

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer Propseience No part of the document or any information contained therein may be disclosed to any third

The summaries and evaluations contained in this document are based on unpublished authority. Other registration authorities should not grant, amend, or renew aregistration on the error aurestication of intermediate of a contained in the second secon basis of the summaries and evaluation of unpublished proprietary data contained, in this

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Version history

	version history	
Date	Data points containing amendments or additions ¹ and	Document identifie
Date	brief description	Sversion number
2016-01-12	Original submission	M-544090-01-1 ~ ~
2016-03-10	Update to include statement on labelling strategy	KM-544090-02 K
¹ It is suggested t SANCO/10180/2	hat applicants adopt a similar approach to showing revisions and the sessing the port of the sessing the sessing the port of the sessing t	d version history as putlined in b b b b b b b b b b b b b b b b b b b

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Table of Contents

	Table of Contents	
		Page
CA 7	FATE AND BEHAVIOUR IN THE ENVIRONMENT	
CA 7 1	Fate and behaviour in soil	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
CA 7 1 1	Route of degradation in soil	10.
CA 7 1 1 1	Aerobic degradation	1%0
CA 7 1 1 2	Anaerobic degradation O	los also a,
CA 7 1 1 3	Soil photolysis	10
CA 7.1.1.3	Bata of degradation in soil	$\sqrt[n]{23}$
CA 7.1.2	Laboratory atudiog	29¥
CA 7.1.2.1	A archine does of the active the tensor of the continue of the	Q.I @n
CA 7.1.2.1.1	A line la	~~ 32
CA 7.1.2.1.2	Aerobic degradation of metabolites, breakdown anoteaction products	40 50
CA 7.1.2.1.3	Anaerobic degradation of the active substance	58
CA 7.1.2.1.4	Anaerobic degradation of metabolities, breakdown and reaction products	. 89
CA 7.1.2.2	Field studies	×. 60
CA 7.1.2.2.1	Soil dissipation studies	60
CA 7.1.2.2.2	Soil accumulation studies	88
CA 7.1.3	Adsorption and desorption on soil	93
CA 7.1.3.1	Adsorption and desorption	93
CA 7.1.3.1.1	Adsorption and desorption of the active substance	93
CA 7.1.3.1.2	Adsorption and desorption of metabolites, breakdown and reaction products	94
CA 7.1.3.2	Aged sorption	. 110
CA 7.1.4	Mobility in soil	. 113
CA 7.1.4.1	Column leaching studies.	. 113
CA 7.1.4.1.1	Column leaching of the active substance	. 113
CA 7 1 4 1 2	Copymn leaching of metabolites break down and reaction products	113
CA 7 1 4 2	Evsimeter studies	113
CA 7 1 4 3	Field Paching studies . O S	113
CA 7 2	Fater and sediment O	114
CA721	Route and rate at degradation in aquatic systems (chemical and photochemical	
	degradation a degradation an aquatic systems electrical and photochermean	11/
	Understation	. 11 4 11 <i>1</i>
CA 7.2.1.1	Direct phore and a production	115
CA 7.2.1.2	Instal photoched a degrada and the second se	. 113
CA 7.2.1.5	Bout of a real of hill a right down of hills and the real of the sector	. 11/
CA 7.2.2	Koute and rate of biological degradation on aquatic systems	. 118
CA 7.2.2.1 ¥	Ready biogegradebility.	. 118
CA 7.2.2.2	Aerobic mineralisation in surface water	. 118
CA 7.2.23	Water/sediment study	. 123
CA 7.2.2.4	Irraduated water/sediment study	. 136
CA 752.3	Degradation in the saturated zone	. 139
CA 7.3	Fate and behaviour infair	. 145
CA 7.3.1	Route and rate of degradation in air	. 145
CA 7.3.2	Transport dia air	. 145
CA 7.3.3	Local and global effects	. 145
CA 7.4	Befinition of the residue	. 146
CA 7, AM	Definition of the residue for risk assessment	. 146
CA 24.2	Demnition of the residue for monitoring	. 146
CĂ7.5	Monitoring data	. 146
Ŷ		

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

CA 7 FATE AND BEHAVIOUR IN THE ENVIRONMENT

As published in <u>Commission Directive 2008/44/EC of 04th April 2008</u> and with an Entry into Force (EIF) date of 01st August 2008, the fungicide Fluoxastrobin was first included in Annex I to Commission Directive 91/414/EEC.

Now, with the aim to achieve European Re-Approval under Regulation 1107,009, Bayer, CropScience (BCS) provides this 'Supplementary Dossier'. It contains only new data which were not submitted at the time of the Annex I inclusion of Huoxastrobin under Commission Directive 91/414/EEC and which were therefore not evaluated during the first Buropean review.

In addition to submitting the above mentioned Supplementary Dossier all studies relied upon under 91/414 and contained in the Draft Assessment Report and its Addenda are – for the convenience of the reviewers – included in what BCS calls 'Baseline Dossier' (Document K level only).

In order to ease the reviewers' orientation on 'old ortudie on the Baseline Dossier versus 'new' studies in the Supplementary Dossier, BCS has decided to apply the following basic principles:

- 1. Conversion of the Document K part of the old SU dossier structure into the new structure (acc. to Commission Regulations 283/2013 and 284/2013 and linking the old structure to the new structure according to the cross-walk tables provided in Guidance Document SANCO/10181/2013 Fev. 24 of 13th May 2013).
- 2. On a case-by-case basis and where aseful for the reader old studies from the Baseline Dossier are occasionally summarised on the Document M level of the Supplementary Dossier; the text of those summaries is formatted in gree font follows
- 3. For any referenced old study, its bibli graphic information (e.g. author, year, document number) is formatted in graphic font colours
- 4. For any new study, its bibliographic information and its free flow summary text and table content is formatted in standard black font colour.

Where applicable, the formatting rules above apply of all dossier elements (e.g. MCA, MCP, JCA etc.).

According to the guidance of EFSA on the "Submission of scientific peer-reviewed open literature for the approval of pesticide active substances under Regulation (EC) No 1107/2009" (EFSA Journal 2011; 9(2):2092), literature for the active substance and its metabolites needs to be presented, covering the last 10 sears prior to the submission of this Annex I renewal dossier. In relation to this section 7 no adequate scientific peer-reviewed open literature was identified which would need to be reported. There were no findings in the scientific peer-reviewed open literature for the active substance fluoxastrobin and its metabolites which might have a possible impact on an end-point or the risk assessments.

For substance codes, synonyms and abbre vations please refer to 'Document N3 - 'Substances and metabolites: structure, codes synonyms – Fluoxastrobin'.

Fluoxastrobin contains four ring moieties. The studies concerning the fate and behaviour of fluoxastrobin in the environment were conducted using three different radiolabel positions, [chlorophenyl-UL-⁴C], [pyrimidine-2-¹⁴C] and [methoxyiminotolyl-ring-UL-¹⁴C]fluoxastrobin, as well as unfabelled fluoxastrobin.

The radiolabel positions are sufficient to define the route of degradation of fluoxastrobin. The structure of fluoxastrobin and the positions of the different radiolabels are as follows:

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Labelling Strategy:

Fluoxastrobin exhibits a complex memory structure with 4 ring-systems in a row. In order to address all transformation products metabolites, the following labelling strategy was used:

Fluoxastrobin is stable due to hydrolysis. Therefore, the development and evaluation of pathways started with the aerobic soft metabolism studies. Both central ring systems (ring 2 and 3) were labelled in order to cover all possible metabolites.

In principle three different ways of formation of transformation products are possible:

a) Isomersation of the E/Z isomers and/or rearrangement (due to photolysis)

- (b) Oxidation/feduction/derivatisation without changing the core structure
- č) Geavage of the ring systems

Soil:

In soil metabolism under aerobic conditions the metabolites were formed due to modification of the dioxazine moiety forming HEC 5725-amide (M38) or due to the cleavage of ring 1 and formation of HEC 5725-deschlorophenyl (M48) and 2-chlorophenol (M82). 2-Chlorophenol was considered to be a well-known compound, which is well described in literature. Therefore, the chlorophenyl ring (ring 1) was not labelled.

The results and transformation of fluoxastrobin due to photolysis on soil surface is considered to not predictable. This was the reason to perform the study with both fore labels (ging 2 and 3) in order to cover all possible transformation products. Beside somerisation new metabolites were formed,

The anaerobic metabolism soil study did show similar pathwa@as under aerobic conditions and the ther degradation of to HEC 5725-carboxylic acid (4140) and HEC 5725-deschloropheter (M48).

The amount of unknown metabolites was below 5% in all studies with exception of soil photolysis (sum of several unknowns max. 8.2%, pone peak exceeded 45% AR (applied radioactivity)).

way and all possible main metabolites are covered using the Therefore, in soil the entire pathway and all possible mentioned label positions.

Water:

The aqueous studies were performed with one label (ring 3) with the exception of photolysis in buffer, where two different labelled test substances (ring and 1) were used. Fluoxastrobin was stable in the by drokens and the probic mineralization in surface water studies. Therefore one laber (core abel ring 3) was sufficient.

In aerobic water / sediment studies the metabolic pattern was in principle the same as in the soil degradation studies. Metabolites were formed due to degradation of the dioxazine moiety (ring 4) (formation of HEC 5725-amide (M39) and HEC 5725-carboxylic acid (M40)) and cleavage of the chlorophenyl ring (ing 1) resulting in formation of HEC 5725-des-chlorophenyl (M48). The chlorophenyl ring was not abelled separately because 2-chlorophenol (M82) was considered to be a well-known compound. The unknown metabolites were at maximum 3.1% AR.

In the anaerobic water sediment study metabolites formed from the cleavage of the dioxazine ring (ring 4) (HEO5725@mide M38) and MEC 5725-carboxylic acid (M40)) were observed, only. The amount of unidentified metabolics did pot exceed 2.5% AR.

In case of aqueous protolysis in sterile Kuffer Solution two labels were used in order to cover all possible metabolites. Besides 2-isomer, HEC 5725-oxazepine (M36) and HEC5725-phenoxyaminopyrimidine (M56), a multitude of unknown compounds was formed, but none of the unidentified minor metabolites exceeded 5% ARC

The natural water photod sis (itradiated water/sediment) is regarded as supportive information. No degradation or transformation was observed beside the isomerisation. The unknown metabolites did not exceed 5.5% of AR.

Therefore in water and water/sediment the entire pathway and all possible main metabolites are covered asing the mentioned label positions.

The results of the studies are summarized in the following sections CA 7.1 to CA 7.5.

The chemical structure of fluoxastrobin contains an oxime ether moiety. Due to the substitution pattern of that double bond *E*- and *Z*-isomers can be formed. The common name fluoxastrobin denotes the *E*-isomer. The technical grade active substance consists of minimum 96% of the *E*-isomer, whereas the *Z*-isomer is an impurity in the technical material with a specification limit of 2 mg/kg. The *Z*-isomer is biologically inactive in comparison to the *E*-isomer. Isomerization of the double bond is a photoreaction, i.e. isomerization of the double bond is only possible under the influence of light. This reaction was shown to be reversible. The transformation will lead to an equilibrium state in which the *E*-isomer is the more stable and the energebically preferred isomer (ratio in aqueous solution about 10V = E/Z). Therefore, the sum of *E*- and *Z*-isomer (fluoxastrobin E+Z) is used for calculations as worst case assumption.

In the laboratory studies conducted under dark conditions with radiolabeled test substance the amount of Z-isomer was about 2 - 3% and the ratio of E/Z-isomer and did not change significantly in the course of the incubation, indicating a similar behaviour in the environment for both isomers.

Under irradiated conditions in the laboratory (soil and aqueous photolysis) the Z-some is formed with the maximum amount 22%. Under more realistic outdoor conditions (tenestrial field, dissipation studies) a maximum of 12% is formed. The behaviour of the mactive Z-isomer in the environment is more favourable than the E-isomer because of comparable degradation rate and better sorption to soil.

In addition, soil degradation and adsorption produces were performed with the radiolabelled and unlabelled major degradation produces HEC 5725 carboxylic acid (M40) and HEC 5725-*E*-deschlorophenyl (M48-*E*). In case of 2-chlorophenol (M82) the adsorption was investigated with the ULphenyl label. The degradation behaviour of the potentially formed 2-chlorophenol is known from literature and was addressed by worst case assumptions

Page 9 of 146 2016-03-10

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

In original reports study authors may have used different names or codes for degradation products of fluoxastrobin. In this sumprary, a single name of a single code is used for each degradation product. A full list containing structural, formula, various names, short forms, codes and occurrences of degradation products is provided in Pocument N3.

CA 7.1 Fate and behaviour in soil

Fluxastrobin (E) is well degraded in soil to the major degradation products carbon dioxide, HEC 5725-carbox fic acid (M40), HEC 5725-E-des-chlorophenyl (M48-E) and 2-chlorophenol (M82), and non-extractable residues. In presence of light, the initial isomerisation of fluxastrobin to fluxastrobin-Z-isomer is observed without formation of major degradation products. No isomerisation was observed in other laboratory studies under dark conditions. Under typical conditions in the environment the degradation of fluxastrobin in soil is driven by microbial degradation and

photodegradation plays only a minor role in the overall fate of fluoxastrobin. More details for the route and rates of degradation of fluoxastrobin and its major degradation products in soil are give in section CA 7.1.1 and section CA 7.1.2, respectively.

CA 7.1.1 Route of degradation in soil

The route of degradation of fluoxastrobin in soil was studied using two different radiolabel positions ring 2- and ring 3-label. The studies have been performed in a number of soils in the Jaboratory. The maximum occurrences of degradation products in percentage of applied radioactivity 1% ARI are given as means of duplicates and may slightly differ from the Lise of Endpoints (SANCO/3991/07 final, 2012).

CA 7.1.1.1 Aerobic degradation evaluated during the Annex I inclusion using two radio abel positions, ring 2- and ring Slabel and was accepted by the European Commission (SANCO/3921/07-final 2012) Two studies are included in the baseline dossier. Summaries of these two studies were included in this supplementary dossier, since they are used for the risk assessment

	Â	V &	Ô	ð	- A	,O ⁻	<u> </u>	Û.	°	
Author(s)	<u></u>	, K	Ĩ,		Vear		Docum	ent No	1	
			کار ا	0	2001		M-0913	500-0121		
			<u> </u>	10	2001	Ś	M-0915	507 01-1		
	3 N	(((()	A 7	n n	"					

No additional aerobic soil degradation studies are submitted within this supplementary dossier for the fluoxastrobin renewat of approval

001; 🔊 - 091500-01-1 **Report:** CA 7411/01 ic degration @ [mettoxyinppotoly] mg-UL Title: -14C]HEC5725 in soil Report No 🔆 🖗 Document No.: Guideline(s): Paragraph aures March 1995 Guideline deviation(s); **GLP/GEP:**

Ring 3 Kelled fluoxestrobin as added is aceto arrive to stored soil (100 g dry weight equivalent in each subsample, 2 min sieved) of XXa soil, a sandy loam soil from Germany (pH 7.0 in water, 1.8% (c) at a target concontration of 0.265 mg a.s./kg soil (representing a single application of the foliar EC product (the paximum recommended rate of 200 g/ha). It was noted that soil samples were taken from the field on 3 December 1997. Before the start of the study on 19 January 1998 the coll was air dried so that it could be sieved to 2 mm and then the soil was stored at 5 °C until the start of the experiment. Flasks containing the treated soil were fitted with traps for CO₂ and organic volatiles (soda time trap and polyurethane foam plug respectively), with air exchange, then is cubated at 25% C in the dark for up to 120 days with soil maintained at 75% of 1/3 bar moisture concent. The microbial activity of untreated soil was initially 385 mg microbial C/kg soil dry weight and 345 ofter 120 days whilst treated soils was 303 after 120 days indicating that the soil systems were biologically active during the period of the test.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

At the intervals shown in Table 7.1.1.1- 1, radioactivity from duplicate soil samples were extracted with acetonitrile (organic extract) before hot extraction by boiling with methanol (hot extract). Further exhaustive extraction (hot extraction with acidified methanol) was undertaken. The remaining radioactivity in the soil was determined by combustion. Samples were analysed by TLC. The dentity of the main metabolite HEC 5725-*E*-des-chlorophenyl (*M48*) was confirmed by LCMS and LC-MS/MS. Radioactivity was determined in extracted liquid samples using LSC.

The limit of quantification of a single component is the extract was 0.01% of the radioactivity corresponding to approximately 0.26 µg flux astrobin equivalents/kg with 3%

¹⁴CO₂ was quantified by means of LSC measurements. The powurethane plug used to trap other volatiles was extracted with ethyl acetate and a aliquot of the extent was used for radioact City determination using LSC. Solid samples i.e. filter papers and Soil were conducted to determine their radioactive content.

Recoveries and characterisation of radioadrivity are shown in Sable 7.1.1.1-0

 Table 7.1.1.1-1:
 Distribution of radio fivity to llowing the actobic soil degradation study using the actobic solution study using the actobic s

	moisture con		Ó Ó	a di seconda di second	0 _0	Č V	
Soil	DAT		Soil	Ű,		acties &	Total
Texture	×	Extractable	> NER ^b	[™] Tot	CO ₂	OtQr	recovery
(USDA)	\$	residues ^{a)}		r son		volatiles	
	0 %	95.5 Q	\$\$ 3.1 <i>k</i>	\$98.6 ≪	n n	n.m.	98.6
sandy loam		\$ ³ 94 6 9	0 2 %	0°96.	< 0.1	~ 0.1	97.0
		2.4	A A	989	× 0.1	< 0.1	98.5
		\$\$8.7	~8.2	@ 6.9	0,1	< 0.1	97.0
	2 14 O	78.0	18.2	~ ^{96.7}		< 0.1	97.0
		* 54A	43,8	97	×1.3	< 0.1	99.2
Č		33.6 🛛	\$ 0.0	, <u>6.6</u>	Ø 3.8	< 0.1	97.3
, Ô,	98	Q 23.9A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	@ ^{93.2}	6.3	< 0.1	99.5
	120	C 21	71.0	92.1	7.2	< 0.1	99.3
DAT: Dows after 1	treatmen@n m_=@	t measured	_^ _ O′	straine state stat			

a) extracted: organic extract + to extract O

The amount offluox Qurobic (sum of flu Qastrol n-*E*- and *Z*-isomers) decreased from 93.6% AR on DAT-0 to 7.1% AR at the find of the involution of the characterisation of extractable radioactivity is summarized in Table 7.1.1 b 2. Fruir up from the characterisation of extractable radioactivity is extracted in Table 7.1.1 b 2. Fruir up from the characterisation of extractable radioactivity is metabolities 2, 3, 4 and 5). None of these metabolities exceeded 4.1% AR (using extracted values). Metabolite 4 was identified as HE (5725/2-4-lb croxyphenyl using data from another soil metabolism study No HEC 5725-carboxylic acid (*PQ0*) could be detected in this aerobic study.

The results for the distribution of the active substance and the degradation products are summarized in Table 7.1.1 4° 2. 1° 4° 4°

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Table 7.1.1.1-2	2: Distribution of flu fluoxastrobin to	oxastrobin and degradsoil(% A)	dation products after appl R, mean of two values)	lication of
DAT	fluoxastrobin (E)	HEC 5725-Z-isomer	HEC 5725- <i>E</i> -des- chlorophenyl (<i>M48</i> -Q	Unknown Tinor metab@ites ^{a)}
0	91.5	2.1	0.1	0.8
1	87.6	2.1	1.1	\$2.4
3	82.6	2.1	3.9 🖉 🎽	× 4.2 ×
7	73.0	1.9	9 9 6 Y	
14	55.6	1.8	100	V 3.6 V A
30	27.0	1.2	23.1	Q 2.3 0
62	10.6	0.8	Q 20.4 °	L 1.50
98	6.8	0.6	<u>~ 1404 ~ ~</u>	0° 00.3 00'
120	6.6	0,5 0,0	<u></u>	1.1
DAT: Days after a) sum of four u Fluoxastrobin Model Maker	r treatment inknown minor metabolito is calculated to hav assuming simple firs	es, none exceeded 4% of t e a 5750 of 26.8 3795 t oper kit sites ($R = 0$	s and a D ⁴ ₀ of ⁴ ₀ day	using the pastram
Report: Title:	KCA 7.1.1 Aerobie Veg	7/02 R; radation are metal wism 2574C]HEC5725 m thre	; 2001; MG991507 Semethoxyiminorolyl-Sy soils	G01-1 g-UL-14C]- and
Report No.: Document No.: Guideline(s):	MR-231/04 MG 091507 4US - Get - EU tion(s): Got sp Chied	H-1, Sublivision N, Pa EPA, Sublivision N, Pa Oan BB Q, Part O, 4- 95/36/EC ane dding Q FAC Aurop & rocedures,	ræðraph 1 2-1 5 414/EØC 9 Morch 195	
The aerobic d	egradiation of flue as 43 a s Dabelled flue astrob	trobin was investigate it and it is the trobin was investigate it (i.e. the the trobin yim so	dor three soils (a silt loam according tolyl-ring-UL- ¹⁴ C] label)	a loamy sand, g to USDA textural was tested with the

class). Ring Stabelled fluceastrobin (i.e. fmeth Xyimisotolyl-ring-UL-¹⁴C] label) was tested with the 3 different foils whilst ring 2 labelled the exact posterior (i.e. [pyrimidine-2-¹⁴C] label) was tested in the soil and solution of the experiment and air dried where necessary and sieved to particle size $f \le 2$ from and stored at ambient temperature. It is stated that the soil was treated at a target rate of 267 µg/100 g dry soil using active substance dissolved in acetonitrile.

A soil mosture for responding to 75% of the 1/3 bar moisture for soil and 40% of the maximum water holding expacity for soils and and and A II was used. The flasks containing bulg do soil equivalent were closed with a trap attachment which was permeable for oxagen and able to abserb developing CO_2 and other volatile metabolites (soda lime trap to collect CO_2 and object or 365 days.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

soil stored under The metabolism experiment used ring 3 labelled fluoxastrobin and similar conditions to the main experiment. The soil was extracted with acetonitrile. The extracts gere partitioned sequentially with ethyl acetate and dichloromethane. The extraction efficiency was confirmed by LS measurements. The extracted compounds were separated by T.C and purify using HPLC fractionation. The volume and amount of radioactivity was determined in the purified frac and the structures of the fractions were elucidated using NMR, LC-MS and L -MS/MS

The other soil samples were extracted first with water then with acetositrile (organic extract were bulked for analysis. An aliquot of extracted sold sample was additional Accelerated Solvent Extraction (ASE) or hot extracts. The resident radioactively determined by combustion. Organic and ASE extracts were analy of by

The polyurethane plug was extracted with ethyl acetate and radioactivity content. ¹⁴CO₂ was determined a venze acidusing determine ¥liqu∞ was> acidusing the

The limit of quantification of a single component coveres and chreater approximately 0.2 µg fluoxastrobin suivalents/k the radioactivity are shown in Table 7.1.1Q-4 to Tab

Table	7.1.1.	1-3:	Soil	chara	cteristic
1			~ ~ ~ ~		<i>a</i> ,

	Ŵ	\sim	·U 2.		-O'	9	
Soil characteristics		,	,02	~	Ô	8	A II,
	A 0	🗸 Geotgia	, U S X	0	4	a, 🔊	& Germany
۶					ermany	Ş	
Textural class [USDA]	Į,	L og my sa		Silt	¥ 4	٥ ٥	Ont loam
pH in:	° ,		12	Z.		Ļ	¥
Water	~ .Ó	6.1 ~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 ⁷⁸ 0	.(a, [°]	8.1
CaCl ₂	Ý, í		\searrow	7.2	<u> </u>	¥	7.3
Organic carbon (%)	. %	-~ ~		2,62	S V	v	0.86
Organic matter (%)	<u> </u>	9.43 📡	, Ô	491 ĉ	<u> </u>		1.48
Cation exchange capacity	, î	4.29	S I	0 ²⁵			8
(meq/100 soil)				- C			
Water Kording capacity	, O	-~~~~~	° 0°	63.40			36.4
(g water to 100g dry soll)	L A	<u> </u>	L.Y	s i	1		
1/3 bar moisture	í _O r	7.68	, The second sec	P. Se			-
(g water to 100g day soil)		<u>_0```</u>		- Ç			
Particle density@g/ml) O*	Õ .	(939^{a}) O	<u> </u>	2.00			2.55
Microbial biomass	\mathbb{Q}		Q I	ð			
(mg microbial C/kg dry soil	j J		g. ki				
Main eggeriment:	Ą,	le l					
day 0 without a.s. with	a ₄ s.	88 / n.n		687 / n.m	٠		237 / n.m.
day 120 without ws. / w	Sava.s.	n.m. n.m.	S.	567 / 565			238 / 234
day 182 without a.s. / *	ith a.so	ca. 60° /cas	$O(4^{0})$	n.m. / n.m	1.		n.m. / n.m.
day 365 without a.s. / w	1th and	~~ ¹⁹ Q	/	n.m. / n.m	1.		n.m. / n.m.
Additional experiment:							
day 0 webout as, 7 with	S.S. 🖌	24 (o m.		7/8/n.m	•		
day 1 withour a.s. /	ith a.s	n.m. / n.m.		/29/699			
day with the as / w	1th S.	50/41		n.m. / n.m	1.		
day 365 w@sout as / w	1to a.s.	33/29		n.m. / n.m	1.		
n.m. Snot measured "O"	Y Y						

a) Oulk density

b) data was the interpreted with caution because the soil moisture was low

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Bayer CropScience

Soil	DAT		Soil		Volati	les	Mategal	
Texture		Extractable	NER ^{b)}	Total	¹⁴ CO ₂	Other	balance d	ð,
(USDA)		residues ^{a)}		soil		volatiles		
	0	97.0	3.0	100.0	n.m. 🔗	n.m.	×100.0	
loamy sand	4	97.7	3.5	101.2	< 0,1	< 0.1	V 1602	Ô
-	8	99.7	4.5	104.3	< 50	< 0.1	•1 9 4.3 🗶	,
(low microbial	16	95.2	5.1	Q100.3	Ø.1	$< \beta_{1}$	100.4	"O
biomass)	30	93.6	8.5	♥ 102.1	Q 0.6	. 0.1	S 102 S	ô
	59	89.5	9.8	99.3	L 0.5	0.1 4		¥
	91	85.5	13.4	98.9	v 67 6	$\sqrt{0} < 0$	99.5	Í
	120	84.1	1664	97.5	<u></u> 01.0 ×	< 0 <u>,</u> 1	\$ 98.50	
	182	80.8	(18.1 G	• 985	× 1.6 °	⊘ •0.1 ‰	100,3	
	270	76.5	O [¥] 20.3@ [¥]	\$6.8	<u>Y 26</u>	×< 0.1	09.1	
	365	74.5	24,5	@ 99.0 Q	9.1	<00	02.0×	
	0	97.9 🔊	21 A	Y 10000	An.m.	n,m.	\$ 100	
silt	4	92.	× 5.1 0	.9462	017	$\mathcal{S}^{\mathbf{X}}0.1$	/ <u>94</u> 33	
	8	869 Q	Y 11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		< 0.0	98.2	
	16	22.6	240	\$ 96.6	ST.1 S		97.8	
	30	Q52.5	A1.0 C	<u>y 9359°</u>	0 3.0	& 0.1 V	y 96.4	
	59		° 54.8 5	Ø.0	6.Q*	<u> </u>	92.8	
	91	26.3	255.0°	***1.3		- <00	91.3	
	120		J. 10		×12.5	~~~). l	90.3	
A II	0° y «	- 97.00	\$\$3.0	100.0	n.m.v	n.m.	100.0	
silt loam	4	<u> 985 (</u>	3.6	<u>08.5</u>	< 0.1	> < 0.1	98.5	
	\$8 °0	<u>3.6</u>	S.	£, 97.5 ♥	0.1 4	< 0.1	97.6	
		6,89.04	8.7	950) 1	0.3	< 0.1	96.0	
Ć		× 82.2°	¥ 12.9~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		< 0.1	95.9	
		0(7.4)	24.8	89.2	<u>29.3</u>	< 0.1	91.5	
	120 V	30.7 Y		<u> </u>	\$ 5.0	< 0.1	92.2	
DAT: Days Mer trea	120	Ameasur O			- <u>3.9</u>	< 0.1	91.1	l
a) extraced: organic	extra g + hot ô	Fract		v, o	<i>¥</i>			
b) not extracted: soil	l+fftbr		<u></u>	S A				
	J . A		NO O	×				
(S. T. X		, C				
				<i>°</i>				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				)ř				
Å		J A 1						
		کي						
. K	X A							
λy"		× Q	õ,					
(T)	, ^N		5					
, A	A		,					
J.								
	Ϋ́ος	S Y						
.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		)						
G. S. Q	"Ø \$							
	-							
Ũ								

Table 7.1.1.1- 4:	Radioactivity following	aerobic soil	degradation	of ring 3	labelled fluoxas	trobin (% AR)	
						<u> </u>	

### Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

**Bayer CropScience** 

Soil	DAT		Soil		Vols	atiles	Mater	1 🔊
Texture	DITT	Extractable	NER ^{b)}	Total	$^{14}CO_2$	Other	balaxce	
(USDA)		residues ^{a)}		soil		Tolatiles		•
	0	98.9	1.3	100.0	n.m.	n.m.	×100.00	
loamv sand	7	98.7	3.6	102.3	0.2 «	< 0.1	1000	<i>R</i> a
	30	92.5	6.6	.99.1	1.30	< 0.1%	<u>∘1</u> 00.4 ×	Ĵ
(low microbial	91	85.0	10.7	95.7	á,s	< 0,10	<u>∽99.2 6</u> \$	0
biomass)	120	85.3	11.6	96.9	Q4.0	< @.1	\$ 100\$	, s
,	179	73.7	18.4	92.1	6.1	×0.1 Q	. 962	$\mathcal{K}^{O}$
	270	67.0	23.6 4	90.6	Q 9,0°	4 < 0.1	<b>\$</b> 9.6	Þ"
	365	66.5	23050	90.0	<b>Ø</b> .4	& <v@< td=""><td>\$ 101.4</td><td></td></v@<>	\$ 101.4	
	0	98.9	¢1.2	• 100 <b>9</b>	n.m.	m. 💊	100,9	
silt	7	89.8	08.7	28.5	Y 1,70	× 0.1	\$00.1	]
	30	58.1	<u>3</u> 24.	Q2.2 _Q	16.2	$\sim < 0 $	Ø98.4 ×	1
	91	28.2 🕺	34.8	63.	A4.1. O	$\leq 0.1$	S 97 S	
	120	24.3	_°≈\$5.5 .0	59%	0×37.7×	\$ 0.1 ×	249.5	
DAT: Das after treatm	nent; n.m. $= 1$	not measur					\$-	
a) extracted: organic	extract + hot	extract	di se			S Q	~?	
b) not extracted: soil	+ filter	Q' b	Ô	$\mathcal{F}$		<u></u>	Y	
			O'Ş	, ° , ° ,	o ^y o	~~ ~		
	\$		S .	e e e e e e e e e e e e e e e e e e e		) Oʻ		
	Ča			O A		2 _Q		
	°∼y*	4 Q	A A		w zg			
	×.,	à à	O N			, 63 [°]		
	S.	di se a	, 4	N O		, , ,		
,		. 8 . 9		, C		, ,		
· ^	°, °		$\sim$					
C . C	»	× & .						
ð	S.		1.0		Ø			
Ô	·0· ~	\$ A		ð.	K)			
	Ř			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*0- *			
A Start	. V .	6 ⁶ 1	~ . Ó*	w .o	•			
·		× × ô	Ý LÌ	& Š ⁱ				
	°₹ 4		NO C	) i 😞 🛛				
Q	Ő.	S D	× A	-G				
Ø			0′.0′	<i>O</i> [°]				
. ~ Q				ð.				
A	<u>ن</u>	J F		l l				
le la		Q.						
ý,	S A		* *					
~~~	v Ş'	N Q	S,					
	"0"		Å.					
L.	A ~ (Ŭ ST	Q'					
°,		, » Q						
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	. 0	Õ						
N R	AN	N. A.						
	à' ì							
A A								
¢O ^v								
$\bigcirc$								

Table 7.1.1.1-5: Radioactivity following aerobic soil degradation of ring 2 labelled fluoxastrobin (% AR)

R

### Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Table 7.1.1.1- 6:	Distribution of fluoxastrobin and degradation products after application of ring 3	)
	labelled fluoxastrobin (% AR)	_

	DAT	fluoxastrobin	HEC 5725-	HEC 5725-E-	HEC 5725-	HEC 5725-E-	Unknown 4
exture		(E)	Z-isomer	hydroxyphenyl	amide	Ödes-	minor 🔈
USDA)				(М02-Е)	( <i>M38</i> )	cborophenyl	meraboli (cs ² )
						(M48-E)	
	0	94.3	2.2	n.d.	n.d.	0.1 °C	. QI. K
oamy sand	4	90.0	2.2	2.0	0.1	2.5 🔊	~0.1 \$
	8	88.8	2.5	3.5	Q.	3.8	Q 0.30
low microbial	16	81.2	2.3	\$3.9	9.4	k c	
iomass)	30	75.4	3.3	4.0	Q 0.4 °	L.9.1 J.	0.3 ,0
	59	69.7	1.9	<b>O</b> 4.5 📉	0.6	Q11,60	© 0.5 0
	91	64.3	1.5	¥ .0 .0	<u>)</u> 0%	or 13	K 0,50
	120	60.1	1.8	Q 4.4 X	L 0.8	Q4.2	1.2
	182	53.6	1.4	× 4.30	Ø 1.3 Ø	16.0	2.0 L°
	270	46.1	1.5		× <u>14</u> 3	A 18.9	& 2.1.V
	365	42.7	¥.5 ,	<u>4.0</u>	%.Ž °≈	× k× «	, 2,8°
	0	94.1	Q, 2.2, 4	\$ 0.1 ×	x < 0.1 ×	Ø.1 - S	Q.d.
ilt	4	72.6		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	C NO	S 13.16	<b>Q</b> 0.2
	8	59.2 Q	1.8	<u>~</u> 3.1 ~	64	<u>0</u> 187 v	0.6
	16	35.6 🍙	×1.7 °	~ 2.0 Ø	A1.0 0	Q.5 4	0.8
	30	14.5	× 1.6	1.25	0× 0.8	30.2	2.9
	59	5.6 🖇		< h5 ~		200	2.4
	91	<b>9</b> .6 O	20.6	0.3	J.2 ~	× ¥6,2	2.5
	120	3.4	0.5	0.4°	g 0.3 🖋	0.7	2.4
A II	0	× 93	<b>2</b> .2	n d (	n.ex	`∕≫ n.d.	n.d.
ilt loam	4	\$5.5		× \$.0	0.3	4.2	0.2
		080.1	≪2.2 ~		×0.8	6.3	0.3
	<b>Q</b> ₆	≈ 71.4~	& 1.9 Y	2.6~	0.9KJ	10.5	0.4
ð	30	<u> 5408 (</u>			63	15.0	1.6
Ô	59'0	<u>39.0 G</u>	A 1.2 X	A.4	×0.4	23.6	0.5
	91	23.5	0.9	0.2	~0.4	28.4	1.2
<u> </u>	120	0 1465	\$ 0.2	0° 0%	<b>O</b> 0.5	25.0	1.6
DAT: Days after tre	eatmen			, x s'	1		
) - soil	S.	m of three unknow	wn mitsor metabo	olites, Oone exceede	ed 2.1% AR	1 1 1 0 0 ( )	
- SOILS	and	A	ll: sum of five ur	iknown min er meta	abolites, none	exceeded 1.3% A	AR
	Ċ	,° , ° , ° ,	y ~ ``*	×			
4							
A A				, K			
L.							
~		X A . W		Y			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		A A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
.($\mathcal{U}^{\mathbb{N}}$. A	Q A				
Ś	, é						
	$\langle \rangle$						
	.~		. 🖌				
	Ň						
	Ŷ						
	Ĵ Ĵ	A. 2 [°]					
	Ŭ,						

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

 Table 7.1.1.1-7:
 Distribution of fluoxastrobin and degradation products after application of ring 2
 labelled fluoxastrobin (% AR)

1 abic 7.1.1.1	- / •	labelled fluoxas	trobin (% AR)	ind degradation j	fiouucis alter	appneation		ð
Soil	DAT	fluoxastrobin	HEC 5725-	HEC 5725-E-	HEC 5725-	HEC 5725-	Unknown	de la compañía de la comp
Texture		(E)	Z-isomer	hydroxyphenyl	amide (M38)	@-des-	whor A	2
(USDA)				(<i>M02-E</i>)		cloorophenyl	merabolites"	
					4	(M48-E)		R.
	0	94.0	2.8	0.3	0.8	0.3) 🦓 . 🧹	2
loamy sand	7	90.1	2.7	1.7 🖒	1.1	2.3 🔊	And. S	a
	30	80.4	2.2	1.4	1,6	5.6	Q 0.4	Ś
	91	70.0	2.1	15	Qĩ	× v	5° 95° 9	0
	120	68.8	2.2	1.9	Q ^{1.0} .	20.6	° (0.8 , C	,¥
	179	58.3	1.9	0° 1.2	1.03	Q 8.7 O	© 0.6 or	
	270	51.0	2.2	1.0	P (99)	r 82	K 0.8S	
	365	49.3	2.2		J.9 L	Q.3	1.0	
	0	93.3	2.6	× 1.1 Ú	0.9	0.6	A.d.	
silt	7	59.7	2.3	2.8	× 1.2	\$ 21.3	& 0.9 V	
	30	16.7	1		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	P 322 4	, 2,	
	91	6.2	J.8 . &	×0.3 ×	× 0.4 ×	Ø3.6 Q	Q .0	
	120	4.7	OV.7 ×	\$ 0.4	0 0,35	\$13.4	م 2.3	
DAT: Dava of	tor trac	tracout	~ "0"	/	Y OF		Kľ	

DAT: Days after treatment a) sum of two unknown minor metabolites, nor@exceed@ 1.3% @R

Degradation kinetics were coculated using Model Maker assuming sample first order kinetics. The results are summarized in **Jable** J.1.1.8. It ic noted that all studies were under aken at 20°C with soil at 75% 1/3 bar moisture content and the other two sails at 20% maximum water holding capacity.

Table 7.1.1.1- 8:	Derada	of fluoxastr	obin invaerol	ic soil sent	oles at 20°C

					// //				
			\bigcirc		Cring X	abel (ring 2-	label
			loanty sa	und 🌧	Silt	- Or	@silt logm	loamy sand	silt
Rate constant	, K (1/d)	<u> </u>	0024	54	0.057	Ş	0.0147	0.00195	0.0567
\mathbb{R}^2	°/		°∼ 0.926) (S 0.994	, La	0.999	0.935	0.986
DT ₅₀ (days)	S.	Ì	°∀ 28	°~	2.0	0×	47.1	356	12.2
DT ₉₀ (days)	<i>b</i>	Ą	8	Ś	\$40.0		O 156	1180	40.6
	0	S.	, D	Ĉ		Y .			

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

CA 7.1.1.2 Anaerobic degradation

Due to the proposed use pattern of fluoxastrobin as a fungicide applied to cereals and vegetables, an anaerobic soil degradation study was not considered to be required. Therefore, no studies on the routed and rate of degradation of fluoxastrobin in soil under anaerobic conditions were submitted for the Annex I inclusion. However, an anaerobic soil metabolism and degradation study of fluoxastrobin was performed in 2014 and is submitted within this supplementary dossier for the fluoxastrobin prewal approval.

Report:	KCA 7.1.1.2/01 ; 2014; M 86558-01-1 × ×
Title:	[Methoxyiminotolyl-ring-UL-146] fluoxastrobing Anaerobic degradation metal@lism
	in soil
Report No.:	EnSa-14-0419 \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}
Document No .:	M-486558-01-1
Guideline(s):	OECD Test Guideline No. 307, Serobic and Anaerobic Transformation in Soil. (2002)
Guideline deviation(s):	not specified
GLP/GEP:	yes in the second secon
Justification:	New data according to QEVD 307

Executive Summary

The route and rate of degradation of ring 3 labelled thoxastrobin were studied irone soil at 20 ± 2 °C in the dark in the laboratory under an aerobic conditions for 120 days following an aerobic incubation phase of 31 days (total study duration of 10) days.

	<u></u>	A A		y v	
Soil	Source		Texture (USDA)	pH ^{a)}	OC [%]
		, Germany 🔬	🖓 silt l@am 🖇	6.3	3.1

a) pH value was derived from aqueous 01 M CaCl2 suspension

A study application rate of 533 μ g/kg soil dry werght was applied based on a maximum single field application rate of flux astrobin of 200 g/ha.

The mean material balance was 98.2% AR (range from 960 to 100,4% AR).

The maximum amount of carbon dioxide formed at the end of the aerobic incubation phase was 1.6% AR and remained at the same level during the anaerobic incubation phase. Formation of volatile organic compounds (XOC) during the aerobic and anaerobic incubation phase was insignificant as demonstrated by values of $\le 0.1\%$ AR at all sampling intervals.

Extractable residues decreased from 99.7% AR at DAT 0 to 68.5% AR at DASF-120.

Non-extractable residues (NER) (increased during the aerobic incubation phase from DAT-0 to DAT-31 from 0.8 to 20.1% AR. During the following anaerobic incubation phase, NER further increased to 27.8% AR at DASF-93 and slightly declined to 26.1% AR until DASF-120.

Within the aerobic incubation phase, the amount of fluoxastrobin decreased from DAT-0 to DAT-31 from 99 200 56 % AR. During the following anaerobic incubation phase, the amount of fluoxastrobin further decreased to 32,9% AR at DASF-120.

Two degradation products were identified with the following maximum occurrences: HEC 5725-deschlorophonyl with 15.0% AR (aerobic, DAT-31) and 13.6% AR (anaerobic, DASF-7 and DASF-16) as well as HEC 5725-carboxylic acid with 16.9% AR (anaerobic, DASF-120) and 1.0% AR (aerobic, DAT-31). The total unidentified residues amounted to a maximum of 3.9% AR and no single component exceeded 1.5% AR at any sampling interval.

[methoxyiminotolyl-ring-U	JL- ¹⁴ C]fluoxastrobin 🔬
Sample ID:	KML 9497
Specific Activity:	3.7 MBq/mg (100 µ@/mg)
Radiochemical Purity:	≥99%
Chemical Purity:	>98%

Activity: 2.7 MBc/mg (100 gC/mg)
 Activity:

Table 7.1.1.2- 1:	Physico-chemical	properties of	test soil

Parameter		Results / Units
Soil Designation		465
Geographic Location		
City		
State		North-Rhine Westphalia
Country	۵.	Germany No. Start
GPS Coordinates		N 51 64.013' E 007° 06 305' 0
Soil Series	Ŷ	no information available 3
Textural Class (USDA)	, T	sitt loam
Sand	[50 µm – 2 mm]	24% 6° 4 4
Silt	$[2 \ \mu m - 50 \ \mu m]$	
Clay	[< 2 μm]	
pH (soil/CaCl ₂ 1/2)		
pH (soil/water 1/1)		
pH (saturated paste)		⁸ 6.5 Д 5 ⁸ Д 6 ⁸ 0 ¹
pH (soil/1 N KCl)		
Organic Carbon (combust	ion) Q (4 2 2	BIW & Q AS O
Organic Matter ^{a)}		\$5.3% 5 5 6
Cation Exchange Capacity	y [meq/10@g]	
Maximum Water Holding	Capacity [g H20 ad 100 g soil W]	
maximum		66 .7 C C
at 0.1 bar (pF 2.0)		- 36.7 <u>%</u> 0
Bulk Density (disturbed)	[g@gm ³] O , ~	0.99
Microbial biomass (aerob	id incubation phase)	
[mg microbial carbon per	kg sol DW W	
DAT-3 (BIO- / BIO+		1356/1022
DAT-31 (BIO-)		1666 _{Q1}
Microbial Viability (anaer	obic incubation phase) [CFU/g/soil DW] ^b	
DASF-120 (BOO-)		27000
a) % organic matter = % org	anic carbon x 1.724 🔧 🖉 🖉	
b) BIO- samples were le	ft untreated, BIO+ samples were applied w	with solvent of application solution (400 μ L
CELL: an only forming units		Ň
DAT: days after treatment		\mathbb{Y}
DASF: days after soil goodi		
DW: dry weight		
GPS: global positioning sol	em Si di in si si si	

USDA: United States Department of

B. STEDY DESIGN
I. Experimental Conditions
The static test system for degradation of moder anaerobic conditions consisted of Erlenmeyer glass flasks (volume e.g. 300 mJ. For the aerobic incubation phase, each flask was fitted with a trap attachment permeable for oxygen) containing soda lime for absorption of carbon dioxide and a polyurethane (PLS foant plug for adsorption of volatile organic compounds (VOC). For the anaerobic incubation phase, the trap attachments were replaced by sealable two-valve glass stoppers connected with au-tight plastic gas sampling bags for the collection of volatiles.

à Ô For preparation of the test systems, 100 g dry weight equivalents of the sieved soil were weighed into each flask. Soil moisture was adjusted to $50 \pm 5\%$ of the maximum water holding capacity (MWHC) for the individual test systems by addition of de-ionized water. The flasks were then fitted with trap attachments and equilibrated to study conditions for 5 days prior to application.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

A study application rate of 533 μ g/kg soil dry weight was applied based on a maximum single field \sim application rate of fluoxastrobin of 200 g/ha.

The test item was applied dropwise onto the soil surface of the respective set systems in 400 μ L methanol/water 1/1 (v/v) using a syringe. After application, the test vessels (except DAT 0 samples) were fitted with trap attachments.

The test systems were incubated in the dark for 3 Mays at $20 \div 2 \circ \text{C}$ and a soil poisture $55 \pm 5\%$ MWHC in a walk-in climatic chamber.

31 days after treatment (DAT-31 corresponding to DASF-0), the soft was flooted with 150 mL oxygen-depleted water and set under an atmosphere of nitrogen. The trap attachments were replaced by air-tight plastic gas sampling bags. To insure maintenance of oxygen-free conditions in the anaerobic incubation phase, the test systems were placed in a nitrogen-flooded box within the walkein climatic chamber. The test systems were incubated in the dark under anaerobic conditions for 120 days at 20 ± 2 °C.

2. Sampling

Ten sampling intervals were distributed over the entire incubation period of 394 days (30 days under aerobic conditions and 364 days under anaerobic conditions). Duplicate samples were processed and analysed 0, 10, 17 and 31 days after treatment (DAT) in the aerobic incubation phase and 0, 3, 7, 16, 30, 65, 93, and 120 days after soil flooding (DASF) in the anaerobic incubation phase. Microbial soil biomass was determined in the aerobic incubation phase at study start (DAF-3) and end of the aerobic incubation phase. The amounts of anaerobic bacteria were determined at the end of the anaerobic incubation phase (DASF-120).

3. Analytical Proceedures

Carbon dioxide absorbed by soda line was iberated with 18% aqueous hydrochloric acid and trapped in a scintillation cocktail selective for binding of carbon dioxide using an air-tight assembly. The radioactivity content was determined by liquid scintillation counting (LSC).

The PU foam plugs of the trap attachments were extracted with ethyl acetate in an ultrasonic bath to desorb VOC. The redioactivity content was determined by LSC.

Volatiles collected by the gas sampling bag during the anaerobic incubation phase were slowly purged through a soda lime trap for absorption of carbon dioxide, then through a catalytic oven for oxidative combustion of VOC (e.g. methane), and its combustion exhaust through a scintillation cocktail selective for binding of carbon dioxide using an air-tight assembly. The radioactivity content was determined by LSC and the soda lime was further processed as described before for carbon dioxide.

At each sampling interval of the anacrobic inclubation phase, pH, oxygen content and redox potential in the water and the redox potential in the soil were determined. Water and soil were separated by centrifugation and decantation. The entire soil of each test system was extracted three times at ambient temperature using a mechanical shaker and acetonitrile/water 4/1 (v/v). Furthermore, two accelerated extraction steps using a microwave with a magnetic stirrer were performed, first with acetonitrile/water 1/1 (v/v) at 70 °C and second with methanol/water 1/1 (v/v) at 70 °C. After each extraction step, extract and soil were separated by centrifugation (3480 x g) and decantation. The ractivative content of the water, the combined ambient soil extracts and the microwave soil extracts was determined by LSC. Aliquots of the soil extracts were combined. Water and combined soil extracts were concentrated and analysed by reversed phase HPLC/radiodetection. The limit of detection (LOD) and limit of quantitation (LOQ) for HPLC/radiodetection analysis of the water and combined soil extracts were 0.6 and 1.8% AR, respectively.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

The exhaustive extracted soils were air-dried, homogenized and non-extractable residues gere determined by combustion/LSC.

ma Test item and degradation products were identified by HPLC-MS(/MS) including accurate determination.

The degradation kinetics of fluoxastrobin was determined according to FOCUS kinetics (2006) using the software KinGUI2 with three different kinetic models: single first order first order first order compartment and double first order in parallel. Modekinput dataset were the restruat amounts found in each replicate test system at each sampling interval of the anacobic incubation phase (DASF-0, & DASF-120). The best-fit kinetic model was selected on the basis of the chi² scaled-or or criterion and on the basis of a visual assessment of the goodness of the fit DT₅₀ and DT₅₀ values were calculated from the resulting kinetic parameters.

RESULTS AND DISCUSSION II.

Ø Results indicated that the anticipated standardized conditions were nonintained in the aerobic and anaerobic incubation phase, and that the son was spicrobially active over the diration of the laboratory study. Anaerobic bacteria plate count assays performed at study end confirmed the stablishment of an anaerobic microflora in the test systems

The pH values in water of the anaerobic included by phase ranged from \$.8 to 9.

≤ 1.4 mg/L from DASF-3 onwards demonstrating the shift from aerobic to an erobic t

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

A. DATA

					_					_		. 4		Ô
Table 7.1.1.2- 2: Degradat	ion of	fluox	astro	bin in	soil					ur	ıder	amae	robic	\mathcal{D}^{ν}
condition	s (mea	n value	s and	SD exp	oressed	as % A	AR)		A C		4	Ç'	Ś	
						Sampl	ing In	terval	s '0'			°/	Y	
	DAT	0	10	17	31	31	34	38	4 7	61	9 6	12	151	Ø
Compound	DASF		Ι	N/A	Ĉ	0	3	Ĩ	16	30	¥65 _ଛ	°~93ઁ	120	
fluovastrohin	Mean	99.2	83.8	77.9	56.7	59.9	56.5	\$6.1	55.0	562	48.0	41.0	3 7.9	L
Huoxasuooiii	SD	± 0.0	± 0.3	± 1.7	±€4.8	± 0.6	±Ø	±1.1	± 0.8	≠ 0.1	±0.1	± 0.6	1 ± 0.4	0″
	Mean	n.d.	6.2	6.4	¥5.0	11.3	5 3⁄.4	13.6	13.6 ^O	12.5	10.2	10.2	8.0	×
HEC5725- <i>E</i> -des-chloropheny	SD		± 0.0	± 1.00	± 3.8	± 0.4	±0.50	0.5	±Q1	ŧÔł	± 0.2	± 0.3	Ø.0	
	Mean	n.d.	0.7	≪LOD	20	< BOD	ko	0.8	LOD	D1.3	28 J	12:5	16.9	
HEC3/23-carboxylic acid	SD		± 0.0	Ô ^v	¢ 0.1	\mathbb{Z}_{a}	£0.1	±,001		± 0.2	± 0.5	± 0.1	± 0.7	
Sum of Unid /Diff Pesidues	Mean	< LOD	1,0	2.3	< LOD	0.9 🔍	0.8	0.9	0.7	00	1.9	¢2.4	3,9	
Sun of Onid./Diff. Residues	SD		# Ø.ľ	± 1.2		±20_0	± 0.4	± 0.0	<u>،</u> 0.0	±,0.1	± 0.4	± 0.2	¥0.3	
Total Extractable Residues ^{a)}	Mean	99.2	91.7	≈\$6.9	B .1	42.5	767	71 Å	69.6	70.7	68.5	660	67.3	
Total Extractable Residues	SD	± 0.9	$\pm 0 Q^{2}$	$\gg 0.9$	± 1.6	≥¥ 0.7	₩0.0	±0.5	±Q	± 0	¥±0.2	±0.4	± 0.0	
Carbon Dioxide ^{b)}	Mean	at a.	0. T	0. * >*	1.6	1.6	1.6	A.6	D.6	L B	1,6	1.6	1.6	
(Sum Aerobic and Anaerobic)	SD	Ą.	贪 0.0	±% 0.1	±@:0	±0.0	± 00	± 0.0	5 ± 0.0	€ 0.0	±~%0.0	± 0.0	± 0.0	
Volatile Organic Compounds ^{b)}	Mea	n.a.K	× 0.1	@0.1	\$0.1	@0.1	Ø.1	< 0.000	< 0	< 0. 🕵	< 0.1	< 0.1	< 0.1	
(Sum Aerobic and Anaerobic)	\$D	. %	± 0.0	± 0.0	$5 \pm 0.0^{\circ}$	1 ± 0.0	£"0.0	E 0.0	± 0.0	± 0	± 0.0	± 0.0	± 0.0	
Non-Extractable Residues ^{b)}	Mean	% 97.8	6,6	163	23.0	23.3	24.2	24.7	26.3	Ø\$.6	25.6	27.8	26.1	
	SD [*] SD [*]	≝± 0.0 €	€0.1	\$0.9	€0.7	±.0.3	±%0//5	± 0 6	$5 \pm 0.2^{\%}$	4 0.2	± 0.2	± 0.0	± 0.2	
Total Recoverv ^a) 🐇	Mean	10000	98.6	§99.0	97.8 ×	₽97.4 §	97.5	97.7	97 6 5	97.9	95.8	95.5	95.0	
	<i>®</i> Ď	±0.0	± 0.2	± 0.0	± 0.9	± 0.40	± 0.5	≇0.1	£0.2	± 0.3	± 0.3	± 0.4	± 0.2	

n.d.: not detected, n.a., bot analysed, DAS. days over treatment, DASF: days after soil flooding, SD: standard deviation a) Difference to Material Balance values due to founding errors as well declean fix and chomatographic losses

b) Values taken from Material Balance

B. MATERIAL BALANCE

Mean material balance was 95.2% of applied rad@activity [% AR] (range from 96.2 to 100.4% AR). The complete material balances found at all sampling intervals demonstrated that there was no significant loss of radioactivity dissipated from the test systems or during sample processing.

C. EXTRACTABLE AND NON-EXTRACTABLE RESIDUES

Extractable residues decreased from 990% Afe at study start (DAT-0) to approximately 68.5% AR from DASF 120 onwards. Non-extractable residues increased from 0.8% AR at DAT-0 to 27.8% AR at DASF 93 and slightly declined to 26.1% AR until DASF-120.

D. **VOLATILES**

The maximum amount of carbon dioxede way 1.6% AR at DAT-31 in the aerobic incubation phase and remained constant, in the amaerobic incubation phase until 120 days after soil flooding (DASF). Formation of volatile organic compounds was insignificant as demonstrated by values of $\leq 0.1\%$ AR at all sampling intervals

E. DEGRADATION OF PARENT COMPOUND

The amount of fluoxastrobin decreased in the aerobic incubation phase from DAT-0 to DAT-31 from 99.2 to 58.7% AR. During the following anaerobic incubation phase, the amount of fluoxastrobin further decreased to 37.9% AR at DASF-120.

Two degradation products were identified: HEC 5725-E-des-chlorophenyl with a maximum occurrence of 13.6% AR after flooding and HEC 5725-carboxylic acid with a maximum amoug of 16.9% AR after flooding. The total unidentified residues amounted to a maximum of 3.9% AR and no single component exceeded 1.5% AR at any sampling interval. The proposed degradation pathway fluoxastrobin in soil under anaerobic conditions is shown in

The degradation of fluoxastrobin in the anaerobic incubation phase followed single first order kinetics according to the lowest chi² error values and visit assessments. Table 7.1.1 3 summa the best-fit results of the DT₅₀ and DT₉₀ calculations.

Table 7.1.1.2-3: Degradation kinetics of fluoxastrobing in soil anaerobic conditions according to FOCUS (best fit)

			Ì 🔊 í	0,* ~~ .C	<u>) a d'</u>
Best-Fit	DT50	DT 90	。Chi ² Error	Visua	
Kinetic Model ^{a)}	[days]	#days		Assessment ^{b)}	
SFO	195.4	649	0 2.6	P P	
a) SFO: single first ord	er 🎢				
b) visual assessment: +	= good		y jo k		

Ô

soikunder anaerobic Fluoxastrobin was rapidly moderately degraded in conditions following an aerobic incubation phase in the dark in the aboratory.

The calculated best fit half-life was between 195.4 day

Two degradation products were identified with the following maximum occurrences: HEC 5725-Edes-chlorophenyl with 13-5% AR and HEC 5725-cartoxylicacid with 16.9% AR after flooding.

L) Fluoxastrobin will be mode ately degraded in soil under anagrobic conditions following an aerobic incubation phase. Formation of significant amounts of non-extractable residues indicates a participation of fluoxastrobin in the natural carbon cycle of soil.

Therefore, fluoxastrobin and its degradation products are not expected to have a potential for accumulation in the environment.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

CA 7.1.1.3 Soil photolysis

The route of degradation of fluoxastrobin in soil under photolytic conditions in the laborators was evaluated during the Annex I inclusion using two radiolabel positions, ring 2- and ring 3-label, and was accepted by the European Commission (SANCO/3921/07-final, 2012). No new study was performed for renewal. The following study is included in the baseline dossier and has been included Ő in this supplementary dossier, since it has been used for the risk assessment S

	Č.	a	
Author(s)	Near Year	Document	No and all a
	2001	M-091512	Ø1-1 2 Q LO
Report:	KCA 7.1.1.3/01 ; 2001; M-091	513-01-1	$\sqrt{\frac{2}{3}}$
Title:	[HEC5725]: Photolysis & HEC5025 on Soil sur	the L	ř vy W
Report No.:	MR-347/00 O O	y _n o à	de A . º
Document No.:	M-091513-01-1 🔬 👘 🦉 🧟	. ~	OY OY A
Guideline(s):	- EU 95/36/SC amending @1/414//SEC	A	
	- SETAC urop Proced@res, Mesch 19	A Y Q	
	- US ERQ, Subarty ision N, Parasyaph 164	-3USGPA, Sodi	vision N, Paragraph
		N N	
Guideline deviation(s):	not applica Qe		
GLP/GEP:	yes y y g g g g	<u> </u>	

sandy loan soil 2 mpsieved 3.0 g ary worght), were dejed at 105 °C and Samples of samples of samples of samples of samples of soluce maysieved 3.0 g ary weight) were dided at 105 °C and then placed onto plates to give a then layer (car 3 mm depth). In the presentest ring 3 labelled fluoxastrobin or ring 2 labelled fluoxastrobic (equivalent \bigcirc 1.3 cm a.s./kg) wo added in acetonitrile to each soil plate. The main set used ring 2 labelled fluoxastrobic (equivalent \bigcirc 1.3 cm a.s./kg) wo added in acetonitrile to each soil plate. The main set used ring 2 labelled fluoxastrobic (equivalent \bigcirc 1.3 cm a.s./kg). All plates were maintailed at 75% \bigcirc 1/3 kg moisture a 20 °C in flasks fitted with traps for CO₂ and organic volatiles \bigcirc 3.0 g and polyure than form to spect (ely) deplicite flasks were either kept in the dark or exposed continuously to an artificial light source, simulating natural sunlight (xenon chamber wav ength in range 300 -3000 mm) for 15 days. It is state that the average intensity of the Suntest Unitewas 783 W/m² therefore 6.87 hours in the unit equates in one solar summer day (Jupe) in Suntest Uniowas 783 W/m² therefore 637 hours in thounit equates to one solar summer day (June) in Phoenix LSA (33 N). Also 4 of hour in the unit is stated to equify to one solar summer day (June) in Athens Greece (38 KN). The maximum experimental exposure period of 15 days was quoted as corresponding to 500 solar summer days in Athens.

Duplicate samples were taken for each fratment at FAT-0 and five representative time points. Radioactivity from Gil samples was expacted with acetonitrile then with acetonitrile/water before quantification by LSC and anothis LSC TLC ⁴CO was identified as the amount of radioactivity trapped in the soda line. Rashoacti in papping solutions was quantified by LSC. The parent compound and metabolites were identified by O-chromatography. As no major metabolites were found no further characterisation was undertaken. Unextracted radioactivity was quantified by Lharacterization of the radiolabyted fractions was as outlined in Table 7.1.1.3-1. combustion and LSC. The LQO was report P to be 0.12% AR with a LOQ of 0.27% AR (i.e.3.5 µg fluoxastrobin quivalents/kg

Characteri

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

		white	II was	then kept en	ner under artin	icial light or	in the	uark (70	AK)	Å	S.	Ö
Test	Label	Condi-	DAT	Fluoxa-	HEC 5725-	Unknown	$^{14}CO_2$	Org.	Extrac-	NER	Totak	F
		tions		strobin (E)	Z-isomer	metabolites		volatil	table	,¢	Å	
						a)			residues	۶÷		
Pre-test	Ring 3	Irradiated	0	92.6	2.7	1.9	n.m.	n.m.	100.0	n.m	00.0	2
			3	70.4	9.6	5.8	0.9	0.1	87,20	7.Q	95.2	2
			7	61.3	13.6	\$6.3	1.9	n.d.	85,4 i	\$.3	9393	0
			15	48.9	17.1	7.9	40	< 0.1	97.9	D10.3	9 3.0	Š
	Ring 2		0	93.5	2.5	n.d.	Pm.	n.m.	×100.6	n.n	100.0	O`
			3	66.9	11.6 5	6.4	1.1	₀< 0.1 (86.5	Ũ	94,0	1
			7	61.0	14.10	7.8	2.7,	<0.Q	. 6 .1	8.0	85.8	
			15	56.8	16.4	. 8.0		< Q .1	≈ 85.0 ≪	8.6~	95.9	
Main	Ring 2	Irradiated	0 ^{b)}	95.4	24	And I	(n.m.	H.m.	93.8	2.7	96.5	
Test			1	76.5	13.7 🖋	02.8	0.1	9 n.d. 0	93,4	39	97.5	
			3	69.4	16.60	4.0 4	0.3	n.C	Я.1 🖉	\$4.6	Ø 6.0	
			6	59.6		y 5,0°	Ą.Ö	°∡t.d.	87.3	6.85	\$95.1	
			10	62.0	\$19.4 K	25.6 d	$P_{1.1}$	Sn.d. @	88.6	70	97.1	
			15	51.00	\$\$22.2	\$8.2 0	4.4	n.dS	2 .1	8.3	96.8	
		Dark	0.0	950	2.4	n.d.y	n Ø.	nôn.	Ni.m.	n.m.	100.0	
			0.042	89.3		100	(n.m.	S.m. (93.8	2.7	96.5	
			1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.2 0	2.0	< 0.1	n.d. O	92,7	4.4	97.1	
			3	× 864	2.4	2.2 4	<	n.¢	91.5	5.3	96.9	
			60	80Ž,	S 20	1.5	\$9 .1	M.	2 91.4	7.6	99.0	
			10/	485.0	\$.2 Å	Q4	₹0.1	≪n.d. ≪	89.6	8.3	97.9	
			×15	\$3.4.0	02.2 8	01.5	< 0	n.d.	88.6	8.1	96.7	

 Table 7.1.1.3-1:
 Distribution of radioactivity after application of fluoxastrobin to a thin layer of soil
 which was then kent either under artificial light or in the dark (% AR)

DAT: Days after treatmer h.m. = Rot mer ared; n.g. = < LS2 of LS2 a) sum of six unknown on netabolity none creeded 4.5% of the0 % of the appled radioactiv

b) exposure time 0 das = nor Oradial samples processed afterabout 1 Pour

After 15 days of irradiation, the Gisomer of Hoxastronin account for a mean of 51.0% and 83.4% AR from pluminated and dark control samples respectively. Whilst the Z-isomer of fluoxastrobin accounted for 22.2 an @2.2% R from irradiated and dark controls respectively. The pre-test identified five minor photoproducts thom that and an accounted that is respectively. The pre-test identified minor photoproducts thom that and an accounted for the ring 2 labelled guoxastrobin, although none accounted for more than 4% AR.

DT₅₀ values were calculated using linear egres for. The conversion of the *E*-isomer to the *Z*-isomer of fluoxastroan was accelerated of the right compared to the samples kept in the dark. The photolysis kinetics calculated are shown in Table 7.15.3-20 This table also calculates the relationship between the continuous irradiation of the tot and the entivalent number of solar summer days under intensive solar conditions in Phoene, AZ, (USA).

