX) and Roundup Allées et Terrasses® (RAT), containing				
	& O		glyphosate as the active ingredient, on the early life stages of the Pacific oyster, Crassostrea gigas.				
8,	Fest compound,		Roundup Express® 7.2 g/l Glyphosate +POEA(R _{EX}),				
\$5.0	application procedure,		Roundup Allées et Terrasses® 4.4 g/L+POEA(R _{AT})				
18 18	exposure period	glypho	glyphosate (97% purity)				
20,00		AMPA	A (97.5%	/opurity)			
Sold of the sold o	Glyphosate Renewal Group AIR 5 – Jul	ly 2020		Doc ID	: 110054-MCA8_GRG_Rev 1_Jul_2020		

Experimental	For both endpoints, the nominal concentrations corresponding to 0.1, 1, 100 and						
approach, Statistics,	10,000						
test environment	g L-1 of the chemicals (i.e. glyphosateand AMPA) were verified (in						
		duplicate) by ultraperformance liquidchromatography (UPLC) and					
	fluorometric detection (in a	ccordancewith NF ISO 21458)					
	Embryotoxicity bioassay an	d experimental design: AFNOR procedure (AFNOR					
		. Regarding the differences between the nominal and					
Test organisms	Pacific oyster, Crassostrea						
Biological effects		and 46.1 mg/Lfor glyphosate and its metabolite,					
		er development and for both glyphosate and AMPA					
	LC50	20° 50°					
	>100mg/L.						
		ic than the active ingrdient, probably due to the					
	_	ent REX= 1.1 mg/L, RAT=2.0mg/L					
Relevance of the study for Env		, appropriateness of study endpoints					
	Biological Ro						
1 Is an appropriate test species		Pacific oyster, Crassostrea gigas					
		Embryotoxicity bioassay					
2 Is the magnitude of effects of	of significance to cause a	yes Ellin i					
(population) relevant effect?		6 6 6 K					
3 Is the ecotoxicological mani	festation level	yes file of the second					
appropriate for the assessment	?	yes It of the state of the stat					
	Environmental	Dolovonoo					
1 Is the substance tested repres	sentative and relevant	NES A P					
for the substance being assessed							
2 Do the tested concentrations	relate to predicted	Predicted environmental concnetrations might be					
environmental concentrations?	relate to predicted	ower (for one indication per area).					
3 Have parameters influencing	g the endpoints been	nd					
3 Have parameters influencing the endpoints been considered adequately?							
Concluding weight of eviden	ce/nronosed action 🚓 🔊	the embryos and 48 h D-shaped larvae were					
	E HE E	more sensitive than 21 days larvae					
	- 10 10 10 10 10 10 10 10 10 10 10 10 10	LC ₅₀ taken into account.					
Type of information (Critica	ll, supporting, low weight)	supporting					
	(C) (S) (C)						
Consideration/concluding sc	ore	UBA2					
	0, 71.10						

	Consideration/concludi	£ 4, 4, 70	5		UBAZ	
	Dominguez-Cortina	s et alt (2008)				
	glyphecotox_347	Dominguez-	2008		f the toxicity of	Toxicological &
	.8.	Cortinas, G.,			and Faena®	Environmental
	10.8.	Saavedra,		using the f		Chemistry 90 (2):377 -
	7.5	J.M., Santos-			ites Daphnia	384
	(Still)	Medrano,		magna and		
		G.E., Rico-		quadrident	ata	
		Martinez, R.				
				Reliability		
	Purpose of the study			Therefore, the aim of the present contribution was to		
	Description of endpoints			perform an ecotoxicological assessment of both glyphosate		
				and its commercial formulation Faena using		
	Estapoints			twoooplanktonic invertebrates: the rotifer <i>Lecane</i>		
	Session of chaponias			quadridentata, and the cladoceran Daphniamagna.		
3	Test compound, applicat	ion procedure, exp	osure	Glyphosate and Faena_ of the highest purity available		
*65° C	Speriod				o., St. Louis, MO, US	SA).
£2.28;	Experimental approach, S	Statistics, test		Statistica :	5.0	
20,20	environment					
.0.0	Test organisms			Daphnia n	nagna and Lecane qu	uadridentata
A CONTROL OF ON THE STATE OF O	Glyphosate Renewal Group AIR	5 – July 2020			Doc ID:	110054-MCA8_GRG_Rev 1_Jul_2020

Biological effects		LC ₅₀ 48h L. quadridentata	LC	50 48h Daphnia magna		
Brotogroup critoria		Active ingredient =150		ive ingredient=146		
		Faena®=13.1		na®=7.9		
Relevance of the study for En	study for Environmental Risk Assessment, appropriateness of study endpoints					
		gical Relevance		Miles.		
1 Is an appropriate test species	s/ life-stage(s) studied:	?		yes 18 1		
2 Is the magnitude of effects of	of significance to cause	e a (population) relevant effect?		mortality 8 8		
3 Is the ecotoxicological man	ifestation level appropr	riate for the assessment?		mortality (1)		
	Environ	mental Relevance		2 :8		
1 Is the substance tested repre	sentative and relevant	for the substance being assessed?		Active ingredient		
2 Do the tested concentrations			.0	> nd° ⊗`		
3 Have parameters influencing	g the endpoints been c	onsidered adequately?	Poh	(ndn)		
Concluding weight of		w that this freshwater rotifer is 11	-fôlds	nore susceptible to		
evidence/proposed action		nulation (Faena) than to the active				
		due to the synergistic activity of				
		n that increase the toxicity of the				
	Daphnia magna is al	most 20-fold moresusceptible to F	aena	than to glyphosate.		
	LC ₅₀ taken into acco	unt.				
	EC50 (esteases activity)of glyphosate is 1500 fold smaller than the LC50.					
Type of information	V V V V					
(Critical, supporting, low						
weight)		16 20 60				
Consideration/concluding						
score		S. N. H.				

Demetrio et al. (2012)

				2 8 L			
	glyphecotox_342	Demetrio,	2012	Effects of Pesticide	Bulle	etin of	
		P.M., Rossini,	Ó	Formulations and Active	Envi	ronmental	
		G.D.B.,	il d	Ingredients on the		tamination and	
		Bonetto.	The Tay	Coelenterate Hydra		cology 88 (1):15-9.	
		C A Ronco	6, 10, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	attenuata (Pallas, 1766)		0.1007/s00128-011-	
		A E	43 6	utterruntu (1 urus, 1700)	0463		
		, (e)	· ' & '		0405	-0.	
		7 6	2.0	Reliability			
	Purpose of the study	20.10.110		The objective of the study is toa	ssess a	and compare the	
	Description of endpoint	s of this is		acute effects on H. attenuata exp			
				ingredients and commercial form			
		18 8 8 6 T		cypermethrin, and chlorpyrifos.		one organization,	
	Test compound, applica	tion procedure		Effects of Pesticide Formulations and Active Ingredients on the Coelenterate Hydra attenuata (Pallas, 1766) Reliability The objective of the study is toa acute effects on H. attenuata exp ingredients and commercial forr cypermethrin, and chlorpyrifos. Glyphosate (Technical Grade) w		otained from Gleba	
	exposure period			S.A. Roundup ®Max (74.4% gl			
	Superior priior			from Monsanto S.A.	JPHOSE	was countred	
	Experimental approach,	Statistics test		probit model (Finney 1971) with	h a sne	cific software (Probit	
	environment approach,	Statistics, test		USEPA version 1.5)			
	Test organisms Color			Hydra attenuata			
	Biological effects			LC50 glyphosate a.i (mg/l) LC50 RoundupMax®			
	Ed Asia			=18.2		/l) =21.8	
	Relevance of the study	for Environmental I		sessment, appropriateness of study	y endpo	oints	
	19,10			ogical Relevance			
	1 Is an appropriate test					yes	
				se a (population) relevant effect?		mortlaity	
		l manifestation leve	el approp	oriate for the assessment?		yes	
,			Enviro	nmental Relevance			
es S	Is the substance tested	l representative and	relevan	t for the substance being assessed	?	Active ingredient	
11. 7	25 1 1		11 . 1			versus formulation	
1100	2 Do the tested concentr			nvironmental concentrations?		nd	
51. 5	3 Have parameters influ	encing the endpoin	ts been	considered adequately?		nd	
Selection of the select	Glyphosate Renewal Group AI	R 5 – July 2020		Doc ID:	110054-	MCA8_GRG_Rev 1_Jul_2020	

-CA	, Se	ction	8
age	677	of 84	7

Concluding weight of evidence/proposed action	With glyphosate, higher and significant effects were detected for the formulation at lower concentrations, with a reversal of the behavior at			
The second secon	higher concentrations.			
Type of information (Critical,	supporting			
supporting, low weight)				
Consideration/concluding score	UBA2			
	£.50			

Melnichuk et al. (2007)

glyphecotox_501	Melnichuk,	2007		kel herbicide	Hydrob	iological Journal 43			
	S.D.,		on vital activ	vity of	(6):83-9	f. doi:			
	Scherban,		Ceriodaphnic	a affinis in	10.1615	HydrobJ.v43.i6.70.			
	Y.P.,		acute and ch	ronic					
	Lokhanskaya,		experiments	8	3, 40, 94,				
	V.I.		(2) 20 ° 6,						
	glyphecotox_501 Melnichuk, S.D., S.D., Scherban, Y.P., Lokhanskaya, V.I. Melnichuk, S.D., Scherban, S.D., Reliability Effects of Fakel herbicide on vital activity of Ceriodaphnia affinis in acute and chronic experiments Reliability Hydrobiological Journal 43 (6):83-91. doi: 10.1615/HydrobJ.v43.i6.70.								
Purpose of the study						influence of Fakel			
Description of endpoin	te		herbicide on	the vetable thrity	siudy ilie i i naramete	rs of Ceriodaphnia			
Description of enapoin	13			o evaluate the to					
Test compound, applic	ation procedure			ride is produced a					
exposure period	ation procedure,					6isopropylamine salt			
exposure period			of glyphosat		of the 407	oisopropytammic sait			
Experimental approach	, Statistics, test				to 200 m	g/dm3 were studied			
environment			in acuteexpe	riments and of c	oncentration	ons from 0.001 up to			
			10 mg/dm3	– in chronic expe	eriments	_			
Test organisms			Ceriodaphn						
Biological effects		<i>*</i>		48h= 13.6 mg/L(
Relevance of the study	for Environmental	RiskAs	sessment, app	ropriateness of st	tudy endpo	oints			
			logical Releva	nce					
1 Is an appropriate test	species/life-stage(s) studie	ď?		ye	S			
2 Is the magnitude of e effect?	ffects of significan	ceto cau	se a (population) relevant yes			S			
3 Is the ecotoxicologic	al manifestation lev	æl appro	priate for the assessment? yes			S			
	8 10 11	Envir	onmental Rele	evance					
1 Is the substance teste substance being assessed		d relevar	nt for the	Comercial formulation					
2 Do the tested concent		edicted		At concentration	n of 1 0_0	01 mg/dm3 the			
environmental concent	rations?	carcica		At concentration of 1.0–0.01 mg/dm3, the herbicide reduces productivity of \tilde{N} . affinis b					
cii vii ciiiii ciitai concent	11.10 O			21–23% in each					
3 Have parameters infl	uencing the endpoi	nts been		nd					
considered adequately.									
Concluding weight of									
evidence/proposed ac	tion	of young per broodat concentration of 10 mg/dm3.							
Type of information (Critical, supporting									
supporting Yow weigh	supporting Now weight)								
Consideration/conclu-	ding score	UBA2							

M-CA, Section 8 Annex to Regulation 283/2013 Glyphosate Page 678 of 847

Akcha et al. (2012)

glyphecotox_273	Akcha, F., Spagnol, C., Rouxel, J.	2012	Genotoxicity of diuron and glyphosate in oyster spermatozoa and embryos	Neth	ntic toxicology (Amsterdam, 6 erlands) 106-107:104-13. 8 0.1016/j.aquatox.2011.10.018	
			Reliability			
Purpose of the study Description of endpoin			The embryotoxic effects throughvarious embryo-l		passavs.	
Test compound, applic	cation procedure	,	Roundup Express®			
exposure period			Glyphosate a.s.		0, 10°	
Experimental approach	h, Statistics, test		Test concentration 0.5; 1	.0; 1.5; 2	2.5; 5:0 agas./L;	
environment			one-way ANOVA		× × × × ×	
Test organisms			Mature oysters			
Biological effects			Significant differences were highlighted in terms of D-larvae abnormalities (p < 0.001at exposure to glyphosate at concentrations of 5 µg /L leads to a significant increase in oyster embryo abnormalities versus the control. embryo-larval bioassays showed Roundup to have no embryotoxic effects, even at the highest			
			testedconcentration of 5	ng of eq	uivalent glyphosate /L	
Relevance of the study	y for Environmer	ntal Risk	Assessment, appropriatene	ss of stu	dy endpoints	
		I	Biological Relevance			
1 Is an appropriate tes	t species/ life-sta				nd	
			cause a (population) releva	nd		
3 Is the ecotoxicologic	cal manifestation	level ap	propriate for the assessmen	nt? nd		
			vironmental Relevance			
1 Is the substance teste		and rele			mercial formulation did not	
substance being assess	sed?	140		appear to be more toxic than		
		· cris		glyphosa	te – the active substance –	
2 Do the tested concer concentrations?		8	yes			
3 Have parameters influencing the endpoints been considered adequately?				nd		
Concluding weight of evidence/proposed ac	f ction	EC50	(estimated) Glyphosate a.s-	$=2.5\overline{\mu g}/1$		
evidence/proposed action Type of information (Critical, Supporting supporting, low weight)						
Consideration/conclu		UBA2				

Annex to Regulation 283/2013 Glyphosate M-CA, Section 8 Page 679 of 847

B.9.13 9.3 Algae and aquatic plants (KIIA 8.16)

Ray et al. (2008)

glyphecotox_561	Ray, P., Sushilkumar, Pandey, A.K.	2008	herbicio biocont	ious effect of les on waterhyacint rol agents Neochetin ind Alternaria a		Biocontrol Science and Technology 18 (5):523-533. Doi 10.1080/09583150802001734.
	1	1	Reli	ability	<u> </u>	5.0
Purpose of the study Description of endp		Laboratory experiments were conducted to determine the foxic effect of herbicides on the insect biocontrol agent, the waterhyaemthweevil, Neochetina bruchi Hustache, and phytopathogen, Alternaria alternata, with two commonly used herbicides, glyphosate and 2,4-dichlorophenoxy aceticacid at three recommended doses.				
Test compound, approcedure, exposure			recomme			39, 1.12and 1.34 ppm ai
Experimental approtest environment		nd			20 700	
Test organisms		nd		-84.73	NO.	
Biological effects		nd			4	
Relevance of the stu	udy for Environme			ent, appropriateness	of stu	dy endpoints
				l Relevance		
1 Is an appropriate					nd	
2 Is the magnitude of relevant effect?	_			O. L. H.	nd	
3 Is the ecotoxicolo assessment?	gical manifestation		TIP.	SUN	nd	
1 Is the substance to	ested representative			the substance	nd	
being assessed? 2 Do the tested cond	•	140	01,01,01		nd	
concentrations? 3 Have parameters			i day		nd	
adequately?	Š					
Concluding weight action	A HILL	Silli		aterhycinth in India	consid	lered as target species
Type of information weight)	on (Critical, supp	örting, l	ow lo	w weight		
	cluding score		U	BA3		
Glyphosate Renewal Grou			l			
Glyphosate Renewal Grou	up AIR 5 – July 2020				Doc II	D: 110054-MCA8_GRG_Rev 1_Jul_2020

Romero et al. (2011)

	1	1		8			
glyphecotox_578	Romero,	2011	Oxidative stress	Ecotoxicol Environ Saf 74			
	D.M., Rios		induced by a	(4):741-7. DOI:			
	de Molina,		commercial	10.1016/j.ecoenv.2010.10.034.			
	M.C.,		glyphosate	904			
	Juarez,		formulation in a	7			
	A.B.		tolerant strain of				
			Chlorella kessleri	10.1016/j.ecoenv.2010.10.034.			
			eliability				
Purpose of the study				of the Herbicide glyphosate			
Description of endp	oints			Tions related to oxidative stress			
			rant strain of C. kessleri by				
				parameters related to metabolic			
TD : 1	1	damage were me					
Test compound, app			railable herbicide used in the				
procedure, exposure	e period			N-phosphonomethylglycine)			
				covince, Argentina) and the			
			kylaryl polyglycolether 50	MINIPACIOS			
Emaninantal anna	1-		R.L., Argentina).				
Experimental approx Statistics, test environmental			l treatments were prepared indards (USEPA, 2002). co				
Statistics, test enviro	Jiment		1 of glyphosate	incentrations of 40,			
Tost angonisms			_1 of gryphosate ouxiophyceae, Chlorophyta				
Test organisms Biological effects		Algel cell density	and dry waight were stati	sticelly significant diminished			
Biological effects			Algal cell density and dry weight were statistically significant diminished with respect to the control values for concentrations of at least 60 mgL 1 of				
		glyphosate, where the name of cells was approximately one-third that of					
		the control culture (Table 1). The EC50-96 h estimated by					
				5.62 (53.08–57.56)mgL_1.			
Relevance of the str	ıdy for Environ		sment, appropriateness of				
recevance of the ste	ay for Environ		ical Relevance	stady enapoints			
1 Is an appropriate t	est species/life						
2 Is the magnitude of			nd				
a (population) releva		Mineanor the eduse	nu nu				
3 Is the ecotoxicolo		tion Tevel	no				
appropriate for the a		Control of the state of the sta	no no				
		Environn	nental Relevance				
1 Is the substance te	ested representa	tive and relevant		ontaining surfactant alkylaryl			
for the substance be	ing accecedd			colether. Although not specified precisely, the			
	\$ 6			ikely to content POEA as			
for the substance be	ing assessed,			s limited validity regarding			
	11 10 10 10 10 10 10 10 10 10 10 10 10 1			that does not contain POEA.			
2 Do the tested cond	centrations rela	te to predicted	High than predicted P				
environmental concentrations?							
3 Have parameters influencing the endpoints been yes							
considered adequately?							
Concluding weight of TheEC50-96h obtained for C. kessleri was higher than those used in risk							
evidence/proposed							
Type of information	Type of information (Critical, supporting						
supporting, low we		- FF					
Consideration/con		UBA2					
score 2	8						

Score & score

Debenest et al. (2010)

glyphecotox_340	Debenest, T., Silvestre, J., Coste, M., Pinelli, E.	2010	Effects of Pesticides on Freshwater Diatoms	In Reviews of I Contamination an edited by D. M. W Springer New Yor DOI: 10.1007/978 4 2.	d Toxicology,	
	•	F	Reliability	_	20° 56°	
Purpose of the study Description of endpoints			Book chapter which provides a broad bibliographical review of articlesthat address the effects of pesticides and certain other xenobiotics on diatoms. In this review, we emphasize the following targets of pesticide action: (i) cytology and cellultrastructure, (ii) cell metabolism, and, finally, (iii) effects on community species composition.			
Test compound, app period	lication procedure, expos	sure	nd	Ma of the sill		
Experimental approa	ach, Statistics, test		nd Solo Solo Solo Solo Solo Solo Solo Sol			
Test organisms			nd State			
Biological effects			nd &	'IL'		
Relevance of the stu	ıdy for Environmental Ri			s of study endpoints		
			ical Relevance			
	est species/ life-stage(s) s				nd	
			e a (population) relevant effect? nd			
3 Is the ecotoxicolo	gical manifestation level			?	nd	
			mental Relevance			
	sted representative and re				nd	
	centrations relate to predi-			ons?	nd	
3 Have parameters influencing the endpoints been co						
Concluding weight of evidence/proposed action No details about Glyphosate in particular.						
Type of information (Critical, supporting, low weight weight)						
Consideration/con-	cluding score	in	UBA3			

Inderjit, I., Kaushik, S. (2010)

glyphecotox_412 Indexit 2	n	Effect of herbicides with different nodes of action on physiological and cellular traits of Anabaena Pertilissima	Paddy and Water Environment 8 (3):277-282. DOI: 10.1007/s10333-010- 0208-4.			
800	•	Reliability				
Purpose of the study		Comparative study designed to examine toxicity of propanil,				
Description of endpoints		pretilchlor and glyphosate on physiological and cellular				
. 86		characteristics of A. fertilissima.				
Test compound, application proced	lure,	nd				
exposure period						
Experimental approach, Statistics, t	test					
environment						
Test organisms		A. fertilissima.				
Biological effects		nd				

Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints					
Biological Relevance					
1 Is an appropriate test species/ life-stage(s) studied? nd					
	ce to cause a (population) relevant effect?	nd . S			
3 Is the ecotoxicological manifestation le	vel appropriate for the assessment?	nd Joll of			
Environmental Relevance					
1 Is the substance tested representative and relevant for the substance being assessed?					
2 Do the tested concentrations relate to predicted environmental concentrations?					
3 Have parameters influencing the endpoints been considered adequately?					
Concluding weight of Coording to Algae Base					
evidence/proposed action					
	species distribution in North America only.	%°			
Type of information (Critical,	low weight				
supporting, low weight)	45.5				
Consideration/concluding score	UBA3				

Romero et al. (2011)

					<u> </u>	
	glyphecotox_578		011	Oxidative stress induced by commercial glyphosate formulation in a tolerant strain of Chlorella kesslevis	a Ecotoxicol E	nviron Saf 74 (4):741-
		D.M.,		commercial glyphosate 🔊 🗸	7. DOI:	
		Rios de		formulation in a tolerant	© 10.1016/j.eco	env.2010.10.034.
		Molina,		strain of Chlorella kessleri		
		M.C.,		868		
		Juarez,				
				Strain of Chioretta Residents		
		A.B.		DO: 35:16		
				Reliability		
	Purpose of the stud			The aim of this work is to study		
	Description of endp	oints		and to provide evidence of meta		
				stress induced in a tolerant strai		xposure to a
				commercial formulation of glyp	hosate.	
	Test compound, ap	olication		ATANOR, 48% IPA salt		
	procedure, exposur			2 12 12 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	Experimental appro	ach Statistics	, <	Parameters related to metabolic	damage (hiomage o	rowth rate
	test environment	acii, Dialistics,	.20	chlorophyll content and protein	content) linid paras	vidation
	icsi chivirollilicili	den, statistics,	85.76			
		.00	5,77	(malondialdehyde content) and		
		02.5	9,98	superoxide dismutase activities	and reduced glutath	ione level) were
		18 B	X ⁶ 1	measured.		
	Test organisms	4,300) (Chlorella kessleri		
	Biological effects	60,00,10]	EC50 = 55.6 mg/L		
	Relevance of the st	ıdy for Enviroi	nmen	tal Risk Assessment, appropriat	teness of study endp	oints
		8 6 K		Biological Relevance	* *	
			e-stac		yes	
	1 Is an appropriate test species/ life-stage(s) studied? 2 Is the magnitude of effects of significance to cause a (population) nd					
	relevant effect?	or effects of sig	ziiiiic	ance to cause a (population)	IIU	
	3 Is the ecotowical	oical manifests	ation	level appropriate for the	Although not speci	fied precisely the
	accecement?	gicai mamicsa	ation	level appropriate for the	tested formulation	
	assessment?					t. This causes limited
	3000					
						effects of Glyphosate
	assessment				that does not contain	in POEA.
	all of			Environmental Relevance	2	1
	1 Is the substance to	ested representa	ative	Environmental Relevance and relevant for the substance b	eing assessed?	Commercial
~	8 8 C					product
To the state of th	Do the tested con			predicted environmental concer		nd
NS C	3 Have parameters	influencing the	endr	oints been considered adequate	ely?	nd
10 10						
* 10 ° 10						
10 juli						
250	Glyphosate Renewal Grou	ip AIR 5 – July 20	20		Doc ID: 110054-	-MCA8_GRG_Rev 1_Jul_2020
12/10.		•				_ _

Concluding weight of evidence/proposed action	The freshwater species Chlorella in Europe according to Algae Base((http://www.algaebase.org/search/species/detail/?species_id=40443) species distribution in South America, Asia, in Europe in Romania and Spain. Tolerant strain used.
Type of information (Critical, supporting, low weight) Consideration/concluding score	low weight UBA3
	M. 9.

Ma et al. (2002)

glyphecotox_476	Ma, J., Xu, L., Wang, S., Zheng, R., Jin, S., Huang, S., Huang, Y.	2002	the green alga Chlorella vulgaris	Ecotoxicology Environment (2):128:132. I 10:1006/cesa.	al Safety 51
	6 /		Reliability	57.00	
Purpose of the study	/		Work reported effect of 40 hebro		en algae Chlorella
Description of endp	oints		vulgaris	S.	
Test compound, application procedure, exposure period			Glyphosate 95%, technical product.		
Experimental appro	ach, Statistics, tes	st	Initial cell conc.: 8x 10 ³ /m. Lines	ar regression for	EC ₅₀ calculation,
environment			5000 lx/cm2, duration 96h		
Test organisms			Chlorella vulgaris		
Biological effects	1 C F :	. 1.0	EC ₅₀ = 5 mg/L	C . 1 1 1	,
Relevance of the stu	idy for Environm	ental R	Lisk Assessment, appropriateness	of study endpor	nts
			Biological Relevance		
1 Is an appropriate t	est species/ life-s	tage(s)	studied 18 18		yes
2 Is the magnitude of	of effects of signit	ficance	to cause a (population) relevant	effect?	nd
3 Is the ecotoxicolo	gical manifestation		I appropriate for the assessment?		yes
			Environmental Relevance		
1 Is the substance tested representative and relevant for the substance being assessed? Yes, technique ingedier					
2 Do the tested cond	centrations relate	to pred	licted environmental concentration	ns?	nd
3 Have parameters	influencing the er		s been considered adequately?		nd
Concluding weight evidence/proposed	of action		Presented EC ₅₀ values will be ta	ken into accoun	t.
Type of information supporting, low we	eight) (T		supporting		
Consideration/con	chiding score		UBA2		
Glyphosate Renewal Grou					
Glyphosate Renewal Grou	p AIR 5 – July 2020			Doc ID: 110054-M	CA8_GRG_Rev 1_Jul_2020

Ma et al. (2006)

glyphecotox_474	Ma, J., Wang, S., Wang, P., Ma, L., Chen, X., Xu, R.	2006	Toxicity assessment of 40 herbicides to the green alga Raphidocelis subcapitata	Safety 63 (3):4	and Environmental 456- env.2004.12.001		
			Reliability		SLIT TO		
Purpose of the study Description of endpoints			The effects of 40 herbicides with nine modes of action on the green alga <i>Raphidocelis subcapitata</i> were studied by 96 h acutetoxicity tests.				
Test compound, app exposure period	•		Glyphosate 95%, technical pro	duct.	6.79		
Experimental approach, Statistics, test environment Initial cell conc.: 5x 10 ^{3/ml} , Linear regression for EC50 calculation 5000 lx/cm2, duration 96h							
Test organisms			R. subcapitata	20, 10, 90,			
Biological effects			EC50= 5.5 mg/L	91,00° 6.			
Relevance of the str	udy for Environme	ntal Ris	sk Assessment, appropriateness	of study endpoi	nts		
			Biological Relevance	×0. ×0.			
1 Is an appropriate	test species/ life-sta	age(s) s	tudied?		yes		
			o cause a (population) relevant		nd		
3 Is the ecotoxicological manifestation level appropriate for the assessment?			•	yes			
		E	nvironmental Relevance				
1 Is the substance tested representative and relevant for the substance being assessed? Yes, technical ingedient.							
2 Do the tested concentrations relate to predicted environmental concentrations? nd							
		lpoints	been considered adequately?		nd		
Concluding weight of Presented EC50 values will be taken into account. evidence/proposed action Presented EC50 values will be taken into account. Eventwater species, taxonomic synonym Pseudokirchneriella subcapitata							
Type of information (Critical, supporting supporting, low weight) Consideration/concluding score SUBA2							
Consideration concluding score							

Ma, J. (2002)

	glyphecotox_471	Mark 6	2002	Differential sensitivity to 30 herbicides among populations of two green algae Scenedesmus obliquus and Chlorella pyrenoidosa	Bulletin of Environmental Contamination and Toxicology 68 (2):275-281		
	200			Reliability			
	Purpose of the study Description of endp			Effect of different herbiceds on the fgreen algae <i>Scenedesmus</i> obliquus.			
	Test compound, application procedure, exposure period			Glyphosate 95%, technical product.			
	Experimental approach, Statistics, test			Initial cell conc.: 4x 10 ^{5/ml} , Linear regression for EC50 calculation,			
	environment			5000 lx/cm2, duration 96h			
5.	Test organisms		Scenedesmus obliquus and Chlorella pyrenoidosa				
*& `(Biological effects		EC ₅₀ = 56 mg/L				
Service of the servic	Glyphosate Renewal Grou	p AIR 5 – July 2020		I	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020		

Relevance of the str	udy for Environm	ental Ri	sk Assessment, appropriateness of	of study endnoir	nts		
11010 (01100 01 0110 01			Biological Relevance	or standy emapon	>		
1 Is an appropriate	yes just						
2 Is the magnitude of effects of significance to cause a (population) relevant effect?							
3 Is the ecotoxicolo	gical manifestation	on level	appropriate for the assessment?		yes 100m		
		E	Environmental Relevance		8 16		
1 Is the substance tested representative and relevant for the substance being assessed? Yes, technical ingredient.							
2 Do the tested con-	centrations relate	to predi	cted environmental concentration	ıs?	and or		
3 Have parameters	influencing the er		been considered adequately?	S. C.	o nd ^o		
Concluding weight]	Presented EC50 values will be tal	ken into accoun	₽ ²		
evidence/proposed	action]	$EC_{50}=56 \text{ mg/L}$	4 5 8			
Type of information supporting, low we			supporting	No to the state of			
Consideration/concluding score UBA2							
Ma et al. (2006)							
glyphecotox_473	Ma, J., Lin, F., Wang, S., Xu, L.	2006	Toxicity of 21 herbicides to the green alga Scenedesmus auadricauda	Environment and Toxicolo	eal Contamination gy 71 (3):594-601. /s00128-003-8521-		

Ma et al. (2006)

	glyphecotox_473	Ma, J., Lin, F., Wang, S., Xu, L.	2006	Toxicity of 21 herbieides to the green alga scenedesmus quadricaudas	and Toxicolo	tal Contamination gy 71 (3):594-601. /s00128-003-8521-
				Rehability		
	Purpose of the study Description of endp	oints		In the present study, 21 herbicides have been tested to examine their effect on the green alga <i>Scenedesmus quadricauda</i> and then compare their differential sensitivity three other green algae, <i>Scenedesmusobliqnus</i> , <i>Chlorella vulgaris</i> and <i>Chlorella pyrenoidosa</i> .		
	Test compound, app exposure period	olication procedu	re,©	Pyrenoidosa. Glyphosate 95%, technical produ	ict.	
	Experimental appro environment Test organisms	ach, Statistics de		Initial cell conc.: 4x 10 ^{3/ml} , Line 5000 lx/cm2, duration 96h		or EC50 calculation,
	Test organisms	20 E 20		Scenedesmus quadricauda		
	Biological effects			EC50= 70mg/L		
	Relevance of the stu		ental R	isk Assessment, appropriateness of	of study endpoir	nts
		STEE OF		Biological Relevance		
	1 Is an appropriate				yes	
				to cause a (population) relevant e	nd	
	3 Is the ecotoxicolo	gical manifestation		appropriate for the assessment?		yes
	11.1.1.0	17.		Environmental Relevance	10	X7 . 1 . 1
	27/25	•		elevant for the substance being as		Yes, technical ingredient.
				cted environmental concentration	ıs?	nd
			ndpoints	ints been considered adequately? nd Presented EC50 values will be taken into account.Freshwater		
	Concluding weight evidence/proposed	action		Presented EC50 values will be ta species occurin g amongst others EC_{50} = 70.5 mg/L		
გ.	Type of information			supporting		
	Consideration/con			UBA2		
See	Glyphosate Renewal Grou	np AIR 5 – July 2020	·		Doc ID: 110054-M	CA8_GRG_Rev 1_Jul_2020

Ma et al. (2001)

glyphecotox 477	Ma. J., Liang,	2001	Acute toxicity of 33	Bull Environ Contam Toxicol		
gryphecotox_177	W., Xu, L.,	2001	herbicides to the green	66 (4):536-41		
	Wang, S., Wei,		alga Chlorella	00 (1).350 41		
	Y., Lu, J.		pyrenoidosa	£.45		
	,,		Reliability	66 (4):536-41		
Purpose of the stud	y	s. al	pove	ct. calculate Guing linear regression		
Description of endp	points			200		
	plication procedure,	Gly	phosate 95%, technical produ	ct.		
exposure period				2,0.0		
Experimental appro	each, Statistics, test			calculated using linear regression		
environment		anal	ysisof transformed pesticide of	concentration as natural logarithm		
			versus percent inhibition (Ma	a et al. 20019, inital cell		
			centration: 6x10 ⁵ cells/ml.	20 20 20 T		
Test organisms			orella pyrenoidosa 🧪 💍	3.0.0		
Biological effects			50=3.5mg/L	400		
Relevance of the st	udy for Environment		ssessment, appropriateness o	f study endpoints		
			ological Relevance 💸 🖔 🖔	<u>.</u>		
** *	test species/ life-stage	. ,	in so the	yes		
			use a (population) relevant el	ffect? nd		
3 Is the ecotoxicolo	gical manifestation l		copriate for the assessment?	yes		
			ronmental Relevance	<u> </u>		
1 Is the substance to	ested representative a	nd releva	ant for the substance being as			
				ingredient.		
			environmental concentration			
			n considered adequately?	nd		
Concluding weigh			ented EC50 values will be tal	ken into account.		
evidence/proposed action RC50=3.5 mg/L						
Type of information (Critical, supporting supporting low weight)						
supporting, ion weight,						
Consideration/con	cluding score	WB.	A2			

Tsui, M.T.K., Chu, L.M. (2003)

	glyphecotox_195	Suff, S. C.	2003	Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors	Chemosphere 52: 1189–1197.
	2:6	2	•	Reliability	
	Purpose of the study. Description of enepoin	nts		In this study, the acute toxicity of technical-grade acid, isopropylamine (IPA) salt of glyphosate, Ro surfactant polyoxyethylene amine (POEA) to Mi (Vibrio fischeri), microalgae (Selenastrum capric Skeletonema costatum), protozoa (Tetrahymena p Euplotes vannus) and crustaceans (Ceriodaphnic tonsa) was examined and the relative toxicity co to Roundup® were calculated.	undup® and its icrotox bacterium cornutum and coyriformis and a dubia and Acartia
		cation procedur		Glyphosate acid (CAS: 1071-83-6; P97% purity) Polyoxyethylene amine (POEA) (CAS: 61791-2 Roundup® (commercial grade; 41% a.i.) Isopropylamine (IPA) salt of glyphosate (CAS: 3 a.i.)	6-2;100% a.i.)
1000 00 00 00 00 00 00 00 00 00 00 00 00	Glyphosate Renewal Group A	AIR 5 – July 2020		Doc ID: 110054-Me	CA8_GRG_Rev 1_Jul_2020

Experimental approach, Statistics, test	ASTM (1994), Absorbance at 680	nm The IC50	(or median			
environment	growth inhibition concentration)ar					
	calculated byprobit analysis for the growth inhibition test					
	(Finney, 1971).					
Test organisms	Algae, Selenastrum capricornutum	n (UTEX 1648	R. Freshwater) and			
	Skeletonema costatum(UTEX LB2	2038, Marine)	3, Freshwater) and 5			
Biological effects	Generally, the toxicity order of the		s: POEA> 🏂 🎨			
	Roundup®_> glyphosate acid >II					
	toxicity of glyphosate acid was ma					
	contrast,microalgae and crustacea					
	to Roundup®_ toxicity than bacte					
	photosynthetic microalgae,POEA					
	Roundup®_ toxicity and the toxic	ity contributio	n of POEA was			
	shown to be species-dependent.	25.6.3				
	Selenastrum capricornutum 96		a costatum 96 h IC ₅₀			
	h IC ₅₀		acid = 2.27 mg AE/l			
	Glyphosate acid = 24.7 mg		glyphosat= 5.89 mg			
	AE/I	AE/I				
	IPA salt of glyphosate= 41.0	ROEA = 3.35	mg AE/I			
	mg AE/I	Roundup®=	1.85 mg AE/I			
	IPA salt of glyphosate= 41.0 mg AE/l POEA=3.92 mg AE/l Roundup®= 1.85 mg AE/l	<u>'</u>				
	Roundup®= 1.85 mg AE/I					
Relevance of the study for Environmenta		study endpoir	nts			
	Biological Relevance					
1 Is an appropriate test species/ life-stage	(s) studied?		yes			
2 Is the magnitude of effects of significant		fect?	yes			
3 Is the ecotoxicological manifestation le	11 1 (0): 0) 6:		yes			
	Environmental Relevance	10				
1 Is the substance tested representative an			yes			
2 Do the tested concentrations relate to predicted environmental concentrations?						
3 Have parameters influencing the endpoints been considered adequately?						
Concluding weight of	Presented EC50 values will be tak	en into accoun	nt.			
evidence/proposed action	S E is					
Type of information (Critical,	Supporting					
supporting, low weight)	8 10					
Consideration/concluding score	UBA2					
8,9%	T UBA2					

Perez et al. (2011)

	glyphecotox_540 Rerez, G.L.,	2011	_	cts of Herbicide	In Herbicides and	
	Vera, M.S.,			phosate and Glyphosate-	Environment, edited by	
	Miranda,			ed Formulations on	Kortekamp. Croatia.	
	L.A.		Aqu	atic Ecosystems	InTech. Chapter 16. pp 343 - 368.	
	18 ES		Re	liability		
	Purpose of the study			Revision of their toxicity to		
	Description of endpoints			aquatic plants, protozoa, crus		
				amphibians. In addition, we		
	% 4 4 5 C			eachgroup of organisms in the functioning and health of aquatic ecosystems.		
	Test compound, application procedure,	exnosure		nd		
~	0. 2. 1	схрозигс	,	iiu		
	Experimental approach, Statistics, test e	nvironme	ent	nd		
Mis 2	Test organisms			nd		
ill of .	Biological effects			nd		
	Relevance of the study for Environment	al Risk A	Assessi	ment, appropriateness of study	endpoints	
TO THE STATE OF TH	Glyphosate Renewal Group AIR 5 – July 2020			Doc ID: 1	110054-MCA8_GRG_Rev 1_Jul_2020	

Page 688 of 847

Biological Relevance							
1 Is an appropriate test species/ life-stage(s) studied?							
2 Is the magnitude of effects of significance to cause a (population		nd 🔊					
3 Is the ecotoxicological manifestation level appropriate for the a	ssessment?	nd di					
Environmental Rele	vance	ignor.					
1 Is the substance tested representative and relevant for the substance	ance being assessed?	nd					
2 Do the tested concentrations relate to predicted environmental of	concentrations?	nd&					
3 Have parameters influencing the endpoints been considered ade	equately?	g ng					
Concluding weight of evidence/proposed action	Review chapter in book.	1971					
Type of information (Critical, supporting, low weight)	supporting & Ogo						
Consideration/concluding score	UBA2						
	4.5.80						

Cedergreen, N., Streibig, J.C. (2005)

			1,90	·	
glyphecotox_319	Cedergreen, N., Streibig, J.C.	2005	The toxicity of herbicides to non-target aquatic plants and algae: assessment of predictive factors and hazard	Pest Management Science 61 (12):1152- 1160. Doi 10.1002/Ps.1117	
			9, 11, 11,		
Draw and of the atrada		T.	Reliability C	d	
Purpose of the study Description of endp	oints	ai ar ar h	n this study the toxicity of herbicilgae and relate it to environmentand exposure scenarios, herbicide ction was evaluated. This was done bicides, using the aquatic macrosegreen alga <i>Pseudokirchneriella</i> indak, supplemented with a datal exicity data for 146 herbicides.	I herbicide concentrations formulation and mode of the experimentally for ten ophyte <i>Lemna minor</i> L. and a subcapitata (Korshikov)	
Test compound, app	lication procedu	re, July R	oundup® 360 g/L		
exposure period	1	(8) S. O	1 5		
Experimental approx environment	ach, Statistics, te	St ill ill T	he algae test is described by Area 1.20 and is coherent with the ISO 0 000 cells /ml		
Test organisms	00/0	P	. subcapitata.		
Biological effects	ach, Statistics, te	E E	$EC_{50} = 270 \text{ mg a.s./L}$ EC_{50} formulation = 64.7 mg/L		
Test organisms		L	emna minor L.		
Biological effects		E E	$C_{50} = 46.9 \text{ mg a.s./L}$ $C_{50} = \text{formulation} = 11.2 \text{ mg/L}$		
Relevance of the stu	dy for Environn	nental Risk As	sessment, appropriateness of stud	ly endpoints	
102 0		Bio	logical Relevance		
1 Is an appropriate t				yes	
			ise a (population) relevant effect?	yes	
3 Is the ecotoxicolo	gical manifestati		opriate for the assessment?	yes	
\$ 3	. 1		onmental Relevance	, DOE 4	
As the substance te Srelevant for the subs	sted representati stance being asse	ve and essed?	The tested formulation is likely surfactant. This causes limited v Glyphosate that does not contain	alidity regarding effects of	
2 Do the tested cond	entrations relate	to	yes		
predicted environme	ental concentration	ons?			
2 Do the tested concepredicted environment		,	Doc ID	: 110054-MCA8_GRG_Rev 1_Ju	

3 Have parameters influencing the endpoints been considered adequately?	yes	×
Concluding weight of evidence/proposed action	n	Presented EC50 values will be taken into account.
Type of information (Critical, supporting, low	supporting	
Consideration/concluding score		UBA2

Turgut, C., Fomin, A. (2002)

	glyphecotox_128	Turgut, C., Fomin, A.	200	macrophyte aquaticum (seventeen p the basis of		47 Am. 9	Hetin of vironmental ntamination and xicology 69 (4):601-
				Reliabili	ity & A	,0	
	Purpose of the study	,			e rooted macrophyte	Myriophylli	ım aauaticum
	Description of endpo				een pesticides was d		
	Test compound, app		е,		ercial product with 3		
	Experimental approa	nch, Statistics, test	t	Liqid growth me	edium S replicates ,	, 7-8 concent	rations
	Test organisms			Myriophyllum &	augieum		
	Biological effects			EC50 (mg/I→ 2	0 (fresh weight)		
	Biological criccis			EC50 (mg/E) = 0	22 (chl a)		
	Relevance of the stu	dy for Environme	ental	Risk Assessment,	appropriateness of s	study endpoin	nts
		<u> </u>		Biological Re	* * *		
	1 Is an appropriate to	est species/ life-st	age(s				yes
	2 Is the magnitude o	f effects of signif	icanó	e to cause a (nonu	lation) relevant effe	ect?	yes
	3 Is the ecotoxicolog					<u> </u>	yes
	2 12 the cotomicolog			Environmental			1 3
	1 Is the substance te					Probably	commercial
	assessed?	201	J'IL		8		vith 36 % a.s
	2 Do the tested conc concentrations?	entrations relate t	Ø pre	dicted environmen	ntal	yes	
	3 Have parameters in	nfluencing the en	dpoir	nts been considere	d adequately?	Sucrose a	added
	Concluding weight	of evidence/proj	posed	l action	Presented EC50 values will be taken into account.		
		Continue to .			Pigment content was more senstive endpoint than		
	.0.				other parameters.		•
	Type of information weight)	n Critical, supp	ortin	g, low	supporting		
	Consideration/conc	fuding score			UBA2		
	Glyphosate Renewal Group						
Sold of the second of the seco	Glyphosate Renewal Group	o AIR 5 – July 2020			Doc	e ID: 110054-M	CA8_GRG_Rev 1_Jul_2020

Sobrero et al. (2007)

glyphecotox_125	Sobrero, M.C., Rimoldi, F., Ronco, A.E.	2007	ingredient <i>Lemna gibl</i>	he glyphosate active and a formulation on oa L. at different evels and assessment	Bulletin of Environmental Contamination and Toxicology 79: \$37-54		
			Reliabil	ity	Sill's o		
Purpose of the study Description of endpo		to st	The sensitivity of a local clone of the macrophyte <i>Lemma gibba</i> L. to glyphosate active principle and Roundup® Max formulation was studied in standardized laboratory conditions				
Test compound, app exposure period	•	gı 70	rade, 95%w/w) 0.7%w/w a.i. a		ation (Roundup®1Max,		
Experimental approa	ach, Statistics, test	m gr	Herbicide phytotoxicity was assessed on growth rate(GR) measured at 2, 5, 7 and 10 days of exposure, and alsoon frond growth (FG), frond number per colony (FNC), total chlorophyll content (TCC) and root length measured at 7 and 10 days.				
Test organisms		L	. gibba	0,20,00			
Biological effects	1.6.5	Е	C_{50} (mg/L)= 1	The state of the s	1		
Relevance of the stu	dy for Environme			appropriateness of study en	apoints		
1.7	/ 1:0		Biological Re	levance			
1 Is an appropriate to				4. 1 . m . n	yes		
				lation) relevant effect?	yes		
3 Is the ecotoxicolog	gicai manifestatio				yes		
17 (1 1 (. 1		vironmental				
				ubstance being assessed?	yes		
2 Do the tested conc					yes		
	3 Have parameters influencing the endpoints been consider						
Concluding weight	Concluding weight of evidence/proposed action				Presented EC50 values will be taken into account.		
Type of information weight)	Type of information (Critical, supporting flow weight)			supporting			
Consideration/conc		Sill		UBA2			

B.9.13 9.4 Sediment-dwelling organisms (KIIA 8.16)

Contardo-Jara et al. (2009)

glyphecotox_326\$\frac{1}{16}\$	Contardo- Jara, V., Klingelmann, E., Wiegand, C.	2009	Bioaccumulation of glyphosate and its formulation Roundup Ultra in <i>Lumbriculus</i> variegatus and its effects on biotransformation and antioxidant enzymes	Environ Pollut 157 (1):57-63. DOI: 10.1016/j.envpol.2008.07.027.		
"O" ot			Reliability			
Purpose of the study Description of endpoints Glyphosate Renewal Group AIR 5 – July 2020				The bioaccumulation potential of glyphosate and the formulation Roundup Ultra, as well as possible effects on biotransformation and antioxidant enzymes in Lumbriculus variegatus were compared by four days exposure to concentrations between 0.05 and 5 mg L1 pure glyphosate and its formulation		
Glyphosate Renewal Group A	AIR 5 – July 2020		Doc	ID: 110054-MCA8_GRG_Rev 1_Jul_2020		

	T = 4	te (N-(phosphonomethyl)glycine) was obtained	
Test compound, application procedure,			
* *		Dr. Ehrenstorfer (Augsburg, Germany) with 98 0.5%	
	certified p	Roundup Ultra solution (Monsanto Co, St. Louis,	
	The used	Roundup Ultra solution (Monsanto Co, St. Louis	
	MO, USA	A) contains the monoisopropylamine salt of N-	
	(phosphoi	nomethyl)-glycine (360 g L1) and surfactants of	
Experimental approach, Statistics, test	THE DIGAC	cumulation of gryphosate in L. variegalus mas	
environment		ter four days exposure with renewal of the exposure	
		after two days.	
Test organisms		lus variegatus	
Biological effects	The broad	ecumulation factor (BCF) varied between 1.4 and	
		e different concentrations, and was higher than	
		from log Pow.	
Relevance of the study for Environmental Risk As		77 (4.0	
	logical Rele		
1 Is an appropriate test species/ life-stage(s) studie		yes of the fift	
2 Is the magnitude of effects of significance to car	use a	nd Stock	
(population) relevant effect?			
3 Is the ecotoxicological manifestation level appro	opriate	The tested formulation is likely to content POEA	
for the assessment?		as surfactant This causes limited validity	
		regarding effects of Glyphosate that does not	
т.	4.1.0	contain POEA.	
		Relevance	
1 Is the substance tested representative and releval	nt for the su	bstance yes	
being assessed?		43.8	
2 Do the tested concentrations relate to predicted environment		tal yes	
concentrations?	الد مالد الأحدد		
3 Have parameters influencing the endpoints been considered		yes	
adequately? Concluding weight of	(1.50		
evidence/proposed action	1, 21, 22		
	6. 0.		
Type of information (Critical, suppor	rting		
supporting, low weight)	11.		
Consideration/concluding score			

	supporting, low weight)	HO ET A	ils		
	Consideration/concluding	score UBA2			
	- B.9.13 9.5 Microc	A A A A A A A A A A A A A A A A A A A			
	- B.9.13 9.5 Microc	osm or mesocosm	study (KIIA 8.16)	
	Vera et al. (2010)				
	glyphecotox_129 Wera,	M.S.,	2010	New evidences of	Ecotoxicology,
		marsino, L.,		Roundup® (glyphosate	19:710-721
	Sylve S.C.I.	ster, M., Perez, Rodriguez, P.,		formulation) impact on the periphyton	
	Mugn	ni, H., Sinistro,		community and the	
	R., Fe	erraro, M.,		water quality of	
		tto, C., Zagarese,		freshwater ecosystems	
	H., Pi	zarro, H.	Dalia	L:1:4	
	Durnose of the study	The experiment was	Relia	outover 42 days in ten outdoor	r mesocosms of
	Description of endpoints			waters with aquatic macrophy	
	Purpose of the study Description of endpoints			eat occurrence of phytoplankte	
×	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	inorganic matter.			•
SIC	Æest compound.			s added at 8 mg L-1 of the act	_
Kis A	application procedure,			cosms while five were left as c	ontrols(without
	exposure period	Roundup@addition)).		
Constitution of the consti	Glyphosate Renewal Group AIR 5 –	July 2020		Doc ID: 1100	054-MCA8_GRG_Rev l_Jul_2020

<u> </u>	I m				
Experimental approach,	The ten mesocosms (depth: 1.2 m; area:25 m2), constructed in an area of				
Statistics, test environment	approximately 1 ha, were Built. The bottom of each excavation was covered with				
	soil from places nearby toprovide sediments to each environment (Fig. 1).				
	Finally, they were filled with well water and were left to evolve. Kruskal—				
	Wallisnon-parametric AN	OVA BILLO			
Test organisms	periphyton				
Biological effects		ar delay in periphytic colonization in treated mesocosms			
		ic mass variables (dry weight, ash-free dry weight and			
		s higher in control mesocosms. Despite the mortality of			
		anobacteria was favored in treated mesocosms. It was			
	observed that glyphosate p	produced a long term shift in the typology of			
	mesocosms, "clear" turni	ing to "turbid", which is consistent with the regional trend			
	in shallow lakes in the Par	mpa plain of Argentina.			
Relevance of the study for E		ent, appropriateness of study endpoints			
		Relevance			
1 Is an appropriate test speci		algal groups			
2 Is the magnitude of effects		Diatoms (Bacillariophyceae) appeared to be the			
(population) relevant effect?		most affected by the herbicide, Cyanobacteria, on			
		the other hand emerged enhanced in number in			
		treated mesocosms.			
3 Is the ecotoxicological man	nifestation level appropriate	joint effects			
for the assessment?					
		tal Relevance			
1 Is the substance tested repr		Commercial product with surfactant			
the substance being assessed	?				
2 Do the tested concentration	ns relate to predicted	Might exceed the predicted environmental concnetrations.			
environmental concentration	is?	Might exceed the predicted envirnonmental concnetrations.			
3 Have parameters influencing	ng the endpoints been	It is important to point out that the toxicity is			
considered adequately?	(°.5)	produced by the joint effect of both glyphosate and			
3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action		POEA, which is the surfactant of the commercial			
		formulation Roundup®whose toxicity was shown			
		to be higher than glyphosate.			
Concluding weight of evide	ence/proposed action	Changes in community structure			
	19 8. 88 0. 17. 8.				
Type of information (Critic	cal, supporting, low	supporting			
weight)	65,50,00				
Consideration/concluding s	score il il	UBA2			
	07 0 18				

	Consideration/concluding score	03/12			
	Perez et al. (2007)				
	H., Rodriguez, P., do Nascimento, M. Bustingorry, J., E	., Allende, L., Sscaray, R., Ferraro, Pizarro, H., Bonetto,	2007	Effects of the herbicide Roundup® on freshwater microbial communities: a mesocosm study	Ecol Appl 17 (8):2310- 22
		Reliability	•	•	
	Purpose of the study		ial formu	lation Roundup® using	artificial
	Description of endpoints	earthen mesocosms.			
8	Test compound, application procedure, exposure period	Roundup®			
Syl	Experimental approach, Statistics, test	The herbicide was add	ed at thre	ee doses: a control (with	out
Alis A	environment	Roundup®) and two tr	eatments	of 6 and 12 mg/L of th	e
113 9		activeingredient (glyph			
	Test organisms	Phytoplancton and per	iphyton o	community	
Solo Solo Solo Solo Solo Solo Solo Solo	Glyphosate Renewal Group AIR 5 – July 2020			Doc ID: 110054-MCA8_G	RG_Rev 1_Jul_202

Biological effects	Roundup® affected the structure of phytoplankton and periphyton		
assemblages. Total micro- and nanophytoplankton decreased in			
	assemblages. Total micro- and nanophytopiankton decreased in abundance in treated mesocosms. In contrast, the abundance of picocyanobacteria increased by a factor of about 40. Primary		
	picocyanobacteria increased by a factor of about 40. Primary		
	production also increased intreated mesocosms (roughly by a factor).		
	of two). Similar patterns were observed in theperiphytic assemblages,		
	which showed an increased proportion of dead: live individuals		
	andincreased abundances of cyanobacteria (about 4.5- fold).		
	# 15 m		
Relevance of the study for Environmental	Risk Assessment, appropriateness of study endpoints		
	Biological Relevance		
1 Is an appropriate test species/ life-stage(s) studied?			
2 Is the magnitude of effects of significant	nce to cause a (population) relevant effect?		
3 Is the ecotoxicological manifestation lev	vel appropriate for the assessment? yes		
	Environmental Relevance		
1 Is the substance tested representative and	nd The tested formulation is likely to content POEA as		
relevant for the substance being assessed?			
	Glyphosate that does not contain POEA.		
2 Do the tested concentrations relate to	nd SE SE SE		
predicted environmental concentrations?			
3 Have parameters influencing the endpoint	ints nd		
been considered adequately?	Duranted EC value of the talant into account		
Concluding weight of	Presented EC ₅₀ values will be taken into account.		
evidence/proposed action	6mg/l elicitated a change in community structure.		
Type of information (Critical,	supporting The Samuel Supporting The Supporting Support		
supporting, low weight)			
Consideration/concluding score	UBA2		

B.9.13 9.6 Summary of the relevant literature on aquatic organisms

Aquatic organisms are considered to be exposed to glyphosate containing plant protection products via spray drift, runoff and drainage as a consequence of use near aquatic environments. Aquatic algae and macrophytes are especially vulnerable to the impact of glyphosate due to their physiological similarity to terrestrial plants.

For the group of algae, a comprehensive database of nearly 30 peer-reviewed papers was submitted by the notifier. The notifier considered five publications (Sobrero et al. 2007; Sanchez et al. 2007; Turgut et al. 2011 and Veracetal. 2010) and considered one publication to be rated in category "Klimisch 2" (Klimisch 1997) and annotated with minimal remarks, whereas the remaining were considered as not acceptable for risk assessment. The submitted publications were also evaluated by RMS and have been assigned according to an UBA screening. Out of the submitted publications, 15 studies were recognized as supporting information (category UBA2) and are reviewed here. Endpoints deriving out of these publications are listed in the table below.

The peer reviewed open literature about toxicity on algae provides a wide range of EC50 and IC50 values for algae Feated with glyphosate (technical grade). The EC50 values range from

2.3 mg/l for Skeletonema costatum (Tsui, 2003) to 70 mg/L for Scenedesmus quadricauda (Ma, 2006) and the marine diatom Skeletonema costatum seems to be the most sensitive species towards glyphosate. Regarding macrophytes, similar EC50 values compared to algae are reported in the peer (Turgut & Fomin, 2002) to 46.9 mg/L for Lemma minor (Cedergreen & Streibig, 2005). reviewed open literature. IC50 and EC50 values ranged from 0.22 mg a.s./L for Myriophyllum aquaticum

Beside single species tests, a few studies were performed focusing on the natural aquatic community in order to assess indirect effects towards algae. Mesocosm studies showed differences at 6 mg glyphosate containing product/L in the structure of phytoplancton and periphyton assemblages in treated mesocosms compared to controls. Total micro- and nanophytoplancton decreased in abundance, whereas the abundance of picocyanobacteria increased (Perez, 2007). Similar effects were observed by Vera et al. (2010), who could also show that despite the mortality of algae, mainly diatoms, cyanobacteria were favored in treated mesocosms. However, it must be considered that in both studies commercial products configuring surfactants were used, and therefore the toxicity is determined by the joint effect of both glyphosate and the surfactants of the commercial formulations. Commercial products containing specific formulation ingredients additionally to the active ingredient were shown to be more toxic towards algae than elyphosate acid (Cedergreen & Streibig, 2005; Tsui, 2003). There was no critical data in the open literature that could be directly included in an environmental risk assessment for the active substance glyphosate. Endpoints reported have been detected in the same magnitude or it was not possible to distinguish between the effects of the technical glyphosate and the surface-active substances added to the commercial formulations in the sed.

Effects values of algae and aquatic plants in perfectioned literature experimental designs used.

Table B.9.13-3:

				0.00	
	Species	Substance	Study type	E.C.500000	Reference
				EC50	(internal tag)
	Algae	l		2 7 7	l
	Chlorella vulgaris	Glyphosate 95%,	96h	Sign Sign Sign Sign Sign Sign Sign Sign	Ma, J.,2002;
ŀ	Danleida a alia	technical product. Glyphosate 95%,	96h 60 X	5.5	glyphecotox_476 Ma, J.,2002;
	Raphidocelis subcapitata	technical product.	96h	5.5	glyphecotox 474
	Scenedesmus	Glyphosate 95%,	7.63	56	Ma, J., 2002;
	obliquus	technical product.	96h 5 5"	30	glyphecotox_471
	Scenedesmus	Glyphosate 95%,	6 36 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	70	Ma, J.,2006;
	quadricauda	1 11 1	11,18,20		glyphecotox 473
	Chlorella	01 1 050/	0° ~ 1.2.61	3.5	Ma. J.,2001;
	pyrenoidosa	technical product.	10,10		glyphecotox 477
	Chlorella kessleri	ATANOR ATANOR	96h 96h	55.62	Romero, et al., 2011 glyphecotox_578
	Pseudokirchneriella	Glyphosate 95%, 50 technical product.	48h	270	Cedergreen, N., Streibig J.C., 2005;
	subcapitata	Roundup 360 g L		64.7	glyphecotox_319
	Periphyton	Commercial product	Mesocsm,	8mg/l Changes in	Vera, M.S.,, 2010;
	1 7	with surfactant	42days	community	glyphecotox_129
		is no of	-	structure	
	Periphyton,	Roundup®	Mesocsm,	6 mg/L Changes	Perez, G.L.,2007;
	Phytoplancton	Roundup®	11days	in community	glyphecotox_539
	. &	& K		structure	
	Selenastrum (5)	Glyphosate acid	96h	24.7 mg a.e./L	Tsui, M.T.K2003
	capricornutum	IPA salt of glyphosate		41.0 mg a.e./L	glyphecotox_195
	8.8	POEA		3.92 mg a.e./L	
	Skeletonema costatum	Roundup®		1.85 mg a.e./L	
	Skeletonema	Glyphosate acid	96h	2.27 mg a.e./L	Tsui, M.T.K., 2003
	costarum	IPA salt of glyphosate		5.89 mg a.e./L	glyphecotox_195
		POEA		3.35 mg a.e./L	
	8 30	Roundup®	1	1.85 mg a.e./L	

		Macrophytes		
Myriophyllum aquaticum	Commercial product, 36% a.s.	14 days	2.0 (fresh weight) 0.22 (chl a)	Turgut & Fomin, 2002, 8 glyphecotox_128
Lemna minor L.	Glyphosate 95%, technical product.	7 days	46.9	Cedergreen, N., Streibig, J.C., 2005;
	Roundup 360 g/L		11.2	glyphecotox_319
Lemna minor L.	Glyphosate 95%, technical product.	10 days	20.5	Sobrero, M.C. 2007; glyphecotox 125
	Roundup1Max, 70.7%w/w a.i. as acid		11.6	

For the group of aquatic invertebrates, a comprehensive database of 42 peer-reviewed papers was submitted by the notifier. The notifier considered three publications (Bringolf et al. 2007; Chen et al. 2004 and Mensah et al. 2011) to be rated in category "Klimisch 2" (Klimisch 1997) and annotated with minimal remarks, whereas the remaining were considered as not acceptable for risk assessment. The submitted publications were also evaluated by RMS and have been assigned according to an UBA screening. Out of the submitted publications, 18 studies were recognized as supporting information (category UBA2) and are reviewed here. Endpoints deriving out of these publications are listed in the table below.

Most of the cited studies were performed with formulated products and not with the active ingredient alone. Those studies, which investigated the effect of glyphosate itsef or the Glyphosate IPA-salt obtained LC50 values ranging from 49.3 mg acid equivalents /L for the marine copepod Acartia tonsa to 415 mg acid equivalents /L for the cladoceran Ceriodaphnia dubia (Tsui 2003; Le, 2010; Tsui et al., 2004; Dominguez-Cortinas et al., 2008; Bringolf et al., 2007; Mottiera et al., 2013; Frontera, 2011; Dominguez-Cortinas, 2008). However, mores sensitive species like the coelenterate Hydra attenuata showed lower sensibility and LC50 values were determined to be 18.2 mg/L for the active ingredient glyphosate. These organisms are generally not considered in Tier 1 risk assessment, but is was shown that they are exposed to toxicants to a higher extent due its anatomical and physiological structure (Demetrio, 2012). Moreover, sublethal effects were observed at much lower concentrations of glyphosate in comparison to lethal effects (Mottiera, 2013).

In general, the formulations are of higher ecotoxicological relevance than the active ingredient glyphosate

In general, the formulations are of higher ecotoxicological relevance than the active ingredient glyphosate itself. One of the main commercial formulations is Roundup ®, which in addition to the active ingredient glyphosate contains polyoxyethoxydated alkylamines (POEA) as a surfactant. A few studies investigate the effects of the formulation versus the surfactant POEA. These studies have shown that formulations containing POEA are several times more toxic (3 to 5 fold more toxic than Roundup®) to aquatic invertebrates than the active ingredient glyphosate acid or formulations without POEA. For more details concerning surfactant ingredients and their toxicity to aquatic organisms please refer to chapter 0.

There was no critical data that could directly be included in the environmental risk assessment for the active substance glyphosate.

Table B. 9.13-4: Effects values for aquatic invertebrates exposed to glyphosate acid or formulated products with glyphosate. Endpoints published in peer-reviewed open literature

Species 500	Test item	Study type	LC50	Reference
E O C			(mg a.e./L)	(internal tag)
		Crustaceans		
Daphnia magna	glyphosate acid	48h	234	Le, T.H.,2010;
in the		(mortality)		glyphecotox_122
E. quadricarinatus	glyphosate acid	50days	>33	Frontera, J.L.,2011;
8.6				glyphecotox_378
Daphnia magna	glyphosate acid	48h	146	Dominguez-Cortinas,
	Faena®	(mortality)	7.9	G.,2008;
Lecane	glyphosate acid	48h	150	glyphecotox_347
quadridentata	Faena®	(mortality)	13.1	

	Species	Test item	Study type	LC50	Reference
				(mg a.e./L)	(internal tag)
	Hyalella castroi	Roundup®	7days	2.16	Dutra, B.K.,, 2011
	,	-	(survival		Dutra, B.K.,, 2011 glyphecotox_120
			estimated)		
	Chordodes nobilii	Roundup®	96h	1.76	Achiorno, C.L.,200
		•	(mortality)		glyphecotox 910
	Caridina nilotica	Roundup®	48h	neonates = 4.45	Mensah, P.K., 2011;
		•	(mortality)	juvenile = 9.39	
				adults=37.12	glyphecotox_123
			96h	neonates = 2.54	0. %
			(mortality)	juvenile = 6.96	It. In
			())	96h adults=25.507	The state of the s
 	Daphnia magna	Roundup®	48h	96h adults=25.507 0.019 0.75 to 1.85 a.e.	Sarigül Z.,2009;
1	Dapnina magna	Roundup®	(mortality)		glyphecotox 124
			(mortanty)	The state of	gryphccotox_124
<u> </u>	Simocephalus	Vision®	48h	0.75 to 1.50 &	Chen, C.Y.,2004;
	vetulus	, 1010119	(mortality)		glyphecotox 120
	Ceriodaphnia	Fakel herbicide	48	15 13 6 15 13 6 15 15 15 15 15 15 2.01	Melnichuk,
	affinis	1 and helbicide	40	2 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	S.D.,2007;
'	ujjinis				
<u> </u>	Tl 1 1	DOE 4 15 1	401	11 10 10 10 10 10 10 10 10 10 10 10 10 1	glyphecotox_501
	Thamnocephalus	POEA 15:1	48h		Brausch, J.M., 2007,
I	platyurus	POEA 10:1	(mortality)	2.70	glyphecotox_113
		POEA 5:1	J. J	5.17	
			80° E		
	Daphnia magna	POEA 15:1	48kg 6 8	0.85	Brausch, J.M.,2007:
	1	POEA 10:1	(mortality)	0.097	glyphecotox 114
	ļ	DOEA 5.1	Vel. 90, 24,	0.18	
T,	Ceriodaphnia	Glyphosate IPA-	48ke (mortality)	415	Tsui, M.T.K., 2003
	dubia	salt	(mortality)		glyphecotox 195
	ļ	Roundup®	The feet in	5.4	
		POEA	EL LIS	1.2	
<u> </u>	Acartia tonsa	Glyphosate IPA	Ø 48h	49.3	Tsui, M.T.K., 2003
		salt	(mortality)	.,	glyphecotox 195
		Roundup®	, (mortality)	1.77	gryphecoton_173
		DOEA OF O		0.57	
<u> </u>	Cariodanhnia	Podeo®	48h	415 a.e.	Tsui, M.T.K., 2004;
	Ceriodaphnia dubia	Rodeo® Roundup® Roundup®	48n (mortality)		glyphecotox 018
'	иисти	Discoting (C)	(mortanty)	81.5 a.e.	gryphecotox_016
		Dioacuyew			
<u> </u>	77 1 11	Konugab®	401	5.7 a.e.	
1	нуанена аглеса	Kodeow	48h	347a.e.	
		Roundup	(mortality)	120 a.e.	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Bioactive®			
L		Roundup®		1.5 a.e.	
	200		Nonarthropod		
1	Lampsilis S S S S S S S S S S S S S S S S S S S	Glyphosate	48h	>200	Bringolf, R.B.,,
	siliquoidea 🔊 🔊	technical	(mortality)		2007;
	18, 2,	Glpyhosate IPA		5	glyphecotox_119
	20,00	Aquastar®		>148	
	EL OKO	Roundup®		2.9	
	10 10	MON0818		0.5	
-	Viterbackia -	Roundup®	24h	18.3	Conners, D.E.,2004
	imbecillis		(mortality)	10.0	glyphecotox 325
	imbeciilis Hydra attenuata	glyphosate (as acid)	96h	18.2	Demetrio,
	, and antenually	, ,	(mortality)		P.M.,,2012;
-			· 37	21.8	
co.	•	RoundupMax® (74.4% glyphosate)		21.0	glyphecotox 342

Species	Test item	Study type	LC50	Reference
			(mg a.e./L)	(internal tag)
Mature oysters	Glyphosate		0.002	Akcha, F.,2012;
	technical		(larval development)	glyphecotox_273
Crassostrea gigas	Glyphosate	48h	>100	Mottiera, A., 2013
	technical	(mortality)		2.10
	AMPA		>100	717.0
	Roundup Express®		8.5	Would A. A. 2005
	Roundup Allées et		7.9	80.00
	Terrasses®			%. C ₀ *0
Crassostrea gigas	Glyphosate	48h	27.1	%. %.
	technical	(larval	, di	2 2
	AMPA	development)	46.1	É
	Roundup Express®		1.1	
	Roundup Allées et	1	2.0 0 0 0	
	Terrasses®		18 2 4 4 A	

For the group of aquatic vertebrates, a database of more than 60 peer-ge viewed publications were submitted by the notifier. The notifier considered seven publications (Filizade) et al. 2011; Guilherme et al. 2012; Hued et al. 2012; Kelly et al. 2010; Salbego et al. 2010; Benck Soso et al. 2007 and Tierny et al. 2006) and all seven were rated in category "Klimisch 3" (Klimisch 997). The submitted publications were also evaluated by RMS and have been assigned according to an UBA screening. Out of the submitted publications, 24 studies were recognized as supporting information (category UBA2) and are reviewed here.

In the environmental risk assessment of pesticides the group of aquatic vertebrates is mainly assessed by the results of acute, early life stage or full-life excle effect studies on laboratory level with the choise of survival, growth and reproduction of individuals as endpoints. This is mainly due to the fact that on higher tiers of the aquatic assessment procedure in semi-field mesocosm studies plankton-dominated aquatic communities are tested that would be strongly disturbed by the presence of fish.

Nevertheless, recent research is focused on endpoints on sub-organismic level, such as indicators of metabolic, haematological and reproduction alterations caused by glyphosate formulations. Varous studies deal with sub-lethal endpoints such as histological alterations of gill, liver and further organ tissues, such as neurotoxic endpoints and cenetic biomarkers (Guilherme et al., 2010, Salbego et al., 2010; Soso et al., 2007; De Menezes et al., 2011; Kreutz et al., 2011; Cavalcante et al., 2008; Ferreira et al., 2010; Cattaneo et al., 2011; Modesto et al., 2010; De Menezes et al., 2011).

In a few studies (Evrard et al., 2010; Langiano et al., 2008) histological alterations in the gills and liver or in liver gene expressions or in methionine metabolism, lipid transport and metabolisms related to oxidative stress were observed. Most of these endpoints measured can be taken as early warning indicators of genotoxic and oxidative stress at the individual level but could not be used for in traditional environmental risk assessment, which takes into account the populations levels. Moreover, a few alterations like the enhancement of stress related genes and enzymes are of general character since linked to the metaboolic repsonse towards abiotic and biotic factors of the experimental environment. In most cases they are not considered to be life-threatening or have evident effects on population level. In cases where strong histologie changes were observed, which might lead to impaired organ functioning (e.g Zhidenko et al. was nkely to contain POEA as use commercial formulation Roundup® are of limited on glyphosate-based formulations that do not contain POEA. Although Roundup as the most important herbicide formulation world-wide has been tested frequently, most of the authors have not been stated exactly the contents of acid equivalents, POEA or other surfactants in the formulation used. Concerns on side-effects of glyphosate formulations containing POEA as surfactants raised in the formulation used. particular early studies (Folmar et al., 1979, Smith et al., 2004, Haller et al., 2003), wheras testing on technical grade glyphosate have seldom been conducted. One exemple for is the study by Tierney et al. (2006), who evaluated the effect of relatively low doses of glyphosate on the olfactorial sense of salmons.

None of the studies that were evaluated in detail reported the statistical power of the respective test design. This poses a common difficulty in classifying the validity of tests of highly variable biological systems, even conducted under formally unified laboratory conditions regarding the influence of the environment. The minimal detectable difference between a treatment and a control group depends on the number of replicates and the variability amongst them.

There were no acute mortality endpoints on fish reported in the peer-reviewed open literature that raise particular new concerns compared to the standard studies submitted with the notification of the active substance glyphosate. Most studies were conducted with commercially available formulations that did not allow for keeping apart the effects of the parent active substance glyphosates its metabolites and the surfactants.

- References
 Bringolf, R.B., Cope, W.G., Mosher, S., Barnhart, M.C., Shea, D., Acute and chronic toxicity of glyphosate compounds to glochidia and juveniles of Lampsilis siliquoidea (Unionidae), 2007; Environmental Toxicology and Chemistry Volume: 26 Number: 10 Pages: 2094-2100
- Cavalcante, D.G.S.M., Martinez, C.B.R., Sofia, S.H., Genotoxic effects of Roundup (R) on the fish Prochilodus lineatus (2008) Mutation Research Genetic Toxicology and Environmental Mutagenesis 655 (1-2):41-46. DOI 10.1016/j mtgentox.2008.06.010.
- Cattaneo, R., Clasen, B., Loro, V.L., de Menezes, C.C., Pretto, A., Baldisserotto, B., Santi, A.L., de Avila, L.A. Toxicological Responses of Cyprinus carpio Exposed to a Commercial Formulation Containing Glyphosate (2011) Bulletin of Environmental Contamination and Toxicology 87 (6):597-602. doi: 10.1007/s00128-011-0396-7.
- Cedergreen, N., Streibig, J.C. The toxicity of herbicides to non-target aquatic plants and algae: assessment of predictive factors and hazard; 2005; Pest Management Science 61 (12):1152-1160. Doi 10.1002/Ps 11.73
- Chen, C.Y., Hathaway, K.M., Rolt, C.L. Multiple stress effects of Vision (R) herbicide, pH, and food on zooplankton and larval amphibian species from forest wetlands; 2004; Environmental Toxicology and Chemistry 23 (4):823-831
- De Menezes, C.C., da Fonseca, M.B., Loro, V.L., Santi, A., Cattaneo, R., Clasen, B., Pretto, A., Morsch, W.M.; Roundup Effects on Oxidative Stress Parameters and Recovery Pattern of Rhamdia guelen (2011) Archives of Environmental Contamination and Toxicology 60 (4):665-671. DOI: 10.1007/s00244-010-9574-6.
- Dominguez-Cortinas, G., Saavedra, J.M., Santos-Medrano, G.E., Rico-Martinez, R., Analysis of the toxicity of glyphosate and Faena® using the freshwater invertebrates Daphnia magna and Lecane quadridentata; 2008; Toxicological & Environmental Chemistry 90 (2007).

 Evrard, E., Marchand, J., Theron, M., Pichavant-Poff Environmental Contamination and Toxicology 88 (1):15-9. doi:10.1007/s00128-011-0463-0.

- J.Impacts of mixtures of herbicides on molecular and physiological responses of the European flounder Platichthys flesus (2010) Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 152 (3):321-331. DOI: 10.1016/j.cbpc.2010.05.009.
- Filizadeh, Y., Islami, H.R.; Toxicity determination of three sturgeon species exposed to glyphosate (2001) Iranian Journal of Fisheries Sciences 10 (3):383-392.
- Ferreira, D., da Motta, A.C., Kreutz, L.C., Toni, C., Loro, V.L., Barcellos, L.J.G.; Assessment of oxidative stress in *Rhamdia quelen* exposed to agrichemicals (2010) Chemosphere 79(9):914-921. DOI: 10.1016/j.chemosphere.2010.03.024.
- Folmar, LC, Sanders HO, Julin AM; Toxicity of the Herbicide Glyphosate and Several of Its Formulations to Fish and Aquatic Invertebrates (1979) Archives of Environmental Contamination and Toxicology 8: 269-278

 Guilherme, S., Gaivão, I., Santos, M.A., Pacheco, M.; European eel (Anguilla anguilla) genotoxic and
- pro-oxidant responses following short-term exposure to Roundup & glyphosate-based herbicide (2010) Mutagenesis 25 (5):523-530. DOI: 10.1093/mutage/geq038.
- Haller, W.T., Stocker, R.K. Toxicity of 19 adjuvants to juvenile Lepomis macrochirus (bluegill sunfish) (2003) Environmental Toxicology and Chemistry 22 (3):615-619.
- Hued, A.C., Oberhofer, S., de los Ángeles Bistoni, M., Exposure to a Commercial Glyphosate Formulation (Roundup) Alters Normal Gill and Liver Histology and Affects Male Sexual Activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes) (2012) Archives of Environmental Contamination and Toxicology 62 (1):107-117. DOI: 10.1007/s00244-011-9686-7.
- Kelly, D.W., Poulin, R., Tompkins, D.M., Townsend, C.R.; Synergistic effects of glyphosate formulation and parasite infection on fish malformations and survival (2010) Journal of Applied Ecology Volume: 47 Issue: 2 Pages: 498-504 Url: http://onlinelibrary.wiley.com/doi/16/11111/j.1365-2664.2010.01791.x/pdf DOI: 10.1111/j.1365-2664.2010.01791.x ISSN: 1365-2664 (online).
- Kreutz, L.C., Barcellos, L.J.G., de Faria Valle, S., de Oliveira Silva, T., Anziliero, D., dos Santos, E.D., Pivato, M., Zanatta R. Altered hematological and immunological parameters in silver catfish (Rhamdia quelen) following short term exposure to sublethal concentration of glyphosate (2011) Fish Shellfish Immunol 29 (4):694-7. DOI: 10.1016/j.fsi.2010.06.003.
- Le, T.H., Lim, E.S. Lee, S.K., Choi, Y.W., Kim, Y.H., Min, J.; Effects of glyphosate and methidathion on the expression of the Dhb, Vtg, Arnt, CYP4 and CYP314 in Daphnia magna; 2010; Chemosphere 79: 67-71
- Langiano, VacCa Martinez, C.B.R.; Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish *Prochilodus lineatus*; (2008)Comparative Biochemistry and Physiology Part © Toxicology & Pharmacology 147 (2):222-231
- Modesto, K.A., Martinez, C.B.R. Effects of Roundup Transorb on fish: Hematology, antioxidant defenses and acetylcholinesterase activity (2010) Chemosphere 81 (6):781-787. DOI: 10.1016/j.chemosphere.2010.07.005

- Mensah, P.K., Muller, W.J., Palmer, C.G.; Acute toxicity of Roundup® herbicide to three life stages of the freshwater shrimp *Caridina nilotica* (Decapoda: Atyidae); 2011; Physics and Chemistry of the Earth, Parts A/B/C 36 (14–15):905-909
- Mottiera, A., Kientz-Bouchart V., Serpentinia, A., Lebela, J.M.; Jhac, A.N., Costil, K.; Effects of glyphosate-based herbicides on embryo-larval development and metamorphosis in the Pacific oyster, *Crassostrea gigas*; 2013; Aquatic Toxicology 128–129 (2013) 67–78.
- Ortiz-Ordoñez, E., Uría-Galicia, E., Ruiz-Picos, R.A., Duran, A.G.S., Trejo, Y.H., Sedeño-Díaz, J.E., López-López, E. Effect of Yerbimat Herbicide on Lipid Peroxidation, Catalase Activity, and Histological Damage in Gills and Liver of the Freshwater Fish *Goodea Atripinnis* (2011) Archives of Environmental Contamination and Toxicology 61 (3):443-452. DOI: 10.1007/s00244-011-9648-0.
- Perez, G.L., Torremorell, A., Mugni, H., Rodriguez, P., Solange Vera, M., do Nascimento, M., Allende, L., Bustingorry, J., Escaray, R., Ferraro, M., Izaguirre, I., Pizarro, H., Bonetto, C., Morris, D.P., Zagarese, H.; Effects of the herbicide Roundup on freshwater microbial communities: a mesocosm study; 2007; Ecol Appl 17 (8):23-10-22.
- Salbego, J., Pretto, A., Gioda, C.R., de Menezes, C.C., Lazzari, R., Radunz Neto, J., Baldisserotto, B., Loro, V.L.; Herbicide formulation with glyphosate affects growth, acetylcholinesterase activity, and metabolic and hematological parameters in piava (*Leporinus obtusidens*) (2010) Arch Environ Contam Toxicol 58 (3):740-5, DOI: 10.1007/s00244-009-9464-y.
- Soso, A.B., Barcellos, L.J.G., Ranzani-Paiva, M.J., Kreutz, L.C., Quevedo, R.M., Anziliero, D., Lima, M., da Silva, L.B., Ritter. F., Bedin, A.C., Finco, J.A.; Chronic exposure to sub-lethal concentration of a glyphosate-based herbicide alters hormone profiles and affects reproduction of female Jundia (*Rhamdia quelen*) (2007) Environmental Toxicology and Pharmacology 23 (3):308-313. DOI 10.1016/j.etap.2006.11.008.
- Smith, B.C., Curran, C.A., Brown, K.W., Cabarrus, J.L., Gown, J.B., McIntyre, J.K., Moreland, E.E., Wong, V.L., Grassley, J.M., Grue, C.E. Toxicity of four surfactants to juvenile rainbow trout: Implications for use over water (2004) Bulletin of Environmental Contamination and Toxicology 72 (3):647-654. DOI 10.1007/s00128-004-0292-5.
- Tierney, K.B., Ross, P.S. Jarrard, H.E., Delaney, K.R., Kennedy, C.J.; Changes in juvenile coho salmon electro of actogram during and after short-term exposure to current-use pesticides (2006) Environ Toxicol Chem 25 (10):2809-17.
- Tsui, M.T.K., Chu L.M.; Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors; 2003; Chemosphere 52: 1189–1198.
- Tsui, M.T.K., Chu, L.M.; Aquatic toxicity of glyphosate-based formulations: comparison between afferent organisms and the effects of environmental factors; 2003; Chemosphere 52: 1189–1197.
- Tsui, M.T.K., Chu, L.M.; Comparative toxicity of glyphosate-based herbicides: aqueous and sediment porewater exposures; 2004; Arch. Environm. Contam. Toxicol.46, 316-323
- Turgut, C., Fomin, A.; Sensitivity of the rooted macrophyte *Myriophyllum aquaticum* (Vell.) Verdcourt to seventeen pesticides determined on the basis of EC50; 2002; Bulletin of

Environmental Contamination and Toxicology 69 (4):601-608

Vera, M.S., Lagomarsino, L., Sylvester, M., Perez, G.L., Rodriguez, P., Mugni, H., Sinistro, R., Ferraro, M., Bonetto, C., Zagarese, H., Pizarro, H. New evidences of Roundup (glyphosate formulation) impact on the periphyton community and the formulation) impact on the periphyton community and the water quality of freshwater ecosystems; 2010; Ecotoxicology, 19:710-721

Zhidenko, A.A., Kovalenko, Y.M.; The influence of Roundup on the dynamics of histological changes in organs of carps (2007) Hydrobiological Journal 43 (2):93-99

- B.9.13.10 Effects on amphibians

For the group of amphibians, a comprehensive database of 85 peer-reviewed papers was collected by the notifier. Out of the submitted, 20 studies were recognized by the notifier as relevant for full evaluation. Further 54 papers were cited in the text and considered supporting the subtraission, but were not submitted with the application, mostly because of publishing date older than 10 years. Moreover, further publications have been submitted, but were not assigned to one of the areas of assessment by the notifier. After UBA screening, further 28 papers were identified for the assessment of glyphosate effects on amphibians. Critical and relevant studies are summarized below.

Howe et al. (2004)

	glyphecotox_025	Howe, C.M., Berrill,	2004 Toxicity of glyphosate-	Environmental
		M., Pauli, B.D.,	Porth American frog	Toxicology and
		Helbing, C.C.,	North American frog	Chemistry 23 (8):1928-
		Werry, K.,	Species	1938
		Veldhoen, N.	E 0. 9	
			Species Reliability	
	Purpose of the study	y The study was design	med to compare the acute and chronic	toxicities of six glyphosate
	Description of	formulations, the te	chaical-grade glyphosate and a polyetl	hoxylated tallow amine
	endpoints	surfactant to tadpol	es of four species of North American f	rogs. The sensitivity of
		A suct a state of the state of	iges towards glyphosate was examined	l .
		Change and in Ea	anty, survivai	non store 42. Total langth
		hody leady to 12	relimb emergence = time to reach Gos ngth, visible tail damage and maximur	n tail haight ware recorded
		crout vent-length o	ngui, visiole tan damage and maximur f metamorphs: gonadal histology to de	stermine sev ratios
	Test compound	A cute studies	Reliability greed to compare the acute and chronic chaical-grade glyphosate and a polyetic so four species of North American frages towards glyphosate was examined rality, survival relimb emergence = time to reach Gosingth, visible tail damage and maximurate from the fraction of the comparison of the comparisons between the different formulations (FAE: It is assumate acid, so the FAE used for the surfacte acid in its formulation equivalent, a proximately 15%. To calculate the FAC on, the values published by Giesy et allow, for a glyphosate-based formulation of 5. In other words, 1 mg of the formulate acid equivalent and approximately d, static renewal: weekly spiking of the in clean water until day 70.	termine sex ratios
	annlication	Statio exposure for	96h, expressed as mg test item/L and a	s formulation glyphosate
	procedure exposure	acid equivalents to	enable direct comparisons between the	e different mixtures of
	period, protocol	ingredients of the d	ifferent formulations (FAE: It is assum	ned 'that the surfactant does
	F, F	not contain glyphos	ate acid, so the FAE used for the surfa	ctant refers to the calculated
	83	amount of glyphosa	te acid in its formulation equivalent, a	ssuming the surfactant
	800	component to be ap	proximately 15%. To calculate the FA	E in each glyphosate
	70,20	herbicide formulation	on, the values published by Giesy et al	. (2000, glyphnosubm_050)
	87.78	were followed Thus	s, for a glyphosate-based formulation of	of 1.0, the FAE is 0.31, and
	0,00,00	the surfactant is 0.1	5. In other words, 1 mg of the formula	tion is assumed to contain
		0.31 mg of glyphos	ate acid equivalent and approximately	0.15 mg of POEA.'
	162,70	Chronic studies	1 4 2 1 11 21 63	
	ici ot	Exposure period 42	d, static renewal: weekly spiking of the	e test items (6 application
	8 30	dates), then rearing	in clean water until day /0.	
3,	The state of the s	Non-GLP		
*8 C	Glyphosate Renewal Group			
idital.				
10,00				
· Ø · Ø				
en Silvini				
10° 30"				
201,010	Glyphosate Renewal Group	AIR 5 – July 2020	Doc ID:	: 110054-MCA8_GRG_Rev 1_Jul_2020
# Tall				
(Q.				

Experimental	Acute studies 20 tadpoles at Gosner-stage 25 were used per treatment-replicates for the formulation
approach Statistical design,	comparison and 10 tadpoles at Gosner stage 20 and 25 for the stage-comparison with
test environment	comparison and 10 tadpoles at Gosner stage 20 and 25 for the stage-comparison with Roundup Original®, 3 replicates per concentration were tested <u>Test items</u> : Roundup Original®, Glyphosate technical, POEA, Roundup Biactive®
	Test items: Roundup Original®, Glyphosate technical, POEA, Roundup Biactive®
	Touchdown®, Glyfos BIO®, Glyphos AU®, Roundup Transorb®; at least four concentrations up to 18 mg FAE/L were tested to determine LC50 and confidence.
	itervals
	Determination of LC ₅₀ for 24 and 96h exposure by trimmed Spearman-Karber method
	Chronic studies
	test items 1.8 FAE glyphosate technical/L, 0.6 and 1.8 FAE polyethoxylated tallowamine surfactant (POEA)/L, 0.6 and 1.8 FAE Roundup Original/E, 0.6 and 1.8
	FAE Roundup Transorb/L
Test organisms	Acute studies
	Rana pipiens, Rana sylvatica, Bufo americanus, Rana clamitais. Chronic studies Rana pipiens
	Chronic studies Rana pipiens
Biological effects	Acute studies
	Acute studies Not all treatment showed sufficient mortality to calculate proper LC50. From the
	published paper: Table 2. Acute toxicity (median lethal concentration values [LC50] with the confidence intervals in parentheses) obtained in 24-h and 96-h
	published paper: Table 2. Acute toxicity (median lethal concentration values [LC50] with the confidence intervals in parentheses) obtained in 24-h and 96-t exposures of four amphibian species exposed to glyphosate-based herbidous surfactant (POEAFait two life stages*
	1.050
	Species Gosner stage Compound Fig. 1 LC50 Compound
	Species Gosner stage Compound Tugut mg FAE/L mg/L mg FAE/L
	R. pipiens ^c 20 Roundup Original 25.8 > 25.8 > 8 20.9 (19.8–21.9) 6.5 (6.1–6.8) R. sylvatica ^c 25 Roundup Original 25.1 (16.7–19.6) 5.6 (5.2–6.1) 16.5 (15.7–17.4) 5.1 (4.9–5.4)
	R. sylvatica 20 Roundup Original
	B. americanus 20 Roundup Organa 22.5.8 (NR) 8 (NR) 8 (NR) 8 (NR) 8 (NR) 9 (1.9–2.2) 8. clamitans 25 Roundup Organa >25.8 >8 22.8 (21.2–24.5) 7.1 (6.6–7.6)
	R. clamitans ^d 25 Glyptosate echaical >38.9 >17.9 >38.9 >17.9 R. clamitans ^d 25 POEA 1.1 (1.1-1.2) 2.4 (2.2-2.5) 1.1 (1.0-1.1) 2.2 (2.1-2.4) R. clamitans ^d 25 Relamitans ^d >57.7 >17.9 >57.7 >17.9 R. clamitans ^d 25 Coughtown >57.7 >17.9 >57.7 >17.9
	R. clamitans ^d 25 Remdup Buctive® >57.7 >17.9 >57.7 >17.9 R. clamitans ^d 25 Coud-blow >57.7 >17.9 >57.7 >17.9 R. clamitans ^d 25 Coud-blow >57.7 >17.9 >57.7 >17.9 R. clamitans ^d 25 Coud-blow >57.7 >17.9 >57.7 >17.9
	R. clamitans ^d 25 (Gigos 100° > 57.7 > 17.9 > 57.7 > 17.9 R. clamitans ^d 25 (Gries U° 29.1 (28.1–30.2) 9.0 (8.7–9.4) 28.6 (27.6–29.6) 8.9 (8.6–9.2) R. clamitans ^d 25 (Group Transorto° 7.4 (6.9–7.9) 2.3 (2.2–2.4) 7.2 (6.8–7.7) 2.2 (2.1–2.4)
	^a Roundup Original, Roundup Bactise, and Roundup Transorb from Monsanto (St. Louis, MO, USA); Touchdown from Syngenta (Wilmington
	confidence intervals of reliable. b 2000 Chronic study
	1994 Study. 2001 S
	DE, USA); Glyfos BlO and Glyfos AU from Cheminova (Wayne, NJ, USA). FAE = formulation glyphosate acid equivalents; NR = 95% confidence intervals for reliable 2000 Chronic structure. 1994 Study. Earlier stages were slightly less sensitive than Gosner stage 25-individuals
	Chronic studies
	38% mortality in control aquaria undermines experiment validiy
	POEAT.8, Roundup Original ® 0.6 and 1.8 and Roundup Transorb ® showed significant tail damages and reduced tail lengths. NO effects with glyphosate alone.
	DOEA containing formulations showed displaced say notice toyyands interesty
	individuals.
7,10	The lengths and percent surviving tadpoles to reach Gosner stage 42 as well as the
	days to reach stage 42 were significantly altered by most of the treatments except of glyphosate technical. However, results were not strictly dose-dependent.
	y for Environmental Risk Assessment, appropriateness of study endpoints
	Biological Relevance
1 Is an appropriate test	st species/ It was necessary to measure the developmental endpoints on juvenile
life-stage(s) studied?	tadpole stages. It was proven in this experiment that earlier tadpole stages
life-stage(s) studied?	were less sensitive, which is quite contrary to common expectations that earlier stages should be more sensitive towards chemical stress.
2 ds the magnitude of	effects of Yes
& Biological significance	
very small statistically	
effect able to cause a (relevant effect?	(population)
ST ST THE STREET	
Glyphosate Renewal Group AI	TR 4 1 200
Glyphosate Renewal Group AI	IR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_20
<i>∞ ∞</i>	200 2011000 1 110110 2010 1 1 2011 2
` \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

3 Is the ecotoxicological	The intersex-hypothesis has been intensively criticised by the notifier
manifestation level appropriate	(weaknesses in histological and statistical analysis), which can be only
for the assessment, e.g. gene	partly agreed by RMS. There was no statistical procedure described for
induction vs. apical endpoints	this endpoint, so that it could be seen as a qualitative measure. Other
like growth or reproduction?	partly agreed by RMS. There was no statistical procedure described for this endpoint, so that it could be seen as a qualitative measure. Other endpoints have been measured and analysed adequately and are
	considered by RMS appropriate growth and developmental indicators of
	endpoints have been measured and analysed adequately and are considered by RMS appropriate growth and developmental indicators of toxic stress.
	Environmental Relevance
1 Is the substance tested	Since there was a full-factorial design with glyphosate technical, the
representative and relevant for	POEA surfactants and diverse formulations containing both glyphosate
the substance being assessed?	and surfactants, the study is of high environmental relevance.
2 Do the tested concentrations	The LC ₅₀ s of the tested formulations were mainly around 5 mg FAE/L,
relate to measured or predicted	which is in the range of the relevant aquatic endpoints for the
environmental concentrations (if	environmental risk assessment of glyphosate.
available)?	, o 1, o 5
3 Have parameters influencing	There was a very high control mortality of 38% that was tried to eliminate
the endpoints been considered	by the authors by regular water exchange. The ammonia level was
adequately (e.g. pH, temperature,	presumably too high, as well as the density of tadpoles per area most
light conditions)?	probably was.
Concluding weight of	Important data are presented that prove the high toxic potential of
evidence/proposed action	polyethoxylated tallow amines to different species of amphibians. The
	POEA treatment showed the highest toxicity in the acute tests. Dependent
	on the formulation that will be assessed by an ERA, the enhanced toxicity
	by surfactant additives should be considered and could be referenced to
	this well conducted and informative publication. Can be used for aquatic
	assessments.
	The chronic studies have several weaknesses (statistics, control survival
	rates, dose-response relationship). Nevertheless, the results indicate
	several open questions in the assessment of chronic exposure of
	amphibian to formulated glyphosate products.
	None of the effects was observed in the treatments with glyphosate alone
Type of information (Critical,	Critical, supporting
supporting, low weight)	LIDA STATE OF THE CONTROL OF THE CON
Consideration/concluding score	UBAL also for assessment of surfactand effects (POEA)
	2 , 3

Thompson et al. (2004)

		hompson, D.G., /øjtaszek, B.F.,	2004	Chemical and biomonitoring to assess	Environmental Toxicology and Chemistry, Vol. 23, No. 4,		
	S	aznik, B.,		potential acute effects of	pp. 843–849, 2004		
		hartrand, D.T.,		Vision (R) herbicide on			
		tephenson, G.R.		native amphibian larvae in forest wetlands			
	07,18			Reliability			
	Purpose of the study				eted following operational forest		
	Description of			s in Ontario, Canada. Magnitudo			
	endpoints.			mulation (Vision) was investiga			
	Test compound,		Wetlands were classified as oversprayed, adjacent, or buffered. Vision, Glyphosate product identical to Roundup Original, Monsanto. Aerial herbicide				
	application	treatments of con			ai, Wonsairto. 7 terrar neroreitae		
	procedure, exposure		lity at 48 h posttreatment was calculated as response variable.				
	period						
.3.	Experimental			s have replicates within blocks.			
(s) of	approach, Statistics,			y at approximately 6, 24, 48, and			
E The	test environment				across years and mean mortality		
,0°90,	rates were calcul				ersprayed, adjacent, or buffered)		
	Test organisms	Rana pipiens and	1 Rana (clamitans larvae (Gosner 25)			
State of the state	Hyphosate Renewal Group All	R 5 – July 2020		Doc II	D: 110054-MCA8_GRG_Rev 1_Jul_2020		

Biological effects	The mean glyphosate concentrations recorded were:					
	The mean glyphosate concentrations recorded were: buffered wetlands: 0.03 mg a.e./L adjacent wetlands: 0.18 mg a.e./L oversprayed wetlands: 0.33 mg a.e./L; maximum of 1.95 mg a.e./L. Mean mortality rates leopard frog larvae < 15% in all wetland types. No significant differences in mean mortality rates were observed for leopard frog larvae exposed to different glyphosate concentrations under adjacent, buffered, or oversprayed wetland scenarios. Green frog larvae showed higher mean mortality rates of 10, 26, and 36% in adjacent, buffered, and oversprayed wetlands reprocessively. These differences are not					
	adjacent wetlands: 0.13	8 mg a.e./L	£.			
	oversprayed wetlands:	0.33 mg a.e./L; maximu	ım of 1.95 mg a.e./L.			
	Mean mortality rates le	eopard frog larvae < 15%	6 in all wetland types. No significant			
	differences in mean me	ortality rates were obser	ved for leopard frog larvae exposed to			
	different glyphosate co	oncentrations under adjac	cent, buffered, or oversprayed wetland			
	scenarios. Green frog l	arvae showed higher me	ean mortality rates of 10, 26, and 36% in			
	adjacent, burrered, and	i oversprayed wetiands,	respectively. These differences were not			
	statistically significant		T			
		yphosate concentration)	No separation of different factors possible			
Polovence of the study	for Environmental Risk.					
Relevance of the study			20 47 2			
1 Is an appropriate test	species/ life-stage(s) stud	lied?	yes & Z. &			
	fects of significance to of	rause a (nonulation)	ves & & &			
relevant effect?	rects of significance to c	ause a (population)	yes			
3 Is the ecotoxicologica	l manifestation level app	propriate for the	yes & &			
assessment?		•	10 4 6 .			
		vironmental Relevance				
1 Is the substance tested		Active ingredient: yes but applied as formulated product				
relevant for the substan		Lead formulation no	Vision® with 15% POEA)			
2 Do the tested concent		yes (no overspray of w	retlands in the European Union, though)			
predicted environmenta		OLS 13 THE				
3 Have parameters influ		Not conclusive (poolir	ng of several monitoring years/no single			
been considered adequa	•	data available				
Concluding weight of	evidence/proposed	No data available on the variance of larval response allocated to				
action		site/year/block factors. Pooling of results on biological and				
		chemical responses over sites and years may lead to misleading				
. d		interpretation of results. Effects of glyphosate application at site				
level with direct comparison of sprayed/not sprayed wetland reported.						
Type of information (Critical, supporting.	Supporting/low weig	nt			
low weight)	Critical, supporting,	. II 9				
Consideration/conclud	ling score	UBA2				
	2 10 10					

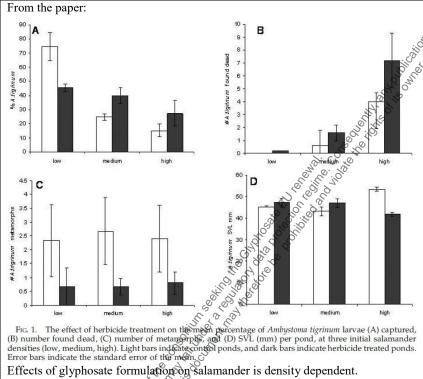
Edge et al. (2011)

	low weight)	S S	13 8	-	
	Consideration/concluding score UBA2				
	Edge et al. (2011)	iding score	5		
	P	dge E.B., Gahl, A.K., Pauli, 3D., Thompson, D.G., Houlahan, Æ.	2011	Exposure of juvenile green frogs (Lithobates clamitans) in littoral enclosures to a glyphosate-based herbicide	Ecotoxicology and Environmental Safety 74, 1363– 1369 doi:10.1016/j.ecoenv.2011.04.020
	000			Reliability	
	Purpose of the study Description of 4.27 kg a.e./ha) endpoints scenarios in Car survival, body c dendrobatidis in			thobates clamitans) were exposphosate formulation (VisionN forestry. n, liver somatic index, observe	Max®), under typical application ded rate of Batrachochytrium
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Glyphosate Renewal Group AI	IR 5 – July 2020		Do	e ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Test compound,	Enclosures: half of th	e enclosure was terrestr	rial and the other half aquatic		
application procedure,	Each herbicide treatn	nent was comprised of t	rial and the other half aquatic wo spray applications. One application was ng a backpack sprayer (Flowmaster, Roote		
exposure period					
			one-half of the wetland, while an equivalent		
		tion was made directly t	o the enclosure using a small plant-misting		
	bottle.	1	Q 3		
	Environmentally obse	erved concentration (EC	OC): 0.55 mg a.e./L (upper 99th centile of		
	concentrations measu	red in Thompson et al.,	2004).		
E		environmental concentra	ation(PMEC): 2.89 mg a.e./L		
Experimental approach, Statistics,	S.a.	annlications animals we	ere counted 1, 4, 7and 14 days after		
test environment			OAT 14, SVL was measured and all animals		
test environment			euthanized. All animals were dissected,		
			SI) was calculated by dividing wet liver		
l			00. All animals were examined for Bd		
	infection. Differences	s in arcsinesquareroot tra	ansformed proportional survival data/split-		
	plot analysis of varian	nce (ANOVA), with trea	atment rate as between subject factor, and		
	side (control or treatn	nent) as the within subje	ect factor on DAT 14.		
Test organisms	Juvenile green frogs(Lithobatesclamitans)	200		
Biological effects			treated and control wetlands. After 14 days,		
	no difference in body condition between wetland sides and no relationship between the				
			ly condition was observed		
	No significant differe	nce in the number of an	imals infected with Bd.		
			between the measured glyphosate		
	application rate and the	he frequency of Bod infe	eglyphosate concentrations in the wetlands.		
		ninal concentrations dis-			
Relevance of the study t			teness of study endpoints		
		Biological Relevance	or state of		
1 Is an appropriate test s			yes		
2 Is the magnitude of ef	fects of significance to	cause a (population)	yes		
relevant effect?	HOE!				
3 Is the ecotoxicologica	l manifestation level ar	propriate for the	yes		
assessment?	<u> </u>				
		vironmental Relevanc			
1 Is the substance tested		evant for the	VisionMax co-formulation ingredients not		
substance being assessed			known		
2 Do the tested concentr	rations relate to predict	ed environmental	_/-		
concentrations?	10 10 CL	.1 1	,		
3 Have parameters influ adequately?	iencing the endpoints b	een considered	-/-		
Concluding weight of	evidence/proposed	Coformulants not known. Glyphosate was not tested alone.			
action			o soil and water. Exposure pattern not clear		
Type of information (Low weight			
low weight)		<u> </u>			
Consideration/conclud	ling score	UBA3			
8 8					

Wojataszek et al. (2004)

glyphecotox_044	Wojtaszek, B.F.,	2004	Effects of Vision (R) herbicide	Environmental	
	Staznik, B.,		on mortality, avoidance	Toxicology and	
	Chartrand, D.T.,		response, and growth of	Chemistry, Vol. 23,	
	Stephenson,		amphibian larvae in two	No. 4, pp. 832–842,	
	G.R., Thompson,		forest wetlands	2004	
	D.G				
Reliability					


	Purpose of the study Description of endpoints	avoidance responsible pipiens) were in In situ enclosure	onse, and growth restigated. es deployed in t	ate, 356 mg acid equit h of larval amphibian wo forest wetlands o	s (<i>Rana clami</i> f northern Ont	tans and Rana
	Test compound, application procedure, exposure period, protocol	Roundup Origin Twenty-four in used. The amou	nal ® with 15% situ enclosures unt of formulate	rid equivalents (a.e.)/I POEA were positioned at ed d product required to aclosure volume.	each site. Thir	teen enclosures
	Experimental approach Statistical design, test environment	squares means for differences	for each combin between mean r	re (SAS), variance an nation of site and spec mortality observed in he 1.43 mg a.e./L (RI	cies. Preplanne untreated con	d comparisons trols and in
	Test organisms		, Rana pipiens a	and <i>Rana clamitans</i> la		
	Biological effects	from predictive m point estimates ar	-hour lethal concents odels derived from e given in parenthe	to, Winnipeg, MB, Canada ation (LC) point estimate a analysis of deviance. Night ses. Both experimental site b, Canada. Site 5, 40530 84°23'(86°W)	Rama clamitar y 10 and 50% mort y twe percent con y were located ap	ality were estimated fidence limits about pproximately 80 km
		Site Spe		.e.a/L) (mg V@ion/L)	LC50 (mg a.e./L)	LC50 (mg Vision/L)
		A Rana cla Rana pip B R. clami	mitans 1. (0.99, viens 7. (3.83)	78	4.34 (3.05, 6.02) 11.47 (9.50, 14.5 ^b) 2.70	14.0 (9.84, 19.4) 37.0 (30.6, 46.8 ^b) 8.71
		R. pipier	(0.84) 0. (1.66)	(2.71, 5.16) (26) (0.5) (2.6) (0.5) (2.6) (0.5)	(2.06, 3.67) 4.25 (2.45, 7.10)	(6.65, 11.8) 13.7 (7.90, 22.9b)
		No.	e acid equivalents. concentrations lested environmental conc	d. entration (EEC) of 1.43 mg ental site and biotic/al		therein such as
		pH and suspend	led sediments, s	ubstantially affected bian larvae tested.'		
	Relevance of the study for	Environmental R		, appropriateness of s	tudy endpoint	S
	1 Is an appropriate test spec 2 Is the magnitude of effec e.g. is a very small statistic cause a (population) releva	cies/ life-stage(s) ts of biological si ally significant ef	studied? gnificance,	Yes Yes		
	3 Is the ecotoxicological in for the assessment, e.g. ger endpoints like growth or re	anifestation level ne induction vs. a		Yes.		
	1 Is the substance tested re and relevant for the substan assessed?	presentative	used for the a	Relevance y for all formulations ssessment of glyphos ndpoints are given in	ate technical/g	glyphosate acid,
	2 Do the tested concentration measured or predicted environmentations (if available	ronmental	Comparable h	high PECsurface waterspray practice in Ca	er reported in t	
	3 Have parameters influence endpoints been considered (e.g. pH, temperature, light	adequately	but were not of difference in t	ters influencing the redirectly considered e. toxicity beween sites.	g. in the asses	sment of
STAN STAN STAN STAN STAN STAN STAN STAN	Concluding weight of evidence/proposed action		The data can containing PC technical or g formulation. I	sents acute mortalitie be employed in the as DEA as surfactants. N lyphosate acid deduct Lead formulation for ains no POEA	ssessment of f o data for gly ible from the t	ormulations phosate ested
	Glyphosate Renewal Group AIR 5 –	July 2020		Doc I	D: 110054-MCA	8_GRG_Rev 1_Jul_2
₩ W						

Type of information (Critical,	Critical/Supporting	
supporting, low weight)		
Consideration/concluding score	UBA1 for assessment of surfactand effects (POEA)	. (
		X

Brodman et al. (2010)

	glyphecotox_048	Brodm Newma Laurie Osterfe Lenzo,	an, W.D., , K., eld, S,,	2010	Interaction of an Aquatic Herbicide and Predatory Salamander Density on Wetland Communities	Journal of Herpetology, Vol. 44, No. 1, pp. 69–82, 2010 DOE 16. 1670/08-320.1
					Reliability	45
	Purpose of the stud Description of endp	points	glyphosate f tigrinum) de	ield experiormulation		ebrates.
	Test compound, application procedu exposure period, pr	ire,	5% herbicid Active subst	e mixture tance(s): (a nonylph	of Accord and 3% Cide-Kick Glyphosate. enolpolyethylene XPE-based	II (aquatic surfactant)
	Experimental approstatistical design, to environment	oach est	a) Outdoor of b) Behaviou Ponds: 6 x 6 June 2006 (of duration not Activity and long) Microhabita filled to a de partitioned i One chamber chamber wa For the activity	experimer ral assays on, volume a. 1 ½ m stated); I feeding t assay: perth of 16 nto two serials as left empirity, beha	swere conducted ex vivo under the conducted ex vivo under	osure 18th May until end of 07 (started on 14th May, n high x 20 cm wide x 20 cm x 23.5 cm wide x 33 cm long) atter. The containers were mesh with 1.5-cm openings. tter, and algae, the other at assay, samples were
	Test organisms		evening (13 Snout vent l density, spec	ength (SV cies richn (position ate, prey percenta al pond co	00h). VL) of <i>A. tigrinum</i> larvae, ampess and diversity, mortality, m	netamorphosis, number of by the larvae, feeding activity of dead larvae, behaviour me separated).
	Test organisms		Rana pipien Rana clamit Bufo americ Aquatic invo Ambystoma size classes Laboratory a microhabita from 5 – 10	ans canus canus cartebrates tigrinum "< 25 mm cassays cont t assay ap	as natural inhabitants larvae (mesocosm study):mea ", "25 – 35 mm" and ">35 m ducted with larvae of <i>A. tigri</i> proximately the same age with	m"), age not specified num: not precisely stated, for
# 8 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Glyphosate Renewal Group	o AIR 5 – Ju	uly 2020		Doc	ID: 110054-MCA8_GRG_Rev 1_Jul_202

Glyphosate Annex to Regulation 283/2013 M-CA, Section 8 Page 708 of 847

Effects of glyphosate formulation on salamander is density dependent. Herbicide treatment and salamander density have an overall effect on tadpoles (interaction between herbicide treatment and initial density also significant). Significant effect of herbicide treatment on the SVL of Northern Leopard Frog tadpoles. SVL and number of metamorphic Northern Leopard Frogs were greater in herbicide-treated ponds.

	Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints						
	Biological Relevance						
	1 Is an appropriate test species/ life-stage(s)		yes				
	2 Is the magnitude of effects of biological sig	gnifican	ce?	yes			
	3 Is the ecotoxicological manifestation level	appropr	riate	yes			
	for the assessment?						
				elevance			
	1 Is the substance tested representative and relevant for the substance being assessed?	surfact	tant	on with nonylphenolpolyethylene NPE-based			
	2 Do the tested concentrations relate to measured or predicted environmental concentrations (if available)?			rermine (loading not determined, no analytics)			
	3 Have parameters influencing the endpoints been considered adequately (e.g. pH, temperature, light conditions)?	oxyger	n) in out	door ponds were monitored on week 1, 3, 5 and 7, reported			
	Concluding weight of evidence/proposed action			ated product not relevant for current assessment usae + NPE). Glyphosate was ot tested per se.			
	Type of information (Critical, supporting,	, low	Low wo	eight			
	Consideration/concluding score		UBA3				
Service of the servic	Glyphosate Renewal Group AIR 5 – July 2020			Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202			
"L'ado							

Biological effects

Cauble & Wagner, (2005)

alumbasatar 040	Caub	la IV	2005	Sublatha	l effects of the	Bulletin of	
glyphecotox_049	Caub		2005				
	wagn	er, R.S.			e glyphosate on	Environmental	
					an metamorphosis	Contamination and	
				and deve	nopment	Contamination and Toxicology, 75, 429-435	
				Daliabilita	·	433 6 8	
Purpose of the stud	* 7	Effects of al	ronio ov	Reliability	Coundup ® were investig	atad at non acritationals	
Description of endp						phosis and development.	
Description of chap	Milits				y basis for 43 days for m		
					norphological abnormali		
		alterations.	.,	.g, , 1.	nerpheregiem wenerman	of it in	
Test compound,		Roundup ®	(50.2% g	glyphosate i	isopropylamine salt), spe	cific product not	
application procedu	ıre,	reported! RMS: Roundup ® Original?					
exposure period, pr							
					nal) and a control? 🧳 👌	0,	
Experimental appro		Static renew	al (7 day	y intervals).	Duration of study 43 d	chronic	
Statistical design, to	est	5 replicates	per conce	entration, O	rganisms per replicate: 7	; Feeding: Not stated	
environment					y basis for 43 days for m		
					ot feeding), swimming ac		
		slow), morphological abnormalities (edema, tesions, bent tail) and behavioural					
		alterations (head out of water, erupted foretimbs, erupted hind limbs, emersion					
		from water).		compared if	Sura Student's t test diff	ferences among replicates	
					sing Stadent's t-test, diff		
					sts with NCSS as post-ho		
Test organisms		Rana cascad		16 16 16 16 16 16 16 16 16 16 16 16 16 1	o viani vees as pest ne		
Biological effects				nuoustv exr	osed to concentrations o	f 1 and 2 mg glyphosate	
Biological circus					ontrol in a static renewal		
					tions were measured and		
		were similar					
					ed (1.94 mg glyphosate/	L, mean measured), no	
					f the exposure.		
					cascadae is reported to b		
						orphosis and smaller size	
D 1 0.1	1 0				to the control.	1	
Kelevance of the st	udy for	0 7 50			appropriateness of study	enapoints	
1.1	4 4	STORING TO STORY		ogical Rele			
1 Is an appropriate					yes		
2 Is the magnitude e.g. is a very small					yes		
e.g. is a very small cause a (population			n erreet a	a015 10			
3 Is the ecotoxicole			vel annr	onriate	yes		
for the assessment,					y 0.5		
endpoints like grow			s. upreur				
Environmental Relevance							
1 Is the substance to	ested re	presentative			the product assessed is r	not specified	
and relevant for the substance being (Roundup®).						*	
assessed? Therefore, no precise assignment is possible.							
2 Do the tested con			-/-				
measured or predic							
concentrations (if a							
3 Have parameters						r quality parameters, and	
endpoints been con			the	water temp	erature during the expos	ures not reported	
(e.g. pH, temperature, light conditions)?							

Concluding weight of evidence/proposed	Unfortunately, the precise formulation identification is
action	not possible. Moreover, experimental details are missing
	(e.g. mortalities in controls). Supporting for fromulations
	containing POEA (LC50 same range as other
	publications with Glyphosate+POEA formulations).
Type of information (Critical, supporting, low	Supporting
weight)	£.50
Consideration/concluding score	UBA2 for assessment of surfactand effects (POEA)

Dinehart et al. (2010)

	glyphecotox 064	Dinehart, S.K.,	2010	Acute and chronic toxicity of	Environmental
		Smith, L.M.,		Roundup WeatherMAX® and	Rollution 158 (8):2610-
		McMurry, S.T.,		Ignite® 280 SL to larval Spea	2617.
		Smith, P.N.,		multiplicata and S. bombifrons	ODI
		Anderson, T.A.,		from the Southern High	10.1016/j.envpol.2010.
		Haukos, D.A.		from the Southern High & & Plains, USA	05.006.
		Haukos, D.A.		Reliability Signature	03.000.
	Purpose of the stud	v Acute and	chronic e	ffects of two herbicade formulation	is (Roundun
	Description of endp			ive ingredient glyphosate; and Igni	
	Description of endp			te) to larvae of New Mexico spade	
				vas desired to compare for differen	
				ands and grasslands. Here only set	
				ssed (not glufosinate).	up und results of tests with
		Body weigh	oht and su	vival rates of amphibian larvae	
	Test compound,	Roundun	Weather M	AX 48.8 % glyphosate in potassiu	ım salt form 51.2% 'other
	application procedu			The state of the s	sin sait form, 51.270 outer
	exposure period, pr	otocol Non-GLP	but AST	A Guideline for acute toxicity tests	with aquatic organisms.
	onposition, pr			s was used.	,,,,,
		80% of wa	ater was of	hanged after 4 days to maintain no	mal range ammonia
		concentrat	ions of	168h post-exposure period	
		Acute stud	lies Ji of		
		48h statio	exposure,	168h post-exposure period	
		Chronic st	udies		
		Static-rene	wal expos	sure for 30 days	
	Experimental appro			containing 15 L aged tap water, wa	ater quality was monitored
	Statistical design, to		•		
	environment	Test conce		WM 0.75, 1.5, 2.25, 3, 4.5, 6, 7.5,	
		Adpoles in Non-norm LC50 by I Chronic st Test conce		hree replicate containers of each tr	
		LC50 by I		tion of weights: Wilcoxon-two-sar	npie test; 48 and 216 nour
		Chronic st		ysis	
	Ye.	Test conce		2.0 and 2.8 mg acid equivalents of	f glyphosate
	3	T-Tests for		ifferences, GLM to analyse surviv	
				variable, treatment, landuse, speci	
	Test organisms	larval Sne		eata, New Mexico spadefoot toads	
	S KIN DIS			ons, Plains spadefoot toads, all at C	
Constitution of the consti	105,00			•	
	ie ot				
3.					
este	oli.				
Milh.	,				
*0.50					
END FILE					
Po Tiglis					
20,50	Glyphosate Renewal Group	AIR 5 – July 2020		Doc ID: 1	10054-MCA8_GRG_Rev 1_Jul_2020
H, Ugl					
0.					

_	Biological effects	Acute studies:	Most sensitive L	C_{50} 48h = 1.85 mg ae/L and LC	S ₅₀ 216h = 1.65 mg				
	Biological circus	ae/L for S. bom	<i>ibifrons</i> , no signi	ficant differences between the i	ndividual origins				
		Chronic studies	and nor between t s none of all spad	the species in survival rates and lefoots tested chronically surviv	l body weights yed the longer than				
		12 days of exp	osure, while cont	lefoots tested chronically surviv rol mortality was very low. The nations did not reveal clear ansv ified): dupWeatherMAX (WM) to lar	e statistical				
		From the publi	the factor-combined shed paper (modition)	nations did not reveal clear ansv ified):	wers.				
		Table 3: Acute	toxicity of Roun	dupWeatherMAX (WM) to lar	val Spea				
		munipheata an	a S. dombilitons	(New Mexico and Plains spade in cropland or grassland. Both	ioot, respectively)				
		including post-exposure mortality) LC values and associated 84% confidence							
		intervals were calculated via probit analysis. From the paper:							
		WM LC ₅₀ values (84% confidence intervals), mg glyphosate acid equivalents (ae)							
			n		216-h				
		S. bombifrons Grass	208	2.03 (1.90–2.18) 1.85 (1.62–206)	1.99 (1.85-2.13) ^{Bc} *				
		Crop	175	1.85 (1.62-206)	1.65 (1.42-1.87) ^{Ba*}				
		S. multiplicata Grass Crop	80 113	2.30 (2.06) 2.550 ³ c* 2.13(1.85–2.41) ^{8c} *	1.93 (1.68-2.20) ^{Bc} * 2.11 (1.85-2.41) ^{Bc} *				
		RMS: The use	of the generalise	d linear statistical method rema	ined unclear, so				
		was the use of data was analy	the replication in sed as a time seri	the whole study. It could not be essence time was not taken as	e understood if the an explanatory				
		factor or as cov	ariable in the ang	affysis.					
	Relevance of the study for I	Environmental R		appropriateness of study endpo	ints				
	1 Is an appropriate test spec	eies/ life-stage(s)	Biological Refe	Yes, larvae of toads should be	more sensitive				
	2 Is the magnitude of effect			towards aquatic exposure due	to gill breathing				
	3 Is the ecotoxicological ma		A 10 10 10 10 10 10 10 10 10 10 10 10 10	Yes, survival of juveniles.					
	for the assessment?		nvironmental R	alayanaa					
	1 Is the substance tested rep	oresentative	Yes, probably f	for all formulations containing a	adjuvants of				
	and relevant for the substan assessed?	ce being	relevant toxicit	y in similar amounts. Not to be glyphosate technical/glyphosate					
		-0.0.3	endpoints are g	iven in acid equivalents.	acid, aithough an				
	2 Do the tested concentration measured or predicted envir	ons relate to	The authors sta	te that predicted environmental e modelled up to 2.8 mg ae/L d					
	concentrations (if available)		overspray.	•					
	3 Have parameters influence endpoints been considered a			ust and maintain normal range ling water quality, nutrients and					
	(e.g. pH, temperature, light			systems were stable	1 volume of the				
	Concluding weight of evidence/proposed			s slightly differing acute mortal h can be assessed togheter with					
	action	formulations co	ontaining surfacta	ants of relevant toxicity like the	one tested in this				
	800			een the species, origin from croshown. The chronic data was in					
	evidence/proposed action Type of information	analysed, or it	was ambiguously		isarricientry				
	Type of information (Critical supporting,	Supporting/cr	itical						
	low weight)								
	Consideration/concludi	UBA1 for asse	essment of surfac	ctand effects (POEA)					
d E	La Contraction of the Contractio								
	Z.								
10,00 ho 10,									
ENJOY G	slyphosate Renewal Group AIR 5 – J	July 2020		Doc ID: 110054-M	CA8_GRG_Rev 1_Jul_202				
4, 60,									

Edginton et al. (2004)

glyphecotox_066	Edginton, A.N., Sheridan, P.M., Stephenson, G.R., Thompson, D.G., Boermans, H.J.	aı tv	omparative ed nd Vision (R) yo life stages o nphibian spec	herbicide on of four anuran	Environmental Toxicology and Chemistry 23/4, 813		
	11.0.	Re	liability		No. The		
Purpose of the study		on® and the c	oncurrent facto	or pH were tested	to determine their effects		
Description of	on early life-s			.•			
endpoints Test compound			ce of malforma		weight) polyethoxylated		
Test compound, application procedu							
exposure period,	re, tanow annie	surructum ore	na)	V	:0° 00'0		
protocol					S S		
Experimental appro		h Ninety-six-hour laboratory static renewal studies under a central composite					
Statistical design, to	est rotatable desi	gn. Generaliz	ed linear mode	els.			
environment Test enganisms	Dark mere of	d lowest 11.6	tagas (C	250600-00-1	sitana D. niniana D. C.		
Test organisms	americanus,			23101 Kana clam	itans, R. pipiens, Bufo		
Biological effects				R concentration in	all eight models. The		
	Larvae of B. a their correspondings more see From the pub Table 2. Compar to Vision® (Mons on these lethal control the larvae and, in	umericanus au onding embryo ensitive. lished paper: ative sensitivity anto Canada, Wi oncentration (CC) general, Visione	os, whereas A	Active 1.5 to 3.8 to 3.	imes more sensitive than tens larvae were 6.8 to 8.9 er 25) of four anuran species (levels of 6.0 and 7.5. Based values greater than those of The asterisks denote a point g acid equivalents (a.e.)/L		
		illotto ior	}	96-h LC10 (mg a.e./L) (95% confidence interval)	96-h LC50 (mg a.e./L) (95% confidence interval)		
	Species Xenopus laevil Bufo anericanus Rana clamitans Rana pipiens	Embryo Larvae Embryo Larvae	6.0 7.5 6.0 7.5 6.0 7.5 7.5	6.2 (4.7, 7.4) 4.0 (3.1, 4.7) 1.99 (1.7, 2.0) 0.85 (0.55, 0.87)* 2.2 (0, 3.8) 4.3 (0, 7.5)	15.6 (12.7, 23.0) 7.9 (7.2, 8.7) 2.1 (2.0, 2.7) 0.88 (0.84, 0.92)* 4.8 (4.0, 5.7) 6.4 (5.8, 7.0)		
	5 9 9 S	Larvae	6.0 7.5	2.1 (1.8, 3.9) 1.2 (1.0, 1.4)*	2.9 (2.3, 10.5) 1.7 (1.5, 1.9)		
	Rana Hamitans	Embryo	6.0 7.5	2.6 (0, 6.0) 2.8 (2.2, 3.8)	5.3 (3.9, 9.2) 4.1 (3.4, 6.4)		
Relevance of the sta	Rana pipiens **Embryo = Gos	Larvae	6.0 7.5	2.1 (1.7, 2.5) 0.89 (0.70, 1.1)*	3.5 (3.0, 4.6) 1.4 (1.2, 1.7)*		
. 6	Rana pipiens	Embryo	6.0	13.1 (12.8-13.3)	15.1 (14.0-17.5)		
Zidis,	8,0	Larvae	7.5 6.0	6.7 (6.3–6.9) 1.1 (1.0–1.3)*	7.5 (7.0–9.0) 1.8 (1.5–2.2)		
162			7.5	0.83 (0.71–0.92)*	1.1 (0.96–1.14)*		
80,3	^a Embryo = Gos	ner 8 to Gosner 2	5; larvae = Gosn	er 25.	**		
Relevance of the str	udy for Environment	al Risk Asses	sment, appron	riateness of study	endpoints		
Se To			al Relevance		1		
1 Is an appropriate	test species/ life-stag			yes			
2 Is the magnitude	of effects of biologic	al significanc		yes			
3 Is the ecotoxicolo	gical manifestation	evel appropri	ate for the	yes			
assessment?		ъ.	/ 1B 1				
5 C			ental Relevan		- 1 Vision®		
Is the substance to substance being ass		and relevant f	or the		oduct Vision® contains osate alone was not		
Is the substance to substance being ass	AIR 5 – July 2020				0054-MCA8_GRG_Rev 1_Jul_20/		

2 Do the tested concentrations relate to measured or p	-/-	
environmental concentrations (if available)?		
3 Have parameters influencing the endpoints been con	nsidered	yes
adequately (e.g. pH, temperature, light conditions)?		
Concluding weight of evidence/proposed action	Concluding weight of evidence/proposed action Results Vision	
	glyphosate for	mulations with POEA
Type of information (Critical, supporting, low	Critical/Supp	orting Ex
weight)		6.16
Consideration/concluding score	UBA1 for asso	essment of surfactand effects (ROEA)
_		

Jayawardena et al. (2011)

	glyphecotox_074	Jayawardena Navaratne AM Amerasinghe Rajakaruna F	 РН,	Acute and chronic toxicity of four commonly used agricultural pesticides on the Asian common toad, Bufo melanostictus Schneider. Reliability hronic effects of the formulation Roundup ® containing the active			
				Reliability			
	Purpose of the stud Description of endp	ooints ingred were t emerg	Acute and chronic effects of the formulation Roundup ® containing the active ingredient glyphosate on juvenile Asian common toads (<i>Bufo melanostictus</i>) were tested. Recorded were survival (LC _x), snout-vent length, time to forelimb emergence (TE ₅₀), body weight of the tadpoles. A tropical, Sri-Lankan scenario was aimed to be represented by the study.				
	Test compound, application procedu exposure period, pr	rotocol POEA Expos chroni applie	ure ac c expe d (ppn c stud	Roundup® formalision with a.i. Glyphosate and possibly containing oute study 9.50, \$1.25, 15.00, 18.75 and 25.0 ppm. Exposure in eriment: series of 0.25, 0.50, 0.75 and 1.00 ppm of glyphosate were in equal song a.i./L at an assumed density of the solution of 1). In the lay the medium was renewed every week, exposure semi-static.			
	Experimental appro Statistical design, to environment	est not us differe	ass tar ed in t nces.	The Probit analysis to find the LCx after an F-test on variance Rearson correlation between growth parameters and treatments. 3 or comparison of body weights, snout-vent lengths and TE50.			
	Test organisms	h after	E-days post-hatch tadpoles per tank; Acute measurements (mortality) at 48 exposure. Chronic measurements at 10 days post-hatch, 30 days post-hatch metamorphic tadpoles.				
	Biological effects	Most metan body	sensiti norphs weight	8h: 45.94 mg/L. Not clear if product or active substance are meant. Ive survival endpoint (chronic study): 1 ppm glyphosate treatment to s. Significant overall impact of glyphosate concentrations on mean t, SVL and TE ₅₀ (chronic study), ANOVA, no post-hoc tests applied 1 in the text. Other malformations not quantitatively analyzed.			
	Relevance of the st	udy for Environ	nmental Risk Assessment, appropriateness of study endpoints				
	6 6		Biological Relevance				
	1 Is an appropriate stage(s) studied?	test species/ life		res			
	2 Is the magnitude biological significa		A	tatistics: It remained widely unclear if post-hoc tests after the NOVA on an overall effect of the test concentrations were applied as adicated by the asterisks in figure 1 vs. no indication in table 3.			
, i	3 Is the ecotoxicolo manifestation level the assessment?	ogical appropriate for		variety of endpoints was assessed, which is appropriate for refined onsiderations of the most sensitive and relevant endpoint			
Constitution of the consti	ilyphosate Renewal Group	o AIR 5 – July 2020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_20			

	Environmen	tal Relevance		
1 Is the substance tested representative and relevant for the		surfactant is know to interfere with the toxicity of the e and may contribute majorly to the overall effect of a		
substance being assessed?		afortunately, the glyphosate formulation used is not		
substance being assessed.	identifiable			
2 Do the tested concentrations relate to measured or predicted environmental concentrations (if available)?	-/-			
3 Have parameters influencing the	There was no measurement of the environmental conditions in the test			
endpoints been considered		lar during the chronic study that lasted at least for		
adequately (e.g. pH, temperature,		ntil metamorphosis (figure 1, TE ₅₀). Crowding stress		
light conditions)?		g experimental duration and toxic metabolism products		
		cause a treatment-related bias in the data. However,		
	mortality and m	alformation rates of the controls were negligible low		
	and statistically	significant different from the treatments.		
Concluding weight of evidence/prop	oosed action	Many details of the experimental procedures, the use		
		of statistics and the identity of the tested substances		
		are lacking. The study is therefore considered not		
		applicable for a specific use in ERA.		
Type of information (Critical, supple weight)	orting, low	Low weight S & C		
Consideration/concluding score		UBA3 (E) S E		

Jones, et al. (2010)

Γ		T 5.17	2010						
	glyphecotox_075	Jones, D.K.,	2010	Roundap® and amphibians:	Environmental				
		Hammond, J.I.,	ó	The importance of	Toxicology and				
		Relyea, R.A.		concentration, application	Chemistry, Vol. 29, No. 9,				
			3,00	time, and stratification	2016–2025, DOI:				
			HO THE STATE OF TH	E .	10.1002/etc.240				
			C. C. C. C.	Reliability					
	Purpose of the study			amount, timing, and frequency us					
	Description of endp	oints communit	ies contai	ning larval amphibians (Rana syl	vatica and Bufo americanus)				
			and using a commercial formulation of the herbicide glyphosate (Roundup Original MAX®) were assessed.						
		Survival d							
	Test compound,		Original N	MAX®, authors state Glyphosate	isopropylamine salt				
	application procedu	re, 🔊 🌂 glyphosa	te-Ipa), Sı	urfactant reported not to be POEA	(pers. comm.Monsanto).				
	avnagura pariod pr	otocol© Burity: 48		e ingredient.					
	3	S & RMS: surf	factant no	t known/ Formulation not correct	ly reported? Roundup				
	exposure period, pr	🕉 🏂 Original N		a potassium salt formulation acco	ording to MSDS Monsanto				
	Ž	RMS: surr Original N Company							
	Experimental approach Mesocosm; Duration of study: 18 days								
	Statistical design, te	est 750-L catt		ng tanks filled with 542 L of well	water. Addition of the 2 test				
	environment &	species wa							
	Ser. 19	Total of 1		nts including 9 treatments with 3					
	2020	single app		on day 0 , on day 7 and on day 14					
		with 2 cor		ns of multiple applications on day					
		treatment.		centrations: 1 x 1 mg a.e./L, 1 x 2	mg a.e./L, 1 x 3 mg a.e./L, 3				
	io ot	x 0.33 mg		d 3 x 1 mg a.e./L.					
,		4 replicate	es /20 tadp	poles of each of species in every n	nesocosm. No additional				
35	(o)	feeding							
(4) S	Test organisms	Rana sylv		nidae; wood frog) Gosner stage 26					
21/2/20		Bufo amei	ricanus (B	Sufonidae; American toad) Gosner	r stage 25				
S. S. S.									
William Collins									
8 18									
2 01h	lyphosate Renewal Group	AIR 5 – July 2020		Doc IT	D: 110054-MCA8 GRG Rev 1 Jul 202				
5	Typhosaic Kenewai Group	71110 J — July 2020		Doc II.	7. 110054 MCA6_GRG_RCV 1_Jul_202				
r									

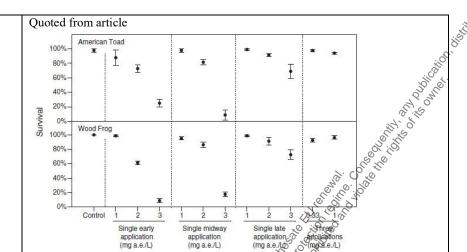


Fig. 1. Survival of American toad and wood frog radpoles when exposed to varying Roundup Original MAX concentrations (mga.e. of glyphposate/L) at different times (day 0, 7, or 14). Data points represent mean survival (± standard error) for all four replicates. Survival was recorded on day 18 following experimental takedown.

Exposures of up to 3 mg acid equivalent (a.e.)/L caused substantial amphibian death. However, the amount of death was considerably higher when the herbicide was applied earlier in the experiment than later in the experiment. Single, large applications (at different times) had larger effects on tadpole mortality and growth than multiple, small applications (of the same total amount).

Effects on mass were also dependent from application time and gyphosate concentration.

RMS: From the results

RMS: From the results of a a.e./L is postulated

- lowest LC50 is 2, 10 mg a.e./L (2.00, 2.19) for Bufo americanus From the published paper (modified):

Table 3. Results of probit analyses used to estimate the LC10, LC50 values (mg a.e. /L)lethal concentrations that cause 10, 50% mortality) for Roundup Original Max® in outdoor mesocosms at three application times. Means are followed by 84% confidence intervals; non-overlapping confidence intervals are significantly different (p<0.05).

Species &	Application	LC10	LC50
Wood frog	Early (day 0)	1.45 (1.29, 1.57)	2.10 (2.00, 2.19)
1,15	Midway (day 7)	1.56 (1.07, 1.84)	2.44 (2.15, 2.79)
4	Late (day 14)	2.02 (1.47, 2.34)	4.27 (3.47, 7.42)
American toad	Early (day 0)	0.99 (0.42, 1.35)	2.31 (1.86, 3.06)
	Midway (day 7)	1.67 (0.72, 2.01)	2.30 (1.84, 2.89)
	Late (day 14)	1.98 (1.49, 2.28)	3.93 (3.33, 5.83)

Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints

Biological Relevance					
1 Is an appropriate test species/ life-stage(s) studied?	yes				
2 Is the magnitude of effects of biological significance?	yes				
3 Is the ecotoxicological manifestation level appropriate	yes				
for the assessment?					

Environmental Relevance

1 Is the substance tested representative and relevant for the substance being assessed?

9. The

Not clear. No POEA are included in the formulation. Nevertheless, results point at a significant toxicity of the surfactant. The surfactant might belong to the so-called group of POEA-similar surfactant classes.

Roundup Original MAX® contains a potassium salt of glyphosate and not the IPA salt as stated in the paper?