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

	Pre-test (irradiated samples)				Main test (ring 2 labelled fluoxastron)				ð
	ring 3 labelled		ring 2 labelled		Irradiated		Dark 🗡 🕠		de la compañía de la comp
	fluoxastrobin		fluoxastrobin		ð		0 A		
	E	E+Z	E	E+Z	E	E	E A	E+C	
No. data pairs	4	4	4	4	6	4 Ő	7		r.
Rate constant [day ⁻¹]	0.0394	0.0222	0.0283	0.0150	0.0339	162	0.000	Ø0059 _K	2)
DT ₅₀ (days)	17.6	31.2	24.5	403	20.5	42.8	\$1 4.6 ∧	×116,7	a
r ²	0.97	0.95	0.84	0\$79	0.90	0.93	0.80	0.80	S
DT ₅₀ expressed as solar	66	118	92	L 174	770*	161 🗶	N/S	A A	, O`
summer days in Phoenix			1	Ø	Ő.		e V	ð, ð	, Y
				8	¥ (× ·	No.	

 Table 7.1.1.3-2:
 Photolysis kinetics for radioactive labelled fluoxastrobin

The data show that light enhances the conversion of the *E*-isoner increased mineralisation to carbon dioxide when congared of the dark sapples growever, the overall $C^{(0)}$ as the DT₅₀ of the sum of the E+Z effect of light on degradation in the environment is wikely & be

Overall summary of route of degradation in soil Under <u>aerobic</u> conditions, in the dark in the haboratory. All the source of th ¹⁴C-labelled in the laboratory studies. As a result of the eleavage of the molecule 2-chlorophenol will be released at an expected warst case maximum amount of 49 2% (see EFSA addendum on fate and behaviour; 26 July 2005) Non extractable residues (NER) ranged from 24.5 to 71.0% AR for the ring 3-label from 3.5 to 35.5% R for the ring 2-label.

Under anaexopic conditions in soil after flooding two degradation products, HEC 5725-E-deschlorophenyl and HEC 5025-carboxylic acid, were observed with maximum amounts of 13.6% AR and 16.9% AR, respectively.

Under photolytic conditions in the laborator fluoxastrobin (E) was isomerized to the Z-isomer (HEC5725-Z-isomer) with a maximum amount of 22.2% AR. No major degradation products were observed in the Chotodegradation study. Formation of carbon dioxide increased in comparison to dark controls and reached maximum amounts of 4.4 and 4.8% AR for the ring 2- and ring 3-label, respectively NER reached maximum amounts of 8.6 and 10.3% AR for the ring 2- and ring 3-label, respectively.

eachest n

The proposed overall degradation pathway of fluoxastrobin in soil including the maximum occurrences of the metabolites observed in soil is as follows (major degradation products > 5%bold letters):

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

CA 7.1.2 Rate of degradation in soil

Fluoxastrobin was well degraded in soil under aerobic conditions in the laboratory as well as under field conditions. Under anaerobic conditions in the laboratory fluoxastrobin was moderately degraded. The kinetic models and DT_{50} values in soil of fluoxastrobin and its major degradation products used for modelling purpose and trigger evaluation (best-fit) as well as the formation fractions in soil for major degradation products are summarized in sections CA 7.1.2.1 and CA 7.1.2.2.

Modelling input values for the calculation of predicted environmental concentrations PECs of fluoxastrobin and its major degradation products in soil (PEC_{soil}), groundwater (PEC_{gw}) and surface water (PEC_{sw}) were derived from studies and kinetic evaluations (according to FOCUS kinetics 2006) summarized in sections CA 7.1.1, CA 7.1.2 and CA 7.2, and are submitted within this supplementary dossier. The DT₅₀ values, maximum occurrences and formation fractions in soil and aquatic systems of fluoxastrobin and its major degradation products used as modelling input values for the calculation of PECs are summarized in Table 7.1.2-1 to Table 7.1.2-3.

Table 7.1.2-1: DT50 values and maximum occurrences in soil of fluoxastrobit and its major degradation products used as modelling input values for calculation of PEC soil

Modelling Input Parameter	Endpoint		Comment O & O
fluoxastrobin (E+Z)	A W	N N	
DT ₅₀ in soil [days]	DT 50 Past phase	Ø39.81 Ø,	Simple PEC soil calculations, with an Excel
	DT 50 slow phase =	= 237 9 d,	pread speet, typically are carried out
\swarrow^{v}	g \$ 0.49	996	considering the worst-case DT_{50} and / or DT_{90} of
- Ø		Q" ^{"O}	these evaluations. Therefore PEC _{soil} calculations
			were carried out assuming a DFOP dissipation
L 97		ð v	the not mater $k_{\rm c} = 0.01741 1/d k_{\rm c} =$
		S S	$0.002913 1/d^{-\sigma} = 0.4996$
maximum occurrence in soid[%]	100		warst case
	& X		
HEC 5725-carboxylic acid (M40)	O' &	S' D	
DT ₅₀ in soil [gays]	286	X B	worst case tab
maximum ovcurrence in soft [%]	16.9		maerobic
		<u> </u>	
HEC 5725-E-des-chlorophenyl (Mg	(\$ ≠E)) ₂ O ^v ≼		Å"
DT ₅₀ in soil [days]	<u>ي 95.6</u>	* O	apparent field decline, non-normalised
maximum occurrence in Qil [%]	<u> </u>		ý.
2-Chlorophenol (M82)			
DT ₅₀ in soid [days]	23,0		worst-case half-life used for predictive
	\sim \mathcal{L} .	~0~	calculations according to the recommendation
v V A.	oʻ Qʻ	Ϋ́	given by EFSA (EFSA, 2007)
maximum occurrence in soi [%]	_~~ 49.3*	1 [']	theoretical estimation was given by EFSA
			(European Commission, 2007) (p. 72)

Table 7.1.2- 2:DT50 values and formation fraction in soil of fluoxastrobin and its major degradation
products used as modelling input values for calculation of PECgw

products used as modelling input values for calculation of PECgw								
Modelling Input Parameter	Endpoint	Comment						
fluoxastrobin (E+Z)								
DT ₅₀ in soil [days]	38.9	geom. lab + field, normalised						
HEC 5725-Z-Isomer	Ú.							
DT ₅₀ in soil [days]	63.8	geom. field apparent de@ine, no PECstare calculated based on isomer	malised. um of +Z					
HEC 5725-carboxylic acid (<i>M40</i>)								
DT_{50} in soil [days]		geom tab aeroor						
FF fluoxastrobin \rightarrow HEC 5/25-carboxylic acid								
HEC 5725-E-des-chlorophenyl (M48-E)								
DT ₅₀ in soil [days]	56.7	(geop), lab + Geld, normalis (d)	- Ön					
FF fluoxastrobin \rightarrow HEC 5725-E-des-	0%5145 ~		Ŭ ⁴					
chlorophenyl			/					
2-Chlorophenol (M82)								
DT ₅₀ in soil [days]		worst-case half-life used for pred calculations according to the reco given by EFSA (EFSA 2007)	ictive mmendation					
FF fluoxastrobin $\rightarrow 2$ -Chlorophonol		wor@-case						

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Table 7.1.2- 3:DT50 values and maximum occurrences in soil and aquatic systems of fluoxastrobin and
its major degradation products used as modelling input values for calculation of PECsw

Modelling Input Parameter	Endpoint	Comment
		N V S
fluoxastrobin (E+Z)		
DT ₅₀ in soil [days]	38.9	geom. lab + figld, norm
DisT ₅₀ in water [days]	16.0	geomean 🖉 🖓 🚀
DisT ₅₀ in sediment [days]	313	geomean a construction of a co
DegT ₅₀ in total water/sediment system [days]	238	geomean O S S
max. occurrence in sediment [%]	73.7	
	à	
HEC 5725-carboxylic acid (<i>M40</i>)		
DT ₅₀ in soil [days]	17.0	geomean lab agrob O' 👾 🗸
max. occurrence in soil [%]		anactobic of of the second sec
DisT ₅₀ in water [days]	TO U	not usable of a
DisT ₅₀ in sediment [days]	64.9	
Deg T_{50} in total water/sediment system [days]	67.90	
max. occurrence in total water [%]	5.0° ~~	
max. occurrence in total sediment [%] 4	528 ~	
max. occurrence in total water/sediment system [%]	10.6 0	
Formation fraction in total water-sediment [%]	0.4841	
HEC 5725-E-des-chlorophenyl (M48E)	Å 07	
DT in soil [days]	5676.	been when + field north
max occurrence in soil [%]	30.1	
DT _{re} in water [days]		deault (part avaluable, not sufficient data
		(points)
DT ₅₀ in sediment [days]	1000 5	defaalt (notevaluable, not sufficient data
DT in tatal w Waland Want of Orm [doc]		Particles (
D 1 50 III total water/sequenent system [days]		not significantly different from 0: not
		ustile)
max occurrence in total@ater [@		\mathbb{O}
max occurrence in total seducent $[\%]$	34 %	
max_occurrence in twal water/sediment system [%0	18.30	~
Formation fraction in tota Ovater & dimed []%]	0 (max)	
		I
2-Chlorophenol (M82)	, ^x	
DT ₅₀ in son days]	23	worst case lab
max. occurrence in soil [%]	A 9.2	(theoretical estimation by EFSA, p. 72
	×*	EuropeanCommission, 2007)
DT ₅₀ m water [days]	1000	default
DT50 in sediment@days]	1000	default
DT ₅₀ in total water/sediment system [days]	1000	default
max. occurrence in total water sediment system [%]	0.01	p. 82 (EuropeanCommission, 2007)

CA 5.1.2.1 Laboratory studies

The degradation rates of fluoxastrobin and its major degradation products in soil were studied using two different radiolabel positions for the parent compound, ring 2- and ring 3-label, and unlabelled HEC 5725-carboxylic acid. The degradation rate of 2-chlorophenol was not investigated in a study but can be addressed using data from literature. The studies have been performed in a number of soils in

the dark in the laboratory at a temperature of 20 °C. The kinetic models and DT_{50} values used for modelling purpose (non-normalised) and trigger evaluation (best-fit) are summarized at the end of section CA 7.1.2. The DT_{50} and DT_{90} values for trigger evaluation (best-fit) were taken from study reports and may slightly differ from the List of Endpoints (SANCO/3921/07 final, 2012) as new evaluations were performed within the course of this re-approval process.

CA 7.1.2.1.1 Aerobic degradation of the active substance

The degradation rate of fluoxastrobin in soil under aerobic conditions on the dark in the laboratory was evaluated during the Annex I inclusion using two radiolabel positions, ring 2- and ring 3-laber, and was accepted by the European Commission (SANCO/3921/07-final, 2012). The following studies are included in the baseline dossier:

No additional studies are submitted within this supplementary dossier for the fluoxastrobin renewal of approval. However, updated kinetic evaluations of the degradation behaviour of fluoxastrobin in soil under aerobic conditions in the dark in the laboratory have been performed according to FOCUS kinetics (2006, 2014) to derive kinetic parameters suitable for modelling purpose and environmental risk assessment. A summary of the degradation rates of fluoxastrobin and its major degradation products in soil in the laboratory is given at the end of this section.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

KCA 7.1.2.1.1/05

New kinetic evaluation submitted for Annex I Renewal

Justification for including this study in the Annex I Renewal Dossier: The objective of this study is a kinetic evaluation of the aerobic soil metabolism studies of fluoxastrobin (CA 7.1.2.1.1), included in the baseline dossier and its major degradation product HEC 5725-des-chlorophenyl (M49) (CA 7.1.2.1.2 also included in the baseline dossier). The evaluation was conducted to derive kinetic parameters according to EFSA Guidance 2014 and FOCUS Guidance 2014,

Kinetic evaluation of aerobic laboratory soil degradation of fluorastrobia

Report: Title:

Report No.: Document No.: Guideline(s): FOCUS kinetics using KinGui 21 Ensa-15-0132
M-534472-01-1
EFSA, 2014: Guidance Document for caluating laboratory and field dissipation studies to obtain Deg 00 values of active substance of plant protection products and transformation products of these active substances in soil, European Food Safety Authority (EFSA), Parma, Italy, EFSA Journal 2014;12(5):3662
FOCUS, 2006: Fuidance Document of Estimating Persistence and Degradation

2015; M 34472-01-1

 FOCUS, 2006: Suidance Document of Estimating Persistence and Degradation Kinetics from Environmental Fate Studies of Pestigides in 190 Registration. Report of the FOCUS Work Group on Degradation Kinetics. EC Document Reference Sanco/10038/2005, v.2.0, June 2006
 FOCUS, 2014; Generic guidance for Formating Persistence and Degradation

 FOCUS, 2014: Generic guidance for Estimating Persistence and Degradation Kinetics from Environmental ate Studies of Pesticides in EU Registration, Version: 4.1; Date 18 December 2014

- ØECD, 1995: Final report of the OECD workshop on selection of soils/sediments,

*FG95,25, Belgirate, Itary, 18-20 January 1995

OECD, 2002, OECID Guideline for the testing of chemical Aerobic and anaerobic transformation in soil. OECD 307, adopted 24th April 2002

Guideline deviation or applicable GLP/GEP:

Kinetic analysis of the degradation of fluoxastropin and is major degradation product HEC 5725-deschlorophengl (M48-E) for trigger and modelling endpoints

Executive Summary

The soil degradation of fluoxastrobin (FEC 5725, $E \leftrightarrow Z$ -isomers) and its metabolite HEC 5725-*E*-des-chlorophenyl (M48-E) has been investigated under aerobic laboratory conditions in 2 studies, with 4 soils (20 °C) and 2 efferent radioactive labels: Sing 3-Jabel (all soils) and ring 2-label (soil

, $(\mathbb{C} \times 7.12.1.1)$ The conditions varied in soil type, soil moisture (40% MWHC or 75% of 1/34 bar) and application at (2008, 600 g a.s./ba).

A kinetic modelling analysis of tesidue data of fluoxastrobin (E+Z) and HEC 5725-*E*-deschlorophenyl (*M48-E*) was conducted using the software tool KinGui 2.1, implementing the IRLS error model (Iteratively reweighted least square). The identification of the appropriate kinetic model followed the recommendations given by FOCUS (2006, 2014b) based on a detailed statistical analysis including visual assessment χ^2 statistic, significance t-test and correlation analysis. In case of modelling purpose, especially the distinction for residues > 10% (DFOP, HS) or < 10% (FOMC) of applied substance at study end, has been taken into account. In doubt, the simplest model, as e.g. SFO, has been chosen

In general, a very good overall model fit was reached, with the proposed metabolic pathway including parent and metabolic. Acrobic lab soil DegT_{50} values proposed for the best or appropriate fit for modelling, as well as trigger purpose according to FOCUS kinetics are summarised in Table 7.1.2.1.1-1 and Table 7.1.2.1.1-2

In addition, the apparent dissipation of HEC 5725-*E*-des-chlorophenyl (*M48-E*) in soil was evaluated, conservatively, starting from the observed maximum onwards until end of the study.

In general, the experimental study conditions lead to the following restrictions. Expically, the promass or microbial carbon content during a study should be above 1% of the total organic carbon (TOC criterion) (FOCUS, 2006; OECD, 1995, 2002). In case of USA soil **Content**, the microbial carbon content was partly below this 1% criterion (ring 3-label > 120 d, ring 2 Tabel at study begin). This reflects a relatively weak biological activity, not fully representative for agricultural soils and especially not fully appropriate for kinetic evaluations (FOCUS, 2006). Therefore, the **Content** trial with ring 2-label was not taken into account for this kinetic evaluation and with ring 3-label was evaluated until 120 d. In addition, the trial was characterised with a very low organic carbon content of 0.25% and carried out under relatively dry conditions (5.76 g water / 100 g soil).

The part concerning the major degradation product 13EC 5725-E-de-chlorophenyl (M48-E) is reported in section CA 7.1.2.1.2 of this document

Table 7.1.2.1.1- 1: Trigger endpoints of fluoxastrobin (E+Z), lab degradation

					\frown
Study	SõH 🔍		Õ	Kinetic	DT50
	Y V		r "S	y type ⁿ⁾	🧟 [days]
. (2001) M-091500-01-1	label	AXXaOrin	g_30	OFOP V	17.9
L'AND AND AND AND AND AND AND AND AND AND		, ring 3-labe		DFOP	215
(2001) M-091507-01-1 ^{b)}	,	ring 2-lab) N	₿₽OP	10.5
× 4	, 1	ng 3-label	K)	<i>ũDFOP</i>	11.0
	~ /	ALL fing &	label 🗞	SFO	46.2
Maximum	La La	O`	~		215

a) SFO: Single first oper, DFOP: Double first order in parallel

b) soil mcluded in mean only once, with its geomean.

`~`			<u> </u>				
Study 🔊		, S	Soil 🔊	N O	Kinetic	DT5	0
«\\	S N	4) A	N U		type ^{a)}	[days	6]
A	9' <u>4</u> 4	Ş <u></u>				non-norm.	norm. ^{b)}
(2001) M-09∯00-(labeb [*]	AQXa, ring 3-	FOMC	21.6	21.6
				, ring 3-label	DFOP	280	150
(2001) M-091507-0			, ri	ng 2-label	FOMC	18.4	17.5
N N		y Q	, ri	ng 3-label	FOMC	15.0	14.3
a h	L O	.0 4	, g	eomean			15.8
	Â.		label	AII, ring 3-	SFO	46.2	30.8
Geometric mean							35.5 ^{c)}
Maximum							150

Table 7.1.2.1- 2: Modelling endpoints of fluoxastrobin (E+Z), lab degradation

a) SFO. Singlowerst order, FOMG. First order multi compartment, DT50 recalc = DT90 / 3.32, DFOP: Double first order apparallel, DT50 of slow phase

b) pormalized to 20 °C and pr2

soil included in mean only once, with its geomean.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

I. METHODS

Soil residue data from the aerobic soil degradation studies (M-091500-01-1 and M-091507-01-1) (Baseline Dossier, CA 7.1.2.1.1) were used. In these studies, the degradation of fluoxastroom was studied in soil **and a AXXa** (sandy loam), soil **and a AII** (silt boam), soil **and a baseline** (loamy sand) and soil **and a contract of the studies in the dark in the laboratory at 20°C.** The conditions varied in soil type, soil moisture (40% MWHC or 75% of 1/3 bar) and application rate (200, 600 g a.s./ha).

The kinetic analysis was performed according to FOCUS kinetics 2006, 2014 using the software KinGUI 2.1 with four different kinetic models: Single First-Order (SFO) and the bi-exponential models FOMC (First-Order Multi-Compartment model), DFOP (double first order paralle)) and HS (Hockey-stick).

Calculation of DT_{50} / DT_{90} values: A half-life is defined us the time taken for 50% of substance to disappear/dissipate from a compartment following single first-order kinetics, whereas DT_{50} and DT_{90} values are not strictly connected to a first order kinetics. In this report half-lives, DT_{50} and DT_{90} values are calculated from the appropriate rate constant k as $DT_{50} = 4n(2)/k$ and $DT_{90} = 1n(40)/k$ respectively.

Normalisation of fitted DT_{50} values (modelling endpoints): Conditions like temperature and moisture are assumed to keep steady in the laboratory, but they can differ from the so called "standard" conditions as they are required for DT_{50} values as input parameter of models. Therefore, the modelling DT_{50} values were corrected to pF2 and an ambient temperature of 20 °C. According to EFSA (2008), Q_{10} was set to 2.58 and T_{ref} was set to 20 °C.

, SIL BESULTS AND DISCUSSION

Trigger endpoints and modelling ordpoints for flux astrobin and its metabolite were derived following the procedure described in FOCUS (2006, 2014) and EFSA (2014). For modelling endpoints additionally a normalisation to reference conditions according to FOCUS groundwater (2014) assumptions was performed

The trigger endpoints and statistical parameters for fluoxastrobin are given in Table 7.1.2.1.1- 3. A summary of the best fits of the trigger endpoints of fluoxastrobin is given in Table 7.1.2.1.1- 1 in the Executive Summary

The non-normalised modelling DT-y values were corrected to pF2 and an ambient temperature of 20°C. Calculated correction factors for all trials are given in Table 7.1.2.1.1- 5. A summary of the most appropriate non-normalised modelling endpoints and the corresponding normalised modelling endpoints are given in Table 7.1.2.1.1- 5.

most appropriate non-normalised modelling endpoints and the corrections and the corrections are given in Table 7.12.1.1-2 m the Executive Summary.

Table 7.1.2.1.1-3: Trigger endpoints and statistical parameters of fluoxastrobin (E+Z), lab degradation, best fits highlighted in **bold letters**

BAYER Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Modelling endpoints and statistical parameters of fluoxastrobin (E+Z), lab degradation (non-normalised) heat fits highlighted in held letters

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

a) experimental moisture at pF 2.5

b) estimations for classified soils taken from FOCUS report (FOCUS, 2000); field capacity defined to be water content at pF 2 (10 kPa)

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

III. CONCLUSIONS

The DegT₅₀ values (trigger endpoints) for fluoxastrobin range from 10.5 to 215 days. The non-normalised modelling endpoints range from 15.0 to 280 days. The normalised (20 $^{\circ}$, pF2) modelling endpoints range from 15.8 to 150 days with a geometric mean of 35.5 days. The derived degradation rates are considered appropriate as input for modelling purposes.

CA 7.1.2.1.2 Aerobic degradation of metabolities, breakdown and reaction produce

The degradation rate of the major degradation products HEC 5727-carboxylic (M40) and HEC 5725-E-des-chlorophenyl (M48-E) and 2-chlorophenol (M82) in soil under aerobic conditions in the dark in the laboratory was evaluated during the Annex I inclusion, and was accepted by the European Commission (SANCO/3921/07-final, 2912). The following studies are included in the baseline dossier:

Author(s)		V Near V	Document No
HEC 5725-des-chlorophenyl (M48) &	, ~ ~ ~		
	N. O	2001 Q	M-091500-014
		2001	♥ M-091507-0₽1
HEC 5725-carboxylic acid (2440)			
×		A S	Ž ž
		× 2002 ×	M-0337998-01-1
2-Chorophenol (M82)	,		
	w z		
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M-063778-01-1
		<u> </u>	M-063760-01-1
		i 1987 🗸	M-064556-01-1
_		2001	M-063783-01-1
		1954	M-063817-01-1
_		1988	M-063808-01-1
		0992	M-065729-01-1
	Ĵ, o ^y . Ô	x, Oz	
		ð	
		L.	
		Y	
	v v An		
	~Ç		
õ			

**BAYER** Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

## • HEC 5725-des-chlorophenyl (M48)

Short summaries of the two studies which are included in the baseline dossier are given section CA 7.1.1.1. KCA 7.1.2.1.2/02 ; 2001; M-091500-01-1 **Report:** Title: Aerobic degradation of [methoxyiminotolyl-ring-UL-₩]HEC57 AXXa Report No.: MR-230/01 M-091500-01-1 Document No .: N, Dragraph 162-Produces March 995 Guideline(s): - US EPA, Subdivision N, Pagagraph 16 - German BBA, Part IV - EU 95/36/EC amending - SETAC-Europe Procedu Guideline deviation(s): not specified **GLP/GEP:** yes **Report:** KCA 7.1.2.1.249 Title: Aerobic degradation and metabolism of [pyrimidin 2-146]HEC5825 in Gree soit MR-231@1 Report No.: A M-091507-01-12 Document No .: Guideline(s): US&EPA SG German BBA Å€-Eurobe Guideline deviation( **GLP/GEP:** HEC 5725-carboxylic acid (M40 ; 2002; **M**-033798-01-1 **Report:** 74 boxylo acid] degradation of HEC5725-carboxylic acid (HEC7180) in Title: soils under aetobic conditions. Report No.: Document -03379 Guideline(s): N, Section 162-1 division L. nan E**B**A. ParVIV. 4-1 5/36/EC a ending 91/414/EEC SET/Q-Europe Procedures, March 1995 St way verformed based on the requirements of European Guidelines. The soil Guideline deviat mosture corresponded to 50% of maximum water holding capacity. This was offeren to the US-EPA Pesticide Assessment Guidelines, which required a moisture of 75° $\bigcirc$  of 1/3 bar moisture. The degradation of the test substance was determined, only, the formation of metabolites was not investigated. **GLP**A усч " The big Pansformation of unlabelled HEC 5725-carboxylic acid (M40) was studied in three different

The big Pansformation of unlabelled HEC 5725-carboxylic acid (*M40*) was studied in three different soils. The soils, a silt loam ( A III, Germany, pH 7.4 in water and OC 0.83%), a sandy loam ( AXXa, Germany, pH 7.2 in water and OC 1.02%) and a silt (



# **Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin**

4a, Germany, pH 7.6 in water and OC 2.11%) were incubated for a maximum of 62 days under aerobic conditions in the dark at 20 °C. The soil moisture was adjusted to 50% of the maximum water holding capacity. The application rate of the investigated metabolite was about 57 g/ha, which was about 8 µg HEC 5725-carboxylic acid per 100 g of soil as dry matter. This equates to 2925% of the parent application rate being converted to the metabolite HEC 5725-carboxylic acid. The level used in the study is therefore considered to be a worst case high level as the anaerobic water sectionent study 2002 (CA 7.2.2.3) showed 21% of applied fluorastrobin being transformed to HEC 5725-carboxylic acid (*M40*) in the entire water ordiment system after 360 days under streat anaerobic conditions.

Soil samples were extracted with acetonitrile/wated. The extracted amount of HEC 5725-carboxy ( $e^{-1}$  acid (M40) was determined by LC-MS/MS. The analysis method was stated to the Method 00611 ( $f^{-1}$  2001, MCA Section 4). The LOQ for the method was  $5_{4}$  ( $g^{-2}$  ( $g^{-2}$  ) of initial) for the E and Z-isomer of HEC 5725-carboxylic acid of the JCD was stated to  $g^{-2}$  above 2 µg/kg. Procedural recoveries at 5 µg/kg were 84 - 101% fluorastrobio E-isomer;  $8Q_{2}$  99% fluorastrobio Z-isoder; 105% HEC 5725-E-des-chlorophenyl (M48-E) and  $87_{2}$  90% for HEC 5725-carboxylic acid (M40 (E/Z).

The recovery was 103.7% (mean (DATE)) of the applied appoint of HEC 5725@arboxylic acid (M40). The degradation of HEC 5726-carboxylic acid (M40) in Sill is sumparized in Table 7.1.2.1.2-1.

Table 7.1.2.1.2-1: Levels of HCC 5723 carboxylic acti (*M4*) found in the aerobic degradation study (µg/kg)

DAT	A III 🍄 🛛 A 🔊	
		م م 4a
0	\$ 78.6° ~ 0 5 72.40	O √ 4 85.32
1	\$ 7 <b>4</b> /13 \$ \$ \$ 688 ¹ \$	<i>Q</i> 78.92
3	90.2 LY , X 57.31 S	71.32
7	0 0 66.18 V 0 50.57	\$ 54.27
14		♥ 36.53
29 🖉		14.3
30	635.32 0 Q V Y	
345		
44	~0° ~ 21% ~ A	2.5
62	5 ³⁷ 59.69 Q ⁴ 4 7 7 1 1.59 6	0
DAT: Days after	r treatmento 7 5 5	

The first order dissipation rates we set out in **Table Q1.2.1.2-2**. [Rapporteur checked using Timme excel sheet which showed all soils to have first order degradation  $r^2 = 0.99$  for first 2 soils but Timme only gave  $r^2$  of 0.73 for third soil but plot for not oppear correct – applicant's plot using Model Maker appeared more accurate therefore values below we considered acceptable.]

 Table 7.1.2.1.2- 2:
 Degradation of HEC 5725-carboxylic acid (M40) in three soils (first order kinetic)

A III O silt Lym	Soil AXXa sandy loam	4a silt
$DT_{50}$ ( $CS$ )	25.1	10.9
DT ₉₀ (days) Or (71.7	83.4	36.1
r ²	0.972	0.998

*****



MO-02-015573

M-063778-01-1

none

## 2-Chlorophenol (M82)

Report No.:

**GLP/GEP:** 

Document No.: Guideline(s):

Guideline deviation(s):

The degradation of 2-chlorophenol (M82) in soil is not addressed by any guideline study by some studies published in the open scientific literature. The studies have been assessed by PSA the Final Addendum to the Draft Assessment Report (DAR)¹ to estimate soil T₅₀ of 2-chlorophesel based on the summaries provided in the DAR. These  $DT_{50}$  values are summarised in the table.

			r @
Table 7.1.2.1.2- 3:	<b>DT</b> 50	values of 2-chlorophenol ( <i>M82</i> ) in soil und exerobic cond aons 2	4
		Soil Que de Correction	
		County County Arith. By an	
Annex Point / Refe	erence No	KCA 7.1.2.1.2 /04 KCA 7.1.2.1 2005 KC/67.1.2 /10 / 5	
DT ₅₀ (days)		$0.6$ $7^{1}_{0.7}$ $23^{1}_{0.7}$ $22^{1}_{0.7}$ $7.9$	
¹ wort case estimation	ns reported		
Report:	KC	A 7.1.2.1.2/24 Contraction of 1980 M-063 78-01 C	
Title:	Mie	crobial and on-biological Gecomposition of chlosopheness and pseud in soil	
Doport No :	MC	102015 $472$ $07$ $7$ $7$ $7$ $7$ $7$ $7$	

no The aerobic and anaerobic depadation of Benol and selected chlorophenols of ere investigated in a clay loam soil with noraddeconutricitys. The clay mam coll was Obtained from the surface 15 cm of an County, Onterio. The soil was passed through a 2 mm sieve uncultivated grassland sita in and stored at 4 °E for week proof to experimentation where was demonst and allowed to equilibrate at 23 °C. Son samples were rendred at the boauto daving stimes at 121 °C for 20 minutes. The pH of the non-steril soil was 7.1 and had a maxime content of 16% (w/w) measured gravimetrically. The pH of the sterile soik was 7 S and is mois are content 10% (w/0).

2 2-chlorophenol (described as ortho chlorophenot) was one of the phenolic compounds tested in the experiments. 2-clorophenol was added to the soil of solved in aqueous ethanol solution (less than 10% of 95% ethenol). The soit (10 givet weight) was traced to give an initial concentration of 100  $\mu$ g/ml wet weight or  $\Omega$  9.05 $\mu$ g/ml  $\Psi$ y weight so  $\Omega$  Aerobic and anaerobic (using oxygen free N₂ gas) flasks sealed with serum seps were incodated of 23 of with some flasks kept in the dark. Soils were extracted with 95% ethanol won recoveries at time 0 of more than 80%. The representative UV wavelengins of the compound? were used for identification purposes.

After 1.5 days 2-chloroppenol was reported whave undergone 100% decomposition in aerobic nonsterile soil. The minimum time for more that 70% degradation in aerobic non-sterile soil was stated to be 0.5-1.0 dass. In the aerobic sterile son 67% degradation of 2-chlorophenol was reported after Apperobic non-serile soil showed 78% degradation after 80 days whilst anaerobic sterile soil 40 days. gradation after 80 days. There was no significant difference in degradation of showed icubated aer bically and anaerobically in sterile soil in the dark and in the light.