Biological effects

2 Do the tested concentrations relate to measured or predicted environmental concentrations (if available)?	-/-	2
3 Have parameters influencing the endpoints been considered adequately (e.g. pH, temperature, light conditions)?	yes	
Concluding weight of evidence/proposed action		Formulation ingredient undisclosed. No separate test of glyphosate as acid or salt
Type of information (Critical, supporting, I weight)	ow	Supporting
Consideration/concluding score		UBA2 for assessment of surfactand effects (POEA)

Jones, et al. (2011)

	glyphecotox_076	Jones, D Hammo Relyea,	nd, J.I.,	2011	the herbici	e stress can make de Roundup@in arval amphibians	ore 1	Environmental Foxicology and Chemistry, 30/2, 446- 454 DOI: 10.1002/etc.384
	Purpose of the study Description of endpoints		pased herbic a factorial co equivalent (a	ide. Outo ombination.e.)/L of densitie	loor mesocos on of three gly	of competition mix ms containing thr phosate concentr ial formulation R	ght inte	eract with a glyphosate- ole species exposed to (0, 1, 2, or 3mg acid o Original MAX1) and
	Test compound, application procedu exposure period, pr	ore, (protocol F	Roundup Original MAX®, authors state Glyphosate isopropylame, (glyphosate-Ipa), Surfactant reported not to be POEA (pers. commerce,					
	Experimental approximation of the statistical design, to environment	test 12 treatments including 3 different concentrations of single glyphote applications and 1 untreated control crossed with 3 tadpole densitie medium, or high). Test concentrations: 1, 2 and 3 mg a.e./L glyphosate (a.e. = acid eq 2 replicates per treatment					densities (low, acid equivalent).	
	Test organisms &	K K H	Rana catesbe Rana clamita Hyla versico	<i>eiana</i> (bu ans (gree lor (gray	ıllfrog) n frog) tree frog)	iation: early stage		
SOR THE PORT OF TH	Glyphosate Renewal Group	o AIR 5 – Jul	y 2020			Doc I	D: 1100:	54-MCA8_GRG_Rev 1_Jul_2020
18								

	Biological effects The LC50	values for the	he tested species	reflected a competition eff	fect; LC50
	values we	re similar at	low and mediun	n densities, but both were d	lifferent from the
	LC50 valu	ues at high ta	dpole density		G.
	Lowest LO	C50 reported	for Bullfrog at 1	high densities = 1.61 mg a .	e/L(152 170)
	From the	paper (modif	fied):	ingir densities 1.01 ing di	S./ L (1.32, 1.70)
	Tohlo 2. B	Paper (moun	nicaj.	obit analyses used to estima IAX1 (Monsanto) that caus	oto the lether
	Table 3. K	cesuits of spe	cies-specific pro	Soft analyses used to estima	the the lethan 3
				ites are based on outdoor m	
				rations of Roundup (0, 1, 2	
	equivalent	t/L) with thre	ee levels of tadpo	ole competition. Means are	followed by
	84% confi	idence interv	als; nonoverlapp	oing confidence intervals a	re significant.
				f mortality in the controls.	5 10
	***	3		0.10	ilole
	Species		Competition	LC10 (0, 0), 2	LC50
	Gray tree frog		Low	1.41 (0.81, 1.76) 1.85 (0.00, 2.20) 1.00 (0.53, 4.20) 1.26 (0.42, 1.60) 1.84 (1.00, 2.03) 1.58 (2.23, 2.78)	2.04 (1.70, 2.35)
			Medium	1.85 (0.00, 2.29)	2.29 (1.56, 10.8)
	Green frog		High Low	1.26 (0.42-21.68)	1.71 (1.36, 2.07) 2.58 (2.07, 3.86)
			Medium	1.84 (1,00), 29(3)	2.35 (1.98, 2.84)
	Bullfrog		High Low	1.58(4)·25(4)·78) \ 1.38, (0.69, 1.02)	2.18 (1.99, 2.37) 2.18 (1.77, 2.63)
	Bunnog		Medium	RS3 (0.59, 10,2)	2.13 (1.77, 2.03)
			High	0.18(01.06) 1.28)	1.61 (1.52, 1.70)
	D. I. Collection Francisco	. 1D' 1 4		8 7 7 6 V	
	Relevance of the study for Environmen				ts
			gical Relevance		
	1 Is an appropriate test species/ life-sta	ige(s) studied	l? yes	10 °C'.	
	2 Is the magnitude of effects of biologic			III	
	3 Is the ecotoxicological manifestation)	
	for the assessment?	ricver approj	oriate ves		
	for the assessment:	т.	O, × , 'V,		
			mental Relevan		
	1 Is the substance tested representative			A are included in the formu	
	relevant for the substance being assess			ts point at a significant toxi	
		sur	factant. The surf	actant might belong to the	so-called group
				rfactant classes. Roundup	
				n salt of glyphosate and no	
			ted in the paper?		
	2 Do the tested concentrations relate to	7. 10. 10	ed in the paper.		
	2 Do the tested concentrations relate to	20 X - 20 -1-			
	measured or predicted environmental concentrations (if available)?				
	concentrations (if available)?	81, 71			
	3 Have parameters influencing the	yes yes			
	endpoints been considered adequately	e.g.			
	pH, temperature, light conditions)?				
	Concluding weight of evidence or on	osed	Formulation is	ngredient undisclosed. No	separate test of
	Concluding weight of evidence propaction	0504	glyphosate as		separate test of
	Type of information Critical, suppo	erting low	Supporting	dera of sair	
	weight)	or tilig, low	Supporting		
			IID 4 2 C		P. (DOEA)
	Consideration/constuding score		UBA2 for ass	essment of surfactand eff	ects (POEA)
	7.0				
	Glyphosate Renewal Group AIR 5 – July 2020				
	20 HO. 10.				
	10 th				
	: E				
	\$ 3				
J	5 E				
, s ³	S.				
XIIS -	\ \				
10 8					
X ¹ O ₁ O					
The state of the s					
20° 19112					
7, 0	Glyphosate Renewal Group AIR 5 – July 2020			Doc ID: 110054-MCA	A8 GRG Rev 1 Jul 202
10,10	1 111 1111/ 1120				
11 Th					

Lajmanovich et al. (2003)

glyphecotox_078	Lajmanovich, R.C., Sandoval, M.T., Peltzer, P.M.		2003	Induction of mortality and malformation in Scinax nasicus tadpoles exposed to glyphosate formulations	Bull. Environ. Contam. Toxicol. 70, 612–618 DOI: 10.1007/s00128 003-0029-x			
Reliability 8 8								
Purpose of the study		Tadpoles of Scinax nascius were exposed under laboratory conditions to						
Description of end	Description of endpoints		GLYFOS®, a formulation containing glyphosate at nominal test concentrations					
		of 3.07, 3.84, 4.8, 6 and 7.5 mg formulation/L. A negative control (artificial pond						
		water) was prepared in parallel. Ten tadpoles were exposed in three replicates in						
		the control and at each treatment level.						
		All tadpoles were observed at daily intervals for the 96 hour study duration with						
		mortality recorded. At the end of exposure, surviving tadpoles were fixed in						
		formalin solution and examined for morphological changes						
Test compound,		Glyfos® 48% glyohosate						
application procedu		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
exposure period, pr								
Experimental appro		See above Scinax nascius tadpoles						
Statistical design, t	est							
	environment		ું ^{જુ} જે જે					
Test organisms		Scinax nascius tadpoles						
Biological effects	Biological effects		Larval malformations were minimal at 3.07 mg/L when tadpoles were exposed					
		for one day, whereas an increased malformation was observed at levels of 7.5 mg						
			Glyfos®/L.					
			The 96 hour LC50 value for tadpoles of <i>Scinax nascius</i> exposed to Glyfos® was					
		2.64 mg formulation/L (nominal) with 95% confidence interval of 2.19 to 2.84						
D 1 C1	mg/L							
Relevance of the st	udy for I	Environmei		Assessment, appropriateness of stud	ay endpoints			
				logical Relevance				
1 Is an appropriate	test spec	eies/ life-sta	ge(s)	gyes				
studied?	C CC .	C1 : 1 :	Die Wie					
2 Is the magnitude of effects of		s of biologi	calo	yes				
significance?			0, 12, 0,					
3 Is the ecotoxicolo			levelo	yes				
appropriate for the assessment?								
17.1 1	. 1	0,79,		onmental Relevance	1 1 1 1 POEA			
1 Is the substance t				Glyphos® contains with very hig	gn probabiliy POEA			
relevant for the substance being assess				,				
2 Do the tested concentrations relate)	-/-				
measured or predicted environmental concentrations (if available)?								
3 Have parameters influencing the e been considered adequately (e.g. pH			dpoints yes					
temperature, light conditions)?								
Concluding weight of			The study confirms the relatively high toxicity of alymbersts					
evidence/proposed action			The study confirms the relatively high toxicity of glyphosate preparations possibly mediated by POEA surfactants.					
Type of information (Critical,			Supporting/critical					
	supporting, low weight)			Supporting/critical				
Consideration/concluding score			UBA1 for assessment of surfactand effects (POEA)					
Consider ation/concluding score		score	JDA1 10f	assessment of suffactand effects	(I OLA)			

The second of th

Lajmanovich et al. (2011)

glyphecotox 080	Lajmanovich,	2011	Toxici	ty of Four Herbicide	Arch Environ Contam			
8-7 F	R.C., Attademo			ulations with Glyphosate	Toxicol, 60, 681–689			
	A.M., Peltzer,			inella arenarum	10.1007/s00244-010			
	P.M., Junges,			a: Bufonidae) Tadpoles:	9578-2			
	C.M., Cabagna,			rases and Glutathione	£ . 5			
	M.C.			sferase Inhibitors	10.1007/s00244-016 5 9578-2			
Reliability								
Purpose of the	tadpoles Rhinella arenarum were exposed to different concentrations of Roundup Ultra-							
study	Max (ULT), Infosato (INF), Glifoglex, and C-K YUYOS FAV.							
Description of	Tadpoles were exposed at the following concentrations (acid equivalent [as]): 0 (control),							
endpoints	1.85, 3.75, 7.5, 15, 30, 60, 120, and 240 mg ae/L for 6-48 h (short-term). Mortality was							
	recorded.							
	Acetylcholinesterase (AChE), butyrylcholinesterase (BChE), carboxylesterase (CbE), and							
		glutathione S-transferase (GST) activities were measured among tadpoles sampled from						
T		those treatments that displayed survival rates >85%.						
Test compound,	Roundup Ultram	Roundup Ultramax®: commercial grade, 74.7% a.i. No POEA						
application	undisclosed	Infosato, Glifoglex, C-K Yuyos FAV: commercial grade, 48% a.i., each, co-formulants						
procedure, exposure period,								
protocol	48 h							
Experimental	Larvae were exposed in glass tanks (12.5 cm diameter × 13.5 cm height) filled with 1 L of							
approach	DTW (deionised tap water?). Whole tadpoles were homogenized in 0.1% triton X-100, 25							
Statistical design,	mM Tris-HCL (pH 8.0)							
test environment	Replicates per concentration: 3; Organisms per replicate: 7							
Test organisms	Rhinella arenarum							
Biological effects	Forty-eight-hour LC ₅₀ for R . are narran tadpoles in the static tests ranged from ULT = 2.42							
	to FAV = 77.52 mg ae/L. For all CF-GLY, the LC50 values stabilized at 24 h of exposure.							
				ased by high mortalities				
Relevance of the str	udy for Environme	ntal Risk A	ssessme	nt, appropriateness of study	endpoints			
				Relevance				
1 Is an appropriate	test species/ life-st	age(s) studi	Acute endpoint: yes					
2 Is the magnitude				Acute endpoint: yes				
3 Is the ecotoxicological manifestation level appropriate			opriate	Acute endpoint: yes				
for the assessment?								
	0, 9			al Relevance	1 222			
1 Is the substance tested representative and relevant for				Roundup UltraMAX® is stated not to contain POEA.				
the substance being assessed.				Test results indicate the formulation contains				
1 Is the substance tested representative and relevant for the substance being assessed?				surfactants with toxicity similar to POEA. Other formulation employed with unknown co-				
	10 0 15 15 15 15 15 15 15 15 15 15 15 15 15			formulants. Far lower toxicities than the product				
,			above.					
2 Do the tested con	centrations relate t	n measured	or	-/-				
predicted environm				,				
3 Have parameters				Not conclusively				
considered adequate								
conditions)?								
Concluding weight of Acute endpoints r			s reliable	, reporting of experimental	details not exaustive,			
evidence/proposed	action form	formulations partly unknown						
Type of information		Supporting						
(Critical, supporti								
weight)	aluding IID	2 for	70mc=4 -	foundational officets (DOE	A)			
Consideration/concluding UBA2 for assessment of surfactand effects (POEA)					A)			
score								

Relyea (2005)

glyphecotox 083	Relyea	2005	The impact of insecticides and	Ecology Letters 9				
glyphecotox_005	R.A.	2003	herbicides on the biodiversity and	Ecology Letters 9 (10):1157-1171. DOI 10.1111/j.1461- 0248.2006.00966.x.				
	14,714		productivity of aquatic	10.1111/j.1461-				
			communities	0248.2006.00966.x.				
			Reliability	6.15				
Purpose of the study	Effects of glyphosate as Roundup ® on total and functional group based species							
Description of	richness of zooplankton, periphyton, invertebrates and amphibians; biomass of							
endpoints	functional groups; abundance of individual species.							
Test compound,	Amongst three other pesticides, the active ingredient glyphosate was tested using a							
application	commercial Roundup® formulation containing polyethoxylated tallowarnines as							
procedure, exposure	surfactants. A single concentration of 3.8 mg a.i./L was used, corresponding to the							
period, protocol	maximum recommended application rate of 6.4 mL Roundup® (25.2 % a.i.)/m².							
Experimental	Exposure: 13 d approx Non-GLP An artificial assemblage of several specimens of limnic vertebrate and invertebrate							
approach								
Statistical design,	organisms (Spotted salamander, Diving beetle, Dragonty, Damselfly, Backswimmer, Water bug, Wood frog, Leopard frog, American toad, Gras tree frog, Spring peeper,							
test environment		Snail, Cladoceran, Copepod) was added to experimental bonds of 1000L volume.						
			ments were 6-fold replicated and sample					
	experiment.							
Test organisms	See above		[o o					
Biological effects	Effects at 3	3.8 mg g	lyphosate/L. Total species richness decre	eased by 22 % compared to				
	control (statistically different at 5 % error probability). The test item caused a decrease							
	in large herbivore richness. A significant decrease of the abundance of individual							
	species was seen for the copepod Eurotemora affinis The amphibian species tested							
	were affected by the Roundup treatment. Effects of glyphosate as Roundup ® on total							
	and functional group based species richness of zooplankton, periphyton, invertebrates and amphibians; biomass of functional groups; abundance of individual species.							
Relevance of the study			Risk Assessment, appropriateness of stu					
Relevance of the study	y TOI LIIVIIOI	micitai	Biological Relevance	dy endpoints				
1 Is an appropriate	Although t	he autho	or stated that the species compete with ea	ch other at the respective				
test species/ life-	trophic level, the communities were not tested at an equilibrium state. The test item							
stage(s) studied?	was applied immediately after completion of the experimental setup by introducing the							
	vertebrate specimens to the ponds. It should be seen as a 'combined single species							
	approach' and not as a community level study and could serve as an estimate of acute							
	to subchronic toxicity under realistic exposure conditions.							
2 Is the magnitude	There is no indication of the numbers that form the basis of the statistical analysis, i.e.							
of effects of	no recovery rates of the previously introduced individuals were given by the author. It							
biological	remains unclear why it was necessary to conduct multivariate pre-testing and data							
significance? 3 Is the	conversions.							
ecotoxicological	Generally, the abundance of persisting or newly hatched individuals is an appropriate Jevel of investigation for the semi-field ecosystem level.							
manifestation level								
appropriate for the								
assessment?	,							
20,00			Environmental Relevance					
1 Is the substance tested The active compound Glyphosate was tested in a formulation possibly								
representative and rele	evant for	containing POEA, representing a common practice of enhancing the						
the substance being as	sessed?	surfactant characteristics of a formulation.						
the substance being as		Does not resemble the lead formulation for EU assessment of reneval of						
2000	44.	approval for glyphosate as active substance						
2 Do the tested concern		The tested concentration was deduced by the assumption of direct overspray at the recommended field rate, and is thus considered a realistic						
relate to measured or p		and possible worst-case.						
environmental concentrations (if and possible worst-case.								
avanaoic):								

3 Have parameters influencing the endpoints been considered adequately (e.g. pH, temperature, light conditions)?	Obviously, there the author did not measure any environmental parameters, nor considered them fort the interpretation of results. Indirect effects within the newly established community were discussed.				
Concluding weight of evidence/proposed action		The study confirms the relatively high toxicity of glyphosate preparations possibly mediated by POEA surfactants. Not relevant for the risk assessment of glyphosate due to weakness in methodological accuracy.			
Type of information (Critical, supporting, low weight)		supporting			
Consideration/concluding score		UBA2			

Relyea (2005)

glyphecotox_085	Relyea R.A.	2005	The lethal impact of roundup on aquatic and	Ecological Applications, 15(4), 2005, pp. 1118–1124
			terrestrial amphibians Reliability	DOE 10:1890/04-1291
Purpose of the study Description of endpoints	mesocosi Terrestria Roundup Aquatic:	ms that cal: three in labor survival	nities of three species of North ontained different types of soi	American tadpoles in outdoor pond land Roundup as a direct overspray. morphic) anurans to a direct overspray of
Test compound, application procedure, exposure period, protocol	substance Adjuvant Aquatic: water. Ea mesocosi (control) experime Terrestria with dam	e(s): Glyj Surfacta Experiment tank m and ad two day ents. al: Posta	phosate isopropylamine salt (gant: suspected POFA. ental units were \$1200-L cattle was treated with no soil, sand dition of less species, ponds w later. Survival was recorded 2	ted lawn and garden formulation. Active alyphosate-IPA), 25.2% glyphosate. watering tanks filled with 1000 L of well or loamy soil. After inoculation of ere applied with test item or water 1 days later at termination of ced in 10-L plastic tubs that were lined es were treated with glyphosate or water
18	Aquatic: loam soil mg as./L Notifier: GlyIPA/I a.e./L RMS: on	total of () crossed (corresp Correcti L and 4.1	treatments including 3 soil treatments including 3 soil treatments in the last treatment of the last treatment	reatments (i.e. no soil, 19 L sand, 19 L rol treatment. Test concentrations: 3.8 replicates. concentrations become 1.37 mg yphosate a.e./L and 3.09 mg glyphosate recalculation to 3.09 mg glyphosate
Test organisms	1	responds ns per rep 20 tadpo al: 7 juve experime	plicate: eles of each of the 3 species in enile frogs/toads per experiments: Rana pipiens (leopard fro	4 to 5 times higher than applied in every mesocosm.
Test organisms	Terrestria	al experi	ree frogs). ments: Rana sylvatica (wood f ersicolor (gray tree frogs)	rog), Bufo woodhousii fowleri (Fowler's
Glyphosate Renewal Group	AIR 5 – July	2020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202

	Aquatic: After three weeks, Roundup at tested concentrations resulted in a mortality of				
	96–100% of larval amphibians (regardless of soil presence).				
			Roundup at tested concentrations	resulted in a mortality of	
	68–86% of juvenile amphibians				
Relevance of the study	for Environmental	Risk A	Assessment, appropriateness of stu	ady endpoints	
			logical Relevance	18 24	
1 Is an appropriate test		,		yes of S	
2 Is the magnitude of ef				yes ATT O	
3 Is the ecotoxicological	al manifestation lev	el appi	ropriate for the assessment?	yes J. Si	
]	Enviro	onmental Relevance		
1 Is the substance tested	d representative and	d	The active compound Glyphosa	te was tested in a	
relevant for the substan	ce being assessed?		formulation possibly containing POEA		
			Does not resemble the lead formulation for EU assessment		
			of reneval of approval for glyphosate as active substance		
2 Do the tested concent			Terrestrial: 1.6 mL a.s./m2. Rate corresponds to 16,000 mL		
measured or predicted e	environmental		a.s./ha. Approx. 4 to 5 times bigher than applied in Europe.		
concentrations (if availa	able)?		Aquatic: overspray scenario, not appropriate for evaluation		
			of intended uses in Europe		
3 Have parameters influ	uencing the endpoir	nts	yes "Solo"		
been considered adequa	itely (e.g. pH,		in the second se		
temperature, light condi			So So So Si		
Concluding weight of		The stu	dy confirms the relatively high to	oxicity of glyphosate	
evidence/proposed act	tion p	preparations possibly mediated by POEA surfactants.			
Type of information (Supporting Salarian Supporting Su			
supporting, low weigh		2 4 8			
Consideration/conclud	ding score	UBA2	for assessment of surfactand ef	fects (POEA)	

Relyea (2012)

	supporting, low we	eight)		2 2 8	
	Consideration/con	cluding so	core	UBA2 for assessment of surfactand effe	ects (POEA)
				\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
	Relyea (2012)			Now officers of Poundup on	
	glyphecotox_088	Relyea	2012	TYCW ELICES OF Koundup on	Ecological Applications
		R.A.		amphibians: Predators reduce	22/2, 634-647
			. 0	herbicide mortality; herbicides induce	DOI: 10.1890/11-0189.1
			70,00	Antipredator morphology. Reliability	
	Purpose of the study	v C	Jutabar m	esocosms with simple wetland communities	containing leaf litter
	Description of endp	oints a		lankton, and three species of tadpoles (woo	
	2 description of emap			sylvaticus, leopard frogs R. pipiens or L. pij	
		\mathcal{S} \mathcal{B}		canus or Anaxyrus americanus.	
	Test compound, application procedu exposure period, pr	Ø o™R		Original MAX® Glyphosate 540 mg a.e./L;	Adjuvant/Surfactant:
	application procedu	re Ville Le	Indisclose		
	exposure period, pr	etocol D		f study: 21 days	
	Experimental appro			ombination of herbicide concentrations (0, 1	
	Statistical design, to	ssi e		[a.e.]/L of Roundup Original MAX) crosse (no predators, adult newts <i>Notophthalmus v</i>	
	environment environment	d d		(no predators, addit newts <i>Notophinalmus V</i> Anax junius).	indescens) of faivar
	Test organisms	R		tica (wood frog), Rana pipiens (northern led	opard frog). Bufo
	Test organisms			s (American toad), early stage appr. Gosner	
A STORY OF S	To so				
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Glyphosate Renewal Group	AIR 5 – July	y 2020	Doc ID:	110054-MCA8_GRG_Rev 1_Jul_202

Lajmanovich et al. (2010)

	1				T
glyphecotox_448	Lajmanovich,	2010	Activity levels of		Ecotoxicology and Environmental Safety 73
	R.C., Peltzer,		esterases in the t		Environmental Safety 73
	P.M., Junges,		of 11 species of f	0	(7):1517-1524. DOI: 10.1016/j.ecoenv.2010.073047.
	C.M., Attademo,		the middle Para		10.1016/j.ecoenv.2010.07:047.
	A.M., Sanchez,		floodplain: Impl		75
	L.C., Bassó, A.		for ecological ris		
			assessment of so	ybean	2.5
			crops		80
			Reliability	1	10.1016/j.ecoenv.2010.073047.
Purpose of the stud					nation of acetyichonnesterase
Description of endp	points				butyrylcholinesterase (BChE),
				and carbo	oxylesterases (CbEs) activities in
					n species in the Parana River
				floodplai	n Brasil
Test compound, ap	plication procedure, e	xposure	period, protocol	-/-	9,00
Experimental appro	ach			-/-	%
Statistical design, to	est environment			-/-	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Test organisms				-12 10 10 1	8
Biological effects				27-85 K	
	udy for Environmenta	l Risk A	ssessment, approb	riateness o	of study endpoints
			ogical Relevance	0.1	7 1
1 Is an appropriate	test species/ life-stage			<u>(5</u>)-	
2 Is the magnitude	of effects of biologica	l signific	cance, e.g. is a	-/-	
verv small statistica	ally significant effect	able to ca	ause a		
(population) relevan			S ST XIII		
	gical manifestation le	vel appr	opriate for the	-/-	
	ne induction vs. apica				
or reproduction?		r	11/15/10 B		
1		Enviro	mmental Relevan	ce	
1 Is the substance to	ested representative an			-/-	
substance being ass		(8) (8) (8)	Į.		
	centrations relate to h	reasured	or predicted	-/-	
environmental cond	centrations (if available	(e)20°	F		
	3 Have parameters influencing the endpoints been considered				
adequately (e.g. pH, temperature light conditions)?					
Concluding weight of evidence proposed action The study is			not releva	ant for ERA of glyphosate	
	10 10 0 1				was not applied nor
	is to be a second of the secon				Most likely, the notifier
	OL M. F.				a high relevance to the study.
Type of information	on Critical, support	ing, low		<u> </u>	V
weight)	80,9,60,	<i>G,</i>			
Consideration/con	cluding score		UBA3		
1	900		_		

McDaniel et al. (2008)

glyphecotox_496 McPaniel, T.V., Striger, J., Striger, J., Sherry,					813			
Struger, J., Sherry, J., Marvin, C.H., MeMaster, M.E., Clarence, S., Tetreault, G. The occurrence of potential endocrine effects in amphibians inhabiting farm ponds and agricultural drains in intensive row crop agriculture areas of solutions assessed. Effects were compared to amphibians inhabiting farm ponds and agricultural drains in intensive row crop agriculture areas of solutions assessed. Effects were compared to amphibians inhabiting farm ponds and agricultural drains in intensive row crop agriculture areas of solutions assessed. Effects were compared to amphibians from two agricultural reference sites as well as four non-agricultural reference sites. Blood samples were taken from northern leopard frogs (Rama clamitans) for analysis of circulating sex stepids and vitellogenin-like protein (Vig-lp), a biomarker of exposure to environmental extigens. Gonads were histologically examined for evidence of abnormalities. Test compound, application procedure, exposure period The relationships between the proportion of males with TOFS/circulating sex steriods and a broad suite of pesticide residues and nutrients occurrent isological endpoints (independent variable) (Y) with simplifications components (X), consisting of pesticide residues and nutrients, particularly atrazine and nitrate. Test organisms Test organisms Test organisms Test organisms Test organisms Test organisms The cocurrence of testicalar oxarian follicles (TOFS) in male R, pipiens was significantly higher (42% p < 0,085) sit agricultural sites. The proportion of testicular occytes did correlate with a myxigre of pesticides and nutrients, particularly atrazine and nitrate. The surpormanial Risks/Assessment, appropriaters of study endpoints Biological Relevance 1 Is the substance tested representative and relevant for the substances of suited? 2 Is the magnitude of effects of similensine to cause a (population) relevant effect? 3 Is the ecotosciological magnifest agon level appropriate for the substances being assessed? The parameter	glyphecotox_496				Aquatic Toxicology 88			
Purpose of the study Description of endpoints The occurrence of potential endocrine effects in amphibians inhibiting farm ponds and agricultural drains in intensive row crop agricultural area of some of endpoints Blood samples were taken from northern leopard frogs (Rang pipiens) and green frogs (Rana clamitans) for analysis of circulating sex steroids and vicelogenin-like protein (Vtg-lp), a biomarker of exposure to environmental estragens. Gonads were histologically examined for evidence of abnormalities. A suite of different pesticides were found aging fated sites. The applied products are not known The relationships between the proportion of males with TOFS/circulating sex steroids and a broad suite of pesticide residues and nutrients concentrations in waterwere explored using Partial Least Squares (PLS), PLSwas used to correlate biological endpoints [independent variable] (Y) with dualifyaraite contaminants components (X), consisting of pesticide residues and nutrient concentrations. Test organisms Biological effects The occurrence of testguar varian follicles (TOFS) in male R, pipiens was significantly higher (42%, p < 0.08) as agricultural sites. The proportion of testicular oocytes did correlate with a mixture of pesticide and nutrients, particularly attrazine and nitrate. Relevance of the study for Environmental Researce I Is an appropriate test species life stage(s) studied? yes I Is the ecotoxicological mantias and of effects of significance to cause a (population) relevant effect. Silve such as a proportion of testicular oocytes did correlate with a mixture was assessed. No allocation of effects to single substances possible. Applied products not known Silve substance testguar personal relevance of all concentrations. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances comployed in agricultural management on amphibian biomarkers and dev					(4):230-42. DOI:			
Purpose of the study Description of endpoints The occurrence of potential endocrine effects in amphibians inhibitive row crop agricultural areas of southwestern Ontario was assessed. Effects were compared to amphibians from two agricultural reference sites as well as four non-agricultural reference sites. Blood samples were taken from northern leopard frogs (Raus pipiens) and green frogs (Rana clamitans) for analysis of circulating sex steroids and vicelogenin-like protein (Vtg-lp), a biomarker of exposure to environmental estragens. Gonads were histologically examined for evidence of abnormalities. Test compound, application procedure, exposure period Experimental approach, Statistics, test environment The relationships between the proportion of males with TOFS/circulating sex steriods and a broad suite of pesticide residues and nutrients concentrations in waterwere explored using Partial Least Squares (PJS,) PLSwas used to correlate biological endpoints [independent variable] (Y) with multivariate contaminants components (X), consisting of pesticide residues and nutrients concentrations in waterwere explored using Partial Least Squares (PJS,) PLSwas used to correlate biological endpoints [independent variable] (Y) with multivariate contaminants components (X), consisting of pesticide residues and nutrients, particularly higher (42%, p < 0.08) as agricultural sites. The proportion of testicular oocytes did correlate with a mixture was assessment, appropriate test species life stage(s) studied? yes It is an appropriate test species life stage(s) studied? yes It is man appropriate test species life stage(s) studied? yes It is the substance testicular period of effects of significance to cause a (population) relevant effect. Environmental Relevance Environmental Relevance The parameters were assessed. No allocation of effects to single substances and relevant for the substance being substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects		0 , ,			10.1016/j.aquatox.2008.05.002.			
Purpose of the study Description of endpoints The occurrence of potential endocrine effects in amphibians inhibiting farm ponds and agricultural drains in intensive row crop agricultural area of some of endpoints Blood samples were taken from northern leopard frogs (Rang pipiens) and green frogs (Rana clamitans) for analysis of circulating sex steroids and vicelogenin-like protein (Vtg-lp), a biomarker of exposure to environmental estragens. Gonads were histologically examined for evidence of abnormalities. A suite of different pesticides were found aging fated sites. The applied products are not known The relationships between the proportion of males with TOFS/circulating sex steroids and a broad suite of pesticide residues and nutrients concentrations in waterwere explored using Partial Least Squares (PLS), PLSwas used to correlate biological endpoints [independent variable] (Y) with dualifyaraite contaminants components (X), consisting of pesticide residues and nutrient concentrations. Test organisms Biological effects The occurrence of testguar varian follicles (TOFS) in male R, pipiens was significantly higher (42%, p < 0.08) as agricultural sites. The proportion of testicular oocytes did correlate with a mixture of pesticide and nutrients, particularly attrazine and nitrate. Relevance of the study for Environmental Researce I Is an appropriate test species life stage(s) studied? yes I Is the ecotoxicological mantias and of effects of significance to cause a (population) relevant effect. Silve such as a proportion of testicular oocytes did correlate with a mixture was assessed. No allocation of effects to single substances possible. Applied products not known Silve substance testguar personal relevance of all concentrations. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances comployed in agricultural management on amphibian biomarkers and dev					2021			
Purpose of the study Description of endpoints The occurrence of potential endocrine effects in amphibians inhibiting farm ponds and agricultural drains in intensive row crop agricultural area of some of endpoints Blood samples were taken from northern leopard frogs (Rang pipiens) and green frogs (Rana clamitans) for analysis of circulating sex steroids and vicelogenin-like protein (Vtg-lp), a biomarker of exposure to environmental estragens. Gonads were histologically examined for evidence of abnormalities. A suite of different pesticides were found aging fated sites. The applied products are not known The relationships between the proportion of males with TOFS/circulating sex steroids and a broad suite of pesticide residues and nutrients concentrations in waterwere explored using Partial Least Squares (PLS), PLSwas used to correlate biological endpoints [independent variable] (Y) with dualifyaraite contaminants components (X), consisting of pesticide residues and nutrient concentrations. Test organisms Biological effects The occurrence of testguar varian follicles (TOFS) in male R, pipiens was significantly higher (42%, p < 0.08) as agricultural sites. The proportion of testicular oocytes did correlate with a mixture of pesticide and nutrients, particularly attrazine and nitrate. Relevance of the study for Environmental Researce I Is an appropriate test species life stage(s) studied? yes I Is the ecotoxicological mantias and of effects of significance to cause a (population) relevant effect. Silve such as a proportion of testicular oocytes did correlate with a mixture was assessed. No allocation of effects to single substances possible. Applied products not known Silve substance testguar personal relevance of all concentrations. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances comployed in agricultural management on amphibian biomarkers and dev					\$ 18°			
Purpose of the study Description of endpoints The occurrence of potential endocrine effects in amphibians inhibiting farm ponds and agricultural drains in intensive row crop agricultural area of some of endpoints Blood samples were taken from northern leopard frogs (Rang pipiens) and green frogs (Rana clamitans) for analysis of circulating sex steroids and vicelogenin-like protein (Vtg-lp), a biomarker of exposure to environmental estragens. Gonads were histologically examined for evidence of abnormalities. A suite of different pesticides were found aging fated sites. The applied products are not known The relationships between the proportion of males with TOFS/circulating sex steroids and a broad suite of pesticide residues and nutrients concentrations in waterwere explored using Partial Least Squares (PLS), PLSwas used to correlate biological endpoints [independent variable] (Y) with dualifyaraite contaminants components (X), consisting of pesticide residues and nutrient concentrations. Test organisms Biological effects The occurrence of testguar varian follicles (TOFS) in male R, pipiens was significantly higher (42%, p < 0.08) as agricultural sites. The proportion of testicular oocytes did correlate with a mixture of pesticide and nutrients, particularly attrazine and nitrate. Relevance of the study for Environmental Researce I Is an appropriate test species life stage(s) studied? yes I Is the ecotoxicological mantias and of effects of significance to cause a (population) relevant effect. Silve such as a proportion of testicular oocytes did correlate with a mixture was assessed. No allocation of effects to single substances possible. Applied products not known Silve substance testguar personal relevance of all concentrations. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances comployed in agricultural management on amphibian biomarkers and dev								
Purpose of the study Description of endpoints The occurrence of potential endocrine effects in amphibians inhibiting farm ponds and agricultural drains in intensive row crop agricultural area of some of endpoints Blood samples were taken from northern leopard frogs (Rang pipiens) and green frogs (Rana clamitans) for analysis of circulating sex steroids and vicelogenin-like protein (Vtg-lp), a biomarker of exposure to environmental estragens. Gonads were histologically examined for evidence of abnormalities. A suite of different pesticides were found aging fated sites. The applied products are not known The relationships between the proportion of males with TOFS/circulating sex steroids and a broad suite of pesticide residues and nutrients concentrations in waterwere explored using Partial Least Squares (PLS), PLSwas used to correlate biological endpoints [independent variable] (Y) with dualifyaraite contaminants components (X), consisting of pesticide residues and nutrient concentrations. Test organisms Biological effects The occurrence of testguar varian follicles (TOFS) in male R, pipiens was significantly higher (42%, p < 0.08) as agricultural sites. The proportion of testicular oocytes did correlate with a mixture of pesticide and nutrients, particularly attrazine and nitrate. Relevance of the study for Environmental Researce I Is an appropriate test species life stage(s) studied? yes I Is the ecotoxicological mantias and of effects of significance to cause a (population) relevant effect. Silve such as a proportion of testicular oocytes did correlate with a mixture was assessed. No allocation of effects to single substances possible. Applied products not known Silve substance testguar personal relevance of all concentrations. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances comployed in agricultural management on amphibian biomarkers and dev					28.8			
Purpose of the study Description of endpoints The occurrence of potential endocrine effects in amphibians inhibiting farm ponds and agricultural drains in intensive row crop agricultural area of some of endpoints Blood samples were taken from northern leopard frogs (Rang pipiens) and green frogs (Rana clamitans) for analysis of circulating sex steroids and vicelogenin-like protein (Vtg-lp), a biomarker of exposure to environmental estragens. Gonads were histologically examined for evidence of abnormalities. A suite of different pesticides were found aging fated sites. The applied products are not known The relationships between the proportion of males with TOFS/circulating sex steroids and a broad suite of pesticide residues and nutrients concentrations in waterwere explored using Partial Least Squares (PLS), PLSwas used to correlate biological endpoints [independent variable] (Y) with dualifyaraite contaminants components (X), consisting of pesticide residues and nutrient concentrations. Test organisms Biological effects The occurrence of testguar varian follicles (TOFS) in male R, pipiens was significantly higher (42%, p < 0.08) as agricultural sites. The proportion of testicular oocytes did correlate with a mixture of pesticide and nutrients, particularly attrazine and nitrate. Relevance of the study for Environmental Researce I Is an appropriate test species life stage(s) studied? yes I Is the ecotoxicological mantias and of effects of significance to cause a (population) relevant effect. Silve such as a proportion of testicular oocytes did correlate with a mixture was assessed. No allocation of effects to single substances possible. Applied products not known Silve substance testguar personal relevance of all concentrations. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances comployed in agricultural management on amphibian biomarkers and dev		S., Tetreault, G.						
Purpose of the study Description of endpoints The occurrence of potential endocrine effects in amphibians inhibiting farm ponds and agricultural drains in intensive row crop agricultural area of some of endpoints Blood samples were taken from northern leopard frogs (Rang pipiens) and green frogs (Rana clamitans) for analysis of circulating sex steroids and vicelogenin-like protein (Vtg-lp), a biomarker of exposure to environmental estragens. Gonads were histologically examined for evidence of abnormalities. A suite of different pesticides were found aging fated sites. The applied products are not known The relationships between the proportion of males with TOFS/circulating sex steroids and a broad suite of pesticide residues and nutrients concentrations in waterwere explored using Partial Least Squares (PLS), PLSwas used to correlate biological endpoints [independent variable] (Y) with dualifyaraite contaminants components (X), consisting of pesticide residues and nutrient concentrations. Test organisms Biological effects The occurrence of testguar varian follicles (TOFS) in male R, pipiens was significantly higher (42%, p < 0.08) as agricultural sites. The proportion of testicular oocytes did correlate with a mixture of pesticide and nutrients, particularly attrazine and nitrate. Relevance of the study for Environmental Researce I Is an appropriate test species life stage(s) studied? yes I Is the ecotoxicological mantias and of effects of significance to cause a (population) relevant effect. Silve such as a proportion of testicular oocytes did correlate with a mixture was assessed. No allocation of effects to single substances possible. Applied products not known Silve substance testguar personal relevance of all concentrations. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances comployed in agricultural management on amphibian biomarkers and dev			aş	griculture	2. CO. 8.			
Purpose of the study Description of endpoints The occurrence of potential endocrine effects in amphibians inhibiting farm ponds and agricultural drains in intensive row crop agricultural area of some of endpoints Blood samples were taken from northern leopard frogs (Rang pipiens) and green frogs (Rana clamitans) for analysis of circulating sex steroids and vicelogenin-like protein (Vtg-lp), a biomarker of exposure to environmental estragens. Gonads were histologically examined for evidence of abnormalities. A suite of different pesticides were found aging fated sites. The applied products are not known The relationships between the proportion of males with TOFS/circulating sex steroids and a broad suite of pesticide residues and nutrients concentrations in waterwere explored using Partial Least Squares (PLS), PLSwas used to correlate biological endpoints [independent variable] (Y) with dualifyaraite contaminants components (X), consisting of pesticide residues and nutrient concentrations. Test organisms Biological effects The occurrence of testguar varian follicles (TOFS) in male R, pipiens was significantly higher (42%, p < 0.08) as agricultural sites. The proportion of testicular oocytes did correlate with a mixture of pesticide and nutrients, particularly attrazine and nitrate. Relevance of the study for Environmental Researce I Is an appropriate test species life stage(s) studied? yes I Is the ecotoxicological mantias and of effects of significance to cause a (population) relevant effect. Silve such as a proportion of testicular oocytes did correlate with a mixture was assessed. No allocation of effects to single substances possible. Applied products not known Silve substance testguar personal relevance of all concentrations. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances comployed in agricultural management on amphibian biomarkers and dev]	Reliability	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			
assessed. Effects were compared to amphibians from two agricultural reference sites as well as four non-agricultural reference sites. Blood samples were taken from northern leopard frogs (Rana pipiens) and green frogs (Runa pipiens) and green frogs (Runa pipiens) and green frogs (Runa clamitans) for analysis of circulating sex steriods and vitellogenin-like protein (Vig-Ip), a biomarker of exposure to environmental estrogens. Gonads were histologically examined for evidence of abnormalities. Test compound, application procedure, exposure period Experimental approach, Statistics, test environment The relationships between the proportion of males with TOFS/circulating sex steriods and a broad suite of pesticide residues and fluitrents concentrations in waterwere explored using Partial Least Squares (PIS-S) PLSwas used to correlate biological endpoints [independent variable] (Y) with multivariate contaminants components (X), consisting of pesticide residues and mutient concentrations. Test organisms Test organisms The relationships between the proportion of males with TOFS/circulating sex steriods and a broad suite of pesticide residues and putients concentrations in waterwere explored using Partial Least Squares (PIS-S) PLSwas used to correlate biological endpoints [independent variable] (Y) with multivariate contaminants components (X), consisting of pesticide residues and nutrients concentrations. Test organisms The relationships between the proportion of males with TOFS/circulating sex steriods and antients concentrations. The occurrence of tests (Light Partial					ians inhabiting farm ponds and			
well as four non-agricultural reference sites. Blood samples were taken from northern leopard frogs (Rana pipiens) and green frogs (Rana clamitans) for analysis of circulating sex steroigs and vitellogenin-like protein (Vtg-lp), a biomarker of exposure to environmental estrogens. Gonads were histologically examined for evidence of abnormalities. Test compound, application procedure, exposure period Experimental approach, Statistics, test environment The relationships between the proportion of males with TOFS/circulating sex steriods and a broad suite of pesticide residues and nutrients concentrations in waterwere explored using Partial Least Squares (Pp.S). PLSwas used to correlate biological endpoints [independent variable] (Y) with multivariate contaminants components (X), consisting of pesticide residues and nutrients on on the study of pesticide residues and nutrients on on the sum of pesticide residues and nutrients on on the sum of pesticide residues and nutrients. The proportion of testicular oocytes did correlate with a pixture of pesticides and nutrients, particularly strazine and nitrate. Relevance of the study for Environmental Risk Assessment, appropriate test species life stage(s) studied? Is an appropriate test species life stage(s) studied? Is an appropriate test species life stage(s) studied? Is the ecotoxicological magnification to cause a (population) relevant of the substance tested tegresentative and relevant for the substance being assessed? Is the substance tested tegresentative and relevant for the substance being assessed? Is the appropriate feets of semificance to cause a possible. Applied products not known assessed. No allocation of effects to single substances of all employed agricultural substances. No further discrimination possible. Applied products not known appropriate for the substance on amplituations relate to predicted environmental extension of the effects of simple substances and development. The investigation of the effects of single substances was not part of th								
Blood samples were taken from northern leopard from the pripiens and green frogs (Rana clamitans) for analysis of circulating sex steriods and vitellogenin-like protein (Vtg-lp), a biomarker of exposure to environmental extragens. Gonads were histologically examined for evidence of abnormalities. Test compound, application procedure, exposure period Experimental approach, Statistics, a broad suite of pesticide residues and products are not known The relationships between the proportion of males with TOFS/circulating sex steriods and a broad suite of pesticide residues and nutrients, particularly different position of males with TOFS/circulating sex steriods and a broad suite of pesticide residues and nutrients, particularly different position of residues and nutrients, particularly different position of residual approach, Statistics, a broad suite of pesticide residues and nutrients, particularly different position of residual approach, Statistics, a broad suite of pesticide residues and nutrients, particularly darziance and nitrate. Test organisms Biological effects The occurrence of testicular ovarian follicles (TOFS) in male R. pipiens was significantly higher (42%; p. 0.085) at agricultural sites. The proportion of testicular overtes did correlate with a particularly darziane and nitrate. Relevance of the study for Environmental Relevance I is an appropriate test species/ life stage(s) studied? I is the magnitude of effects of spinification level appropriate for the assessment of the study approach and relevant effect? I is the substance tested episesentative and relevant for the substance being assessed? Environmental Relevance I is the substance tested episesentative and relevant for the substance being assessed. A mixture was assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) Low weight	endpoints				cagricultural reference sites as			
(Rana clamitans) for analysis of circulating sex steroigs and vitellogenin-like protein (Vtg-lp), a biomarker of exposure to environmental estrogens. Gonads were histologically examined for evidence of abnormalities. A suite of different pesticides were found at the field sites. The applied products are not known The relationships between the proportion of males with TOFS/circulating sex steriods and approach, Statistics, test environment [independent variable] (Y) with multivariate contaminants components (X), consisting of pesticide residues and nutrient concentrations in waterwere explored using Partial Least Squares (Pg.) Plawas used to correlate biological endpoints [independent variable] (Y) with multivariate contaminants components (X), consisting of pesticide residues and nutrient concentrations. Test organisms Biological effects The occurrence of testiculary avarian follicies (TOFS) in male R. pipiens was significantly higher (42%; p < 0,08%) at agricultural sites. The proportion of testicular occytes did correlate with a maximus of properties and nutrients, particularly atrazine and nitrate. Relevance of the study for Environmental Relevance 1 Is an appropriate test species/ life stage(s) studied? 2 Is the magnitude of effects of significance to cause a proportiate for the assessment? Biological Relevance 1 Is the substance tested expresentative and relevant for the substance being assessed? Environmental Relevance 2 Do the tested concentrations relate to predicted environmental concentrations of the assessment of the substance of the assessment of the substance of the assessment of the substance of the substance of all employed agricultural substances. No further discrimination possible. Applied products not known Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot b		well as four nor	n-agricultural	reference sites.				
(Rana clamitans) for analysis of circulating sex steroigs and vitellogenin-like protein (Vtg-lp), a biomarker of exposure to environmental estrogens. Gonads were histologically examined for evidence of abnormalities. A suite of different pesticides were found at the field sites. The applied products are not known The relationships between the proportion of males with TOFS/circulating sex steriods and approach, Statistics, test environment [independent variable] (Y) with multivariate contaminants components (X), consisting of pesticide residues and nutrient concentrations in waterwere explored using Partial Least Squares (Pg.) Plawas used to correlate biological endpoints [independent variable] (Y) with multivariate contaminants components (X), consisting of pesticide residues and nutrient concentrations. Test organisms Biological effects The occurrence of testiculary avarian follicies (TOFS) in male R. pipiens was significantly higher (42%; p < 0,08%) at agricultural sites. The proportion of testicular occytes did correlate with a maximus of properties and nutrients, particularly atrazine and nitrate. Relevance of the study for Environmental Relevance 1 Is an appropriate test species/ life stage(s) studied? 2 Is the magnitude of effects of significance to cause a proportiate for the assessment? Biological Relevance 1 Is the substance tested expresentative and relevant for the substance being assessed? Environmental Relevance 2 Do the tested concentrations relate to predicted environmental concentrations of the assessment of the substance of the assessment of the substance of the assessment of the substance of the substance of all employed agricultural substances. No further discrimination possible. Applied products not known Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot b		Blood samples	were taken fr	om northern leopard frogs (Rana pipiens) and green frogs			
Test compound, application procedure, exposure period Experimental approach, Statistics, test environment test environment test environment Experimental approach, Statistics, test environment test environment Experimental approach, Statistics, test environmental concerned to the study for Experimental approach appro		(Rana clamitan	s) for analysi	s of circulating sex steroids	and vitellogenin-like protein			
Test compound, application procedure, exposure period Experimental approach, Statistics, test environment The relationships between the proportion of males with TOFS/circulating sex steriods and a broad suite of pesticide residues and nutrients concentrations in waterwere explored using Partial Least Squares (PLS) PLSwas used to correlate biological endpoints [independent variable] (Y) with full/wariate contaminants components (X), consisting of pesticide residues and nutrient contaminants components (X), consisting of pesticide residues and nutrient contaminants components (X), consisting of pesticide residues and nutrient proportion of testicular occurrence of testicular variants [VIV) with full/wariate contaminants components (X), consisting of pesticide residues and nutrient proportion of testicular occurrence of testicular variants [VIV) with full/wariate contaminants components (X), consisting of pesticide residues and nutrients, particularly atrazine and nitrate. The occurrence of testicular variant follicles (TOFS) in male R. pipiens was significantly higher (42%, p < 0.08) as gricultural sites. The proportion of testicular occytes did correlate with a maximal sites. The proportion of testicular occytes did correlate with a maximal proportion of testicular occytes did correlate with a maximal proportion of testicular occytes did correlate with a maximal proportion of testicular occytes did correlate with a maximal proportion of testicular occytes did correlate with a maximal proportion of testicular occytes did correlate with a maximal proportion of testicular occytes did correlate with a maximal proportion of testicular occytes did correlate with a maximal proportion of testicular occytes did correlate with a maximal proportion of testicular occytes did correlate with a maximal proportion of testicular occurrence of testicular		(Vtg-lp), a bion	narker of exp	osure to environmental estre	gens. Gonads were histologically			
A mixture was assessed.		examined for e	vidence of ab	normalities.				
A mixture was assessed.	Test compound,	A suite of diffe	rent pesticide	s were found at the field site	es. The applied products are not			
approach, Statistics, test environment using Partial Least Squares (PLS) PLSwas used to correlate biological endpoints [independent variable] (Y) with foultivariate contaminants components (X), consisting of pesticide residues and nutrent concentrations. Test organisms northern leopard frogs (Runa ppiens) and green frogs (Rana clamitans) The occurrence of testfeular avarian follicles (TOFS) in male R. pipiens was significantly higher (42%; p < 0.05) at agricultural sites. The proportion of testicular oocytes did correlate with a maximise proportion of testicular oocytes did correlate with			•	to o's	** *			
approach, Statistics, test environment using Partial Least Squares (PLS) PLSwas used to correlate biological endpoints [independent variable] (Y) with foultivariate contaminants components (X), consisting of pesticide residues and nutrent concentrations. Test organisms northern leopard frogs (Runa ppiens) and green frogs (Rana clamitans) The occurrence of testfeular avarian follicles (TOFS) in male R. pipiens was significantly higher (42%; p < 0.05) at agricultural sites. The proportion of testicular oocytes did correlate with a maximise proportion of testicular oocytes did correlate with		e		HI SO LE				
approach, Statistics, test environment using Partial Least Squares (PLS) PLSwas used to correlate biological endpoints [independent variable] (Y) with foultivariate contaminants components (X), consisting of pesticide residues and nutrent concentrations. Test organisms northern leopard frogs (Runa ppiens) and green frogs (Rana clamitans) The occurrence of testfeular avarian follicles (TOFS) in male R. pipiens was significantly higher (42%; p < 0.05) at agricultural sites. The proportion of testicular oocytes did correlate with a maximise proportion of testicular oocytes did correlate with				E TE TO				
approach, Statistics, test environment using Partial Least Squares (PLS) PLSwas used to correlate biological endpoints [independent variable] (Y) with foultivariate contaminants components (X), consisting of pesticide residues and nutrent concentrations. Test organisms northern leopard frogs (Runa ppiens) and green frogs (Rana clamitans) The occurrence of testfeular avarian follicles (TOFS) in male R. pipiens was significantly higher (42%; p < 0.05) at agricultural sites. The proportion of testicular oocytes did correlate with a maximise proportion of testicular oocytes did correlate with		The relationship	The relationships between the proportion of males with TOFS/circulating sex steriods and					
using Partial Least Squares (PLS) PLSwas used to correlate biological endpoints [independent variable] (Y) with multivariate contaminants components (X), consisting of pesticide residues and nutrient concentrations. Test organisms northern leopard frogs (Rana pipiens) and green frogs (Rana clamitans) Biological effects The occurrence of testicular ovarian follicles (TOFS) in male R. pipiens was significantly higher (42%; p < 0.05) at agricultural sites. The proportion of testicular oocytes did correlate with a motture of pesticides and nutrients, particularly atrazine and nitrate. Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints Biological Relevance 1 Is an appropriate test species/ life-stage(s) studied? yes 2 Is the magnitude of effects of significance to cause a not conclusive (population) relevant effect? 3 Is the ecotoxicological manifestation level appropriate for the assessment? Environmental Relevance 1 Is the substance tested epresentative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations? 3 Have parameters influencing the endpoints been considered adequately? Field assessment. Glyphosate Level of Detection far higher than for all other measured pesticides. Congluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) Low weight								
[independent variable] (Y) with multivariate contaminants components (X), consisting of pesticide residues and nutrient concentrations. Test organisms Biological effects The occurrence of testicular variant follicles (TOFS) in male R. pipiens was significantly higher (42%; p < 0.08) at agricultural sites. The proportion of testicular oocytes did correlate with a mixture of pesticides and nutrients, particularly atrazine and nitrate. Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints Biological Relevance 1 Is an appropriate test species/ life stage(s) studied? 2 Is the magnitude of effects of significance to cause a not conclusive (population) relevant effect? 3 Is the ecotoxicological manifestation level appropriate for the assessment? Environmental Relevance 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations 3 Have parameters influencing the endpoints been considered adequately? Field assessment. Glyphosate Level of Detection far higher than for all other measured pesticides. Congluding weight of evidence/proposed action The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight		nt using Partial Least Squares (PLS). PLS was used to correlate biological endpoints						
Desticide residues and nutrient concentrations. Desticide residues and nutrient concentrations. Desticide residues and nutrients concentrations.		[independent va	ariablel (Y) w	with multivariate contaminants components (X), consisting of				
Test organisms northern leopard frogs (Rana pipiens) and green frogs (Rana clamitans)		pesticide residu	es and nutrie	nt concentrations.	1 (") &			
Biological effects The occurrence of testscular ovarian follicles (TOFS) in male R. pipiens was significantly higher (42%; p < 0.05) at agricultural sites. The proportion of testicular occytes did correlate with a mixture of pesticides and nutrients, particularly atrazine and nitrate. Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints Biological Relevance 1 Is an appropriate test species/ life stage(s) studied? yes 2 Is the magnitude of effects of significance to cause a (population) relevant effect? 3 Is the ecotoxicological manufactation level appropriate for the assessment. Environmental Relevance 1 Is the substance tests of presentative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Type of information (Critical, supporting, low weight)	Test organisms				Rana clamitans)			
higher (42%; p < 0.05) at agricultural sites. The proportion of testicular oocytes did correlate with a maximized pesticides and nutrients, particularly atrazine and nitrate. Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints Biological Relevance 1 Is an appropriate test species/ life stage(s) studied? 2 Is the magnitude of effects of significance to cause a (population) relevant effect? 3 Is the ecotoxicological manifestation level appropriate for the assessment? Environmental Relevance 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations? 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) higher (42%; p < 0.05) at agricultural sites. The propositiones and nutrients, particularly atrazine and nitrate. Biological Relevance Biological Relevance 1 Is an appropriate test species/ life stage(s) studied? yes Environmental Relevance A mixture was assessed. No allocation of effects to single substances possible. Applied products not known Field assessment. Glyphosate Level of Detection far higher than for all other measured pesticides. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight		The occurrence	of testicular	ovarian follicles (TOFS) in	male R niniens was significantly			
Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints Biological Relevance 1 Is an appropriate test species/ life stage(s) studied? 2 Is the magnitude of effects of significance to cause a (population) relevant effect? 3 Is the ecotoxicological magnificant even appropriate for the assessment? Environmental Relevance 1 Is the substance tested epresentative and relevant for the assessment? Environmental Relevance A mixture was assessed. No allocation of effects to single substances possible. Applied products not known sasessed? 2 Do the tested concentrations relate to predicted environmental concentrations. 3 Have parameters influencing the endpoints been considered adequately? Conclusting weight of evidence/proposed action The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Type of information (Critical, supporting, low weight)	Biological circus							
Relevance of the study for Environmental Relevance 1 Is an appropriate test species/ life stage(s) studied? yes 2 Is the magnitude of effects of significance to cause a (population) relevant effect? 3 Is the ecotoxicological manifestation level appropriate for the assessment? Environmental Relevance 1 Is the substance tested epresentative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) Rivided? yes not conclusive yes not conclusive yes not conclusive yes A mixture was assessed. No allocation of effects to single substances possible. Applied products not known Field assessment. Glyphosate Level of Detection far higher than for all other measured pesticides. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight								
Biological Relevance 1 Is an appropriate test species/ life stage(s) studied? 2 Is the magnitude of effects of significance to cause a (population) relevant effect? 3 Is the ecotoxicological manifestation level appropriate for the assessment? Environmental Relevance 1 Is the substance tested epresentative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations 3 Have parameters influencing the endpoints ocean considered adequately? Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) Biological Relevance yes not conclusive yes Environmental Relevance A mixture was assessed. No allocation of effects to single substances possible. Applied products not known Field assessment. Glyphosate Level of Detection far higher than for all other measured pesticides. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight	Relevance of the st							
1 Is an appropriate test species/ life stage(s) studied? 2 Is the magnitude of effects of significance to cause a (population) relevant effect? 3 Is the ecotoxicological manifestation level appropriate for the assessment? Environmental Relevance 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) Study is a field survey on the impact of an exposure to the sum of possible substances was not part of the study. The impact of glyphosate cannot be determined. Low weight	Relevance of the st		· · · · · · ·	** *	tudy enapoints			
2 Is the magnitude of effects of semificance to cause a (population) relevant effect? 3 Is the ecotoxicological manifestation level appropriate for the assessment? Environmental Relevance 1 Is the substance tested expresentative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations? 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) Environmental Relevance A mixture was assessed. No allocation of effects to single substances possible. Applied products not known of the endpoints been considered adequately? Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Type of information (Critical, supporting, low weight)	1 Is an annuantiata							
3 Is the ecotoxicological manifestation level appropriate for the assessment? yes	2 La tha magnifula	est species/ ine-stag	Studied?					
3 Is the ecotoxicological manifestation level appropriate for the assessment? Environmental Relevance 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations? 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) Environmental Relevance A mixture was assessed. No allocation of effects to single substances possible. Applied products not known Field assessment. Glyphosate Level of Detection far higher than for all other measured pesticides. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight			ance to cause	a not conclusive				
Environmental Relevance 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations? 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) Environmental Relevance A mixture was assessed. No allocation of effects to single substances possible. Applied products not known Field assessment. Glyphosate Level of Detection far higher than for all other measured pesticides. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight			1					
Environmental Relevance 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations? 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) Environmental Relevance A mixture was assessed. No allocation of effects to single substances possible. Applied products not known Field assessment. Glyphosate Level of Detection far higher than for all other measured pesticides. Field assessment assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight			evel	yes				
A mixture was assessed. No allocation of effects to single substances possible. Applied products not known 2 Do the tested concentrations relate to predicted environmental concentrations? 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) A mixture was assessed. No allocation of effects to single substances possible. Applied products not known Field assessment. Glyphosate Level of Detection far higher than for all other measured pesticides. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight	appropriate for the	assessment		4 ID 1				
and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations? 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) possible. Applied products not known possible. Applied products not known Field assessment. Glyphosate Level of Detection far higher than for all other measured pesticides. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight	17.1	2, 2, 12			0.00			
assessed? 2 Do the tested concentrations relate to predicted environmental concentrations? 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) Field assessment. Glyphosate Level of Detection far higher than for all other measured pesticides. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight								
2 Do the tested concentrations relate to predicted environmental concentrations? 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) Field assessment. Glyphosate Level of Detection far higher than for all other measured pesticides. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight	and relevant for the	substance being	possible.	Applied products not known				
other measured pesticides. 3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) other measured pesticides. The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight			<u> </u>					
3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight	<i>→</i>	· .						
3 Have parameters influencing the endpoints been considered adequately? Concluding weight of evidence/proposed action Concluding weight of evidence/proposed action Type of information (Critical, supporting, low weight) The parameters were assessed in the survey only as aggregate exposure of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight			other mea	sured pesticides.				
endpoints been considered adequately? Of all employed agricultural substances. No further discrimination possible. Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Type of information (Critical, supporting, low weight) Low weight								
Concluding weight of evidence/proposed action Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Type of information (Critical, supporting, low weight) Low weight	3 Have parameters	influencing the						
Concluding weight of evidence/proposed action Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Type of information (Critical, supporting, low weight) Study is a field survey on the impact of an exposure to the sum of possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Low weight	endpoints been con	sidered adequately?		oloyed agricultural substance	es. No further discrimination			
evidence/proposed action possible substances employed in agricultural management on amphibian biomarkers and development. The investigation of the effects of single substances was not part of the study. The impact of glyphosate cannot be determined. Type of information (Critical, supporting, low weight) Low weight	V 13							
supporting, low weight)	Concluding weigh							
supporting, low weight)	evidence/proposed action			possible substances employed in agricultural management on				
supporting, low weight)	SO ST			amphibian biomarkers and development. The investigation of the				
supporting, low weight)				effects of single substances was not part of the study. The impact of				
supporting, low weight)	No.			glyphosate cannot be determined.				
supporting, low weight) Consideration/concluding score UBA3 (since monitoring)	Type of information		Low weig	ght				
Consideration/concluding score UBA3 (since monitoring)	supporting, low w	eight)						
	Consideration/con	cluding score	UBA3 (si	nce monitoring)				

Since the 2001 EU glyphosate evaluation, a number of acute and chronic amphibian toxicity studies with glyphosate and commercial glyphosate-based formulations have been published. For this review of the literature, acute studies are considered to be 96 hours or less. Chronic studies did mostly evaluate tetrality, though, coupled with the investigations of glyphosate formulations on weight and/or performance at metamorphosis. Only few studies assessed the toxicity of glyhosate formulation on terrestrial stages of amphibians.

Most of the acute and chronic amphibian study results are from laboratory toxicity tests. However, some of the studies were performed in the field using in situ enclosures or field mesocosms to assess impacts under representative natural conditions, and chemical and biological monitoring studies conducted under conditions directly relevant to product use. Studies were evaluated based on criteria of reliability and relevance/adequacy for risk assessment.

A significant amount of research exists on the toxicity of glyphosate and several glyphosate-based formulations for amphibian.

Acute studies with glyphosate acid and glyphosate IPA for sensitive Corner stage 25 tadpoles show medial lethal values comparable to values obtained with fish in regulatory studies and in the literature. The LC50 values for amphibian exposed to glyphosate and its salts range from >17.9 to >466 mg a.s./L (see table below).

Table B.9.13-5: Effect values reported in peer reviewed literature for amphibians: glyphosate acid and salts of glyphosate

Species	Substance	Studycduration	LC ₅₀	Reference
		(h)	(mg a.s./L)	
Amphibians		0,00,0	•	
Crinia insignifera tadpole	Glyphosate acid	96	103.2	Bidwell and Gorrie 1995 glyphnosubm_023
Crinia insignifera adult	Glyphosate acid	96	75.0	Bidwell and Gorrie 1995 glyphnosubm 023
Litoria moorei tadpoles	Glyphosate acid	48	81.2	Mann and Bidwell 1999 glyphnosubm 024
Litoria moorei tadpoles	Glyphosate acid	48	121.0	Mann and Bidwell 1999 glyphnosubm 024
Crinia insignifera adult	Glyphosate acid	48	83.6	Mann and Bidwell 1999 glyphnosubm_024
Rana clamitans	Glyphosate IPA	96	>17.91	Howe et al., 2004 glyphecotox 025
Rana clamitans S Lymnodynastes S dorsalis tadpoles	Glyphosate IPA	48	>400.0	Mann and Bidwell 1999 glyphnosubm_024
Litoria moorei tadpoles	Glyphosate IPA	48	>343.0	Mann and Bidwell 1999 glyphnosubm_024
Crinia insignifera tadpole	Glyphosate IPA	48	>466.0	Mann and Bidwell 1999 glyphnosubm 024
Heleioporus eyrei Ladpole	Glyphosate IPA	48	>373.0	Mann and Bidwell 1999 glyphnosubm 024

The effects of different glyphosate-based formulations on amphibian survival have been evaluated on almost 30 species of amphibians (e.g. Howe et al. 2004; Couble and W. 2005) Edginton et al., 2004; Jayawardena et al., 2001; Jones et al., 2010 and 2011; Relyea 2012).

The medial lethal concentration for amphibian exposed to formulation of glyphosate containing specific surfactant classes are far lower than for glyphosate acid or its salts (see Table B.9.13-6). The surfactants displaying a high toxicity in glyphosate-based formulations belong usually to the classes of polyoxyethoxylated alkylamines (POEA; e.g. ethoxylated tallow- and cocoamines), or are e.g. fatty nitrogen derivate etheramine. For the implications resulting from these obervations, please see chapter B.9.13 16.1.

Table B.9.13-6: Effect values reported in peer reviewed literature for amphibians: glyphosate formulations and surfactants; GLY: glyphosate; POEA: polyoxyethoxylated alkylamine; w: with; w/o: without

Species	Substance	Study duration (hours or days)	LCso (mg & e./L)	Reference
Amphibians		• /	(IIIgan Carly)	
Rana pipiens; Gosner 25		96 h	(mg.a.e./L)	
Rana sylvatica, Gosner 25	Roundup Original	96 h	5.1	Howe et al., 2004 glyphecotox 025
Bufo americanus, Gosner 25	GLY w POEA	24 b	4.2 <4.0	gryphecotox_023
Rana clamitans Gosner 25		248 h. 5	2.0	
Rana clamitans Gosner 25	POEA	€	2.2	Howe et al., 2004 glyphecotox_025
Rana clamitans Gosner 25	Roundup Bioactive ® GLY w/o POEA Touchdown ® GLY w/o POEA	48 h	> 17.9	Howe et al., 2004 glyphecotox_025
Rana clamitans Gosner 25	GLY w/o POE	48 h	> 17.9	Howe et al., 2004 glyphecotox_025
Rana clamitans Gosner 25	Glyfos BIO ® STORY W/O POEAS	48 h	> 17.9	Howe et al., 2004 glyphecotox_025
Rana cascadae tadpole	Roundup Original? GLY & POEA	48 h	3.2	Cauble and Wagner, 2005 glyphecotox_049
Spea bombifrons Gosner 29	Roundup Weather MAX®	48 h	1.9	Dinehart et al., 2010
Spea multiplicata Gosner 29	Surfactants of POEA similar toxicity	48 h	2.1	glyphecotox_064
Xenopus laevis Gosner 25	711	96 h	0.9	
Bufo americanus Gosner 25	Vision®	96 h	1.7	Edginton et al., 2004
Rana clamitans Gosner 25	GLY w POEA	96 h	1.4	glyphecotox_066 a)
Rana pipiens Gosner 25		96 h	1.1	
Seinax nascius Gosner 25	Glyfos® GLY w POEA?	96 h	2.6 b) 1.3	Lajmanovich et al., 2003 glyphecotox 078

Species	Substance	Study duration	LC ₅₀	Reference
Species	Substance	(hours or days)	(mg a.e./L)	Keterence
Rhinella arenarum Gosner 25	Roundup UltraMAX® GLY w/o POEA; w surfactants of POEA similar toxicity	48 h	2.4	Lajmanovich et al. 2011
Rana sylvatica Gosner 25	Roundup Original	21 d	2.9	
Rana pipiens Gosner 25	MAX® GLY w/o POEA w surfactants of POEA	21 d	2.9	Relyea, 2012 8 glyphecotex 1088
Bufo americanus Gosner 25	similar toxicity	21 d	2.5	Sones et al., 2010
Rana sylvatica Gosner 26	Roundup Original MAX®,	18 d	2.1	Fones et al., 2010
Bufo americanus Gosner 26	GLY w/o POEA; w surfactants of POEA similar toxicity	18 d	2.3 5	glyphecotox_075 °)
Species	Substance	Study duration	£C50 .⊘	Reference
		(hours or days)	(mg a.e.AL)	
Amphibians	T		8, 60, 11, 1	T
Rana catesbeiana Gosner 25	Roundup Original	23 d	2.2	
Rana clamitans Gosner 25	MAX®, GLY w/o POEA; w surfactants of POEA	23 d 5 7 7 8	July 2.6	Jones et al., 2011 glyphecotox_076 d)
Hyla versicolor Gosner 25	similar toxicity	23 4 5	2.0	

- Values reported for test series with pH 7.5; lower toxicity at pH 6.0
- Value refer to mg formulation/L
- Values reported for early application day 0; lower toxicity with split applications
- d) Values reported for low animal density (single species); higher toxicity if kept at higher densities

Comparable to the findings regarding glyphosate as salt or acid, also the range in LC50 values reported for tadpoles when exposed to formulations of Typhosate is comparable to the range of LC50 values reported for fish. A first mechanistic explanation proposed why fish and tadpoles have very similar acute sensitivities to the surfactants that are added to also hosate-based formulations relates to the toxic mode of action of surfactants. Increasing the permeability of cell membranes, addition of surfactants result in loss of osmotic or ionic stability at the gill Consequently, the mode of action of surfactants to aquatic organisms could explain why the range of sensitivities for amphibians and fish in acute tests are similar when exposed to comparable glyphosate based formulations. It should be noted here that only few data assessing the effect of glyphosate and glyphosate-based products on terrestrial stages of amphibians. Studies with other products (Brühl et al. 2013; Belden et al. 2010) have shown that terrestrial stage of amphibians do experience environmental concentration far higher than a medial lethal rate (LR50) at authorized field uses. Therefore, if the acute risk for the aquatic stages of amphibian seem to be covered by a proper assessment of the risk to fish, this is not the case for the terrestrial stages. The risk assessment for bird and mammals has long been taken also as protective for amphibian in terrestrial environments. Since it has been shown by Brühl et al. (2013) that juvenile amphibian exposed to other products die at authorized field rates - and for some products even at 1/10 of field rates - the conclusions of the risk assessment for birds and mammals for a specific product do not cover necessarily the risk of exposed terrestrial amphibian stages.

Further studies evaluated were performed in the field in controlled enclosures (Thompson et al., 2004; Edge et al., 2011; Wojtaszek et al., 2004) employing specific formulations for forest applications with overspray Seconarios for surface water ponds. These studies were not performed with dose response design and report amphibian survival rates and other parameters at given concentrations supposed to be environmentally relevant. Since exact exposure scenario was not always quantifiable and mean lethal concentrations mostly not reached in the chosen study design, these results are not directly utilizable for the ecotoxicological

assessment of glyphosate formulations for amphibians.

Regarding chronic toxicity enpoints that do not relate merely to long-term effects on amphibian survival rate, Cauble and Wagner (2005) studied the effects of glyphosate formulations on larval methamorphosis. In glyphosate treatments (1 mg a.e./L), there are indications of earlier metamorphosis and smaller size of Rana cascadae when compared to the control.

Also Howe et al. (2004) monitored in lab studies several chronic enpoints (e.g. forelimb emergence, tail damage and maximum tail height, snout-vent-length of metamorphs; gonadal

histology to determine sex ratios). Significant tail damages and reduced tail lengths were recorded in treatments with the Roundup Original ® formulation and in treatments with the surfactant POEA. No effects on chronic endpoints were determined when the amphibian were exposed to glyphosate alone. POEA containing formulations showed displaced sex ratios towards intersex individuals. Again, this was not observed in treatment with glyphosate technical. However, results were not always strictly dosedependent.

The studies by Cauble and Wagner (2005) and Howe et al. (2004) have been criticized by the Notifier as regards to experimental and/or reporting deficiencies. Not all critical points are shared by RMS. RMS believes that the findings pointing at chronic toxicity of surfactants in glyphosate-based formulations are not exaustively resolved by a critique of the study set up. Even if the cited studies suffer from experimental difficulties, the results indicate effects of ethoxylated surfactants on amphibian metamorphosis. The implications of these findings for the potential registration of glyphosate-based formulation with surfactants of significant toxicity are discussed in chapter B.9.13.16.

The lead formulation for the assessment of glyphosate as active substance does not contain surfactants of overt toxicity.

- References

- Belden, J., McMurry, S., Smith, L. & Reiffey, P. (2010): Acute toxicity of fungicide formulations to amphibians at environmentally relevant concentrations. Environ. Toxicol. Chem. 29, 2477–2480
- Bidwell, J.R., Gorrie, J.R. (1995). Acerte Toxicity of a Herbicide to Selected Frog Species. Technical Series 79, Departement of Environmental Protection, Western Australia.
- Brühl C. A., Schmidt, T., Pieper, S., Alscher, A. (2012): Terrestrial pesticide exposure of amphibians: An underestimated eause of global decline? Nature Scientific Reports 3, Article number 1135
- Cauble, K., Wagner, R.S. (2005): Sublethal effects of the herbicide glyphosate on amphibian metamorphosis and development. Bulletin of Environmental Contamination and Toxicology 75, 429-435
- Dinehart, S.K., Smith, L.M., McMurry, S.T., Smith, P.N., Anderson, T.A., Haukos, D.A. (2010):

 Acute and chronic toxicity of Roundup WeatherMAX® and Ignite® 280 SL to larval Spea multiplicata and S. bombifrons from the Southern High Plains, USA. Environmental Pollution 158/8, 2610-2617
- Edge, C.B., Gahl, M.K., Pauli, B.D., Thompson, D.G., Houlahan, J.E. (2011): Exposure of juvenile green frogs (*Lithobates clamitans*) in littoral enclosures to a glyphosate-based herbicide. Ecotoxicology and Environmental Safety 74, 1363–1369
- Edginton, A.N., Sheridan, P.M., Stephenson, G.R., Thompson, D.G., Boermans, H.J. (2004): Comparative effects of pH and Vision (R) herbicide on two life stages of four anuran

- amphibian species. Environmental Toxicology and Chemistry 23/4, 815-822
- Howe, C.M., Berrill, M., Pauli, B.D., Helbing, C.C., Werry, K., Veldhoen, N.(2004):Toxicity of glyphosate-based pesticides to four North American frog species. Environmental Toxicology and Chemistry 23/8 1928-1938 OHIOT. and Chemistry 23/8, 1928-1938
- Jayawardena U.A., Navaratne A.N., Amerasinghe P.H., Rajakaruna R.S. (2011): Acute and chronic toxicity of four commonly used agricultural pesticides on the Asian commontoad, Buffee melanostictus Schneider. Journal of the National Science Foundation of Sri Lanka 39:267-276
- Jones, D.K., Hammond, J.I., Relyea, R.A. (2010): Roundup® and amphibians: The importance of concentration, application time, and stratification. Environmental Toxicology and Chemistry 29/9, 2016–2025
- Jones, D.K., Hammond, J.I., Relyea, R.A. 01.01.2011 Competitive stress can make the herbicide Roundup® more deadly to larval amphibians. Environmental Toxicology and Chemistry, 30/2, 446-454
- 30/2, 446-454

 Mann, R.M., Bidwell, J.R. (1999): The toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs . Archives of Environmental Contamination in de and Toxicology 36, 193-199
- Relyea, R.A. (2012): New effects of Roundup on amphibians: Predators reduce herbicide mortality; herbicides induce antipredator morphology. Ecological Applications 22/2, 634-647
- Thompson, D.G., Wojtaszek, B.F., Staznik, B., Chartrand, D.T., Stephenson, G.R. (2004): Chemical and biomonitoring to assess potential acute effects of Vision (R) herbicide on native amphibian larvae in forest wettands Environmental Toxicology and Chemistry 23/4, pp. 843–849
- Wojtaszek, B.F., Staznik, B., Chartrand, D.T., Stephenson, G.R., Thompson, D.G. (2004): Effects of Vision (R) herbicide on mortality, avoidance response, and growth of amphibian larvae in two forest wetlands. Environmental Toxicology and Chemistry, 23/4,832-842

B.9.13.11 Bees

For a detailed description and evaluation of acceptability and validity of the study please refer to Vol. 3, chapter B.9.4.

B.9.13.12 Effects on other arthropod species (KIIA 8.16)

For the group of terrestrial non-target arthropods (NTA), a database of 31 publications was collected by the notifier. The notifier considered none publications to be rated to be acceptable for risk assessment. The submitted publications were also evaluated by zRMS and have been assigned according to an UBA screening 1 studies were recognized as information with low weight (category UBA3) and 7 publications (Bueno et al., 2011; Benamu et al., 2010; Evans et al., 2010; Michalkova et al., 2009; Schier A., 2006, Renand et al., 2004; Santos et al., 2010) have been considered as supportive information (UBA2).

Glyphosate Renewal Group AIR 5 - July 2020

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Addison, P.J., Barker, G.M. (2006)

1 1 / 255	4 1 1.	2006	Tice	, e . ,		T . I .
glyphecotox_266	Addison,			ct of various pesticides on		Entomologia
	P.J., Barker,			target species Microctonus		Experimentalis Et
	G.M.			rodae, a biological contro		Applicata 119 (1):71-79
			agen	t of Listronotus bonariensis	S	20 m
						97.15
			R	Reliability		
Purpose of the study				Four experiments were co		
Description of endp	oints			effects of various pesticid		
				the pastoral environments	of L.	Bonariensis and M.
				hyperodae		6. 6. 9°
Test compound, app	olication procedur	re, exposi	ure	glyphosate (Roundup®, N	Monsan	to Co., St. Louis, MO,
period				USA), or the adjuvant Silv	wett 🕸	77m(Pulse, EI DuPont
				de Nemours and Co. Inc.,	Wilm	ington, DE, USA) were
				mixed with water according	ng to t	aeir label
				recommendations	1,07 0	
Experimental appro	ach, Statistics, tes	st		Field experiment	50.00	
environment					_k o ⁽⁰	
Test organisms				Microctonus hyperodae		
Biological effects				Silwett L-77, an organo-silicone copolymer penetrant and		
				surfactant, was the only treatment to significantly		
				increase Mb hyperodae mortality compared to that of the		
				water-treated controls. The herbicidal products had no		
				demonstrable effect.		
Relevance of the stu	ıdy for Environm			essment, appropriateness of	f study	endpoints
				ical Relevance		
1 Is an appropriate t					no	
2 Is the magnitude of	of effects of signi	ficance to	o caus	e a (population)	no	
relevant effect?			Q() X			
3 Is the ecotoxicolo	gical manifestation	on level a	ppgop	rate for the	no	
assessment?		NIN.)		
				nental Relevance		
1 Is the substance to	ested representativ	ve and ret	evant	for the substance	Comm	ercial product
being assessed?	Š	1,162,140				
2 Do the tested cond	centrations relate	to predict	ted en	nvironmental	nd	
	concentrations?					
3 Have parameters influencing the endpoints been			oeen c	considered adequately?	nd	
Concluding weight	t of evidence/pro	posed		Species are not relevant for central zone, no data		
action	ST MESO			presented for glyphosate		
Type of information	on (Critical, supp	porting, l	low	low weight		
weight)	O XII II					
Consideration/con	cluding score			UBA3		
	9,00					

Albajes et al. (2011)

glyphecotex_274	Albajes, R., Lumbierres, B., Pons, X.	2011	Albajes, F B., Pons,	R., Lumbierres, X.	Biological Control 59 (1):30-36. DOI 10.1016/j.biocontrol.2011.03.008.		
Reliability							
Furpose of the stud	Furpose of the study			The study aimed to compare arthropod densities in			
Description of endp	oints			GMcorn plots treated with a broad-spectrum			
				herbicide or with a conventional selective pre-			
			emergence treatment.				
Test compound, application, exposure, protocol				MON 78044 at 3 l/ha			

Experimental approach, Statistical design,	Field experiment Each year the nu	imber of predators				
test environment	Field experiment, Each year, the number of predators and main herbivore prey (leafhoppers, aphids and					
test environment	phytophagous thrips) were counted					
Test enconione		: ANOVA				
Test organisms	Orius spp., Nabis sp.					
Biological effects	Authors conclude that no significant heteropteran predator densities may from moderate alterations in weeds	nt changes in				
	heteropteran predator densities may	y be expected?				
	deployment of herbicide- tolerant of					
	that leafhoppers are probably the ho					
	most influences Orius spp. densitie	s in corn in our				
	study area.	0,0				
Relevance of the study for Environmental Risk Assessn	Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints					
	Relevance	7/10				
1 Is an appropriate test species/ life-stage(s) studied?						
2 Is the magnitude of effects of significance to cause a ((population) relevant effect?	no				
3 Is the ecotoxicological manifestation level appropriate	e for the assessment?	yes				
Environment	tal Relevance					
1 Is the substance tested representative and relevant for	the substance being assessed?	Commercial				
	200	product				
2 Do the tested concentrations relate to predicted enviro	nmental concentrations?	yes				
3 Have parameters influencing the endpoints been cons		nd				
Concluding weight of evidence/proposed action	no significant changes observed, G	M corn tested				
Type of information (Critical, supporting, low	lowweight					
weight)	20 21 80					
Consideration/concluding score	JUBA3					
	12 6					

Bueno et al. (2011)

	glyphecotox_305	Bueno, A.F., Bueno, R.C.O.F., Parra, J.R.P., Vieira, S.S.	2014 (C)	Effects of pesticides used in soybean crops to the egg parasitoid Trichogramma pretiosum	Ciencia Rural 38 (6):1495- 1503
		viena, s.s.	J	Reliability	
	Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protocol		herbici	esearch aimed to study the effects of difference des and fungicides on eggs, larvae and pup gramma pretiosum	
			glypho 1); millilit	sate 960 grams ha-1 (Gliz® 2000 milliliter sate 972 grams ha-1 (Roundup® Ready® 2 glyphosate 960 grams ha-1 (Roundup® Ters ha-1); glyphosate 960 grams ha-1 (Roundilliliters ha-1);	2000 milliliters haransorb® 1500
	Experimental approach, Statistical			tory: Cardboard squares (1cm2) with appro- ella eggs each were offered for 24 hours to iosum females in vials. Then, these cards we and kept until the time after parasitism was sents that were: 72 hours (eggs), 144 hours (upae) (MANZONI et al., 2007).	
	Test organisms Biological effects	Test organisms Biological effects		Trichogramma pretiosum glyphosate 960.0 (Gliz® and Roundup® Transorb®), was classified as harmless to all imature T. pretiosum stages.	
č	Relevance of the st	udy for Environmenta	al Risk Assessment, appropriateness of study endpoints		
				ella eggs each were offered for 24 hours to iosum females in vials. Then, these cards wand kept until the time after parasitism was sents that were: 72 hours (eggs), 144 hours (upae) (MANZONI et al., 2007). Igramma pretiosum State 960.0 (Gliz® and Roundup® Transorbaless to all imature T. pretiosum stages. Independent of the state of study endpo	
	Glyphosate Renewal Group) AIR 5 – July 2020		Doc ID: 110054-M	CA8_GRG_Rev 1_Jul_20/

	Biological Relevance	
1 Is an appropriate test species/ life-stage	e(s) studied?	yes
2 Is the magnitude of effects of biologica (population) relevant effect?	Reduction of parasitism viability comparared to the untreated was 100 for Roundup® Ready.	
3 Is the ecotoxicological manifestation leassessment?	evel appropriate for the	yes Qui
	Environmental Relevance	
1 Is the substance tested representative a substance being assessed?	Commercial products	
2 Do the tested concentrations relate to p concentrations?	yes S. O. O.	
3 Have parameters influencing the endpoadequately?	oints been considered	nd is it is
Concluding weight of		eady) 972 grams had were classified as
evidence/proposed action		eggs and harmless to the other parasitoid
		oundup@Original) was classified as
	slightly harmful for eggs a	nd harmless for pupae of the parasitoid.
Type of information (Critical, supporting, low weight)	supporting	
Consideration/concluding score	UBA2	\$ 8 %

Lipok, J. (2009)

				0, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,	
	glyphecotox_462	Lipok, J.	2009	Dual action of phosphonate herbicides in plants affected by herbixore-Model study on black bean aphid Aphis fabae rearing on broad bean Vicia	Ecotoxicology and Environmental Safety 72 (6):1701-1706. DOI 10.1016/j.ecoenv.2009.03.007.
				Reliability	1
	Purpose of the study Description of endp	oints	hert of b dev	paper describes the sensitivity of blackers as the nutrients and the influer road bean <i>V. faba</i> L. on the host planelopment of black aphid <i>A.fabae</i> . These of herbicides and presence of aphilits was also investigated.	ence of herbicide-treated plants nt choice and population e combined effect of sublethal
	Test compound, approcedure, exposure protocol	plication of the period of the	Eac. 1.5 pho proof form solu of the solution o	h of four tested compounds was student of the four tested compounds was student of 0.015 mM using two means of the sphonomethylglycine) was obtained students: from commercial Roundup® nulation by dissolving in water and retion to 1.5–2.0 with hydrochloric acres pure herbicide. Its structure and put and 31P NMR spectroscopy. The repillary electrophoresis was the same phosate standard obtained from Money.	eatment. Pure glyphosate (N-by the author via laboratory is 360 SL(Monsanto, MO,U SA) maintaining the pH of the id. This resulted incrystallisation urity were confirmed using 1H, etention ime of this substance is as the retention time of
	dogio	ach, Statistical	broa (Sco	experimental system was composed at bean <i>Vicia faba</i> (L.) plants and bla <i>opoli</i>). Two mean of herbicide applic direct introduction of the herbicide is examined.	of phosphonate herbicides, ackbean aphid <i>Aphis fabae</i> ation, namely standard spraying
25	Pest organisms			is fabae , Vicia faba	
	test environment Pest organisms Glyphosate Renewal Group	AIR 5 – July 2020			oc ID: 110054-MCA8_GRG_Rev 1_Jul_2

D: 1 : 1 cc :			. 1 2/1 1 12 24			
Biological effects		Reaction of aphids towards artificial diet supplement				
			insects, which were settled on the artificial diet supplemented with			
		glyphosate, tended to escape from the membranes or were dead at the second or fourth day of experiment. Studies on aphids cultured on artificial diet supplemented with herbicides revealed that application which decreased the number of aphids on treated plants, influence negatively the insect development most likely exhibiting weak insecticidal activity. The property of the membranes of were dead at the second or were dead				
		second or fourth day of experiment. Studies on aph	nds cultured on			
		artificial diet supplemented with herbicides reveale	d that application			
		which decreased the number of aphids on treated p	lants, influence			
		negatively the insect development most likely exhi	biting weak			
		insecticidal activity.	11/01			
Relevance of the st	udy for Environn	nental Risk Assessment, appropriateness of study en	dpoints S			
		Dibiogical Relevance	800			
1 Is an appropriate		stage(s) studied? yes				
2 Is the magnitude relevant effect?	of effects of biolo	ogical significance to cause a (population) nd				
3 Is the ecotoxicolo	gical	Authors state that the herbicides decreased the rate of growth and				
manifestation level	appropriate for					
the assessment?		weak insecticidal activity.				
		Environmental Relevance				
1 Is the substance to	ested representati	ve and relevant for the substance being assessed?	Active ingredient			
2 Do the tested con-	centrations relate	to predicted environmental concentrations 20	15, 1.5 and 0.015mM			
3 Have parameters	influencing the e	ndpoints been considered adequately?				
Concluding weigh	t of	Number of aphids accompanied with treated plants cannot be used for				
evidence/proposed	l action	risk assessment, no effects observed				
Type of information		low weight)				
supporting, low we		10 9 8				
Consideration/con	cluding score	UBA3				
Evans et al. (201	0)	low weight) UBA3 OF THE PROPERTY OF THE PROP				
glyphecotox_147	Evans, S.C.,	2010 Exposure to a glyphosate-based herbicide Ecotoxicolo				
	Shaw, E.M.,	affects agrobiont predatory arthropod	19: 1249-1257			
Ì	Rynstra	hehaviour and long-term survival	1			

Evans et al. (2010)

	glyphecotox_147	Evans, S.C., Shaw, E.M.,	2010 Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod	Ecotoxicology 19: 1249-1257
		Rypstra, A.L.	affects agrobiont predatory arthropod behaviour and long-term survival	
			Reliability	
	Purpose of the study Description of endpoints Test compound, application of procedure, exposure period, protocol Experimental approach, Statistical		Study quantifies the effects of a commercial formul glyphosate-based herbicide on the activity of three parthropod species that inhabit agricultural fields in the States. Authors measured the survival of the most contained to the survival of the survival of the most contained to the survival of the survival	predatory he eastern United ommon species.
			containing 41% (480 g/l) glyphosate (N-(phosphono isopropylamine salt and 59% other ingredients, incl polyethoxylated tallowamine (POEA) surfactant	omethyl)glycine) uding a
			We tested the reactions of the wolf spider, Pardosa milvina, to either direct application (topical) or contact with a treated substrate (residual). We quantified the reactions of a larger wolf spider, Hogna helluo, and a ground beetle, Scarites quadriceps, to a compound (topical plus residual) exposure.	
	Test organisms		wolf spider <i>Pardosa milvina</i> , wolf spider, <i>Hogna helluo</i> , ground beetle, <i>Scarites quadriceps</i> Exposure of terrestrial arthropods to glyphosate-based herbicides affects their behaviour and long-term survival.	
	Biological effects			
5,	Relevance of the st	udy for Environme	ntal Risk Assessment, appropriateness of study endpoi	nts
	gi.		direct application (topical) or contact with a treated (residual). We quantified the reactions of a larger w helluo, and a ground beetle, Scarites quadriceps, to (topical plus residual) exposure. wolf spider Pardosa milvina, wolf spider, Hogna he beetle, Scarites quadriceps Exposure of terrestrial arthropods to glyphosate-bas affects their behaviour and long-term survival. ntal Risk Assessment, appropriateness of study endpoint.	
	Glyphosate Renewal Group	AIR 5 – July 2020	Doc ID: 110054-MC	CA8_GRG_Rev 1_Jul_2

	Biological Relevance		
1 Is an appropriate test species/ life-stage(s) studied?	Pardosa spp.		
2 Is the magnitude of effects of	Results suggest that herbicides can affect arthropod community		
biological significance to cause a	dynamics separate from their impact on the plant community and		
(population) relevant effect?	may influence biological control in agroecosystems.		
3 Is the ecotoxicological	Activity metrics recorded,		
manifestation level appropriate for	E. 1. 2		
the assessment?	J. K.		
	Environmental Relevance		
1 Is the substance tested	commercially formulated product containing POEA		
representative and relevant for the	\$ 20.50°		
substance being assessed?	£ £ 5		
2 Do the tested concentrations relate	12 g/l of the glyphosate salt, higher than the expected drift rates		
to predicted environmental concentrations?			
3 Have parameters influencing the	Laboratory approach		
endpoints been considered			
adequately?	12, 4, 6,		
Concluding weight of	No endpoints on mortality. Tested concentrations higher thatn		
evidence/proposed action	expected drift rates. But authors demonstrate that arthropod predators		
	inhabiting agroecosystems around the world exhibit subtle shifts in		
	behaviour and reproduction during or after exposure to herbicide.		
Type of information (Critical,	supporting San		
supporting, low weight)	\$ \sqrt{\$\display}\$		
Consideration/concluding score	UBA2		

Griesinger et al. (2010)

	supporting, low weight)		0 40 G		
	Consideration/con	cluding score	UBA2		
l	Griesinger et al. (2010)			20 3 0	
	glyphecotox_148	Griesinger, L.M., Evans, S.C., Rypstra, A.L.		Effects of a glyphosate-based herbicide on mate location in a wolf spider that inhabits agroecosystems	Chemosphere 84: 1461 - 1466
		26.78	ilo.	Reliability	•
	Purpose of the study Description of endp		The aim formulat	of this study was to examine effects of a cition of a glyphosate-based herbicide on the	
	Test compound, application procedure, exposure period, protocol		Roundup®_ II Original. This herbicide is manufactured by Monsanto, St Louis, MO, USA (United States Patent US4528023). As provided, this herbicide contains 41% (480 g L_1) glyphosate (N-(phosphonomethyl)glycine) isopropylamine salt and 59% other ingredients, including a polyethoxylated tallowamine (POEA) surfactant. For the pitfall experiment, we diluted it with distilled water to a concentration of 2.5% (12 g L_1 of the glyphosate salt).		
	Experimental approach, Statistical design, test environment		applied 5 paper ins applied 0	periment, Pitfall experiment, In one pair of IL of either distilled water or herbicide solide the vial with the female. In another two 0.926 mL of either distilled water or herbicilter paper surrounding the cup.	olution to the filter vo treatments, we
	Testorganisms		wolf spider, Pardosa milvina		
£ .	Biological effects		Traps with herbicide on the filter paper inside with the female captured fewer males.		
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Glyphosate Renewal Group AIR 5 – July 2020			Doc ID: 110054-N	ICA8_GRG_Rev 1_Jul_202

Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints					
	Biological Relevance				
1 Is an appropriate test species/ life-stage(s) studied?	wolf spider, Pardosa milvina				
2 Is the magnitude of effects of biological significance to cause a (population) relevant effect?	Our experiments suggest that a commercial formulation of a glyphosate-based herbicide affects mate location in a wolf spider that is common in agroecosystems where these chemicals are routinely applied. however, the circumstances under which these effects influence population viability, community structure, and/or the food web remain to be explored				
3 Is the ecotoxicological manifestation level appropriate for the assessment?	Reduction of the efficacy of natural infochemicals important to mate location in <i>Pardosa milvina</i> has probably minor impact on population and communities of spiders.				
	Environmental Relevance				
1 Is the substance tested representative substance being assessed?	and relevant for the	Commercial product containing POEA			
2 Do the tested concentrations relate to concentrations?	predicted environmental	Drift rates are predicted to be lower.			
3 Have parameters influencing the endpadequately?	3 Have parameters influencing the endpoints been considered adequately?				
Concluding weight of evidence/proposed action	Behavioral study, with POFA containing product. Tested concentrations probably higher than drift rates.				
Type of information (Critical, supporting, low weight)	low weight				
Consideration/concluding score	UBA3				

Michalková, V., Pekár, S. (2009)

	supporting, low weight)				
	Consideration/con	cluding score	UBA3 CONTROL OF CONTRO		
	Michalková, V.,	Pekár, S. (2009)			
	glyphecotox_506	Michalková, V., Pekár, S.	2009 How glyphosate altered the behaviour of agrobiont spiders (Araneae: Lycosidae) and beetles (Coleoptera: Carabidae)	Biological Control 51 (3):444-449	
		4	D.11-1-114-		
	Purpose of the study Description of endp		Aim of the study was to assess the effect of the Rou		
	Test compound, application procedure, exposure period protocol		Roundup® Biaktiv (Monsanto; glyphosate, IPA 480 g l_1). The formulation wasdiluted in water using a rate (1:25) recommended for use in cereals. A piece (5 _ 5.5 cm) of the filter paper (Whatman 2R/80 g) wasdipped into the solution and gave rise to two different residues: freshand 1-day old, thepapers were rolled to form a tube and inserted into 10 ml glass tube. Inside of the paper roll a spider or a beetle was kept for 2 h to maximiseits contact with the residues.		
	design, test environment		Locomotory and reproductive behaviour of epigeic carabid beetles. Specimens of <i>Pardosa</i> Agricola (A. Lycosidae) and <i>Poecilus cupreus</i> (Coleoptera: Cara exposed for 2 h to the fresh and 1-day old residues Biaktiv (Monsanto, IPA 480 g/l).	spiders and raneae: abidae) were	
TO SO	Test organisms		Pardosa and Poecilus		
	ilyphosate Renewal Group	AIR 5 – July 2020	Doc ID: 110054-MC	A8_GRG_Rev 1_Jul_2020	

Biological effects	Capture and consumption of flies by <i>F</i>				
	between spiders exposed to any herbicide residues and the control				
	surface, Pardosa spiders ran slightly s				
	herbicide residues but the difference w				
	Poecilus beetles exposed to both types	of herbicide residues moved			
	Poecilus beetles exposed to both types significantly slower than those expose effects on avoidance and defence, no obehaviour.	d to the control surface, no			
	effects on avoidance and defence, no o	qualitative difference in mating			
		₩, 0			
Relevance of the study for Environmen	tal Risk Assessment, appropriateness of	study endpoints			
	Biological Relevance	50.00			
1 Is an appropriate test species/ life-	Pardosa and Poecilus are standard tes	t species in RA			
stage(s) studied?		20. 70			
2 Is the magnitude of effects of	Roundup® Bioaktiv thus appears to be	e harmless to lycosid spiders			
biological significance to cause a	and only slightly harmful to carabid be	eetles. The biological control			
(population) relevant effect?	potential of both predators should not	be reduced directly by the			
	application of Roundup® Bioaktiv.				
3 Is the ecotoxicological	nd 🙊	20,00			
manifestation level appropriate for	(S)	500			
the assessment?	10,00	_₹ © [™]			
	Environmental Relevance				
1 Is the substance tested representative	and relevant for the substance being	Commercial product			
assessed?		_			
2 Do the tested concentrations relate to	predicted environmental	Recommended in field rate			
concentrations?		was used.			
3 Have parameters influencing the endp	points been considered adequately?	nd			
Concluding weight of	Pardosa and Poecilus are standard tes	t species in RA, predation rate,			
evidence/proposed action	locomotion speed, avoidance, defence	and mating behavior nor			
	standard parameters. Biological contro	ol potential of the two species			
	should not be directly reduced following	ng herbicide application in the			
	field.				
Type of information (Critical,	supporting				
supporting, low weight)	10 10 15 15 15 15 15 15 15 15 15 15 15 15 15				
Consideration/concluding score	UBA2				
	S S S				

Schier, A. (2006)

	glyphecotox_595 Schiers A & Control of the state of the s	2006	Field study on the occurrence of ground beetles and spiders in genetically modified, herbicide tolerant corn in conventional and conservation tillage systems	Journal of Plant Diseases and Protection. Special Edition XX:101-113	
	Purpose of the study. Description of endpoints	weed cons stud	Reliability objective of this study was to analyse and condition and arthropod abundance of convention tillage methods under different herby was conducted between 2002 and 2005 on and up® Ready® (RR) corn.	tional and icide regimes. The	
8	Test compound, application procedure, exposure period, protocol Experimental approach, Statistical design,		MON 78044 (Glyphosate, 360g/l) , Roundup® Ready® field experimental design, Pitfall traps were used to survey populations of soil dwelling arthropods		
	Test organisms Biological effects	The	dwelling arthropods results of this multi year study indicate that the servation tillage and herbicide tolerant corn be indiversity		
STORY OF THE STORY	Glyphosate Renewal Group AIR 5 – July 2020		Doc ID: 110054-	MCA8_GRG_Rev 1_Jul_20:	

Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints					
	Biological Relevance				
1 Is an appropriate test species/ life-stage(s) studied?	soil dwelling arthropods				
2 Is the magnitude of effects of biological significance to cause a (population) relevant effect?	no Hydronia				
3 Is the ecotoxicological manifestation level appropriate for the assessment?	yes Elling Control of the control of				
	Environr	nental Relevance			
1 Is the substance tested representative and relevant for the substance being assessed?		Commercial product with unknown surfactant chemistry included. Therfore limited validity for other products and the active substance glyphosate itself.			
2 Do the tested concentrations relate to environmental concentrations?	predicted	Not stated.			
3 Have parameters influencing the endplushed been considered adequately?		Field study with climatic expremes and uncertainties.			
Concluding weight of evidence/proposed action	Field study with climatic extremes and uncertainties. The results of this multi year study indicate that total abundance of ground beetles and spiders were not affected due to reduced soil tillage combined with glyphosate treatment.				
Type of information (Critical, supporting, low weight)	supporting				
Consideration/concluding score	UBA2	10 6 70 80 C			

Ainsworth, N. (2003)

	supporting, low wo					
	Consideration/con	cluding score	UBA2			
	Ainsworth, N. (2	003)	S. I. II.	ion of herbicides		
	glyphecotox_272	Ainsworth, N.	with art	ion of herbicides hropod biocontrol or weed control	Techi	ontrol Science and nology 13 (6):547-570. Doi 80/0958315031000151819.
				iability	ı	
	Purpose of the study Description of endp	y oints		This literature revie		considers the direct toxic urfactants on biocontrol
	Test compound, appreriod, protocol	olication proceeds	re, exposure	nd		
	Experimental appro	ach Stanstical d	esign,	nd		
	test environment Test organisms			arthropods		
		nte had low if any	direct toxicity to several biocontrol agents (Ding et al.,			
		1998;Boo Searle et surfactan	ersma & Ireson, 1 al. (1990) reporte t was added.	999; Lindgren et al. , ed some toxicity to m	1999; ites, wl	Hayes, 2000b). However, hich increased when extra
	Relevance of the stu	ıdy for Environn		sment, appropriatenes	ss of stu	ady endpoints
	8 %			al Relevance		
	1 Is an appropriate					nd 1
	10° 00′ CC 40	of effects of block	ogical significance	e to cause a (population	on)	nd
	3 Is the ecotoxicolo	gical manifestati	on level appropria	ate for the assessment	? 1	nd
Son						
	Glyphosate Renewal Group	AIR 5 – July 2020			Doc ID	: 110054-MCA8_GRG_Rev 1_Jul_202

Environmental Relevance							
1 Is the substance tested representative assessed?	nd	_{ii} o ⁶					
2 Do the tested concentrations relate to concentrations?	nd	Jill of					
3 Have parameters influencing the en	dpoints been considered adequately?	nd	40				
Concluding weight of evidence/proposed action	No information relevant for risk assess	sment	11. 2. 1. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.				
Type of information (Critical, supporting, low weight)	low weight		20, 10, 09, 10,				
Consideration/concluding score	UBA3	8	16/10				

Renaud et al. (2004)

glyphecotox_57	Renaud, A., Poinsot-Balague N., Cortet, J., L Petit, J.	er, p	practice	e of four soil maintenance s on Collembola nities in a Mediterranean	Pedobiologia 48 (5-6):623-630
		Reli	iability	STA STA	
Purpose of the stud	1v			gence herbicide with glyphos	rate: (h)
Description of end		nostemergence a	and nre-e	emergence herbicides with gl	vnhosate
Bescription of the	points	terbuthylazine. d	liuron ar	nd oryzalin; (c) natural flora a	and (d) tillage to a
		depth of 10–15 ci	m was s		and (a) timings to a
Test compound, ar	plication	Not stated	m was s		
procedure, exposur			OCAL		
protocol	1	The state of	~0 ~		
Experimental appr	oach, Statistical	Vineyard called	"le Don	naine de Donadille" situated	at Rodilhan, The
design,	,			th 15-20 year old Syrah varie	
test environment				ook place between December	
				aken in summer due to droug	
	1	sampling date, si	ix soil sa	amples were taken from the c	entral inter-row
	, d	space of each tre			
Test organisms	- 6 ² 3	Collembola			
Biological effects		The postemerger	nce herb	oicide glyphosate treatment pr	actice and the
		natural flora prac	ctice pra	ctice favoured the developme	ent of epigeic and
	· S & S	hemiedaphic spe	ecies,due	e to preservation of the weed	cover. C.
	St. 25	delitite diate direct		us were favoured in tillage pr	
Relevance of the s	tudy for Environm	ental Risk Assess	sment, ap	opropriateness of study endpo	oints
	8 5 5	Biologica	l Releva	ance	
1 Is an appropriate	test species/ life-s			bundance and species diversi	ty were assessed.
2 Is the magnitude					•
cause a (population					
3 Is the ecotoxicol		on level appropria	ite ye	es	
for the assessment	?	** *			
OF TO		Environmer	ntal Rel	evance	
1 Is the substance substance being as				Probably commercial produ	et, no information
2 Do the tested con		to predicted		Glyphosate (15 l /ha)	
environmental con					
3 Have parameters	influencing the en	ndpoints been		Wheatear and rainfall influ	ence was discussed
& Considered adequa	tely?				
3 Have parameters considered adequa Concluding weigl evidence/propose Glyphosate Renewal Grou	nt of			ghest in natural flora practice	
			gence he	erbicide. Glyphosate treatmer	it weed cover was
evidence/propose	a action	preserved.			

Type of information (Critical, supporting, low weight)	supporting
Consideration/concluding score	UBA2

Wrinn et al. (2012)

churhocotor (50 Winn 2012 Brodeton and an Chamagahan dai							
glyphecotox_650	Wrinn,	2012	Predator of	cues and an	Chemosphere. doi:		
	K.M.,		herbicide		10.1016/j.chemosphere 2041.12.030.		
	Evans, S.C.,		activity an	ıd	%. O %		
	Rypstra,		emigration	n in an	2 20:30		
	A.L.	agrobiont wolf		wolf spider			
	l	l.	Relia	bility	10.1016/j.chemosphere 2011.12.030.		
Purpose of the study Exploration how Buc					common herbicide similar to Round-		
Description of endp					ffected the interactions between		
			predators.	,,	ON TO SO		
Test compound, ap	plication B	uccanee	rPlus, also k	nown as Round	dup® II original, created by the		
procedure, exposur					ouri USA (United States Patent		
protocol	U	S45280	23). This her	bicide contain	the active ingredient glyphosate (480 g		
	L	_1) in th	ne form of iso	opropylamine s	salt, and an added polyethoxylated		
	ta	llowam	ine (POEA)	surfactant dilu	ted it to 2.5%, which was within the		
	m	anufact	urer's recom	mendedTevels	of 0.625–5%, spray rate of 127.4 mL		
					ate), which was the minimum necessary		
	to	gain a	complete and	l uniform cove	rage of the areas for the laboratory		
container with filter paper.							
Experimental appro					d after herbicide application in the field,		
Statistical design,					til 2 months after the date of last		
test environment	he	erbicide	application.	Laboratory are	ena for exposing Pardosa milvina to		
		herbicide and/or predator cues. Filter paper pieces with herbicide or water					
				se with predator cues (Hogna helluo or Scarites			
			es) or blank p				
Test organisms					nts was Pardosa milvina (Araneae:		
	L	ycosida	e), a numerio	ally dominant,	epigeal generalist arthropod predator in		
					North America		
Biological effects					decrease in movement by P. milvina.		
					one decreased movement, S. quadriceps		
7.1					n combined with herbicide.		
Relevance of the st		mental I			teness of study endpoints		
	1,18,10,0,			Relevance			
1 Is an appropriate	test species/life	-stage(s) studied?		Pardosa milvina		
2 Is the magnitude		logical s	significance 1	to cause a	nd		
(population) relevan							
3 Is the ecotoxicolo	gical manifesta	tion leve	el appropriate	e for the	nd		
assessment?	.5						
200,	>			tal Relevance			
1 Is the substance to		tive and	relevant	Commercial 1	product with POEA		
for the substance be							
2 Do the tested con		e to pre	dicted	Tested concentration probably higher than the			
environmental cond	entrations?				t rate. application rate was higher than		
3 Have parameters influencing the endpoints been					ould likely be found in a real situation		
3 Have parameters considered adequat	influencing the ely?	endpoin	ts been	spray rate was not properly controlled			
Concluding weigh	t of evidence/pi	roposed	action	Authors conc	lude that predation risk andmherbicide		
	•	-			kely interact to affect the movement of a		
				major arthropod predator.			
Type of information	on (Critical, su	pportin	g, low	low weight			
weight)							

Consideration/concluding score	UBA3

Benamu et al. (2010)

glyphecotox_146	Benamu, N	1 A 2	010	Effects	of the herbicide glyphosate	Chemosphere 78		
glyphecotox_140	Schneider,	1.7.,	010		gical attributes of Alpaida	(7):871-6.		
	M.I., Sancl	nez.			(Araneae, Araneidae), in	(1).011 00		
	N.E.	icz,		laborate		(7):871-6.		
					•	~ () v()		
D C.1 . 1		TEI		Reliability ose of this study was to address the effects of glyphosate on some				
Purpose of the stud		The purp	oose o	f this stud	y was to address the effects of	glyphosate on some		
Description of endp					4. veniliae, in laboratory.	Donner Ainer		
Test compound, app					(48% glyphosate, Gleba SA), toxicity bioassays. Fresh solut			
procedure, exposure protocol	e period,				istered nominal concentration			
Experimental appro	nach				using acetone (Analytical Gr			
Statistical design,	Jacii,	accure th	is were	prepared	f herbicide solution, consider	ing that spiders avoid		
test environment					he exposure route was by inge			
test environment		treated n	rev" a	ind the ch	ronic toxicity was analyzed. T	he prev (M. domestica		
					ipping during 20's according t			
					fume cupboard.	0 201111011001 01 1111		
Test organisms					aida venilige (Araneae, Arane	idae) is one of the most		
1 tot organisms					er spiders of Argentinia.	iduo) is one or the most		
Biological effects		Results	of this	study she	wed no lethal direct effects of	f Glifoglex on this		
		spider, b	out it is	the first	report in literature about suble	ethal effects of this		
		herbicid	picide on a spider's biological attributes. Negative effects on prey					
					ing, fecundity, fertility and de			
			were observed.					
Relevance of the st	udy for Envir	onmental	Risk@	Assessme	nt, appropriateness of study er	ıdpoints		
			Big	logical R	elevance			
1 Is an appropriate	test	web wea	veresp	piders of A	Argentinia			
species/life-stage(s			Jil si	7.				
2 Is the magnitude	of effects	Subletha	il effec	cts of glyp	phosate in the laboratory on pr	ey consumption, web		
of biological signifi					ility and developmental time of			
cause a (population					y fed will be affected in their s			
effect?	,0	fertility,			al populations of this spider w			
appropriate for the		<u>affected</u>			o grow and persist in natural o			
3 Is the ecotoxicolo	ogical . & Joseph	prey con			building, fecundity, fertility a			
manifestation level	EL MIE	of proge	ny we	re analyse	ed, no lethal or reproductive en	idpoint.		
appropriate for the	Sical Sign							
assessment?	ogical . Silver	1	E		Delegen			
1 Is the substant to	Ot of names of	tativa and			Relevance			
1 Is the substance to the substance being		nanve and	a reiev	ant ior	Commercial product			
2 Do the tested con		late to pro	dictor	1	In Off field expected drift v	values are lower		
environmental con	centrations?	iaie io pre	Laicie	ı	in On held expected drift V	arues are lower.		
		ne endnois	nte ha	<u></u>	Deficiencies are discussed	narameter (cublethal		
3 Have parameters influencing the endpoin considered adequately?			nts Det	nts been Deficiencies are discussed, parameter (sublethal effects)not reliable for RA, argentinian species.				
Concluding weigh			Ant	Authors conclude that sublethal effects are relevant from an				
evidence/proposed				ecological point of view, since the reduction of the arthropod				
and the proposed					may create risks to arthropod			
				conservation in agroecosystems.				
Type of information	on (Critical,		_	porting	· ·			
supporting, low w								
Consideration/con		e	UB	42				
	-							

Castilla et al. (2010)

glyphecotox 311	Castilla,	A M	2010	Nitratas	and Herbicides	Bulletin of Environmental	
glyphecotox_311	Dauwe, T.,		2010		ligher Mortality	Contamination and	
					agner Mortanty Traditional	Taxiaalagy 94 (1):101 162	
	Mora, I.,				Fertilizers on the	Toxicology 84 (1):101-105. DOI 10.1007/s00128-009-	
	Malone, J.,					9883-5.	
	Guitart,	K.			eetle, Tenebrio	9883-5.	
				molitor	1*4		
D C.1 . 1		L rest	. 1 1	Reliabi			
Purpose of the stud						y of adult beetles (Tenebrio	
Description of endp	ooints	and 2,4		f under dif	ferent pesticide treatme	nts (a mixture of glyphosate	
Test compound, app	olication	Mixtur	e of two	types of h	erbicides: 1 L of the iso	propylamine salt of	
procedure, exposure						p/v (360 g/L), and 100 cm3	
protocol	1 /				in 4 L of water.		
Experimental appro	ach.	Beetles	were pla	aced in ma	mufactured soft alumini	uncopen boxes (16 9 11 9 3	
Statistics, test environment cm).				o [©]			
Test organisms		Grain Beetle, Tenebrio molitor					
Biological effects						ce the individual effect of	
				to the insec			
Relevance of the st	udy for Env	ironmer	tal Risk	Assessme	nt, appropriateness of st	udy endpoints	
			Bio	ological R	elevance S		
1 Is an appropriate	test species	/ life-sta	ge(s) stu	died?		nd	
					cause a (population)	nd	
relevant effect?				ŏ	r light		
3 Is the ecotoxicolo	gical mani	festation	level app	oropriate f	or the assessment?	The individual effect s of	
					each herbicide to the insect		
		restation level appropriate for the assessment.			cannot be assigned.		
			Envig	onmental	Relevance		
1 Is the substance to assessed?	ested repres	sentative	and rele	vant for th	e substance being	nd	
2 Do the tested con-	centrations	relate to	predicte	denviron	nental	nd	
concentrations?			3,12 °				
3 Have parameters	3 Have parameters influencing the endpoints been considered adequately?						
Concluding weigh						ficiencies in test design,	
		8,19				5 ·	
Type of information	on (Critica	d. suppo	rting, lo	w	low weight		
weight)	il.	of to			- · · · · g		
Consideration/con	cluding sc	ore			UBA3		
	1000	(F)					
3.6 6							

Bernard et al. (2010)

glyphecotox_296	Bernard, M.B., 2010		Reducing the Impact of Pesticides	Journal of		
72,70	Cole, P.,		on Biological Control in	Economic		
OK. 18	Kobelt, A.,		Australian Vineyards: Pesticide	Entomology 103		
10%	Horne, P.A.,		Mortality and Fecundity Effects	(6):2061-2071. Doi		
	Altmann, J.,		on an Indicator Species, the	10.1603/Ec09357.		
	Wratten, S.D.,		Predatory Mite Euseius			
ie ot	Yen. A.L.		victoriensis (Acari: Phytoseiidae)			
			Reliability			
Purpose of the study	/ Labora	tory bioa	assays on detached soybean, Glycine ma	x (L.) Merr., leaves		
Description of endpoints were used to test pesticides on a			st pesticides on a key Australian predato	ry mite species		
Euseius victoriensis (Womersley) in "worst-case scenario" direct overspra				rio" direct overspray		
	assays					

Test compound, application	Glyphosate (360 g/liter) Roundup® (Nufarm Australia) 2.187 g /L in 400 ml							
procedure, exposure period,								
protocol								
Experimental approach,	Zero- to 48-h-old juveniles, their initial food, and water supply were sprayed							
Statistics, test environment	to runoff with a Potter tower; Cumulative mortality was assessed 48 h, 4 d,							
	to runoff with a Potter tower; Cumulative mortality was assessed 48 h, 4 d, and 7 d after spraying., Fecundity was assessed for 7 d from start of oviposition							
	oviposition Fig.							
Test organisms	Euseius victoriensis							
Biological effects	Glyphosate had no signibcant effects on mortality (Tukey b; Table 2) or							
	fecundity (F_1.6285; df_6, 20; P_0.191; Table 2) compared with the control							
Relevance of the study for Env	rironmental Risk Assessment, appropriateness of study endpoints							
	Biological Relevance							
1 Is an appropriate test species.	/ life-stage(s) studied? Australien mite							
2 Is the magnitude of effects of	f biological significance to cause a No effects of							
(population) relevant effect?								
3 Is the ecotoxicological manif	Sestation level appropriate for the							
assessment?	£ 2 6 6							
	Environmental Relevance							
1 Is the substance tested repres	entative and relevant for the substance being Commercial product							
assessed?								
2 Do the tested concentrations	relate to predicted environmental							
concentrations?								
3 Have parameters influencing	3 Have parameters influencing the endpoints been considered adequately?							
Concluding weight of evidence/proposed action Test species not relevant for Europe, no effects detected								
Type of information (Critical	Type of information (Critical, supporting, low low weight							
weight)								
Consideration/concluding sco	Consideration/concluding score (BA3)							

Santos et al. (2010)

	glyphecotox_591	Santos, M Soares, A.M.V.M Loureiro	1., 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Joint effects of three plant protection products to the terrestrial isopod Porcellionides pruinosus and the collembolan Folsomia candida	Chemosphere 80 (9):1021-1030.
		7,16		Reliability	
	Purpose of the study Description of endp	oints it	Determination of P. pruinosus predict the response conceptual mode	of the effects of 3 products on the avoid and in the reproductive output of F. coonse patterns for mixture exposures usels for the two test-species.	andida; secondly to
	Test compound, appropriate procedure, exposure protocol	dication period,	Commercial for contains glyphot 42.5%)), The no	mulations: (ROUNDUP®_ with 360 g sate-isopropylammonium (45%), surfa ominal concentrations: 0.5 to 54.5 mg l riment and between 0.1 andm 2mg kg_	sctant (16%) and water kg_1 dry soil in the
Stop of the state	Experimental appro Statistics, test enviro	ach, onment	methodology by plastic box (14.3 with the control number of anim registered. The	ests conducted with <i>P. pruinosus</i> were a Loureiro et al. (2005), consisting in e a cm _ 9.3 cm _ 4.7 cm height) divided soil and the other with the test soil. At als in each side of the test-box was contained as performed accordingly to the	xposing 10 isopods in a d in two sections, one fter 24 and 48 h the unted and mortality was action test with the
20 kg 10 kg	Glyphosate Renewal Group	AIR 5 – July	2020	Doc ID: 110	054-MCA8_GRG_Rev 1_Jul_202

T	1	1 . 1	1 11 1 1 1 1 1					
Test organisms		terrestrial isopod <i>Porcellionides pruinosus</i> and the collembolan <i>Folsomia</i>						
5111110	candida Miguel J.							
Biological effects		The exposure resulted in a clear avoidance response in the higher						
	concentrations (/3% avoidar	concentrations (73% avoidance at 17.4 mg kg_1) although a small decrease in the degree of avoidance response was reflected in the highest concentration EC ₅₀ values (mg kg_1 dry soil) and 95% confidence intervals (CI) for the						
	the degree of avoidance resp	onse was reflected	in the highest concentration					
	EC ₅₀ values (mg kg_1 dry so	11) and 95% confid	ience intervals (CI) for the					
			e output of Folsomia candida					
			kg_1 dry soil (0.18–0.48) For					
	the effect of single exposure		LUFA 2.2 soil telea C50 = 40					
	mg /kg dry soil	osed for 48 if oil L	LUFA 2.2 soil tell ACSU – 40					
Dalaman Salaman In Com			Sat 1 - 10 1 S 2					
Relevance of the study for E	nvironmental Risk Assessment,	* * *	study endpoints					
	Biological Rele		0 8 5					
1 Is an appropriate test speci	es/ life-stage(s) studied?		Yes, standard test species					
2 Is the magnitude of effects (population) relevant effect?	s of biological significance to cau nifestation level appropriate for Environmental R resentative and relevant for the	ise a						
3 Is the ecotoxicological ma	nifestation level appropriate for	he assessment?	nd o					
	Environmental R	elevance	000					
1 Is the substance tested rep	resentative and relevant for the	The conclusion	from this study is only valid					
substance being assessed?		for glyphosate	formulations that contain					
		POEA, S						
2 Do the tested concentration		0,33 mg/kg dry	y soil corresponding to					
environmental concentration	ns?		250 g /ha in the top 5 cm soil					
			soil corresponding to					
	(A)	approximately	30kg/ha					
3 Have parameters influenci	ng the endpoints been	and						
considered adequatery:								
Concluding weight of evidence/proposed action & R ₅₀ reproduction at approx.12xPEC								
	ence/proposed action	C_{50} for avoidance	at approx 10xPEC					
Type of information (Criti weight)	cal, supporting, low 🖔 🐇 🛭 s	upporting						
Consideration/concluding		IBA2						
	31 34 33							

B.9.13 12.1 Summary of the relevant literature on on other arthropod species

For the group of terrestrial non-target arthropods (NTA), a database of 31 publications was collected by the notifier. The notifier considered none of the publication as acceptable for risk assessment. The submitted publications were also evaluated by RMS and have been assigned according to an UBA screening (please refer for detailed description to the document on the Evaluation of peer-reviewed literature regarding ecotoxicity). From this screening, 11 studies were recognized as information with low weight (category UBA3) and 7 publications (Bueno et al., 2011; Benamu et al., 2010; Evans et al., 2010; Michalkova et al., 2009; Schier, 2006, Renaud et al., 2004; Santos et al., 2010) have been considered as supporting information (UBA2).

Indirect effects on beneficial arthropod communities take place within treated areas and are principally due to vegetation changes subsequent to herbicide application. These vegetation changes, mainly decompostion of plant cover, might result in a drastic reduction of the habitats of beneficial and other non-target arthropod communities and a loss of their refuges from predators. In a multiyear study using pitfall trapping to collect without the use of glyphosate is not practiced, due to the upcoming weed pressure on when collembolan populations were assessed in field plot experiments in Mediterranean vineyards (Renaud et al., 2004) the result suggested apparently that plant protection products containing glyphosate. favored the occurrence of epigeic and hemiedaphic species due to the preservation of decaying organic material on the soil surface compared to tillage practice. RMS considers it misleading to confuse the effects of tillage practice vs. non-tillage practice with the effects of an application of glyphosate without proper negative control. In a laboratory study it could be shown that reproductive capacity of the collembolan species Folsomia candida was not influenced by the application of glyphosate containing plant projection product when applied at relevant environmental concentrations (Santos et al., 2010).

Arthropods in their natural environment can be exposed directly to pesticides after the application due to residues on food or due to contact with contaminated surfaces (such as plants, soil, surrounding substrate).

Risk analysis is currently based on so called beneficial arthropods which are important in the biological control of agronomic pests, typically through predation or parasitism including beetles, mites, wasp and spider. Tests are performed on glass plates or on extended laboratory tests with a 2 dimensional exposure on leaf substrates testing the formulated product for the determination of the median lethal dose (LD50) and/or median effect on reproduction. Thereby test species were selected more for practical reasons because of their utility in agricultural production and feasibility in experimental setups than on the basis of their ecological relevance. At the same time effects on various developmental stages of arthropods, physiology, and behavior or prey consumption are not given consideration in traditional risk assessment. Bueno et al., (2011) could show that glyphosate containing products can be harmfull towards egg stages of Trichogramma, whereas at other parasitoid stages the same product was harmless. Sublethal effects of glyphosate were assessed in the laboratory on prey consumption, web building, fecundity, fertility and developmental time of progeny of a web weaver spider (Apaida veniliae) in Argentina (Benamu et al., 2010) and on wolf spiders in north America (Evans et al. 2010). The authors concluded that the exposure to glyphosate containing products affects the behavior of the animals and their capacity to grow and persist in agroecosystems. In contrast, short term exposures (2h and one-day residues) of spiders and carabid beetles, respectively Pardosa agricola and Poecilus cupreus, did not affect mating or avoidance of the arthorpods, but (only) slightly slower movement (Michalkova et al., 2009).

These effects together with the indirect effects of herbicide treatment on the vegetation of their habitat receive less attention even though they might have implications for the success of survival and reproduction.

References

- Benamu, M.A., Schneider, M.I., Sanchez, N.E.; Effects of the herbicide glyphosate on biological attributes of *Alpaida vendiae* (Araneae, Araneidae), in laboratory (2010): Chemosphere 78/7, 871-6. DOI: 10.1016/j.chemosphere.2009.11.027.
- Bueno, A.F., Bueno, R.C.O.F., Parra, J.R.P., Vieira, S.S. (2008): Effects of pesticides used in soybean crops to the egg parasitoid *Trichogramma pretiosum*. Ciencia Rural 38/6, 1495-1503
- Evans, S.C., Shaw, E.M., Rypstra, A.L. (2010): Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology 19, 1249-125
- Michalková, V., Pekár, S. (2009): How glyphosate altered the behaviour of agrobiont spiders (Araneae: Eycosidae) and beetles (Coleoptera: Carabidae). Biological Control 51/3, 444-449
- Renaud, A., Poinsot-Balaguer, N., Cortet, J., Le Petit, J.(2004): Influence of four soil maintenance practices on Collembola communities in a Mediterranean vineyard. Pedobiologia 48/5-6, 623-630. DOI 10.1016/j.pedobi.2004.07.002.
- Santos, M.J.G., Morgado, R., Ferreira, N.G.C., Soares, A.M.V.M., Loureiro, S.(2011): Evaluation of the joint effect of glyphosate and dimethoate using a small-scale terrestrial ecosystem.

Ecotoxicology and Environmental Safety 74/7, 1994-2001. DOI: 10.1016/j.ecoenv.2011.06.003.

Schier, A. (2006): Field study on the occurrence of ground beetles and spiders in genetically modified, herbicide tolerant corn in conventional and a second spiders. herbicide tolerant corn in conventional and conservation tillage systems. Journal of Plant Diseases and Protection. Special Edition XX:101-113

B.9.13.13 Effects on earthworms

Among soill organisms, eathworms are standard organisms in the ERA as the have application for formation and maintenance of fertile soils. Besides laboratory studies submitted for the application for

formation and maintenance of fertile soils. Besides laboratory studies submitted for the application for Renewal of Approval (AIR 2) following international guidelines, additional 21/references "open literature" has been submitted dealing with soil organsims in gerneral. Within these references 5 studies (Casabe et al., 2007; Correia et al., 2012; Kaneda et al., 2009; Verrel et al., 2004 and Yasmin et al., 2003) focusing on earthworms have been considered to represent supporting information for risk assessment.

Kaneda et al. (2009)

	glyphecotox_419	Kaneda, S., Okano, S., Urashima, Y., Murakami, T., Nakajima, M.	2009	Effects of herbicides, glyphosate, on density and casting activity of earthworm, Pheretima (Amynthas) carnosus	Japanese Journal of Soil Science and Plant Nutrition 80:469-476, inc. English translation
			Reli	ability	
	Purpose of the stud			ects of herbicide application	
	Description of endp			weight of earthworms were	
	exposure period, pr	plication procedure, otocol	21 10 0	® (ingredient: 41% glyphosa	
	Experimental appro	ach Color Co	herbicide	was applied several years, T	he pplication amount was
	Statistical design,	27/	\$0,33 L of	a 100-fold dilution per squar	
	test environment	k (0) (5)	bythe ma	nufacturer, throughout the tes	
		A OF ST	The relat	onship between the earthwor	
		201.16	cimple li	f castings produced on the su near regression	rrace was evaluated via
	Test organisms	udy for Environmental 1	Phorotim	a (Amynthas) carnosus	
	Biological effects		It is cons	dered that herbicide application	ion in no-tillage field did
	Biological circus	18 10° 60'	not direct	ly affect the mortality and be	
			(Amynthas) carnosus, but instead affected the casting production		
		ON THE TO	rate indirectly via changes in soil moisture and litter amount.		
	Relevance of the	udy for Environmental I	Risk Assess	ment, appropriateness of stud	ly endpoints
	× , 3	(\$ 60°	Biologica	l Relevance	
		test species/ life-stage(s			yes
		of effects of biological s			yes
		ant effect able to cause			
	gana indivation ve	ogical manifestation leve apical endpoints like gro		te for the assessment, e.g. oduction?	yes
				ıtal Relevance	
	1 Is the substance to assessed?	ested representative and	relevant fo	r the substance being	The conclusion from this study is only valid for
n X					glyphosate formulations that contain POEA
S	2 Do the tested con-	centrations relate to mea	asured or pr	edicted environmental	yes
Xis 3	concentrations (if a				
10 9	3 Have parameters		ts been con	sidered adequately (e.g.	nd
it of	pH, temperature, lig	ght conditions)?			
100 00 00 00 00 00 00 00 00 00 00 00 00	lyphosate Renewal Group	o AIR 5 – July 2020		Doc ID:	110054-MCA8_GRG_Rev 1_Jul_20

M-CA, Section 8 Page 747 of 847

Concluding weight of evidence/proposed action	Not considered because of deficiencies in translation	
Type of information (Critical, supporting, low weight)	low weight	diio
Consideration/concluding score	UBA3	2 July

Casabe et al. (2007)

	-L	Caraba N. D. I	2007	100 4 9		40.60.3
	glyphecotox_309	Casabe, N., Piola,	2007			nal of Soils and
		L., Fuchs, J.,		Assessn	nent of the Sedi	ments 7 (4):232-
		Oneto, M.L.,		Effects	of Glyphosate 2392	DOI
		Pamparato, L.,		and Ch	lorpyrifos in 4 10.1	065/jss2007.04.224.
		Basack, S.,		an Arg	entine Soya 👸 🎉 🎇	
		Gimenez, R.,		Field	20 10 11h	
		Massaro, R., Papa,			CH 20 Q	
		J.C., Kesten, E.			of Glyphosate description of Glyphosate description in the control of the control	
			R	eliability	0,000	
	Purpose of the stud				rmed field-laboratory s	
	Description of end	points			wa field sprayed with g	
				chlorpyrifos	nder controlled condition	ons. GLY reduced
				cocoon viabili	ty, decreasing the numl	per of juveniles.
					thworms avoided soils	
					n in the feeding activity	under laboratory
				and field cond		
		plication procedure, exp	osure	Roundup® 14	40 g a.s./ha, inc. analyt	ic
	period, protocol			of it of		
	Experimental appro	oach	15 15 15 15 15 15 15 15 15 15 15 15 15 1	In laboratory a	assays, Eisenia fetida A	
	Statistical design,		202	to soil sample	s (0–10 cm depth) colle	ected between the
	test environment			dows of soya.	Endpoints linked to bel	navior and
				biological acti	vity (reproduction, avo	
		, C	5 10 15	bait-lamina tes	sts) and cellular/subcell	ular assays (Neutral
		ci),	The str	Red Retention	Time - NRRT; DNA	damage – Comet
		(B) (S)	, o	assay) were te	sted.	
	Test organisms	JO GILLO		Eisenia fetida	Andrei	
	Biological effects	61.89.10		behavior and b	piological activity (repr	oduction, avoidance
		and Hill Mr.			pait-lamina tests) and co	
					al Red Retention Time -	
					net assay) were tested.	·
	Relevance of the st	udy for Environmental	Risk Asse	essment, approp	riateness of study endp	oints
		CIL'NO O		ical Relevance	, 1	
	1 Is an appropriate	test species/ life-stage(s				yes
	2 Is the magnitude	of effects of biological	significar	nce e g is a ver	v small statistically	nd
	significant effect a	ole to cause a (population	on) releva	nt effect?	y sinan sacistically	na -
		gical manifestation lev			essment?	yes
	2 is the sectorigate			nental Relevan		1 , 55
	1 Is the substance t	ested representative and			The conclusion from	this study is only
	2.0	10	. i Cic vailt	101 the	valid for glyphosate	
	substance being ass				contain POEA	ormulations that
	2 Dothested con	centrations relate to me	asured or	nredicted	yes	
	environmental con	centrations (if available)		predicted	yes	
	3 Have parameters	influencing the endpoir		onsidered	Ves	
	(e.g. nH temperatu	re, light conditions)?	ns occii C	onsidered	yes	
× 2	Concluding weigh	t of evidence		Detailed stud	y, will be considered.	
Sin S	Concluding weigh	t of evidence		Detailed stud	y, will be considered.	
75° 7°	Type of info (Crit	ical, supporting, low v	voight)	supporting		
ile al.	Type of mio. (Cit	ical, supporting, low v	veight)	supporting		
Solo On Solo O	L			I		
ig in the						
83,187.						
70010.	lumbocate Dono1 C	AID 5 July 2020			Dec ID: 110054 3	ACAR GDG David Int 200
40,01	Glyphosate Renewal Group	JAIN 3 – July 2020			DOC 1D: 110034-N	MCA8_GRG_Rev 1_Jul_202
11 10						
v						

Consideration/concluding score	UBA2

Correia, F.V., Moreira, J.C. (2010)

-ll4 171	Camaia EV	2010	Effects of almost and	Rull	
glyphecotox_171	Correia, F.V.,	2010	Effects of glyphosate	Dun.	
	Moreira, J.C.		and 2,4-D on	Environ.Contam.Toxicol.	
			earthworms (Eisenia	DOI10.1007/s00128-010-	
			foetida) in laboratory	0089-7	
		D	tests	0089-7	
D C.1 . 1		Ke	liability	~ ~ ~O	
Purpose of the stud			Long-term exposure (56 da	ys) to soil contaminated	
Description of endp	points		with glyphosate demonstrat	ded a toxic effect on normal	
			development and reproduct		
				e may have significant toxic	
			effects on soil biota.	great Date of the state of the	
			Study describes results of a	356d Reproduction test with	
			Eisenia fetida Andrei, Eartl		
			treated soil were classified		
			but showed gradual and sig	nificant reduction in mean	
TD 4 1	1: 1		weight (50%) at all test con	centrations.	
	plication procedure, expos	ure	Glyphosate 99,7% from SIG	JMA Aldrich	
period, protocol	1.		1 10 100 500 1000 "		
Experimental appro	oach		1, 10, 100, 500, 1000 mg/kg		
Statistical design,			SOUNT TO DO THE		
test environment			Soil representative for Brazil		
Test organisms		- 26	Eisenia foetida		
Biological effects			Morphological abnormalities like elevating the body, soiling, and curling were observed in all specimens		
		S. 12.	exposed to the highest concentrations of glyphosate		
	٠,٠	in to the	(1000 mg/kg).		
Palayanaa of the st	udy for Environmental Die	P Acas	ssment, appropriateness of stu	adv andnaints	
Kelevalice of the st			al Relevance	idy chaponits	
1 Is an announists			ai Keievance	1	
1 Is an appropriate	test species/ life-stage(s) st	uaiea?	. 11	yes	
	of effects of biological sign				
statistically signific	ant effect able to cause a (populat			
27.1	0,7,7,0		concentrations.		
3 Is the ecotoxicolo	gical manifestation level a			nd	
1.7.1.1			ental Relevance	T	
	ested représentative and re	levant f	for the substance being yes		
assessed?		1	11 4 1 1 1 1 1		
2 Do the tested concentrations relate to measured or p			oredicted environmental yes		
concentrations (if available)?				1	
3 Have parameters influencing the endpoints been co			nsidered (e.g. pH, nd		
temperature, light conditions)? Concluding weight of evidence			C4mder will be somethered		
Concluding weigh	t of evidence		Study will be considered.		
Type of illianical	ical, supporting, low weig	rht)	supporting		
Type of mig. (Crit	icai, supporting, iow weig	gnt)	supporting		
Consideration/con	aluding saars		UBA2		
Consideration/con	ciuding score		UDAZ		
10 75.					

Verrell, P., Van Buskirk, E. (2004)

-11	V	2004	A = 41 4	D-U-4: £ E:	
glyphecotox_640	Verrell, P., Van	2004	As the worm turns: Eisenia fetida avoids soil	Bulletin of Environmental	
	Buskirk, E.			Contamination and Toxicology 72 (2):219-224	
			contaminated by Glyphosate-based	DOI 10.1007/s00128-003-	
			herbicide	9134-0.	
		Τ	Reliability	9134-0.	
Purpose of the study	v	r	Laboratory acute experiments	designed to test acute	
Description of endp			effects on E. fetida . Exposure		
2 computer of onep			influences the activity of work		
			the surface within 2 h in all se		
			nominal concentrations.		
Test compound, app	plication procedure,	exposure	Ortho Ground clear vegetation	Riller (5% glyphosate as	
period, protocol	•	•	IPA salt)	, Silo, 100	
Experimental appro	ach		Not similar to standard	50 X	
Statistical design,			Not similar to standard Nominal to 1/10.000, no standard	stics	
test environment				Ď.	
Test organisms			Eisenia foetida		
Biological effects			After 48 h animals were found	to be buried in the soil.	
			Authors suggest that acute exposure to concentrations of		
			Groundclear recommended for application may comprise		
			the survival of earthworms even though is direct toxicity		
7.1			appears low		
Relevance of the stu	idy for Environment		essment, appropriateness of study endpoints		
			rical Relevance		
	test species/ life-stag				
			nce, e.g. is a very small nd		
			ation) relevant effect?		
3 Is the ecotoxicolo	gical manifestation	1,40 1	riate for the assessment?	nd	
17.1			mental Relevance	10	
			for the substance being assessed		
		measured o	or predicted environmental yes		
concentrations (if available)? 3 Have parameters influencing the entropy the been of the concentrations (if available)?		- 1 1 / TI			
light conditions)?	influencing the energy	omts been o	considered (e.g. pH, temperature	e, nd	
Concluding weight	t of evidence	E.	Study will be considered. No	GLP, no OECD, no	
	St. H. Z.		standard method, but result	s and conclusion shown	
	To Liter		credibly.		
Type of info. (Crit	ical, supporting, lo	w weight)	supporting		
	10 0 15 15				
Consideration/con	cluding score		UBA2		

Yasmin, S., D. Souza, D. (2003)

	glyphecotox 304	Yasmin, S., D'Souza, D.	2003	Effect of Pesticides on the Reproductive Output of Eisenia fetida	Journal of Agricultural and Food Chemistry 51 (15):4268-4272. Doi 10.1021/Jf034018f.	
	Reliability					
ď	Purpose of the study			Effects of glyphosate on growth and reproduction of the		
	Description of endpoints			earthworm species, Eisenia fetida was tested.		
9	Test compound, application procedure,			Glycel 41% S.L.		
exposure period, protocol				2 mg/kg soil and 8 mg/kg soil		

Experimental approach	similar to standard procedure, no statistic				
Statistical design,	similar to standard procedure, no statistic				
test environment					
Test organisms	Eisenia fetida	- ilo			
Biological effects	Earthworm weight was significantly reduced due to its exposure to 8mg /kg soil glyphosate In contrast, glyphosate did not have a significant effect on the reproduction of fetida.				
Relevance of the study for Environmental Risk A	Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints				
Bio	logical Relevance				
1 Is an appropriate test species/ life-stage(s) stud	lied? yes very yes				
2 Is the magnitude of effects of biological significant effect able to cause a (popular)					
3 Is the ecotoxicological manifestation level app	propriate for the assessment?				
Enviro	onmental Relevance				
1 Is the substance tested representative and relevassessed?	vant for the substance being				
2 Do the tested concentrations relate to measured concentrations (if available)?					
3 Have parameters influencing the endpoints beet temperature, light conditions)?	8 10 7				
Concluding weight of evidence	No GLP, no OECD, no standard method, but results and				
	conclusion shown credibly.				
Type of info. (Critical, supporting, low	supporting				
weight)	8 6 8				
Consideration/concluding score	UBA25 C S				

Moreno et al. (2009)

		101	300	
glyphecotox_517	Moreno et al.	2009 5.	Rainfed olive farming in	Agriculture Ecosystems & Environment 131 (3-4):333-339. DOI 10.1016/j.agee.2009.02.011.
Purpose of the study Description of endp	y Q		Reliability The elimination of weeds with microbial functional diversity affect the other microbiologic.	in covered soil but did not
Test compound, app exposure period, pr	otocol	re,	Field study design lasting ove	r 40 years
Experimental appro Statistical design, to	ach st environment		Field study design lasting ove No statistics	•
Test organisms Biological effects	.6	171	Bacterial 16S rRNA soil DNA	
\$ 6 6 G	•	Bio	Assessment, appropriateness of ogical Relevance	study endpoints
	of effects of biolo	gical signifi	ied? cance, e.g. is a very small oulation) relevant effect?	yes nd
· L		Envir	ropriate for the assessment? onmental Relevance	nd
VIs the substance to assessed?	ested representati	ve and relev	ant for the substance being	not assessable
2 Do the tested conconcentrations (if a		to measured	l or predicted environmental	not assessable
DIs the substance to assessed? 2 Do the tested conconcentrations (if a graph of the substance to assessed? Concentrations (if a graph of the substance to assessed? Concentrations (if a graph of the substance to assessed? Concentrations (if a graph of the substance to assessed? Concentrations (if a graph of the substance to assessed?	AIR 5 – July 2020		Doc	ID: 110054-MCA8_GRG_Rev 1_Jul_20

Page 751 of 847

3 Have parameters influencing the endpoints b temperature, light conditions)?	een considered (e.g. pH,	not assessable	
Concluding weight of evidence	Supporting evidence		
Type of info. (Critical, supporting, low weight)			Sind of the other parts of the o
Consideration/concluding score	UBA2		11/2 Q

Negga et al. (2011)

Negga et al. The study n of endpoints	2011	Exposure to Mn/Zn ethylene-bis- dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans Reliability Toxicology studies determining wheth pesticides of interest could induce reg neurodegeneration Touchdown-Hitechs formulation with	oxicotogy 32 (3):331- F: i;neuro.2011.02.002.
		ethylene-bis- dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans Reliability	is neuro.2011.02.002.
		dithiocarbamate and glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans.	isneuro.2011.02.002.
		glyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans Reliability	,
		leads to neurodegeneration in Caenorhabditis elegans Reliability	
		neurodegeneration in Caenorhabditis elegans Reliability	
		Caenorhabditis elegans	
		Reliability	
		I Toxicology studies determining wheth	er exposure to our
1		pesticides of interest could induce reg	onally specific
		neurodegeneration	J 1
ound, application procedu	ıre.	Touchdown Hitech, formulation with	[52.3% glyphosate]
eriod, protocol	,	from Syngenta AG, Wilmington, DE.	[]
erre u, presector		Exposure 30 min an 24h.	
tal approach			ls
		a significant standard method	10
			1229worms
offoata		Ctardies domonstrate that C alacans an	e vulnerable to
0110010	2	alvahosate-containing herbicides and	Mn/Zn-FRDC-
	1401	containing funcicides at environments	lly relevant
		Soncentrations suggesting that these v	
		and viable model system for future tes	
	18 S. 8	nesticides Studies demonstrate that C	
	9 16 16 E	to alvohosate-containing herbicides at	
	6,00	relevant concentrations in terms of ne	
المراقع	i jili	relevant concentrations in terms of nec	irotoxicity.
of the study for Environm	nental Risk	Assessment, appropriateness of study e	ndpoints
			1
2 2 2			yes
			nd
effect able to cause a (po	pulation) re	elevant effect?	
			nd
7138			
stance tested representat			Commercial
Stange tested representati		and the substance come assessed.	formulation
sted concentrations relate	to measure	ed or predicted environmental	yes
		Freezessa en monnionan	7.5
	endpoints be	en considered (e.g. nH. temperature	nd
	naponito oc	Tableton (o.g. pri, temperature,	1.54
			1
5 Signi oi criuciice			
fo. (Critical, supporting	, low	Not relevant	
() FF V 8	<i>y</i> - · ·		
tion/concluding score		UBA3	
3			
	ropriate test species/life- gnitude of effects of biol- effect able to cause a (po- toxicological manifestations) estance tested representate ested concentrations relate cons (if available)? meters influencing the etions)? g weight of evidence	of the study for Environmental Risk Bio ropriate test species life-stage(s) stu gnitude of effects of biological signi effect able to cause a (population) re toxicological manifestation level ap Environmental Risk Bio ropriate test species life-stage(s) stu gnitude of effects of biological signi effect able to cause a (population) re toxicological manifestation level ap Environmental Risk Bio ropriate test species life-stage(s) stu gnitude of effects of biological signi effect able to cause a (population) re toxicological manifestation level ap Environmental Risk Bio ropriate test species life-stage(s) stu gnitude of effects of biological signi effect able to cause a (population) re toxicological manifestation level ap Environmental Risk Bio ropriate test species life-stage(s) stu gnitude of effects of biological signi effect able to cause a (population) re toxicological manifestation level ap Environmental Risk Environme	No economic to the study for Environmental Risk Assessment, appropriate test species life-stage(s) studied? gnitude of effects of biological significance, e.g. is a very small statistically effect able to gause a (population) relevant effect? Biological Relevance ropriate test species life-stage(s) studied? gnitude of effects of biological significance, e.g. is a very small statistically effect able to gause a (population) relevant effect? Environmental Relevance ostance tested representative and relevant for the substance being assessed? sted concentrations relate to measured or predicted environmental ons (if available)? ameters influencing the endpoints been considered (e.g. pH, temperature, tions)? g weight of evidence fo. (Critical, supporting, low Not relevant

M-CA, Section 8 Annex to Regulation 283/2013 Glyphosate Page 752 of 847

Jeffrey et al. (2010)

		Jeffrey D. Weidenhamer & Ragan M. Callaway	2010	Direct and Indirect Effects of Invasive Plants on Soil Chemistry and Ecosystem Function	Journal of Chemical Ecology 36 (1):59-69. DOI 10.1007/s10886-009-9735-0
	Purpose of the study Description of endpoints			Reliability The literature review indicat the biogeochemistry of ecos metabolites released by inva	sive species may play important
	Test compound, application procedure, exposure period, protocol Experimental approach			nd Review article	
	Test organisms Biological effe	3		Herbicides used to control a	vasive species can impact plant ways that have yet to be fully
		·	Bi	Assessment, appropriateness ological Relevance	of study endpoints
	2 Is the magnit		logical signi	died? ficance, e.g.sis a very small opulation relevant effect?	nd Yes, the literature review indicates that invasive species can alter the biogeochemistry of ecosystems
	3 Is the ecotox assessment?	icological manifesta	-	propriate for the	yes
	1 Is the substar	nce tested representa	nd		
	environmental	2 Do the tested concentrations relate to measured or predicted environmental concentrations (if available)			nd
	temperature, li	ght conditions)?		een considered (e.g. pH,	nd
	Type of info. (Critical, supportin	g, low		
	weight) Consideration	/concluding score		UBA 2 relevant	
The land of the la	The Sule of the Su	C S S S S S S S S S S S S S S S S S S S			
	Glyphosate Renewal	Group AIR 5 – July 2020	1	Ε	Ooc ID: 110054-MCA8_GRG_Rev 1_Jul_2020

Druart et al. (2010)

glyphecotox 353 Druart et al.	2010	Towards the	Journal of Hazardous		
glyphecotox_353 Druart et al.	2010	development of an	Materials 184 (1-3):26-33. DOF		
		embryotoxicity	10 1016/i ibazmat 2010 07 000		
		bioassay with	10.1010/j.jnazmat.2010.0/.0393		
		terrestrial snails:	21,00		
		Screening approach for	7. 6		
		cadmium and			
		pesticides	8 il		
		Reliability	10.1016/j.jhazmat.2010.07.099		
Purpose of the study		Description of the method	to assess the embryotoxicity of		
Description of endpoints chemicals on <i>Helix aspersa</i> . This terrestrial gastropod is					
		already the subject of a standardized test with snail eggs.			
Test compound, application procedu	ıre,	Roundup® Biovert 360 (360 g/lglyphosate; Monsanto			
exposure period, protocol		Europe S.A.), No, no standard fest			
Experimental approach			Yes, EC50=18 mg/L		
Statistical design, test environment		Yes, EC50=18 mg /L POEA influence			
Test organisms		Helix aspersa	2,70		
Biological effects			tions or its associated adjuvants		
			at lower concentrations than the		
			concentrations for agriculture.		
			that the surfactant polyoxyethylene		
		amine (POEA, also called	1 6 1 1 1 6		
		MON 818 y contained in R	oundup®, improved the transfer		
			of glyphosate, by interacting with the plasma membrane.		
			Another hypothesis is that the POEA is in fact the compound		
			mainly responsible for the toxicity of Roundup® and could		
even be more toxic than the Roundup® itself. It appears necessary to assess the risk of the final product					
			rops) and not only of the active		
	,011	ingredient individually.	rops) and not only of the active		
Relevance of the study for Environm			s of study endpoints		
_		ological Relevance	, 1		
1 Is an appropriate test species/ life-stage(s) studied? yes					
2 Is the magnitude of effects of biol	ogical signi	ficance, e.g. is a very	nd		
small statistically significant effect;					
effect?	S				
3 Is the ecotoxicological manifestation level appropriate for the			POEA influence		
assessment?					
Environmental Relevance					
1 Is the substance tested representat	ive and rele	vant for the substance	The conclusion from this study is		
being assessed?			only valid for glyphosate		
			formulations that contain POEA		
2 Do the tested concentrations relate to measured or predicted			lower concentrations than the		
environmental concentrations (if available)?			recommended application		
S B			concentrations for agriculture		
3 Have parameters influencing the endpoints been considered (e.g. pH,			were used		
3 Have parameters influencing the etemperature, light conditions)?	enapoints be	en considered (e.g. pH,			
Concluding weight of evidence Relevant information about formulations containing					
Solding weight of evidence		POEA.			
Type of info. (Critical, supporting	, low	supporting			
weight)	,	FF			
Consideration/concluding score UBA 2					
<u> </u>					

B.9.13 13.1 Summary of the relevant literature on earthworms

Among soil organisms, eathworms are standard organisms in the risk assessment as they have an important role in the formation and maintenance of fertile soils. Besides laboratory studies submitted for the application for the renewal of approval of the active substance glyphosate following international guidelines, additional 21 references have been submitted dealing with soil organsims in general. Within these references, 5 studies (Casabe et al., 2007; Correia et al., 2012; Kaneda et al., 2009; Verrel et al., 2004 and Yasmin et al., 2003) focusing on earthworms have been considered to represent supporting information for risk assessment.

In the risk assessment for acute effects on soil organisms, behaviour is not included as a sensitive endpoint. However, these responses might also have negative consequences, e.g. — when worms move to the surface of contaminated soil- exposure to predators or to detrimental light. It could be shown that the activity of worms was influenced by the exposure to environmentally relevant concentration of commercial formulation of glyphosate (Verrel and Buskirk, 2004). The worms emerged onto the surface within 2 h after exposure. Nevertheless, after 48 h animals were found to be buried in the soil again. Authors concluded that acute exposure to the glyphosate containing plant protection product has compromise the survival of earthworms even though its direct toxicity appears low (Verrel & Buskirk, 2004).

Effects on reproduction were examined by Casabé et al. (2007), Kaneda et al. (2009) and Yasmin et al. (2006) using commercial formulations with the recommended application rates. It is concluded that the observed responses will not impact the population of earthworn in nature.

However, it can not be excluded that with repeated appolications of glyphosate containing plant protection products during the season or year by year will have negative effects on the biotic soil community. It is considered that herbicide application did not directly affect the mortality or reproduction but instead the biological activity of the animals.

In a reproduction test with Eisenia fetida, which was conducted with the active substance glyphosate itself (Correia et al., 2012), earthworms were kept in treated soil and were classified as alive after the evaluation period, but showed significant reduction in mean weight at all test concentrations. Moreover morphological abnormalities like elevating the body, coiling, and curling were observed in all specimens exposed to the highest concentrations of glyphosate (1000 mg/kg). Further behavioural abnormalities were described in terms of reduced casting production (Kaneda et al., 2009), reduced cocoon viability, a reduction in the feeding activity (Casabé et al., 2007) or reduced body weight (Yasmin et al., 2006). However, the test rates were similar or above the one tested in the offically submitted studies, so that the outcome of the risk assessment for earthworm did not change.

References

- Casabe, N., Piola, E., Fuchs, J., Oneto, M.L., Pamparato, L., Basack, S., Gimenez, R., Massaro, R., Papa, J.G., Kesten, E. (2007): Ecotoxicological assessment of the effects of glyphosate and chlorpyrifos in an Argentine soya field. Journal of Soils and Sediments 7/4, 232-239. DOI 10.1065/jss2007.04.224
- Correia, F.V., Moreira, J.C. (2010): Effects of glyphosate and 2,4-D on earthworms (*Eisenia foetida*) in laboratory tests. Bull. Environ. Contam. Toxicol. DOI 10.1007/s00128- 010-0089-7
- Kaneda, S., Okano, S., Urashima, Y., Murakami, T., Nakajima, M. (2009): Effects of herbicides, glyphosate, on density and casting activity of earthworm, *Pheretima (Amynthas) carnosus*. Japanese Journal of Soil Science and Plant Nutrition 80, 469-476
- Verrell, P., Van Buskirk, E.(2004): As the worm turns: *Eisenia fetida* avoids soil contaminated by a glyphosate-based herbicide. Bulletin of Environmental Contamination and Toxicology 72/2,

219-224. DOI 10.1007/s00128-003-9134-0

Yasmin, S., D'Souza, D.(2007): Effect of pesticides on the reproductive output of Eisenia fetida. Bull Environ Contam Toxicol 79/5, 529-32. DOI: 10.1007/s00128-007-9269-5

B.9.13.14 Effects on soil non-target micro-organisms

For the group of soil non-target micro-organisms, a database of 99 publications was collected by the notifier. The notifier considered 21 publications to be necessary to be described in the literature. submitted publications were also evaluated by zRMS and have been assigned according to an UBA screening. Most of the studies submitted by the notifier dealt with the rhizobia of glyphosate-resistant crops and were therefore not assignable for ERA in the European Union. However, after screening 28 studies were recognized as informative with low weight (category UBA3), 18 publications have been considered as supportive information (UBA2) and only one publication from Cycon & Kaczynska (2004) has been classified as UBA1 (critical data, high weight of evidence in risk assessment). In this study, performed according to the OECD guidelines 216 and 217, the authors applied glyphosate at the field rate of 4.5 mg/kg of soil (PEC) as well as at a 5-fold higher concentration (22.5 mg/kgsof/soil). After 1, 7, 14 and 28 days of incubation, soil respiration rates (SIR – Substrate Induced Respiration) and the amounts of nitrate did A PROPERTY OF SECTION not significantly differ from control soil.