Final As Ondum to the Draft Assessment Report (DAR) - public version -Initial risk assessment provided by the rapporteur Member State United Kingdom for the new active substance FLUOXASTROBIN as referred to in Article 8(1) of Council Directive 91/414/EEC Volume 3, Annex B, B.8, Addendum prepared by EFSA on 26 July, 2005



2-chlorophenol was shown to be rapidly degraded by aerobic soil micro-organisms with no significant lag phase. The apparent decrease in 2-chlorophenol in anaerobic conditions could not be attributed to volatilisation or photolysis and could therefore result from autooxidation and or adsorption with soil organic matter. [The study noted that ortho-chlorophenyl and para-chlorophenyl were degraded much more rapidly by micro-organisms than meta-chlorophenyl.]

The Rapporteur notes that the study although not standard was reported in reasonal showed an acceptable level of recovery for 2-chlorophenets

An evaluation of this report was performed in the final Addendom to the Draft Assessment Report (DAR)¹: Laboratory study. Aerobic degradation, to half life is reported but is stoled that 70 % of 2-chlorophenol or more is degraded in a minimum time of 0 or 1 d, in the worst case (1, 5) this Sould correspond to a first order  $DT_{50} = 0.6$  d (calculated by EFSA).

 Report:
 KCA 7.1.20,2/05

 Title:
 Effect of chemical structure on operation of an Oatic herbicides

 Report No.:
 MO-00015674

 Document No.:
 M-060760-01-1

 Guideline deviation(s):
 no

 GLP/GEP:
 no

 The aerobic deoration of the structure of the structure

The aerobic degradation of various organic compounds including 2 chlorophenol was investigated for soil incubated inclineral nutriest medium. After stellisation the est conspounds (at concentrations of 10 - 100 ppm) Gere added to the solution due 40 aligned of the shily sampled soil. The soils used to investigate chlorophenol degradation were **solution** of the solution of the sol

An evaluation of this report was performed in the Final Addendum to the Draft Assessment Report (DAR): Laboratory study No had life & reported. Complete disappearance (i.e. 75-90 % decrease) was seen after 14 d for the soil and after 7 d in the soil. This would correspond to DT50 between 4.37 d and 7.00 d for the soil ond between 14.69 d and 23 d for soil (calculated by EFSA).

Final As Philade Assessment Report (DAR) - public version -Initial risk assessment provided by the rapporteur Member State United Kingdom for the new active substance FLUOXASTROBIN as referred to in Article 8(1) of Council Directive 91/414/EEC Volume 3, Annex B, B.8, Addendum prepared by EFSA on 26 July, 2005



# **Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin**

Report:	KCA 7.1.2.1.2/06	· · · · · · · · · · · · · · · · · · ·	1987; M-064556	5-01-1
Title:	Biodegradation of chlo	prinated phenols in subs	surface soils	O° 🗞
Report No.:	MO-02-015854	*		
Document No.:	M-064556-01-1		~	Š ^Y O
Guideline(s):	none			Ĩ (Ū´ O)
Guideline deviation(s):			The second se	
GLP/GEP:	no		4	57 257 19
The biodegradation	rates of 2-chlorophene	ol and other Shenol	ic combounds	were investigated in

subsurface saturated and unsaturated soils. Soil and groundwater souples were ortained from sites near period of approx. 4 m (unsaturated zone) and was the lower part of a gilty safet layer. Soil from the Virginia site came from depths of 4.5 m (unsaturated) and 31 m (saturated). Virginia soil was composed of alternating layers of sand and sity clayed own to depth of 31 m. Soil were all shown to contain extensive microbial populations. PenSylvaria substrates water was according to both groundwaters were near 4.6. Soil/groundwater microcos were created using about 10 g foil to which sterile groundwater and a phenotic combound was added (sol/groundwate) ratio 3.1). Aqueous samples were removed from the microcos at softime points attracted (sol/groundwate) ratio 3.1). Aqueous samples were removed from the microcos at softime points attracted soft satisfies of the point of the point and stored in the dark at a temperature of 10 0 until the point satisfies. The biologically active microcosms were used to check the level of softion of the compondus to the soil.

Samples were analysed by gas-lQuid coronategraphy with FID. Minimum detection limits ranged from 0.01 - 0.05 mg/l. Biodegradation rates while of the soft type. No supprior of 2-chlorophenol to soil was seen in the storile soft microbosms. Biodegradation of 5 chlorophenol in the unsaturated soils lead to half-lives of bout 9 – 13 days a wording to the degradation graph presented (least squares). The fastest degradation was seen in the remervivant of the biodegradation was lowest in the Virginia saturated soil microbial population that the very lower of the biodegradation was lowest in the Virginia saturated soil microbial population that the Virginia unsaturated soil) where an initial concentration of 50 mg/l of 2-chlorophenol was reduced to less than 20 mg/l in 45 days. Increased equilibrium concentrations were shown to yield higher degradation rates. The degradation of the composites appeared to be find order under snaer of c, low temperature conditions.

The paper concluded that 2-chloropher of equation equations of up to 2000 mg/l were shown to be biodegraded in 2 points i lesson and a statement of the shown and the shown are shown as a statement of the shown are sh

~Ŷ Ŭ	
1	
^O ^y	
Report;	KCA 7.1.2 2/07 ,; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
	M\$0637\$3+01-1 \$
Title:	Study of the dogradation of the herbicides 2,4-D and MCPA at different depths in
× .1	sconta@inategQrgriculQral soil
Report No.: O	M(\$02-015675 @)
Document Xo.:	MO063783-01-1~9
Guideline :	Hone ~
Guideling deviation(s):	X
GLP/CEP: O'	no
~~ 0 °	

The degodation of 2,4-D and MCPA and their metabolites including 2-chlorophenol was investigated in field soil in an uncontaminated area of **soil**, Spain. The soil was alkaline and clayey and contained little organic matter. The properties of the soil at different depths were as shown below.

# **BAYER** Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

depth (cm)	clay (%)	sand (%)	silt (%)	рН	organic matter [%]	l _ ^ ~ ~
0-10	47	33	20	8.08	0.9	S S
10-20	60	13	27	8.14	1.0	Ď., "0"
20-30	57	13	30	8.15	🗘 1.1 🏒	
30-40	60	13	27	8.22	1.2	
				1		

A plot of 12 m² was treated with spray solutions of 2,4-D and MCPA at the amine salis. The soil was subjected to no agricultural practice. Samples over time taken from different decignated sampling areas were air-dried at room temperature for 24 hours ground, sifter 00 2mm and trozen  $0^{-20}$  prior to analysis. The soil temperature over the 50 day sudy was 18 -0.5 °C, with 5-13 hours surrought per day with additional irrigation of the soil when the soil moisture fell below 12, who Both 2,4-D and MCPA were added to the soil plot at approximately 80 mg/og soil. Contiguous Attraction and pre-concentration of phenols from the soil was uppertaked. The method of analysis was shown to have a LOD for 2-chlorophenol of 30 µg/kg and precision RSD 0.5.8%

2-chlorophenol was identified as one 6 6 metabolius during the regradation of 2,4-B and ACPA. The rapporteur could not elucidate a 0T₅₀ cov the degradation of the metabolius 2-chlorophenol from the paper however, it was clear that following formation after 2 days 2-chlorophenol levels peaked between 5 and 11 days and dropped below the byel of electric in after 015 days in the surface horizon of soil (0 – 10 cm).

Report: Title: Report No.: Document No.: GLP/GEP

The degradation of chorophenols was in estigated in soil percolation experiments. Chlorophenols in tap water with or without the addition of 10% stock mineral solutions were allowed to percolate through columns of soil erungs (1 – 0 mm). Most experiments used Rothamsted allotment soil (light clay, pH 6.8) Chlorophenol concentration were estimated using the method of Redman, Weith and Brock: dilution with water HICl and a bown access of N/10 KBr-KbrO₃ mixture added. The mixture was allowed to stand for 2 minores, 25% KI solution was added and the liberated iodine was titrated with N/18 sodium this allphate solution using stars as internal indicator.

2-chivrophenol (referred to a o-chivrophenol) was percolated in a mineral solution through Rothamstead soil. The first vercolation showed a decline of 2-chlorophenol from 25 to 10 mg in 10 days. Later percolations how of faster declines. Degradation of 2-chlorophenol when percolated through stephesed soil was about half the rate of that in un-sterilised soil. Addition of 0.1% sodium azide did for alto the rate of degradation of 2-chlorophenol in the percolator system.

The Rapport at notes that to details of the temperature in the percolator during the experiment are provided.

****



## KCA 7.1.2.1.2/09 ; 1988; M-063808-01-1 **Report:** Title: Toxicity and bioaccumulation of chlorophenols in earthworms in relation to bioavailability in soil Report No .: Lit. 5358 Document No .: M-063808-01-1 Guideline(s): Guideline deviation(s): ---**GLP/GEP:** no The paper investigated the acute toxicity of five Morophenols Including 3 morophenol earthworm species. The two sandy soils used where soil (pH 5.6 jo 1 N 2.4% clay and CEC of 10 meq/100 g and soil (p1)4.8 in 4 N KCl, 3.% OM 91.4% Gay and CEC 6.6 meq/100 g. Soils were collected from the top 90 cm of agriculture fields, sieved, air dried and stored till use. Chemicals were wixed wimogenously through the oils (3-chlogophenol dissolved in water with addition of a few drops of whan of The repisture content of the soils was raised to 16% w/w. Glass jars were incubated at the optimum temperatures for the Owo species of works i.e. 23 and 15 °C. Soil samples were acidited and extraced with tolugie. The tolugie was then entracted with a K₂CO₃ solution. Chlorophen were acetylered by addition of a stic a stydric and petroleum ether to this extract. The acetates betained were analysed by ALC with EGP. The paper gives DT 50 values for 3-chlorophenol in the 2 soils a 2.1 2.6 da at 1.05C and at 2.50 5.4 days at 23 °C. The Rapporteur notes, however, that DFS values for chlorophenols with the halogen at different positions on the ring cannoble excapolated. However, it has been shown that the nota position (i.e. 3-chlorophenol) is usually more resistant to degradation that the ortho position (i.e. 2-chlorophenol) therefore it would be superception that 2 chlorophenol would show more rapid degradation than seen in this experiment for 2 blocks and 2 this experiment for 2 chlorophene

 Report:
 KCA 7, 52.1.2/10
 (992; M-065729-01-1

 Title:
 Loss & organic chemicals in foil: part como und treatability studies

 Report No.:
 MC 92-016089

 Document No.:
 M-065729-01-1

 Guideline(s):
 Anne

 GLP/GEP:
 no

Various organic chemicals were screened in determine their loss rates from an acidic soil and a slightly basic soil in activity back mixing cosms. The acid soil from Mississippi was a sandy loan wil (pH 4.8, CPC 6.5 meq.000 g. and 0.9% OC) whilst the slightly basic soil from Texas was a sandy silt loam (pH 7.6, CPC 10.8 meq.100 g and 3.25% OC). Both soils had active microbial populations typical of agricultural series. For bowing collection soils were air-dried, sieved and stored at 4 °C in the Oark. No stepse controls were used therefore loss of the chemicals may be due to biodegradation, chemical begraterion, bydrolysis and volatilisation although previous experience with the soils of apout 50% field capacity. The soils had not had previous exposure to industrial chemicals of waster and bid not receive any pre-treatment. Samples were incubated at 20 °C in the dark. Extraction of phenolic compounds was done with methylene chloride. Concentrated methylene chloride extracts were analysed by capillary-column GC using method 8040 (US EPA, 1986). Prescreening determined acceptable levels for the addition of the chemicals whereby insignificant inhibition of soil microorganisms would occur. 2-chlorophenol was added at 400 mg/kg soil to the basic soil and at 300 mg/kg soil to the acid soil. Recovery efficiencies for 2-chlorophenol were 23% in

# Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

the basic soil and 25% in the acid soil, reported concentrations therefore include a correction factor for efficiency. The first order  $DT_{50}$  for 2-chlorophenol was calculated to be 7.2 days ( $r^2 = 0.95$ ,  $w^{3/2}$ ), confidence intervals 6.3 - 8.7) in acid soil and 1.7 days ( $r^2 = 0.98$ , 95% confidence intervals 1.5 (9) in  $s^{3/2}$  the basic soil. [Data in the paper indicated that the  $DT_{50}$  for chlorophenols with the chlorine substituted in the meta-position (i.e. 3-chlorophenol) had greater half-lives than substitution in the ortho or para positions.]

Updated kinetic evaluations of the degradation behaviours of major degradation products in soil under aerobic conditions in the dark in the laboratory have been performed according to FOCUS kinetics (2006) to derive kinetic parameters suitable for modelling purpose and environmental risk assessment. A summary of the degradation rates of flux astrobin and its major degradation products in soil in the laboratory is given at the end of section CA 7.1.2.

## New kinetic evaluation submitted for Annex PRenewal

Justification for including this study in the Annex I Renewal Dossier. The objective of this study is a kinetic evaluation of the aerobio soil metabolum stories of fluxastrobin (CA 7.1.2.1.4) included in the baseline dossier) and ito major degradation, product HEC 5725 des-conforophenyl (M48) (CA 7.1.2.1.2 also included in the baseline dossier). The ordulation was conducted to derive kinetic parameters according to EFSA Guidance 2014 and FOCUS Guidance 2014.

1

A.

Report:	KČA 7,4,2.1.2/11,5,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,2,0,5,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7
Title:	Kinet evaluation of aerobic aboratory soil degradation of nuoxastrobin according to
Ű	FOCUS kinetics using Kinetii 2.1 S
Report No.:	$E_{A}Sa-15$ $U$ $32$ $U$ $\sim$
Document No.:	$M-534492-0121$ $\gamma$ $\gamma$ $\gamma$ $\gamma$ $\gamma$
Guideline(s):	- EFSA, 2016. Guidance Decument for evaluating laboratory and field dissipation
, ^v 0 ⁷	studies to obtain DegTs0 values of active substances of plant protection products
	and transformation products of these active substances in soil, European Food
je G ^a	© Safety Authority (EFSA), Parma, Italy, EFSA Journal 2014;12(5):3662
	² - FQCUS, 2006: Guidance Document on Estimating Persistence and Degradation
S.	Kinetics from Environmental Fate Studies on Pesticides in EU Registration. Report
ő.	A of the COCUS Work Group on Degradation Kinetics. EC Document Reference
	Q *Sango 10058 2005; * 2.0, June 2005;
~~ Č	- FOCUS, 2014: Generic gurdance for Estimating Persistence and Degradation
.4	Sinetics from Environmental Fare Studies on Pesticides in EU Registration,
- A	Version 1.1: Date: 18 December 2014
	* OECD, 1995: Final report of the OECD workshop on selection of soils/sediments,
. 4 . Y	1695.25 Belgirate, Italy 18-20 January 1995
× ×	- VECD 2002: DECD Suddeline for the testing of chemicals - Aerobic and anaerobic
Contraction de la contraction	transformation in solt. OECD 307, adopted 24th April 2002
Guideline deviation(s):	onot applicables Q
GLP/GEP:	
Å å	
	Ŭ O

## Executive Summary

The purpose of this study was to estimate normalised (20 °C, pF2) degradation times ( $DT_{50}$ ) for use in model simulations of environmental exposure (modelling endpoints) and to estimate trigger endpoints (trigger endpoints) for fluoxastrobin and its major degradation product HEC 5725-E-des-chlorophenyl (*M48-E*).

# Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

The present report comprises the evaluation of the data according to the most recent FOCUS Kinetics report (FOCUS, 2014). Degradation parameters were fitted with the software KinGUI 2.1. Four kinetic models, Single First-Order (SFO) and the bi-exponential models FOMC (First Order Multi-Compartment model), DFOP (double first order parallel) and HS (Hockey stick) are assumed to adequately describe the degradation of the applied substance in laboratory trails (FOCUS, 2014, and EFSA, 2014).

For HEC 5725-*E*-des-chlorophenyl (*M48-E*) the kinetic evaluations are based on the so of fluoxastrobin laboratory degradation studies (CA 7.1.21.1).

In addition, the apparent dissipation of HEC5725 d-des-chlorophenyl (M48) in soil was evaluate conservatively, starting from the observed maximum onwards until end of the study.

The DT₅₀ values (trigger endpoints) for HEC 5725-des chlorophenyl (M48) range, from 45.7 to 206 days,. The non-normalised modelling endpoints range from 43.6 to 206 days. The dormalised (20 °C, pF2) modelling endpoints range from 41.6 to 111 days with a geometric mean of 62.0 days. The derived degradation rates are considered appropriate as input for modelling purposes. The data are summarised in Table 7.1.2.1.2-4 and table 7.1.2.1.2-5.

Table 7.1.2.1.2- 4: Trigger endpoints of HEC 5725-E-des-chlorophenyl M48-E, lab degradation

Study		<del>v s</del>	<del>- Ø'</del> 6	Kingtia	SFO DT.
Study			~~ _~	Kinetit Os	
			, <i>4</i>	s expe	○ [uays]
			, 		
		AXXX, ring 3-la	ibel i	DÉMP &	× 53.5
(2001) M-091500-01-1					00.0
	"O	Zring 3 Jabel 🙏	, ,	ØĎFOP∜	206
(2001) M-091507-01-1	' (Fi	ng 2-label ्~Ŏ		Ç DF <b>@</b> ₽	49.0
	, <i>ri</i>	ng Stabel		DEOP	42.7
ð 4 .	, O , g	somean 🖉 🤇		<i>a</i> _n	45.7
		All tring 3-table		🖋 SFO	101
Maximum S					206
a) SFO Single first order DFO	P.Double first or	ter in parafiel			
b) soil included in m	ean only once, wi	h its geomean.	2		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		O O	$\gg$		
	S D		-G		
			D"		
	S at				
	Q, v				
	s à é				
Y S	i pa Q	~~~			
Q1	~ _ O	A .			
A A		Q.			
	× . ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	0			
	S Y				
	, 3				
	·				
Ő					

Table 7.1.2.1.2- 5: Modelling endpoints of HEC 5725-E-des-chlorophenyl (M48-E), lab degradation

Study	Soil	Kinetic	SFO DT50] 🖉
		type ^{a)}	[days] metabolite	6 ⁷
		parent 💍	non-norm. Jo rm. <u>b</u>	_
	AXXa, ring 3-label	- Alexandre	×	,
		FOMC	48.6 .0	Ĉn
(2001) M-091500-01-1	*	s de la companya de l		Ý
	, ring 3-label	FOP	206 3 14	
(2001) M-091507-01-1	, ring 2-label	FOMC (46.9	
	, ring 3-label	FOMC of	\$1.1 39. \$	
	, geomean 🖓		<u>,</u> 43.6 41≥6	
	Alk ring 3 abel	SFQ A	67.0	
Geometric mean		0' 6 0	62.1 ^{c)}	0
Maximum				
a) SFO: Single first order, FOM	IC: First order multi compartment, DFOP. Dou	ible first order in pa	rattel 🖉 🔔	_

b) normalised to 20°C and pF2

c) soil included in mean only one, with its geomean.

🔉 I. 🤇 METHODS

Soil residue data from the aetobic soil degradation studies of fluoxastrobin (CA 7.1.2.1.1) were used. In these studies, the degradation of fluoxastrobin was studied in Soil **CA** 7.1.2.1.1) were used. Ioam), soil **CA** 7.1.2.1.1) were used. AXXa (sandy loam), soil **CA** 7.1.2.1.1) were used. (silt) under aerobic conditions in the dark in the laboratory at 20°C. The conditions varied in soil type, soil moisture (40% MWBC or 75% of \$73 bar and application rate (200, 600 g a.s./ha).

The metabolite (DEC 5725-E-des-chlorophen (M48-E)) was fitted together with the parent compound, to describe beep its total degradation pathways. Detailed or formation on the kinetic analysis is given in the corresponding chapter of the parent compound in section CA 7. (2.1.1).

In addition, the apparent discipation of HEC5725 des chlorophenyl (*M48-E*) in soil was evaluated, conservatively, starting from the observe of maximum onwards intil end of the study.

RESULTS AND DISCUSSION

The trigger endpoints and statistical parameters for 4EC 5725-*E*-des-chlorophenyl (*M48*) are given in Table 74.2.1.2- 6. As summary of the best fits of the trigger endpoints of HEC 5725-*E*-des-chlorophenyl (*M48*, *E*) is given in Table 74.2.1.2-9 in the Executive Summary.

The non-normalised modelling endpoints and statistical parameters for HEC 5725-*E*-des-chlorophenyl (*M48-E*) are given in Table 7.1.2.1 \bigcirc 6. The modelling DT₅₀ values were corrected to pF2 and an ambient temperature of 20° \bigcirc . Calculated correction factors for all trials are given in Table 7.1.2.1.1-5 in the chapter of the parent compound. A summary of the best fits non-normalised modelling endpoints and the corresponding normalised modelling endpoints are given in Table 7.1.2.1.2-10 in the Exceptive Summary.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

						~~	
model for	kmas	DegT.50 48		trest	\mathbb{Q} \mathbb{Q} \mathbb{Q} \mathbb{Q} \mathbb{Q}	formation fraction	visual
parent	<u> </u>	Ŭ Ĝ		ŠÝ Š	, 0 ⁴ . 7	fFxa-M48	fit
		Ó h o	1 1.0	$\sqrt{2}$	\$ ³ %		
			<u> </u>				
	° .	(2001)	M-091500	-01-1@CA 7	1.2.1.1		
	AXXa (ring	3-laber) 🐔		8 X			
FOMC [®]	0.01444	<u>48.00</u>		> < 0,001	^(۲) 4.01	0.4539	+
		(2001) N	4-091507-01	I-1, ĈA 7.1	2.1.1		
	(ring 3-label)			S S			
DFOP	0.003361	~ ⁰ 2062		♥ 0.@66	1.06	0.5210	+
<u> </u>	ng 2-label) 🖉			× ×			
FOMC	0.014987	46.25		Q<0.001	4.80	0.5603	+
(ri	ng 3-label)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/			
FOMC	0.016857	44.12		< 0.001	6.20	0.5312	+
	AII (ring 3	B-label)	<u></u>				
SFO	0.006892	0 100.6	~Q	< 0.001	5.73	0.5372	+
visual accepta	bility, 4	+ good, o med	ium, - bad				
£.,	Si A	J.					

The apparent dissipation of HEC 5725-*E*-des-chlorophenyl (M48-E) in soil was evaluated, conservatively, starting from the observed maximum onwards until end of the study.

Only in 2 soils, at least 4 data points have been available from the maximum onwards: AXXa, and ring 3-label.

The visual assessment, χ^2 test and t-test in both soils did result in an appropriate fit, assuming an SF₀O decay. Based on the good visual assessment and the low number of data points, bi-phasic models fave been considered not to lead to any improvement and where therefore not taken into account. Õ

In general, it has to be noted that apparent dissipation half-lives of a metabolite give a voy conservative description of its degradation behaviour and are mainly useful in cases, where no proper degradation rates can be fitted in pathway fits. Results of the evaluation of the apparent dissipation of HEC 5725-*E*-des-chlorophenyl (*M*48-*E*) are shown in Table 7.1.2.1.2-8

Table 7.1.2.1.2- 8: Estimated SFO dissipation rates of MEC5725-E-deschloropheny in aerobic lab studies from maximum onwards, for modelling or trigger purpose; not meisture

	nor	malised	Q	10** D	\sim	Ŭ '	°, °	Q Q	¥
kinetic	Mo	kslow	t-test	DisT50	DisT90K	Dis T🗞	2-test	visual fit	t
model			ksim	Ømitial 📈	j initial	modelling	Serror	.4	
	[%]	[1/d]	4	∭days]	[days]	[days]			1
		(2001)	M-0915003	Ø1-1 CA7.1.	.2,1	A Ô	,		
	AXXa				ý "ô		S .		
SFO ^{t, m}	23.73	0.00701	~~ < Q.0 01	~~98.89Q ²	3285	98.89	3.948	+	
		(2001)	MØ91507	01-1, ČÁ 7	7.1,2%1.1	ð å	y St	. 43	
			Ø Ø	ð	S' i) 	Ö	°~/	
	(ring 3-labe	l) 🧶 -			Ŭ Q	O,	8 \$		
SFO ^{t, m}	29.68	0.01118	∞©001	61.97 [°]	205.9	\$61.97	<u>4.</u>	+	
visual acco	eptability: + goo	od, o medium 🖓	· bad~	, O	*		l D		
t ł	best fit model fo	r trigger evaluation	on 6 K	L c	_^ K	, ^x			
m ł	best approach fo	r modelling purp	ose 45	NO Ô	y G	s,			
	*		Ş O	Ö 📎	Ň	& ?	\sim		
	Ň			y Li	Q	o' 4	1		
	, and a second s	Å . Ø			K s.	Ø1			

The DegT₅₀ values (orgger and points) for HEC_{57} (25-cas-chlorophenyl (*M48-E*) range from 45.7 to 206 davs...

The non-normalised modelling endpoints range from 43% to 206 days. The normalised (20 °C, pF2)

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

New kinetic evaluation submitted for Annex I Renewal

Justification for including this study in the Annex I Renewal Dossier: The objective of this study is a kinetic evaluation of the aerobic soil metabolism study of HEC 5725-carboxylic acid (*M49*) (CA) 7.1.2.1.2, included in the baseline dossier. The evaluation was conducted to derive kinetic parameters according to EFSA Guidance 2014 and FOCUS Guidance 2014.

Report:	KCA 7.1.2.1.2/12
Title:	Kinetic evaluation of aerobic laboratory soil degradation of HEC5795-castoxylic and
	according to FOCUS kinetics using KinGui 2.1
Report No.:	EnSa-15-0328
Document No.:	M-534569-01-1
Guideline(s):	- EFSA, 2014: Guidance Decument for evaluating aboratory and yield dissipation
	studies to obtain DegT&O values of active substances of plant protection products
	and transformation products of these active substances in soil, European Food Safety
	Authority (EFSA), Parma, Kaly, EFSA Journal 2014,12(5):3662
	- FOCUS, 2006: Guidance Document on Estimating Persistence and Degradation
	Kinetics from Environmental Fate Studies on Posticides in EU Registration. Report
	of the FOCUS Work Group on Degradation Kinetics, EC Decument Reference
	Sanco/10058/2005 3.2.0, June 2006 20 5 5 5
	- FOCUS, 2014: Generic guidance for Estimating Persistence and Degradation
	Kinetics from Environmental Fate Studies on Resticides in EU Registration,
	Version: 1.1; Date: 18 December 2014
Guideline deviation(s):	none & D & g & Y & g
GLP/GEP:	
Justification:	New data / guideline requirement
×	Kinetic analysis of the degradation of plajor degradation product HEC 5725-
<u>í</u>	carboaylic acted for trigger and modelling purpose
Į.	
õ.	
Executive Support	
Or Ar	

A kinetic analysis of soil residue data from the aerobic soil degradation study M-033798-01-1 was performed according to FOCUS kinetics (2006) to derive half-lives (DT_{50}) for HEC 5725-carboxylic acid (*M40*), a degradation product of fluoxastrobin, which are suitable for model simulations of environmental exposure (modelling endpoints) and to estimate trigger endpoints (trigger endpoints). The kinetic evaluation was performed with the software KinGUI 2. In this evaluation, the initial soil concentration was free fitted together with the degradation rate, based on the IRLS error model (Iteratively reveighted least square).

Single fußt order was the most appropriate Kinetic model for modelling and trigger purpose for the degradation of HEC 725-carbox tic acid M40 in soils AIII and AIII and

4a and double first order in parallel/hockey-stick for soil AXXa under aerobic conditions in the dark in the laboratory at 200°C and 50% of the maximum water holding capacity.

The DT_{50} values (trigger endpoints) for HEC 5725-carboxylic acid (*M40*) range from 10.9 to 21.9 days. The non-normalised modeling endpoints range from 10.9 to 28.6 days. The normalised (20°C, n^{12}) modeling endpoints range from 10.9 to 26.7 days with a geometric mean of 17.0 days. The derived degradation rates are considered appropriate as input for modeling purposes.

Table 7.1.2.1.2-9: Trigger endpoints of HEC 5725-carboxylic acid (M40), lab degradation Study Soil Kinetic **DT**50 Type ^{a)} [day SF AIII DØØP (2002) M-033798-01-1 AXXa **«SFO** 4a Maximum a) SFO: Single first order, DFOP: Double first order in parallel Table 7.1.2.1.2- 10: Modelling endpoints of HEC 5725-carboxylic acid (M49), lab Qegradation **kinetic** Study Soil **∞D**¥ 50 [days] type non-norm. norm. () 16.9 (A) III \$FO Ô 21.66 🖗 (2002)slow phase 28.64 26.7 AXX M-033798-01-1 10,91 10.9 SFÒ Ø Geometric mean 17.0 a) SFO: Single first order, HS: Hockey-stick b) normalised to 20 °C and pF2 \checkmark

Soil residue data from the active still degradation study M-033798-01 were used. In this study, the degradation of HEC 3725-carboxyric acid (M40), a degradation product of fluoxastrobin, was studied AXXa (sandy loans) and soil ANP(silt loam), soil in soil (silt) under aerobic onditions in the dark in the dark of the maximum water holding capacity.

Ø METHODS

The degradation kinetics was determined according to FOCUS kinetics (2006) using the software KinGUI2 with four afferent kinetic models: single first order SFO), first order multi compartment (FOMC), hockey-spek (double first order sequential MS) and double first order in parallel (DFOP). Model input datasets were the residual amounts found in each replicate test system at each sampling interval.

Calculation of DT_{50} / DT_{50} values: A fail-life is defined as the time taken for 50% of substance to disappear dissipate from a compartment following single first-order kinetics, whereas DT50 and DT90 values are not strictly connected to a first order kinetics. In this report half-lives, DT₅₀ and DT₉₀ values are calculated from the appropriate rate constant, k as $DT_{50} = \ln(2)/k$ and $DT_{90} = \ln(10)/k$, respectively.