Accinelli et al. (2002)

	glyphecotox_265	ACCINELLI C., SCREPANTI C., DINELLI G., VICARI A.	2002	SHORS-TIME EFFECTS OF PURE AND FORMULATED HERBICIDES ON SOIL MICROBIAL ACTIVITY SAND BIOMASS	Intern. J. Environ. Anal. Chem., (82): No. 8–9, pp. 519– 527	
	Reliability					
	Purpose of the study Description of endpoints			Investigate short-time effects of glyphosate and gluphosinate-ammonium on soil microbial activity. Pure and formulated herbicides were tested. Endpoints: soil respiration & soil dehydrogenase activity		
	Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protocol Experimental approach			Glyphosate: Roundup® Bioflow (31% a.i. SL) Gluphosinate-ammonium: Basta (11.33% a.i. SL) 2, 20 and 200 mg a.i. g/ soil = 1X, 10X and 100X (multiple value with respect to the recommended agricultural rate) RQ: a soil layer of 1 cm was considered 20-days incubation period. Non-GLP		
	test environment &		int bio ap	Three-way ANOVA was employed to test at, each time interval, the significance of soil microbial activity and biomass C in soil samples receiving separately different application rates of the six pure and formulated herbicides with respect to the untreated soil		
	Test organisms		Sa: Bo	Sandy loam: from Experimental Farm of the University of Bologna at Ozzano (Bologna, Italy), from the top 20 cm of a field with no previous pesticide history.		
8	Brological effects		Bo am soi	oth pure and formulated glyphosate ar amonium determined a rapid and sign all respiration compared with the untre	nd glufosinate- iificant increase of eated soil.	
	Test organisms Biological effects Relevance of the stud Glyphosate Renewal Group A	y for Environmental R	isk Asse	essment, appropriateness of study end	lpoints	
	Glyphosate Renewal Group A	IR 5 – July 2020		Doc ID: 110054	-MCA8_GRG_Rev 1_Jul_202	

Biological Relevance					
1 Is an appropriate test species/ life-stage(s) stud	yes				
2 Is the magnitude of effects of biological significant effect able to cause a (po	yes				
3 Is the ecotoxicological manifestation level app	Yes				
Environmental Relevance					
1 Is the substance tested representative and relevant for the substance being assessed?	The tested formulation is likely to surfactant. This causes limited von Glyphosate that does not contain	alidity regarding effects of			
2 Do the tested concentrations relate to measured or predicted environmental concentrations (if available)?	Yes	2. 0. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.			
3 Have parameters influencing the endpoints been considered (e.g. pH, temperature, light conditions)?	no	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Concluding weight of evidence	These results further support the absence of adverse effects				
	of glyphosate and glufosinate-ammonium on soil microbial				
	population (as previously reported by other authors)				
	The paper focuses on ecosystem i	function and do not inform			
	on ecosystem structure diversity				
Type of info. (Critical, supporting, low weight)	Supporting information &				
Consideration/concluding score	UBA2				

Araujo et al. (2003)

	glyphnosubm 151	Araujo, A.S.F.,	2003	Effect of glyphosate on the microbial activity of two Brazilian soils	Chemosphere 52	
	8-7 F	Monteiro	2003	microbial activity of two	(5):799-804.	
		R.T.R.,	14,6,0	Brazilian soils	Doi 10.1016/S0045-	
		Abarkeli, R.B 🕺			6535(03)00266-2.	
	* * * Reliability					
	Purpose of the study			Study in vitro, changes in the microbial activity of 2		
	Description of endpoint	s Significant	Ø	typical Brazilian soils, with and	without applied	
		12 00 OUT		glyphosate.	1 6.000	
		of the sill		Endpoints: soil respiration (evol		
		82 25 25		fluorescein diacetate (FDA), pla	ite counts of bacteria,	
	Purpose of the study Description of endpoints Test company description of endpoints			actinomycetes and fungi		
	Test compound, application procedure, exposure					
	periou, protocor	% 0 .W.		2.16 mg glyphosate kg/soil		
	Test compound, application procedure, exposure period, protocol			32 days No-GLP		
	Evnerimental angeograph			Comparison of soils with 11 years of application of		
	Statistical design, test environment	9		glyphosate with soils without reported history of		
	test environment			glyphosate		
	6.6					
	EST CHVII CHILLIAN AND AND AND AND AND AND AND AND AND A			Soils were sampled from surface layer up to a depth of		
				10 cm.		
	Test organisms			- Microcosms		
				- 2 types of soil (Hapludult and		
	100 p			soils) with different histories of	glyphosate application	
	1, 9,					
્રવે						
, 3 ⁰ 6	all.					
, is 10°	•					
S. J. S.						
70° 30°	lyphosate Renewal Group AIR	5 – July 2020		Doc ID: 11004	54-MCA8 GRG Rev 1 Jul 2020	
Light,	Typhosaic Renewal Gloup AIR	. J July 2020		Бос ID. 1100.	77-1110/10_0KG_KCV 1_Jul_2020	
1 En						
Selection of the select						

Biological effects	increase of 10–15% in the CO ₂ evolved and a 9–19%
	increase in FDA hydrolyses in the presence of
	glyphosate
	Community shift: number of actinomycetes and fungi
	had increased while the number of bacteria showed as slight reduction
	slight reduction
	17.6
	long-term effects of repeated application (six and
	eleven years) showed an increase in the microbial
	activity compared to soils with no reported application
	of glyphosate, showing that repeated application lead
	to increased microbial activity due the utilization of
	glyphosate as an available substrate
Relevance of the study for Environmental Risk Assess	ment, appropriateness of study endpoints
Biologica	l Relevance
1 Is an appropriate test species/ life-stage(s) studied?	yes of the
2 Is the magnitude of effects of biological significance	e, e.g. is a very
small statistically significant effect able to cause a (po	pulation)
relevant effect?	e, e.g. is a very yes of pulation)
3 Is the ecotoxicological manifestation level appropria	te for the
assessment?	
	ntal Relevance
1 Is the substance tested representative and relevant	yes of the state o
for the substance being assessed?	
2 Do the tested concentrations relate to measured or	A CONTROLLED
predicted environmental concentrations (if	
available)?	Signation of the state of the s
3 Have parameters influencing the endpoints been 3	ono. The state of
considered (e.g. pH, temperature, light conditions)?	©
Concluding weight of evidence	glyphosate was biodegraded by soil microorganisms
Concluding weight of evidence	with the formation AMPA, and that the herbicide had
	positive effect on the soil microbial activity in short-
July of	and long-term.
(D) 5. 0 X	
Type of info. (Critical, supporting low weight)	Supporting information
£ 2000	
Consideration/concluding score	UBA2

	Cycon, M., Kaczynska, A. (2004 glyphecotox_331 Sycon, M.,	2004	Effects of selected pesticides on soil	Pestycydy
	Kaczynska,		microbial activity in nitrogen and carb transformation	bon 1/2:113-120
	0 0		Reliability	
	Purpose of the study Description of endpoints Test compound, application procedure exposure period, protocol	÷,	Investigate the effects of selected fungicion procymidone), herbicides (glyphosate, Hi (lambda-cyhalothrin, diazinon) on microby SIR and the level of nitrification in sand the 28d. Endpoints: soil microbial activity (SIR: Sepiration) and nitrogen transformation Glyphosate: 360 g dm-3 Used concentrations [mg/kg of soil]: PEC: 4.5 and 5xPEC: 22.5 The OECD Guidelines No 216 and 217	nuron) and insecticides bial activity measured ndy-loam soil during
Solo Ako Oliver Ako Ol	Glyphosate Renewal Group AIR 5 – July 2020		Doc ID: 11005	54-MCA8_GRG_Rev 1_Jul_20

	_				
Experimental approach	Soil was collected from the top 20 cm layer from an agricultural				
Statistical design,	plot in Pszczyna, South of Poland				
test environment	ANOVA + Turkey HSD (post hoc comparison)				
Test organisms	Refer to paper				
Biological effects	Application of above-mentioned pesticides at their				
	recommended field rates did not have any effect on soil				
	Application of above-mentioned pesticides at their recommended field rates did not have any effect on soil microbial activity and nitrogen transformation sk Assessment, appropriateness of study endpoints				
Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints					
	Biological Relevance				
1 Is an appropriate test species/ life-stage(s) s					
2 Is the magnitude of effects of biological sig	gnificance, e.g. is a very small yes				
statistically significant effect able to cause a					
3 Is the ecotoxicological manifestation level appropriate for the assessment?					
	vironmental Relevance				
1 Is the substance tested representative and re	elevant for the substance being				
assessed?					
2 Do the tested concentrations relate to measure	ured or predicted environmental yes				
concentrations (if available)?	8 8 8				
3 Have parameters influencing the endpoints	been considered (e.g. pH, yes yes				
temperature, light conditions)?					
Concluding weight of evidence	Application of glyphosate at recommended field rates did not				
	have negatively effect on soil microbial activity measured by				
	SIR and nitrogen transformation 28 days treatment.				
	However, it is impossible to draw a general conclusion				
	regarding the effect of glyphosate on soil microorganisms				
	because a number of factors influence on the activity of this				
	agrochemical in soil ecosystem, therefore estimation of two				
Toma of info (Cuitical summanting land	parameters only may be not adequate in some situations				
Type of info. (Critical, supporting, low	Critical data, high weight of evidence in RA				
weight)	ATDA 12				
Consideration/concluding score	COBA D				
(A)	1.67 (%)				

Gomez et al. (2009)

	weight)		111111111111111111111111111111111111111			
	Consideration/con	cluding score	(UBA1)			
		×'				
	Gomez et al. (20	09) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	Impact of glyphosate application on microbial biomass and metabolic			
	glyphecotox_391	Gomez, E. 2009	Impact of glyphosate application on	European Journal of		
		Ferreras L. Lovotti, L. Fernandez, E. C. Lovotti, L. Fernandez, E. C. Lovotti, L. Lovotti,		Soil Biology 45		
		Lovotti, La	activity in a Vertic Argiudoll from	(2):163-167		
		Fernandez,	Argentina			
		E, O O N				
			Reliability			
	Purpose of the stud Description of endr		To evaluate the effect of increasing dose			
	Description of end	ogints'	biomass, metabolic activity and metabol			
	6	: (5)	microbiota under controlled conditions in a soil with a long			
	Table 1		history of glyphosate. Endpoints: carbon from microbial biomass (C-MB), microbial respiration rate (MR), metabolic quotient (qCO2), and			
	2 H		dehydrogenase activity (DA) at day 4 and day 45			
	l'est compound, application procedure,		Commercial formulation of glyphosate (48%)			
	exposure period, pr	rotocol	0.48, 0.96, 1.92 and 3.84 L a.i ha-1			
	100 100		Analysis of repeated measures; Means comparisons Duncan test			
	Experimental appro	oach	25°C and 75% of water holding capacity.			
ূৰ্ব	Statistical design,					
SO S	dest environment					
્રે ફર્	Test organisms		Vertic Argiudoll (Argentina)			
Service of the servic	lyphosate Renewal Group	o AIR 5 – July 2020	Doc ID: 110	0054-MCA8_GRG_Rev 1_Jul_202		

<u> </u>	1					
Biological effects	C-MB: significantly lower in the l					
	MR: significant differences over t					
	qCO2: significant differences between	veen doses after both 4d and				
	45d					
	DA: significantly higher in the treatments with glyphosate at day					
4.						
Relevance of the study for Environmental R	Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints					
	Biological Relevance	11.0				
1 Is an appropriate test species/ life-stage(s)	studied?	Refer to paper				
2 Is the magnitude of effects of biological si		Refer to paper				
statistically significant effect able to cause a	%: () . «					
3 Is the ecotoxicological manifestation level	Refer to paper					
Environmental Relevance						
1 Is the substance tested representative and relevant for the substance being assessed?						
2 Do the tested concentrations relate to measure concentrations (if available)?	sured or predicted environmental	Refer to paper				
3 Have parameters influencing the endpoint	s been considered (e.g. pH,	yes				
temperature, light conditions)?		Ø.				
Concluding weight of evidence	The results of this study demonstr	ate an initial inhibitory effect				
	that affected the microbial cells, w					
	indicating that no harmful effects					
	short-term when glyphosate is app					
	higher than those usually applied	in the field.				
Type of info. (Critical, supporting, low	Supporting information					
weight)	A. C. S. S.					
Consideration/concluding score	UBA2 S S S					

Haney et al. (2002)

Haney et al. (2002) glyphecotox_400 Haney, R.L., Senseman, S.A., Hons, F.M. Purpose of the study Description of endpoints			URA2		weight)	
Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protector Senseman, S.A., Hons, Fr.M. Reliability To determine the effect of Roundup® Ultra on soil microbial bid biomass and activity Endpoints: C- and N-mineralization and soil microbial bid Roundup® Ultra [Monsanto, St. Louis, MO]; (480 g a.i. I 234 mg active ingredient kg-1 soil based on an assumed 2			UBA2 S S S	_	Consideration/con	
Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protector Senseman, S.A., Hons, Fr.M. Reliability To determine the effect of Roundup® Ultra on soil microbial bid biomass and activity Endpoints: C- and N-mineralization and soil microbial bid Roundup® Ultra [Monsanto, St. Louis, MO]; (480 g a.i. I 234 mg active ingredient kg-1 soil based on an assumed 2			THE STATE OF THE S	02)		
Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protect. Purpose of the study Description of endpoints To determine the effect of Roundup® Ultra on soil microbial biomass and activity Endpoints: C- and N-mineralization and soil microbial biomass and activity Roundup® Ultra [Monsanto, St. Louis, MO]; (480 g a.i. I are provided by the procedure of the study of the study biomass and activity Test compound, application procedure, exposure period, protection of the study of the st	Quality	Environmental Qual	Actiect of Koundup® uitra on	Haney, R.L., 2002	glyphecotox_400	
Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protect. Purpose of the study Description of endpoints To determine the effect of Roundup® Ultra on soil microbial biomass and activity Endpoints: C- and N-mineralization and soil microbial biomass and activity Roundup® Ultra [Monsanto, St. Louis, MO]; (480 g a.i. I are provided by the procedure of the study of the study biomass and activity Test compound, application procedure, exposure period, protection of the study of the st			Reliability	80 18 18C		
exposure period, protocol 234 mg active ingredient kg-1 soil based on an assumed 2			biomass and activity	Description of endpoints		
glyphosate—soil interaction depth	. L-1)	is, MO]; (480 g a.i. L-1	Roundup® Ultra [Monsanto, St. Lou			
Experimental approach Refer to paper Statistical design test environment				ACHO!		
Test organisms Nine soils from Georgia and Texas were used Variation in pH, soil organic C, clay content						
Biological effects Cumulative C- mineralization and-mineralization increase all treatments with RU Strong linear relationships between C & N mineralized (s 3) Glyphosate C to N ratio of 3:1 => strongly suggest that was the direct cause of the enhanced microbial activity		ineralization increased	Cumulative C- mineralization and-mall treatments with RU			
3) Glyphosate C to N ratio of 3:1 => strongly suggest that was the direct cause of the enhanced microbial activity		strongly suggest that R microbial activity	3) Glyphosate C to N ratio of 3:1 => was the direct cause of the enhanced			
Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints		y endpoints			Relevance of the st	
Biological Relevance					ii.	200
1 Is an appropriate test species/ life-stage(s) studied? yes		<u> </u>			1 Is an appropriate	15. 4°
2 Is the magnitude of effects of biological significance, e.g. is a very small statistically significant effect able to cause a (population) relevant effect?		yes			2 Is the magnitude	.0.9c,
Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints Biological Relevance 1 Is an appropriate test species/ life-stage(s) studied? 2 Is the magnitude of effects of biological significance, e.g. is a very small statistically significant effect able to cause a (population) relevant effect? Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev	ev 1_Jul_202				Glyphosate Renewal Group	

3 Is the ecotoxicological manifestation level a	yes	
En	vironmental Relevance	
1 Is the substance tested representative and reassessed?	yes	
2 Do the tested concentrations relate to measu concentrations (if available)?	yes dill o	
3 Have parameters influencing the endpoints temperature, light conditions)?	yes F.F.	
Concluding weight of evidence	Roundup® Ultra appeared to be rap microbes regardless of soil type or increased their population and activ rates, without adversely affecting m	organic matter content, and ity even at high application
Type of info. (Critical, supporting, low weight)	Supporting information	
Consideration/concluding score	UBA2	

Haney et al. (2002)

	glyphecotox_401	Haney, R.L., Senseman, S.A., Krutz, L.J., Hons, F.M.	2002	Soil carbon and nitrogen mineralization as affected by atrazine and glyphosate	Biology and Fertility of Soils 35 (1):35-40	
				Reliability &		
	Purpose of the stud Description of endp			Atrazine alone and atrazine plus glyphosoil to determine their effect on soil mic Endpoints: C and N mineralization (Cm	robial activity	
	Test compound, ap exposure period, pr	otocol	Endpoints: C and N mineralization (Cm Rounding® Ultra (480 g active ingredier (480 g active ingredier (480 g active ingredier (480 g active ingredier (280 (188 mg kg ⁻¹), 4× (376 mg kg ⁻¹) and (480 assuming a 2-mm soil penetration depth (56 days of incubation	at l-1) + Atrazine (1/2 6× (564 mg kg ⁻¹) for glyphosate		
	Experimental appro	oach . S	5.50	Refer to paper		
	Statistical design, test environment	o kido	ALOJE I	TOTAL TO PUPO.		
	Test organisms	10,11,2	7,	Weswood silt loam		
	Biological effects	pach		Atrazine plus glyphosate stimulated microbial activity more than atrazine alone The addition of glyphosate with atrazine significantly increased C mineralization in all treatments compared with atrazine alone		
	Palayanca of the	udy for Environma	ntal Dick	k Assessment, appropriateness of study endpoints		
	Relevance of the st	day for Environing		Biological Relevance		
	1 Is an annranriata	togt anaging/life etc			yes	
	1 Is an appropriate test species/ life-stage(s) studied? 2 Is the magnitude of effects of biological significance, e.g. is a very small statistically significant effect able to cause a (population) relevant effect?					
				oppropriate for the assessment?	yes	
	18,05		Envi	ronmental Relevance		
	1 Is the substance t	ested representative	and rele	evant for the substance being assessed?	yes	
	concentrations (if a	vailable)?		ed or predicted environmental		
, 5°	3 Have parameters influencing the endpoints been considered (e.g. pH, temperature, light conditions)?					
	Concluding weigh	t of evidence		Refer to paper		
Solo On Solo O	ilyphosate Renewal Group	o AIR 5 – July 2020		Doc ID: 110054	1-MCA8_GRG_Rev 1_Jul_202	

Type of info. (Critical, supporting	low Supporting information	
weight)		
Consideration/concluding score	UBA2	4
		ijo

Hart, M.M et al. (2009)

						all is	
glyphecotox_404	Hart et al.	2009		ating the effect of crop from herbic		Pedobiologia	
			on soil	l microbial communities in glyphos	ate-	52 (4):253-262	
			resista	nt corn	€. (,	
				Reliability	5 70.	0,0	
Purpose of the stud	y		To exa	mine the effect of both the transgent	c corn a	nd the use of	
Description of end	ooints		glypho	sate on two groups of rhizosphere m	icrobes.	denitrifying	
			1 4 .	1.0	25		
			Endpo	ints: qPCR, t-RFLP based on DNA	, iii		
Test compound, ap	plication proce	edure,	Round	up®(1.8kgha-1 atrazine)			
exposure period, pr			conver	ntional herbicides : isoxatlutone atr	azine (7	79 + 800 g aiha-	
			1)	0 10 10 10 10 10 10 10 10 10 10 10 10 10			
Experimental appro	oach		Fully f	actorial, field study where the effects	s of crop	type and	
Statistical design,			herbici	ide treatment on microbe numbers an	d diver	sity were	
test environment			separa				
			Measu	rement of the numbers and communi	ity com	position of two	
			soil rhi	izosphere microbes to determine if th	neir com	munities were	
			affecte	ed by: 🙎 🔊 👸			
				phosate-resistant corn versus conven			
				phosate s conventional herbicides (
Test organisms				mental field located at the Elora Res	earch St	ation of the	
				sity of Guelp (Canada)			
			7.3	nostogo silt loam soil			
Biological effects				ound neither crop type (transgenic or conventional) nor			
				icide (glyphosate or conventional) affected rhizosphere			
				hittifying or fungal communities.			
		200		showed that seasonality was a signif	icant de	eterminant of	
		(O.S		fier and fungal abundance			
Relevance of the st		~~~~~		ssessment, appropriateness of study e	endpoint	S	
	S	16 110		gical Relevance			
1 Is an appropriate					yes		
				ance, e.g. is a very small			
				ulation) relevant effect?			
3 Is the ecotoxicolo	ogical manifest			opriate for the assessment?	yes		
	Chilly Co.		Enviror	mental Relevance			
1 Is the substance t	ested represent	tative an	d	The tested formulation is likely to o			
relevant for the sub	stance being a	ssessed?		surfactant. This causes limited validity regarding effects of			
4				Glyphosate that does not contain Po	OEA.		
2 Do the tested con							
measured or predic		ntal					
concentrations (if a							
3 Have parameters				na			
been considered (e.	g. pH, tempera	ature, lig	ht				
conditions)?							
Concluding weigh	t of evidence			er GR corn nor glyphosate had signifi		pacts on the	
John Stranger				fying bacteria and fungi in this study	,		
Type of info. (Crit	tical, supporti	ng,	Suppor	rting information			
Now weight)							
Consideration/cor	cluding score	:	UBA2	/3			

Kyaw, K.M., Toyota, K. (2007)

glyphecotox_446	Kyaw, K.M.,	2007	the herb	sion of nitrous oxide production by icides glyphosate and propanil in	Soil Science and Plant Nutrition		
	Toyota, K.			plied with organic matter	53 (4):441-447		
				eliability	0, 100		
Purpose of the stud				te the impact of two herbicides, a comm			
Description of endp	points			osate (Roundup®) and propanil (DCPA)			
				roduction and soil respiration in two diff			
				e and Miura) amended with rice strawa	nd chitine		
	4			ts: N2O production rates	3. %		
Test compound, ap		edure,		® (41% a.i., 59% water and surfactant)			
exposure period, pr	rotocol			apan) Application: 2 L a.i. ha ⁻¹ .10 cm s	on layer		
E	1.			177 -0 -24			
Experimental appro	oacn		Refer to	paper			
Statistical design, test environment				5,00			
Test organisms			Refer to	naner 11 d d			
Biological effects				ion of glyphosate AND propanil:			
Biological criccis			Suppress	cumulative N20 production in both typ	es of amended		
			soils				
	Decrease N ₂ O production in rice straw amended soil (< 25%)						
Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints							
	<u> </u>			ical Relevance			
1 Is an appropriate	test species/ lit	fe-stage(yes		
				nce e is a very small statistically	•		
significant effect al	ble to cause a (populati	ion) releva	nt effect?			
3 Is the ecotoxicolo	ogical manifest			riate for the assessment?	yes		
			Environn	iental Relevance			
1 Is the substance t relevant for the sub	ested represent	tative an	d die	The tested formulation is likely to con			
relevant for the sub	stance being a	ssessed?	THE THE SO	surfactant. This causes limited validity			
			S. His City	of Glyphosate that does not contain PC	DEA.		
2 Do the tested con			easured				
or predicted enviro	nmental conce	ntrations	š (dY				
available)?		12 00 C	2,				
3 Have parameters influencing the endpoints been considered (e.g. pH, temperature, light				no			
considered (e.g. pH	i, temperature	нды					
conditions)?	7 - 7 - 2 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	N. I	hombia: 1	a year in this study had a a server lead to	anna affaata aa th		
Concluding weigh	tor exidence			es used in this study had no severely advoil microbial community.	erse effects on the		
Type of info. (Crit	tical supporti	nσ		tht in RA, not assignable			
low weight)		···g,	10W WCIE	in in it is not assignable			
Consideration/con	cluding score		UBA3				
	(2) (2) (2) (3) (4) (4)		J 22. 20				

Lupwayi, N.Z., et. al (2004)

glyphecotox_467	Lupwayi et. al	2004	Soil microbial biomass and		dian Journal of		
			diversity after herbicide		Science 84		
		1	application	(2):67	7-685		
D 0.1 1			Reliability		7403		
Purpose of the study			nouse and field experiments were cond				
Description of endpoi	nts	effects	of herbicides on soil microbial bioma	iss, bact	erial diversity		
		and co	mmunity structure				
		Endpoi	ints: ints: ial biomass: microbial C ial diversity: Biolog method unity structure: specific patterns of su a (CLR) => Shappon index. Furthers	≫. C	erial diversity		
		Microb	oial biomass: microbial C	ON CO.	<i>S</i> ²		
		Bacter	al diversity: Biolog method	2 9 9			
		Comm	unity structure: specific patterns of su	bstrate i	utilization by		
		bacteri	a (CLPP) => Shannon index, Evenne	SSE			
Test compound, appli	cation procedure,	Glypho	osate IPA (900 g a.i. /ha)				
exposure period, prote	ocol	Glufos	inate ammonium (500 g a, 1. /ha) 📀				
		0, 1, 2,	3 and 4 wk after treatment				
Experimental approac	h	Refer t	o paper				
Statistical design,			~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
test environment			o paper				
			Microbial C increased/Shannon index was lower				
			xperiments, examination of microbial				
revealed herbicide induced shifts in microbial composition even							
			liversity indices among treatments we				
Relevance of the stud	y for Environmenta		ssessment appropriateness of study e	ndpoint	S		
			ogical Relevance				
1 Is an appropriate tes	st species/ life-stage	e(s) studi	<u>ed</u> %%		yes		
2 Is the magnitude of significant effect able			rance, e.g. is a very small statistically want effect?		yes		
			opriate for the assessment?				
2 15 m2 250to/ficologi			nmental Relevance				
1 Is the substance test			ant for the substance being assessed?		yes		
			or predicted environmental concentra	itions	yes		
(if available)?	2.76.70	0	1		<i>y</i>		
	fluencing the endo	oints been	n considered (e.g. pH, temperature, lig	ght	no		
conditions)?				5			
Concluding weight o	of evidence	Herbic	ides applied once at recommended rat	tes did n	not have		
	OL W. W.		cant or consistent effects on microbial				
ć	J. 10 9		er, shifts in microbial community stru				
. 80	9,00		t where microbial C and diversity wer				
zii ^s zi	S. S. J.		hifts can lead to successions in the mid				
Concluding weight of evidence Herbicides applied once at recommended rates did not have significant or consistent effects on microbial C or diversity indices. However, shifts in microbial community structures were sometime evident where microbial C and diversity were not different. Such shifts can lead to successions in the microbial communities that could have longterm effects on soil biological processes. Therefore, it is important to incorporate measures of microbial diversity and composition in herbicide ERA studies. Type of info: (Critical, supporting, Supporting information							
col in	,		ore, it is important to incorporate mea				
6.0			ty and composition in herbicide ERA	studies.	•		
Type of info. (Critical low weight)	al, supporting,	Suppo	rting information				
Consideration/concl	uding score	UBA2					
Consider acton/conci	uuing score	UBAZ					

Malkomes, H.-P. (2007)

glyphecotox_481	Malkomes, HP.	2007	Influence of differently formulated glyphosate herbicides and a herbicidal reference compound on microbial activities in soil Nachrichtenbl. Deut Pflanzenschutzd. 59 (6):124-132					
Reliability が、そ								
Purpose of the study Description of endpoints			Investigate under laboratory conditions the effects of differently formulated glyphosate herbicides on biomass-related microbial activities and carbon and nitrogen mineralization in two soils with and without lucerne meal amendment. Endpoints: dehydrogenase, substrate-induced shortsterm					
Test compound, ap exposure period, pr		dure,	respiration Basamid Granulat: 0,24 g/kg Dazomet: 0,23 g/kg Herbogil Liquide 7,86 µl/kg Dinoterb: 1,96 mg/kg Roundup® Ultra:6,67 µl/kg Roundup® Ultragran 4 kg/ha Touchdown 7,28 µl/kg Glyphosat (Isopropylamin-Salz) 2,4 mg/kg Glyphosat (Na-Salz) 2,4 mg/kg					
Experimental appro	oach		Glyphosat (-Trimesium) 2,4 mg/kg Refer to paper					
Statistical design,								
test environment								
Test organisms			Glyphosat (-Trimesium) 2.4 mg/kg Refer to paper The various glyphosate treatments (formulation, dosage) only					
Biological effects			sometimes had small effects on the endpoints. Only the nitrogen mineralization was increased for some time by the higher dosage whereas the relation of carbon to nitrogen mineralization was diminished. Sodium and isopropylamine salts of glyphosate sometimes acted hitle stronger than the trimesium compound When the soil was stressed by a preceding fumigation no further additional effects occurred by glyphosate.					
Relevance of the st	udy for Envirg	nmental	Risk Assessment, appropriateness of study	endpoints				
1 Is on or	toot omasis 2 12	11. 24.	Biological Relevance	Vac				
statistically signific	of effects of bi ant effect able	ological to cause	significance, e.g. is a very small a (population) relevant effect?	yes				
3 Is the ecotoxicolo	gical manifest		el appropriate for the assessment?	yes				
	8 5 6		Environmental Relevance					
assessed?	000		d relevant for the substance being yes					
2 Do the tested concentrations relate to me concentrations (if available)?			•					
light conditions)?		e endpoii	ints been considered (e.g. pH, temperature, no					
Concluding weigh	t of evidence		Independently from the tested formulation					
Concruding weigh			field-related dosages of glyphosate induced only relatively small effects on the investigated microbial activities in the soil.					
Type of info. (Crit low weight)	ical, supporti	ng,	Supporting information					
Consideration/con	cluding score		UBA2					

Mijangos, I., et al. (2009)

Annex to Regulation 283/2013

glyphecotox_508	Mijangos, et al.	2009	Effects of glyphosate on rhizosphere soil microbial communities under two different plant compositions by cultivation-dependent and - independent methodologies Reliability Soil Biology & Biochemistry 41 (3):505-513				
			Reliability	9.15			
Purpose of the stud	**		study the short-term effects of glyphosate	on rhizaenheragail			
Description of end			microbial communities under two differe				
Description of end	Joints		(triticale versus a mixture of triticale and				
			dependent (Biolog Ecoplates) and –inde				
			methodologies	or illail			
			Endpoints: potentially mineralizable nitro	ogen ammonium			
			content, community-level physiological	Stoffles using Biolog			
			EcoplatesTM, DNA microbial biomass a	nd genotype diversity by			
			means of PCR-DGGE)			
Test compound, ap		dure,	Roundup® Plus				
exposure period, pr			15 and 30 days				
Experimental appro	oach		factorial treatments that included two diff	terent compositions of			
Statistical design, test environment			forage plant species (triticale versus a mi				
test environment			pea) and two concentrations of glyphosat				
			ingredient kg-1 soit, as a commercial formula Plus)	mulation, Roundup®			
Test organisms			pot study carried out with soil collected from the top layer (0–30				
1 est organisms			cm) of natural grassland located in Derio				
			northern Spain	(Basque Country,			
Biological effects			15 days stimulation of the activity and functional diversity				
8			(glyphosate acting as an available source of C, N and P.)				
			30 days inconsistent response to glyphosate addition				
			Shift in the carbon utilization pattern as a result of herbicide				
			realment, which again suggests a non-target effect of glyphosate				
		, S	on the rhizosphere soil microbial community				
			BiologTM was more sensitive than PCR-	-DGGE to detect			
D 1 0.1	1.0.5.		Changes in soil microbial communities				
Relevance of the st	udy for Enviro	nmental R	isk Assessment, appropriateness of study endpoints				
	Q.	100,00	Biological Relevance				
1 Is an appropriate	tast spacies 10	En correction	studiad?	You			
2 Is the magnitude	of effects of hi	ological ci	gnificance, e.g. is a very small	yes			
statistically signific	ant effect able	to cause a	(population) relevant effect?				
			appropriate for the assessment?				
3 13 the ecotoxicore	ogical manifest	Er	vironmental Relevance				
1 Is the substance t				tent POEA as surfactant			
relevant for the sub			The tested formulation is likely to content POEA as surfactant. This causes limited validity regarding effects of Glyphosate				
27			that does not contain POEA.	\F			
2 Do the tested con		ate to					
measured or predic	ted environmen						
concentrations (if a	vailable)?						
3 Have parameters	influencing the		no				
endpoints been con		Н,					
temperature, light conditions)?							

Concluding weight of evidence	Glyphosate was quickly used by soil microorganisms as a source					
	of nutrients which resulted in a stimulation of the activity and					
	functional diversity of the cultivable portion of the heterotrophic					
	soil microbial community.					
	effects on the rhizosphere soil microbial community which were,					
	interestingly, more enhanced in triticale than in "triticaleb pea"					
	pots. Biolog was more sensitive to detect changes in soil					
	microbial communities induced by glyphosate and plants					
	composition than PCR-DGGE.					
Type of info. (Critical, supporting, low weight)	Supporting information					
Consideration/concluding score	UBA2					

Ratcliff et al. (2006)

					27 0 0	T
	glyphecotox_560	Ratcliff, A.W., Busse, M.D.,	2006	struct	ges in microbial community ure following herbicide	Applied Soil Ecology 34 (2-
		Shestak, C.J.			nosate) additions to forest soils	3):114-124
	D C.1 1		1	Kel	iability & & & & & & & & & & & & & & & & & & &	1 DIE4 10
	Purpose of the study Description of endpoints			To exa	amine changes in community struc	ture by PLFA and C
	Description of endp	oomis			tion analyses, supported by a coar ia and fungi by epifluorescent mic	
					ing techniques. Our objective was	
				alvebe	osate results in short-term changes	either deleterious or
					cial, in forest soil microbial comm	
					ints: Total and culturable bacteria	
					ial:fungal biomass, carbon utilizati	
					QG), bacterial and fungal phospho	
			, d	&PLF≱	(4	•
	Test compound, ap		e, ₁ 150	Rounc	lup®	
	exposure period, pr	otocol	STANTED TO	Field 1	lup® rate of 5 kg a.i. ha_1 and 100x fiel and 30 days	d rate
	D : 1	1	20,12	51, 3, 7	and 30 days	6.1.1
	Experimental appro	ach	0,0,10	Factor	ial treatments including 3 levels of	
	Statistical design,	b les	of St.	and 50	000 mg a. i./kg soil) and four samp	ling dates $(1, 3, 7, $ and
	test environment	8,9	7100	30d)		0.4. 15 14. 6
	Test organisms	of Sill is	7	Clay I	oam and a sandy loam forest soil (
	Biological effects	otocol oach oach		Endno	onderosa pine) plantations in north pints not affected at field rate appli	
	Diological criccis	TING SO		High a	concentration of glyphosate (100x	
		11.00		bacter	ial community in both soils:	incia rate) anterea inc
				Increa	se of generalist bacteria	
		AS JE		Comn	nunity shifted from fungal domina	nce to equal ratio
	Relevance of the st	udy for Environme	ntal Risl	k Assess	sment, appropriateness of study en	dpoints
					al Relevance	
	1 Is an appropriate					yes
					e, e.g. is a very small statistically	
	significant effect al					viag.
	3 Is the ecotoxicolo	gicai manifestatioi			nte for the assessment?	yes
	1 Is the substance t	acted representative			ntal Relevance The tested formulation is likely t	o content DOE A as
	for the substance b		c and rel	evani	surfactant. This causes limited va	
	11.0	ing assesseu:			effects of Glyphosate that does n	
~	2 Do the tested con	centrations relate to	o measu	red or	cricers of Gryphosate that does in	ot contain i OEA.
50	predicted environm	ental concentration	o measui is (if	ica oi		
5	available)?	oncommunor	10 (11			
370			Inoints h	neen		
	3 Have parameters	influencing the end)CC11		

Concluding weight of evidence	No major changes in microbial community structure assessed by C utilization, PLFA, and standard cultural and microscope methods were detected in forest soils following the addition of the recommended field-rate concentration of glyphosate commercial formulation of glyphosate has a benign affect or community structure when applied at the recommended field rate, and produces a non-specific, short-term stimulation of bacteria at a high concentration.
Type of info. (Critical, supporting, low weight)	Supporting information
Consideration/concluding score	UBA2

Zabaloy et al. (2008)

	glyphecotox_663	Zabaloy, M.C., Garland, J.L., Gomez, M.A.	2008	An integrated approach, to evaluat impacts of the herbicides gryphosat D and metsulfuron-methyl on soil microbial communities in the Pampregion, Argentina	te, 2,4-	Applied Soil Ecology 40 (1):1-12.
	Purpose of the stud Description of endp	points	1	region, Argentina Reliability Investigate the impact of postemerge microbial communities Endpoints - culturable aerobic heterotrophic bac - substrate-induced respiration (SIR) - denydrogenase activity (DHA) - Theoretical induced (FDA) hydroly - functional richness (biolog)	eterial (AF	HB) density
	Test compound, ap exposure period, pr	plication procedure	re, The state of t	Augrescein diacetate (FDA) hydroly functional richness (biolog) glyphosate (N-(phosphonomethyl)gly concentrate (48% a.i.) Application: 1 rate: 150 mg a.i. kg-1 Incubation: 3 weeks Refer to paper Typic Argiudoll, Typic Haplustoll an Paleustoll (Argentina) (1) early stimulation of SIR and AHE (2) dissimilar response in the soils fo (3) transient increase in functional ricknessessment, appropriateness of study en	ycine), sol 0X recom	uble mended field
	Experimental appro Statistical design, test environment Test organisms	oach		Refer to paper Typic Argiudoll, Typic Haplustoll an	nd Petroca	leie
	Biological effects		20	Paleustoll (Argentina) (1) early stimulation of SIR and AHE (2) dissimilar response in the soils fo (3) transient increase in functional rice	r FDA and chness.	d DHA
	Relevance of the st	udy for Environm	ental Risk A	ssessment, appropriateness of study en		
	Diological Relevance					
		of effects of biolo	gical signifi	ed? cance, e.g. is a very small ulation) relevant effect?	yes	
				ropriate for the assessment?	yes	
	12/92			nmental Relevance		
	assessed?			ant for the substance being	yes	
	concentrations (if a	vailable)?		or predicted environmental		
8	Have parameters light conditions)?	influencing the en	idpoints bee	n considered (e.g. pH, temperature,	no	
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	S	o AIR 5 – July 2020		Doc ID: 11005	54-MCA8_0	GRG_Rev 1_Jul_20
, E						

Concluding weight of evidence	The addition of these herbicides at a dose 10 times higher than the normal field application rates caused minor changes to soil microbial activity, bacterial density and functional richness. The specific changes varied among herbicides, with the effects of glyphosate most pronounced. Supporting information
Type of info. (Critical, supporting, low weight)	Supporting information
Consideration/concluding score	UBA2

Lancaster et al. (2006)

	glyphecotox_449	Lancaster, S.H., Haney, R.L., Senseman, S.A., Hons, F.M., Chandler, J.M.	2006	Soil microbial activity is affected by Roundup® WeatherMax and pesticides applied to cotton (Gossypium hirsutum)	J Agric Food Chem 54 (19):7221-6	
			Re	eliability	1	
	Purpose of the study Description of endpoi	nts	Evaluat manage Endpoi C and N	the influence of glyphosate-based cotton ement systems on soil microbial activity. nts: N mineralization (Coloroform-fumigation-i		
	Test compound, appli exposure period, prote		Applica triflural with or	np®: Weather MAX, Monsanto Co., St. Loation rate: 152.7 μg a.i./kg soil ling aldicarb, and mefenoxam + pentachlor without glyphosate (applied as Roundup to Lang 1 treatment with only Roundup® W	ronitrobenzene WeatherMax).	
	Experimental approact Statistical design, test environment	ch S	Refer	ဂ် paper လိ		
	Test organisms Weswood clay loam collected from a bermuda gra				rass pasture and	
	Biological effects		C mine The add mineral mefeno	eated with glyphosate alone exhibited greated with glyphosate alone exhibited greater alization 30 days after treatment than all dition of Roundup® WeatherMax reduced ization in soils treated with fluometuron, axam + PCNB formulations. These results satebased herbicides alter the soil microbia	other treatments C aldicarb, or indicate that	
		St. M. S.	other ne	esticides	ar response to	
	Relevance of the stud	v for Environmental R	lisk Asse	ssment, appropriateness of study endpoint	S	
	80	600		cal Relevance		
	1 Is an appropriate tes	st species/ life-stage(s)			yes	
	significant effect able	to cause a (population	n) relevar			
	3 Is the ecotoxicologi		vel appropriate for the assessment?			
	or predicted environn	red representative and ance being assessed?	sured	The tested formulation is likely to conte surfactant. This causes limited validity r of Glyphosate that does not contain POF	egarding effects	
	Have parameters in considered (e.g. pH, t conditions)?	fluencing the endpoint	s been	no		
Sold of the sold o	Glyphosate Renewal Group A	IR 5 – July 2020		Doc ID: 110054-MCA	8_GRG_Rev 1_Jul_20:	

	T 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Concluding weight of evidence	For all variables measured, pasture soil exhibited greater
	microbial activity and biomass than cultivated soil.
	Cumulative C mineralization after 30 days was greater
	in soils treated only with glyphosate as compared to all
	other treatments.
	Nitrogen mineralization was greater in soils that had
	been treated with applications that included glyphosate
	as compared with soils that were not treated with
	glyphosate.
	Soil microbial biomass C increased relative to non-
	treated soils when glyphosate was applied alone
	Soil microbial biomass N was not affected
	soil microbial biomass measurements using the
	fumigation-incubation method are less sensitive than C
	and N mineralization measurements for detecting the
	influence of microbial activity
Type of info. (Critical, supporting, low weight)	Supporting information &
Consideration/concluding score	UBA2

Bennicelli et al. (2009)

glyphecotox_294	Bennicelli, R.P.,	2009	Influence of pesticide (glyphosate) o				
	Szafranek-		dehydrogenase activity, pH, Eh and				
	Nakonieczna, A.,		gases production in soil (laboratory	23 (2):117-			
	Wolinska, A.,		conditions)	122			
	Stepniewska, Z.,						
	Bogudzinska, M.		555				
			eliability				
	Purpose of the study Description of endpoints Description of endpoint						
Description of end	lpoints	ilisto.	gases (CO ₂ , N ₂ O) emission in soils enriched with				
	,	the run in	glyphosate (1 µg and 10 µg g-1 of pes				
	Į, (O)	The Vigo	time (42 days), under lab conditions at				
	20.0		Endpoints: dehydrogenase activity (D)	HA)			
Test compound, a	oplication procedure, exp	osure	Glypnosate (Product ?)				
period, protocol	70 21.77	•	0, 1 and 10 μg g-1 of soil				
Experimental appr	oach State		Refer to paper				
Statistical design,	60, 11, 2, 2						
test environment	oach			n ' xx' . 1			
Test organisms	7. 10 C)		Mollic Gleysols, Eutric Fluvisols and	l erric Histosols			
Biological effects	S 0 4		taken from surface layer (0-20 cm)				
Biological effects	Contract of		The decrease of DHA activity was observed that depended on the pesticide dose				
	2 12 16		Increase of the N2O concentration wit	h growth of			
~			pesticide dose				
		Risk Ass	essment, appropriateness of study endpo	oints			
8			ical Relevance				
1 Is an appropriate	1 Is an appropriate test species/ life-stage(s) studied?						
2 Is the magnitude	of effects of biological s	ignifica	nce, e.g. is a very small statistically				
	able to cause a (population						
3 Is the ecotoxicol	ogical manifestation leve	l approp	oriate for the assessment?	yes			
1,000,000	E	nvironi	nental Relevance				
As the substance	tested representative and	relevant	for the substance being assessed?	yes			
2 Do the tested co	ncentrations relate to mea	sured or	predicted environmental				
S Concentrations (if							
3 Have parameters	s influencing the endpoint	ts been o	considered (e.g. pH, temperature,				
light conditions)?							
30 kines							
70° 9118							
2 Do the tested co concentrations (if 3 Have parameters light conditions)? Glyphosate Renewal Ground Groun	p AIR 5 – July 2020		Doc ID: 110054-M	CA8_GRG_Rev 1_Jul_202			
41.910							
8							

Concluding weight of evidence	1. Glyphosate caused an inhibition of DHA activity in all		
The state of the s	investigated soils up to 21st day.		
	2. CO2 formation increased in the case of Terric		
	Histosols and Eutric Fluvisols, but decreased in the case		
	of Mollic Gleysols.		
	3. Glyphosate caused an increase of N2O concentration in		
	all investigated soils.		
	10 M		
	4. Eh, pH and CO2 concentration had high correlations		
	with DHA activity.		
Type of info. (Critical, supporting, low weight)	Supporting information		
Consideration/concluding score	UBA2		

Lancaster et al. (2010)

	glyphecotox_450	Lancaster, S.H.,	2010	Effects of repeated glyphosate	Pest	
		Hollister, E.B.,		applications on soil microbial	Manag Sci	
		Senseman, S.A.,		community composition and the	66 (1):59-	
		Gentry, T.J.		mineralization of glyphosate	64	
		-	liability & & & & & & & & & & & & & & & & & & &			
	Purpose of the study		study the effect of one, two, three, four or five applications of			
	Description of endpoi	nts		te on soil microbial community comp		
			glyphosa	te mineralization and distribution of 1	4C residues in soil.	
			Endpoint	s: 2 2 8		
			Endpoints: - fatty acidmethyl esters			
				ing of 16S rRNA bacterial genes		
				ave percentage 14Cmineralized		
			- Incorpo	ration of 14C residues into soil micro	bial biomass	
	Test compound, appli			ite sisopropylammonium 480 g AE L		
	exposure period, prot	ocol		MAX; Monsanto Company, St Louis,		
		.0	6 10°	n 3 mL solution (giving 33% v/v wat AE g-1 soil to the soil surface	er content) at a rate	
	Experimental approac	ch Significant of the state of	1, 1,	and 8 weeks after the initial glyphos	ate applications an	
	Statistical design,	M 6 5	additiona	1 49 μg AE g-1 soil was added in 0.5	mL solution, to	
	test environment	O Zijo	create soi	il samples that received one, two, thre		
		61,96,30	application	ons of glyphosate.		
		of this m	Each trea	tment was replicated 4 times		
		TO TO OFF.	Endpoint	s measured 3, 7 and 14 days after the	final glyphosate	
		·Sid of	application	on to each treatment (DAA).		
	Test organisms	y for Environmental	Weswood	d silt loam with no record of glyphosa	ite application	
		11.00 Q	during pr	evious 2 years		
	Biological effects	O SE	- Increase	e of gram-negative bacteria FAMES		
	Biological effects 8	S. Cill.	- Increase	e of the abundance of the gram-negati	ve Burkholderia ssp	
	2.60	8	sequence		.:	
	Cox ill.		- Decrease of the cumulative percentage 14C mineralized 14 DAA			
			when glyphosate was applied 4 or 5 times - Incorporation of 14C residues into soil microbial biomass was			
	27 /20		greater following five glyphosate applications than following the			
	18 8°		first appl	first application 3 and 7 DAA		
	Relevance of the stud	v for Environmental	Risk Asses	sment, appropriateness of study endp	oints	
	či di	j - 51 - 211 . II O III I O III I		al Relevance		
	1 s an appropriate tes	st species/ life-stage(s			yes	
				e, e.g. is a very small statistically	Refer to paper	
×	significant effect able					
والم	3 Is the ecotoxicologi	cal manifestation lev	el appropri	ate for the assessment?	yes	
Mis of						
112						
ST. ST.						
Solve of the of						
7,62	Glyphosate Renewal Group A	IR 5 – July 2020		Doc ID: 110054-N	MCA8_GRG_Rev 1_Jul_202	
it the glos	1	·				
1. 8						

Environmental Relevance						
1 Is the substance tested representative and relevant	for the substance being assessed?	yes				
2 Do the tested concentrations relate to measured or concentrations (if available)?	Refer to paper					
3 Have parameters influencing the endpoints been c conditions)?	yes Join of					
Concluding weight of evidence	Changes in the dissipation or distribution following repeated applications of glarelated to shifts in the soil microbial composition	yphosate may be				
Type of info. (Critical, supporting, low weight)	Supporting information	. 6				
Consideration/concluding score	UBA2	0. 8				

Ruzkova et al. (2011)

Annex to Regulation 283/2013

			20, 20, 30	
glyphecotox_583	Ruzkova, M., Ruzek, L., Vorisek, K., Vrablik, P., Musilova, D.	2011	Microbiological characterization of land set-aside before and after	Plant Soil and Environment 57 2):88-94
	Musilova, D.		Reliability State	
Purpose of the stud	dv		To describe the changes in the biological pa	rameters under
Description of end			different soil management (chemical vs bio Endpoints; microbial biomass, available org respiration, metabolic quotient, biomass-spe organic carbon, arylsulfatase activity, soil o carbon and total nitrogen	ogical). anic carbon, basa cific available
Test compound, ap	pplication procedure	,	D (30 2) D: 1.1 (7.1/1)	
exposure period, p		•	F. E. E.	
Experimental appr	oach	Ž.	Refer to paper	
Statistical design,		He He		
test environment		No. See	Refer to paper	
Test organisms	tudy for Environme		loamy luvic chernozem developed on carbo 200 mm thick layer of arable top-soil. Formerly used in arable system until 1995,	
711110	8,79	ill	a land set-aside	
Biological effects	of ditte		Repeated Roundup® desiccation caused a s	
	110 4 10		significant) decrease of arylsulfatase activit highly significant increase of microbial bion	
	an survey		nitrate-nitrogen ratio (+86%) (=>decreased	
			nitrate-nitrogen ratio (+86%) (->decreased nitrates by the plants!!)	immobilization
Relevance of the s	tildycforEnvironme	ntal Rick	Assessment, appropriateness of study endpo	inte
Refevance of the s	tudy40jaLiiviioiiiie	Ri	iological Relevance	iiits
1 Is an appropriate	test species/ life-sta		101081011 11010 / 111100	yes
			ificance, e.g. is a very small statistically	yes
	ble to cause a (popu			700
			oppropriate for the assessment?	yes
Environmental R				
- 05 10		ive and	relevant for the substance being assessed?	yes
2 Do the tested con			red or predicted environmental concentrations	
(if available)?				
	s influencing the end	lpoints b	een considered (e.g. pH, temperature, light	no
Concluding weight Type of info. (Criweight) Consideration/co	ht of evidence		Refer to paper	
Type of info (Cri	itical, supporting, l	nw -	Supporting information	
Type of mile. (Cl)	icicai, supporting, i	O 11	Supporting into matton	
weight)			UBA2	

Widenfalk et al. (2008)

glyphecotox_649	Widenfalk, A., Bertilsson, S., Sundh, I., Goedkoop, W.	2008	Effects of pesticides on community composition and activity of sediment microbes - responses at various levels of microbial community organization		
			Reliability	3,3	
Description of endpoints the personal environment of the p		To assess whether sediment microbes were affected by exposure to the pesticides captan, glyphosate, isoproturon and primicarb at invironmentally relevant and high pesticide concentrations, at both community and subcommunity ("species") (Teyels). Endpoints: community-level: bacterial activity, tongal and total nicrobial biomass sub-community level: PEFA, 16S rRNA genotyping, T-RFLP			
Test compound, appli			osate N-(phosphono-methyl) glycine		
exposure period, prote			nd 150.000 μg/kg dw		
Experimental approac	h	microc	cosms		
Statistical design, test environment			cosms		
Test organisms			ent from lake Erken, Sweden (relatively u ltural activities)	naffected by	
exposi activit exposi - Sub- compo conce exposi			- Community-level endpoints were not affected by pesticide exposure (bacterial activity was quantified too late? bacterial activity usually shows an almost instantaneous response to pesticide exposure) - Sub-community level: significant shifts in bacterial community compositions (as T-RFLP) at environmentally relevant concentrations => certain groups of bacteria were stimulated at low exposure concentrations?		
Relevance of the stud	y for Environmenta		ssessment, appropriateness of study endp	Ollits	
1 Is an appropriate tes	st species/ life-stage			yes	
2 Is the magnitude of significant effect able	effects of biologica to cause a (popular	d signifi tion) rela	cance, e.g. is a very small statistically evant effect?		
3 Is the ecotoxicologi	cal manifestation le		ropriate for the assessment?	yes	
1 In the substance test	ad name of the state of the sta		onmental Relevance	vios.	
1 Is the substance tested representative and relevant 2 Do the tested concentrations relate to measured concentrations (if available).					
3 Have parameters influencing the endpoints bee light conditions)?				yes	
Concluding weights	80		The study showed that community-level end points failed to detect these changes, underpinning the need for application of molecular techniques in aquatic ecotoxicology.		
Type of info (Critical weight)		<i>'</i>	Supporting information		
Consideration/conclu	uding score		UBA2	_	

Considerange.

Liphadzi, K.B., et al. (2005)

Annex to Regulation 283/2013

glyphecotox_461	Liphadzi, K.B., et al.	2005	Soil microbial and nematode communas affected by glyphosate and tillage practices in a glyphosate-resistant crosystem		Weed Science 53 (4):536-\$45
	•		Reliability		TITY, Of
Purpose of the stud	ly		Determine the response of soil microbia		
Description of endp	points		communities to different herbicides and	tillage p	ractices under
			a glyphosate-resistant cropping system.	%. Co, x	0
			Endpoints:	2 6. %	
			- soil microbial biomass (SMB) carbon	determin	ation
			- substrate-induced respiration (SIR)	201	
			- BIOLOG substrate utilization	, Co	
TD 1	1 1		- nematode populations		
exposure period, pr	plication procedure, cotocol	,	- substrate-induced respiration (SIR) - BIOLOG substrate utilization - nematode populations Glyphosate: ? Application rate: 1.12 kg ar had, when tall	WCCGB W	ere 10-20 cm
			tall All glyphosate treatments received a sec	ond glyp	hosate
			application approximately 2 wk after the	e first ap	plication
Experimental appro	oach		Conventional herbicides:		
Statistical design,			- tank mixture of cloransulam plus S-metolachlor plus		
test environment			sulfentrazone for soybean		
			- commercially available mixture of acetochlor and atrazine		
Test organisms			Report to paper		
Biological effects			- SMB carbon, SIR, and BIOLOG substrate utilization were not altered by glyphosate		
			Nematode community response to the glyphosate treatment		
			was similar under both conventional tillage and no-till		
		Š	environments. Total nematode densities		
40			glyphosate and conventional herbicide t	reatment	S
Relevance of the st	udy for Environmer		Assessment, appropriateness of study en	dpoints	
1.7	/1:0	~ ~ ~	ological Relevance		
1 Is an appropriate	test species/ life-sta	ge(s) sti	idied?	yes	
significant effect al	ble to cause a (popu	lation) r		yes	
3 Is the ecotoxicolo	ogical manifestation		ppropriate for the assessment?	yes	
	10 20 St.		ironmental Relevance		
			evant for the substance being assessed?	yes	
2 Do the tested concentrations relate to measur concentrations (if available)?			•		
3 Have parameters influencing the endpoints be light conditions)?			een considered (e.g. pH, temperature,	no	
Concluding weight of ovidence			soil health when glyphosate was applied in a glyphosate-		
	N'S		resistant cropping system was similar to		
8	N of evidence		systems that used conventional herbicides.		
Type of info. (Crit	tical, supporting, lo)W	Supporting information		
Consideration/con	aluding saara		UBA2		

Busse et al. (2001)

glyphnosubm_155	Busse, M.D., A.W. Ratcliff, C.J. Shestak, and R.F. Powers	2001	of long-term vegetation control on soil microbial communities.	Soil Biology and Biochemistry 33:1777-1789.	
			Reliability		
Purpose of the study Description of endpo			Assess direct and indirect effect of glyph microbial communities from pine planta Endpoints: Lab: soil bioassay at high concentrations Field: microbial biomass, respiration.	tion.	
Test compound, app exposure period, pro	tocol		Report to paper		
Experimental approa Statistical design, test environment	ich		Report to paper Refer to paper		
Test organisms			3 types of soil: clay, Fe, Aloxide conten California)	•	
Biological effects			Microbial respiration was unchanged at expected field concentrations and stimulated at conc. 100-fold greater		
Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints					
			ological Releyance of		
1 Is an appropriate test species/ life-stage(s) stud				yes	
significant effect abl	e to cause a (popul	ation) re			
3 Is the ecotoxicolog	gical manifestation		propriate for the assessment?	yes	
			ronmental Relevance	T	
			vant for the substance being assessed?	yes	
concentrations (if av	ailable)?	zil ^{to} i	ed or predicted environmental		
3 Have parameters in conditions)?	nfluencing the endp	oints be	en considered (e.g. pH, temperature, light	no	
Concluding weight of evidence Type of info. (Critical supporting, low		Long-term, repeated applications had minimal effects on seasonal microbial characteristics, which was more a function of time of year and site. Tests in artificial media are of limited relevance for glyphosate Field rate applications of glyphosate should have little or no effect on soil microbial communities in ponderosa pine plantations.			
	car supporting, lo	W	Supporting information		
weight) Consideration/conc	liiding score		UBA2		
Constact attom/conc	imming acord				

B.9.13 14.1 Summary of the relevant literature on soil non-target micro-organisms

The period in soil fertility by assuming key ecological functions like and nutrient cycling. Therefore, information about how agricultural practices and period pesticides significantly affect soil microorganisms is highly required in risk assessment. However, soil microbial diversity is extremely difficult to measure because of is high complexity (Tiedje et al. 1999). In practice, the ERA of soil non-target micro-organisms is hence often restricted to the measurement of impact of pesticides on soil functional diversity (i.e. carbon and nitrogen mineralization rates, respiration rate, enzyme activities...) or bacterial and fungal biomass.

Glyphosate Renewal Group AIR 5 – July 2020

In the case of the herbicide glyphosate, only few studies failed to detect significant effect on soil functional diversity after application of the herbicide (e.g. Liphadzi, et al. 2005). Zabaloy, et al. (2008) reported that "the addition of glyphosate at a dose 10 times higher than the normal field application rates caused minor changes to soil microbial activity, bacterial density and functional richness". In rare cases, inhibitory effects have also been reported. In a land set-aside in the western part of Prague (Czech Republic), Ruzkova et al. (2011) found that repeated application of Roundup® desiccation caused a significant increase of microbial biomass (+69 %), but also strongly decreased the immobilization of nitrates by the plants (nitrate introgen ratio +86 %) as well as the arylsulfatase activity (-28 %).

In some studies, differences in microbial parameters are more a function of time and specificality than pesticides doses. For example, Gomez et al. (2009) detected significant differences in microbial respiration over the time but not between doses of applied glyphosate. In Hart et al. (2009), seasonality was a significant determinant of denitrifier and fungal abundance. Parallelly, Busse et al. (2001) found that variation in microbial community size, activity and metabolic diversity was more afunction of time of year and land-use that herbicide treatment.

Nevertheless, glyphosate is an organophosphonate herbicide that can be easily used as a source of P, C or N by either by gram-positive or gram-negative bacteria (van Eerd et al., 2003). Therefore, in most studies, the application of glyphosate at expected or higher field concentration rates is correlated with an immediate and significant increase in soil respiration (Accinelli et al., 2002), migrobial biomass (Lupwayi, N.Z., et al., 2004), C- and N- mineralizations (Lancaster et al., 2006; Haney et al., 2000a, 2002b). This stimulation of soil principal functional parameters is assumed to be linked to a rapid use of glyphosate as source of nutrients (Mijangos et al., 2009) usually correlated with a metabolisation of the pesticide. Araujo et al. (2003) demonstrated in two Brazilian soils a rapid biodegradation of glyphosate by soil microorganisms with the formation the metabolite AMPA, resulting in short- and long-term positive effect of the herbicide on the soil microbial activity (increase of 10–15 % in the CO2 evolved and a 9–19 % increase in FDA hydrolyses in the presence of glyphosate).

This potential use of glyphosate as a source of R. Cor N by soil non-target micro-organisms is likely to induce a shift in their community structures. Ratelief et al. (2006) detected a community shifted from fungal dominance to equal ratio with an enrichment of opportunistic cobiotrophic bacteria that use glyphosate as a nutrient and/or C source. Community shifts from bacterial to fungal dominance were also observed (Araujo et al., 2003). Lupwayi, et al. (2004) observed herbicide-induced shifts in microbial composition even when diversity indices among treatments did not differ. This study points out the importance to assess microbial diversity and composition when looking at the effects of pesticides on non-target microorganisms. In microcosm experiments performed with sediment microbes, Widenfalk et al. (2008) focused their monitoring on various levels of microbial community organization. Community-level endpoints like bacterial activity, fungal and total microbial biomass were not affected by pesticide exposure, whereas endpoints recorded at the "sub-community level"

(e.g. Phospholipid Fatts acid Analysis, 16S rRNA genotyping, T-RFLP) demonstrated significant shifts in bacterial community composition even at environmentally relevant concentrations. The same authors concluded that "Any shifts in community structure will, however, only have consequences on ecosystem function if the tolerant microorganisms cannot compensate for biogeochemical functions normally carried out by inhibited of climinated microbial groups". Such community shifts coupled with a loss of function are clearly illustrated in Lancaster et al. (2006). The authors looked at how the combinations of pesticides may affect soil microbial activity differently than pesticides applied alone. They found that after 30 days, soils treated with glyphosate alone (applied as Roundup® WeatherMAX, Monsanto Co., St. Louis, MO) exhibited greater microbial biomass, cumulative C and N mineralization than all other treatments. However, the addition of "Roundup® WeatherMax" reduced C mineralization in soils treated with the pesticides fluometuron, aldicarb, or mefenoxam + pentachloronitrobenzene formulations. The authors concluded that glyphosate based herbicides might alter the soil microbial response to other pesticides.

Therefore, like stated in Lupwayi et al. (2004), community shifts could have longterm effects on soil biological processes and the relevance of microbial diversity and composition is of importance when assessing the impact pesticides on soil non-target micro-organisms.

Although the application of glyphosate seems to have no negative effects on microbial functions as the are defined at the moment in the risk assessment of soil non-target micro- organisms (C- and Nmineralisation), important community shifts are observed. As stated in Lupwayi et al. (2004), these community shifts could have long-term effects on soil biological processes or impact other essential ecosystem services. Therefore, the relevance of both microbial diversity and composition is of main importance and should be included in future risk assessment looking at the impact pesticides of soil nontarget micro-organisms.

References

- Accinelli, C., Screpanti, C., Dinelli, G., Vicari, A.(2002): Short-time effects of pure and formulated herbicides on soil microbial activity and biomass. International Journal of Environmental Analytical Chemistry 82/8-9, 519-527

 Araujo, A.S.F., Monteiro, R.T.R., Abarkeli, R.B. (2003): Effect of glyphosate on the microbial
- activity of two Brazilian soils. Chemosphere 52 (5), 799-804
- Busse, M.D., Ratcliff, A.W., Shestak, C.J., Powers, R.F. (2001) Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities Soil Biology & Biochemistry 33 (12-13), 1777-1789
- Cycon, M., Kaczynska, A. (2004): Effects of selected pesticides on soil microbial activity in nitrogen and carbon transformation. Pestycydy 1/2,113-120
- Haney, R.L., Senseman, S.A., Hons, F.M. (2002a); Effect of roundup ultra on microbial activity and biomass from selected soils. Journal of Environmental Quality 31 (3), 730-735
- Haney, R.L., Senseman, S.A., Krutz, L.J., Hons, F.M., Soil carbon and nitrogen mineralization as affected by atrazine and glyphosate, 2002b; Biology and Fertility of Soils 35 (1):35-40
- Hart, M.M., Powell, J.R., Gulden, R.H., Dunfield, K.E., Pauls, K.P., Swanton, C.J., Klironomos, J.N., Antunes, P.M., Koch, A.M. Trevors, J.T. (2009): Separating the effect of crop from herbicide on soil microbial communities in glyphosate-resistant corn. Pedobiologia 52 (4), 253-262
- Gomez, E., Ferreras, L., Lovotti, E., Fernandez, E. (2009): Impact of glyphosate application on microbial biomass and metabolic activity in a Vertic Argiudoll from Argentina. European Journal of Soil Biology 45 (2),163-167
- Lancaster, S.H., Haney, R.L., Senseman, S.A., Hons, F.M., Chandler, J.M. (2006): Soil microbial activity is affected by Roundup WeatherMax and pesticides applied to cotton (Gossypium hirsutum). Agric Food Chem 54 (19), 7221-6
- Liphadzi, K.B., Al-Khatib, K., Bensch, C.N., Stahlman, P.W., Dille, J.A., Todd, T., Rice, C.W., Horak, Med., G. (2005): Soil microbial and nematode communities as affected by glyphosate and tillage practices in a glyphosate-resistant cropping system. Weed Science 53 (4), 536-545
- Lupwayi, N.Z., Harker, K.N., Clayton, G.W., Turkington, T.K., Rice, W.A., O'Donovan, J.T., (2004): Soil microbial biomass and diversity after herbicide application. Canadian Journal of Plant Science 84 (2), 677-685
- Mijangos, I., Becerril, J.M., Albizu, I., Epelde, L., Garbisu, C. (2009): Effects of glyphosate on rhizosphere soil microbial communities under two different plant compositions by cultivationdependent and -independent methodologies. Soil Biology & Biochemistry 41 (3), 505-513

- Ratcliff, A.W., Busse, M.D., Shestak, C.J. (2006): Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Applied Soil Ecology 34 (2-3), 114-124
- Ruzkova, M., Ruzek, L., Vorisek, K., Vrablik, P., Musilova, D. (2011): Microbiological characterization of land set-aside before and after Roundup desiccation. Plant Soil and Environment 57 (2), 88-94
- Tiedje J.M.; Asuming-Brempong S.; Nusslein K.; Marsh T.L.; Flynn S.J. (1999): Opening the black box of soil microbial diversity. Applied Soil Ecology, 13 (2), 109-122
- Van Eerd, L.L., Hoagland, R.E., Zablotowicz, R.M., Hall, J.C (2003): Pesticide metabolism in plants and microorganisms. Weed Science 51, 472-495
- Widenfalk, A., Bertilsson, S., Sundh, I., Goedkoop, W. (2008): Effects of pestignes on community composition and activity of sediment microbes responses at various evels of microbial community organization. Environmental Pollution 152 (3), 576-584
- Zabaloy, M.C., Garland, J.L., Gomez, M.A. (2008): An integrated approach, to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Applied Soil Ecology 40 (1), 1-12

B.9.13.15 Effects on other non-target organisms (flora and fauna)

For the group of terrestrial non-target plants (NTA), a comprehensive database of 87 peer- reviewed papers was collected by the notifier. The notifier considered one publication (Boutin et al., 2010) to be rated in category "Klimisch2" and annotated with minimal remarks, whereas the remaining were considered not acceptable for risk assessment.

The submitted publications were also evaluated by RMS and have been assigned according to an UBA screening. 27 studies were recognized as supporting information (category UBA2). Most of the cited studies were performed with formulated products than for the active ingredient alone. It is known that surfactants or additives form a significant amount of plant protection products. The function of these compounds is supposed to enhance the herbicidal activity of the active ingredient glyphosate by e.g. improving the dispersal and retention on the leaf surface or the glyphosate uptake. When considering that herbicide sensitivity among crops species of within the same crop can be extensive and that, depending on the species included in testing, conclusions regarding the phytotoxicity of any given herbicide may differ (White and Boutin 2007), it is essential for current regulatory ERA to take into account toxicity data considering the possible synergistic effects of the products in formulation in order to avoid underestimation of glyphosate containing products.

B.9.13 15.1 General

Boutin et al. (2004)

glyphecotox_175	Boutin, C., Elmegaard, N., Kjaer, C.	2004	Toxicity testing of fifteen non-crop plant species with six herbicides in a greenhouse experiment: Implications for risk assessment	Ecotoxicology Volume: 13 Issue: 4 Pages: 349-369				
			Reliability	18 18 T				
Description of endp	Purpose of the study Description of endpoints		The objectives of this study were (1) to investigate the pattern of sensitivity of several types of plant species to six her bicides with different modes of action, and (2) to explore the transibility of using non-crop plants commonly found in field boundaries as test species for herbicide risk assessment					
Test compound, app procedure, exposure		isop spra agri	andup® Bio (360 g/l glyphosate with 480 g glyp propylaminsalt), Monsanto; Four dosages plus co lyed, 0.01, 0.1, 1 and 5 or 10 times recommende cultural use in Canada and Donmark.	ontrol were ed label rates for				
Experimental approadesign, test environment	ach, Statistical	met	enhouse test, calculation of the EC50 the linear hod for sublethal toxicity, also called the inhibit roach (ICp) was used (as described in US EPA to \$\lambda/600/4/-89-001 and \$\lambda(004\lambda)\$	ion concentration				
Test organisms			Fifteen species were selected, 5 species from the Asteraceae family (daisy family), four from the Lamiaceae family (mint family), two from the Polygonaceae family (buckwheat family) and the rest from four other families					
Biological effects		testi herb	This paper presents the result of a greenhouse experiment where testing was performed with 15 non-crop plant species sprayed with 6 herbicides. \$650 values for non crop species range between 14 and 63 g as Ata					
Relevance of the stu	dy for Environme		sk Assessment, appropriateness of study endpoi	nts				
	•	- 0.	Biological Relevance					
1 Is an appropriate t stage(s) studied?		3 20 3	n cop species were tested					
2 Is the magnitude of biological significant (population) relevant	nce to cause a	guio	hors states that the current suite of species preso delines will not be adequate for the protection of d margin species, in agricultural areas.					
3 Is the ecotoxicological manifestation level appropriate for the assessment?			weight of aerial parts were determined as endp	oint				
	Sold Strate		vironmental Relevance					
1 Is the substance tested representative and relevant for the substance being assessed?			All herbicides were used as formulated products thereby containing a number of surfactant compounds.					
2 Do the tested concentrations relate to predicted environmental concentrations?			See above					
3 Have parameters i endpoints been cons adequately?		yes						
Concluding weight evidence/proposed action	of	prot	Study describes that field margin species may be not adequate protected and risk may be underestimated when non crop species are not tested for risk assessment.					
Type of informatio supporting, low we		_	supporting					
Consideration/cond		UB	A2					

Glyphosate Renewal Group AIR 5 – July 2020

White, A.L., Boutin, C. (2007)

glyphecotox_646	White, A.L.,	2007	Herbicidal effects on nontarget	Environmental Single	
	Boutin, C.		vegetation: Investigating the	Toxicology and	
			limitations of current pesticide	Chemistry 26 (12):2634-2643	
			registration guidelines	(12):2634-2643	
			Reliability	ed id	
Purpose of the study	7		Several crops and wild plant species	wara proten undar	
Description of endp			greenhouse conditions following star		
Description of enup	Offits		phytotoxicity testing. Plants were spr	evadavith five different	
			herbicides at the four- to six-leaf stage		
			recorded at 28 d after spray.	c, and olomass was	
Test compound, app	liantian pragadur	••	Round-Up Original (Monsanto Can	od Mississauga (N)	
exposure period, pro		С,	containing 356 g ai/L glyphosate was		
exposure periou, pro	510001		surfactant (Agral 90; Norac Concep	eta Ottowa ON Canada)	
			containing nonylphenoxy polyethyox		
			Label rates (defined as grafts of active		
			hectare) selected were	ve ingredient applied per	
Evnerimental annua	ach Statistical do	cion	All species were exposed to a one-tir	na harbicida application at	
Experimental approx test environment	acii, Siansucai de	əigii,	the two- to six-leaf stage. At 28 d, vis	enal observations were	
test environment			recorded, ANOVA	sual observations were	
Test organisms			10 different crop species were paired	with alogaly related wild	
Test organisms			plant relatives found in field margin		
Biological effects			Results showed that current regulator		
Biological circus			underestimate herbicide phytotoxicity		
			include data for the complete tank-m		
			present study also showed that the ra		
			sensitivity among cultivars of the same crop can be quite		
		140	extensive and that, depending on the cultivar included in a risk		
			assessment, conclusions regarding the phytotoxicity of any		
		CIT LIE	given herbicide may differ.		
Relevance of the stu	ıdy for Environm	ental Ris	k Assessment, appropriateness of study	y endpoints	
	· Fr		Biological Relevance		
1 Is an appropriate t	est species/ Hite-s	tage(s)	two- to six-leaf stage		
studied?	ŽI. 213 19 123 1. 2	oiss1	IC25 for solution become project the determined 51 or a /ha		
2 Is the magnitude of		gicai	IC25 for solanum lycopersicon was determined 51 g a.s. /ha.		
significance to cause	e a (poputation) r	eievani			
effect? 3 Is the ecotoxicologous and a second seco	missi Washington	n love1			
appropriate for the a					
induction vs. apical	andpoints like ~	owth			
	enapoints like gr	owui			
or reproduction?	10	Fns	ironmental Relevance		
1 Is the substance te	sted representativ		For all species for which it could be	calculated, the IC25 was	
1 (3 6 1			much lower for the formulated produ		
676	£ 8		active ingredient alone, indicating that glyphosate is much less		
10/20			toxic to the species tested than the fo		
relevant for the subs			Up Original.	F	
2 120 Hie tested cond			Drift values would probably less than	the label rate of 2,136 g	
measured or predicted environmental			ai/ha for Round-Up Original		
concentrations (if av	vailable)?				
Have parameters i	nfluencing the		yes		
endpoints been cons		y (e.g.			
pH, temperature, lig	tht conditions)?				

Concluding weight of evidence/proposed action	This study extends the current interest by presenting three experiments highlighting some of the limitations to current phytotoxicity testing guidelines.
Type of information (Critical, supporting, low weight)	supporting
Consideration/concluding score	UBA2

Boutin et al, (2010)

	glyphecotox_173	Boutin, C., White, A.L., Carpenter, D.	2010	Measuring variability in phytotoxicity testing using crop and wild plant species Chemistry 29 (2):327-337. DOI: 10.1002/etc.30.	
			•	Reliability	
	Purpose of the stud	y	The stu	dy was conducted in greenhouse or growth chamber	
	Description of endp			ments with plants growing individually in pots and harvested	
				er spraying with two berbicides, glyphosate and atrazine, as	
				ted products.	
	Test compound, app	olication	Round-	Up Original or Vision (Monsanto Canada), both	
	procedure, exposure	e period, protocol	glycine	tions containing 356 g/L glyphosate [N- (phosphonomethyl)], 2,136 g a.i. has 1 for glyphosate additionally Agral 901 Concepts	
	Experimental appro	each, Statistical		after herbierde exposure, all above-ground green plant	
	design,		materia	l was harvested and placed in a forced-air dryer for a	
	test environment		minimu	m of 72h at approximately 708C for dry biomass nation, ANOVA	
			201	8, Q 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
	Test organisms			fferent herbaceous broad-leaf species from four families and ferent life spans were included in the ecotype variability nent	
	Biological effects		Jt was s	hown that test conditions induced a large variability in a	
		, 5, 2	given sı	pecies' response to herbicides. Both crops and wild plant	
		62 7 9° X	species responded quite variably when they were tested in different		
		of the sile sile		as well as when tested in a greenhouse or in growth	
			chambe		
	Relevance of the st	udy for Environmenta	al Risk A	ssessment, appropriateness of study endpoints	
		St. M. S		ogical Relevance	
		80 87 87		llues are stated, no EC 50 values	
	2 Is the magnitude		The HD calculated using species sensitivity distributions with the		
	biological signification			experiment data revealed that a factor of two generally	
	(population) relevan		separated the least sensitive and the most sensitive ecotypes		
	3 Is the ecotoxicolo				
	manifestation level	appropriate for the			
	assessment?		Enviso	mmontal Dalayanaa	
	0, 9,			onmental Relevance	
	1 Is the substance to representative and r		Comme	ercial product	
	substance being ass	essed?			
	(A) 100 1	centrations relate	Annlica	tion rate is supposed to be above the predicted drift exposure	
Ž	o predicted environ		пррпса	ation rate is supposed to be above the predicted drift exposure	
and a	concentrations?				
15,0	3 Have parameters	influencing the	Differe	nt prevailing conditions were discussed	
10, 8	endpoints been con		2	no provincing voluntaries in the discussion	
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ilyphosate Renewal Group	o AIR 5 – July 2020		Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202	

Page 781 of 847

Concluding weight of evidence/proposed action	The present study supports the inclusion of an uncertainty factor in risk assessments to account for the intrinsic variability in plant sensitivity to herbicides.
Type of information (Critical, supporting, low weight)	supporting H to
Consideration/concluding score	UBA2

Dalton, R.L., Boutin, C. (2010)

	glyphecotox_333	Dalton, R.L., Boutin, C.	2010	Comparison of the effects of glyphosate and atrazine herbicides on nontarget plants grown singly and in microcost Reliability	Environ Toxicol Chem 29 (10):2304- 45 DOI: 10.1002/etc.277.
				Reliability	2 6
	Purpose of the stud Description of endp		terr	ective of the present study was to estrial and wetland plants to the he zine when grown singly in poss ve rocosm conditions.	compare the response of erbicides glyphosate and
	Test compound, appexposure period, pr	olication procedure, otocol	Rouglyj isop Pro add 0.5	undup® Original contains 356 g/L phosate (N-(phosphonomethyl)gly propylamine salt, The surfactant A tection), containing nonylphenoxy ed to Roundup® Original solution (v/v) as recommended on the profit of gapha for glyphosate.	cine) in the form of its gral 190 (Syngenta Crop polyethoxy ethanol, was is to give a concentration of
	Experimental approdesign, test environment	ach, Statistical	Gre	centiouse microcosm experiments valued test period (28 d) and a long	
	Test organisms	_ (Nin	e terrestrial and seven wetland pla secosystems of Eastern Ontario an	
	Biological effects	ide for Environment	sing sem her betv stru woo	enhouse microcosms were general gle-species tests. Plants grown for inatural field conditions were gen bicides. Sensitivity was found to be ween species and test conditions. Octure were observed in herbicide- ald not be predicted from single-sp	an extended test period or in erally less sensitive to e dependent on interactions Changes in community treated microcosms that
	Relevance of the st	ıdy for Environment	al Risk	Assessment, appropriateness of st	udy endpoints
		30 5 Tal.		ological Relevance	
	1 Is an appropriate	test species/ life-stag			yes
	2 Is the magnitude	of effects of biologic	al signi	ficance	nd
				propriate for the assessment,	nd
	200			onmental Relevance	
	assessed 30 50			vant for the substance being	Commercial product
				d environmental concentrations	Corresponding to In field application rate, not representing drift rate.
	3 Have parameters	influencing the endp	oints be	en considered?	yes
Control of the contro					
	Glyphosate Renewal Group	AIR 5 – July 2020		Doc ID	o: 110054-MCA8_GRG_Rev 1_Jul_2020

Concluding weight of	Authors state that Single-species tests are useful because they are
evidence/proposed action	inexpensive, can demonstrate clear dose–response patterns
	uncomplicated by other factors influencing growth, and are able to
	provide a measure of the sensitivity of a given species to
	glyphosate and atrazine. However, they are unable to predict
	subtle changes in community structure that may have important
	long-term consequences.
Type of information (Critical,	supporting style s
supporting, low weight)	
Consideration/concluding score	UBA2
_	

Martin, M.L., Ronco, A.E. (2006)

	glyphecotox_489	Martin, M.L., Ronco, A.E.	2006	Effect of mixtures of pesticides used in the direct seeding technique on nontarget plant seeds Reliability Seessment of effects on permination and root elongation of seeds				
				Reliability & & & & & & & & & & & & & & & & & & &				
	Purpose of the study	У	As	Assessment of effects on germination and root elongation of seeds				
	Description of endp			exposed to Roundup® Max formulation of glyphosate hernbicide.				
	Test compound, app			oundup® Max (74.4% glyphosate)				
	procedure, exposure		l					
	Experimental appro	ach	G	Germination test with 2,5 to 2500 mg/L, assessment points were seed				
	Statistical design,tes		ge	ermination and seedling root elongation, regression analysis				
	Test organisms			nctuca setiva, Brassica napus, allium cepa, medicago sativa,				
	Biological effects		2 1/2 100					
		study for Environmental Risk Assessment, appropriateness of study endpoints						
		Biological Relevance						
	1 Is an appropriate t	test species/ life-						
	stage(s) studied?	ost species, into	-034					
	2 Is the magnitude of	of effects of		es, considering that the first days of seedling groth are often the				
	biological significar	nce a	m m	ost sensitive stage of plant development.				
	3 Is the ecotoxicolo	gical Social) [S	IC50 values are given :				
	manifestation level	appropriate for the	æ L.	L.sativa 9.89 as mg/l, L.perenne 15.31 mg/L, M.sativa: 56.31 mg/L,				
	assessment?	10, 25, 70	A.	A.cepa: 131.8 mg/L, B.napus 1164.31 mg/L				
			E	nvironmental Relevance				
	3 Is the ecotoxicological manifestation level appropriate for the assessment? 1 Is the substance tested representative and relevant for the substance being assessed?			ommercial product				
	2 Do the tested cond		ye	es s				
	to predicted environ			Jes				
	concentrations							
	3 Have parameters in endpoints been constemperature. Tight co	influencing the sidered (e.g. pH,		o effect on seed germination were observed with any concentration r any tested species.				
	Concluding weight	of evidence						
	Type of info. (Criti	ical, supporting,	su	pporting				
à	Consideration/con-	cluding score	U	BA2				
The state of the s	llyphosate Renewal Group	AIR 5 – July 2020		Doc ID: 110054-MCA8_GRG_Rev 1_Ju1_202				

M-CA, Section 8 Annex to Regulation 283/2013 Glyphosate Page 783 of 847

Olszyk et al. (2004)

	glyphecotox_529	Olszyk, D.M., Burdick, C.A., Pfleeger, T.G., Lee, E.H., Watrud, L.S.	2004	Assessing the risk to non- target plants from herbicides	J Agric Meteorol 60 (4):221-242	
			R	eliability		
	Purpose of the study Description of endp			Paper addresses current trends in general ERA of plants, herbicide use in general, problems of formulations etc. in US.		
	period, protocol	plication procedure, e		no endpoints, 10 years old		
	Experimental approtest environment	ach, Statistical design	1,	no		
	Test organisms			no		
	Biological effects			nd	0	
	Relevance of the stu	ıdy for Environmenta	al Risk Asse	ssment, appropriateness of stu	dy endpoints	
			Biologi	cal Relevance		
		test species/ life-stage			no	
	2 Is the magnitude of	of effects of biologica	al significan		no no	
	3 is the ecotoxicolo	gicai manifestation le	evei appropi	riate for the assessment?	Review describes uncertainties s of phytotoxicity testing and gives recommendations for	
				(3) (5) (5)	improvement.	
	1 Is the substance to assessed?	ested representative a		for the substance being	no	
		centrations relate to p		vironmental?	no	
		influencing the endpo			no	
		t of evidence/propos	1/2/81	Not relevant in terms of risk indicates limitations of ERA		
	woight)	on (Critical, support		supporting		
	Consideration/con	cluding score	<u> </u>	UBA2		
TO THE WASHINGTON TO THE WASHI	Consideration/con	TO SUN OF				
16/10 18/10 18/10 18/10 19/10 10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/	Glyphosate Renewal Group	AIR 5 – July 2020		Doc ID	: 110054-MCA8_GRG_Rev 1_Jul_202	

Wagner et al. (2003)

glyphecotox_642	Wagner, R., Kogan, M., Parada, A.M.	2003	Phytotoxic activity of root absorbed glyphosate in corn seedlings (Zea mays L.)	Weed Biology and Management 3:228-232
			Reliability	20.16
Purpose of the stud Description of endp			The purpose of the present study we relationship between the amount of roots, avoiding interaction of the hits effect on plant growth. Also, the concentration and plant transpiration assessed. The treated plants present glyphosate allocation, with the apeaccumulating more than 38% of a plants absorbed more than 0.6 mg growth. The relatively high glyphonew leaves showed the relevance the translocation process for root as	ras to determine the flyphosate absorbed from erbicide with any substrate and e effects of glyphosate on on herbicide's uptake were ted a normal pattern of the principal sink, lobilized glyphosate. When corn they showed a decrease in state quantities allocated in the of the symplastic pathway in
Test compound, app exposure period, pr		lure,	Commercial herbicide solution of (0.36 kg ae L - 1) with phosphono (specific activity 4:0 GBq mmol-, by HPLC, International Isotope M radiolabeled glyphosate in a 100 m solution. Growth chamber experim to study the absorption, translocati when applied to roots with aqueou glyphosate substrate interaction	glyphosate isopropylamine salt omethyl14C]-glyphosate determined to be98.5% pure ünchen)to obtain 2% of the g kg-1total glyphosate ents were conducted in order onand activity of glyphosate
Experimental appro	ach, Statistics,		6 10 10	
test environment			region of	
Test organisms Biological effects		of till x	Zeamays A linear relationship was found be concentration and glyphosate upta L-1	ke over therange of 2–30 mg
Relevance of the str	idy for Environ	mental F	Risk Assessment, appropriateness of	study endpoints
1.7	40,33	11. 74	Biological Relevance	1
1 Is an appropriate 2 Is the magnitude 3 Is the ecotoxicolo assessment?	of effects of bio	logical s) studied? ignificance? S al it ir to	mall amounts of glyphosate bsorbed by corn root stimulates is growth; however, a very low acrease in these amounts starts by produce phytotoxic effects.
assessment:	Ĉ.	F	nvironmental Relevance	
1 Is the substance tested representative and being assessed?			relevant for the substance C	ommercial product
concentrations?			dicted environmental n	
		endpoint	ts been considered? no	
Concluding weight			Authors expect that if there is glyp solution it could be absorbed from occur. Non target plant might there drift, but also via the soil.	and root crop damagecould
Type of info. (Crit weight)	ical, supportin	g, low	supporting	

Consideration/concluding score	UBA2

Wibawa et al. (2009)

	glyphecotox_647	Wibawa, W., Bin Mohamad, R., Bin Puteh, A., Omar, D., Juraimi, A.S., Abdullah, S.A.	2009	Residual Phytotoxicity Effects of Paraquat, Glyphosate and Glufosinate-Ammonium Herbicides in Soils from Field-Treated Plots	International Journal of Agriculture and Biology 11 (2):214-216	
				Reliability	4 5 80	
	Purpose of the study Description of endp			Soil residual phytotoxicity of commonly used herbicides in plantation crops in Malaysia were investigated through bioassay		
	Test compound, app exposure period, pr		> ,	Roundup®R (360 g L-1gTyp)	\$0	
	Experimental approtest environment	ach, Statistics,		glyphosate (Round up R) at 400, 800, 1200 and 1600 g a.i. ha-1 were applied to field plots of 5 x 20 m2.		
	Test organisms Biological effects			Glyphosate, when applied to the field in Malaysia at rates with ranges inclusive of their field recommended rates did not leave residues in the soil, which may cause phytotoxic effect to the indicator plants, corn and cucumber		
	Relevance of the str	udy for Environme		Assessment, appropriateness of	study endpoints	
				ogical Relevance		
	1 Is an appropriate	test species/ life-sta	age(s) stud	ied? o o	nd	
	2 Is the magnitude of			concest or the assessment?	nd d	
	3 is the ecotoxicoro	gicai manifestation		operate for the assessment?	nd	
	1 Is the substance to assessed?	ested representative	- A VI	ant for the substance being	nd	
				environmental concentrations'	nd nd	
	3 Have parameters		lpoints bee		nd	
	Concluding weight	6.9, %	ill	comparable.	, environmental conditions not	
	Type of info. (Crit weight)		ow	low weight		
	Consideration/con	cluding score		UBA3		
	Glyphosate Renewal Group					
To HOLE LE	Glyphosate Renewal Group	AIR 5 – July 2020		Doc	ID: 110054-MCA8_GRG_Rev 1_Jul_202	

B.9.13 15.2 Ecological side effects (KIIA 8.16)

Neumann et al. (2006)

	G. Neumann, S. KohlsE. Landsberg, K. Stock-Oliveria Souza, V. Römheld,	2006	Relevance of glyphosate transfer to non-target plants via the rhizosphere	Pflanz Pflanz	nrift für enkrankheiten un d enschutz, rheft, ISSN 9938-		
	,	I	Reliability				
Purpose of the st Description of er			In nutrient solution, rhizobox and show that foliar applied glyphosa released into the rhizosphere after shoots to roots.	ate to tar	get plants is		
Test compound, exposure period,	application procedure protocol	.,	Roundup®-Ultra (Monsanto, Strecommended by the manufactor water) to obtain a glyphosate connutrient solution experiment, gly %, 5 %, 50 % and 100 % (VV) concentration. In the rhizobox experiment, 0 % applied.	er (121/20 centration phosate f the reco	00 l-1 deionized on of 28.4 mM. In the was applied with 0 ommended		
Experimental approach Statistical design, test environment			Seedlings were cultivated nutrient solution or planted into rhizoboxes. Measurements of 54Mn uptake and intracellular shikimate accumulation				
Test organisms			Glycine max, Helianthus annuus				
Biological effects Relevance of the study for Environmental Ris			In the chizosphere glyphosate can obviously be stabilized long enough to achieve negative effects on non-target plants. Such a negative side-effect is for example inhibited acquisition of micronatrients such as Mn, but also Zn, Fe and B, which are involved in plant own disease resistance mechanisms				
			ological Relevance				
studied?	te test species/ life-sta	OF ST.			1.		
significance to ca effect?	le of effects of biologiuse a (population) re	levant	No, as effects are involved in pla mechanisms				
3 Is the ecotoxicological manifestation level appropriate for the assessment?			Authors predict an increase in disease problems, particularly on soils with low micronutrient availability as already reported in the USA due to Glyphosate transfer from target to non-target plants (e.g. from weed to trees in orchards)				
	Lill Kill Jill	Envi	ironmental Relevance				
1 Is the substance tested representative and rel							
2 Do the tested concentrations relate to predict							
3 Have parameters influencing the endpoints b			1 7				
Concluding wei	ght of evidence		Not relevant for the traditional ri to improve management of glyph	nosate lo			
Type of info. (C weight)	ritical, supporting, l	ow	applications in agricultural practi supporting	ice.			
Consideration/c	oncluding score		UBA2				

Fernandez et al. (2009)

glyphecotox_375	Fernandez, M.R., Zentner,	2009	Glyphosate associations with cereal diseases		p Science 47 (4):1574- 4. DOI		
	R.P., Basnyat,		caused by Fusarium		135/cropsci2006.09.0596&		
	P., Gehl, D.,		spp. in the Canadian	10.2	135/C10psc12000.07.03508		
	Selles, F.,		Prairies		£ .5		
	Huber, D.				17.9		
	, , ,				135/cropsci2006.09.0596		
			Reliability				
Purpose of the stud			This review deals primarily with the effects of fillage				
Description of endp	points		systems and glyphosate use on the development of FHB				
			and CRR in wheat and barle				
	plication procedure,		Test compounds not stated,				
exposure period, pr	otocol		selected randomly within Cr				
			east-central Saskatchewan t				
			cropping practices in the are	a,Q`	<u> </u>		
Experimental appro			nd	80° 00			
Statistical design, to	est environment		O . ()				
Test organisms			Fusarium spp.	5			
Biological effects			Glyphosate use was consistently associated with higher				
		FHB levels caused by the most important Fusarium head					
			blight pathogens. Fusarium avenaceum and Fusarium				
D 1 0.1	1.0 5 :	. 1701 1 4	graminearum				
Relevance of the st	udy for Environment		ssessment, appropriateness of study endpoints				
4.7			ogical Relevance				
studied?	test species/ life-stag						
	of effects of biologic		Because of the close association between non cereal crops,				
significance to caus	se a (population) rele		reduced tillage and glyphosate use, it was not possible to				
effect?		all's	completely separate the effects of these factors on				
		illo all	Fusarium infections.				
	gical manifestation	level co	No , glyphosate might cause changes in fungal				
appropriate for the	assessment?	3, 12, 9,	communities, which are not assessed in current risk				
	<u> </u>	8.70,	assessment				
17.4	- A &	Enviro	nmental Relevance		1		
1 Is the substance tested representative and releva			int for the substance being		nd		
assessed?	and the same of th	40 . 4		0			
2 Do the tested concentrations relate to predicted							
3 Have parameters influencing the endpoints been				1	nd		
Concluding weight of evidence		Study established a relations					
		glyphosate use and increased <i>Fusarium</i> infection of spikes and subcrown internodes of wheat and barley, or Fusarium					
:\$ \$ [6]			colonization of crop residue		n and bariey, or rusarium		
Type of info (Crif	içal, supporting, lo	OV/	low weight				
weight)	icai, supporting, 10	vv	IOW WEIGHT				
Consideration/con	oluding score		UBA3				
Constact attout Con	crading score		02010				

Piotrowicz-Cieslak et al. (2010)

glyphecotox 180	Piotrowicz-	2010	Different Glyphosate	Polish Journal of				
glyphecotox_100	Cieslak, A.I.,	2010	Phytotoxicity of Seeds and	Environmental Studies				
	Adomas, B.,		Seedlings of Selected Plant	Volume: 19 Issue: 1				
	Michalczyk, D.J.		Species Species	Volume: 19 Issue: 1 5 5 6 Pages: 123-129 Url;				
	Whenaiczyk, D.o.		Reliability	1 uges: 120 125 0113				
Purpose of the stud	v	The ain	of this study was to compare the	physiological responses of				
Description of endp			t species (popular crops or plants in					
			pollution) to a wide range of glyph					
		Percent germination, root length, seedling dry mass and myo-inositol						
		content, as well as seedling leachate electroconductivity were						
		determined in Lepidium sativum, Sinapis alba, Sorghum						
			atum, Brassica napus, Lupinus lui					
Test compound, app		(Round	up® Ultra 360 SL containing 360	g/L active principle) at final				
procedure, exposure	e period, protocol		rations: 1, 3, 7, 10, 40, 80, 120, 18	6 , 240, 400, 750, 1000,				
			700 or 2000 μM.	Q.				
Experimental appro	oach		TOXKIT™ (MicroBio Test Inc.					
Statistical design,			factor experiments (split-plot). Th					
test environment			mpared using q SNK test (Student					
Test organisms		Seeds o	f oilseed rape (<i>Brassica napus</i>), w upin (<i>Lupinus luteus</i>); cress (<i>Lepi</i>	nite mustard (Sinapis alba),				
			and sorghum (Sorghum saccharati					
Biological effects			e dose 7- fold lower than that reco					
Diological criccis			(7 μM, i.e. 3.0 L ha Roundup® U					
		growth	in B. napus and A. sativa, while it	did not suppress root				
			on in Lepidium sativum and it eve					
		g: 11 \(\sigma_{\sigma}\)						
		For glyphosate concentrations within the range 1-40 μM the sharpest						
		drop in root length occurred in Sorghum saccharatum, which						
		confirms the value of this plant as a herbicide sensor plant in biotests.						
Relevance of the str	udy for Environmen	41 .6.	Assessment, appropriateness of stu	dy endpoints				
			ogical Relevance					
1 Is an appropriate stage(s) studied?	test species/ life-	Germin	ation test					
2 Is the magnitude	of effects of	nd						
biological significan		C)						
2.1	1 OY 11 1	No. end	points were stated at day 6: EC50	of root growth after six				
manifestation level	annuannia da		Sinapis alba, Sorghum saccharat					
the assessment?			ativa was 25, 22, 35 and 110 μM,					
	appropriate for	effects a	are usually determined between 14	to 21 days.				
	in of	Envir	onmental Relevance					
1 Is the substance to	ested of	Comme	rcial Product					
representative and r								
substance being ass								
2 Do the tested con	centrations relate	trations relate 3.0 L/ha Roundup® Ultra						
to predicted environ	nmental							
concentrations	in florencia - 41 -	Not all indicator plants are equally witches for an above of his last all						
3 Have parameters endpoints been con-		Not all indicator plants are equally suitable for analysis of biological activity of glyphosate residues.						
temperature, light c	anditions)?	detivity of gryphosate residues.						
Concluding weight		Indication that glyphosate inhibits root growth.						
and of			8-7F mmons 1906 81					
Type of info. (Crit	ical, supporting,	suppor	ting					
dow weight)								
Consideration/con	cluding score	UBA2						

Annex to Regulation 283/2013

Non-target plants	Eker, S., Ozturk, L., Yazici, A., Erenoglu, B., Romheld, V., Cakmak, I.	200 6	Foliar applied glyphosate substantialla reduced uptake and transport of iron and manganese in sunflower (<i>Helianthus annuus L.</i>) plants	J. Agric. Food Chem. 54: 10019-
D 0.1	1		Reliability	
Purpose of the stud Description of end	points		To study the effect of glyphosate on shoot dry n production, chlorophyll concentration, and the a translocation, and tissue accumulation of Fe.Mr in sunflower plants	ptake, R, Zn, and Cu
Test compound, ap exposure period	oplication procedure,	,	- Roundup Ultra [active ingredient (ar): 480g L. [phosphonomethyl]glycine isopropylamine salt, Co.] - Application: "subherbicidal rates of glyphos and 6% of the recommended application rate product label (equivalent to 0.39, 0.79, and respectively) sprayed on foliage in a volume of nearly 1.5 m	Monsanto ate": 1.25, 2.5, provided on the 1.89 mM a.i., LL per plant
environment	oach, Statistics, test		- Each treatment consisted of four independe and each replication (pot) had two plants. - Statistics: Least significant difference (LSI were performed according to Student's t-test us software	nt replications, D) calculations
Test organisms			Helianthus annuus	
Biological effects			- Reduction of the uptake and transport of Fe an -glyphosate is antagonistic to the uptake, transport accumulation (tissue concentration) of Fe and M plants	ort, and In in sunflower
Relevance of the s	tudy for Environmen	ıtal Ris	Assessment, appropriateness of study endpoints	
			iological Relevance	
studied?	test species/ life-sta	5.0		
to cause a (populat	of effects of signification) relevant effect?	HOS	Effects might reduce fitness of plants or change towards pest organisms but willprobably not relapopulation effects towards non target plants	
3 Is the ecotoxicol appropriate for the	ogical manifestation assessment?	level	See above	
	OL MITS		ironmental Relevance	
relevant for the sul	tested representative	ed?	Roundup Ultra, commercial formulation contain surfactants which can not completely separate frof the active substance.	rom the effects
predicted environing	icentrations relate to cental concentrations		Concnetrations close to drift rates of glyphosate tested (up to 6% of the recommended application)	
	nsidered adequately?		yes	
action 2 5	t of evidence/propos		The results suggest that glyphosate residues or d in severe impairments in Fe and Mn nutrition of plants, possibly due to the formation of poorly s glyphosate-metal complexes in plant tissues and rhizosphere interactions.	nontarget oluble
Type of information (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	on (Critical, supporting	ng,	Supporting information	
Consideration/con-	cluding score		UBA2	

Annex to Regulation 283/2013

Tesfamariam et al. (2006)

Non- target plants	Tesfamariam T, Bott S, Cakmak I, Römheld V & Neumann G.	2009	Glyphosate in the rhizosphere – role of waiting times and different glyphosate binding forms in soils and phytotoxicity to non-target plants.	European Journal of Agronomy 31:		
			Reliability			
Purpose of t Description	he study of endpoints		Investigation whether plant residues of glyphosate treated weeds or direct soil application of glyphosate bears an intoxication risk for subsequently cultivated.			
exposure pe		,	nd Control	\$		
Experimental approach, Statistics, test environment			- Greenhouse studies on two soils with contrasting properties (acidic, sandy Arenosol, calcareous best subsoil) - treated weed: model plant Lethum perenne - Treatments: direct soil application and treated-weeds			
Test organis	sms		Helianthus annuus seedlings	arca modus		
Biological effects			- detrimental effectswere note pronounced after glyphosate weed application (90% biomass reduction of seedling) compared with direct soil application (55–70% biomass reduction) at waiting time 0 d increase in sloking accumulation in theseedling root tissue - impairment of the manganese-nutritional status,			
Palayanaa	of the study for Environmen	atol Diele	still detectable after 21 d. Assessment, appropriateness of study endpoints			
Kelevance 0	of the study for Environmen		Assessment, appropriateness of study endpo	iiits		
1 Is an approstudied?	opriate test species/ life-sta		Helianthus annuus seedlings			
to cause a (p	mitude of effects of signific copulation) relevant effect?	- Cilled	Indication for general fitness			
	oxicological manifestation for the assessment?	10,10,10	Probably would affect the population integrity in the end due to high biomass reduction.			
		<u> </u>	onmental Relevance			
relevant for	stance tested representative the substance being assess	ěď?	nd			
predicted en	ted concentrations relate to	s?	nd			
been conside	meters influencing the end ered adequately?	_	dn			
Concluding action	weight of evidence/propos	sed	Study shows an role of glyphosate in plant residues in determining the risk of non-target plant intoxication			
Type of info low weight)	ormation (Critical, supporti	ng,	Supporting information			
	on/concluding score		UBA2			

ations

B.9.13 15.3 Drift simulation

Ellis et al. (2003)

Description of endpoints rice and 35, Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, Earrice at p tass Test organisms Ric Biological effects Gly hig In 2 67% General red of general re	Reliability d research was conducted during 3 yr to evaluate response of and corn to simulated drift rates representing 12.8, 6.3, 3.2, 1.6, 0.8% of the usage rates of 1,120 g ai/ha glyphosate (140, 70, 18, and 9 g/ha, respectively) fit rates represented 12.5, 6.3, 3.2, 1.6, and 0.8% of the usage of 1,120 g ai/ha glyphosate (140, 70, 18, and 9 g/ha, respectively) ly-postemergence applications were made to two- to three-leaf and six-leaf corn, and lates postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA e and corn phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the highest rate of glyphosate reduced rice yield 99 and when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the re highest rates, but only for the highest rate at the late timing and seeding and reduced responsible to the plant height when the two nest rates were applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the religiblest rates, but only for the highest rate at the late timing and seeding and response of the religible of the response					
Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, Test organisms Ric Biological effects Gly high In 2 67% Ger red of ger red of ger stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment I Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	and corn to simulated drift rates representing 12.8, 6.3, 3.2, 1.6, 0.8% of the usage rates of 1,120 g ai/ha glyphosate (140, 70, 18, and 9 g/ha, respectively) It rates represented 12.5, 6.3, 3.2, 1.6, and 0.8% of the usage of 1,120 g ai/ha glyphosate (140, 70, 38, 18, and 9 g/ha, pectively) Ily-postemergence applications were made to two- to three-leaf and six-leaf corn, and late postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA The and corn Thosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. To f 3 yr, the highest rate of glyphosate reduced rice yield 99 and when applied early and 54 and 29% when applied late. This is a second of the plant height was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the petighest rates, but only for the highest rate at the late timing and second of the proportion of the petighest rates of study endpoints in the proportion of the proportion of study endpoints in the proportion of the					
Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, Experimental approach, Statistics, Earrice at p tass Test organisms Ric Biological effects Gly hig In 2 67% Ger red of g thre (33) Relevance of the study for Environmental Ris I Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations ?	and corn to simulated drift rates representing 12.8, 6.3, 3.2, 1.6, 0.8% of the usage rates of 1,120 g ai/ha glyphosate (140, 70, 18, and 9 g/ha, respectively) It rates represented 12.5, 6.3, 3.2, 1.6, and 0.8% of the usage of 1,120 g ai/ha glyphosate (140, 70, 38, 18, and 9 g/ha, pectively) Ily-postemergence applications were made to two- to three-leaf and six-leaf corn, and late postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA The and corn Thosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. To f 3 yr, the highest rate of glyphosate reduced rice yield 99 and when applied early and 54 and 29% when applied late. The mination of the seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and beginning the propriateness of study endpoints intogical Relevance					
Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, Test organisms Rice Biological effects Gly high In 2 67% General of ge	and corn to simulated drift rates representing 12.8, 6.3, 3.2, 1.6, 0.8% of the usage rates of 1,120 g ai/ha glyphosate (140, 70, 18, and 9 g/ha, respectively) It rates represented 12.5, 6.3, 3.2, 1.6, and 0.8% of the usage of 1,120 g ai/ha glyphosate (140, 70, 38, 18, and 9 g/ha, pectively) Ily-postemergence applications were made to two- to three-leaf and six-leaf corn, and late postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA The and corn Thosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. To f 3 yr, the highest rate of glyphosate reduced rice yield 99 and when applied early and 54 and 29% when applied late. The mination of the seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and beginning the propriateness of study endpoints intogical Relevance					
Description of endpoints rice and 35, Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, Test organisms Ric Biological effects Gly high In 2 67% Get red of get three (33) Relevance of the study for Environmental Ris 1 Is an appropriate test species/ lifestage(s) studied? 2 Is the magnitude of effects of biological significance, obs 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	and corn to simulated drift rates representing 12.5, 6.3, 3.2, 1.6, 0.8% of the usage rates of 1,120 g ai/haglyphosate (140, 70, 18, and 9 g/ha, respectively) It rates represented 12.5, 6.3, 3.2, 1.6, and 0.8% of the usage of 1,120 g ai/ha glyphosate (140, 70, 35, 18, and 9 g/ha, pectively) ly-postemergence applications were made to two- to three-leaf and six-leaf corn, and late postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA e and corn phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the highest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of frice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and of the periodical reduced corn seeds of study endpoints into glipping and seed in 1 of 2 yr and for only the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realigness rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realigness rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realigness rates, but only for the highest rate at the late timing and periodical reduced rice yield an average of 22 to 78% for the reduced rice yield an					
Description of endpoints rice and 35, Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, Ear rice at p tass Test organisms Ric Biological effects Gly high In 2 67% Get reduction of get three (33) Relevance of the study for Environmental Rish 1 Is an appropriate test species/ lifestage(s) studied? 2 Is the magnitude of effects of biological significance, obs 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	and corn to simulated drift rates representing 12.5, 6.3, 3.2, 1.6, 0.8% of the usage rates of 1,120 g ai/haglyphosate (140, 70, 18, and 9 g/ha, respectively) It rates represented 12.5, 6.3, 3.2, 1.6, and 0.8% of the usage of 1,120 g ai/ha glyphosate (140, 70, 35, 18, and 9 g/ha, pectively) ly-postemergence applications were made to two- to three-leaf and six-leaf corn, and late postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA e and corn phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the highest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of frice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and of the periodical reduced corn seeds of study endpoints into glipping and seed in 1 of 2 yr and for only the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realigness rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realigness rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realigness rates, but only for the highest rate at the late timing and periodical reduced rice yield an average of 22 to 78% for the reduced rice yield an					
Description of endpoints rice and 35, Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, Ear rice at p tass Test organisms Ric Biological effects Gly high In 2 67% Get reduction of get three (33) Relevance of the study for Environmental Rish 1 Is an appropriate test species/ lifestage(s) studied? 2 Is the magnitude of effects of biological significance, obs 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	and corn to simulated drift rates representing 12.5, 6.3, 3.2, 1.6, 0.8% of the usage rates of 1,120 g ai/haglyphosate (140, 70, 18, and 9 g/ha, respectively) It rates represented 12.5, 6.3, 3.2, 1.6, and 0.8% of the usage of 1,120 g ai/ha glyphosate (140, 70, 35, 18, and 9 g/ha, pectively) ly-postemergence applications were made to two- to three-leaf and six-leaf corn, and late postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA e and corn phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the highest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of frice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and of the periodical reduced corn seeds of study endpoints into glipping and seed in 1 of 2 yr and for only the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realigness rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realigness rates, but only for the highest rate at the late timing and periodical reduced corn yield an average of 22 to 78% for the realigness rates, but only for the highest rate at the late timing and periodical reduced rice yield an average of 22 to 78% for the reduced rice yield an					
Test compound, application procedure, exposure period, protocol rate responsure period, protocol rate period responsure period protocol rate period rate period rate period rate period responsure period protocol rate period rate	0.8% of the usage rates of 1,120 g ai/haglyphosate (140, 70, 18, and 9 g/ha, respectively) ft rates represented 12.5, 6.3, 3.2, 16, and 0.8% of the usage of 1,120 g ai/ha glyphosate (140, 70, 38, 18, and 9 g/ha, bectively) ly-postemergence applications were made to two- to three-leaf and six-leaf corn, and late postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA e and corn phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the lighest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the lighest rates, but only for the highest rate at the late timing and seed in 1 of 2 yr and for only for the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only for the highest rate at the late timing and seed in 1 of 2 yr and for only for the highest rate at the late timing and seed in 1 of 2 yr and for only for the highest rate at the late timing and seed in 1 of 2 yr and 5 to 10 yr and 10					
Test compound, application procedure, exposure period, protocol rate responsive period protocol rate period responsive period protocol rate period responsive period protocol responsive period protocol responsive period protocol rate period responsive period protocol responsive period protocol rate period	18, and 9 g/ha, respectively) fit rates represented 12.5, 6.3, 3.2, 1.6, and 0.8% of the usage of 1,120 g ai/ha glyphosate (140,70,35,18, and 9 g/ha, bectively) ly-postemergence applications were made to two- to three-leaf and six-leaf corn, and late postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA e and corn phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the lighest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the leading seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only for the highest rate at the late timing and seed in 1 of 2 yr and for only for the highest rate at the late timing and seed in 1 of 2 yr and for only for the highest rate at the late timing and seed in 1 of 2 yr and for only for the highest rate at the late timing and seed in 1 of 2 yr and 5 to 10 yr and 10 y					
Test compound, application procedure, exposure period, protocol rate responser period protocol rate responser period rate procedure, at procedure, at procedure, at procedure, at procedure, at procedure, and protocol rate procedure, and protocol responser period respons	trates represented 12.5, 6.3, 3.2, 16, and 0.8% of the usage of 1,120 g ai/ha glyphosate (140,70, 35, 18, and 9 g/ha, bectively) ly-postemergence applications were made to two- to three-leaf and six-leaf corn, and late postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA e and corn phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the highest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the lighest rates, but only for the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and 5 delayed 2 yr an					
exposure period, protocol Experimental approach, Statistics, Ear rice at p tass Test organisms Biological effects Gly high In 2 67% General reductions and propriate test species lifestage(s) studied? I Is an appropriate test species lifestage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env I Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	of 1,120 g ai/ha glyphosate (140,700,35,18, and 9 g/ha, bectively) ly-postemergence applications were made to two- to three-leaf and six-leaf corn, and late postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA e and corn phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the highest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the large highest rates, but only for the highest rate at the late timing and or considered and propriateness of study endpoints intogical Relevance					
Experimental approach, Statistics, Ear rice at p tass Test organisms Ric Biological effects Gly high In 2 67% General red of general re	dy-postemergence applications were made to two- to three-leaf and six-leaf corn, and late postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA e and corn phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the highest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing application specifical Relevance					
Experimental approach, Statistics, Ear rice at p tass Test organisms Biological effects Gly high In 2 67% General reductions and the study for Environmental Riss Relevance of the study for Environmental Riss 1 Is an appropriate test species/ life-stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	ly-postemergence applications were made to two- to three-leaf and six-leaf corn, and late postemergence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA e and corn phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the highest rate of glyphosate reduced rice yield 99 and when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the tea highest rates, but only for the highest rate at the late timing applications applied an appropriateness of study endpoints intogical Relevance					
Test organisms Ric Biological effects Biological effects Gly hig In 2 67% Ger red of g thre (33) Relevance of the study for Environmental Ris I Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env I Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations ?	and six-leaf corn, and late posterier gence applications to rice anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA e and corn phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the highest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the least rates, but only for the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and seed in 1 of 2 yr and for only the highest rate at the late timing and 1 yr and 2 yr and 3 yr and 3 yr and 4 yr and 5 yr					
Test organisms Ric Biological effects Biological effects Gly hig In 2 67% Ger red of g thre (33) Relevance of the study for Environmental Ris I Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env I Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations ?	anicle differentiation and to corn at nine-leaf stage (1 wk before eling). ANOVA e and corn phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the highest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing Assessment, appropriateness of study endpoints intogical Relevance					
Test organisms Biological effects Gly hig In 2 67% Ger red of g thre (33) Relevance of the study for Environmental Ris I Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env I Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations ?	phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the highest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing a seesance. Assessment, appropriateness of study endpoints in the late timing and or only the highest rate at the late timing and or only the highest rate					
Biological effects Biological effects Gly hig In 2 67% Ger red of g thre (33) Relevance of the study for Environmental Ris I Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env I Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations ?	phosate consistently reduced rice plant height when the two nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the highest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the realignest rates, but only for the highest rate at the late timing seed and a seed in 1 of 2 yr and for only the highest rate at the late timing seed and the late					
Relevance of the study for Environmental Risl 1 Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	nest rates were applied early, and heading was delayed 2 to 5 d. of 3 yr, the lighest rate of glyphosate reduced rice yield 99 and 6 when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the see highest rates, but only for the highest rate at the late timing and a seessment, appropriateness of study endpoints intogical Relevance					
Relevance of the study for Environmental Risl 1 Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	of 3 yr, the lighest rate of glyphosate reduced rice yield 99 and when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the leghest rates, but only for the highest rate at the late timing and seeds are reduced corn yield an average of 22 to 78% for the leghest rates, but only for the highest rate at the late timing and seeds are reduced corn yield an average of 22 to 78% for the leghest rates, but only for the highest rate at the late timing and seeds are reduced corn yield an average of 22 to 78% for the leghest rates, but only for the highest rate at the late timing and seeds are reduced in the property of					
Relevance of the study for Environmental Risl 1 Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	when applied early and 54 and 29% when applied late. mination of rice seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the use highest rates, but only for the highest rate at the late timing Assessment, appropriateness of study endpoints intogical Relevance					
Relevance of the study for Environmental Risl 1 Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	mination of free seeds from glyphosate-treated plants was used in 1 of 2 yr and for only the highest rate. Early application glyphosate reduced corn yield an average of 22 to 78% for the legiblest rates, but only for the highest rate at the late timing Assessment, appropriateness of study endpoints in original Relevance					
Relevance of the study for Environmental Risk Relevance of the study for Environmental Risk 1 Is an appropriate test species/ life-stage(s) studied? 2 Is the magnitude of effects of biological significance, a.s. obs 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	aced in 1 of 25 r and for only the highest rate. Early application alyphosate reduced corn yield an average of 22 to 78% for the lee highest rates, but only for the highest rate at the late timing Assessment, appropriateness of study endpoints intogical Relevance					
Relevance of the study for Environmental Risk Relevance of the study for Environmental Risk 1 Is an appropriate test species/ life-stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	elyphosate reduced corn yield an average of 22 to 78% for the le highest rates, but only for the highest rate at the late timing (Assessment, appropriateness of study endpoints logical Relevance					
Relevance of the study for Environmental Risk Relevance of the study for Environmental Risk 1 Is an appropriate test species/ life-stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	e highest rates, but only for the highest rate at the late timing Assessment, appropriateness of study endpoints iological Relevance					
Relevance of the study for Environmental Risk 1 Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, a.s. obs 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	Assessment, appropriateness of study endpoints iological Relevance					
Relevance of the study for Environmental Risk 1 Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations ?	Assessment, appropriateness of study endpoints					
1 Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	iological Relevance					
1 Is an appropriate test species/ life- stage(s) studied? 2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?						
2 Is the magnitude of effects of biological significance, a.s. obs 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?						
2 Is the magnitude of effects of biological significance, 3 Is the ecotoxicological manifestation level appropriate for the assessment Env 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	gg					
3 Is the ecotoxicological manifestation level appropriate for the assessment 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	rry greater 50 % was observed at realistic drift simulation (70 g					
3 Is the ecotoxicological manifestation level appropriate for the assessment 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	a.s. /ha) for corn height, corn injury after 14 DAT. Recovery was					
3 Is the ecotoxicological manifestation level appropriate for the assessment 1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	erved for this parameter after 28d.					
level appropriate for the assessment Env	•					
1 Is the substance tested representative and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?						
and relevant for the substance being assessed? 2 Do the tested concentrations relate to predicted environmental concentrations?	ironmental Relevance					
2 Do the tested concentrations relate to predicted environmental concentrations?	bably commercial product, but not stated					
2 Do the tested concentrations relate to predicted environmental concentrations?						
predicted environmental concentrations?						
?	Yes, drift rates are simulated					
3 Have parameters influencing the nd,						
endpoints been considered?	Field study.					
	ual injury to both rice and corn associated with the lower					
evidence/proposed her						
action on y	picide, rates in some cases was minimal, but the negative effect					
	picide, rates in some cases was minimal, but the negative effect yield was significant. Visual injury alone, therefore, would not					
gly	picide, rates in some cases was minimal, but the negative effect yield was significant. Visual injury alone, therefore, would not a good indicator of potential yield loss from sublethal rates of					
	picide, rates in some cases was minimal, but the negative effect yield was significant. Visual injury alone, therefore, would not a good indicator of potential yield loss from sublethal rates of phosate.					
supporting, low weight) Consideration/concluding score	picide, rates in some cases was minimal, but the negative effect yield was significant. Visual injury alone, therefore, would not a good indicator of potential yield loss from sublethal rates of					
Consideration/concluding score UB	picide, rates in some cases was minimal, but the negative effect yield was significant. Visual injury alone, therefore, would not a good indicator of potential yield loss from sublethal rates of phosate. porting					

Blackburn, L.G., Boutin, C. (2003)

	glyphecotox_172	Blackburn, L.G., Boutin, C.	2003	Subtle effects of herbicide use in the context of genetically modified crops: A case study with glyphosate (Roundup® (R))	Ecotoxicology 12 (1- 3) (4):271-285	
				Reliability		
	Purpose of the study			Paper presents results of literature		
	Description of endp			experiment performed with emphasis on non crop species		
	Test compound, app exposure period, pro		e,	Roundup® Liquid	17 6 8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Experimental appro			nd 6		
	Test organisms	den, Statistics,		nd	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	Biological effects			nd O S	\$	
	Relevance of the stu	ıdy for Environm	ental Ris	sk Assessment, appropriateness of st	udy endpoints	
]	Biological Relevance		
	1 Is an appropriate t stage(s) studied?	-		yes g g g g		
	2 Is the magnitude of effects of biological significance,			nd Silling		
	3 Is the ecotoxicolo level appropriate fo		n	Application affected PI generation family, Brassical family members shoot development, Fabaceae men alls doses tested	were affectd in root and	
			En	vironmental Relevance		
	1 Is the substance to			Commercial product		
	relevant for the subs		sed?			
	2 Do the tested cond predicted environment	centrations relate tental concentration	ns?	890 ga.s /ha, this application rate is exposure anticipated to result from use rates	s supposed to be above the a drift at typical glyphosate	
	3 Have parameters in endpoints been cons	influencing the sidered?	J. S. 10	Lack of uniform solution, lack of g	green leaves, yes	
	Concluding weight action	t of evidence/pro	กิจระd	More powerful experiment with no conducted later by the author, which present.		
	Type of information supporting, low we	on (Critical,		low weight		
		- %		UBA3		
10 10 10 10 10 10 10 10 10 10 10 10 10 1	Glyphosate Renewal Group					
100 00 00 00 00 00 00 00 00 00 00 00 00	Glyphosate Renewal Group	AIR 5 – July 2020		Doc II	D: 110054-MCA8_GRG_Rev 1_Jul_2020	

Al-Khatib et al. (2003)

glyphecotox_276	Al-Khatib, K., Claassen, M.M., Stahlman, P.W., G P.W., Regehr, D.L. Duncan, S.R., Heer W.F.	.,	2003	Grain sorghum response to simulated drift from glufosinglyphosate, imazethapyr, an sethoxydim		
			Relial	bility	210, Kr.	
Purpose of the study Description of endpoints		Field experiments were conducted at four locations in Kansas in 1999 and 2000 to evaluate grain sorghum response to simulated drift rates of four herbicides. Imazethapyr, glufosinate, glyphosate, and sethoxydim were applied at 1/3, 1/10, 1/33, and 100 of the use rate when plants were 10 to 20 cm tall.				
Test compound, app	olication	Use ra	ites were	1/100, 1/33, 1/10, and 1/3/of th	recommended use	
procedure, exposure					Ó,	
Experimental appro	ach, Statistics,			19 9 9		
Test organisms		sorghu				
Biological effects		Visible crop injury increased as rates of each herbicide increased. The highest rate of glyphosate resulted in injury at all sites in both years. Injury ranged from 64 to 99% 8 WAT not stetd if active ingriedien tor or commercial product,				
Relevance of the stu	ıdy for Environmenta	ıl Risk	Assessm	ent, appropriateness of study er	ndpoints	
		Bio	ological 1	Relevance		
	test species/ life-stage				nd	
	of effects of biologica				nd	
3 Is the ecotoxicolo	gical manifestation le	level appropriate for the assessment			nd	
				al Relevance		
		and relevant for the substance being assessed?			nd	
2 Do the tested concentrations relate to pr			predicted environmental concentrations? Yes, but a and 1/33 no significance of the second of the se			
3 Have parameters	nats be	en consi		nd		
Concluding weight of evidence/proposed action No information about product, no endpoints, field experiment in canada not reliable for RA						
Type of information (Critical low weight supporting, low weight) Consideration/concluding score UBA3						
Consideration/concluding score UBA3						

	Consider ation/concluding score	UDAS		
	Felix et al. (2014)			
	glyphecotox_369 Felix, J., Boydston	, 2011	Potato Response to	Weed Technology 25
	R., Burke, I.C.		Simulated Glyphosate Drift	(4):637-644. DOI: 10.1614/wt-d-11-00001.1.
	2.6	R	eliability	11. 20001.0
	Purpose of the study Description of endnoints		Field studies were conducted in 2008 in Ontario, OR and Paterson, WA to determine the effect of simulated	
>	The state of the s		glyphosate drift on 'Range visual injury, shikimic acid yield.	r Russet' potato, including
			, ,	
	Purpose of the study Description of endpoints Glyphosate Renewal Group AIR 5 – July 2020		Doc II	D: 110054-MCA8_GRG_Rev 1_Jul_202

Test compound, application procedure, exposure	Roundup® Original Max ®Glyphosate was applied at
period, protocol	8.5, 54, 107, 215, and 423 g ae ha21; which corresponds
period, protocor	to 0.01, 0.064, 0.126, 0.254, and 0.5 of the
	lowestrecommended (846 g ha21) single application
	dose for glyphosate-resistant corn and sugar beet.
Experimental approach, Statistics,	Glyphosate was applied when potato plants were at 10.
Experimental approach, Statistics,	cm height, stolon hooking, tuber initiation, or bulking
	stage; ANOVA
Test organisms	Corn an sugar beet
Biological effects	The greatest visual foliar injury was observed when
	glyphosate was applied at a dose of 54 g ha21 or greater
	and potato plants were at the hooking stage the lowest
	foliar injury was observed when glyphosate was applied
	to potato plants at the bulking stage. The I50 glyphosate
	dose at 42 d after treatment (DAT) was estimated to be
	167 g ha21 for potatoes sprayed at the hooking stage
Relevance of the study for Environmental Risk Ass	
	ical Relevance
1 Is an appropriate test species/ life-stage(s)	visual foliar injury data at 21 DAT
studied?	TI CALLED AT
2 Is the magnitude of effects of biological	The estimated \$50 glyphosate doseat 21 DAT was lowest at hooking stage (80.3 g/ ha) followedby tuber
significance,	initiation (156.4 g/ ha)
3 Is the ecotoxicological manifestation level	80g/ha is the amount of glyphosate which can be
appropriate for the assessment	predicted with an application rate of 2880 ga.s./ha.
11 1	nental Relevance
1 Is the substance tested representative and	commercial product
relevant for the substance being assessed?	Solution product
2 Do the tested concentrations relate to predicted	zyeş. ¹
environmental concentrations?	
3 Have parameters influencing the endpoints been	
considered adequately (e.g. pH, temperature light	
conditions)?	
Concluding weight of evidence/proposed action	Significant effects at concentrations related to predicted
, (°) (°) (°)	driftl concentrations, EC50 values stated for 21DAT.
Type of information (Critical, supporting, low	supporting
weight)	
Consideration/concluding score	UBA2
10 E 5	

	Consideration/concluding score		UBAZ	
	Deeds et al. (2006) Symplectory 341 Deeds, 7.A., Al-			
	glyphecotox_341 Deeds, Z.A., Al- Khatib, K., Peterson, D.E., Stahlman, P.W.	2006	Wheat Response to Simulated Drift of Glyphosate and Imazamox Applied at Two Growth Stages	Weed Technology 20:23-31
ž	Purpose of the study Description of endpoints		Reliability The objectives of this research were to determine the effects of simulated drift of glyphosate and imazamox applied at the jointing and flowering stages of winter wheat on growth, yield, and seed germination, and to determine the correlation between early injury symptoms and grain yield.	
\$ 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Purpose of the study Description of endpoints Glyphosate Renewal Group AIR 5 – July 2020		Doc ID:	110054-MCA8_GRG_Rev 1_Jul_202

Test compound, application procedure,	Roundup® Ultra Max ®Glyphosa	
exposure period, protocol	1/103, and 1/33 of usage rates of 8	
	and 35 g/ha imzamox were applied	d individually to wheat in s
	the early jointing or the early flow	er stages of growth. All
	glyphosate5 treatments included 2	% ammonium sulfate 🔊 🎸
	weight,	, Q3 mr
Experimental approach, Statistics,	Wheat plants were observed for in	
	recovery throughout the growing s	
	ratings were determined 1, 2, and	
	(WAT) using a scale of 0 to 100, v	
	injury and 100 equal to plant mort	ality; regression analyis
Test organisms	Wheat varieties	3. 30 E
Biological effects	Glyphosate injury symptoms were	noticeable on wheat
	plants within 4 to 7 d after treatme	
	WAT. Symptom intensity differed	
	rate and environmental conditions.	
	Wheat injury ratings were highly c	
	reduction, and the correlation was	
	yield reduction and injury rating at	t 4 WAT than injury
	ratings at 1 and 2 WAT	
Relevance of the study for Environmental Risk A	1 1 2 0 ,00 , 0	endpoints
	ogical Relevance & &	
1 Is an appropriate test species/ life-stage(s) studi	ed?	Jointing an flowering
	- Carlotte	stage
2 Is the magnitude of effects of biological signific		no
3 Is the ecotoxicological manifestation level appr		no
	nmental Relevance	
1 Is the substance tested representative and releva	ant for the substance being	Commercial product
assessed?	91. 80 M	
2 Do the tested concentrations relate to predicted	yes	
3 Have parameters influencing the endpoints been	Field experiment	
temperature, light conditions)?	(.0 ¹	<u> </u>
Concluding weight of evidence/proposed action	No EC50 values calculated, but ob	
action	visual injury between 0,05 and 0.2	5 of use rate (approx 40
(C) (S) (S) (S)	to 210 g/ha).	
Type of information (Critical, supporting,	supporting	
low weight)	IID 42	
Consideration/concluding score	UBA2	

Gilreath et al. (2001)

	glyphecotox_385 Gilreath, J.P., Chase, C.A.,	2001	Crop injury from sublethal rates of herbicide. I. Tomato	Hortscience 36 (4):669-673	
	Locascio, S.J.				
	18 6 Fig.		Reliability		
	Purpose of the study		The objectives of these studies w	vere to evaluate the extent	
	Description of endpoints		of phytotoxic injury and the effe		
	EN SHOW		tomato exposed at three stages of		
	# P		glyphosate known to be sublethal.		
	Test compound, application procedure,		Roundup® 4EC®; Monsanto Agricultural Products, St.		
20	exposure period, protocol		Louis) were applied at three reproductive growth stages of		
SI)			'Sunny' tomato. The active ingre	* *	
15 10	,		10, and 100 g·ha–1 in a volume	of 234 L	
(10) VI.	Experimental approach, Statistics,				
	Test organisms		tomato		
COS A CONTROL OF THE PROPERTY	Glyphosate Renewal Group AIR 5 – July 2020		Doc ID:	110054-MCA8_GRG_Rev 1_Jul_2020	

D: 1 : 1 CC .	E + (0+ 100 1 11 1 1	1 14.55		
Biological effects	Exposure to 60 to 100 g·ha–1 during the period 4 to 5.5			
	weeks after transplanting, just prior to			
	cluster and during bloom, caused folia	ar injury and flower		
	abscission, and reduced fruit set. Plan	ts treated later were 🔊		
	larger and more mature. They were le	ss susceptibleto foliar		
	injury	SILALIE		
Relevance of the study for Environmental Risk A	ssessment, appropriateness of study en	dpoints &		
Biole	ogical Relevance	417.0		
1 Is an appropriate test species/ life-stage(s) studi	1 Is an appropriate test species/ life-stage(s) studied?			
2 Is the magnitude of effects of biological signific	cance,	Yield reductions		
3 Is the ecotoxicological manifestation level appr	opriate for the assessment	nd Co		
Enviro	nmental Relevance	2 0. 90		
1 Is the substance tested representative and releva	ant for the substance being assessed?	Commercial product		
2 Do the tested concentrations relate to predicted	environmental concentrations?	yes		
3 Have parameters influencing the endpoints been	n considered adequately (e.g. pH	Field study		
temperature, light conditions)?		•		
Concluding weight of evidence/proposed	t of evidence/proposed Field study in Florida, not comparable, Nevertheless			
action	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
Type of information (Critical, supporting,	low weight			
low weight)				
Consideration/concluding score	UBA3			

Gove et al. (2007)

glyphecotox_394 Gove, B., Power, S.A., Buckley, G.P., Ghazoul, J. Purpose of the study Description of endpoints Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protocol. Experimental apploach, Statistics, test environments Experimental apploach, Statistics, test environments Biological effects Test-organisms Reliability Aglyphosate dosing regime of 0, 0-06, 0-3, 0-6 and 1-5 L a.i./ ha (0%), 1%, 5%, 10% and 25% of the median field application rate) in spray drift situations. Non-parametric Kruskal-Wallis test. Test-organisms Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202	1				13 61 7		
Buckley, G.P., Ghazoul, J. Buckley, G. G. Buckley, G		glyphecotox_394		2007			
Ghazoul, J. Ghazoul, J. Species of woodland ground flora: comparison between short-term and long-term impact assessments and field surveys Reliability Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Test compount Experimental approach, Statistics, test environment Test compount Experimental approach, Statistics, test environment Test compount Experimental approach, Statistics, test environment Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Test compound T							
Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Test compounds Experimental approach, Statistics, test environment Experimental ap			Buckley, G.P.,			DOI 10.1111/j.1365-	
Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Test compounds Experimental approach, Statistics, test environment Test compounds Experimental approach, Statistics, test environment Test compounds Experimental approach, Statistics, test environment Experimental approach, St			Ghazoul, J.		species of woodland ground	2664.2007.01261.x.	
Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Test correginisms Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Test correginisms Test compound, application procedure, exposure period, protocol Aglyphosate (Egret, Cardel, France) comes in liquid form at a concentration of 360 g glyphosate/L plus a polyoxyethylene amine surfactant; application rates vary between 2 and 10 L active ingredient (a.i.) /ha. The median application rate of 6 L (2160 g) a.i. /ha was chosen as the maximum dose rate (100%). Aglyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Testorganisms Fourteen native woodland plant species				1,40			
Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Test correginisms Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Test correginisms Test compound, application procedure, exposure period, protocol Aglyphosate (Egret, Cardel, France) comes in liquid form at a concentration of 360 g glyphosate/L plus a polyoxyethylene amine surfactant; application rates vary between 2 and 10 L active ingredient (a.i.) /ha. The median application rate of 6 L (2160 g) a.i. /ha was chosen as the maximum dose rate (100%). Aglyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Testorganisms Fourteen native woodland plant species				of the	short-term and long-term		
Reliability Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Test companisms Reliability Six species of woodland plants were exposed to the herbicide glyphosate at concentrations equivalent to those measured in spray drift trials (1–25% of the full application rate) in short-term greenhouse and long-term field experiments. Glyphosate (Egret, Cardel, France) comes in liquid form at a concentration of 360 g glyphosate/ L plus a polyoxyethylene amine surfactant; application rates vary between 2 and 10 L active ingredient (a.i.) /ha. The median application rate of 6 L (2160 g) a.i. /ha was chosen as the maximum dose rate (100%). A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Test organisms Fourteen native woodland plant species				JI JE			
Reliability Purpose of the study Description of endpoints Six species of woodland plants were exposed to the herbicide glyphosate at concentrations equivalent to those measured in spray drift trials (1–25% of the full application rate) in short-term greenhouse and long-term field experiments. Test compound, application procedure, exposure period, protocol exposure period, protocol Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Test organisms Reliability Six species of woodland plants were exposed to the herbicide glyphosate in spray drift trials (1–25% of the full application rate) in short-term greenhouse and long-term field experiments. Glyphosate (Egret, Cardel, France) comes in liquid form at a concentration of 360 g glyphosate/ L plus a polyoxyethylene amine surfactant; application rates vary between 2 and 10 L active ingredient (a.i.) /ha. The median application rate of 6 L (2160 g) a.i. /ha was chosen as the maximum dose rate (100%). Experimental approach, Statistics, test environment A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Fourteen native woodland plant species			. 6	~ · ~ ~	4) -		
Purpose of the study Description of endpoints Six species of woodland plants were exposed to the herbicide glyphosate at concentrations equivalent to those measured in spray drift trials (1–25% of the full application rate) in short-term greenhouse and long-term field experiments. Test compound, application procedure, exposure period, protocol Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Test organisms Six species of woodland plants were exposed to the herbicide glyphosate at concentrations equivalent to those measured in spray drift trials (1–25% of the full application rate) in short-term greenhouse and long-term field experiments. Glyphosate (Egret, Cardel, France) comes in liquid form at a concentration of 360 g glyphosate/ L plus a polyoxyethylene amine surfactant; application rates vary between 2 and 10 L (2160 g) a.i. /ha was chosen as the maximum dose rate (100%). Experimental approach, Statistics, test environment A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Test organisms			8	HO HO			
Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Test organisms Glypnosate (Egret, Cardel, France) comes in liquid form at a concentration of 360 g glyphosate/L plus a polyoxyethylene amine surfactant; application rates vary between 2 and 10 L active ingredient (a.i.) /ha. The median application rate of 6 L (2160 g) a.i. /ha was chosen as the maximum dose rate (100%). Experimental approach, Statistics, test environment A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Test organisms			y Edig	0,00	Six species of woodland plants w	vere exposed to the herbicide	
Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Test organisms Glypnosate (Egret, Cardel, France) comes in liquid form at a concentration of 360 g glyphosate/L plus a polyoxyethylene amine surfactant; application rates vary between 2 and 10 L active ingredient (a.i.) /ha. The median application rate of 6 L (2160 g) a.i. /ha was chosen as the maximum dose rate (100%). Experimental approach, Statistics, test environment A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Test organisms		Description of endp	oints Sills	ill	glyphosate at concentrations equ	ivalent to those measured in	
Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Test organisms Glypnosate (Egret, Cardel, France) comes in liquid form at a concentration of 360 g glyphosate/L plus a polyoxyethylene amine surfactant; application rates vary between 2 and 10 L active ingredient (a.i.) /ha. The median application rate of 6 L (2160 g) a.i. /ha was chosen as the maximum dose rate (100%). Experimental approach, Statistics, test environment A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Test organisms			80 8 K		spray drift trials (1–25% of the fu	all application rate) in short-	
Experimental approach, Statistics, test environment Experimental approach, Statistics, test environment Test organisms Glypnosate (Egret, Cardel, France) comes in liquid form at a concentration of 360 g glyphosate/L plus a polyoxyethylene amine surfactant; application rates vary between 2 and 10 L active ingredient (a.i.) /ha. The median application rate of 6 L (2160 g) a.i. /ha was chosen as the maximum dose rate (100%). Experimental approach, Statistics, test environment A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Test organisms			112 4 10.				
exposure period, protocol concentration of 360 g glyphosate/ L plus a polyoxyethylene amine surfactant; application rates vary between 2 and 10 L active ingredient (a.i.) /ha. The median application rate of 6 L (2160 g) a.i. /ha was chosen as the maximum dose rate (100%). Experimental approach, Statistics, test environment A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Test organisms Fourteen native woodland plant species		Test compound, app	Micataon wrocediire	·,	Glyphosate (Egret, Cardel, Franc	e) comes in liquid form at a	
Experimental approach, Statistics, test environment A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Test organisms Fourteen native woodland plant species		exposure period, pr	otocol		concentration of 360 g glyphosat	e/L plus a polyoxyethylene	
Experimental approach, Statistics, test environment A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Test organisms Fourteen native woodland plant species			C. I. I. C.				
Experimental approach, Statistics, test environment A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Test organisms Fourteen native woodland plant species		ري.	x 0. (0.		active ingredient (a.i.) /ha. The m	nedian application rate of 6 L	
Experimental approach, Statistics, test environment A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Test organisms Fourteen native woodland plant species			8,00				
Experimental approach, Statistics, test environment A glyphosate dosing regime of 0, 0·06, 0·3, 0·6 and 1·5 L a.i./ ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal—Wallis test. Test organisms Fourteen native woodland plant species		3	.5		(100%).		
test environment ha (0%, 1%, 5%, 10% and 25% of the median field application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal— Wallis test. Test organisms Fourteen native woodland plant species		Experimental appro	ach, Statistics,		A glyphosate dosing regime of 0,	0.06, 0.3, 0.6 and 1.5 L a.i./	
application rate) was followed, covering the range of doses measured in spray drift situations. Non-parametric Kruskal— Wallis test. Test organisms Fourteen native woodland plant species		test environment					
Test organisms Fourteen native woodland plant species		18 KJ 8 JS			application rate) was followed, c	overing the range of doses	
Test organisms Fourteen native woodland plant species		So off					
Test organisms Fourteen native woodland plant species		10,00					
Biological effects This study has shown that herbicide concentrations as low as 1–5% of the median field application rate can have biologically significant effects on several woodland species, among them species of conservation value. Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202		Test organisms			Fourteen native woodland plant species		
1–5% of the median field application rate can have biologically significant effects on several woodland species, among them species of conservation value. Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202		Biological effects					
biologically significant effects on several woodland species, among them species of conservation value. Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020		1.7					
among them species of conservation value. Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202	્રે						
Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202	35	EL.			among them species of conservat	tion value.	
Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202	, S, O	Relevance of the stu	ıdy for Environme	ntal Risk	Assessment, appropriateness of s	tudy endpoints	
Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202					· ** *	* *	
Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202	,0,0						
Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202							
Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202	SJO Zill						
Glyphosate Renewal Group AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_202	80 Jah						
	G G	lyphosate Renewal Group	AIR 5 – July 2020		Doc II	D: 110054-MCA8_GRG_Rev 1_Jul_202	
	47.210						
	To the second se						

Bi	iological Relevance		
1 Is an appropriate test species/ life-stage(s) stu	ıdied?	nd	
2 Is the magnitude of effects of biological sign	ificance?	The implication of the results is that the	
		vigour and fitness of understorey plants	
		in woodland margins may be affected by	
		herbicide applications to adjacent	
		agricultural land.	
3 Is the ecotoxicological manifestation level ap	ppropriate for the	nd ETT'S	
assessment?		, \$0.8ii	
Environmental Relevance			
1 Is the substance tested representative and rele	evant for the	Commercial product	
substance being assessed?		10 O. 10	
2 Do the tested concentrations relate to predicte	ed environmental	yes of ill is	
concentrations?		12 6 E	
3 Have parameters influencing the endpoints be	een considered?	nd & & &	
Concluding weight of evidence	Relevant for genera	ll risk assessment. Authors recommend the	
	adoption of no-spra	y buffer zones of atm least 5 m to protect	
	the majority of woo	odland species from the impacts of	
	agrichemicals appli	ed to adjacent land.	
Type of info. (Critical, supporting, low	supporting	E 15 16 16	
weight)		& & &	
Consideration/concluding score	UBA2	10,0	
	ill control	8 2	

Pfleeger et al. (2008)

weight)	·· (· · · · ·) ·· · · · · · · · · · ·		,		
	eration/concluding score	1	UBA2		
Pfleege	er et al. (2008)		Estacti allow Environmental		
glyphed	Cotox_544 Pfleeger, T., Olszyk, D., Plocher, M., Yilma, S.	2008	concentrations of herbicides on full-season, field-grown potatoes	Environmental Toxicology and Chemistry 30 (2):455-468. Doi 10.1002/Etc.394.	
	of the study tion of endpoints		Reliability Field trials were conducted to d tubersum L.) vegetative growth were affected by herbicides at b	and tuber yield and quality	
Test cor exposur	e period, protocol	re,	rates. Commercial products, brand names were not stated. Herbicide characteristics are listed in Table 1. Herbicides were applied at 14 or 28 days after emergence (DAE) at 0.00056, 0.0032, 0.018, or 0.1 times the field application rate (FAR)		
Statistic	nental approach		Potatoes were grown in fields at the Oregon State University Horticulture Farmwith herbicides applied at below recommended field application at 24 d after emergence (DAE) or at 28 DAE. ANOVA		
Biologic	cal effects		Solanum tubersum Tuber yield and quality parameters were more affected by lower herbicide rates than were plant height or injury.		
Relevan	ce of the study for Environm		Assessment, appropriateness of study endpoints		
Jan a studied?	appropriate test species/ life-s		Mean plant height at time of spraying for 14 DAE plants in 2003, 2004, and 2005 was 0.213, 0.193, and 0.295 m, respectively. Mean plant height at time of spraying for 28 DAE plants in 2003, 2004, and 2005 was 0.393, 0.578, and 0.581 m, respectively.		
Glyphosate R	tenewal Group AIR 5 – July 2020	_	Doc ID	D: 110054-MCA8_GRG_Rev 1_Jul_202	

2 Is the magnitude of effects of biological	Glyphosate affected tuber production more in 2004 than in
significance, e.g. is a very small statistically	2003.
significant effect able to cause a (population)	
relevant effect?	
3 Is the ecotoxicological manifestation level	Vegetative responses did not accurately predict yield and
appropriate for the assessment?	vegetative responses did not accurately predict yield and quality responses of tubers; therefore, reproductive responses should be considered in phytotoxicity test
	responses should be considered in phytotoxicity test
	protocols for pesticide registration in the USA.
Envi	ronmental Relevance
1 Is the substance tested representative and	Unknown commercial product
relevant for the substance being assessed?	2: (5 %
2 Do the tested concentrations relate to	Yes
measured or predicted environmental	6 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
concentrations (if available)?	12 16 E
3 Have parameters influencing the endpoints	Field study
been considered (e.g. pH, temperature, light	
conditions)?	, \$1. 67. 60°
Concluding weight of evidence	Reproductive responses should be considered in
	phytotoxicity test protocols for pesticide registration
Type of info. (Critical, supporting, low	low weight for ERA of glyphosate, critical for ERAin
weight)	general & S
Consideration/concluding score	UBA2
_	13 8 15 C

Pfleeger et al. (2011)

	weight)			general general	ŕ	
	Consideration/concluding score			UBA2		
	Pfleeger et al. (2011)			Cosmolish Effects of Low		
	glyphecotox_179	Pfleeger, T., Olszyk, D., Lee, E.H., Plocher, M.	0, 12, 0g	Levels of Herbicides on Greenhouse- and Field-Grown Potatoes (Solanum Tuberosum L.), Soybeans (Glycine Max L.), and Peas (Pisum Sativum L.)	Environmental Toxicology and Chemistry. Volume: 30 Issue: 2 Pages: 455-468 DOI: 10.1002/etc.394 ISSN: 1552-8618 (online)	
	Purpose of the study Description of endpoints Test compound application			Reliability Toxicology tests were conducted on potatoes, peas, and soybeans grown in a native soil in pots in the greenhouse and were compared to plants grown outside under natural environmental conditions to determine toxicological differences between environments, whether different plant developmental stages were more sensitive to herbicides, and whether these species were good candidates for plant reproductive tests.		
	Test compound, approcedure, exposure	Mication	Roundup®, field application rate 832 g ha_1 a.i.; concentrations of 0.00000, 0.00056, 0.00320, 0.01800 and 0.10000_the FAR for each herbicide.			
	Experimental appro		For potatoes, herbicide treatments were applied each year at tuber initiation and bulking (generally 14 or 28 d after emergence [DAE]).ANOVA,			
	Test organisms		Pisum sativum, (Solanum tuberosum, Glycine max)			
,	Biological effects		The rest environ at differ measure	ults indicate that potatoes were no ment for the chemicals tested. pot ent developmental stages had nor es. However, vegetative measures e when potatoes were exposed to	at more sensitive in either atoes exposed to glyphosate asignificant effects on tuber were as sensitive or more	
.3.	Relevance of the str	ıdy for Environmen	tal Risk	Assessment, appropriateness of st	udy endpoints	
The state of the s				_		
	ilyphosate Renewal Group	AIR 5 – July 2020		Doc II	D: 110054-MCA8_GRG_Rev 1_Jul_202	

	Biological Relevance	
1 Is an appropriate test species/ life-sta	age(s) studied?	Authors found visual injury not to be necessarily the most sensitive endpoint
2 Is the magnitude of effects of biolog		nd No No
3 Is the ecotoxicological manifestation	level appropriate for the assessment?	nd Sign
	Environmental Relevance	"H' 0
1 Is the substance tested representative assessed?	Commercial product	
2 Do the tested concentrations relate to	predicted environmental concentrations	yes & Co
3 Have parameters influencing the endpoints been considered (e.g. pH, temperature, light conditions)?		Methodowas discussed including possible deficiencies
Concluding weight of evidence	General consideration for RA that ratio be field-grown plants to be around 1.8. Resul	
	sensitive than reality, and more restrictive should be imposed to account for this variance.	regulations (safety factors)
Type of info. (Critical, supporting, low weight)	supporting	
Consideration/concluding score	UBA2	

Nandula et al. (2007)