Normalisation of fitted DT₅₀ alues (modeQing endpoints): Conditions like temperature and moisture are assumed to keep steady in the laboratory, but they can differ from the so called "standard" conditions as they are required for DT₃ values as input parameter in models. Therefore, the modelling DT_{50} values we corrected to pF2 and an ambient temperature of 20°C. According to EFSA (2008), Q_{10} was set to 20°C.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

II. RESULTS

Single first order was the most appropriate kinetic model for modelling and trigger purpose to the degradation of HEC 5725-carboxylic acid (M40) in soils A and 4a. For the degradation of HEC 5725-carboxylic acid (M40) in sol double first order in parallel and hockey-stick were the most appropriate kinetic model for modelling. and trigger purpose, respectively. The trigger endpoints and statistical parameters for HEC 5725-carloxylic acid (040) are given in Table 7.1.2.1.2.1.1. A summore of the base of the formula of the base of Table 7.1.2.1.2- 11. A summary of the best fits of the trigger endpoints of HEC 725-carboxybe acid (M40) is given in Table 7.1.2.1.2-9 in the Executive Summary. The non-normalised modelling endpoints and suffisical parameters for HEC 5729-carboxylic_scid (M40) are given in Table 7.1.2.1.2- 12. The modelling DT values were corrected to pF2 and an ambient temperature of 20 °C. Calculated conference in temperature of 20 °C. Calculated conference in teacher and the optical of the set at a non-non-marked modelling endpoints and the corresponding normalised modelling endpoints are given in Table 1.2.02 - 10 in the Exceptive Summary. ambient temperature of 20 °C. Calculated correction factors for all frials are given in Table 7.1.2.1.2- 11. A summary of the best fits non-normalised modelling endpoints and the

<u>Trigger</u> endpoints and statistical parameters of HEC 5725-carboxylic acid (M40), Table 7.1.2.1.2-11: lab degradation Ŵ

lab de best fi	egradation ts highlighted in bold	letters					
Kinetic model ^{a)}	Fitted	χ^2 error	t-test	Visual	DT 50	D1 90	
	parameters	[%]	kslow	fit ^b	🦉 [days]	~{days	D
(2002) (C	A 7.1.2.1.2)			4	Ś		Ča
AIII			Ĉs	Å,	×,×		
SFO	M ₀ : 104.2	4.306	< 0.001	V +	2.66	₽ [¥] 71.94	
	k: 0.03201	L.	, Õ	>			"O"
FOMC	M ₀ : 104.2	4.599	< 0.000	+	21.66	70.95	Ĩ
	α: 8031	(C)		, Ç			r
	β: 2509	₽\$°					
DFOP	M ₀ : 104.2	Ky 4.96₽	~0.00} [∞]	×.	21.66 ×	71.94	
	k ₁ : 0.03202		õ õ	S.	O ^y L	A	0
	k ₂ : 0.03201	. ° ~	v Q ,		0″		ł
	g: 0.000			, Ô ^v	×.		
HS	M ₀ : 1002	∀ 4.96¢	°, (100.00 €	×7	\$21.66	7594	
	k1: 0,09715 🌾) (\$ \$	
	k2: 03201	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\Psi' \sim $	p "S		<i>Q</i>	
	tb 🛠 0.001	6 Q	Å, O	۰ 0			
		d' S		Ĩ,	»° «,		
AXXa		°0'	Å Ö ^v	Ô,			
SFO	Mr. 90.8	Ø.197 Q	r < 0.001	0,7	24.46	81.24	
\$	k. 0.02864				40		
FOMC	A M ₀ : 93.0	6,167	[∞] <0.≵85	<u> </u>	\$ 21.08	122.1	
	α: \$ 6622						
Į į	β. 90.7394	N 5	C a, C	~~			
DFOP	∑ <u>~</u> M₀: 960 ∧	3.920	\$ 0.00K	, Ø	21.91	89.38	
	Śk₁: 0¢55206 ∕∕			J.			
	○ k ₂ : @02385			Ű			
	🖞 g; 0.15686 🕺	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
HS 👷 🔬	≪M₀: 96,0	3.248	_Ø 0.004Ø	+	22.14	88.63	
	₹\$k ₁ : 0 £ \$664	S.					
	k2:0.0242	No la	م م				
	tlc>3.00001						
<u> </u>			ð,				
			à'	-		-	
SFO 🖓 Ô	Mor 112.25	2.689	< 0.001	+	10.91	36.24	
Č L	0.06354	6 0					
FOMC	~M₀: 102.2 >>	2,842	< 0.001	+	10.91	36.24	
	α; 16260	.~Q [*]					
w S	β 255900	ху́					
DFOP .	∑M ₀ : 112.2	≫ [™] 3.031	0.5	+	10.91	36.24	
	k ₁ : 0.06354						
A A	k₂;0,000000 ♥						
	g: 1.00000						
HS A A	M ₀ : 111.8	1.483	< 0.001	+	11.27	34.06	
	\bigcirc k ₁ : 0.06150						
je si	k₂: 0.1025						
	w tb: 28.97	1		I			1

SFQ Single first order, FOMC: First order multi compartment, DFOP: Double first order in parallel, Æ, HS Hockey-stick Usual fit: + = good, o = moderate, - = poor

b)

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Table 7.1.2.1.2- 12: Modelling endpoints and statistical parameters of HEC 5725-carboxylic acid (M40), lab degradation (non-normalised) best fits highlighted in **bold letters** Kinetic model ^{a)} Visual fit b) **Fitted parameters** t-test DA 5 χ² error [%] *day k_{slow} (2002) (CA 7.1.2.1.2) AIII SFO M₀: 104.2 4.306 🔊 < 0.001 Ø k: 0.03201 FOMC M₀: 104.2 < 0.00 a: 8031 β: 2509 DFOP M₀: 104.2 k1: 0.03202 k₂: 0.03201 g: 0.000 💒 21.6 HS M₀: 104.2 $k_1: 0.03515$ $k_2: 0.03201$ \bigcirc Ò Ø \$0.001 tb: AXXa < 001 M₀: 90.8 SFO 24.46 O Ô k: 🕼 02834 Ĉ MR: 93.0 FOMC 36.76 : 1.6<u>62</u>Ž 40.9394 .0010 DFOP 46,×96.0_∅ 29.06 0.55206 0.02385 **ŽŠ6**86_{1,} O 0 HS 96.0 28.64 + M_0 : 0.076**6**4 ¥ž2: 0.02∰21)tb: 3.0000 M₀: 112.2 k: 0.06354 SFO Ò 689 < 0.001 +10.91 FOMC 112 2 < 0.001 10.92 + 16260 255000 DFOP 112.2 10.91 ^{c)} 0.5 + @.0635**@** 6 1.00000 HS Mg: ¥11.8 1.483 < 0.001 6.76 +0.06150 ¥2: 0.1025 tb: 28.97

SFO: Sungle first order **FOMC**, First order multi compartment, DFOP: Double first order in parallel, HS: Dockey Ock

a) tor modelling: FOMC: D_{10}^{2} = DT_{90, FOMC} / 3.32;

- DFOF or HS: DT₅₀ of slow phase
- not significantly different from 0, t-test > 5 %

b) Visual fit: += good, o = moderate, - = poor

c) DT₅₀ mod based on k_{fast}, as g_{fast} is 1

Table 7.1.2.1.2- 13:	Calculated correction factors for temperature and moisture normalisation	n for all	
	trials	Ň	R

Soil		Temperature	•	Moisture		Correction factor
		Study [°C]	exp. MWHC g/100g ds	exp. study g/100g ds	at FC / pF 2 [@] g/100g ds	(moist. + remp. f. DT 50)
	(2002)	(CA 7.1.2.1.2)		ð		
	AIII	20	36.4	18.2	Q 6	0.7391
	AXXa	20	34.42	× 17.21	<u> </u>	099331
		20	63.1	31.55		

field capacit defined to be water coutent at estimations for classified soils taken from FOCUS report (H a) pF 2 (10 kPa)

0) Fange from 10.91 to The DT₅₀ values (trigger endpoints for HEC 52 carboxylie 21.91 days. Ŵ The non-normalised modelling empoints range from 10.91 to 28.64 days. The normalised 20°C, pF2)

modelling endpoints range from 10.91 to 26.72 days with a governer mean of \$7.01 days. The derived degradation rates are considered appropriate as input for modeling purposes. O

CA 7.1.2.1.3 Anaerobic degradation of the active substance &

Due to the proposed use pattern of fluosastrobin as a fungiode applied to cereals, an anaerobic soil degradation study was not considered to be required. Therefore no studies on the route and rate of degradation of fluox strobin in soil under anaerobic conditions were submitted for the Annex I inclusion. However an anaerobic soil metabolism and degradation study of fluoxastrobin was performed in 2014 and is submitted within this supplementary dossier for the fluoxastrobin renewal approval (M-486558-0 C), CAT.1.1 S.

New study submitted for Annex Renewal

Justification for including this study in the Annex I Renewal Dossier: This study was conducted to cover metabolism and degradation of fluoxastrobio in soif under anaerobic conditions. A full study summary is in luded in Section 647.1

Executive Summary,

The degradation date as reported in this study were kinetically evaluated. The experimental data could be well described by a strigle faist order (SFO) kinetic model. The half-life of fluoxastrobin under anaerobic conditions was 195 days in the investigated soil. Q,

MAGERIALS AND METHODS

Details of the suddy conduct and its results are summarized under (CA 7.1.1.2). Nonlinear regression analysis was used to determine the kinetic parameters (KinGUI 2), and linear regression analysis was used to determine the radioactivity detector response.

For the evaluation of the data three different kinetic models (Single First Order Model (SFO), First Order Multi Compartment Model) FOMC) and Double First Order in Parallel Model (DFOP)) were tested in order to determine the best-fit kinetic model. The best-fit kinetic model was selected on the basis of the chi² scaled-error criterion and on the basis of a visual assessment of the goodness of the fits. DT₅₀ and DT₉₀ values were calculated from the resulting kinetic parameters.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

II. RESULTS AND DISCUSSION

The SFO, FOMC and DFOP models were used to fit the observed degradation of fluoxastrobits in the sanaerobic soil metabolism study.

The degradation of fluoxastrobin followed single first order (SFO) kinetics based on chi² error values and visual assessments of fits.

The chi² scaled-error statistic for the SFO model was 2.6%, with calculated DT_{50} and DT_{90} values of 195 and 649 days, respectively. The chi² scaled-error statistic for the FOMC model was 2.7%, with calculated DT_{50} and DT_{90} values of 196 and 649 days, respectively. The chi² scaled-error statistic for the DFOP model was 2.9%, with calculated DT_{50} and DT_{90} values of 196 and 649 days, respectively. The chi² scaled-error statistic for the DFOP model was 2.9%, with calculated DT_{50} and DT_{90} values of 195 and 649 days, respectively. The SFO, FOMC and DFOP kinetic end-points are summarized in the calculated T_{50} and DT_{90} values of 195 and 649 days, respectively.

 Table 7.1.2.1.3-1:
 Summary of the kinetic evaluation (for thigger values according to FOCUS) of the degradation of fluoxast Obin yrder apaerobic conditions

	1	~~			
Soil	Kinetic	∞19 T 50 ∧	DT ₂₀	Chi? error	y Visual 🦉
(Texture (USDA))	Mødel ^{a,b)} /	√daysĵ>	[days]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Assessment ^{c)}
4a	SFO	195	649	2.6	V A O
(silt loam)	FOME	×196	649	27	
Å	Q DFŎP	195	649	02.9	
a) SFO: Single first order, FOMC:	First order mut	compartn	nent ØFOI	P: Bouble for or	der in parallel

b) Best fits highlighted in **bott** tetters

c) Visual Assessment: + = good, o \neq moderate, - =

Fluoxastrobin is proderately degraded in soil unter anarrobic conditions following an aerobic incubation phase. Formation of significant amounts of nep-extractable residues indicates a participation of fluoxastrobin in the natural carbon code of soil. Therefore, fluoxastrobin and its degradation products are not expected to have a potential for accumulation in the environment.

CA 7.1.2.1.4 Anaerobie degradation of metabolites, breakdown and reaction products

New study submitted for Annex I Renewal Justification for including this study in the Annex J Renewal Dossier: This study was conducted to cover metabolism and degradation of Bhoxastrobin in soil under anaerobic conditions.

A fulksummary is induded in Section Crown.1.1.2 M-486558-01-1.

The route and rate of degradation \mathcal{O} [methoxyiminotolyl-ring-UL-¹⁴C]fluoxastrobin was studied in one soil under anaerobic conditions. Two degradation products were identified with the following maximum occurrences: HEC 5725-des chlorophenyl with 13.6% AR and HEC 5725-carboxylic acid with 16.9% AR

No information on the degradation rate of both metabolites in anaerobic soil was evaluated. A conservative, default estimate for the half-life of HEC 5725-*E*-des-chlorophenyl and HEC 5725-carboxyl acid under anaerobic conditions in soil can be assumed to be 1000 days.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

CA 7.1.2.2 **Field studies**

The dissipation and degradation of fluoxastrobin under field conditions were studied at eight sides in Germany, United Kingdom, France, Spain and Italy using unlabelled fluoxastrobin formulated as EC 100. Half of the trials were conducted without vegetation, while the other half of the trials were cropped with spring barley in the first and grass in the second year. The trial locations are characterised by different soil types and climates.

The kinetic models and DT_{50} values used for modelling purpose (cormalised to capacity) and best-fit evaluation are summarized at the end of section & 7.1.2.

CA 7.1.2.2.1 Soil dissipation studies

The dissipation and degradation of fluoxastrokin in soil under field conditions were evaluated during the Annex I inclusion using unlabelled fluox astrobin formulated as EC 100, and were accepted by the European Commission (SANCO/3921/07-Anal, 2012). The following study is included in the baseline dossier:

	0				
Annex Point / Reference No	Author(s	× . ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Year Year	Decument
KCA 7.1.2.2.1				2000	M-136670-01-1
	N Q				

hort sunthary & the A soil dissipation study was conducted

01 M-136670-01 **Report:** under field conditions (France, Germany, Title: Report No .: Document No .: 36670-01-1 995 amending Council Directive Guideline(s): Doctornt on Vield Spil Distration Studies, D/97/NM/2047 of socedur Ofor Assessing the Environmental Fate and Ecotoxicity ETAC guidennes (1995) Guideline deviation **GLP/GEP:**

Soil dissipation studies with 505 100 EC formulation) were carried out to (**G**ÉC investigat, the dissipation behaviour of flux stroky in soil under field conditions. Eight trials were located & typical agricultural regions of wither Europe (Germany, Great Britain and France) and southern Europe (Ernice and Italy). Halo of the trials were conducted without vegetation, while the other half of the trials were cropped with sprag barley in the first and grass in the second years. The trial locations were characterized by Offerent soil types and climates. Weather data were submitted. The trial plots had no history of strobilurin pesticide use.

A single stray application of flooxastrobin (as HEC 5725 100 EC formulation) was carried out to bare soil. In the case of the cropped trials, the application was done immediately after sowing of the spring Application details are outlined in Table 7.1.2.2.1-1. As applications were to bare soil, this barley. represented 2- to 9-fold overdose in terms of soil exposure as compared to practical conditions when foliar interception will occur. Therefore the trial design represented a worst case scenario.

Soil samples were taken as summarized in Table 7.1.2.2.1-1. Samples were frozen and stored for up to 27 months before analysis. A freezer stability report demonstrating stability of residues in soil after

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

14 months of storage was submitted (CA 7.1.2.2.2Error! Reference source not found.). Soil samples were analysed for the E- and Z-isomer of fluoxastrobin (HEC5725) and its metabgeres HEC 5725-carboxylic acid (M40) and HEC 5725-E-des-chlorophenyl (M48-E) according to we thod 00611 by (2001, see MCA Section 4). Soil metabolism studies showed that the Z-ippiner of the metabolite HEC 5725-des-chlorophenyl (M48) was only seen in very small amounts. However, as the E/Z ratio of HEC5725 carboxylic acid reference substance changes during the extraction process recovery rates and concentrations of both isomers were calculated as the sum of both some S. Solution samples were extracted with a mixture of acetonitrile/weer. Identification and quantification of the active substance and the metabolites were done by HPLC MS/MS doection. Stationcal in Prorection and graphical representation of the degradation behaviour of both fluoxastrobic isomos were done

The mean recoveries of the method, which were determined at fortification devels of 5, 50 to 200 μ g/kg, were 101% for fluoxastrobin-*E* comerc (RSD = 7.1%), 98.6% for HEC 5725-*Z*-Isomer (RSD = 8.4%), 88.6% for HEC 5725-carboxylic and (*M4*) (RSD = 14.9%) and 100% for HEC 5725-*Z*-Isomer (RSD = 8.4%), 88.6% for HEC 5725-carboxylic and (*M4*) (RSD = 14.9%) and 100% for HEC 5725-*Z*-Isomer (RSD = 4.4%). The limit of quantification (ISQ) was 5 μ g/kg for all analytes. The limit of detection (I OD) was stated as he *T* uc/kg for all analytes. analytes. The limit of detection (LOD) was stated to be 2µg/kg for all compounds Based on an application rate of 200 g a.s./ha, whicQis 125 µg a 4 kg sol (soil fayer 10 cm), foil depity 1.5 g/cm³), the LOD for the metabolites is about 1.5% of the applied amount of fluoxastrobin. The mean procedural percent during analysis of samples, which were determined at 5 and 50 g/g/kg Sere 100% for fluox stroby E-isomer, 101% for HEC 5725-Z-Isomer, 95.2% for HEC 5726 carboxylic acid (M_{\pm}^{40}) and 98.9% for IOEC 5725-E-deschlorophenyl (M48-E).

Frem son layer in samples offected up to 745 days Residues of the parent were found only in the 0 after application. Residues of HEC 5725-*E/Z*-coboxytic acid $M40^{\circ}$ were trot detected in any soil layer (< 2 µg/kg). EEC 5725-*E*-os-chtoophenyl (*MS*-*E*) as found in the 0 – 10 cm soil layer in samples collected in to 480 days after application. In three samples (R810404, day 204; R812439, day 13: R812447 and 14: R81247 an

ayu ($\sim 2 \mu g/kg$), gro 34,0-2-405-chrophenyl (M35-E) sas found in the 0 – 10 cm soil layer in samples collected in two 40 dars after application. Extince samples (R815404, day 204; R812439, day 13; R812447, dy 13) the metabolic waaralso (fund in the t^{0} – 20 cm soil layer below the LOQ. Maximum residues up to 8.75 $\mu g/kg$ dry soft appeared offer t^{0} – 258 days and dissipated to $< 2 \mu g/kg$ dre 199 – 614 days.

Fluoxastrobin

Table 7.1.2.2.1- 1: Summary of soil dissipation of fluoxastrobin in 8 field trials (cont.)

(cont.)			I				Į.	ð
Trial No.	Location/soil properties/plot size/bare or cropped	Application dates	No cores per sample core Ø/depth (cm)	DAA (days)	Residue fluoxastrobin (total E/Z isomer) (mg/kg) 0-10 cm depth. Levels of Z isomer above LOQ shown in brackets	Residue HEC5725-E- des-chlor Shenyl (M48) (202 kg) 0-10 codepth	Commentes	<u> </u>
R812439	France (North) Silt pH 7.06 OC 0.81% CEC 13 meq Ba/100g dry soil MC 46.4 g/100g dry soil Plot 360 m ² Cropped.	18 May 1998	10 control samples 20 treated samples At day 0 – 5/10cm Other sampling dates 4.8-5/50 cm. (One of the 2 collected 34s cores w	0 15 28 53 91 136 199 276 364 480 480 480 480 480 480 480 480 480 48	Snown in brackets 0.123 0.0785 (J1,1% Z) 0.0787 (J99% Z) 0.0744 (J2.2% Z) 0.0742 (11.4% Z) 0.0542 (11.4% Z) 0.055 0.0268 0.0226 0.0235 0.0268 0.0275 0.05755 0.0575 0.05755 0.		The monolite The monolite the Conference of the second the second of the second of the second the second of the	
R812447	, Italy Sandy Ioam pH 7.56 OC 0.48 CEC 13 meq Ba/100g dry soil MC 39 g/100g dry soil Plot 960 m ² Cropped.	28 April 1998	broke [109] 10 served 20 treated 30 tre	14 28 56 35 199 26 479 601 730 730	0.138 0.0 \$2 (16.2 \$2) 0.066 (15 \$2) 0.067 (13 \$9% Z) 0.067 (13 \$9% Z) 0.043 \$5 \$8% Z) 0.043 \$5 \$8% Z) 0.043 0.027 0.057 0.057 0.057 0.043 0.027 0.05	n.d. n.d. <doq LOQ n.d. n</doq 	My metabolite DEC5725-E/Z carboxylic acid (M40) was not detected.	
R812455	France (South) Sill Oxim OC 0.85 CEC 10 meq Ba/100g dry sof MC 38 g/100g dry soil Plot 350 m ² Cropped		10 cOtrol samples Prreated samples At tay 0 – Scorn Other sampon dates	15 15 28 56 98 201 268 720 268 74 268 74 268 74 268 74 268 74 75 74 75 75 75 75 75 75 75 75 75 75	$\begin{array}{c} 0.013 \\ 0.06 \\ 0.06 \\ 0.06 \\ 0.073 \\ (15 2\% Z) \\ 0.073 \\ 0.015 \\ 0.0369 \\ (19\% Z) \\ 0.0369 \\ (19\% Z) \\ 0.0369 \\ 0.074 \\ 0.0068 \\ 0.007 \\ 0.0068 \\ 0.0$	▼ n.d. <loq n.d. <loq <loq <loq <loq n.d. n.d. n.d. n.d.</loq </loq </loq </loq </loq 	The metabolite HEC5725-E/Z carboxylic acid (M40) was not detected.	
R814202	Germany. Sandy loam pH 6.32 OC 0.89 CEC 10 Geq Ba/100g dry s Ba/100g dry s M(2) 9.6 g/b/g dry Plot 250 m ²		10 control samples At a 0 – 5/10cm Other sampling dates – 4.8-5/50 cm.	14 26 56 740 208 264 362 474 600 725	0.127 0.110 (13.9% Z) 0.0752 (13.3% Z) 0.0577 (17.12% Z) 0.0300 (21.97% Z) 0.0141 0.0105 0.0118 0.0102 <loq n.d. n.d.</loq 	n.d. n.d. <loq <loq <loq n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d</loq </loq </loq 	The metabolite HEC5725-E/Z carboxylic acid (M40) was not detected.	

No additional studies are submitted within this supplementary dossier for the fluoxastrobin renewal of approval. However, updated kinetic evaluations of the degradation behaviour of fluoxastrobin in soil curve field conditions have been performed according to EFSA Guidance (2014) and FOCUS Guidance (2014) to derive kinetic parameters suitable for modelling purpose and environmental risk assessment. They are summarized under CA 7.1.2.2.1. An overall summary of the degradation rates of fluoxastrobin and its major degradation products in soil is given at the end of section CA 7.1.2.

New kinetic evaluation submitted for Annex I renewal Justification for including this study in the Annex I Renewal Dossier: The objective of this study is to estimate dissipation times (DT₅₀) of fluoxastropin (*E*- and *Z*-comer summed) at study conditions (CA 7.1.2.2.1, included in the Baseline Dossier) for trigger evaluation. The evaluation was conducted to derive kinetic parameters according to FOCUS Guidance 2014).

Report:	KCA 7.1.2.2.1/05
Title:	Kinetic evaluation of a field dissipation study with fluorastrobin in Europe according
	to FOCUS kinetics for trigger surpose using KinGui 2. Y - E + - isomer summed
Report No.:	Ensa-15-03670 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Document No.:	M-534457-61-1
Guideline(s):	- EFSA, 2014: Guidance Document for evaluating laboratory and field dissipation
	studies to obtain DegT50 values of active substances of pland protection products
	and transformation broducts of these active substances in soil, European Food Safety
	Authority (EFSA), Parma Italy, EFSA Journal 2914;12(5):3662
	- FOCUS, 2006: Guidance Doctment on Estimating Persistence and Degradation
	Kinetics from Environmenta Prate Sudies on Pesticides in OV Registration. Report
le la	of the FOCUS Work Group on Degradation Kineties. EC Document Reference
Ű	Sanco/10058/2005, v.2.0 June 2006
	OOCUS 2014 Generic guidance for Estimating Persistence and Degradation
Č,	Kinefies from Environmental Fate Studies on Pesticides in EU Registration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Version: 10 Date 18 December 2014
Guideline deviation(s	not applicable
GLP/GEP	not upplication of the opplication of the opplicati
Iustification	Vew daya / guideline requirement:
	Kingthe analysis of the degredation of fluor strokin for trigger evaluation
~Q``	

## Executive Summary

The purpose of this guidy was to estimate dissipation times  $(DT_{50})$  at study conditions for use as trigger endpoint. The dissipation of fluorastrobin and the metabolite HEC 5725-*E*-des-chlorophenyl (*M48-E*) in agricultural soils under natural field conditions was investigated in eight trials in Europe (2001, CA9.1.2.2.1, included in the baseline dossier). The kinetic evaluation was performed according to the guidance given, by the FOCUS Kinetics report (FOCUS, 2014). Degradation parameters were fifted with the software KinGUI 2.1.

Three kinetic models, Single First-Order (SFO) and the bi-exponential models FOMC (First-Order Multi-Compartment model) and DFOP (double first order parallel) are assumed to adequately describe the dissipation of the applied substance in field trials (FOCUS, 2014). The fit of the metabolite HEC 5725  $\mathcal{L}$ -descentor parallel (M48) in combination with the parent fit, seemed not to be appropriate for trigger purpose. However a conservative, apparent field decline DT₅₀ could be evaluated.

The  $DT_{50}$  values for fluoxastrobin and HEC 5725-*E*-des-chlorophenyl (*M48-E*) are shown in the tables below.  $DP_{50}$  values (trigger endpoints) ranged from 11.5 to 91.7 days for fluoxastrobin. For HEC 5725-*E*-des-chlorophenyl (*M48-E*) the conservative apparent field decline  $DT_{50}$  values were 93.5 and 95.6 days. The kinetic parameters determined for the dissipation under realistic field conditions are considered appropriate as trigger endpoints.

Table 7.1.2.2.1- 2: Trigger endpoints (field dissipation DisT ₅₀ ) of fluoxastrobin (E+Z)							
Table $7.1.2.2.1-2.11999$ chubolius (helu uissibation Distsi) of huoxastrophi (E $\pm L$	Table 71771 7.	Triggon and	sainte (field	discination	DigT-a)	of fluovostrohin (	<b>F</b> ⊥7)
	1 auto /.1.4.4.1-4.		Joints theiu	uissipation	D131501	$\mathbf{v}_{\mathbf{i}}$ in $\mathbf{u}_{\mathbf{v}}$ as $\mathbf{u}_{\mathbf{v}}$ or $\mathbf{u}_{\mathbf{i}}$	

Study	Location	Kinetic model ^{a)}	DisT50
		<u> </u>	
(2001)	(Germany)	FOM	٢٧.53 ٢٧.53
M-136670-01-1	(Germany)	DFOP	\$44.36
	R812404 (UK)	₿₽Ø₽	× 86,49 ×
	R812420 (UK)	FOMC	<b>91</b> ×66 🖉 [
	R812412 (France)	DFOP 🦉	£28.79 €
	R812439 (France)	J DFOP	<i>Q</i> , 76.40 <i>y y y y y y y y y y</i>
	(France)	PFOP S	L 25.05 L
	(Italy)	°, ©DFOP ↔ √	₽ [™] _&2.75_@″

a) SFO: Single first order, FOMC: First order multi compartment, DFOP, Pouble first order parallel

Table 7.1.2.2.1- 3:	Estimated apparent field decline	of HEC	572 SE-0	des-chlorøp	henvl M	48- <b>E</b> for A	
	trigger purpose from maximum	~~~	ð í	A, Ö	ŵ		

	<i>a</i> . ²	″°∧,	* (// )		0"	. 7	_(¥	×	45	
Study	Locatio	n 🔊	Ż		Č	20	Kinetic	2	<b>D</b> T50	
	10×			Š ~	Ø	D I	model ^{a)}	<u></u>	🗞 actual	
	Ô,	-0		Ĵ	ji F	° (	Û A	y ,	🖉 [days]	
(2001)		R842	404 (LCK)		Å	8	SFO		93.47	
M-136670-01-1		R8124	420 (UK)	) 4	Ő,	Ĉ	SFŎ	Ő	95.57	
) CEO C. 1. C. I. FOMC	( 1	100		TOD DA	A.1. C	Sec. 8 1	· Co 11 .	1		

a) SFO: Single first order, FOMC: First order multi compartment, DEOP: Double first order in parallel

The behaviour of fluoxastrobin under field conditions was investigated in one terrestrial field soil dissipation study, encourpassing eight trial sites located throughout Europe (France, Germany, Italy and UK, 2001). All trials which were considered in the evaluation (Baseline dossier, CA 7.1.2.2.4) were used. The field dissipation trials were carried but at eight sites across Europe in order to cover different representative agro-climatic regions. Each test site received a single application at a nominal application rate of the active substance of 200 g/ha. Application was made on bare soil. At 4 trials the soil was maintained bare; at the other 4 trials spring barley was sown shortly before application, followed by grass after the first season.

The kinetic analysis was performed according to FOCUS functics (2014) using the software KinGUI 2 with four different kinetic models. Single First Order (SFO) and the bi-exponential models FOMC (First-Order Multi-Compartment models and DFOP (apuble first order parallel).

The fit of the metabolite HEC 3725-the des-chlorophenyl (*M48-E*) in combination with the parent fit, seemed not to be appropriate for trigger purpose. However, a conservative, apparent field decline DT₅₀ could be evaluated 3

<u>Calculation of  $DT_{50} / DT_{50} / DT_{50}$  values</u>: A half-life is defined as the time taken for 50% of substance to disappear/dissipate from a compartment following single first-order kinetics, whereas  $DT_{50}$  and  $DT_{90}$  values are not strictly connected to a first order kinetics. In this report half-lives,  $DT_{50}$  and  $DT_{90}$  values are calculated from the appropriate rate constant k as  $DT_{50} = \ln(2)/k$  and  $DT_{90} = \ln(10)/k$ , respectively. For trigger endpoints, all residue data beginning from DAT-0 are used and the day length is not normalised to standard conditions.



**Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin** 

## **II. RESULTS AND DISCUSSION**

Trigger endpoints for fluoxastrobin and HEC 5725-E-des-chlorophenyl (M48-E) were derived and a series of the series of Trigger endpoints for fluoxastrobin and HEC 5725-*E*-des-chlorophenyl (*M48-E*) were astro-da following the procedure described in FOCUS (2014). An overview of the trigger endpoints is is Siver-da following the procedure described in FOCUS (2014). An overview of the trigger endpoints is is Siver-da faile 7.1.2.2.1-2 and Table 7.1.2.2.1-3 in the Executive Summary. The trigger endpoints def statistical parameters for fluoxastrobin and HEC 5725-*E*-des-chlorophenyl (*M48-E*) are given in Table 7.1.2.2.1-4 and Table 7.1.2.2.1-6. following the procedure described in FOCUS (2014). An overview of the trigger endpoints is given in And the particular of the owner own Table 7.1.2.2.1- 2 and Table 7.1.2.2.1- 3 in the Executive Summary. The trigger endpoints and

B/ R

## Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

### Table 7.1.2.2.1- 4: Trigger endpoints (field DisT50) and statistical parameters of fluoxastrobin (E+Z-isomer)

Tune of lyingties a)	T:44.0 d		t toot	View	DieT	Bier
ype of kinetics "	parameters	χ ² error	t-test kfast / kslow	fit by	Idays]	Idaxs
	1	[/0]	Mast / Kslow	4 4	<u> uujs </u>	~(?)
- R812390 (Ge	rmany)			S,	 	
SFO	$M_0: 131.9$	26.89	< 0.001 ^(A)	<b>∀</b> - 0		59.08
FOMC	M ₀ : 137.2	15.76	< 0.02	++	× 11.58	99.55
	α: 1.098			• (		lo loc i
	β: 13.10			?Q [*]	Q	Ŵ.
DFOP	$M_0: 137.5$ k: 3362 x 10 ⁶ §	15.65		, ¢	_V.465‰*	85047
	k ₁ : 5.562 x 10 k ₂ : 0.02071	Ĩ O		Ô Ô	, A	A
	g: 0.4164				<u> </u>	r é
D01/202/C		$\sim$ $\sim$		NO I	\$ *	A CA
- K814202(G SFO	Mo: R2636		<0.001 0	Ľ.	50008	166.4
	k: 0.01384					2
FOMC	M ₀ : 128,9	6 11. <b>2</b> 6-	× 0.0050	, of	© 44.19	220.7
	@ α: 2.1961 @			O D		
DFOP	Mg: 128,6	A0.590	< 0.001	) Q	A4.36	225.2
-	k 0.01937		0.046		S.	
A 1	Ak2: 0.002739		Ô ^y &		Y.	
	<u>~~</u> g; 0; 8344 ~		r <u>oʻ</u> ş			
- R812404 (UK				. Ø		
SFO C N	√ M _{0k} 146.8 √	13.21	$\Im < 0.601$	S o	115.39	383.3
	k: 00060070				00 15	596.2
FOIMC	$\alpha$ $1366$	\$ \$ 9.794 \$		+	88.15	380.5
	β: 493.3	S.				
DFOP	Mg: 154.8	s.9.994	0.007/0.002	++	86.41	<u>552.8</u>
Ş.	4 $6 : 0.01741$					
	g: 004996 °					
<u> </u>			¢.			
- <b>R</b> 812420 (UK)				<b></b>	104.0	
SFO The contract of the contra	$M_0: ff^{42.1}$	* 94645	< 0.001	0	104.9	348.3
FOMC	A Mi: 1458	8.084	< 0.021	+	91.66	433.5
	~γα: 2. <b>50</b> 4	\$				
W	β: 287.4	0.621	0.004/0.150			
DFOP	M 145.2	8.631	0.004 / 0.159	+	92.72	443.4
	Az: 0.00 315					
	g: 0.745466					
J & A						cont.
	N N					

# Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin



The metabolite HEC 5725-*E*-des-chlorophenyl (*M48-E*) was detected in 3 field trials only above the LOQ.

**Document MCA: Section 7 Fate and behaviour in the environment** Fluoxastrobin

In these cases, the metabolite HEC 5725-E-des-chlorophenyl was fitted together with the parent compound, to describe best its total degradation pathways in the field.

The best fit model for trigger purpose of the parent was chosen, and the corresponding degradation rates and formation fractions for the metabolite were considered here.

It has to be noted, that the observed residue data have been very close to the limit of detection quantification LOQ.

Based on the relatively low residue findings, few data points > LOR and scattering data the error exceed considerably 15% in all trials.

Nevertheless, the 15% threshold value for the scaled error s should not be employed as absorbe cut-off criteria, as this value is strictly appropriate only for optimal experimental conditions. It hight be that the error to pass the  $\chi^2$  test is higher than 15%, but the model fit still represents a reasonable description of the degradation behaviour. Especially at field data evaluations or for metabolines it may be justified to accept larger values. A reason for this is the large inherent variability of field residue data (scattered data points).

For metabolites, only a SFO fit was dested. However, assuming a bi-physic decay should not improve the fit, as the dissipation curve seems not to be bi-phasic. Moreover, the overall (non-wormalised) formation and dissipation was not described sufficiently well

Table 7.1.2.2.1- 5:	Estimated SFO field degradation of MEC 5725-E-des-chlorophenyl (M48-E), for
	trigger purpose, based on best fit of parents not temperature or moisture normalised

	8		210	$(\Omega)$	~~~ ·		₩'	
Model for parent			Filted O	χ error	🖯 t-rest 🌾	Visua	DT ₅₀	DT90
	Ŝ	P par	ameters	_\$~[%],≲`		fit	[days]	[days]
- R8123	0 (Gom	any)	Ĵ, s	.2				
FOMC		[≫] k: ( ◎ ff	20.0666	×51.96	0,0031	5 -	515.0 ^{c)}	$> 1000 ^{\rm c)}$
₽ R8124	04 (UK)	, D	A õ	y <i>S</i>				
DFOP		\$ k: ( ff:	0.144 0.144	₹ <u>6</u> 2.9	0.007	0 -	81.64 ^{c)}	271.2 ^{c)}
- R81240	0 (UK)	, S		r or	2	_		_
FOMC		\$ ⁵ k: (	). <b>00</b> 9717 9.156 <i>5</i> 0	\$6.6 Ô	0.003	0 -	71.34 ^{c)}	237.0 ^{c)}

SFO: Single first order, EQMC: First order pulti compartment, DFOP: Double first order in parallel a)

Visual fit: + = good, o = moderatQ - = poorb)

not for reliable, mathematically not significantly different from 0; not usable c)

The the metabolite (HEC5725-E-des-chlorophenyl (M48-E) in combination with the parent fit, The TPF of the metabolite AEC5725-*E*-des-chlorophenyl (*M48-E*) in combination with the parent fit, seemed not to be appropriate for trigger purpose. However, a conservative, apparent field decline  $DT_{50}$  could be evaluated

# **Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment**

# Fluoxastrobin

Fitted parameters of apparent field decline of HEC 5725-E-des-chlorophenyl Table 7.1.2.2.1- 6: (M48-E), for trigger purpose, not temperature or moisture normalised Ø1

Kinetic model ^{a)}	Fitted parameters	χ ² error [%]	t-test	Visual fit ^{b)}	DT50 ″[days]	DY 90 Adays
- R812404 (UK)				Ĩ		
SFO	k: 0.5485	34.11	0.007	A DO	93,40°	30.5
- R812420 (UK)			>	Ń		
SFO	k: 0.5669	13.21	0.0025	+	J @5.57 D	317.5
<ul> <li>a) SFO: Single first order</li> <li>b) Visual fit: + = good, o = mode</li> </ul>	erate, - = poor					
	III. 🌔	ONCEUSIO	NS 4			

DT₅₀ values (trigger endpoints) ranged from 11,5 to 91,7 days for flue astroph (E+Z). For FIEC





Fluoxastrobin

### New kinetic evaluation submitted for Annex I renewal

**Justification for including this study in the Annex I Renewal Dossier:** The objective of this study  $\bigcirc$  is to estimate dissipation times (DT₅₀) of fluoxastrobin (*E*- and *Z*-isomer summed) at field conditions (CA 7.1.2.2.1, included in the baseline dossier) for use as modelling endpoint. The evaluation was conducted to derive kinetic parameters according to FOCUS Guidance 2014)

Report:	KCA 7.1.2.2.1/06
Title:	Kinetic evaluation of field dissipation studies of fluoxastrobin in Europe according to
	FOCUS kinetics and EFSA TFD guidance for modeling purpose using Kingui $2_{1}$ E
	+ Z-isomer summed $\mathcal{A}$
Report No.:	Ensa-15-0309
Document No.:	M-534453-01-1
Guideline(s):	- EFSA, 2007: Scientific Opinion of the Panel on Plant Protection Product and their
	Residues on a request from EFSA related to the default @10 value used to describe
	the temperature effect on transformation rates of pesticides in soil. EFSA Journal,
	622, 1-32
	- EFSA, 2014: Guidarice Document for exaluating Jaboratory and field dissipation.
	studies to obtain Deg T50 values of active substances of plant protection products
	and transformation products of these active substances in sold European Food Safety
	Authority (EPSA), Parma, Italy, EFSA Journal 2004,12(5),3662
	- FOCUS, 2000: FOCUS groundwater scenarios in the Eleplant protection product
	review process. Report of the FOCUS Groundwater Scenarios Workgroup. EC
	Document Reference Sanco/321/2000 rev.2
	- FOCUS, 2006: Guidance Document on Estimating Persistence and Degradation
	Kinetics from Environmental Fate Studies on Pesticides in EU Registration. Report
	of the FOCUS Work Group on Degradation Kinetics, EC Document Reference
	Sance 70058 2005, 02.0, Jage 20060
(	- FOOUS, 2009: Assessing Potential for Movement of Active Substances and their
J.	Metabolates to Ground Water in the EU final report of the Ground Water Working
	Obroup of FOCOS (FOrum for the Co-ardination of pesticide fate models and theri
~O~	USe). vers. 9, 13. June 2009, EC Document Reference SANCO/13144/2010, vi
Ŏ,	C - FOOUS, 2014: Generic guidance for Estimating Persistence and Degradation
. Ø	Kineticstrom Environmental Fate Studies on Resticides in EU Registration,
	Wersion 1.1; Date: 18 December 2014
Guideline deviation(s):	$\mathcal{O}^{\text{not applicables}}$
GLP/GEP:	$no \gamma \downarrow $
Justification:	* New data guidewhe requirements*
Q	An incuc analysis of the aggradation of two astroom for modelling endpoints

## Executive Summary

Õ

Normalised (20 °C, 100% field capacity) degradation  $DT_{50 matrix}$  values of fluoxastrobin (*E*- and *Z*-isomers summarised as parent) and its metabolite HEC 5725-*E*-des-chlorophenyl (*M48-E*) in the soil matrix under European field conditions (CA 7, 2.2.1) were derived for modelling purpose according to FOCUS kinetics (FOCUS, 2006, 2014) and the EFSA guidance on field dissipation studies (EFSA, 2014). Processes potentially occurring at the soil surface, e.g. photodegradation, volatilisation, during the field study should be eliminated to result finally in a  $DT_{50 matrix}$  representing the degradation in the soil matrix of bulk. Only one solve field will have been taken into account.

Simulated (with PEARL) daily soil temperatures and moisture contents were used to normalise the evaluated parameters to reference conditions according to FOCUS groundwater assumptions (Archenius equation,  $Q_{44} = 2.58$ ; equation, pF2) (FOCUS, 2009, 2014). The residue data together with the transformed times (transformed time approach, time step normalisation) were kinetically and statistically evaluated, based on the procedure explained by FOCUS kinetics, using KinGUI 2.1.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Three kinetic models, Single First-Order (SFO) and the bi-exponential models DFOP (Double First Order Parallel) and Hockey-Stick (HS) are assumed to adequately describe the dissipation of the applied substance in field trials (FOCUS, 2014 and EFSA, 2014). Selection of the most appropriate kinetic model was based on a detailed statistical analysis including visual assessment,  $\chi^2$  statistics, and significance t-test.

Following the EFSA decision tree on field dissipation studies (EFSA, 2014), as appropriate description of soil matrix degradation of fluoxastrobin could be given using an SFO fit for 3 sites and a HS fit for 1 site. The fit of the metabolite HEC 5725 des-chlorophenyl (M48-E) in combination with the parent fit, seemed not to be appropriate for modelling purpose. However, a conservative, apparent field decline DT₅₀ could be evaluated.

Normalised DegT₅₀ values (modelling endpoints) for fluoxastrobin (E+Z) ranged from 19.6 to 69.1 days, with a geometric mean of 42.7 days. The normalised kinetic parameters determined for the dissipation under realistic field conditions are considered appropriate as input for modelling purposes. The DT₅₀ values for fluoxastrobin derived by the evaluation of the field trials are shown in Table 7.1.2.2.1-7.

The conservative apparent field define  $\mathfrak{BT}_{50}$  value  $\mathfrak{AT}'$  HEC 5725  $\mathfrak{F}'$ -des- $\mathfrak{M}$  orophenyl (M48-E) (normalised, modelling endpoint) was 39.5 days (see Table 7.1 $\mathfrak{AZ}^2$ .1- $\mathfrak{AT}'$ 

Table 7.1.2.2.1- 7:	Estimated field matrix degradation of fluoxastrobin (E+Z icomer) for modelling
	purpose, normalised to 20 °C, 100% field capacity, Q10 = 2,58

Study		Location (	Kinetic	DegT ₅₀ ^{b)}
	Y A A		Ý type ^{a)}	[days]
(2001)		Germany) 🔿 🖇	>î∕⊁HS	19.61
		(Gedmany)	SFO	36.33
		- R\$12404 (GK)	SFO	69.13
		- R812412 (France)	J SFO	67.24
Geometric mean				42.66

a) SFO: Şingle first order, HS: Hockey stick

b) Normatived using a Q10 of 2.58 and equation coefficient of 0.7, values are DegT50matrix

 Table 7.1.2.2.1- 8:
 Estimated apparent field decline of HEC5725-E-des-chlorophenyl (M48-E) for modelling purpage from maximum; 20°C, 100% FC

Study V	Location C	Kinetic type ^{a)}	DegT ₅₀ ^{b)} [days]
<b>(2001</b> )	- <b>R</b> 812404 (UK)	SFO	39.54
Geometric mean			

a) SKO: Single first order, HS Hockey stick

b) Normalised using a Q10 (2.58 and a quation coefficient of 0.7, values are DegT₅₀matrix



The behaviour of fluoxastroom under field conditions was investigated in one terrestrial field soil dissipation study, encompassing eight trial sites located throughout Europe (France, Germany, Italy and OK, 2001, CA 7.1.2.2.1). Only bare soil field trials have been taken into account. The field dissipation trials were carried out at eight sites (six geographic locations) across Europe in order to cover different representative agro-climatic regions. Each test site received a single application at a nominal application rate of 200 g/ha fluoxastrobin in spring. Application was made on bare soil. At 4 trials, the soil was maintained bare; at the other 4 trials spring barley was sown shortly before


application, followed by grass after the first season.

The present report comprises the evaluation of the data according to the most recent EFSA guid@ace for evaluating field dissipation studies (EFSA, 2014). The kinetic evaluation was also performed according to the guidance given by the FOCUS Kinetics report (FOCUS, 2014)

Because daily soil temperature and moisture data, which are necessary to normalise the degradation parameters were not measured on-field, corresponding values were generated by employing a writable? simulation model. Necessary driving variables for such a model are rainfall and other climatic data to calculate evapotranspiration. Soil moisture and temperature for the normalisation of the modelling endpoints were calculated with FOCUS PEARL 4.4.4. Degradation parameters were foiled with the software KinGUI 2.1.

Three kinetic models, Single First-Order (SFO) and the bi-exponential models DFOP (Double First Order Parallel) and Hockey-Stick (HS) are assumed to adequately describe the dissipation of the applied substance in field trials (FOCUS, 2014 and PFSA, 2014) The fit of the metabolite HEC 5725-E-des-chloropheny (M48-E) in combination with the parene fit, seemed not to be appropriate for modeling purpose However, a conservative, apparent field decline DT₅₀ could be evaluated.

In the attempt to separate soil surface degradation processes, as photodegradation Folatilisation, from bulk soil degradation, an important threshold to start a kinetic evaluation might be the time, when at least 10 mm precipitation (+, Trigation) have been fallen (EFSA) 2014). Then, it is assumed that the active substance is sufficiently deep washed into the soft matrix. Thus, in case of an SFO fit, residue data before 10 mm of rain has been fallon, have to be excluded. Inverse of HS, the breakpoint time tb has to be equal or later than the day at which the 10 mm rainfall criterion was reached.

<u>Calculation of DT DT values</u> A har-life is defined as the time taken for 50% of substance to disappear/dissipate from a compartment following single first-order kinetics, whereas DT₅₀ and DT₉₀ values are not strictly connected to a first order kinetics. In this report half-lives, DT₅₀ and DT₉₀ values are calculated from the appropriate rate constant to as  $D_{150} = \ln(2)/k$  and  $DT_{90} = \ln(10)/k$ , respectively.

Modelling endpoints (temperature and poisture normalised) for fluoxastrobin and HEC 5725-E-deschlorophenyl (MAS-E) were derived following the proceeding described in EFSA (2014) and FOCUS (2014). Daily soil temperatures and moisture confents were used to normalise the data to reference conditions according to FOGUS groundwater assumptions.

II. RESULTS AND DISCUSSION

An overview of the modeling of doord is given in Table 7.1.2.2.1-7 and Table 7.1.2.2.1-8 in the



Bayer CropScience B/ k Document MCA: Section 7 Fate and behaviour in the environment

Table 7.1.2.2.1- 9:

Fluo<u>xastrobin</u>

Modelling endpoints (field matrix dissipation) and statistical parameters of fluoxastrobin (E+Z) normalised to 20 °C and pF2 best fits highlighted in **bold letters** 

Type of kinetics ^{a)}	Fitted	X ² error	t-test	Visual	DegT ₅₀	Deleted
	parameters	[0/_]	Ize / Iz	fit by	matrix ^e	
		70	Kfast / Kslow			
- R812390 (Geri	manv)	Č	× 1	Ç		N D
SFO	$M_0^{-}68.99$	316	< 0.001	( + T	2 30 %	
	k: 0.03109	4	, OY			
DFOP	M ₀ : 138.4	13.36	< 0.001	。+ 🦼	18,92	0,0
	k1: 32.73	A A A		p Q'	, 0 [×] 4	a é
	k ₂ : 0.03664	~~~ ~ °	QU'NY	Ø	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, Ş
	g: 0.4444 %		XX.		Ş , A	~
	$(t_b: 0.064 \text{ d})^{1/9}$	AN 07 0			10(1	
п5	$k_1: 0 = 1000$			T C	19.01	
	k ₁ : 0.03534		. 4° 6°		å v	AN AN
	(g: 0; 0; 16) f		ý 4 .	Û L	Î Î	U U
	tb: 9.16 d	°∼¶ ≪				P .
	Q' &	à ò	S so	~0	Õ `~	, ,
- R814202 (	Gernany) 🗸 🕐		Ŭ Q	or S	? <u> </u>	<b>T</b>
SFO	M ₀ : f16.7	14.71	৺ <0,4001 °¢	ୢୖୄ	36233	d0
DEOD	k. 0.01908		< 0.002		Q 10176	
DFOP	(100, 120, 5)	0.500			~ 81.70	
×.	k ₂ ; (0) 00848	ð »	/ 0.004		)	
Ô,	20.680		0	~~ (°		
	√ \$6. 56. 20 ^{f)} ~		6 4	_©		
HS 🖉 🔊	∽ M _{€€} 126.7 ∽	1cl.75	$\sqrt[n]{<} 0.001$	Уo	36.33	
	kr_00.0735	s s				
		Y Â	, w			
	$(g: 0.103)^{1/}$					
	ν ι _b . ιωνι α ^{σγ}	LÔ ^N K	,×(			
- R812400(UK)		J &	Á.			
SFO	M ₀ : #31.0 %	6.862	⊘ < 0.001	+	69.13	d0, d14
	5 k: 0,01003 7		, Y			,
DFOP 🔊 🎸	Mrs: 161.1	∽5.489	< 0.001	+	70.73	
, Č	<b>k</b> ₁ : 57.99					
	⇒ k ₂ : 0,0098 × *					
	g: 0.202	~Q″				
ня С	× (0,0.030,00,7	7 946	< 0.001	+	71.93	
	$k_1 = 0.0275$	7.740	< 0.001	'	/1./5	
L, 4 V	k2.9.00964					
	(g. 0.295) ^{f)}					
	[°] <u></u>					
						cont.
J. G. A.						
	-					

# **Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment** Fluoxastrobin

#### Table 7.1.2.2.1-9: Modelling endpoints (field matrix dissipation) and statistical parameters of fluoxastrobin (E+Z) normalised to 20 °C and pF2 (cont.) best fits highlighted in **bold letters**

Type of kinetics ^{a)}	Fitted	X ² error	t-test	Visual	DegT50	Deleted	
	Parameters	[%]	k _{fast} / k _{slow}	4	[days]	Days ^{d)}	<i>R</i> o
- R812412 (	France)	Ć	Č	S.			S,
SFO	M ₀ : 93.15 k: 0.01031	7.065 🛇	< 0.001	o +	A.24	dQ S	
DFOP	$\begin{array}{c} M_0: 158.0 \\ k_1: 184.8 \\ k_2: 0.01031 \\ g: 0.4105 \\ (t_b: 0.011 \ d)^{\text{f}} \\ \end{array}$		0.5/<6001		0 67,23 ⁴		
HS	$\begin{array}{c} M_0: 158.04\\ k_1: \ 0.136\Psi\\ k_2: \ 0.06931\\ (g: \ 0.037) \\ t_{b_0} \\ (g: \ 4.1 \ d \end{array}$			Un Cr			
<ul> <li>a) SFO: Single first order, 1</li> <li>b) Visual fit: + = good, o =</li> </ul>	DFOP: Double first order in moderate, $- = poor$	parallet HS	Hoebey stick	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	¢, °	<i>°</i>	

c) fixed to normalised day, when N mm rain was fallen

d) sampling data before 10 mm strain deleted for SFO fit according to EESA 20

e)

for modelling: DFOP or HS: DTs of slow phase calculated according to EESA 2014, based on fitted phodel garameters f)

Table 7.1.2.2.1- 10: Stimated SFQ apparent field decline of HEC 5725 -des chlorophenyl (M48-E) for Smodelling purpose from maximum normalised to 20 °G,100% field capacity

Ć

Type of kinetics ^(a) $\gamma$ Fitted $\gamma$ for $\chi^{2-}$ trest $\langle$ Visual	DisT ₅₀
parameters test of the fit a	
	[days]
(R812404) (UK) (K) (K) (K) (K) (K) (K) (K) (K) (K) (	
SFO (Mo: 1109 36% 20.0062 o	39.54
, S ⁷ , [°] , , [°] ,	
a) Visual fit: += good, == modecate, -= poor	
A A A A A A A A A A A A A A A A A A A	

Normalised DegT values (modelling endpoints) for fluoxastrobin (E+Z) ranged from 19.6 to 69.1 days, with a geometric mean of 42.9 days. The normalised kinetic parameters determined for the dissipation under realistic field conditions are considered appropriate as input for modelling purposes. The conservative, apparent field decline  $DT_{50}$  of HEC5725-*E*-des-chlorophenyl (*M48-E*) (normalised, modelling endpoint) was 39.5 days modelling endpoint was 39.5 days



Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

#### New kinetic evaluation submitted for Annex I renewal

**Justification for including this study in the Annex I Renewal Dossier:** The objective of this study is to estimate dissipation times (DT₅₀) of fluoxastrobin (*E*- and *Z*-isomer separately) at field conditions (CA 7.1.2.2.1, included in the baseline dossier) for use as modelling endpoint. The evaluation was conducted to derive kinetic parameters according to FOCUS Guidance 2014).

Report:	KCA 7.1.2.2.1/07
Title:	Kinetic evaluation of field dissipation studies of fluoxastrobin in Europe according to
	FOCUS kinetics and EFSA TFD guidance using KinGui 2.1 - E- and Z-isonier
	separately
Report No.:	Ensa-15-0103 v3
Document No.:	M-534461-03-1
Guideline(s):	EFSA, 2007: Scientific Option of the Panet on Plant Protection Products and their
	Residues on a request from EFSA related to the default Q10 value used to describe
	the temperature effect on transformation rates of pesticides is soil. EFSA Journal,
	622, 1-32
	- EFSA, 2014: Guidance Document for exaluating aboratory and field dissipation
	studies to obtain Deg T50 values of active substances of plant protection products
	and transformation products of these active substances in sold European Food Safety
	Authority (IPSA), Parmas Italy, EFSA Journal 2014;12(5) 3662
	- FOCUS, 2000: FOCUS groundwater scenarios in the Eleplant protection product
	review process Report of the FOCUS Groundwater Scenarios Workgroup. EC
	Document Reference Sanco/1921/2000 rev.2
	- FOCUS, 2006: Guidance Document on Estimating Persistence and Degradation
	Kinetics from Engironmontal Fate Studies on Posticide's in EU Registration. Report
	sof the FOCUS Work Group on Degradation Kinetics, EC Document Reference
	$\sim$ Sance 10058 2005, $\sim$ 2.0, Jane 2006 $\sim$ $\sim$ $\sim$
	- FOOUS, 2009: Assessing Potential for Movement of Active Substances and their
	Metabolities to Ground Water in the EU _Q Final report of the Ground Water Working
	Oroup of FOCUS (FOrum for the Co-ordination of pesticide fate models and their
<u>^</u>	USe). vers. & 13. June 2009 EC Document Reference SANCO/13144/2010, vl
ð	FOCUS, 2014: Generic gudance for Estimating Persistence and Degradation
Ô	¹⁰ Kinetics from Environmental Fate Studies on Perticides in EU Registration, Version:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	KA; Date 18 Desember 2014
Guideline deviation	(s): The applicable is a set of the set of t
GLP/GEP:	$n_{0} \gamma' \chi \gamma \chi \zeta' \gamma \chi \chi \zeta' \gamma \chi \chi \chi' \chi \chi \chi' \chi \chi \chi' \chi \chi'$
Justification:	New data guidenne requirements
Ŭ,	A sinetic analysis of the degradation of two astrobin for modelling endpoints
(I)	$O^{\mathbf{y}} = O^{\mathbf{y}} + O^{\mathbf{y}} = O^{\mathbf{y}} + O^{\mathbf{y}} = O^{\mathbf{y}}$

Executive Summary

Normalised (20 °C, 100% field capacity) degradation $DT_{50 \text{ matrix}}$ values of fluoxastrobin *E*-isomer as parent and its photolytic Z isomer (HEC 5725-Z-Isomer) and its metabolite HEC 5725-*E*-deschlorophenyl (*M48-E*) in the soil matrix under European field conditions (CA 7.1.2.2.1) were derived for modelling purpose according in FOCUS kinetics (FOCUS, 2006, 2014) and the EFSA guidance on field dissipation studies (EFSA, 2014). Processes potentially occurring at the soil surface, e.g. photodegradation, volatilisation, during the field study should be eliminated to result finally in a $DT_{50 \text{ matrix}}$ representing the degradation in the soil matrix or bulk. Only bare soil field trials have been taken into account

Simulated (well PEARL) daily soil temperatures and moisture contents were used to normalise the evaluated parameters to reference conditions according to FOCUS groundwater assumptions (Arthenius equation, $Q_{10} = 2.58$; equation, pF2) (FOCUS, 2009, 2014). The residue data together with the transformed times (transformed time approach, time step normalisation) were kinetically and statistically evaluated, based on the procedure explained by FOCUS kinetics, using KinGUI 2.1.

Three kinetic models, Single First-Order (SFO) and the bi-exponential models DFOP (Double First Order Parallel) and Hockey-Stick (HS) are assumed to adequately describe the dissipation of the most appropriate substance in field trials (FOCUS, 2014 and EFSA, 2014). Selection of the most appropriate kinetic model was based on a detailed statistical analysis including visual assessment, χ^2 statistics, and significance t-test.

Following the EFSA decision tree on field dissipation studies (EESA, 2014), an appropriate description of soil matrix degradation of fluoxastrobin (*E*C) somer) could be given using an SEO fit for 3 sites and a HS fit for 1 site.

Table 7.1.2.2.1- 11:	Estimated field mat	trix degradation	of fluoxastrobin-	E-isome	modelling	puppos
	normalised to 20 °C	C, 100% field cap	acity, Q10 ≠ 2.58	° Á	4	

	,	0. 1	~		& .0' a	a v
Study	Location	k b°	No.	Kinetic	DegT ₅₀ by	C.S.
				<u>vijpe</u>	/ [uays]	4
(2001)	(Ger	many) 🌾 🔍		'HS	¹⁰ 19:64	
	jt.	Fermany) 🧹		SFO S	31.86 🖉	Ű
	-R 81	240¥(UK),≯	L ^O	SFO SFO	64.60	
		K§12412 (Franc	y V	SFØ	Ø 63, 5 ¥	0
Geometric mean					¥ 4601)
a) SFO: Single first or	der, HQ: Hockey s	tick 🔊	Ž	00		
b) Normalised using a	Q10 of 2.58, and	equation c	officient/	of 0.7, values	aro .	
DegT ₅₀ matrix,		\\$`(ð 🔊	
DFOP or HS: DT&	of sløw phase				Ű	
~ _		it o	¥		Ò	

Normalised DegT₅₀ values (modelling endpoints) for flue astrobin E-isomer canged from 19.6 to 64.6 days,. The DT₅₀ values for flue astrobin E-isomer derived by the evaluation of the field trials are shown in Table 7.1.22.1-11.

A comparison of the degradation behaviour of both somes of fluoxastrobin, E and Z, is given in Table 7.1.2.2.1- 2. This table summarises all DT50 values evaluated in this report for the fluoxastrobin E and Z isomer, separately, soil per soil column 2 - 4: pathway fit free fitted; column 5 - 6: pathway fit with conservative formation fractions; folumn 7: apparent decline fit from maximum). The second column gives the field matrix degradation DT50 matrix of the E-isomer, according to EFSA (2014). In column 7, the conservative, SFO apparent field decline DisT50 values of the Z-isomer are given, starting from maximum measured data onwards (60.7 $^{\circ}$ 68.8 d). More detailed explanations about this comparison are given on the following "Resolts and Discussions" section.

Table 7.1.2.2.1-12: Overvicy and comparison of <u>field matrix degradation</u> or <u>apparent field decline</u> of fluoxastrobin<u>*E*- and *Z*-isomer</u> (modelling purpose, normalised to 20 °C, 100% field capacity, Q19 (2.58)

A.	9 -	Nº AP					
Location 🖉 "	, Ŷ	DegTsv matrix	formation	free fitted	conservative	formation	apparent
		E-isomer (fraction	DegT _{50 matrix}	DegT _{50 matrix}	fraction	DisT ₅₀
k≪				Z-isomer	Z -isomer		Z-isomer
· ¥	- O	🖉 [days]	ÇOŽ→Z	[days]	[days]	$E \rightarrow Z$	[days]
(Germa	thy) 🔬 🖉	10,61	n.d.	-	-		-
(@r	many)	∛91.86 _€	*		68.85	< 0.0001	68.85
R 812	2404 (UK)	∞ 64.6®	0.6176	12.15	n.a.		60.69
- R&	2412 (France)	63.51	1.0	12.67	72.21 ^{a)}	0.0001 ^{b)}	62.28
Geometric mean							63.84

n.d.: not detected > LOQ

- LOO, n.a.: not appropriate, visually not acceptable

a) not fully reliable, mathematically not significantly different from 0

b) format On fraction limited to ≤ 0.0001 , to deliver a conservative DT₅₀ for fluoxastrobin-Z-isomer.

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Principally, the transformation processes of fluoxastrobin E- and Z-isomer, are proposed as follows. The E-isomer degrades in 2 different processes: a fast photolytic degradation to the Z-isomer and in parallel, a microbial degradation in soil. Potentially both processes are linked with different formation fractions (which cannot perfectly be reflected in the evaluation software). The microbial degradation is appropriately described with an SFO fit (after 10 mm rain has been reached). The photolytic process takes place mainly before the 10 mm rain period is over.

The HEC 5725-Z-isomer is formed from the E-isomer by photolytic processes (starting from a product impurity of about 0.2%, initially). Although the Z-isomer occurs < 5% on the initial 10 mm prin period (EFSA criterion for metabolites), its maximum is observed mainly as the first few sample points after 10 mm of rain.

During the microbial degradation phase of E, in some soils a reasonable fit of Z could be reached assuming a formation fraction > 0.6 and a corresponding short DT50. However, the apparent decline $DisT_{50}$ of Z from its maximum onwards describes very conservatively its degradation with no or very low formation of the Z-isomer in parallel to its degradation. This means, the apparent $DisT_{50}$ of Z is equivalent to a conservative matrix or bulk degradation DT_{50} matrix in field.

Despite the different transformation processes of E and Z isomer, the pricrobial field $DT_{50 \text{ matrix}}$ of E and the conservative apparent $Dis V_{50}$ of Z (= $DT_{50 \text{ matrix}}$) are very similar and in the same order of magnitude. No significant difference between both clusters can be seen. Even more, it is very unlikely that the Z-isomer degrades slower than the E-isomer. Finally, the leads to the conclusion, that both isomers can be evaluated as sum of E/Z-isomers, and considered as sum in subsequent risk assessments.

The fit of the metabolite HEC 5725-E-des-chlorophenyl M48-E in combination with the parent fit, seemed not to be appropriate for modelling purpose. However, a conservative, apparent field decline DT₅₀ could be evaluated N

The conservative apparent field decline DT value of HFC 5725-*E*-des-chlorophenyl (*M48-E*) (normalised modelling endpoint) was 39.5 days (see Table 7.1.2.2. ¥13).

<u>R</u> V	ai Os		\cap '	KJ . O		
Table 7.1.2.2.1-13:	*Estimated a	apparent field	decline of	HEC 5\$25.	- <i>E</i> -des-chlorophenvl (M48-E) for
			C.	20.00 100		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\heartsuit$ modelling r	for pose from I	maximum;	20 °C, 100	1% FC	
			2&v (()) ´			

Γ	Study Q Scocation & S	Kinetic	DisT ₅₀ ^{b)}
		type "	[days]
	(2001) OR812404 (UKO)	SFO	39.54
	Geometric mean N N N		
- R	a) SFO: Single first ofder		