			0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	T	
	glyphecotox_522	Nandula, V.K.,	2007 Glyphosate-resistant and -	Journal of	
		Reddy, K.N.,	susceptible soybean	Agricultural and Food	
		Rimando, A.M.,	Glycine max) and canola (Brassica napus) dose response and metabolism relationships with	Chemistry 55	
		Duke, S.O., Poston,	(Brassica napus) dose	(9):3540-3545. doi:	
		D.H.	response and metabolism	10.1021/jf0635681	
		, Š	relationships with glyphosate		
			response and metabolism relationships with glyphosate		
		10,00	Øi Daliakilia		
	Purpose of the study		Experiments were conducted to determ		
	Description of endp	oints of the same	glyphosate-resistant (GR) and -suscept		
		10 8 11 15 T	[Glycine max (L.) Merr.] and canola (F	Brassica napus L.) to	
		11 12 15 15 15 15 15 15 15 15 15 15 15 15 15	glyphosate		
	Test compound, app		Glypnosate-K was applied at 0.87, 1.73		
	exposure period, pro	otocol 5 %	55.44, and 110.88 kg ae ha-1 to Asgrov		
	exposure period, pro	otocol 3 4	and at 0.007, 0.015, 0.03, 0.06, 0.11, 0.22, 0.44, and 0.87 kg ha-1 to HBKC 5025 non-GR soybean.		
	Experimental appro	ach 🔊	Data were subjected to analysis of variance, and means were		
	Statistical design,	59.80	separated using Fisher's protected least significant difference		
	test environment		(GR50 (glyphosate dose required to cause a 50% reduction in		
	Statistical design, test environment		plant dry wt accumulation) values for GR and non-GR soybean		
	27, 75		and canola were calculated fitting nonli	inear regression equations	
	Test organisms		Soybean and canola		
	Biological effects		GR50 non-GR soybean = 0.47 kg/ha, c		
	Relevance of the study for Environmental R		ask Assessment, appropriateness of study	endpoints	
STAND ON THE WAY OF TH	Hyphosate Renewal Group	AIR 5 – July 2020	Doc ID: 11	10054-MCA8_GRG_Rev 1_Jul_202	

	Biological Relevance		
1 Is an appropriate test species/ life-stage(s)	studied?	Plants were subirrigated with water and fertilized as needed. Soybean plants at oneto two-trifoliate leaf (22) days old, 45 cm tall) growth stage and canola plants at four- to five leaf (29 days old, 14 cm tall) growth stage were used for treatment.	
2 Is the magnitude of effects of biological si	gnificance	nd John Market	
3 Is the ecotoxicological manifestation level assessment?	nd of the state of		
E	nvironmental Relevance	20. W	
1 Is the substance tested representative and relevant for the substance being assessed?		No details about formulated product	
2 Do the tested concentrations relate to pred concentrations	icted environmental	nd visib	
3 Have parameters influencing the endpoints been considered (e.g. pH, temperature, light conditions)?		The greenhouse was maintained at 25/20 2© ((3 ?C) day/night temperature with natural light supplemented	
Concluding weight of evidence	Additional information about endpoints for herbicidal product (GR50 non-GR soybean = 0.47 kg/ha, canola = 0.3 kg/ha)		
Type of info. (Critical, supporting, low weight)	supporting Robert		
Consideration/concluding score	UBA2		

Koger et al. (2005)

			4, 12,	The state of the s	
	glyphecotox_428	Koger, C.H.,	2005	Rice (Oryza satiova)	Pest Management Science
		Shaner, D.L.,	S. U.S. SO.	response to drift rates	61 (12):1161-1167. Doi
		Krutz, L.J., Walker,	To dis	of glyphosate	10.1002/Pt.1113.
		T.W., Buehring, N.,	(S)		
		Henry, W.B.,	e ~		
		Thomas, W.E.			
		Henry, W.B., Thomas, W.E., Wilcut, J.W.	2005 (1)		
		y ooints of the procedure	Re	liability	
	Purpose of the stud Description of endr	points & to b		ouse and field studies were	
	Description of endp	ooints & & &		se of two rice varieties, Priso	
		Col of the	lethal r	ates of glyphosate in terms of	of injury, shikimate
		Cil. To To	accumi	ılation and	
		8 9 8	yield.		
		pucation procedure,		propylamine salt of glyphos	
	exposure period, pr	otocol			gAE ha-1 to 31- to 37-cm-tall
	(0)		plants in the three-leaf growth stage. A nonionic surfactant		
	6.6				lyoxyalkane ethers and free
	× 10, 75			ids) was added at 2.5ml lite	r-1 to each glyphosate
	exposure period, gr		solution	1	
	Experimental apprositation in the statistic rest environment of the statistic rest environment of the statistic rest organisms	ach	In the g	reenhouse, more shikimate	accumulated in Cocodrie than
	Statistic test enviro	nment	Priscilla at comparable glyphosate rates applied to plants at the		
	101.001				yphosate was applied to both
	io ot		varietie	s when they were 74-cm tal	l and in the internode
			separat	ion growth stage.	
5.	Pest organisms		Oryza s	sativa	
S	OK.				
All Salar					
"O "9"					
27. 28.					
5 16					
7, 9,	Glyphosate Renewal Group	AIR 5 – July 2020		Doc I	D: 110054-MCA8 GRG Rev 1 Jul 202
" (Lic /10)	,	,			
Selection of the select					

Biological effects	The highest rate of glyphosate reduced yield in Cocodrie by 92%			
	whereas there was only a 60% yield reduction in Priscilla.			
	The estimated IC50 of glyphosate on Cocodrie was 60 g ha-1			
	compared with 339 g ha-1 for Priscilla. The differences in the			
	sensitivity of these two varieties to glyphosate may be related to the physiological state of the plants at the time of treatment.			
	the physiological state of the plants at the time of treatment.			
	Both varieties were sprayed at internode elongation when the			
	plants were 74cm tall.			
Relevance of the study for Environmental R	isk Assessment, appropriateness of study endpoints			
,	Biological Relevance			
1 Is an appropriate test species/ life-stage(s)	31- to 37-cm-tall plants in the three-leaf growth stage.			
studied?				
2 Is the magnitude of effects of biological	yes of it is			
significance				
3 Is the ecotoxicological effect appropriate	This research demonstrates that a drift event can be detected			
for the assessment?	and any subsequent effect on rice sheld can be measured,			
	especially if the rice is exposed to sub-lethal rates of			
	glyphosate at the beginning of the reproductive growth stage.			
Er	nvironmental Relevance & & & &			
1 Is the substance tested representative and	Commercial product			
relevant for the substance being assessed?	Commercial product			
2 Do the tested concentrations relate to	Vec & n n			
predicted environmental concentrations				
3 Have parameters influencing the endpoints	nd Killing			
been considered?	s nd			
Concluding weight of evidence	Visual injury was apparent by 7 DAT and was a better parameter			
	than height reduction for confirming glyphosate exposure.			
Type of info. (Critical, supporting, low				
weight)	supporting			
Consideration/concluding score	UBA2♥ ♥			
,				
	7. 1- 0			

Brown et al. (2009)

weight) Consideration/concluding score Brown et al. (2009) glyphecotox_303 Brown, L.R., Robinson, D.E., Young, B.C., Loux, M.M., Johnson, W.C., Nurse, R.E.,		UBA2		
glyphecotox_303	Robinson, D.E., Young, B.G., Loux, M.M., Johnson, W.G., Nurse, R.E., Swanton, C.J., Sikkema, P.H.	2009	Response of Corn to Simulated Glyphosate Drift Followed by In- Crop Herbicides	Weed Technology 23 (1):11-16. Doi 10.1614/Wt- 08-067.1
	8 9 10		liability	
Purpose of the study Description of endpoints Test compound, application procedure, exposure period, protocol Glyphosate Renewal Group AIR 5 – July 2020		Thirteen field experiments were conducted in Illinois, Indiana, Ohio, and Ontario from 2005 to 2007 to determine the effects of simulated glyphosate drift followed by in-crop applications of nicosulfuron/rimsulfuron plus dicamba/ diflufenzopyr or foramsulfuron plus bromoxynil plus atrazine on nontransgenic corn injury, height, stand count, shoot dry weight, and yield. Glyphosate, Roundup® WeathermaxH, Monsanto Canada Inc., Glyphosate1 was applied to corn at the 4- to 5-leaf stage at 0, 10, 50, 100, and 200 g/ha, representing approximately 0, 1, 5, 10, and 20% of the recommended rate (1,000 g/ha), respectively to simulate herbicide drift. Conventional cornherbicides consisting of nicosulfuron/rimsulfuron (25 g/ha) plus dicamba/diflufenzopyr2 (200 g/ha), or foramsulfuron3 (35 g/ha plus bromoxynil3 (280 g/ha) plus atrazine4 (1,000 g/ha) were applied 2 to 5 d after the simulated glyphosate drift application.		do to determine the effects of d by in-crop applications of mba/ diflufenzopyr or as atrazine on nontransgenic oot dry weight, and yield. axH, Monsanto Canada Inc., t the 4- to 5-leaf stage at 0, ating approximately 0, 1, 5, rate (1,000 g/ha), respectively, ational cornherbicides aron (25 g/ha) plus 0, or foramsulfuron3 (35 g/ha) atrazine4 (1,000 g/ha) were
Glyphosate Renewal Group	o AIR 5 – July 2020		Doc I	D: 110054-MCA8_GRG_Rev 1_Jul_20

Experimental approach	randomized complete block design	with four replications		
Statistic, test environment	Corn was planted	with four replications.		
Test organisms	corn			
Biological effects	Simulated glyphosate drift at 100 as	nd 200 g/ha, resulted in 11 to		
Diological effects	61% visual cron injury and a 19 to	45% decrease in corn height		
	61% visual crop injury and a 19 to Simulated glyphosate drift at 200 g	ha caused a reduction in		
	shoot dry weight by 46%, stand cou	int by 28% and yield by 49 to		
	56%.	16 'ki		
Relevance of the study for Environmental R	isk Assessment, appropriateness of st	udy endpoints		
	Biological Relevance	8 8		
1 Is an appropriate test species/ life-stage(s)	yes & O			
2 Is the magnitude of effects of biological si	gnificance	nd & & &		
3 Is the ecotoxicological effect appropriate f	For the assessment?	No as after glyphosate		
		treatment additional		
herbicides were used.				
	vironmental Relevance			
1 Is the substance tested representative and r	elevant for the substance being	Commercial product, plus		
assessed?	8	Sadditional herbicides		
2 Do the tested concentrations relate to pred	icted environmental concentrations	yes		
3 Have parameters influencing the endpoints		nd		
Concluding weight of evidence	Concluding weight of evidence Glyphosate drift can result in an additive increase in crop			
	from the application of in-crop herb	picides in adjacent fields.		
Type of info. (Critical, supporting, low	Low weight			
weight)				
Consideration/concluding score	UBA3			

B.9.13 15.4 **Biochemical studies**

	weight)			OL WILLS	
	Consideration/co		UBA3	2 2 8	
	B.9.13 15.4 Cruz-Hipolito e	Biochemical studie	s (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	Glyphosate tolerance by Clitoria ternatea and Neonotonia wightii plants involves differential	
	glyphecotox_329	Cruz-Hipolito, H., Rojano- Delgado, A., Dominguez- Valenzuela, J.A., Heredia, A., de Castro, M.D.L., de Prado, R.	2001 E	Glyphosate tolerance by Clitoria ternatea and Neonotonia wightii plants involves differential absorption and translocation of the herbicide	Plant and Soil 347 (1-2):221-230. doi:10.1007/s11104-011-0840-9.
		O'S IN TO		iability	
	Purpose of the study Description of endpoints		The purpose of this work was to investigate the glyphosate tolerance mechanism for C. ternatea, N. wightii and an Amaranthus hybridus population susceptible to this herbicide in order to establish the basis for nontarget site-based mechanisms.		
	Test compound, application procedure, exposure period, protocol		glycine of 5 Radiolabeld were condu		ctivity from American is, MO). Dose–response tests ly formulated isopropylamine
	Experimental appro	oach	nd	<u> </u>	
Š	Testorganisms				h. hybridus were sprayed with at 500 g ae ha-1 as described
100 000 000 000 000 000 000 000 000 000	Glyphosate Renewal Grou	up AIR 5 – July 2020		Doc	: ID: 110054-MCA8_GRG_Rev 1_Jul_20

Biological effects sig	gnificant correlation between glyphosate differential absorption
	d epicuticular wax coverage has been found: high wax coverage
lea	ids to reduced glyphosate uptake. This provides new, solid
	idence of the protective role of wax covering the lipid cuticle of
	gher plants
	sk Assessment, appropriateness of study endpoints
	Biological Relevance
1 Is an appropriate test species/ life-stage(s) s	studied? nd
2 Is the magnitude of effects of biological	nd nd
significance, e.g. is a very small statistically	
significant effect able to cause a (population)	18. O 18.
relevant effect?	· · · · · · · · · · · · · · · · · · ·
3 Is the ecotoxicological manifestation level	nd (d) (d)
appropriate for the assessment?	
	vironmental Relevance
1 Is the substance tested representative and refor the substance being assessed?	18, 8, 70
2 Do the tested concentrations relate to measu	ured or nd
predicted environmental concentrations (if available)?	ured or nd
3 Have parameters influencing the endpoints	been nd so so so
considered (e.g. pH, temperature, light condit	
Concluding weight of evidence	Physiological study not relevant in terms of risk
	assessment
Type of info. (Critical, supporting, low wei	ght) low weight
	K. R. Co
Consideration/concluding score	UBA3

McMullin et al. (2012)

			THE LOSS		
	Consideration/concluding score		LIBAS N		
	McMullin et al. (McMullin, R.T., 2012. Bell, F.W., Newmaster, S.G.	\$ 3 6 5 10 5 10		
	glyphecotox_497	McMullin, R.T., 2012 Bell, F.W., Newmaster, S.G.	The effects of triclopyr and glyphosate on lichens	Forest Ecology and Management 264:90-97. doi: 10.1016/j foreco.2011.09.039.	
		Re	eliability		
	Purpose of the study Description of endpoints Test compound, application procedure, exposure		and glyphosate) were d		
	rest compounta, ap	plication procedure, exposure	Glyphosate was formulated as Vision_ at 368 g a.e.		
	period, protocol		isopropylamine salt L_1 (1.0–3.0 kg a.e. ha_1).		
		ach Statistical design,	ANOVA		
	Test organisms			Lichen cover was comprised primarily of Cladonia species in the ubgenus <i>Cladina</i> (reindeer lichens)	
	Biological effects			cies treated in the glyphosate	
	Biological circus		plots, eight species sho and 10 (56%) were neg Species most affected uncialis, Bryoria furce latter two showing 100	owed no reduction in abundance gatively affected (Fig. 2b and d). by glyphosate were <i>Cladonia ellata</i> , and <i>T. granulosa</i> ; with the 19% mortality.	
Sold of the sold o	Rejevance of the str	udy for Environmental Risk Asse	ssment, appropriateness o	of study endpoints	
	Glyphosate Renewal Group	o AIR 5 – July 2020	D	oc ID: 110054-MCA8_GRG_Rev 1_Jul_202	

Biologic	al Relevance
1 Is an appropriate test species/ life-stage(s) studied?	Lichens are not part of the current ERA procedure
2 Is the magnitude of effects of biological significance, e.g. is a very small statistically significant effect able to cause a (population) relevant effect?	yes Glymhasata raduced the abundance respectively in
3 Is the ecotoxicological manifestation level appropriate for the assessment?	Glyphosate reduced the abundance, respectively in 40% and 56% of the boreal forest lichen species treated
appropriate for the assessment:	in this study. For most species that decreased in abundance effects were minor, but three species where strongly affected.
Environme	ental Relevance
1 Is the substance tested representative and relevant for the substance being assessed?	Commercial product
2 Do the tested concentrations relate to measured or predicted environmental concentrations (if available)?	yes Signature
3 Have parameters influencing the endpoints been considered (e.g. pH, temperature, light conditions)?	nd Study describes geotoxicological side effects towards
Concluding weight of evidence	Study describes ecotoxicological side effects towards lichens. Given the important functions of these two lichen species, their sensitivity to herbicide applications is relevant to forest managers.
Type of info. (Critical, supporting, low weight)	supporting
Consideration/concluding score	UBA2

Miteva et al. (2010)

			"ille les co	
	Consideration/con-		UBA2	
	Miteva et al. (201	10) (not in the last of the la		
	glyphecotox_510	Minera, L.I.E., 2010	Alterations in	Russian Journal of Plant
		Ivanov, S.V.,	glutathione pool and some related enzymes	Physiology 57 (1):131-136. doi:
		Alexieva, V.S.	in leaves and roots of	10.1134/s1021443710010188
		E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	pea plants treated with	10.1134/81021443/10010100
		Sill it	the herbicide	
			glyphosate	
		· 5 6 5 F	Reliability	
	Purpose of the study	y E The sounds of the sound of the so	the changes in the endoger	nous level of glutathione (total
	Description of endp	oints & o		vities of glutathione reductase
		8° 5° 6°	(GR) and glutathione S transferase (GST) after treatment	
	dilis		with glyphosate were studied in pea plants (Pisum	
	Purpose of the study Description of endpoints		sativum L., cv. Skinado).	
	Test compound, application procedure, exposure period, protocol		10 mM glyphosate (Round United States).	lup®, produced by Monsanto,
	E 1 0 1 0 1 1 1		The plant were treated at the	he stage of the third leaf
	test environment			ent was made with 0.01 mM
	1000		solution of glyphosate.	one was made with 0.01 mivi
	Test organisms		Pisum sativum L., cv. Skinado	
	Biological effects		It was found that glyphosate application to leaves	
	ie ot		provoked strong enhancement in the GST activity in	
	·1. · · · · · · · · · · · · · · · · · ·		leaves, while its root application stimulated the enzyme	
%	(o)		activity in the roots. The general internal thiol-disulfide	
Sylve			balance has a great influence on biochemical processes,	
18 A			including photo_synthesis, photorespiration and gene	
160 19			expression in the plant cell	
25 75	Relevance of the stu	udy for Environmental Risk Ass	essment, appropriateness of	study endpoints
Solo On Solo O	ilyphosate Renewal Group	AIR 5 – July 2020	Doc	ID: 110054-MCA8_GRG_Rev 1_Jul_

Biolog	cical Relevance
1 Is an appropriate test species/ life-stage(s) studied?	yes
2 Is the magnitude of effects of biological significance, e.g. is a very small statistically significant effect able to cause a (population) relevant effect?	Changes in the glutathione levels andGR activity observed with the progress of the oxidative stress in plants. Apparently, the inhibiting of the shikimic acide pathway by glyphosate induces nonspecifically the oxidative stress. Despite the activation of the antioxidant system, oxidative stress appears to be the major reason for the injuries of the plants.
3 Is the ecotoxicological manifestation level appropriate for the assessment?	no No O O
Environ	mental Relevance
1 Is the substance tested representative and relevant for the substance being assessed?	The conclusion from this study is only valid for glyphosate formulations that contain POEA.
2 Do the tested concentrations relate to measured or predicted environmental concentrations (if available)?	The concentration used for the leaf treatment was calculated on the basis of the field rate of the herbicide
3 Have parameters influencing the endpoints been considered (e.g. pH, temperature, light conditions)?	nd The state of th
Concluding weight of evidence	Biochemical study defining the oxidative stress related to mode of action of glyphosate
Type of info. (Critical, supporting, low weight)	low weight
Consideration/concluding score	UBAS COLO

Moldes et al. (2008)

	Moldes et al. (20	08)	760	UBAS COLO	
	glyphecotox_515	Moldes, C Medici, L Abrahao, Tsai, S.M S.M., Aze R.A.	.O., O.S.,	glyphosate resistant and susceptible soybean plants exposed to glyphosate	Acta Physiologiae Plantarum 30 (4):469-479. doi: 10.1007/s11738-008- 0144-8.
	Purpose of the stud Description of endp		catalase (CAT), and superoxide protein profile, GR) and two tra Glyphosate (Ag	Reliability yphosate application on chlorop ascorbate peroxidase (APX), gu dismutase (SOD) activities, solu n leaves and roots, was examin nsgenic (GR) soybean. risato 480 CS manufactured by	hyll level, lipid peroxidation, naiacol peroxidase (GOPX) able amino acid levels and ed in two conventional (non-ALKAGRO)
	procedure, exposure protocol Experimental approduce Statistical design, test environment Test organisms	ils .		nts were sprayed in an application and application and application and application and application and applications.	
Sold of the sold o	Biological effects		An improved ad of oxidative stre CAT activity in soluble amino a might be respon	aptive capacity of the antioxida ass appears to be generated during creased in roots of non-GR soybold cid content increased after glypl sible for reducing oxidative dan	ng glyphosate action, since bean cultivars. The total nosate application, which nage.
	Relevance of the st	uay for Env	ironmental Kisk A	Assessment, appropriateness of s	stuay enapoints
	Glyphosate Renewal Group	AIR 5 – July	2020	Doc	ID: 110054-MCA8_GRG_Rev 1_Jul_20

Bi	ological Relevance				
1 Is an appropriate test species/ life-stage(s) studied?	yes				
2 Is the magnitude of effects of biological significance, e.g. is a very small statistically significant effect able to cause a (population) relevant effect? The slight oxidative stress generated by glyphosate has no relevance to plant mortality.					
3 Is the ecotoxicological manifestation level	The slight oxidative stress generated by glyphosate has no				
appropriate for the assessment?	relevance to plant mortality.				
	ronmental Relevance				
1 Is the substance tested representative and releassessed?	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
2 Do the tested concentrations relate to measured or predicted environmental concentrations (if available)?					
3 Have parameters influencing the endpoints be temperature, light conditions)?	een considered (e.g. pH,				
Concluding weight of evidence	The objective of this work was to study biochemical parameters that may be affected in roots and leaves of soybean plants exposed to glyphosate, focusing on the antioxidant response and soluble amino acid content, thus evaluating possible biochemical markers for differential characterization of glyphosate-resistant and conventional soybean lines.				
Type of info. (Critical, supporting, low weight)	low weight				
Consideration/concluding score	UBA3				
Alvarez-Moya et al. (2011) glyphecotox_277 Alvarez-Moya, 2011	Evaluation of Genetics and Molecular				
phecotox_277 Alvarez-Moya, C., Silva, M.R., Evaluation of genetic damage induced by					

Alvarez-Moya et al. (2011)

	glyphecotox_277	Alvarez-Moy C., Silva, M.I			Evaluation of genetic damage	Genetics and Molecular Biology 34 (1):127-130
		Arambula,	10 40	Q	induced by	
		A.R.V., Sandoval, A.J	9 16 11 11	,	glyphosate isopropylamine salt	
		Vasquez, H.C	2,50		using Tradescantia	
		Montes, R.M.	G vill		bioassay	
		0 0		Reliabi		
	Purpose of the study Description of endp	y S S S S	Various			pylamine salt were tested
	Description of endp	oints Silve	using tw	o methods of	genotoxicity assaying, v	viz., the pink mutation assay
			with Tra	,	,	with nuclei from staminal
		5 2 8	cells of t	he same plan		
	Test compound, app	oncation	N-(pnosj			. 1071- 83-6, lot 09816 PE)
	procedure, exposure	period,		ined from Al d 0.0007 mM		ncentrations were 0.7, 0.07,
	protocol Experimental appro	o o b				l parts are used to determine
	Statistical design, te	acii		al events, AN		i parts are used to determine
	environment	251	matatron		10 111	
	Test organisms		The Trac	descantia, clo	ne (4430) (hybrid T. Su	bacaulis X T. hirsutiflora),
					ive to environmental mu	
	Biological effects					tivity, but its detection can
	ioli of				e test systems used.	
	Relevance of the stu	ıdy for Environ	mental Ri	sk Assessme	nt, appropriateness of stu	ady endpoints
Sell of Sell o	Glyphosate Renewal Group	AIR 5 – July 2020			Doc ID	: 110054-MCA8_GRG_Rev 1_Jul_2020

Biological R	olovanoo
1 Is an appropriate test species/ life-stage(s) studied?	nd
2 Is the magnitude of effects of biological significance,	Authors believe that isopropylamine used in
e.g. is a very small statistically significant effect able to	commercial farming can induce genetic damage,
cause a (population) relevant effect?	depending on the dose used and the physiological
	characteristics of the plants exposed to it
3 Is the ecotoxicological manifestation level	No, as genetic damage is not assessed in the current
appropriate for the assessment?	risk assessment.
Environmental	Relevance
1 Is the substance tested representative and relevant for	Yes: N-(phosphonomethyl)-glycine 96%
the substance being assessed?	7. C
2 Do the tested concentrations relate to measured or	yes v. so
predicted environmental concentrations (if available)?	
3 Have parameters influencing the endpoints been	nd DEF
considered (e.g. pH, temperature, light conditions)?	
Concluding weight of evidence	Authors believe that sopropylamine used in
	commercial farming can induce genetic damage,
	depending on the dose used and the physiological
	characteristics of the plants exposed to it.
Type of info. (Critical, supporting, low weight)	supporting
Consideration/concluding score	UBA2

Pline et al. (2002)

	glyphecotox_181	Pline, W.A., Wilcut, J.W Edmisten, K Wells, R.	., K.L.,	Physiological and morpholog response of glyphosate-resist and non-glyphosate-resistant cotton seedlings to root-abso- glyphosate	ant	Pesticide Biochemistry and Physiology Volume: 72 Issue: 1 Pages: 48-58	
		T ~	\ _Q \	Reliability			
	Purpose of the study			econducted to determine relative tiss			
	Description of endp			(R) and non-GR cotton seedlings to the			
		Test compound, application procedure, exposure period, protocol pr					
	Experimental apprò	ach & Co	Cotton seedlings were grown in hydroponic solutions containing technical				
	Experimental appro Statistical designs test environment	gra	grade glyphosate to ensure constant exposure to glyphosate. non-linear				
	test environment	reg	regression analysis (Weibull model)				
	Test organisms	Sec 'D	Seeds of Delta Pine & Land varieties 'DP 5415' (non-glyphosate resistant) and 'DP 5415RR' (GR)				
S. S.	Biological effects	Glyroc Ad con res app ext con	ots 50% and additionally accentration pectively beared should at the whoten in the street of the str	inhibited the growth of non-GR cotto at concentrations of 23, 69, and 27lM y, glyphosate inhibited the developme ons of 0.01 or 0:1lM glyphosate greate y. Lateral roots of GR and non-GR cot corter and were surrounded by a thick ich was not present in roots from plan glyphosate.	glyphosa ent of late er, in GR tton inhil layer of tts grown	ate, respectively. eral roots at and non-GR cotton, bited by glyphosate necrotic cells or root in media not	
	Relevance of the stu	ıdy for Enviro	nmental	Risk Assessment, appropriateness of s	study end	dpoints	
TO SO THE SOUTH OF	ilyphosate Renewal Group	AIR 5 – July 202	0	Doc	ID: 110054	4-MCA8_GRG_Rev 1_Jul_20.	

	Biological Relevance						
1 Is an appropriate test species/ life-stage(s) studied?	Cotyledon, hypocotyl, and root tissue from GR and non-GR plants						
2 Is the magnitude of effects of biological significance, e.g. is a very small statistically significant effect able to cause a (population) relevant effect?	Because seedlings may come in contact with glyphosate, either applied foliarly or via root absorption from root exudates from neighboring sensitive species in a field situation, the potential for glyphosate to slow or inhibit seedling establishment may exist.						
3 Is the ecotoxicological manifestation level appropriate for the assessment?	yes III' o'						
E	Environmental Relevance						
1 Is the substance tested representative and relevant for the substance being assessed?	Yes, technical grade glyphosate (N-(phosphonoethyl)glycine, with 95% purity was tested.						
2 Do the tested concentrations relate to predicted environmental concentrations	nd William						
3 Have parameters influencing the endpoints been considered	Controlled environment						
Concluding weight of evidence	Even though no endpoints were stated, observed effects on root						
	development are considered to have an effect on seedling emergence.						
Type of info. (Critical, supporting, low	supporting						
weight)	S. D. D.						
Consideration/concluding score	UBA2						

B.9.13 15.5 Summary of other non-target organisms (flora and fauna)

For the group of terrestrial non-target plants (NTP), a comprehensive database of 87 peer- reviewed papers was collected by the notifier. The notifier considered one publication from Boutin et al. (2010), measuring the variability in phytotoxicity testing using grop and wild plant species, to be rated in category "Klimisch2" (Klimisch, 1997) and annotated with minimal remarks. The remaining papers were considered not acceptable for risk assessment.

The submitted publications were also evaluated by RMS and have been assigned according to an UBA screening. From this screening, 27 studies were recognized as supporting information (category UBA2). Most of the cited studies were performed with formulated products rather

than with the active ingredient alone. Surfactants or additives may be contained in significant amounts in plant protection products. The function of these compounds is supposed to enhance the herbicidal activity of the active ingredient by e.g. improving the dispersal and retention on the leaf surface or the uptake of glyphosate. Considering that herbicide sensitivity among crops species or within the same crop can be extensive and that, depending on the species included in testing, conclusions regarding the phytotoxicity of any given herbicide may differ (White and Boutin 2007), it is essential for current regulatory risk assessment to take into account toxicity data on the possible synergistic effects of the products in the assessed formulation in order to avoid underestimation of the toxicity of glyphosate containing products.

The use of herbicides to control weeds in target areas may affect non-target terrestrial plants (NTP) also in off- field situation. Potentially at risk are -besides NTP-, non-target arthropods or birds and mammals that are dependent on these plants for food and shelter. The objective of the risk assessment towards NTP, especially for herbicides, is to ensure that they will not be harmed by unintended exposure due to drifting -10 ...- field ar matter from (2.77 % & Rautmann, 2000).

Several public into the off- field area outside the intended spray zones. Under optimal spraying conditions and appropriate application techniques, total spray drift (the portion of herbicide achieving off-field area) was considered to range from (2.77 % to 29.2 % of the volume applied) depending on the crop to be sprayed (Ganzelmeier

Several publications were evaluated that simulate glyphosate drift with different test organisms (Deeds et

al., 2006; Ellis et al., 2003; Felix et al., 2011; Gove et al., 2007; Koger et al., 2005; Nandula et al., 2007; Pfleeger et al., 2011). At tested rates corresponding to predicted environmental exposure, the authors detected visual injuries to test plants depending on test concentration, time of treatment, crop variety and experimental approach. Gove et al. (2007) even recommend the adoption of a buffer zones of at least m to protect woodland species from the impacts of agrichemicals. Pfleeger et al. (2011) conducted toxicity test in greenhouse and under natural conditions and found that visual injury is not to be necessarily the most sensitive endpoint, but that reproductive endpoints in many cases were more sensitive that vegetative ones. Therefore, the proposes that more restrictive regulations (safety factors) should be imposed to account for the variability in sensitivity observed between greenhouse- and field-grown plants (Pfleeger et al. 2011). The study of Boutin et al. (2007) supports the inclusion of an uncertainty factor in risk assessments to account for the intrinsic variability in plant sensitivity to herbicides. It could be shown in Boutin et al.(2010), that crops and wild plant species responded quite variably when they were tested in different seasons as well as when tested under different environmental conditions. These findings are in line with uncertainties of phytotoxicity testing described by Olzyk et al. (2004), who addresses current trends in general risk assessment of plants in US.

More limitations to current phytotoxicty testing were described, taking into account that herbicides can

influence plant communities in terms of species composition and diversity. Greenhouse microcosms were more sensitive than single-species tests and changes in community structure were observed in herbicidetreated microcosms that would not be predicted from single-species testing (Dalton and Boutin, 2010). The authors of this study concluded that even though single-species tests are useful as they can demonstrate clear dose- response patterns independently from other factors influencing growth, these test are unable to predict changes in community structure that may have long-term consequences. Additionally, it was shown that foliar applied glyphosate to target plants is released into the rhizosphere and might negatively affect non-target plants, disease problems and nutritional status (Neumann et al., 2006; Eker et al., 2006).

The decrease of certain plant species in agriculture landscape might associate with impacts on birds and mammals, as well as arthropods by influencing food resources or plant cover to reproduce or to hide from predators (Norris and Kogan 2005). Ecological side effects might even be stronger in diverse and species rich forest ecosystems. McMullin et al. (2012) showed that glyphosate reduced the abundance, respectively in 40 % and 56 % of the boreal forest dicher species. This study shows on the one hand that sensitivity to herbicide applications is relevant to forest managers, as for example lichen vegetation provides food, habitat for invertebrates and on the other hand highlights the limitations of current phytotoxicity testing by neglecting indirect effects or limiting species testing, which shall represent plant species in a whole ecosystem.

References
Boutin, C., White, A.E. Carpenter, D. (2010): Measuring variability in phytotoxicity testing using crop and wild plant species. Environmental Toxicology and Chemistry 29 (2), 327-337. DOI: 10.1002/etc 30

Deeds, Z.A. AleKhatib, K., Peterson, D.E., Stahlman, P.W. (2006): Wheat Response to Simulated Drift of Clyphosate and Imazamox Applied at Two Growth Stages. Weed Technology 20, 23-31

., webster, E.R. (2003): Rice (*Oryza sativa*) and commutated drift of glyphosate and glufosinate. Weed Technology 1.52-460

Felix, J., Boydston, R., Burke, I.C. (2011): Potato Response to Simulated Glyphosate Drift. Weed Technology 25 (4), 637-644. DOI: 10.1614/wt-d-11-00001.1

Ganzelmeier, H., Rautmann, D. (2000): Drift, drift-reducing mays) response to simulated drift of glyphosate and glufosinate. Weed Technology 17 (3), 452-460 Ellis, J.M., Griffin, J.L., Linscombe, S.D., Webster, E.R. (2003): Rice (Oryza sativa) and corn (Zea

Pesticide Application, Aspects of Applied Biology 57

- Gove, B., Power, S.A., Buckley, G.P., Ghazoul, J. (2007): Effects of herbicide spray drift and fertilizer overspread on selected species of woodland ground flora: comparison between short-term and long-term impact assessments and field surveys. Journal of Applied Ecology 44 (2), 374-384 DOI 10.1111/j.1365-2664.2007.01261.x
- Koger, C.H., Shaner, D.L., Krutz, L.J., Walker, T.W., Buehring, N., Henry, W.B., Thomas, W.E., Wilcut, J.W.; (2005): Rice (*Oryza sativa*) response to drift rates of glyphosate. Pest Management Science 61 (12), 1161-1167. Doi 10.1002/Pt.1113
- Nandula, V.K., Reddy, K.N., Rimando, A.M., Duke, S.O., Poston, D.H. (2007) Glyphosate- resistant and -susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate. Journal of Agricultural and Food Chemistry 55 (9), 3540-3545. doi: 10.1021/jf0635681

 Pfleeger, T., Olszyk, D., Plocher, M., Yilma, S. (2008): Effects of low concentrations of
- herbicides on full-season, field-grown potatoes. Environmental Toxicology and
- Chemistry 30 (2), 455-468. Doi 10.1002/Etc.394

 White, A.L., Boutin, C. (2007): Herbicidal effects on non-target vegetation: Investigating the limitations of current pesticide registration guidelines. Environmental Toxicology and Chemistry 26 (12), 2634-2643

Surface active substances in glaphosate-based formulations B.9.13.16

Paganelli et al. (2010)

				1. 10. 10.				
	glyphnosubm_244	PAGANEL	ıLI, ک	42010	GLYPHOSATE-BASED	CHEMICAL		
		A., GNAZZ	O	. 10	HERBICIDES PRODUCE	RESEARCH IN		
		V., ACOST	AH	5.	TERATOGENIC EFFECTS	TOXICOLOGY		
		LOPEZ, S	T'9, %		ON VERTEBRATES BY	(23): 1586-1595		
		LOPEZ, S. CARRASC	6. 5		IMPAIRING RETINOIC			
		A.E. 80 8			ACID			
		.60 6	2	Rel	liability			
	Purpose of the study Description of endpoi	2 3 4°0	conduct	an embryo	ological approach to explore the ef	fects of low doses of		
	Description of endpoi	ints 🔊 🕈 gly		in develop				
	5	ints 10 gly		l crest mar				
			oundup	Classic ®	(48% (w/v) glyphosate salt); Glypl	nosate		
	procedure, exposure	period, - 1/			1/5000-dilutions of Roundup Clas	sic®		
	protocol	pre			6 (modified Barth's saline)			
	2000	- T			formed from the 2-cell stage			
	13 N3	- 0.	0.5 or 1 μ M Ro-415253 was added at the 9-cell stage					
	protocol protocol	- E			ated in 0.1 x MBS. Cyclopamine v			
	20,00	cor			MBS and was applied from the 2-			
	130 HO	fixa			re fixed in MEMFA when sibling	controls reached the		
	1000	des	ired stag					
	Experimental approac	ch Rei	fer to the	e study				
	Statistical design,							
S	test environment							
્રું કે	STest organisms		nopus la					
(B) (E)		Ch	icken en	nbryos				
10,0								
cyp, Kill								
8 30 m								
20, 10	Glyphosate Renewal Group	AIR 5 – July 202	20		Doc ID: 1100	054-MCA8_GRG_Rev 1_Jul_20		
H. John								
So And								

Biological effects	Relevant experimental set up for ecotoxicological assessment: Effects on eggs					
		tected in glyphosate-based formul				
		Developmental toxicity and terato				
	in the Vol.1 of the		g, (, ;;			
Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints						
Biological Relevance						
1 Is an appropriate test species	s/ life-stage(s) stud	died?	partly 6			
2 Is the magnitude of effects of	of biological signit	ficance, e.g. is a very small	partly			
statistically significant effect a	ible to cause a (po	pulation) relevant effect?	20.8°			
3 Is the ecotoxicological mani	festation level app	propriate for the assessment?	partly			
	Envir	onmental Relevance	%. CO *®			
1 Is the substance tested repre		yes	2 0 . 10 m			
relevant for the substance beir	ng assessed?		(8) (8) (8)			
2 Do the tested concentrations		-/-	4 5 6			
measured or predicted enviror	ımental					
concentrations (if available)?		~				
3 Have parameters influencing		-/-	0 0			
been considered (e.g. pH, tem	perature, light	20,00				
conditions)?		200	S			
Concluding weight of eviden	ce	Please refer to chapter 2.6.7.2 D	evelopmental toxicity and			
		teratogenicity (sub-chapter Rabl	bit) in the Vol.1 of the BfR			
	report state of the state of th					
Type of info. (Critical, suppo	orting, low					
weight)						
Consideration/concluding so	eore	UBA2 for assessment of surface	ctand effects (POEA)			
		7.7.73				

Romano et al. (2010)

	weight)	<u> </u>			
	Consideration/conc		UBA2 for assessment of surfactand of	effects (POEA)	
	Romano et al. (2	010)			
	glyphnosubm_2 49	ROMANO, R.M. 2001 ROMANO, M.A. BERNARDI, M.M.	PREPUBERTAL EXPOSURE TO COMMERCIAL FORMULATION OF THE HERBICIDE GLYPHOSATE ALTERS TESTOSTERONE LEVELS Reliability he endocrine disruption potential of glyperats prepubertal reproductive development of puberty, body development, hormonitradiol and corticosterone, and morphologogy.	ARCHIVES OF TOXICOLOGY (84): 309-317	
		28 2	Reliability		
	Purpose of the stud	y To evaluation t	he endocrine disruption potential of glyp	phosate formulation by	
	Purpose of the stud Description of endp	points assessment of r	rats prepubertal reproductive development	nt.	
		JE 20 6			
		EP: progression	of puberty, body development, hormon	nal production of	
	T	testosterone, es	tradiol and corticosterone, and morpholo	ogy of the testis	
	Test compound, ap	Roundup Trans	SOLD		
	procedure, exposur	e period, purity: 480 g/L	of glyphosate (648 g/L as isopropylami	ne sait)	
	protocol	Duration of stu	dy: From postnatal day (PND) 23 until I	PND53	
	7 250	Dose levels: Co	ontrol group – deionized water;	INDSS	
	20 75	5 50 or 250 mg	g/kg of body weight of glyphosate-Roun	dun Transorh	
	, 8, 6,	Administration		dup Transoro	
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Dosing volume	:: 0.25 mL/100 g of body weight,		
	10, 70	Application tim	ne: between 7 and 8 a.m. each day		
	11.4		,		
_	& Co				
3	, alle				
*&	9				
10 6					
20 60					
en en					
Constitution of the consti	Clymbogata Panayyal C	A ID 5 July 2020	D ID: 1100	054 MCA 9 GDG Day 1 I1 202	
110 101 ×	Glyphosate Renewal Group) AIK 3 – July 2020	Doc 1D: 1100	054-MCA8_GRG_Rev 1_Jul_202	
1, 20,					
•					

Experimental approach		group: 4 treatment groups, 17	
Statistical design,		No mention of avoiding selecti	ion of siblings within the same
test environment		or possible litter effects	<u>,4</u>
		he glyphosate-Roundup Transo	orb was diluted in a watery
		lministered once a day, by gava	age;
		0.25 mL/100 g of body weight,	762 Mg
		between 7 and 8 a.m. each day	
Test organisms	Wistar rats		7/1/2
Biological effects		nat the herbicide (1) significant	
		dependent manner; (2) reduced	
	in semineferous to	ubules' morphology, decreased	significantly the epithelium
	height ($P < 0.001$	$s = 85.8 \pm 2.8 \mu m; 5 mg$	$g/kg = 71.9 \pm 5.3 \mu m; 50$
	$mg/kg = 69.1 \pm 1.$	7 μ m; 250 mg/kg = 65.2 \pm 1.3	μm) and increased the luminal
	diameter ($P < 0.0$	1; control = $94.0 \pm 5.7 \mu m$; 5 m	$ng/kg = 116.6 \pm 6.6 \mu m; 50$
	$mg/kg = 114.3 \pm 3$	3.1 μ m; 250 mg kg = 130.3 \pm 4	.8 um); (4) no difference in
		was observed; and (5) relative t	
	in serum corticost	erone or estradiol levels were	detected, but the
	concentrations of	testosterone serum were lower	In all treated groups (P
		$154.5 \pm 12.9 \text{ ng/dL}$; 5 mg/kg =	
		= 12.2 ng/dL; 250mg/kg=769	
Relevance of the study for E		ssessment, appropriateness of s	study endpoints
	Biole	ogical Relevance	
1 Is an appropriate test speci			yes
2 Is the magnitude of effects	of biological signific	cance, e.g. is a very small	yes
statistically significant effect			-
3 Is the ecotoxicological ma			yes
		nmental Relevance	1 7
1 Is the substance tested repr		yes Jil &	
		yes July	
2. Do the tested concentration	ns relate to	<u>.</u>	
measured or predicted environment	onmental	2.2	
concentrations (if available)	? "٥٢٠,٥	160	
3 Have parameters influence	ng the endnoints	ves	
heen considered (e.g. nH ter	mnerature light	, , , , ,	
conditions)?	imperature, fight		
2 Do the tested concentration measured or predicted environmeasured or predicted environmeasured (if available) 3 Have parameters influence been considered (e.g. pH, terconditions)? Concluding weight of evidence of the conditions of the conditio	ence O die die	Please refer to chanter 2.6.7.	2 Developmental toxicity and
Concluding weight of evide	ence in the	teratogenicity (sub-chapter R	Labbit) in the Vol.1 of the BfR
	Sill ill	report	meetly in the voil of the Dift
Type of info. (Critical, sup	porting low		
Consideration/concluding	score	UBA1 for assessment of sur	rfactand effects (POEA)
160	9		(
weight) Consideration/concludings			
Glyphosate Renewal Group AIR 5 – Ju	uly 2020	Doc 1	ID: 110054-MCA8_GRG_Rev 1_Jul_202

Romano et al. (2012)

	glyphnosubm_2 50	ROM SAN WIS CAN SOU P., I	MANO, M.A., MANO, R.M., VTOS, L.D., SNIEWSKI, P., MPOS, D.A., DE UZA, P.B., VIAU, BERNARDI, M.M.,	2012	GLYPHOSATE IMP MALE OFFSPRING REPRODUCTIVE DEVELOPMENT BY DISRUPTING GONADOTROPIN EXPRESSION		ARCHIVES OF TOXICOLOGY (86) 4: 663-673	
			NES, M.T., DE				18,10	
		OLI	VIERA, C.A.	Reliab	 ility	- ja	· () · ()	
	Purpose of the study Description of endpoints	у	NOAEL for reproduc	ect of ges tive toxic	stational maternal glyphocity) on the reproductive	developn	ent of male	
			estradiol, FSH and LF production and morph epididymis and semin animals were also rec	H; mRNA nology of al vesicle	A and protein content of I the seminiferous epitheless. The growth the weig	⊌ and FS lium; weig	SH; sperm ght of the testes,	
	Test compound, application procedu exposure period, protocol	•	Duration of exposure: Dose levels: Control g	From ge	648 g/L as is propylami estational day 18 to postr leightsed water; 50 mg/k	natal day ((PND) 5 lyphosate	
	Experimental appro Statistical design, test environment	oach	2 treatment groups Administration: Roundup Transorb was diluted in a watery suspension and administered once a day by gavage from Gestation Day 18 to Post Natal day 5; Dosing volume: 0.25 mL 100 g bw, Application time: between 7 and 8 a.m. each day					
			Statistics: First the Kolmogorov Stairnov tests for normality and the Bartlett test for homoscedasticity. For analysis of body growth the multi-way analysis of variant for repeated measures MANOVA) by a general linear model (GLM) was used. Weights were compared between different groups and ages, considering the expected changes with age. The sexual behavior and day of PPS were compared among the groups using the Mann–Whitney <i>U</i> test. Weights of seminal vesicle (drained and undrained) were compared by paired Student's <i>ttest</i> . All other parameters were analyzed by Student's <i>t-test</i> . Statistical differences were considered significant when the value of P was < 0.0 Values were expressed as means and the standard error of the mean (±SEM) for parametric and interquartile ranges of nonparametric analysis.					
	Test organisms		Wistorrots		•			
	Biological effects Relevance of the str	\$1,00 \$1,00 \$1,00	Increases in sexual partner preference scores and latency time to the first mount; testosterone and estradiol serum concentrations; mRNA expression and protein content in the pituitary gland and the serum concentration of LH; sperm production and reserves; and height of the germinal epithelium of seminiferous tubules. Early onset of puberty but no effect on the body growth of the animals					
		udy fo			ent, appropriateness of st	tudy endp	oints	
	1 Is an appropriate t	tost se	Bio becies/ life-stage(s) stud		Relevance	Vec		
	2 Is the magnitude	of effe	ects of biological signif	icance, e		yes yes		
	statistically signific		fect able to cause a (po manifestation level app			Vec		
TO SO	P - Pa IIIC CCOIOXICOIO	gical .	нышеманон ісусі арр	лориа н е	tor the assessment:	yes		
	ilyphosate Renewal Group	AIR 5	– July 2020		Doc II	D: 110054-N	MCA8_GRG_Rev 1_Jul_202	

Envi	Environmental Relevance					
1 Is the substance tested representative and	yes					
relevant for the substance being assessed?						
2 Do the tested concentrations relate to measured or predicted environmental	-/- ji j					
concentrations (if available)?	, Q , M'					
3 Have parameters influencing the endpoints	yes & &					
been considered (e.g. pH, temperature, light conditions)?	1. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.					
Concluding weight of evidence	Please refer to chapter 2.6.7.2 Developmental textenty and					
	teratogenicity (sub-chapter Rabbit) in the Vol 1 of the BfR					
	report					
Type of info. (Critical, supporting, low weight)						
Consideration/concluding score	UBA2 for assessment of surfactante effects (POEA)					

Benachour et al. (2007)

			\$ 3° 50		
glyphnosubm_2 37	BENACHOUR, N. SIPAHUTAR, H. MOSLERNI, S. GASNIER, C. TRAVERT, C.	2007	TIME- AND POSES DEPENDENT EFFECTS OF ROUSDOPON HUMAN EMBRYONIC AND PLACENTAL CELL	ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY S. (53) 126-133	
	SERALINI, G. E.		AND PACENTAL CELL	3. (33) 120-133	
	SERVERY, G. E.	R	eliability		
Purpose of the stud Description of end	on human human pla	toxicity a embryoni centaand	ad endocrine disruption potent 293 and placental-derived Ji equine testis.		
Test compound, ap			Bioforce® and glyphosate		
procedure, exposur			Glyphosate		
protocol			not reported		
	Roundup I	Bioforce®	: 360 g/L acid glyphosate (eq	uivalent to 480 g/L of	
		mine salt	of glyphosate)		
Experimental appro	oach, Please refe	er to the s	tudy		
Statistical design, t environment	est Q S S				
Tost organisms	est Human: H	uman aml	pryonic kidney (HEK) 293 cel	1 line (ECACC 85120602)	
Biological effects Relevance of the st	choriocarc	inoma-de	rived placental JEG3 cell line (aromatase activity inhibition	(ECACC 92120308)	
Biological effects	The media	The median lethal dose (LD50) of Roundup with embryonic cells is 0.3%			
TI,	within 1 h	within 1 h in serum-free medium, and it decreases to reach 0.06% (containing			
60	among oth	er compo	unds 1.27 mM glyphosate) aft	er 72 h in the presence of	
20,7	serum.	**.*			
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	In these co		the embryonic cells appear to	be 2-4 times more sensitive	
6576	than the pl		ndup (generally used in agricu	ulture at 1-2% i.e. with 21-	
102 8	42 mM gly		is more efficient than its active		
17 × 110	suggesting		stic effect provoked by the ad		
Biological effects	udy for Environmental		essment, appropriateness of st		
1000	•		ical Relevance	→ 1	
1 Is an appropriate	test species/ life-stage(yes	
2 Is the magnitude	of effects of biological			yes	
statistically signific	ant effect able to cause				
3 Is the ecotoxicol	ogical manifestation lev	el approp	riate for the assessment?	yes	
Is an appropriate 2 Is the magnitude statistically signific 3 Is the ecotoxicole Glyphosate Renewal Group				: 110054-MCA8_GRG_Rev 1_Jul_2	

Environmental Relevance					
1 Is the substance tested representative and relevant for the substance being assessed?	yes				
2 Do the tested concentrations relate to measured or predicted environmental concentrations (if available)?	-/- Bush				
3 Have parameters influencing the endpoints been considered (e.g. pH, temperature, light conditions)?	yes his o				
Concluding weight of evidence	Please refer to chapter 2.6.7.2 Developmental toxicity and teratogenicity (sub-chapter Rabbit) in the Vol. 1 of the BfR report				
Type of info. (Critical, supporting, low weight)					
Consideration/concluding score	UBA2 for assessment of surfactand effects (POEA)				

Benachour et al. (2009)

	glyphnosubm _238	BENACHOUR, N. SERALINI, G. E.	2009	GLYPHOSATE FORMULATIONS INDUCE APOPTOSIS AND RECROSIS IN HUMAN UMBILICAL, EMBRYONIC AND	CHEMICAL RESEARCH IN TOXICOLOGY (22) 97-105
				PLACENTÂE CELLS Reliability	
	Purpose of the s Description of e	rndpoints formulation The formulation metabolite (Polyethox	ns, from lations h AMPA ylated ta	icity of four glyphosate (G)-based herbid 10(5) times dilutions, on three different two been compared to glyphosate alone or with one known adjuvant of R formul flowamine)	human cell types. and with its main ations, POEA
	Test compound, application proc	redure, Test item: Grands Tra	Glyphos ivaux®,	membrane damage, apoptosis induction, ate, Roundup Express®, Bioforce® or E Grands Travaux plus®; AMPA	
	exposure period protocol	Purity:	and AN	: Glyphosate IPA: not reported : 7.2 g/L (R7.2)	
		Roundup F Bioforce® Grands Tra Grands Tra	or Extra	360: 360 g/L (R360) 400 g/L (R400) us®: 450 g/L (R450)	
CHOOL COLOR OF THE		Dose level concentration of the two (0.4999%) (0.4%) wit (0.0001%)	ons rang % POEA l POEA cell line with PO h AMPA	up formulations, glyphosate, AMPA and ing from 10 ppm to 2 % Additional AMA concentrations. 1 and 5 ppm Combined mixtures: es, the first mixture was the combination EA (0.0001%); the second was the combination (0.1%), and the third was AMPA (0.49)	PA concentrations: 4, dexposures of G, of glyphosate bination of glyphosate
		Combined For the pri POEA (0.0 the third w	exposure mary HU 0001%);	es of G, AMPA and POEA mixtures: IVEC cells, the first mixture was glyphothe second was glyphosate (0.04%) with A (0.04999%) plus POEA (0.0001%).	
	Glyphosate Renewal G	roup AIR 5 – July 2020		Doc ID: 1100:	54-MCA8_GRG_Rev 1_Jul_20/

	Experimental approach,	MTT	y: Assessment of cell viability	
	Statistical design, test		y: Assessment of cell viability <u>® assay</u> : Bioluminescent assay for quantita	tive measurement of cell
	environment	membrane	damage	.8
			<u>Flo® 3/7 assay</u> Assessment of caspase activy: Assessment of cell viability due to cell 1	rity or apoptosis induction
			All data were reported as mean \pm standard	error. Statistical
		differences	s were determined by Student t-test using s	ignificant
	Test organisms	Human em	abryonic kidney 293 cell line (ECACC 851	20602)
		Human cho (ECACC 9	abryonic kidney 293 cell line (ECACC 851 oriocarcinoma-derived placental JEG3 cell 22120308) aulations: al cell death within 24 h, through an inhibit dehydrogenase activity, and necrosis, by relasuring membrane damage	error. Statistical ignificant 20602) line
	Biological effects	All R form	nulations:	tion of the mitochondrial
		succinate d	dehydrogenase activity, and necrosis, by rel	lease of cytosolic adenylate
		kinase mea	asuring membrane damage poptosis via activation of enzymatic caspashis is confirmed by characteristic DNA fra	0 :0 0 Fe 0/75
		activity. Tl	his is confirmed by characteristic DNA fra	gmentation, nuclear
		shrinkage ((pyknosis), and nuclear fragmentation (kar	vorrhexis), which is
		demonstrat	ted by DAPI in apoptotic round cells	
			e provokes only apoptosis, and HUVEC ar	
			his level. The deleterious effects are not pr	
		concentrati	ions but rather depend on the nature of the	adjuvants
		AMPA and	d POEA separately and synergistically dam	nage cell membranes like R
		but at diffe with G.	erent concentrations. Their mixtures are gen	nerally even more harmful
		willi G.		
			ion, the R adjuvants like POEA change hu	
			nplify toxicity induced by G, through apor of G toxicity must take into account the pre	
			n and time amplified effects or bioaccumu	
	Relevance of the study for	Environmen	ntal Risk Assessment, appropriateness of st	tudy endpoints
	1 Is an appropriate test spe	-i/1:f+>	Biological Relevance	
			cal significance, e.g. is a very small	yes yes
	statistically significant effe	ect able to ca	use a (population) relevant effect?	,
		7, , , ,	Nevel appropriate for the assessment? Environmental Relevance	yes
	1 Is the substance tested	TO SOLIE	yes yes	
	representative and relevant	for the		
	substance being assessed? 2 Do the tested concentration		Tested concentrations are far below agric	pultural recommendations
	to measured or predicted	9	and corresponds to low levels of residues	
	environmental concentration		_	
	available)? 3 Have parameters influence.	cing the	yes	
		/II	J - 2	
	temperature, light condition	ns)?	N C + 1 + 2672D 1	. 1
	Concluding weight of evi	uence	Please refer to chapter 2.6.7.2 Developm teratogenicity (sub-chapter Rabbit) in the	
	Type of info. (Critical, su	pporting,		^
	low weight)	T COOPO	UBA2 for assessment of surfactand eff	facts (POFA)
~	Source atton/concruding	g score	OBA2 for assessment of surfactand en	iects (I OEA)
i si c	er en			
idiad				
JO JOS				
Po Jojis	temperature, hight condition Concluding weight of evidence of info. (Critical, surpossideration/concluding) Consideration/concluding			
10/10/0	Glyphosate Renewal Group AIR 5 –	July 2020	Doc II	D: 110054-MCA8_GRG_Rev 1_Jul_202
1. 2.				

Gasnier et al. (2009)

glyphnosub m_239	GASNIER, DUMONT, BENACHO CLAIR, E., CHAGNON SERALINI,	C., UR, N., J, M. C.,	2009	GLYPHOSATE-BASED HERBICIDES ARE TOXIC ENDOCRINE DISRUPTORS HUMAN CELL LINES		TOXICOLOGY (3 (262)3:184-191
				Reliability		No. of the
Purpose of the study Description of endpoints To study xenobiotic toxicity, to four different formulations and to glyphosate EP: cytotoxicity(3 assays: Alamar Blue, MTT, ToxiLight), plus genotoxicity (comet assay), anti-estrogenic (on ERα, ERβ) and anti-androgenic effects (or AR) using gene reporter tests. Androgen to estrogen conversion by aromatase activity and mRNA						plus genotoxicity ogenic effects (on
Test compoun	1	Test item	Glyphos	sate, Roundup Express®, Bioforc	es of Ext	ra 360,
Test compound, application procedure, exposure period, protocol Test item: Glyphosate, Roundup Express®, Bioforc® of Extra 360, Grands Travaux®, Grands Travaux plus® Purity: Glyphosate: not reported Roundup Express®: 7.2 g/L (R7.2) Bioforce® or Extra 360: 360 g/L (R360) Grands Travaux®: 400 g/L (R400) Grands Travaux plus®: 450 g/L (R450) Dose levels: Glyphosate: not reported Roundup Express®: 7.2 g/L Bioforce® or Extra 360: 360 g/L Grands Travaux®: 400 g/L Grands Travaux®: 400 g/L Experimental approach, Statistical design, test environment Replicates per dose level: 4 x 3 replicates Statistics: All data were reported as mean ± standard error. Statistical differences were defermined by Student t-test using significant levels of 0.01 or 0.05.						
				The 80 mi		
Experimental	approach,	Replicate	s per dos	se level: 4 x 3 replicates		
Statistical desi environment	gn, test	Statistics difference 0.05.	: All data	Were reported as mean ± standar defermined by Student t-test using	d error. St g significar	tatistical nt levels of 0.01 or
Test organism	s	Cell cultukb2	ires: Hep	patoma cell line HepG2, breast car	ncer cell li	ine MDA-MB453-
Biological effo	Biological effects All parameters were disrupted at sub-agricultural doses with all formulations within 24h: Haman cell endocrine disruption from 0.5 ppm on the androgen receptor in MDA-MB453-kb2 cells for the most active formulation (R400), then from 2 ppm the transcriptional activities on both estrogen receptors were also inhibited on HepG2. - Aromatase transcription and activity were disrupted from 10 ppm. Cytotoxic effects started at 10 ppm with Alamar Blue assay (the most sensitive), and DNA damages at 5 ppm. Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints					
Relevance of t	he study for E	nvironmen		Assessment, appropriateness of s	tudy endp	oints
	9.9			ological Relevance	- 1	
1 Is an approp		es/ life-sta				
2 Is the magni statistically sig	tude of effects gnificant effect	of biologi able to ca	cal signit use a (po	ficance, e.g. is a very small pulation) relevant effect? propriate for the assessment?		
5 15 the total	8.2 1114			conmental Relevance		
10s the substa assessed?			and rele	vant for the substance being	Yes, pa	rtly
concentrations	(if available)	?		d or predicted environmental	-/-	
3 Have parametemperature, l			points be	en considered (e.g. pH,	yes	

Page 818 of 847

Concluding weight of evidence	Please refer to chapter 2.6.7.2 Developmental toxicity and teratogenicity (sub-chapter Rabbit) in the Vol.1 of the BfR report	
Type of info. (Critical, supporting, low weight)	į	OS
Consideration/concluding score	UBA2 for assessment of surfactand effects (POEA)	10/

Clair et al. (2012)

				Con The
glyphnosub	CLAIR, E.,	2012	A GLYPHOSATE-BASED	A TOXICOLOGY
m_242	MESNAGE, R.,		HERBICIDE INDUCES NECRO AND APOPTOSIS IN MATURI	OSIS SINVITRO
_	TRAVERT, C.,		AND APOPTOSIS IN MATURI	E RAT (26)2:269-279
	SERALINI, G.E.		TESTICULAR CELLS IN VITA	20 4 5 3 °
	,		AND TESTOSTERONE DECR	EĂSĒ
			AT LOWER LEVELS	3 6 8 10
			TESTICULAR CELLS IN VITE AND TESTOSTERONE DECR AT LOWER LEVELS Reliability	0 0
Purpose of the	e study	To test	glyphosate and its formulation on in	71
Description o		from 1	to 10000 ppm	gature rat fresh testrediar cens
Description o	Chaponits	ED: Cit	to 10000 ppm otoxicity (adenylate kinase activities	c): measurements of caspases
		3 and 7	(key-caspases of apoptosis) in cell of	cultures by means of
			inescence-based method; study of ch	
			abelling; measurement of β-HSD a	
		testoste	rone production secreted from Leyd	ig cells in medium
Tost compour	nd, application	Tost ito	m: Roundup Bioforce® and glyphos	esta
	posure period,	Dueitre	Glyphosate not reported; Roundup	Rioforce®: 360 g/L said
protecule, ex	posure periou,	alvaha	sate (corresponding to 100%)	Bioloice. 300 g/L acid
	annraaah		nental approach: please refer to the s	etudy
Experimental Statistical des		Expeni	nemai approach. piease refer to the s	study
environment	igii, test	Statistic	cs: All data are present as means ± S	EM Statistically significant
Chvironnicht		differen	ces from controls were determined	by an ANOVA test followed
			ferron post-test with p<0.001 (****	
			0.05 (*).), b .0.002 (), b .0.01 ()
Test organism	16		blCulture: Leydig, Sertoli and germ	cells
Biological eff			1 to 48 h of Roundup exposure Leye	
Diological ell	دات.	20015 2010	n 24–48 h this formulation is also to	
		hymecr	rosis, by contrast to glyphosate alone	
	10,10	Sertoli	cells	which is essentially toxic on
	the cterls cover my ron	- Later	it induces apoptosis at higher doses	in germ cells and in
	,6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,	Sertoli/	germ cells co-cultures.	8
	SE MILE	- At lov	ver non toxic concentrations of Roun	ndup and glyphosate (1 ppm)
	STER S	the mai	n endocrine disruption is a testostero	
Relevance of	the study for Environ	mental R	isk Assessment, appropriateness of s	
	1.5. 2. 2. 2. 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.		Biological Relevance	7F
1 Is an approx	priate test species/ life			
2 Is the magn	itude of effects of him	logical ci	gnificance, e.g. is a very small	+
			(population) relevant effect?	
			appropriate for the assessment?	+
3 is the ecoto,	nicological mannicital		vironmental Relevance	1
	ance tested represents		relevant for the substance being	Vec
assessed?	mee testeu representa	uve and f	cievant for the substance being	yes
. 05 65	d concentrations relat	e to mass	sured or predicted environmental	Concentrations from 1 to
Concentration	s (if available)?	c to meas	sured or predicted environmental	10000 ppm (from the range
Concentration	o (11 availaule):			in some human urine and in
5 Kg				environment to agricultural
				levels)
3 Have norm	estare influencing the	andnaint	s been considered (e.g. pH,	
	ight conditions)?	cnapoints	s occii considered (e.g. pri,	yes
temperature,	ight conditions):			
Glyphosate Renewa	Group AIR 5 – July 2020		Doc I	D: 110054-MCA8 GRG Rev 1 Jul 202
o.jpiiosate Renewa	. 5.5up / 1110 5 July 2020		Doc 1	

M-CA	, Se	ction	8
Page	819	of 84	7

Concluding weight of evidence	Please refer to chapter 2.6.7.2 Developmental toxicity and teratogenicity (sub-chapter Rabbit) in the Vol.1 of the BfR report	
Type of info. (Critical, supporting, low weight)		SIII.
Consideration/concluding score	UBA2 for assessment of surfactand effects (POEA)	Shirt of Market

Daruich et al. (2001)

glyphnosub m_245	DARUICH, J ZIRULNIK, I GIMENEZ, M	₹.	2001	EFFECT OF THE HERBIC GLYPHOSATE ON ENZYM ACTIVITY IN PREGNANT AND THEIR FOETUSES	IDE ENVIRONMEN MATIC TAL RESEARCH (85)226-231
				Reliability	\$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Purpose of the Description of		pregn <u>EP</u> : E gluco brain	and the effects of the herbicide glyphosate of several enzymes of ant rats enzymatic activity of three cytosolic enzymes: isocitrate dehydrogenase, se-6-phosphate dehydrogenase, malic dehydrogenase in liver, heart, and of pregnant Wistar rats.		
		Organ	n weights:]	Liver, hearts and brains of mater	rnal females
Test compoun procedure, exp protocol	posure period,	Test i Activ	tem: Herby e substance	veigon & J. A. Complex (Section 1997)	
Experimental Statistical designation environment Test organism Biological efforms Relevance of the statistical designation	s sects she study for Eur	glyph glyph Anim Anim Tap v Low Admi mL o and a The o Wista	osate solut osate solut als per test als per contro vater contro vater and l nistration: The test su minat rats e refer to th ental Risk	ion 0.5% why in tap water (0.2 mion 1% why in tap water (4 ml group: 8 mion 1% why in tap water (4 ml group: 8 mion 1% why in tap water (4 ml group: 8 mion 1% why in tap water (4 ml group: 8 mion 1% why in tap water (4 ml group: 8 mion 1% why in tap water (0.2 mion 1% why in tap water (0.2 mion 1% why in tap water (0.2 mion 1% why in tap water (4 ml group: 8 mion 1% why in tap water (4 ml group: 9 mion 1% why in tap water (4 ml group: 9 mion 1% why in tap water (4 ml group: 9 mion 1% why in tap water (4 ml group: 9 mion 1% why in tap water (4 ml group: 9 mion 1% why in tap water (4 ml group: 9 mion 1% why in tap water (4 ml group: 9 mion 1% why in tap water (4 ml group: 9 mion	d as solution in tap water. 35 rided in water bottles per day ays of pregnancy
	1000	100	Bio	logical Relevance	
1 Is an approp	riate test species	/ life-st	tage(s) stud	lied?	yes
statistically sig	gmficant effect a	ble to	cause a (po	icance, e.g. is a very small pulation) relevant effect?	yes
3 Is the ecotox	cicological mani	festatio		propriate for the assessment?	yes
assessed? 2 Do the tested	2 Do the lested concentrations relate to measured or predicted environmental				
3 Have param	s (if available)? eters influencing ight conditions)?		dpoints be	en considered (e.g. pH,	yes
Concluding w	veight of eviden			fer to chapter 2.6.7.2 Developm icity (sub-chapter Rabbit) in the	
Type of info. supporting, lo	ow weight)		-		•
Consideration	n/concluding sc	g score UBA2 for assessment of surfactand effects (POEA)			

Dallegrave et al. (2003)

glyphnosub m_247	DALLEGRAVE, E. MANTESE, F. D. COELHO, R. S.	2003	THE TERATOGENIC POTENTIAL OF THE HERBICIDE GLYPHOSAT ROUNDUP® IN WISTAR R	19.0
	PEREIRA, J. D. DALSENTER, P. R.		ROUNDUF® IN WISTAR R	AIS
	LANGELOH, A			
	,		Reliability	
Purpose of the			he teratogenicity of the herbicide	
Description of			rcialized in Brazil) to Wistar rats	
Test compoun		Test item:	Roundup ®	V.5 50
procedure, exp	posure period, protocol	Active sub	Roundup ® stance: Glyphosate ion: 360 g/L Class: Polyoxyethyleneamine (P	
		Concentrat	ion: 360 g/L	8
		Surfactant	Class: Polyoxyethyleneamine (P	OEA)
E			ion: 18% (w/v) (POEA)	S-1.1-11 D. C 4. 4.
design, test en	approach, Statistical		: Developmental toxicity study Cronmental Protection Agency), 1	
design, test en	VIIOIIIICIII		ive Toxicity Risk Assessment- E	
		Washingto	n, USA, pp. 1-163 (reproductive	toxicity protocols:
		segment II)	territy presectors,
Test organism	S	Wistar rats		
Biological eff		Results sho		
		- a 50% mo	ortality rate for dams treated with	n 1000 mg/kg glyphosate
			alterations on 15.4, 33.1, 42.0 and	
		control, 50	0,750 and 1000 mg/kg glyphosa	ite groups, respectively.
		The author	s conclude that glyphosate-Roun	dup(R) may toxic to the
		damsand	nduces developmental retardatio	n of the fetal skeleton.
Relevance of	the study for Environmer	ıtal Risk Ass	essment, appropriateness of stud	y endpoints
			ical Relevance	
	riate test species/ life-sta			yes
2 Is the magni	tude of effects of biologi	cal significa	nce, e.g. is a very small	yes
	gnificant effect able to ca			
3 Is the ecotox	0, 10 1			yes
	The state of the s		nental Relevance	
assessed?	nce tested representative			yes
		measured or	predicted environmental	
concentrations	s (if available)?			
	eters influencing the end	points been o	considered (e.g. pH,	yes
	ight conditions)?	1		
Concluding v	eight of evidence		r to chapter 2.6.7.2 Developmen	
	<u> </u>	teratogenic	ity in the Vol.1 of the BfR repor	t
low weight)	(Critical, supporting,			
Consideratio	n/concluding score	UBA2 for	assessment of surfactand effec	ts (POEA)

Dallegrave et al. (2007)

glyphnosub m_248	DALLEGRAVE, E. MANTESE, F. D.	2007	PRE- AND POSTNATAL TOXICITY OF THE	TO	RCHIVES OF SOXICOLOGY
	OLIVEIRA, R. T. ANDRADE, A. J.		COMMERCIAL GLYPHO FORMULATION IN WIST	TAR (8)	1):665-673 3 45
	M. DALSENTER,		RATS		The state of the s
	P. R. LANGELOH, A.				Je King
		Re	eliability	l .	8 8
Purpose of the			whether glyphosate-Roundup		
Description of	endpoints) poses reproductive hazards t		emale offspring
Test	41:+:	of rats expos	sed during pregnancy and lact	ation 8	
Test compoun	oosure period, protocol	Active subst	ounaup & ance(s): Glyphosate **	0 10 00	
procedure, exp	posure period, protocor	Concentration	on: 360 g/L	TO SHE	
		Surfactant:	Polyoxyethyleneamine (POE)	1)60°	
		Concentration	on: 18% (w/v) POEA	gé `	
	approach, Statistical	Duration of	oundup ® cance(s): Glyphosate on: 360 g/L Polyoxyethyleneamine (POE) on: 18% (w/v) POEA study: 21-23 days during pres	gnancy; 21 da	ys during
design, test en	vironment	iucuiton	A		D 1 0
			0 (water), 50, 150,450 mg/k ion: Test substance preparatio		
			<u>ion:</u> Test substance preparation Roundup-formulation with ap		
		distilled wat		propriate voi	unics of
			s were done once daily by ora	l gavage	
		Dosing volu		0 0	
			arametric data, expressed as m		
			analyzed by repeated measu		
			llowed by the Bonferroni test		
			imetric data, expressed as pro the chi-square test. Difference		
			significant when $P < 0.05$.	es were cons	idered
Test organism	S	Wistar rats	significant when i = 0.05.		
Biological effe		A 44 A	Roundup (R) did not induce r	naternal toxic	city but induced
8	_	A	oductive effects on male offs		
	Ó	sperm numb	er per epididymis tail and in		
	20,20	during adult	hood, an increase in the perce		
	of it is	and a dose-r	elated decrease in the serum t		
	10 2 20	and signs of	individual spermatid degener	ation during	both periods.
		There was o	nly a vaginal canal-opening d	elay in the ex	coosed female
	10 0 15 15 15 15 15 15 15 15 15 15 15 15 15	offspring.	, a raginal cultur opening u	111 0110 02	iposea formate
Relevance of	the study for Environmen	ntal Risk Asse	ssment, appropriateness of stu	ıdy endpoints	3
	in the sill		cal Relevance	<u> </u>	
	riate test species/ life-sta	ge(s) studied?		yes	-
2 Is the magni	tude of effects of biologi	cal significan	ce, e.g. is a very small	yes	
	enificant effect able to ca				
3 Is the ecotox	kicological manifestation			yes	
1 To the Off			ental Relevance		
1 Is the substance tested representative and relevant for the substance being assessed?					
	d concentrations relate to	measured	-/-		
	nvironmental concentrati		-, -		
available)?	nvnommental concentrati	0112 (11			
	eters influencing the end	points been	yes		
	g. pH, temperature, light				
			•		