~	b) Normatived using a Q10 of 2.58 and equation coefficie	ent of 0.7, values a	re
, VQ	DegT50matrix v v v		
V			
	$\sim$		

The behaviour of fluoxastrobin under field conditions was investigated in one terrestrial field soil dissipation study, encompassing eight trial sites located throughout Europe (France, Germany, Italy and K, 2001, CA 7.1.2.2.1). Only bare soil field trials have been taken into account. The field dissipation trials were carried out at eight sites (six geographic locations) across Europe in order to cover different representative agro-climatic regions. Each test site received a single application at a nominal application rate of 200 g/ha fluoxastrobin in spring. Application was made on bare soil. At 4 trials, the soil was maintained bare; at the other 4 trials spring barley was sown shortly before



Fluoxastrobin

application, followed by grass after the first season.

The present report comprises the evaluation of the data according to the most recent EFSA guidance for evaluating field dissipation studies (EFSA, 2014). The kinetic evaluation was also performed according to the guidance given by the FOCUS Kinetics report (FOCUS, 2014)

Because daily soil temperature and moisture data, which are necessary to normalise the degradation parameters were not measured on-field, corresponding values were generated by employing a writable? simulation model. Necessary driving variables for such a model are rainfall and other climatic data to calculate evapotranspiration. Soil moisture and temperature for the normalisation of the modelling endpoints were calculated with FOCUS PEARL 4.4.4. Degradation parameters were foiled with the software KinGUI 2.1.

Three kinetic models, Single First-Order (SFQ) and the bi-exponential models DFOP (Double First Order Parallel) and Hockey-Stick (HS) are assumed to adequately describe the dissipation of the applied substance in field trials (FOCUS, 2014 and PFSA, 2014)

In the attempt to separate soil surface degradation processes, as photodegradation, volatilisation from bulk soil degradation, an important theshold to start a kinetic evaluation might be the time, when at least 10 mm precipitation (+ irrigation) have been faller (EFSA, 2014). Then, it is assumed that the active substance is sufficiently deep washed into the soil matrix. Thus, in case of an SFQ fit, residue data before 10 mm of rain has been fallen, have to be excladed. In case of HS, the breakpoint time tb has to be equal or later than the day at which the 10 mm rainfall differious was reached

Calculation of DT₅₀ / DT values. A half-life is defined as the time taken for 50% of substance to disappear/dissipate from a compartment following ungle Orst-order kinetics, whereas DT₅₀ and DT₉₀ values are not strictly connected to a first order kinetics. In this eport half-lives, DT50 and DT90 values are calculated from the appropriate rate constant k as  $DP_{50} = \ln(2)/k$  and  $DT_{90} = \ln(10)/k$ , respectively.

^VII. RESULTS AND DISCUSSION « Modelling endpoints (temperature and moisting normalised), for fluoxastrobin E-isomer as parent and its photolytic Z-isomer (HEC \$725-Z Somer) and metabolite HEC 5725-E-des-chlorophenyl (M48-E) were derived following the procedure described in EFSA (2014) and FOCUS (2014). Daily soil temperatures and moisture contents were used to normalise the data to reference conditions according to FOCUS groundwater assumptions. Ľ

An overview of the modelling endpoints is given in the Executive Summary. The modelling endpoints





# Table 7.1.2.2.1- 14:Estimated field matrix dissipation of fluoxastrobin-E-isomer for modelling purpose,<br/>normalised to 20 °C, 100% field capacity

Type of kinetics ^{a)}	Fitted	χ ² error	t-test	Visual	DegT ₅₀	Deteted
	parameters	50/3		fit ^{b)}	* matrix ^{e)}	Ŭ þ
		[%]	k _{fast} / k _{slow}	Ĩ	[days]	*Days
D012200 (C	<b>`</b>			A	6ª	Ş.
- K812390 (Ge	rmany)		T& < 0.001			1 20 110
SFO	M ₀ : 68.99	31.6	⊘ <0.001 _0	≫ +	23.30	a0, d2
	k: 0.03109	>	Q			
DFOP	M ₀ : 138.4	13.56	< 0.00	+	×18.92	
	k ₁ : 32.73	A	Q"	° 5		C (
	k ₂ : 0.03664		$\sim$ 0	e Q'		ð "Ö ^y
	g: 0.4444	· · · · · · · · · · · · · · · · · · ·	O N	. O	$\sim$	
	$(t_b: 0.064 \text{ d})^{T}$	¥?	$\langle \gamma \rangle \langle \gamma \rangle$		Ğ. 7	$\sim$
HS	M₀: 137.5 ♥	14,07	ر» < 0.0001 (	5'' + 7''	* 19.61	A s.
	k ₁ : 0.1046				U k	e e
	k ₂ : 0.03534	$\searrow^{\prime}$	ð Å		×	
	(g: 0.606) ^{f)}	x v		N C		Ő
	t _b : 9,46 d ℃			Û 🖉	<u> </u>	Š
	L 0'	°∼y" ≪	' N 8		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q J
- R814202 (C	Germany 💫 👸	ý þ	- S		Č 😽	
SFO	$M_{0}$ $M_{0$	13:61	© < 0.06¥	O'o 🌫	♀ 31¢86	d0
	k: 0.02176	-0 2	Y _ (U ^V _ (		<u> </u>	
DFOP	Mg: 127 V	A7.491	< 0.002	\$ <del>+</del> \$	A1.09	
2	R ₁ : 0.1282	Г <i>х</i> .			K,	
	[∞] k ₂ : 0,01687 ≤		Ô ^Y 4	s a	Ť	
, W	g:0:3636		r o ^r «		<i>y</i>	
Ĩ	(tr \$6.22 \$7^f)	J. J	<u> </u>	~~		
HS 🔊	S NI0: 127.3 ~	7.00	رم × 0.000	_ <b>@</b> /0	37.98	
/ Š	√ k ₁ : 0.04695	, N	S' Q' j	Ş		
	k2:0.0082.50	NY A				
O T	(g: 0.442))		o~ _@			
	, <b>€</b> , <b>€</b> , 12, <b>4 € d</b>					
		Å,	S X			
- R812404 (VK)						
SFO 🔊	M ₀ : 1229	€″7.84¶∕	<i>≈</i> 0.001	+ o	64.60	d0, d14
	≪k: 0.00073 √		ð			
DFOP	Mp 959.8 Y	\$218	0.5 / < 0.001	+ o	62.33	
	1 ky 232.00					
× ×	≥ <u>2</u> : 0.01@12	¢ Ö				
	g: 0 <b>21</b> 76 ∘					
	Q (t _b : 0.00 d)					
HS 🖉 🖉	A Mr. 1567	8.912	< 0.001	+ o	62.90	
	S 🕺 🖓 🕯 0.02018	\$×″				
, ,	$k_2: 0 = 01102$	)				
	(g::07:319) Q					
Ŏ ^Ÿ ~	$t_{b}$ $t_{2.72}$					
			•			cont.
S S A						
	A Y					
	Y					
~~ Q ³	•					
e V						

### Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

 
 Table 7.1.2.2.1- 14:
 Estimated field matrix dissipation of fluoxastrobin-E-isomer for modelling purpose,
 normalised to 20 °C, 100% field capacity (cont.) Ø)

,	,	1	v			R	.~
Type of kinetics ^{a)}	Fitted	$\chi^2  error$	t-test	Visual	DegT ₅₀	Deleted	Ĩ
	parameters			fit ^{b)}	' matrix ^{e)}	N A	
		[%]	k _{fast} / k _{slow}		[days]	Days	
- R81241	2 (France)			A			ĝ
SFO	M ₀ : 78.5	5.95	Ø < 0.001	∮ +	63.51	∱ d0 🔗	Ĩ 0
	k: 0.01091	~~	, Q			9° N	, s
DFOP	M ₀ : 158.0	4.656	< 0.00	+	≪64.66	- A	
	k1: 195	A	, Q		) ¥	ð, Ö	ŧ″
	k ₂ : 0.01072			° Q'	, Ó ^y	a î	
	g: 0.506		O Y	. Or		, <u>,</u>	
	$(t_b: 0.01 d)^{1/3}$	¥?	K K		Ş	~	
HS	M₀: 158.0	4.431	ِ < 0.0091 ·	60 + 0	° 64.072	A s	ø
	k ₁ : 0.1707		₽ ~~ «	, C	Ŭ d	d a	
	k ₂ : 0.01074	$\sqrt{2}$ $\sqrt{2}$	ð L	、O″	×,	× s	
	(g: 0.5 <b>29</b> ) ^{f)}	x v		N 6		0 0	
	t _b : 4 4 d °			<u>p</u>	<u> </u>		
a) SEO: Single first order 1	DEOP: Double first offer i	n nàrallel HS	Hockey stick	j "N	æ.	V)	

a) SFO: Single linst older, DFOI : Doude linst odder in paraller, HS: Hocket
b) Visual fit: + = good, o = moderate, Q = poor
c) fixed to normalised day, when 10 mm rain was falsen
d) sampling data before 10 mm of rain deleted for SFO fit, all ording to EFS
e) for modelling: DFOP or HS: DT50 of slow place
f) calculated according to EFSA 2014 based on fitted model parameters

Table 7.1.2.2.1- 15: Stimated SPO field matrix Orgradation of HEC 5925-Z-Isomer for modelling Spurpose from parent fit (freely fitted), normalised to 20@C, 100% field capacity

&`					N	
Model for parent	Fitted	2 ² error	trest	Visual fit 🖤	DegT _{50 matrix}	formation
Ö	parameters	0 8		0° U		fraction
Č,	'0' ~~ q	) [26] 🥱			[days]	f _{Fxa E – Fxa-Z}
- R812	390 (Germany)					
	M ₀ : K,d.			A "	-	
(Ôc		× ×	,	1		
- <b>R</b> 8Ť4	4202 (Germany)	R N	S S			
SFO	M₀: 15©3 k: 0.0€007	15.86	× 0.0046	+	68.85	< 0.0001
- R81240	4 (LLK)					
SFO K	× M ₀ k: 0,05703	22.05	°∼ < 0.001	+	12.15	0.6176
(France)	812412 O		<i>y</i>			
SFO	M ₀ :Q2.31 k: 0.0547	12 <b>/</b> 88	0.074	0	12.67	1.00
n.d.: not detected $L$ a) SFO: Single first b) Visual fig + = go	OQ opter od, o = moderate, -	= poor			<b>i</b>	

ĉ

# Table 7.1.2.2.1- 16:Estimated SFO apparent field decline of HEC 5725-Z-Isomer for modelling purpose<br/>from maximum; normalised to 20 °C, 100% field capacity



In the following, a <u>comparison</u> of the degradation behaviour of both somers of fluorastrobin, E and Z, is given. Of principal interest is, if they degrade significantly different in the environment or if both isomers behave similar and can be considered as sum (E+Z-Isomer) in subsequent risk assessments,

Table 7.1.2.2.1- 17 summarises al  $DT_{50}$  values evaluated in this report for the fluoxastrobin *E*- and *Z*isomer, separately soil per soil (column 2 - 4) pathway fit free fitted; column 5 - 6: pathway fit with conservative formation fractions; column 7, apparent decline fit from maximum).

The second coumn gives the field matrix degradation  $T_{50m}$  of the *E*-isomer, according to EFSA (EFSA, 2014).

Table 7.4.2.2.1-17: Werview and comparison of <u>tield matrix degradation</u> or <u>apparent field decline</u> of Fluoxastrobin <u>E- and Z-isomer</u> (modelling purpose, normalised to 20 °C, 100% field capacity, O₁₀ = 2.58).

			ð			
Location	Deg To matrix	formation	ficee fitted	conservative	formation	apparent
	E-isomer C	fraction	DegT50 matrix	DegT50 matrix	fraction	DisT50
			🖉 Z-isomer	Z-isomer		Z-isomer
	🖓 [days]	. <b>12 → Z</b>	[days]	[days]	$E \rightarrow Z$	[days]
(Germany)	19.61	n.dy	-	-		-
(Germany)	<b>3</b> 1.86	<u>کې</u>		68.85	< 0.0001	68.85
- R812404 (ŬK)	⊳°7 64.60	6176	12.15	n.a.		60.69
- R&2412 (France)	63@1	✓ 1.0	12.67	72.21 ^{a)}	0.0001 ^{b)}	62.28
Geometric mean		Š.				63.84

a) not fully reliable grathematically for significantly different from 0

b) formation fraction limited to  $\leq 0.0001$ , to deliver a conservative DT₅₀ for fluoxastrobin-Z-isomer.

In the further columns (Table 7.1.2.2.1-17) the Z-isomer is described with 3 different estimations.

In colume 3 to 6, the HEC5725-Z-isomer was fitted as a metabolite together with the parent compound (E-isomer), to describe best its total transformation pathway in field. The best and reasonable model for modelling purpose for the parent (*E*-isomer) was chosen, and the corresponding degradation rates and formation fractions for the Z-isomer were selected.

# Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Usually, the formation fraction of a metabolite, here the *Z*-isomer, is free fitted in combination with the corresponding degradation rates. Here, for the *Z*-isomer a very strong correlation of the  $DT_{50}$  with the formation fraction was identified, meaning the lower the formation fraction, the higher the  $DT_{50}$  with the formation fraction was identified.

Therefore, in some trials an additional fit was carried out, to estimate a conservative or vorst-case  $DegT_{50}$  of the Z-isomer, where its formation fraction was limited to be  $\leq 0.0001$ . In case of soil, this comparison fit did not result in any visually acceptable fit for the Z-isomer Thus a very low formation fraction cannot describe the Z-isomer properly in this soil.

Finally in some cases, for the pathway fit of Z-isomer, a range of  $DD_{50 \text{ matrix}}$  values per sol could be given: 1. a lower  $DT_{50}$  with fitted formation fractions up 1 (columns 3 - 4), and 2. a conservative of worst-case  $DT_{50}$  with a very low formation fraction < 0.0001) (columns 5 - 6) (Obviously, especially the conservative  $DT_{50 \text{ matrix}}$  values are statistically for reliable (due to given side conditions). However, this is not essential for this comparison, and a good estimation for the most conservative degradation of the photolytic Z-isomer under field conditions is given.

In column 7 (Table 7.1.2.2.1- 17), SFO apparent field decline DisT₅₀ of the Z-isomer are given, starting from maximum measured data onwards

It could clearly be seen, that the apparent  $\text{Dis} F_{50}$  and the conservative  $\text{D} F_{50}$  matrix values of the 2-isomer are very similar for each soil (columns 7 and 5). This leads to the conclusion that both estimates describe a very conservative matrix degradation with no or very low formation of the 2-isomer in parallel to its degradation.

Finally, the transformation processes of filloxastrobin E- and Z isomer are proposed as follows. The E-isomer degrades in 2 difference processes: a fast photolytic degradation to the Z-isomer and, in parallel, a microbial matrix degradation in soil. Potentially, both processes are linked with different formation fractions (which cannot perfectly be reflected in the evaluation software). The microbial matrix degradation is appropriately described with an SFO fit (after 10 mm rain has been reached). And the photolytic process takes place mainly before this 10 mm rain period is over.

The HEC5725-Z-isomer is formed from the *E*-isomer mainly by photolytic processes (starting from a product imputive of about 9.2 - 0.3%, initially Although the Z-isomer occurs < 5% in the initial 10 mm rain period (EFSA criterion for metabolites), its maximum is observed mainly at the first few sample points after 10 mm of an.

During the microbial degradation phase of *E*, in some soils a reasonable fit of *Z* could be reached assuming a formation fraction > 0.6 and a corresponding short  $DT_{50}$ . However, the apparent  $DisT_{50}$  of *Z* describes very conservatively its degradation with no or very low formation of the *Z*-isomer in parallel to its degradation. This means, the apparent  $DisT_{50}$  of *Z* is equivalent to a conservative matrix or bulk degradation  $DT_{50}$  mix in field.

Despite the different transformation processes of E- and Z-isomer, the microbial field  $DT_{50 matrix}$  of E and the conservative apparent  $DisT_{50} \in Z$  ( $DT_{50 matrix}$ ) are very similar and in the same order of magnitude (Table 7.1.2.2.1-10). No significant difference between both clusters can be seen. Even more, it is very unlikely that the Z-isomer degrades slower than the E-isomer. Finally, this leads to the conclusion, that both isomers can be evaluated as sum of E+Z-isomers, and considered as sum in subsequent risk assessments.

The fit of the metabolite MEC5725-E-des-chlorophenyl (HEC7155, M48-E) in combination with the parent fit seemed not to be appropriate for modelling purpose. However, a conservative, apparent field decline DT₅₀ could be evaluated

 Table 7.1.2.2.1- 18:
 Estimated SFO apparent field decline of HEC 5725-E-des-chlorophenyl (M48-E) for modelling purpose from maximum; normalised to 20 °C, 100% field capacity

Type of kinetics ^{a)}	Fitted parameters	ε of χ ²⁻ test [%]	t-test	Visual fit ^a	DisT ₅₀
(R812404) (UK)	-			J.	
SFO	M ₀ : 11.89 k: 0.017531	36.8 Ö	0.0062	Ø O	
a) Visual fit: + = good, o = mod	erate, - = poor III. CO		NS.		

Despite the different transformation processes of E and Zusomer, the microbial field  $DT_{50 \text{ matrix}}$  of Eand the conservative apparent  $\text{DisT}_{50}$  of Z (=  $DT_{50 \text{ matrix}}$  are very similar and in the same order of magnitude. No significant difference between both clusters can be seen. Even more, it is very unlikely that the Z-isomer degrades slower than the E-isomer Finally, this leads to the conclusion, that both isomers can be evaluated as sum of E+Z-isomers, and considered as sum in Subsequent risk assessments. The conservative, apparent field decline  $DT_{50}$  value of AEC 5025-E-des-chlorophenyl (M48-E) (normalised, modelling endpoint) was 30.5 days.

PECgw values of HEC 3725- Fisomer for the use in onions and ereals FOCUS PEARL and PELMO

In this paragraph we specifically consider the approach to the risk assessment of the Z-isomer of fluoxastrobin the chemical tructure of fluoxastrobin contains a double bond. Due to the substitution pattern of the double bond E- and Z-isomers exist. The common name fluoxastrobin denotes the *E*-isomer. The Z-isomer is known to be an impurity in technical fluoxastrobin (specification limit 2 mg/kg). The Z-isomer can be formed from the E-isomer by photolytic processes exclusively. The transformation will lead to an equilibrium state in which the E-isomer is the more stable and energetically preferred isomer (ratio in aqueous solution about 10:1 = E/Z). In the environment the Z-isomer shows very similar degradation behaviour and a better soil sorption than the E-isomer. Further, the Z-isomer shows a very similar toxicological profile. A study with *Daphnia magna* performed with an increased amount of Z-Isomer (isomer ratio (FZ) = 65/35 revealed an at least comparable, potentially lower ecotoxicological profile than the parent E-isomer, demonstrating that there is no further risk for the aquatic compartment (please refer to CA 8.2.4.1 M-030533-01-1).

It is proposed to address the sum of E-and Z isomer in exposure calculations and risk assessments. Since this approach also impacts the groundwater assessment, an exemplary specific leaching assessment for the Z-isomer in groundwater recharge was performed. The PECgw calculation demonstrates that there is no risk for groundwater leaching of the Z-isomer. Therefore, the proposed approach is considered as appropriate. A summary of the PECgw calculation is presented below.



# **Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin**

Report:	KCA 7.1.2.2.1/08 かざ 2016: M-	-537904-02-1	
Title:	HEC 5725-Z-isomer (FXA): PECgw I	FOCUS PEARL, PELMO	EUR (fluoxastrob🗭) - 🐆
	Use in onions, cereals, and bare soil in	Europe	
Report No.:	Ensa-15-0714 v2	-	in the second
Document No.:	M-537904-02-1	, Cor	Ű, Ó
Guideline(s):	not applicable	Ĩ,	
Guideline deviation(s):	not applicable	21	
GLP/GEP:	no		
	A Contraction of the second seco		

The predicted environmental concentrations in groundwater (PEC w) for the photolytic metabolity, HEC 5725-Z-isomer were calculated using the simulation model POCUS°PEARL (version 4.4.4) and FOCUS PELMO (version 5.5.3). Crop interception was taken into account according to the BBCH growth stage, as recommended by EFSA (EFSA (2014), FOCUS (2014)). The absolute dates for applications based on BBCH codes given on the GAP were determined using AppDate2 (Klein (2010)), a German regulatory tool for estimating application dates and crop interception.

An exemplary specific leaching assessment for the chotolytically formed HEC 5725 2-isomer was carried out by assuming a virtual pseudo application of HEC 5725-Z-isomer. The intended fluoxastrobin application rate is multiplied with the maximum occurrence of 1.5 % for HEC 5725-Z-isomer in soil under field conditions, to deliver the potential amount of Z available for leaching. The pseudo application of HEC 5725-Z-isomer in feaching models is even more appropriate as Z is formed exclusively photolytically and thus under light at the soil surface.

Detailed application data used for simulation of PEC & were compiled in Table CA. 1.1.2.2.1-1.

	Å		App	leation a	у	Amount
Individual crop	FOCUS crop used for interreption	Rate per season [ga.s. /ha]	Interval [earys]	Diant C inferception	BBCH stage	reaching soil per season application [g a.s./ha]
Winter & spring cereals, GAP		\$2 × 150	\$ 14\$	, <del>, , , , , , , , , , , , , , , , , , </del>	30-69	-
Spring cereals, simulation ¹	Spring cerears	2~17.25	Å4	2 × 80	30-69	2 × 3.45
Winter cereals, simulation ¹	WinterSereals	$2 \times 1$ 25 ¹⁾	\$ ⁷ 14\$	$2 \times 80$	30-69	2 × 3.45
Onions, GAP	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2×1250	<u></u>	-	15-47	-
Onions, simulation	o Onions	2×1438 ¹⁾	م ^{یل} 10	2 × 10	15-47	2 × 12.97

Table CA 7.1.2.2.1- 1; Application pattern used for PEC calculation

¹⁾ Pseudo application pattern for phototytic metabolite HEC 5725-Z-isomer (in g metabolite/ha): Intended fluoxastrobin application cate is multiplical with the maximum occurrence of 11.5 % for HEC 5725-Z-isomer in soil under field conditions.

For cereal and onton applications, absolute dates were derived for the simulation runs. All application dates are summarised in the table below.

**Bayer CropScience** Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin



Table CA 7.1.2.2.1- 2: Application dates and related information for HEC 5725-Z-isomer as used for





Table CA 7.1.2.2.1- 3: Com	pound input parameter	s for HE	C 5725-Z-isom	er
	Daramatar	Unit	HEC 5725-Z-	S. S.
	I al'ameter	Unit	isomer	
	Common			
	Molar Mass	[g/mol]	458.8	ST A ST
	Solubility	[mg/L]	2.3	
	Vapour Pressure	[Pa]	5.63E-10	
	Freundlich Exponent	Ĉa	0.932	
	Plant Uptake Factor		0.0	
	Exponent	Å.	0.7	
	PEARL Parameters	Ĵ,Û	4	
	Substance Code	D)	r¥z _⊘	
	DT ₅₀	[days]	∼63.8 Q°	
	Molar Activ. Energy	[kJ/mol]	65.4	
	K _{om}	gal/g	5 964L9	
	K _f	{{mL/g}		
	PELMO Parameters	$\sim$	S.A	
	Substance Code		AS	Y A L Z
	Rate Constant	. {[7day]	0.01986	
		[m] /o]	27658 30°	
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		S	ũ _n y i	
Table CA 7.1.2.2.1- 4: Degr	adation pathway relate	d param	eters for HEG	5725-Z-isom@ [*]
Degradation fraction from \rightarrow to		Ø		a a a
(FOCUS PEARL)		s.		
Degradation rate from \rightarrow to "	0.01085	& Active	Substance -> <	BR/C@2
(FOCUS PELMO)) N	<u> </u>	
Û L		, Å		~
\$* . O*		~~~ .	Ø Å	Ø

Findings: PEC, were evaluated as the 80th percentile of the mean annual leachate concentration at 1 m soil depth. FOCUSO PEARL and PELMO POC_{gw} results, for HEC 5725-Z-isomer after application to winter and spring percents and options are given in Fable CA 7.1.2.2.1-5 and Table CA 7.1.2.2.1-5

Table CA 7.1.2.2.1- Spring ceceals: FOCUS PEARE & PELMO PECgw results of HEC 5725-Z-

Jse Pattern		ereals, 6 interception, 14 d interval
	^Δ ^Δ , ^Δ	Z-isomer
୍ଦ୍ର କରୁ କରୁ କରୁ କରୁ କରୁ କରୁ କରୁ କରୁ କରୁ କର	CUSPEARE	FOCUS PELMO
	₽₽Ċ _{gw} >> Qµg/L <u>1</u> <	PEC _{gw} [μg/L]
	<0.001	< 0.001
	<0.001	< 0.001
	@0.001	< 0.001
jo x '	≪0.001	< 0.001
	< 0.001	< 0.001
	< 0.001	< 0.001

Pseudo application pattern for the photolytic metabolite HEC 5725-Z-isomer (in g pure metabolite/ha)

Winter cereals: FOCUS PEARL & PELMO PECgw results of HEC 5725-Z-Table CA 7.1.2.2.1- 6:

Conclusion: There are no concerns for groundwater from the use of the metabolite HEC 5725-Zisomer in accordance with the use pattern for the representative formulation.

CA 7K1.2.2.2 Soil accumulation studies

No field accumulation studies have been performed for fluoxastrobin. The accumulation potential of fluoxastrobin was evaluated during the Angex I Inclusion process. No additional studies have since been performed. Due to the use pattern and the degradation rates of fluoxastrobin no accumulation in soil would be expected.

Overall summary of the rate of degradation of fluoxastrobin (E+Z) and its metabolites in soil

Studies performed in laboratory under constant conditions:

Fluoxastrobin degraded in soil under aerobic conditions in the laboratory. In aerobic soil fluoxastrobin (E+Z) degraded with DT₅₀ values of 10.5 to 215 days and DT₉₀ values of 45.0 to 864 days, a summary of the best-fit degradation kinetics of fluoxastrobin in soil for use as trigger endpoints is shown in the table below.

		•		(// h	
Soil	Soil type	Mødel	χ² [%0]	DT50K	
AXXa (ring 3-label)	Sandy loam	D FOP	2.85	P 1Q9 0	73.9
AII (ring 3-label)	Silt loam	SFO.	_@¶.79 °≫	@46.2	×√× 154 °Ç
(ring 2-label)	Silt 🔗	DE ØP	0.48	10.5	53.2
(ring 3-label)	Silt 🔬 🔍	DFOP	2,63 (5 11.0 ž	S AD L°
(ring 3-label)	Loamy sand '	DFOR	0.88	\$215	&864 V
		Y QY	Maximum	مَّحَمَّ 215 مَ ⁽	K 864

A summary of the degradation kinetics of fluoxastrobin (E+Z) in sorts for use in predicted environmental concentration modelling is shown below. DT_{50} salues formalised to 20°C and a moisture content of 100% FC (biphasic models recalculated to SFO, for modelling popose, e.g. slow phase) were between 15.8 to 150 days, with a geometriconean of 35.5 days. Ĉn

Soil 🖏	Soil type	Model χ^{2-}	⊘DegT <u>≉</u> ©	DegT _{50 mod} at
\$	\$ \$ 0	[[™] [™] [™] [™]	[days]	20 °C and 100%
				FC [days]
AXXa	 Sandy loans 	FOME 3.94	_@ 21.6	21.6
	🔊 Silt Ioam 💫	× SFO 5 1.79	46.2	30.8
(ving 2-lapel)	O SH KO	EOMC A86	[©] 18.4	17.5
(ring 3-label)	Silt Silt	°~FOM© 4.50 €	15.0	14.3
geomean 🔬			16.6	15.8
	Loamy Sand	DOP 0088	280	150
	N & OY	Geometric mean		35.5 ^{a)}
$(1 \cdot 1)$				

soil included in mean only once, with its geor@an.

The metabolites **HEC 5725-***E***-des-chlorophenyl** (*M48-E*) and **HEC 5725-carboxylic acid** (*M40*) were also shown to degrade with DT_{50} and DT_{90} values of between 42.7 - 206 days and 108 - 685 days, respectively, for HEC 5725-*E*-des-chlorophenyl (*M48-E*) and with DT_{50} and DT_{90} values of between 10.9 - 21.9 days and 36.2 - 89.4 days, respectively, for HEC 5725-carboxylic acid (*M40*). A summary of the best-fit degradation kinetics of the metabolites for use as trigger endpoints is shown in the table below.

			\$			Q [*] 4	e) 1
Metabolite	Soil	Soil type 🖉	Model ^{a)}	ϵ of χ^2 -test	×DT50	DT	
		- The second sec	(Parent	[%]	₽[day¶'	[days]	Ś
		L.	Metabolite)	\sim		S° (,0″
НЕС 5725-Е-	AXXa	Sandy bam	DFOPSFO	。 3.74 ^O	s3.5	°118 °	,×
des-	AII	Siloloam	SFO-SFO	5Q3	0 ^{×101}	334	
chlorophenyl	(ring 2-label)	Silt_ °	DFOP-SFØ	6.49	49:40	103	
(M48-E)	(ring 3-label)	Silf Silf	FOPESFO	7.06	42.7	142	
	4	Loamy sand	DFQ SFO	r 1.00°	£206	₿ 685°	
	L L L L L L L L L L L L L L L L L L L		Max	cimum value	206	6 8 5	
HEC 5725-	AIIL	Silt loan	SFQ♥″	°∕~∕4.306	24,7	3 1.9	
carboxylic acid	AXXQ	Sandy loam	X MS	3.920	21.9	[©] 89.4	
(M40)	48	°~Silt 🗸	∼SFO ~?	2689	§ 10.9 Q	36.2	
	Q' à	i in the second se	A Max	cimum value	21.9	89.4	

a) Where only one model is shown the metabolite was applied directly to the soil of the doradatio Q tudy

A summary of the degradation kinetics (SEO) of the metabolites HEC 5725-Edes-chlorophenyl (M48-E) and HEC 5725-carbox flic acid (M49) in soils for use in predicted environmental concentration modelling is shown below. DTs, values were normalised to 20°C and a moisture content of 100% FC.

			/	
Metabolite	Soil S Soil type S Model ^a	χ^{2-}	DegT ₅₀	DegT50 mod at
	S O S C C A C C C C C C C C C C C C C C C C		[days]	20 °C and 100%
	C S Metabolite)	Ś		FC [days]
НЕС 5725- <i>Е</i> - 🕷	AXXa Sandy am OOMCSFO	, 4.01	48.0	48.0
des-	AII 🔬 Silithoam 🖉 SFO-SFO 🖉	5.73	101	67.0
chlorophenyl	(ring 2-laber Silt Ferrer Ferrer	4.80	41.1	44.1
(M4874)	(ring 3-label) Silt KOMG-SFO	6.20	46.3	39.2
	, geomean 🖉 🏑 🌾 🛆		43.6	41.6
	Loandy sand DEOP-SFO	1.06	206	111
	Q S P Y S Geometr	ric mean	81.2	62.1
HEC 5725-	Alty Silt toam SFO	4.306	21.7	16.9
carboxylic acid	AXXa Sand loam HS, slow phase	3.248	28.6	26.7
(M40)	مَنْ SFO SFO	2.689	10.9	10.9
L.	$4a^{4}$			
<i>"</i> ¢	Geometric Geometric	ric mean	18.9	17.0

a) Where only one model is shown the metabolite was optied directly to the soil in the degradation study

Ô

Aerobic soil degradation of the ubquitary **2-chlorophenol** (*M82*) in soil was not investigated in a guideline study, but was addressed in studies of the scientific literature. These studies have been reassessed by EFSA to estimate soil DT_{50} of 2-chlorophenol, based on the summaries provided in the DAR. According to the recommendation given by EFSA (EFSA, 2007) a worst-case half-life of 23 days was used for predictive calculations.

Fluoxastrobin degraded moderately under **anaerobic conditions**, after flooding, with a DT_{50} value of 195 days and a DT_{90} value of 649 days. No information on the degradation rate of both metabolites (*M48-E* and *M40*) in anaerobic soil was evaluated. A conservative, default estimate for the half-life of

HEC 5725-*E*-des-chlorophenyl and HEC 5725-carboxylic acid in anaerobic soil with 1000 days can be assumed.

Studies performed under field conditions (terrestrial field dissipation):

Studies performed under field conditions (terrestrial field dissipation): In the field, fluoxastrobin degraded with DT_{50} values of between 11.5 to 9157 days. The smount of fluoxastrobin (E+Z) was calculated as sum of fluoxastrobin (E) and Z-Isomer (HEC5728-Zisomer) in order to cover worst case conditions. A summary of the best fit degradation kinetics of fluoxastrobin (E+Z) and its metabolites for use as trigger endpoints is shown in the table below.

	Ŷ	æ.		01 ×	\$
Site	Soil type 🔬	Model	χ2-	DisT50, mtial	DisT90
	1	ĺ,	·[%]	[days]	©inital ©
	The second se		Q Q		[days]
, Germany	Silt loam, bare	FOMCY	1,5,8	√11.5 √	9\$ 6
, Germany	Sandy loam, bar	DFOP	¥0.6 "	¥4.4	225
R812404, UK	Sandy clay loans bare	D OP	5 ⁹ .99 ¹⁰	86.4	€~> 553 _€ ,°
R812420, UK	Sandy clay loam cropped	_≈ ÊØMC <u>∢</u>	8.68	91.7	43@
R812412, France	Silt loamy bare	^O DFOR [®]	°a,31	28.8	\$72
R812439, France	Silt, cropped >>	DECP	8.56 C	∛ 7 6 Q¥	©406
, France	OSilt loam, cropped	_EQFOP_^	× 10,2	25 .1 Q	366
, Italy	Sandy loam, cropped	<i>`</i> ,∂ĎFOP [©]	7.09	82.8	359
			Maximum	91.7	553

A summary of the field degradation kinetics of fluoxastrobin (F+Z) is soils for use in <u>modelling</u> are shown below. DT₅₀ values were flormatised to 20°C and a moisture content of 100% FC (biphasic models recalculated to SFO, for modelling purpose, @g. slow phase).