Concluding weight of evidence	These findings suggest that in utero and lactational exposure to glyphosate-Roundup (R) may induce significant adverse effects on the reproductive system of male Wistar rats at puberty and during adulthood.	9110
Type of info. (Critical, supporting, low weight)		Met.
Consideration/concluding score	UBA2 for assessment of surfactand effects (POEA)	

Hokanson et al. (2007)

	m_263 F	ALTERATION OF ESTROGEN EXPERIMENTAL EXPRESSION IN HUMAN CELLS INDUCED BY THE AGRICULTURAL AND HORTICULTURAL HERBICIDE GLYPHOSATE
	Purpose of the str Description of endpoints	Reliability Undy To examine the toxicity of glyphosate as a function of its capacity to alter gene expression in the presence or absence of F.2 (17B-estradiol). The authors present data resulting from an investigation of the potential endocrine disruptive activities of a commercially available, unregulated, glyphosate herbicide. EP: In vitro DNA microarray analysis, quantitative real-time PCR (qrtPCR)
	Test compound, application proce exposure period, protocol	Test item: Glyphosate formulation Source: Unknown retails upplier Purity: Not reported Concentration: 15% home use preparation Dose levels: 0.1, 0.01, 0.001 or 0.0001% dilutions of the glyphosate stock solution containing 15% glyphosate. Duration of exposure: 18 h
	Experimental approach, Statisti design, test environment Test organisms	Please refer to the study
	Test organisms Biological effects	For example: three genes – HIF1, CXCL12 and EGR1 –determined by DNA microarray analysis and quantitative real-time PCR to be dysregulated by exposure to glyphosate, combine to give a bewildering array of potential altered gene regulation effects. These include initiation of apoptosis in cells of cerebral and myocardial tissues, increased angiogenesis in tumors, retinal ischemia, hypertension, pre-eclampsia, fetal growth retardation and inactivation of tumor repressor genes. Altered EGR1 levels in response to glyphosate salts are less clear than for HIF1 and CXCL12, but appear to potentially impact rates of apoptosis initiation and alter the levels of vascularization associated with tumor formation.
The state of the s	Glyphosate Renewal Gro	oup AIR 5 – July 2020 Doc ID: 110054-MCA8_GRG_Rev 1_Jul_20

Relevance of the study for Environmental Risk Assessment, appropriateness of study endpoints							
	Biological Relevance						
1 Is an appropriate test species/ life-sta	ge(s) studied?						
2 Is the magnitude of effects of biologi							
statistically significant effect able to ca							
3 Is the ecotoxicological manifestation	level appropriate for the assessment?						
	Environmental Relevance						
1 Is the substance tested	partly -/- yes There remains an analog retters of the state of the						
representative and relevant for the							
substance being assessed?							
2 Do the tested concentrations relate	-/- %· O &						
to measured or predicted							
environmental concentrations (if	16 8 8						
available)?							
3 Have parameters influencing the	yes St. St.						
endpoints been considered (e.g. pH,	50 50 5E						
temperature, light conditions)?	The same in a second se						
Concluding weight of evidence	There remains an unclear pattern of very complex events following exposure of human cells to low levels of glyphosate, but events						
	surrounding the altered levels of expression of only three genes –						
	EGR1, CXCL12 and HIF1 court of the entire battery tested, are both						
complicated and potentially damaging to adult and fetal cells.							
Type of info. (Critical, supporting,	complicated and potentially transacting to addit and retail cens.						
low weight)	8 N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						
Consideration/concluding score	UBA3						

Mesnage R. et al. (2012)

low weig		62,11,16	
Consider	ration/concluding score	UBA3	
Mesnag	e R. et al. (2012)	UBA3 UBA3 OF THOMAS ADJUVANTS OF	
glyphnos m_243	BERNAY B., SERALINI GE.	2012 ETHOXYLATED ADJUVANTS OF GEYPHOSATE-BASED HERBICIDES ARE ACTIVE PRINCIPLES OF HUMAN CELL	TOXICOLOGY, IN PRESS, CORRECTED
		M A TRINCIPLES OF HUMAN CELL	PROOF,
		PRINCIPLES OF HUMAN CELL TOXICITY	AVAILABLE ONLINE 20
			SEPTEMBER
	2000		2012
Purpose	of the Testing Potent	Reliability tial active principles for toxicity on human cells f	or 9 glyphosate-based
study	formulations. A	as controls a major adjuvant (the polyethoxylated	tallowamine POE-15),
Descripti		ne, and a total formulation without glyphosate we	re used.
endpoints	mitochondi	rial activities, membrane degradations, and caspa	ses 3/7 activities
Test com application procedure exposure protocols de la company de la co	pound, A Glyphosate (CA	AS: 1071-83-6; Sigma–Aldrich) 61791-26-2; ChemService) tents without Glyphosate: Genamin T200 (60–80%) agents with Glyphosate: 5% of G, 1–5% of POE-15) % of G, 11% of POE-15) —43% of G, 13–18% of POE-15) d Travaux (400 g/L of G, R GT) d Travaux plus (450 g/L of G, 90 g/L of EtO-EA, (41.5% of G, 16% surfactant) orce (360 g/L of G) t (170 g/L of G, 8% surfactant) 0 (360 g/L of G)	,
Glyphosate Re	newal Group AIR 5 – July 2020	Doc ID: 1100	54-MCA8_GRG_Rev 1_Jul_20:

Г	Evansius autol	E	theat 2 times in different weeks are 2 independent sultimes				
	Experimental approach		t least 3 times in different weeks on 3 independent cultures culated by a nonlinear regression using sigmoid (5-				
	Statistical design,						
	test environment	Statistical differences were d	e GraphPad software letermined by Student's t-test using significant levels with (HEK 293) and placental (JEG3) cell lines				
		p < 0.01 (**) and $p < 0.05$ (*).				
	Test organisms Biological effects	Mitochondrial respiration	(HEK293) and placental (JEG3) cell lines (SD activity): All chemicals are cytotoxic, inducing rns on HEK293, HepG2, and JEG3 in 24 h.				
		2 6 1:00 4: 11 4					
		2% of the herbicide formulat	one POE-15 (LC ₅₀ ~ 1–2 ppm; agricultural dilutions: 1– ion containing adjuvants) and Genamin, themselves				
		around 100-fold more toxic t <u>Middle group</u> : the majority of middle group is again 100-fold Bioforce, R 3plus and finally	of formulations (6, with among them R GT and GT+). This old more toxic than the third one which includes R Ultra, R				
			ntration at which it is present in Clinic E.V. (a formulation ented a similar toxicity than this GBH and to the middle				
		group in general. It thus appe	ears to be the toxic principle in human cells.				
		adjuvants (16% of POEA or	similar concentration of G (360 g/L) and different other adjuvants). Glyphogan and R Ultra respectively,				
		exhibited very different toxic 3 cell lines	ities, 150-fold stronger on average for Glyphogan on the				
		<u>Cytotoxicity</u> : results obtaine	d with all own linear				
		The cytotoxicity induced by	GRH's not linear to G concentrations GRH is not linear to the 3 ethoxylated adjuvants. a The A is not linear to the non-ethoxylated formulations of this be considered as the active principle of the toxicity				
		The cytotoxicity induced by					
		of GBH in human cells (1)					
	Critical micelle concentration (CMC) of POE-15 Disruptions of the cellular membranes by micellization were observed						
		Membrane disruption / cas	nases activation:				
		POE-15 and R GT+ (contain	ing also an ethoxylated adjuvant) induced more necrosis				
		by membrane alterations rath G inchiced only apoptosis at l	higher levels. nus not inert at all but cell membrane disruptors, and then				
		Ethoxylated adjuvants are the					
		induce severe mitochondrial					
	Relevance of the stud		essment, appropriateness of study endpoints				
	(4)		ical Relevance				
		st species/ life-stage(s) studied					
	statistically significar	effects of biological significant effect able to cause a (popular	ation) relevant effect?				
-	3 Is the ecotoxicologi	cal manifestation level approp	riate for the assessment? nental Relevance				
	,0,-	ted representative and	yes				
	2 So the tested conce	entrations relate to measured mental concentrations (if	yes: tested concentrations between 1 and 3 ppm and at environmental/occupational doses.				
, °	available)?	fluencing the endpoints	yes				
	been considered (e.g. conditions)?	pH, temperature, light	yes				
Sing of the state	lyphosate Renewal Group A	IR 5 – July 2020	Doc ID: 110054-MCA8_GRG_Rev 1_Jul_20				
Tr. By							

Concluding weight of evidence	All formulations appeared more toxic than glyphosate, and 3 groups of differentially toxic formulations were experimentally separated according to their concentrations in ethoxylated adjuvants.
	Ethoxylated adjuvants alone and in formulations appeared as active principles for human cell toxicity.
Type of info. (Critical, supporting, low weight)	11. 6 11. 6
Consideration/concluding score	UBA1 for assessment of surfactand effects (POEA)

Walsh et al (2000)

-		I					
	glyphnosu	WALSH, L.P.)0	ROUNDUP INHIBITS STEROIDOGENESIS BY DISRUPTING	ENVIRONMEN	
	bm_067	MCCORMIC			STEROIDOGENESIS BY DISKUPTING	TAL HEALTH	
		C. MARTIN, STOCCO, D.			STEROIDOGENIC ACUTE REGULATORY (StAR) PROTEIN	PERSPECTIVES	
		STOCCO, D.	IVI.		EXPRESSION.	(108)769-776	
-					Reliability		
-	Purpose of the study			n 8	currently used nesticate formulations for the	oir ability to discust	
		of endpoints	steroid ha	orma	currently used pesticide formulations for the one biosynthesis.	in admity to disrupt	
	Description	or enapoints	Steroid in	OTH	one olosynthesis.		
			EP: stero	oidog	genic acute regulatory (StAR) protein express	sion in MA-10 cells;	
			levels an	nd ac	ctivities of the P450scc and the 3p-hydroxyst	eroid dehydrogenase	
			(3P-HSD	enz) enz	zymes (conversion of cholesterol to pregnenolo	ne and pregnenolone	
			to proges	steroi	ne; respectively)		
	Test compor	und,	Roundup	(180	0 g/L glyphosate): N-(phosphonomethyl)		
	application p	orocedure,	glycine		P. W. M.		
	exposure per	riod, protocol			1 6 0 0		
	Experimenta	al approach	Please re	efer to	o the study:		
	Statistical de	esign,	http://ww	vwen	cbi nlm.nih.gov/pmc/articles/PMC1638308/pdf	envhper00309-	
-	test environi	ment	0125.pdf	E C. K.	200		
_	Test organis	ms	Mouse M	(A-1	© Leydig tumor cell line		
	Biological e	ffects	Progeste	erone	e production and total cellular protein synth	esis:	
			- 8 Kour	naup	decreased progesterone production in a dosage	e-dependent manner	
		~	S that	thic	herbicide did not cause acute cellular toxicity of	or a general	
		.5	Sdism	untio	neroiciae aid noi cause acute cettular toxicity c on in translation)	n a generai	
		er s	Rour	ndun	n also significantly disrunted steroidogenesis ov	er time without	
		in in	indu	icing	a parallel decrease in total protein synthesis.	er time without	
		80,9,00	- The active ingredient in Roundup, glyphosate, did not alter steroidogenesis				
			levels and activities of the \$\text{P450cc}\$ and the 3p-hydroxysteroid dehydrogenase (3P-HSD) enzymes (conversion of cholesterol to pregnenolone and pregnenolone to progesterone; respectively). Roundup (180 g/L glyphosate): N-(phosphonomethyl) glycine Please refer to the stady: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1638308/pdf/envhper00309-0125.pdf Mouse M& 16 Leydig tumor cell line Procestrone production and total cellular protein synthesis: - Roundup also ignificantly disrupted steroidogenesis over time without inducing a parallel decrease in total protein synthesis (indicating disruption in translation). Roundup also significantly disrupted steroidogenesis over time without inducing a parallel decrease in total protein synthesis. - The active ingredient in Roundup, glyphosate, did not alter steroidogenesis or total protein synthesis at any dose tested (0-100 gg/mL) P450scc and -30-HSD enzyme activity, expression, and steroidogenesis or total protein synthesis at any dose tested (0-100 gg/mL) P450scc and -30-HSD enzyme activity, expression, and steroidogenesis or total protein synthesis at any dose tested (0-100 gg/mL) P450scc and -30-HSD enzyme activity, expression, and steroidogenesis by 71%, indicating that it inhibited P450scc and/or 3,B-HSD enzyme activity. - Although Roundup did not alter 30-HSD enzyme activity, indicating that the herbicide was not acutely toxic to cells or mitochondria, it significantly reduced P450scc activity by 61%. StAR protein and mRNA levels Northern blot analysis revealed that Roundup did not alter StAR mRNA levels, indicating that Roundup disrupted StAR protein expression post-transcriptionally. Environmental Risk Assessment, appropriateness of study endpoints Biological Relevance				
		71.8					
		Of illi	P450scc	and	-30-HSD enzyme activity, expression, and st	<u>eroidogenesis</u>	
		E CO	- Although Roundup significantly reduced (Bu)2cAMPstimulated				
	(3)	1833	stero	oidog	genesis by 84%, effects were completely revers	ible.	
	,8	8	- Kour	ndup	o also significantly reduced 22K-HC-driven ster	oldogenesis by	
	al silor		/ 1%0 A 141-	o, ind	Doubled History of the Polymer and the Polymer	D enzyme activity.	
	STILL SHO		- Ailli	herbi	cide was not acutely toxic to cells or mitachan	ly, mulcating that	
	"910° 40,		redu	iced l	P450sec activity by 61%	iria, it significantly	
į	1.10		StAR pro	oteir	n and mRNA levels		
20			Northern	blot	t analysis revealed that Roundup did not alter S	tAR mRNA levels.	
Silv S			indicating	g tha	at Roundup disrupted StAR protein expression i	oost-	
76 7 C			transcript	tiona	ally.		
100	Relevance o	f the study for E	nvironmen	ntal F	Risk Assessment, appropriateness of study endp	points	
		•			Biological Relevance		
jo julio							
20 1915							
GI GI	lyphosate Renew	/al Group AIR 5 – Ju	ıly 2020		Doc ID: 110054-1	MCA8_GRG_Rev 1_Jul_20	
14 / A/O.						_	
8							

1 Is an appropriate test species/ life-stage(s) studied		yes	
2 Is the magnitude of effects of biological significant	nce, e.g. is a very small	yes	
statistically significant effect able to cause a (popul	ation) relevant effect?	8	
3 Is the ecotoxicological manifestation level approp	oriate for the assessment?	yes	
	nental Relevance	jii di	
1 Is the substance tested representative and relevant for the substance being assessed?	yes	16 50 M	
2 Do the tested concentrations relate to measured or predicted environmental concentrations (if available)?	yes		
3 Have parameters influencing the endpoints been considered (e.g. pH, temperature, light conditions)?	yes		
Concluding weight of evidence	The results indicate that the commercial formulation of the herbicide glyphosate Roundup comight affect reproductive function in animals.		
Type of info. (Critical, supporting, low weight)	10 50 50 50 50 50 50 50 50 50 50 50 50 50	000	
Consideration/concluding score	UBA2 for assessment of s	urfactand effects (POEA)	

McDaniel at al. (2008)

				8 7	£ 7,6°		
	Consideration/concluding score				UBA2 for assessment of surfactand effects (POEA)		
	McDaniel at al. (2008)					ENTRA L'ESTROCEDINE	
	glyphec otox_49 6	MCDANIEL, T MARTIN, P.A., STRUGER, J., SHERRY, J., MARVIN, C.H. MCMASTER, M CLARENCE, S. TETREAULT,	, M.E.,	2008	DISR DEV MAL FRO GRE FRO CRO	ENTEAL ENDOCRINE UPTION OF SEXUAL ELOPMENT IN FREE RANGI E NORTHERN LEOPARD EN FROM (RANA PIPIENS) AND EN FROGS (RANA CLAMITAN M AREAS OF INTENSIVE RO P AGRICULTURE	VS)
		on of endpoints	souther ER: alt express To test	rn Ontar ered gor sion in n for poss ses in the	her am io show had hist hale sible as e amph ents of cultura	concentrations of a suite of pestical drains in the area of the frog coll-	ne disrupting substances a steroid levels, or Vtg th effects or biomarker ides and nutrients in farm
	Test comp application exposure p	ound, Common procedure,	In-situ chroma Glypho sites	measure atograph	ements: y with	Glyphosate concentrations were a nitrogen/phosphorus detection. ted in trace amounts (>5,000 ng/L	,
Story of the story	18 18 18 18 18 18 18 18 18 18 18 18 18 1						
	Glyphosate Ren	ewal Group AIR 5 – Ju	ly 2020			Doc ID: 110	0054-MCA8_GRG_Rev 1_Jul_2020

	Experimental approach Statistical design, test environment	Thames River waters county and an area was statistical analysis. Data were log transform homogeneity of variate could not be met then Biological endpoints TOFS) were compare TOFS using one-way associations between of males with TOFS aproduct moment. Goof frequency of TOFS was regions were pooled in variation within regions.	hed; an area north of the city est of the city of Chatham in a rmed, where necessary, to make the concerning requirements for parametric non-parametric tests were used amongst regions and between analysis of variance (ANOV concentrations of circulating and atrazine concentrations we dones of fit tests were used to the concentrations of circulating and atrazine requirements of the concentrations of the concentration	chatham/Kent county eet normality and cric tests. If those criteria sed. adosomatic index, diagneter of een males with and without A). The particular sex steroids or the proportion were assessed using Pearson to test the hypothesis that the or this test, the sites within test, the order to look at estics greater than 20
	Test organisms Biological effects	Rana pipiens and Ran Glyphosate was a concurrence of test significantly high agricultural and a pesticide concent of the significantly high agricultural and a pesticide concent of the significant of the	detected in several agricultural sticular ovarian follicles (TOI ner (42%; p 0.05) at agricult ference in circulating sex sterior rations in the environment ere detected in the gonadoso between frogs from agricultural detected from a control of the control of t	al sites. FS) in male R. pipiens was tural sites roid levels between frogs from a levels did not correlate with matic indices or stage of tral and non-agricultural R. pipiens from an agricultural eroid levels differed between s.
	Relevance of the study for F		essment, appropriateness of s	study endnoints
	resevance of the study for E	24. 7.20	ical Relevance	may enuponits
	1 Is an appropriate test speci	est life-stage(s) studied	?	yes
	2 Is the magnitude of effects statistically significant effects	of biological significant and the state of t	nce, e.g. is a very small ation) relevant effect?	yes
	3 Is the ecotoxicological man	nifestation level approp	oriate for the assessment?	yes
	Sold File of		nental Relevance	
	1 Is the substance tested represent for the substance be		Monitoring study	
	2 Do the tested concentration or predicted environmental cavailable)?	ns relate to measured	-/-	
	3 Have parameters influencing been considered (e.g. pH, ter	ng the endpoints mperature, light	-/-S	
É	Concluding weight of evide	ence	No relevant for the risk asson however the study showed potentially have endocrine inhabiting farm ponds and a row crop agriculture	that mixtures of pesticides
,	Type of info. (Critical, sup	porting, low weight)		
16 6 C	Consideration/concluding s	score	UBA3	
The order of the o	Glyphosate Renewal Group AIR 5 – Ju	uly 2020	Doc 1	ID: 110054-MCA8_GRG_Rev 1_Jul_202

Quassinti et al. (2009)

glyphec otox_23 5	Quassinti, L., Maccari, E., M O., Bramucci, N	M. GLYI		CCTS OF PARAQUAT AND PHOSATE ON ROIDOGENESIS IN GONAD FROG RANA ESCULENTA		A Pesticide Biochemistry and Physiology 93 (2):91-95
			VITR		111	(2).91-33.5
		1	R	eliability		The state of the s
	f the study			at and glyphosat affect reproduc	ction in	amphibians
Descriptio	n of endpoints			testosterone levels	- 50	10 10 10 10 10 10 10 10 10 10 10 10 10 1
Test comp				ldrich) was solubilized at 100 n	nM con	centration in Krebs
	n procedure, period, protocol	Ringer Bicarb			, , , , , , , , , , , , , , , , , , ,	
exposure p	seriod, protocor	Diluted solution final concentration	ons of h ations o	erbicides were added to each ce f 10 ⁻³ , 10 ⁻⁴ , 10 ⁻⁵ , and 10 ⁻⁶ M.	ils cultu	are well to reach the
Experiment Statistical test environment		Experimental ovarian tissue in presence of	and test	h: is of the water from Rangescule nt concentrations of the two her	enta wer	re incubated in vitro
		Statistics:				
		Data represent	t the me	an ± S.D. of ≱ determinations. I y homogeneity of variance. Sign	Jata we	re subjected to
		between groun	ns were	established by use Mann–Whiti	nev U n	onparametric test.
		The minimum	levelo	f significance considered was P		
				ersion 13.0 for Windows.		
Test organ		Rana esculent	1 1	F= C/		
Biological	effects	Glyphosate sh	iowed in	effect on gonadal steroidogen	esis eve	n at high
		concentrations				
		Glyphosate	pes not	exert a significant inhibition or	1 testost	terone production at
		the highest tes	sted con	centrations.		_
		T	() ` (1,	hosate showed no evidence of	c	
		estradiol produ			i specii	activity on 1/b-
Relevance	of the study for E			essment, appropriateness of stud	dv endp	oints
		E SE SE		ical Relevance	J 1	
1 Is an app	propriate test speci	es/ life-stage(s)			yes	
2 Is the ma	agnitude of effects	of biological si	ignificar	nce, e.g. is a very small	yes	
				ntion) relevant effect?		
3 Is the ec	42-42-44				yes	
1 Ic tho cu	hetance tested ren		nvironn	nental Relevance		
	bstance tested repr or the substance be			yes		
	ested concentration		sured			
or predicted environmental concentrations (if				yes		
available)?						
3 Have parameters influencing the endpoints		yes				
been considered (e.g. pH, temperature, light conditions)?						
Concluding weight of evidence			Glyphosate showed no effect of	on gona	dal steroidogenesis	
Type of ir	nfo. (Critical, sup	porting, low wo	eight)			
Consideration/concluding score		UBA1 for assessment of surf	actand	effects (POEA)		

B.9.13 16.1 Summary of the relevant literature on surface active substances in glyphosate-based formulations

In glyphosate-based formulations –as in almost all plant protection products (PPP) –, a varing amount of co-formulants are added to improve the handling and affice a formulants might consist of water to which substances with antifoaming or surface active properties are added.

Surfactant do have a mode of action that attack membranes, so to permit the active substance to enter cells and reach the target. A class of non-ionic surfactants, the so called alkylamine ethoxylates (ANEO), exert an (eco)toxicological effect that can be detected in glyphosate- based formulations. Polyethoxylated alkylamine (POEA) are non-ionic surfactants belonging to the alkylamine ethoxylates.

The lead formulation for the assessment of glyphosate as active substance for BPR in the European Union does not contain alkylamine ethoxylates as surfactant. Nevertheless, single several glyphosate-based products are formulated with alkylamine ethoxylates, RMS considers it adequate to provide general background informations to other Member States in the European Union to facilitate the assessment of the risk arising from glyphosate-based PPP other than the lead formulation?

The toxicity of glyphosate-based products is greatly enhanced in the active substance is formulated with alklyamine ethoxylates (e.g. Figure B.9.13-2).

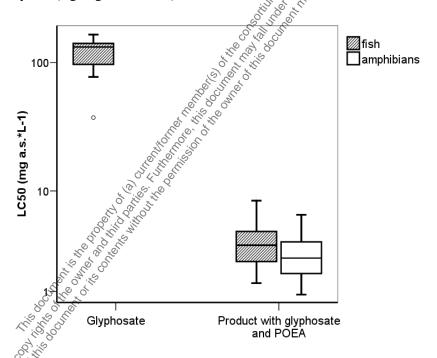
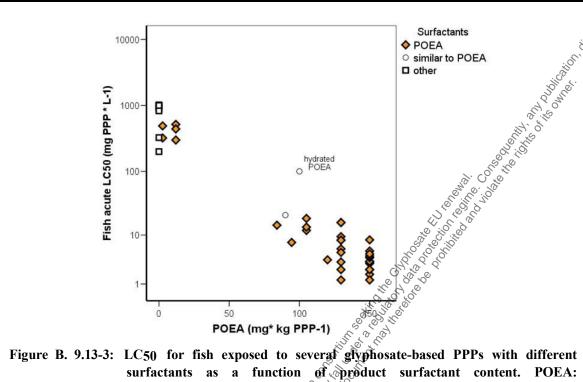
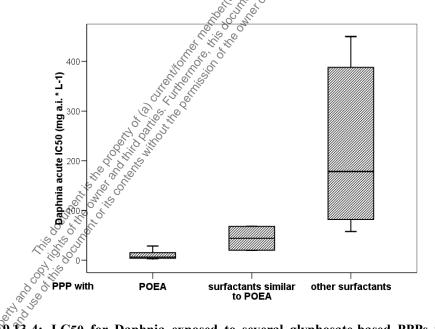




Figure B.9.13-2: LC50 values determined for fish and amphibians: exposed to glyphosateor to A CHO CONTROL OF THE glyphosate-based products containing polyethoxylated alkylamines. Data submitted for authorization of different products. Box gives median and 50 %, whiskers 75 % values

surfactants as a function of product surfactant content. POEA: alkylamines; similar polyethoxylated **POEA:** other alkylamine ethoxylates. Other: other surfactant classes.

glyphosate-based PPPs with different may amines; similar to POEA: other alkylamine ethoxylates.

Lata submitted for authorization of different products. Box: median/50 %,

As can be seen in Figure B.9.13-2, the acute toxicity of PPP with glyphosate and POEA for fish and amphibians (stage Gosner 25, see Gosner 1960) is comparable, as was discussed in the respective chapter.

The clearly higher toxicity of some PPP with glyphosate as active substances can be predicted.

Glyphosate Renewal Group AIR 5 – July 2020

surfactant 'class' in the formulation and can be depicted as relative to the content of the surfactant and not so of the amount of active substance in the product (Figure B. 9.13-3).

Similar data showing enhanced toxicity of glyphosate-based PPP when formulated with POEA are available for Daphnia (Figure B. 9.13-4) and algae (data not shown).

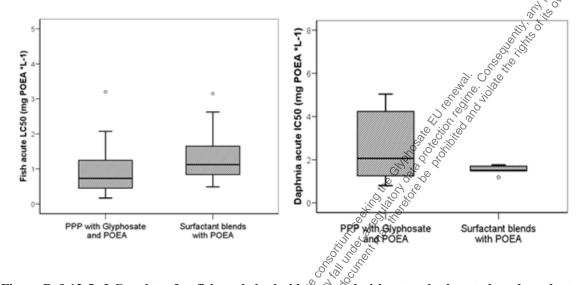


Figure B. 9.13-5: LC50 data for fish and daphnids exposed either to glyphosate-based products containing alkylamine ethoxylates or to the surfactants alone. Data submitted for authorization of different products. Box gives median and 50 %, whiskers 75 % values

During authorization processes for different gryphosate-based products, several toxicity data were generated with fish, daphnid and algae exposed to the surfactant blend alone (Figure B. 9.13-5). All data show that the toxicity of the surfactant does drive the toxicity of the product, in part because glyphosate itself is only moderately acutely toxic to the tested organisms.

Summarizing the data available, the acute risk for non-target organisms exposed to glyphosate-based products containing alkylamine the system can be assessed in the opinion of RMS based on the product tests submitted with the registration dossiers.

Hovewer, several studies published and peer reviewed that were submitted with this dossier and allocated to different themes (e.g. fish, aquatic invertebrates, algae, amphibians) do rise concerns on the effects of glyphosate and glyphosate based formulation on endpoints regarding genotoxicity, mutagenicity, development or reproduction of non target organisms (Paganelli et al., 2010; Romano et al., 2010 and 2012; Gasnier et al., 2009; Dallegrave et al., 2003 and 2007; Hockanson et al., 2007; Walsh et al., 2000, McDaniel et al., 2008).

For the evaluation of studies with glyphosate and glyphosate-based products in in-vitro and in-vivo experimental set ups with the aim to detect possible endocrine, genotoxic, carcenogenetic effect please refer also to the specific chapters assessing human toxicity (Vol.1, chapter 2.6.7.2, developmental toxicity and teratogenicity and respective Vol. 3 of this report).

RMS considers several of the observed effects to be mediated by the surfactants included in the formulatios. in treatments where the test can be also and 2009); glyl can be also alone) did extremely seldom show any effects on biomarkers or high belonging to the alkylamine ethoxylates class has been identified and very well characterized. In chapter Vol 3 of this report, chapter B.6.13, an evaluation of the potential observable. In different studies, the effects were clearly more pronounced in treatments where the tested products contained alkylamine exthoxylated surfactants (e.g. Benachour et al., 2007 and 2009); glyphosate acid Streatment (when tested alone) did extremely seldom show any effects on biomarkers or higher endpoints (e.g. Quassinti, 2009). In the paper of Mesnage et al. (2012), the direct actue toxic effects of co-formulants

In chapter Vol 3 of this report, chapter B.6.13, an evaluation of the potential chronic toxicity,

carcinogenicity reproduction and developmental toxicity of POEA is performed.

All (eco)toxicological data available give strong evidence that the toxicity of glyphosate-base formulation with POEA arisises from the surfactant. Nevertheless, even if this evidence relieves for the time being the active substance glyphosate from the suspect of being potentially carcenogenetic, endocrine disruptive and mutagenic, it does not tell the same for the surfactant class of the alkylamine ethoxylates.

Walsh et al. (2000) report that glyphosate based formulations, but not glyphosate alone, might affected the steroidogenesis pathway by inhibiting the progesterone production. Levine et al. (2007) determined that Roundup® branded formulation and a Roundup blank formulation without glyphosate decreased the hCG-stimulated increase in progesterone production. These findings indicate that the effect of progesterone is largely attributable to the surfactant, insofar as it decreases progesterone production upon mitochondrial membrane disruption.

Other finding (e.g. Dallegrave et al., 2007, Knapp, 2007 and 2008) give indication on reproductive toxicity of a commercial Roundup® formulation and the surfactant formulation MON 0818 (POEA) on reproduction. As stated in Vol 3, chapter B.6.13.3 "(...) Nonetheless the published findings suggest that offspring development was in fact a particularly sensitive target of Roundup and the POE-tallowamine. The findings in young male rats might indicate impairment of specimenogenesis (...)".

More indications exisits that glyphosate-based products with choxylated alkylamines might interfere with the endocrine system of vertebrates (e.g. estrogen synthesis, aromatase activity Soso et al., 2007; Richard et al., 2005). Moreover, it is not clear how glyphosate-based PBP with alkylamine exthoxylated affect the process of amphibian methamorphosis (please refer to the respective chapter B.9.13 10.1).

Therefore, the authorization of glyphosate-based products with alkylamine exthoxylated surfactants might require the generation of further data. The requests should cover the clarification of the effect of POEA on endocrine enpoints (e.g by a fish screening assay) and thyroid mediated processes (e.g. by extended amphibian metamorphosis tests) with representative POEA.

References

- Benachour, N. Sipahutar, H. Mosterin, S. Gasnier, C. Travert, C. Seralini, G. E. (2007): Time- and dose-dependent effects of rounding on human embryonic and placental cells. Archives of Environmental Contamination and Toxicology 53, 126-133
- Benachour, N., Seralini, G. E. (2009): Glyphosate formulations induce apoptosis and necrosis in human umbilical, embryonic; and placental cells. Chemical Research in Toxicology 22, 97-105
- Dallegrave, E. Mantese, F. D. Coelho, R. S. Pereira, J. D. Dalsenter, P. R. Langeloh, A. (2003): The teratogenic potential of the herbicide glyphosate-Roundup® in Wistar rats. Toxicology letters 142, 45-52.
- Dallegrave, E. Mantese, F. D. Oliveira, R. T. Andrade, A. J. M. Dalsenter, P. R. Langeloh, A. (2007):

 Pre- and postnatal toxicity of the commercial glyphosate formulation in Wistar rats. Archives of
 Toxicology 81, 665-673
- Gasmer, C., Dumont, C., Benachour, N., Clair, E., Chagnon, M. C., Seralini, G. E (2009): Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology 262/3, 184-191
- Gosner, K.L. (1960): A simplified table for staging anuran embryos and larvae. Herpetologica 16, 183-190

- Hokanson, R., Fudge, R., Chowdhary, R., Busbee, D. (2007): Alteration of estrogen-regulated gene expression in human cells induced by the agricultural and horticultural herbicide glyphosate. Human & Experimental Toxicology 26, 747-752
- Knapp, J.F. (2007): A reproduction/developmental toxicity screening study of MON 0818 in rats Revised final report. WIL Research Labs., Ashland, Ohio, USA, on behalf of Monsanto Project no. WIL-50282, Sponsor no. WI-2003-103, unpublished; ASB2010-365
- Knapp, J.F. (2008): A combined 28-day repeated dose oral (dietary) toxicity study with the reproduction/developmental toxicity study. reproduction/developmental toxicity screening test of MON 8109 and MON 08\$\% in rat. WIL Research Labs., Ashland, Ohio, USA, on behalf of Monsanto. Project no. WIL-50337, Sponsor no. WI-2007-013, unpublished; ASB2010-364
- Levine SL, Han Z, Liu J, Farmer DR, Papadopoulos V. (2007): Disrupting mitochondrial function with surfactants inhibits MA-10 Leydig cell steroidogenesis. Birds Cell Biol Toxicol. 23/6, 385-400
- McDaniel, T.V., Martin, P.A., Struger, J., Sherry, J., Marvin, C.H., McMaster, M.E., Clarence, S., Tetreault, G. (2008): Potential endocrine disruption of sexual development in free ranging male northern leopard frogs (Rana pipiens) and green frogs (Rana clamitans) from areas of intensive row crop agriculture. Aquatic Toxicology 88/4, 230-42
- Paganelli, A., Gnazzo, V., Acosta, H., Lopez, S.L., Carrasco, A.E. (2010): Glyphosate-Based Herbicides Produce Teratogenic Effects on Vertebrates by Impairing Retinoic Acid Signalling. Chemical Research in Toxicology 23, 1586-1595
- Quassinti, L., Maccari, E., Murri, O., Bramucci, M. (2009): Effects of paraquat and glyphosate on steroidogenesis in gonads of the frog Rang Esculenta in vitro. Pesticide Biochemistry and Physiology 93/2, 91-95
- Richard S, Moslemi S, Sipahutar H, Benachour N, Seralini GE. (2005): Differential effects of glyphosate and roundup on human placental cells and aromatase. Environ Health Perspect. 113, 716-20
- Romano, M.A., Romano, R.M., Santos, L.D., Wisniewski, P., Campos, D.A., de Souza, P.B., Viau, P., Bernardi, M.M., Nunes, M.T., de Oliviera, C.A. (2012): Glyphosate impairs male offspring reproductive development by disrupting gonadotropin expression. Archives of Toxicology 86/4, 663-673 5 55
- Romano, R.M. Romano, M.A. Bernardi, M.M. Furtado, P.V. Oliveira, C.A. (2010): Prepubertal exposure to commercial formulation of the herbicide glyphosate alters testosterone levels and testicular morphology. Archives of Toxicology 84, 309-317
- A. M.J., Kreutz, L.C., Quevedo, R. , L.D., Ritter. F., Bedin, A.C., Finco, J.A. (2007): C gradial concentration of a glyphosate-based herbicide alters hormon reproduction of female Jundia (*Rhamdia quelen*). Environmental Toxic Pharmacology 23/3, 308-313

 Walsh, L.P. McCormick, C. Martin, C. Stocco, D.M (2000): Roundup inhibits steroidogenesis by disrupting steroidogenic acute regulatory (StAR) profession. Environmental Health Perspectives 108, 769-774 Soso, A.B., Bargellos, L.J.G., Ranzani-Paiva, M.J., Kreutz, L.C., Quevedo, R.M., Anziliero, D., Lima, M., da Silva, L.B., Ritter. F., Bedin, A.C., Finco, J.A. (2007): Chronic exposure to sub-ethal concentration of a glyphosate-based herbicide alters hormone profiles and affects reproduction of female Jundia (Rhamdia quelen). Environmental Toxicology and
 - steroidogenesis by disrupting steroidogenic acute regulatory (StAR) protein

Glyphosate Annex M-CA 8-02: Endpoint Selection Considerations for Refinement of the Mammalian Risk Assessment Annex to the Documen M of the technical section 18:

ÉCOTOXICOLOGY

The state of the s ¹⁸ Annex to the Doc ID: 110054-MCA7_GRG_Jun_2020

In the Toxicology Section document M-CA Section 5, there are multiple rodent acute oral toxicity studies that have been re-evaluation for this dossier. In the following evaluation, 27 studies out of 39 available studies are considered (with 28 individual endpoints; marked in bold in the table below). Of the 39 studies, 8 studies were considered supportive and 4 studies were not considered (see footnote to **Table 5.23**.4 in document M-CA Section 5).

For the acute environmental mammal risk assessment, at the screening level of the assessment, the lowest available acute oral endpoint (>2000 mg/kg bw) is considered.

The acute oral rodent toxicity endpoints are presented below (reproduced from document M-CA Section 5).

Table 1: Acute oral toxicity studies for glyphosate acid in rats and mice

Annex Point	Study	Study type	Substance(s)	Štatus	Result [LD50]
CA 5.2.1/001	2014	in vivo: RccHanTM:Wistar rats, ♀ (fixed dose method)	Glyphosate technical (Batch: 04062014) Purity: 85 79 90 Glyphosate technical	valid, Category 2a	>2000 mg/kg bw (females)
CA 5.2.1/002	2011	in vivo: RjHan:WI rats, ♀ (up and down procedure)	Glyphosate technical (Batch: 569753 BX 20070911), Purity: 96.3 %)	valid, Category 2a	>5000 mg/kg bw (females)
CA 5.2.1/003	2010	in vivo: CD / Crl:CD(SD) rats, \$\(\) (ATC method)	Glyphosate technical (Batch: 2009051501, Purity: 96.4 %)	valid [#] , Category 2a	>2000 mg/kg bw (females)
CA 5.2.1/004	2010	in vivo: CD / SC Crl:CD(SD) rats, Sc (ATC method) Scientific of the vivos CD / Scientific of the vivos	© (Batch: 20090506, Purity: 97.3 %)	valid [#] , Category 2a	>2000 mg/kg bw (females)
CA 5.2.1/005	2009	Crl:CD(SD) rats, ♀ (ATC method)	Glyphosate technical (Batch: 20080801, Purity: 98.8 %)	valid [#] , Category 2a	>2000 mg/kg bw (females)
CA 5.2.1/006	2009	in vivo: HanRcc: WIST (SPF) rats, ♀ • (ATC method)	Glyphosate technical (Batch: GI-1045, Purity: 96.66 %)	valid, Category 2a	>2000 mg/kg bw (females)
CA 5.2.1/007	2000 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	invivo: Sprague- Pawley rats, ♀ (up and down procedure)	Glyphosate tech grade mixed 5-batch (Batch: 080704-1 thru 5, Purity: 96.40 %)	valid, Category 2a	>5000 mg/kg bw (females)
CA 5.2.1/008		in vivo: Wistar Hannover rats, ♀ (ATC method)	Glyphosate technical (Batch: 20070606, Purity: 98.05 %)	valid, Category 2a	>2000 mg/kg bw (females)
CA 5.2.1/009	, 2007	in vivo: HanRcc: WIST (SPF) rats, ♀ (up and down procedure)	Glyphosate technical material (Batch: 0507, Purity: 96.1 %)	valid, Category 2a	>5000 mg/kg bw (females)
CA 5.25 1/010	2007	in vivo: HanRcc: WIST (SPF) rats, ♀ (ATC method)	Glyphosate technical (Batch: 200609062, Purity: 95.1 %)	valid, Category 2a	>2000 mg/kg bw (females)
CA 5.257/0910	, 2005	in vivo: Sprague- Dawley derived rats, ♀ (up and down procedure)	Glyphosate acid technical (Batch: 040205, Purity: 97.23 %)	valid, Category 2a	>5000 mg/kg bw (females)

Table 1: Acute oral toxicity studies for glyphosate acid in rats and mice

Annex Point	Study	Study type	Substance(s)	Status	Result [LD50]
CA 5.2.1/012	, 1999	<i>in vivo:</i> Sprague-Dawley derived, albino rats, ∂ / φ	NUP5a99 (Batch: Drum Sample E, Purity: 62 %) IPA salt	supportive Category 2a	>5000 mg/kg
CA 5.2.1/013	1996	in vivo: Alpk:AP _f SD (Wistar-derived) rats, \lozenge / \triangleleft	Glyphosate acid, (Batch: P24, Purity: 95.6 %)	valid, Category 2a	5000 mg/kg bw
CA 5.2.1/014	, 1995	in vivo: Crj:CD- 1(ICR) mice, ♂/♀	MON 0139 (Batch: LBRV-11092, Purity: 62.34 %) IPA salt	watid Category 2a	>5000 mg/kg bw
CA 5.2.1/015	, 1995	in vivo: Sprague- Dawley (Crj:CD), SPF, albino rats, ♂ /	Glyphosate technical HR-001 (Batch: 940908 1, Purity: 95.68	valid, Category 2a	>5000 mg/kg bw
CA 5.2.1/016	1995	in vivo: ICR (Crj:CD-1), SPF mice, ♂ / ♀	Glyphosate technical, HR-001 (Batch: 940908- 1, Purity: 95.68%)	valid, Category 2a	>5000 mg/kg bw
CA 5.2.1/017	1995	in vivo: rats (limit test)	Glyphosate acid technical (Batch: 1073, Purity 97.6 %)	valid, Category 2a	>2000 mg/kg bw
CA 5.2.1/018	1995	in vivo: rats (limit test)	Glyphosate (Batch: 940950, Purity: 62 % IPA)	supportive, Category 2a	>2000 mg/kg bw
CA 5.2.1/019	1994	in vivo: rats	Not applicable	valid, Category 4a	Not applicable
CA 5.2.1/020	1994	in vivo: Sprague- Dawley rats: 3 / ♀	Glyphosate Premix (Batch: 290-JaK-146-4, Purity: 46.1 % (Glyphosate), 62.2 % (IPA salt)	supportive, Category 2a	>5000 mg/kg bw
CA 5.2.1/021	1994	in vivo: rats (limit test)	Glyphosate	valid, Category 4a	>2000 mg/kg bw
CA 5.2.1/022	OF ST. IS	$ \hat{\mathcal{S}} $ vivo: Wistar rats,	Glyphosate Technical (Batch: 36300892, Purity: 99.6 %)	valid, Category 2a	>5000 mg/kg bw
CA 5.2.1/023	8 1994	in vivo: rats	Glyphosate technical	valid, Category 4a	>2000 mg/kg bw
CA 5.2.1/024	1992 1992	in vivo: Sprague- Dawley rats, ♂/♀	Glyphosate (Batch: L3258; purity: not specified)	valid, Category 2a	>2000 mg/kg bw
CA 5.2.1/025	1991	in vivo: Bom:NMRI mice, ♂ / ♀	Glyphosate Technical (PMG) (Batch: 206-JaK-25-1, Purity: 98.6 %)	valid, Category 2a	>2000 mg/kg bw
CA 5.2.1/025 CA 5.2.1/026	, 1991	in vivo: Wistar rats, ♂/♀	Glyphosate Technical (Batch: 60, Purity: 96.80 %)	valid, Category 2a	>7500 mg/kg bw
©A 5.2.1/027	1991	in vivo: Swiss albino mice, ♂/♀	Glyphosate Technical (Batch: 60, Purity: 96.80 %)	valid, Category 2a	>7500 mg/kg bw

M-CA, Section 8

Page 836 of 847

Table 1: Acute oral toxicity studies for glyphosate acid in rats and mice

Annex Point	Study	Study type	Substance(s)	Status	Result [LD50]
CA 5.2.1/028	, 1990	in vivo: CD rats, \eth /	Glyphosate Technical (Batch: 0190 A, Purity: 98.1 %)	valid, Category 2a	>8000 mg/kg
CA 5.2.1/029	, 1989	in vivo: Sprague- Dawley rats, ♂/♀	Glyphosate Technical (PMG) (Batch: 206-JaK-25-1, Purity: 98.6 %)	supportive, Category 2a	5000 mg/kg bw
CA 5.2.1/030	1989	in vivo: rats	Glyphosate technical (IPA salt 62 %)	valid, Category 4a	>2000 mg/kg bw
CA 5.2.1/031	1988	<i>in vivo:</i> Sprague- Dawley rats, ♂/♀	Glyphosate (Batch: XLI-55, Purity: 97.76 %)	Category 2a	>5000 mg/kg bw
CA 5.2.1/032	1987	<i>in vivo:</i> Sprague-Dawley rats, \Im / \Im	Purity: 90.8 %, 5	valid, Category 2a	5904 mg/kg bw (males) >2222 mg/kg bw (females)
CA 5.2.1/033	1987	in vivo: Sprague- Dawley rats	MON8722	valid, Category 4a	4613 mg/kg bw
CA 5.2.1/034	, 1987	in vivo: mice	SN750724 (Rurity: 64 %) PASalt	valid, Category 4a	4373 mg/kg bw
CA 5.2.1/035	1987	in vivo: mice	SN 50721 (Purity: 5 5 41 %) IPA salt	valid, Category 4a	3669 mg/kg bw
CA 5.2.1/036	1983	in vivo: Kasauli o mice, d kasauli	Glyphosate Technical Batch: R&D sample (9- 7-83), Purity: 95 %)	supportive, Category 3a	4000 mg/kg bw
CA 5.2.1/037	1983	in vivo; tats	Glyphosate (tech.)	supportive, Category 4a	Not applicable
CA 5.2.1/038	, 1981	in vivo: Sprague- Dawley (Crl:CD® (SD)BR) rats, ∂/♀	Glyphosate (MON 0139) (Batch: SSRT- 11012, Purity: 65%) IPA salt	supportive, Category 2a	>5000 mg/kg bw
CA 5.2.1/039	1979	in vivo: Wistar rats,	Glyphosate technical (Batch: XHI-180, Purity: 99 %)	supportive, Category 2a	5600 mg/kg bw

[#] This study was performed at the Laboratory of Pharmacology and Toxicology (LPT) in Hamburg, Germany

From the toxicology Section (document M-CA Section 5.2) a range of oral gavage dosing vehicles were used across the oral acute studies, yet most were dosed using water as the dosing vehicle. Other dosing vehicles, included peanut oil, CMC and arachis oil. However, despite the differences in the dosing vehicles,

As the endpoint required for use in the acute mammalian risk assessment is an acute lethality endpoint, transient symptomology observed in these studies is not relevant to an acute wild mammal risk assessment, especially where considering that it was not sustained for the duration of the studies.

Therefore, it is considered relevant and appropriate, to fully consider all of the available of the duration of the studies.

selecting an endpoint for use at the refinement step of the risk assessment. In accordance with the EFSA (2009) guidance document, Section 2.4.2, a geometric mean endpoint has been calculated by firstly considering endpoints according to species (mouse or rat), which have then been combined to give an overall geometric mean endpoint.

The endpoints used in the geometric mean calculation are presented in bold in the above table. For the 21 rat acute oral studies, the overall geometric mean acute endpoint value was determined to be 3578.9 mg/kg bw.

For the six mouse acute oral studies, the overall geometric mean acute endpoint value was determined to be 3809.4 mg/kg bw.

When combined, the overall geometric mean value is 3694.1 mg/kg bw. This value will be used in the refined acute mammalian risk assessment.

Additional points concerning the equivalence of the acute rodent study test design.

In the information below, a comparison of the available rat and mouse acute oral toxicology studies conducted using glyphosate is presented. This aimed to demonstrate equivalence in the study designs used to generate the acute oral gavage toxicity endpoints, and to enable grouping of the endpoints to generate a geometric mean endpoint for use in the risk assessment. Compared elements included;

Influence of dosing vehicle on the result
Nature and duration of the clinical observations
Endpoints

1 the tabulated comparison preendpoints were essentially and the clinical observations. Based on the tabulated comparison presented for each of the studies, it was clear that the acute mammalian toxicity endpoints were essentially achieved in studies performed using equivalent test designs, with all achieved acute rat and mouse study endpoints being at the limit dose tested or higher.

Mammalian reproductive Endpoint Refinement Considerations

In the Final Addendum to the gryphosate RAR (Volume 3, Annex B.9; 31 March 2015), the RMS proposed an overall NOAEL of 50 mg/kg bw/d (from Brooker et al. (1991) for maternal and developmental effects - rabbit developmental toxicity study) to be considered for use in the mammalian long-term reproductive risk assessment. This endpoint was selected from all available developmental toxicity studies performed in rabbit (lagomorph) dosed via the oral gavage route rather than via the dietary exposure route, the expected exposure route in the field.

However, on analysis of these data - presented in detail below, the selection of this endpoint is considered overly-conservative, due to dose spacing in Brooker et al. (1991) study, as there are higher NOAELs in other studies that fall below the lowest LOAEL (considering all the available rabbit developmental toxicity data). A more appropriate approach to selecting the NOAEL for use in the risk assessment is to consider all available rabbit developmental toxicity study data together, as if derived in a single study, and then, from the larger dataset, to select the highest NOAEL value that falls below all LOAEL values. This approach for handling data from several studies is detailed in section 2.4.3 of the EFSA Guidance on Risk Assessment for Birds and Mammals (2009). Based on this procedure, refined endpoints from rabbit developmental toxicology studies are considered as follows;

For maternal effects:

- the lowest LOAEL value is 150 mg/kg bw/d (., 1991)
- the highest NOAEL value below the lowest LOAEL is 100 mg/kg bw/d

4.9.9

(1995) and (1996)achieved in two studies.

For developmental or offspring effects;

- the lowest LOAEL value is 200 mg/kg bw/d (, 1996)

- the highest NOAEL value below the lowest LOAEL is **175 mg/kg bw/d** (, 1996) a refined NOAEL of 100 mg/kg bw/d and a refined LOAEL of 150 mg/kg bw/d are derived for the most sensitive test species rabbit sensitive test species rabbit.

The refined endpoint value still represents a conservative estimate of expected NOAEL and LOAEL levels relevant for consideration in the mammalian long-term reproductive risk assessment. Whilst the developmental toxicity data informs about human risk assessment, for the higher terrefinement of the mammalian reproductive risk assessment - from an ecotoxicological perspective more representative exposure data should be considered, that excludes dosing via the oral gavage route. The latter exposure route is not considered representative of dietary exposure expected in the field that is addressed in an ecotoxicological risk assessment. The use of gavage dosing can result in high systemic levels that may induce adverse findings that cannot be reproduced when equivalent doses (in mg/kg bw/d) are given via the diet (see EFSA Guidance on Risk Assessment for Birds and Mannals (2009), section 2.3). In contrast to the oral gavage route of exposure, dietary exposure considers the opportunity for uptake and toxicokinetic processes (absorption, distribution, metabolism and excretion) to take place in a more realistic and gradual manner. Evidence of lower absorption of glyphosate was observed in an ADME (absorption, distribution, metabolism and excretion) study by to the glyphosate RAR Volume 1, chapter 2.6.2; page 41, 31 March 2015) when results were compared with those achieved in ADME studies dosed using the standard oral gavage procedure.

Furthermore, these ADME studies also demonstrate rapid excretion of glyphosate from the body in urine (absorbed glyphosate) and predominantly in faces (unabsorbed glyphosate), with no evidence of accumulation of glyphosate in mammals (Final Addendum to the glyphosate RAR Volume 1, chapter 2.6.2; pages 37-41; 31 March 2015).

A further position on the relevance of sabbit developmental toxicity studies to risk assessment is also presented in the Toxicology Section (document M-CA Section 5).

Further Mammalian Endpoint Refinement Considerations

The EFSA Guidance on Risk Assessment for Birds and Mammals (2009) recommends the use of an ecotoxicologically relevant endpoint for the higher tier risk assessment. The decision on ecotoxicological relevance is a case-by-case decision which is not only dependent on the already addressed relevance of exposure route and absorption, but also by consideration of the mammalian species for which acceptable risk could not be shown in Screening and Tier 1 steps.

As an acceptable long term risk for lagomorphs like the rabbit, can already be demonstrated using the most conservative NOAEL of 50 mg/kg bw/d at the Screening and Tier 1 steps, it should be considered that a higher tier risk assessment for the protection of wild mammals, as being only required for rodents.

When deriving a higher tier endpoint for rodents, the available dataset on rodents also provides information from more extended study designs, such a 2-generation rat reproduction studies, compared to developmental studies - which are considered not to fully inform on relevant endpoints for the survival of wild maniful populations. It is therefore relevant to consider additional effects data on parameters such as pup development, exposure via lactation, reproductive success of offspring, which are considered in 2generation rat reproduction studies, when deriving a higher tier endpoint for use in the risk assessment.

Based on the review of all available information on maternal/adult toxicity and developmental, reproductive and offspring effects of glyphosate on rodents an overall reproductive NOAEL for rats of 300 mg a.s./kg bw/d (as stated in the EU list of endpoints for Glyphosate, toxicology section, page 12) is considered relevant for use in the higher tier refinement of the long-term mammalian risk assessment.

There is a large toxicology dataset available from which endpoints may be selected for use in the mammalian ecotoxicological risk assessment. Since the last renewal, all toxicology studies from the existing toxicological dataset have undergone a re-evaluation to determine their relevance and reliability for use in risk assessment. This available list of toxicology endpoints is presented in the Toxicology Section B5 of the dossier.

For the chronic mammalian risk assessment, endpoints that inform on long term effects on reproduction developmental and / or maternal effects are considered relevant to the risk assessment. Most notably has been the use of endpoints from rabbit developmental toxicology studies. There are asserted multigenerational reproduction studies available within the toxicological dataset, that may also be considered. In accordance with the EFSA (2009) bird and mammal guidance document, typically the most sensitive endpoint has been selected for use in the risk assessment.

In the rabbit developmental toxicology studies, growth and development of pregnant dams / rabbits from conception through to off-spring delivery is monitored, with both maternal and developmental endpoints recorded. In the rodent multi-generational studies, rodents (rats and mice) are exposed over multiple generations, with exposure via the diet with their growth, development and reproductive success monitored.

In the toxicology Section (document M-CA Section 5), there is a position on the relevance of the rabbit developmental toxicity study to risk assessment. There is strong evidence that maternal toxicities noted in these studies dosed via oral gavage are related to general gastro intestinal disturbance (to which rabbits are especially sensitive, as noted above), rather than systemic toxicity following repeated exposure (— as is the case in multi-generation studies with rats or mice), is the complete absence of systemic toxicity noted in three repeat-dose dermal toxicity assays up to equivalent systemic exposures in the same species (document M-CA Section 5). Reported gross necropsy observations organ weights, organ pathology, hematology and clinical chemistry in these repeat-dose studies confirm an absence of specific target organ toxicity following repeated exposure in rabbits. An important consideration is that glyphosate is essentially unmetabolized in mammals and therefore systemic doses provide the opportunity to evaluate for specific target organ toxicity following repeated exposure, irrespective of the route of exposure.

Further details on the relevance of the rabbit developmental toxicity study for use in risk assessment is presented in the toxicology section of the dossier.

Given the uncertainty associated with the use of the rabbit endpoints in risk assessment, three positions on endpoint selection are presented here.

The first position considers chronic endpoints from six rabbit development toxicology studies. The second position considers endpoints from seven rat developmental studies and the third position considers endpoints from nine multi-generational studies performed using rats.

Rabbit Developmental Toxicity Endpoints

There are six rabbit developmental toxicity studies considered in the following endpoint selection evaluation.

The previous RAR (2015) concluded the most relevant chronic endpoint for use in risk assessment was the NOAEL of 30 mg/kg bw/d (1991). This is considered overly conservative and is a function of large spacing factors between consecutive doses in this study. By comparing all the available rabbit developmental toxicology studies 'side-by-side' it is possible to determine the most relevant endpoint for use in risk assessment (NOAEL). This is the approach as stated in section 2.4 of the EFSA (2009) guidance document.

Further details on the studies (study summaries) and their relevance for use in risk assessment is presented in the Toxicology Section (document M-CA Section 5).

Table 2: Endpoints from developmental studies with rabbits exposed by oral gavage

Strain	Dose levels (mg/kg bw/d)	Developmental NOEL (mg/kg bw/d)	Developmental LOAEL (mg/kg bw/d)	Maternal NOEL (mg/kg bw/d)*	Maternal LOAEL (mg/kg bw/d	Reference
NZW	50 200 400	50**	200	50*	200	Reference 1996 RAR B.5.6.11/02
NZW	50 150 450	150**	450	50*	(150 5 5	1991 ¹ IIA, 5.6.11/05
NZW	75 175 350	350	>350	75*	\$75	1980 IIA, 5.6.11/04
NZW	100 175 300	175**	300	100* 10 10	175	1996 RAR B.5.6.11/03
Japanese White rabbits Kbl:JW, SPF	10 100 300	300	>300	100*	300	1995 RAR B.5.6.11/01
NZW	125 250 500	250	500	250	500	1989 ¹ IIA, 5.6.11/07

¹ Glyphosate Monograph B.5

(1991) study

For maternal effects;

- the lowest LOAEL value is 150 mg/kg bw/d (1991)
- the highest NOAEL value below the lowest LOAEL is 100 mg/kg bw/d
 - o achieved in two studies, (1995) and (1996)

For developmental or offspring effects;

- the lowest LOAEL value is 200 mg/kg bw/d (, 1996).
- the highest NOAEE value below the lowest LOAEL is 175 mg/kg bw/d (1996)

The endpoint NOAEL value of 100 mg/kg bw/d based on maternal effects, is considered the highest relevant NOAEL from the rabbit developmental toxicology studies to be used in the chronic mammalian risk assessment.

A further observation of this data is that despite maternal effects observed at 150 mg/kg bw/d, there were no developmental effects observed at the same rate. Developmental effects based on all available data occurred at 200 mg/kg bw/d.

The nature and severity of the clinical observations in the rabbit studies are considered relevant to understanding what the impact of maternal and / or developmental effects would be at the population level. For evaluate this, the protection goals from the EFSA (2009) guidance are considered.

The 'surrogate' protection goals at the 1st tier of the chronic mammalian assessment indicates that '..surrogate protection goal of making mortality or reproductive effects unlikely.'

^{*} Highlighted maternal NOEL values are all below the lowest LOAEL of 150 mg/kg bw/d, in the

^{**} Highlighted developmental NOEL values are all below the lowest LOAEL of 200 mg/kg bw/d, in the (1996) study

Based on the observed effects in the rabbit studies, the individual mortality (maternal or offspring) and effects that lead to effects on reproduction / recruitment into subsequent generation, such as maternal implantation losses, reduced offspring numbers and non-viable offspring. Both of these effects would have an impact on both abundance and diversity.

In the studies by (1996) and . (1991), the maternal LOAEL and the developmental NOAEL occur at the same dose level. The maternal effects observed in these studies were related to appetite loss, reduced bodyweight gain and soft stools or liquid faeces. The clinical observations are not thought to be due to systemic exposure as discussed in the Toxicology Section B5. The effects are considered due to gastro-intestinal tract irritation caused by the dosing route / test design used.

In these two studies, at the maternal LOAEL, there were no mortalities (maternal nor offspring) and there were no developmental effects. In the RAR (2015) it was stated that the 50 mg/kg bw/day endpoint was selected, to be protective of implantation losses seen at higher doses. From the current dataset, implantation losses were first observed at the 200 mg/kg bw/d dose rate in the (1996) study.

Considering the 'actual' protection goal from the EFSA (2009) applicable at the refinement step of the risk assessment, EFSA states '...no visible mortality or long-term repercussions on abundance and diversity.'

Based on the available data and considering the protections goals as stated in the EFSA (2009) guidance, an endpoint NOAEL of 150 mg/kg bw/day is considered protective of both maternal and developmental effects at the population level for wild mammals.

Rat Developmental Toxicity Endpoints

There are seven rat developmental toxicity studies considered in the following endpoint selection evaluation.

By comparing all the available rat developmental toxicology studies 'side-by-side' it is possible to determine the most relevant endpoint for use in risk assessment (NOAEL). This is the approach as stated in section 2.4 of the EFSA (2009) guidance document. This is presented in the next Table, and graphically in the following figure.

Further details on the studies (study summaries) is presented in the Toxicology Section (document M-CA Section 5) of this dossier.

Table 3: Endpoints from developmental studies with rat exposed by oral gavage

Strain	levels ∅	Developmental NOEL (mg/kg bw/d)	Developmental LOAEL (mg/kg bw/d)	Maternal NOEL (mg/kg bw/d)*	Maternal LOAEL (mg/kg bw/d	Reference
Sprague-Dawley	250 500 1000	1000	No effects	1000	No effects	, 1996 CA 5.6.2/001
Sprague Dawley	0 30 300 1000	1000	No effects	300	Slightly loose stool	1995 CA 5.6.2/002
Sprague-Dawley	0 300 1000 3500	300	3500	300	3500	1991 CA 5.6.2/003
Wistar	0 1000	1000	No effects	1000	No effects	, 1991 CA 5.6.2/004 & 5.6.2/005

Strain	Dose levels (mg/kg bw/d)	Developmental NOEL (mg/kg bw/d)	Developmental LOAEL (mg/kg bw/d)	Maternal NOEL (mg/kg bw/d)*	Maternal LOAEL (mg/kg bw/d	Reference
Wistar	0 100 500	500	No effects	500	No effects	, 1986 CA 5.6,2/006
CFY	0 22 103 544	544	No effects	544	No effects	Anonymous, 1981 CA 5.6.2/007
CD	0 300 1000 3500	1000	3500	1000	3500 00 00	, 1980 CA 5.6.2/008

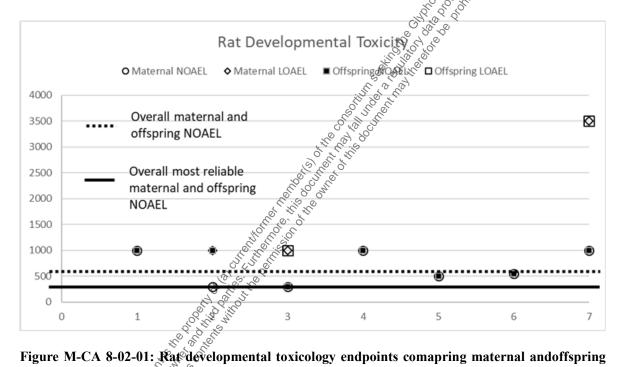


Figure M-CA 8-02-01: Rat developmental toxicology endpoints comapring maternal andoffspring NOAEL and LOAEL values. The numbers of the x-axis relate directly to the study numbers presented in the Table above. The y-axis is endpoint value in mg/kg bw/d.

For maternal effects

- the lowest LOAEL value is **3500 mg/kg bw/d** (., 1991 and , 1980).
- the highest NOAEL value below the lowest LOAEL is 1000 mg/kg bw/d

achieved in three studies, (1996), (1980) and (1991)

For developmental or offspring effects;

- the lowest LOAEL value is **3500 mg/kg bw/d** (Brooker et al., 1991 and , 1980)

the highest NOAEL value below the lowest LOAEL is 1000 mg/kg bw/d

o achieved in four studies, (1996), a (1995), (1991) and (1980)

In the toxicology section B5.6, further evaluation of the study findings are presented. Overall, the available studies on developmental toxicity in rats consistently revealed that *in utero* exposure to glyphosate did not

result in teratogenicity in rats. If observed, test substance-related effects, including maternal toxicity and developmental effects occur at 1000 mg/kg bw/day. Thus, based on the available data a NOEL of 300 mg/kg bw/day was derived for both maternal and developmental toxicity in rats.

Rodent Multi-generational Toxicology study Endpoints.

Developmental toxicity data generated in the laboratory also do not fully inform on relevant endpoints for the survival of wild mammal populations, such as pup development, exposure via lactation, reproductive success of offspring. These endpoints are considered more adequately addressed via more extended study designs, such as the 2-3 generation rat reproduction studies, with dosing via the dietary route.

In the Toxicology Section (document M-CA Section 5), there are nine relevant and reliable rat multigeneration studies that are considered relevant to the risk assessment. Full details of the studies (study summaries) are presented in the Toxicology Section of the dossier.

Long-term exposure studies using a dietary route of exposure and that have a reproductive element, are placed to reflect the typical exposure route and likely effects, expected for wild mammals in the field compared to oral gavage exposure studies.

compared to oral gavage exposure studies.

Therefore, in addition to the refined approach on endpoint selection presented above for the rabbit an alternative endpoint selection approach based on the available gat multi-generational data is presented.

Selection of such an endpoint from a multi-generation study is still considered very conservative, as dietary exposure is maintained throughout the study duration at an artificially high and continuous level of dietary residues, with no alternate food choice, compared to a varied dietary component choice (residue dilution) expected in the field.

Furthermore, multi-generation studies create a more comprehensive set of endpoints that evaluates effects relevant at the community and population level compared to developmental studies. Available endpoints achieved in multi-generation reproduction study using rats are therefore relevant to the assessment, as effects on reproduction, pup development exposure via lactation and reproductive success of offspring (all endpoints considered relevant at the population success level) are included.

A further point to note – which is relevant to the metabolism and excretion routes of glyphosate from the body, dietary versus the oral gavage route of exposure (as in developmental studies) considers the opportunity for absorption, distribution, metabolism and excretion (ADME) to take place in a more realistic and gradual manner, which completely contrasts with the expectations from a single high dose approach as used in oral gavage studies.

There are nine multi-generational reproduction studies available, listed in the Table below.

Table 4: Multi-Generational Rreproduction Studies in Rat

	Study type	Strain	Dose levels (mg/kg diet)	Reproductive effects NOEL	Parental & offspring toxicity NOEL	Reference
	2-generation feeding	Sprague-Dawley Crl:CD (SD) IGS BR	0 1500 5000 15000	5000 mg/kg diet 351 mg/kg/bw/d	5000 mg/kg diet 351 mg/kg/bw/d	2007 IIA, 5.6.1/01
2 2	2-generation feeding	Alpk:AP _f SD	0 1000 3000 10000	3000 mg/kg diet 293 mg/kg bw/d	3000 mg/kg diet 293 mg/kg bw/d	2000 IIA, 5.6.1/02
,	2-generation feeding	Sprague-Dawley; Crj:CD (SD)	0 1200 6000	30000 mg/kg bw/d >2000 mg/kg	6000 mg/kg diet 417 mg/kg	1997 IIA, 5.6.1/03

Study type	Strain	Dose levels (mg/kg diet)	Reproductive effects NOEL	Parental & offspring toxicity NOEL	Reference
		30000	bw/d	bw/d	OH.
		0	10000 mg/kg	10000 mg/kg	ign of.
2-generation	Wistar	100	diet	diet	, 19931,2
feeding	Wistai	1000	700-800 mg/kg	700-800 mg/kg	IIA, 5%.1404
		10000	bw/d	bw/d	11/0
2-generation feeding	Sprague-Dawley	0 1000 3000 10000	10000 mg/kg diet 668 mg/kg bw/d	3000 mg/kg diet 197 mg/kg bw/d	1992 ¹ JIA, 5.6.1/06
2-generation feeding	Sprague-Dawley	0 2000 10000 30000	10000 mg/kg diet 722 (M)/757 (F) mg/kg bw/d	10000 mg/kg diet 722 (My/75) (F) mg/kg bw/d	1990¹ IIA, 5.6.1/07
3-generation feed	Wistar	0 75 150 300	300 mg/kg bw/de	300 ang/kg bw/d	, 1988a CA 5.6.1/011
1-generation feed	Wistar	0 5 10	10 mg/kg bw/d	10 mg/kg bw/d	1988b CA 5.6.1/012
3-generation feed	Sprague-Dawley	0 3 10 30	30 mg/kg bw/d	30 mg/kg bw/d	198 CA 5.6.1/014

Glyphosate Renewal Assessment Report

Study considered supplementary

From the Toxicology section, a comparison of the achieved endpoints in the multi-generational studies has been conducted. been conducted.

Table 5: Rat Mulit-generational endpoints for consideration in risk assessment

Study No.	Reference &	Offspring NOAEL [mg/kg bw/day]	Offspring LOAEL [mg/kg bw/day]
1	50 Ellis 2007	351	1000
2	£ 5 2000	322	1063
3	, 1997	417	2150
4	, 1993	700	-
5	1992	668	-
6 115 115	, 1990	666	1983
7 108	1988a	15	-
8 8 8 10	1988b	10	-
9 5 60	1981	30	-

... are LOAEL values and to determine the highest NOAEL are table, the lowest LOAEL for offspring effects was 1000 mg/kg bw/c (1993), whilst the highest NOAEL below the lowest LOAEL was 700 mg/kg bw/d, achieved (1993) study.

For those studies where there is no LOAEL value, the offspring NOAEL was achieved at the highest dose dested in the study.

This comparison is presented graphically in the next figure.

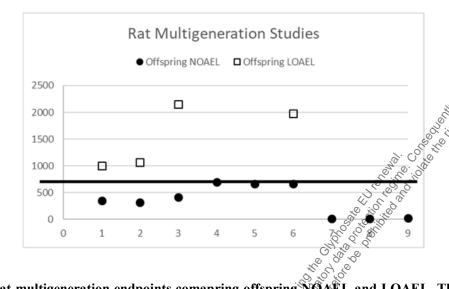


Figure 2: Rat multigeneration endpoints comapring offspring NOAEL and LOAEL. The numbers of the x-axis relate directly to the study numbers presented in the Table above. The y-axis is endpoint value in mg/kg bw/d

The availability of a large number of relevant multi-generational studies with rats (9) and developmental

The availability of a large number of relevant multi-generational studies with rats (9) and developmental toxicity studies with rats (7) and the multiple rabbit developmental toxicity studies (6) is considered to reduce the uncertainty associated with endpoint selection. Extrapolation to wild rodent species in the field.

TER trigger values are established to address the uncertainty associated with extrapolation of effects observed in model test species in the laboratory to effects at the field level. Where multiple toxicity studies are available for the same (or similar) study type organism, the uncertainty associated with the selected endpoint may be reduced and a lower trigger value is considered a relevant option. However, through pragmatic selection of an appropriate endpoint an acceptable risk assessment is achievable in all cases.

Overall assessment of data for derivation of an ecotoxicologically relevant endpoint for the higher-tier refinement of the mammalian reproductive risk assessment

Refinement of the endpoint for the higher-tier risk assessment is only necessary where achieved TER values based on the Tier 1 exposure assessment are below the trigger value (5) for reproductive risk.

Therefore, for the higher tier risk assessment, an ecotoxicologically relevant endpoint refinement considering the available rabbit developmental toxicological endpoints is presented achieving a refinement endpoint NOAEL of 100 mg/kg bw/d. A further position is presented for the rabbit developmental toxicology endpoints that considers the nature oand severity of the achieved endpoints in those studies within the context of the EFSA surrogate and actual protection goals.

Where the use of the rabbit developmental toxicology study is not considered relevant to the wild mammal risk assessment - based on the positioning presented in the Toxicology (B5) section of the dossier, two alternate endpoint approaches are also considered.

The first considers the available rat developmental toxicology endpoints and achieves an endpoint **NOAEL** of 300 mg/kg bw/d, as being relevant for use in the risk assessment.

The second considers a more appropriate route of exposure via the diet, considering the multi-generational prodent study endpoints, which achieves a **NOAEL of 700 mg/kg bw/d.**

The available information on maternal / adult toxicity and developmental, reproductive and offspring effects of glyphosate on rodents were reviewed and an overall reproductive NOAEL values based on the

available study types were proposed. The approach taken and the achieved endpoints are considered appropriate and relevant for use in the higher tier refinement of the long terms.

In terms of the order in which these endpoints should be used. The screening level assessment is based on current chronic mammal endpoint of 50 mg/kg bw/d as presented in the ESFA (2015) conclusion report. aent.
«dered. i
supporti-This ensures that all relevant exposure scenarios are considered at Tier I. At the refinement step of the Tier I assessment, the revised endpoints of 100 and 300 mg/kg bw/d should be considered. The endpoint achieved for the multi-generational rodent studies should be considered as being supportive of a lack of

Doc ID: 110054-MCA8_GRG_Rev 1_Jul_2020