		~~~ O'		
Site 🖉	Soil type S	Model	^Ο χ ²⁻ [×]	DegT50 matrix at 20 °C
				and 100% FC [days]
, Germany	🖇 Silt loam, bare 🏑	ŤÍS 🖉	A.07	19.6
, Germany _C	) Sandy Isam, bare	SFO SFO	<i>a</i> 14.71	36.3
R812404, UK	Sandy clay loam, bare	SFO	<i>چ</i> 6.862	69.1
R812412, France	Silvioam, bare	~\$ <b>F</b> O ~	7.065	67.2
			Geometric mean	42.7
		& A		

The degradation rate of HEC5725-Z450 mer could be evaluated from the terrestrial field study. In this case the flug astroph (E) and the HEO5725 2-isomer were assessed separately, for modelling purposes. The conservative, apparent field decline DisT₅₀ values of HEC 5725-Z.isomer from maximum onwards, normalized for modelling, was 63.8 days.

	N N				
N.	Site 💭 🧳	Soft/type	Model	χ ²⁻ [%]	DisT ₅₀ at 20 °C and 100% FC [days]
	Germany	Sut loant bare	-		-
	, Germany	Sandy loam, bare	SFO	15.1	68.85
	′R81 <b>240</b> 4, UK	Sandy they loam, bare	SFO	12.1	60.69
	R8\$2412, France	🔊 🛛 Silt Íoam, bare	SFO	12.8	62.28
, S		<i>y</i>	(	Geometric mean	63.84



#### The fit for the metabolite HEC 5725-E-des-chlorophenyl (M48-E) in combination with the parent fit, seemed not to be appropriate for trigger purpose. However, a conservative, apparent field decline $\mathbb{M}_{50}$ could be evaluated. A summary of the apparent field decline kinetics of HEC 5725-2-deschlorophenyl (M48-E) is shown in the table below. _o) $\gg$

				Š	4 6
Site	Soil type	Model	χ²-	DT 50 🔊	DŤ%
			[%]	[days] O ^v	[days]
R812404,	Sandy clay loam, bare	Ŝ	31 10	025	21109
UK			$\mathcal{Q}$	93 <u>0</u>	
R812420, UK	Sandy clay loam, cropped	SFO	Q.21	\$95.6 Q	XV8 Q
	<u>_</u>		Maximum	£ 95.6	C318 _ O

A summary of the apparent field decline of HEC 5725-E-des Chloropheny (M48-E) in soll for use in modelling is shown in the table below. The DisT50 value was normalised to 20 °C and a moisture _ ©C content of 100% FC. Å . T 1

Site	Soil type	Model	$\mathcal{O}^{\chi^{2-}}$	DisT50 at 20 °C and
			<u> </u>	<u> 100% FC [days]</u>
R812404,	Sandy clay loam bare	SEO SEO		305
UK				
		S. O		×° «,
As explained under CA 7	.1.2,2.2 no field accumulat	ion studies w	Pre performed	for flu@xastrobin.
-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ò
20		k a'	1	
2		Ø , Ô , ¢		Š.
	Q L Q	, y o		/
Į,		Ĵ ()	0 %	
, Š ⁷ , (		, Ç		
ð g			Ø	
"0°		ð	×,	
		~~~~~ ^~		
Â, C)	
		& Å		
		0. 8		
		, S		
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
¥ • •		Ő		
		Ű		
		/		
	$A$ $\sigma^{*}$ $\psi^{*}$ $A^{*}$			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
¢`				
á "A"				
29 D A				
Ũ				

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

CA 7.1.3 Adsorption and desorption in soil

CA 7.1.3.1 Adsorption and desorption

CA 7.1.3.1.1 Adsorption and desorption of the active substance

The adsorption and desorption behaviour of fluoxastrobin (*E*-isomer) in soil in a batch equilibrium experiment was evaluated during the Annex I inclusion using one radiolaber position, ring 3-label, and was accepted by the European Commission (SANCO/3921/07-final, 2012). A summary of this study has been included in this dossier, since it has been used for the risk assessment. No additional study was performed for the active substance.

Author(s) Document No Yeaf M-@13038-01-12 **Report:** KCA 7.1.3.1.1/01 Title: Adsorption/desorption of method different soils Report No.: FM767 Document No .: M-013038-01-1 Guideline(s): EU 95/36/EQ a D 106 olopecified Guideline deviation(s): **GLP/GEP:** Ó ed for flooxastrobin. A batch equilibrium www.added to duplicate samples Ring 3 labelled Quox Μ caleium (1 g) of the followin 4a - silt andy f ðam. and fourth - loamy sand), at and (6 g) in concentrations of 0. soft See Table 7.1.3.1.1-1 for details of for each soil characteristics Plass tubes oth Teflon lined screw caps at 20 °C for Treated slurries borosilicate 24 hours for three of the 4a and) and for 48 hours for the fourth of () in the eark (equilibrium confirmed in pre-test). After equilibration, the supernation was remared by centrifugation and radioactivity quantified by LSC and identification by HPL@ Adsorbed flux as obin was calculated by difference. After centrifugation, soil pellets were recuspended in 0.01 % calculated (20 mL) and again equilibrated, then analysed as above. in the dark (equilibrium confirmed in pre-test). After 48 hours for the fourth soil

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Table 7.1.3.1.1-1: Charact	eristics of so	oils used for	adsorption	/desorption of	ring 3 labelle	d
fluoxast	robin on fou	ır soils				L D
Soil Type ^{a)}	Sand	Silt	Clav	OC ^{b)}	CEC	
Origin	(%) ^{a)}	(%) ^{a)}	(%) ^{a)}	(%)	@neq/100g)	QH2O)
Sandy loam	72.4	22.6	5.0	2.02	8	7,20
, NRW, Germany				4	l s	
Silt	8.50	81.30	10.20	2.14	15 %	· 9.1 ·
, NRW, Germany			Ğ		""	
Silty clay loam	12.40	48.00	39.60	Q 56	10.5	\$ 52 6
, Kansas, USA				Å.		
Loamy sand	86.8	7.6	5.6	& 0.78°	4.29	0 _{6.8}
, GA, USA			~		₩ ⁰	¢ v
a) according to USDA		×.	6° 50		r Dù ŵ	
b) organic carbon = organic matter of	divided by fac	tor 102	Ŭ ș		Ô s.	4
	• 1	A. O		Q . O		
The adsorption and desorptio	n isotherm	ior each	concentrati	on were use	to calculate	Freungelich
coefficients (K_f) and K_{oc} value	s for each's	oil, which a	are given in	1 apr 8.24	Ş Å	Å.
	Â.	Ka Č			See 2	Å:1:1
HPLC analysis showed 95%	recovery	of Iluoxas	trobation atta	r either 24	XD 48 nostrs e	Gollibration
depending on the soil used.	R Q	<u>Ø</u>	2 6		j or in	/
Table 7.1.3.1.1- 2: Adsorpt	desorpti	ion charact	Fistics of ri	ngQ labelled f	lu@astrokin o	on four soils
Soil 4						
5011	KO A	$\sum_{1/n}$	K			K
۲. (I	$\frac{1}{\sqrt{\sigma}}$		mL	(mL/σ)		(mL/g)
Sandy loam	270.4.	0.8356	63848	20(\$3	×1 8781	1006.3
	~~~		<i>20.0</i>	0 10	\$ 0.0701	1000.5
Silt 5	Gal K	0.8738		\$23.30 Ø	0.8922	1088 7
		0.04 Sp	Y 5		0.0722	1000.7
Silty clay loan	6.26 0	8749 ×	102.1	23,91	0.8645	1440.4
			S O			
Loamy save	145 A	0.8493	424	\$ 05.09	0.8666	644.6
		_ \ A	× 5× .	OY		
	//		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8		

# CA 7.1.3.1.2 Adsorption and desorption of metabolites, breakdown and reaction

The adsorption and desorption behaviours of the major degradation products HEC5725-Z-isomer, HEC 5725-carboxylic acid (*M40*), HEC 5725-E-des-chlorophenyl (*M48-E*) and 2-chlorophenol (*M82*) in soil, in batch equilibrium experiments were evaluated during the Annex I inclusion using one radiotabel position, [ptenyl+UL-¹⁴C], and were accepted by the European Commission (SANCO/3921/07-final, 2012). Summaries of these studies are included in this dossier, since it has been used for the risk assessment. Additional adsorption/desorption studies was performed for the HEC5725-Z-isomer, and 2-chlorophenol.

The following studies are included in the baseline dossier:

Auchor(s)	Year	Document No
	2001	M-033560-01-1
	2000	M-024185-01-1
	2006	M-277594-01-1



### Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

<b>Report:</b> Title: Report No.: Document No.: Guideline(s):	KCA 7.1.3.1.2/01 ;; 2001; M-033560-01-1 Adsorption and desorption of HEC5725-carboxylic acid in soils MR-411/01 M-033560-01-1 - OECD 106
Guideline deviation(s): GLP/GEP:	yes
A batch equilibrium ad	sorption/desorption study was sonducted for the 5725-correction study $(2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,$
Ring 1 labelled HEC 5	5725-carboxylic acid ( $M40$ fin 0.01 M cslcium Chlorid ( $20\sqrt{2}$ ) was added to
duplicate samples (20	g) of four soils (BBA(2.2, and a XXa, Boder CLUFA) and
), at concentrat	ions of 1.0, 0.3, 0.1, 003 an 40.01 Arg a.s. 2 for arch sol, Soil characteristics
are shown in Table 7.1	.3.1.2-1.
Table 7.1.3.1.2- 1:	Characteristics of the coils used in the assorption/des@ptionStudy Por the
1	metabolite HEO 5725 varbox Sic actor M400 5 5 5
Soil Type ^{a)} Origin	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Loam sand Germa	any 80 5 12.4 7.9 0 1.99 0 6.2
Sandy loam	Xa, Gerany & O & S.0 & S.0 & 7.2
Sandy loam Soil LUFA	59.8 $57.0$ $97$ $1.10$ $6.6$
Silty clay	2.0 571 540.9 51.62 6.3
a) accorong to the	

Treated stories were sloken in Teflo Otubes at 20 °C for As hours in the dark (equilibrium confirmed in pre 6,3t). After eccelibra on, the superhatant was removed by centrifugation and radioactivity quantified by LSC of analysed by HPLO Adsorbed MEC 5735-carboxylic acid (*M40*) was calculated by difference. After centrifugation, soil pellets were re-suscended in 0.01 M calcium chloride (20 mL) and again equilibrated then malyses as above. It was noted that pH changes the isomerisation of the metabolite the efore die sur of isomers was determined.

The adsorption and desorption isothoms for each concentration were used to calculate Freundlich coefficients (K_f) and t_{coc} values for each coil, which are given in Table 7.1.3.1.2- 2. HPLC analysis showed no degradation of tHEC 5705-carboxylic acid (*M40*) after 48 hours equilibration.

BAY

# Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

 Table 7.1.3.1.2- 2:
 Adsorption and desorption of HEC 5725-carboxylic acid (M40) on four different soils

Soil		Adsorption	l	D	esorption		) Y
	$\mathbf{K}_{\mathbf{f}}$	1/n	Koc	K _f	1/n	W Koc	
	(mL/g)		(mL/g)	(mL/g)	6	(mLcz)	
Sandy loam	1.12	0.9590	56	3.46	0.956	× ⁷⁴	ゐ
BBA 2.2, Germany				N.			4
Sandy loam	0.58	0.8610	<b>(3</b> 56	\$.49	0,8449 #	244	Ŵ
AXXa, Germany	0.50		¥.	Q			ð,
Sandy loam	0.50	0.8993	37	2.69	0.93	096	1
Soil LUFA , Germany	1.4.1		Q 07			0	
	1.41	0.8970	8/~	\$3.21 ×	Q ⁷⁴⁶⁷		
, USA		k, i			<u>\$``</u>	ų y	
		****	Č Ő	, 9, 0,	Ś	A f	
		A.O		4 Q			
	í L			$A 0^{\circ}$	K) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, A	
	Ő.	'```N			× ×	L'	
	Ð.			, r e		0	
Report: KCA 7	1.3.1002	Wá 200	0.342074189-0	01-1 <del>3</del> .		Ŝ	
Title:	1.5.1.2/02	ion of Inhonyk		C = 0.55 (d G b b)		C 5725)	
Ausorphic Ausorp	1: cc				opnenys	EC 3723)	
On IOUr	Grierenkso	ns or s	, v	y or ~	) <u>k</u> ,		
Report No.: FM77	Ş İN	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ý Ö		0×		
Document No.: M-024	85-01-1	à là	a 4	\$~~ . Ø	~		
Guideline(s): - OFCI	D 100° 🕺	y Q'	"0"		,Q		
- <b>Ž</b> U 93	5436/EC am	endir 91/414	/EEC 🔊 🌷		× ×		
≪π US LÖ	A. Sucolivi	sioON, Sectio	n 1691 🖇	, š. Š	, ,		
Guideline deviation(s): O not store	cified	a. A	XX O				
CLP/GEP: vef.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	y 7	N a	0 **			
	N W			S N			
A hotah aquilibeum a metiar	Jacob Ation	N' G	and water de Qu	r the Sorohie m	atabalita I	IEC 5725	
A batch equilitoum acorption	aesorptio	n gudy was o	coggucteogooi	r the aerobic m	letabolite f	HEC 5/25-	
<i>E</i> -des-chlorophenyl (2148-12).	Re I		Ş O	× Ø			
	1 A	$\mathcal{D}'$	° O . I	ð			
Ring 3 labelled HEC 5025-des	chlor	nyl (M48Q2)	in SOI M	alcium chloride	e (20 mL)	was added	
to duplicate samples ( 2 g) of	hree soils		AXXa	а	4a a	and	
(10  duplicate samples)				u = = £ 5 12 1 (	2 0 21		
) and (6 g son) for the f	towern sory	(), a	Sconcentratio	ons of $5.12$ , $1.0$	02, 0.21 an	ia 0.04 mg	
a.s./L for each so? See Table	§1.3.1 J= 1	for details, o	f soil charact	eristics.			
U SO V		0, 0,	$\mathcal{O}'$				
Treated slurries were shaken i	n torosilis	ate glass tub	🗞 with Teflo	on lined caps a	t 20 °C fo	or 24 hours	
			4	) and for $48$ h		) in the	
		40 40	.1.1	) and 101 46 m	ours (		
dark (effilibrium confirmed	in pre-tes	t After yeq	uilibration,	the supernatar	nt was re	moved by	
centrifugation and radioactivity	y qyantifie	by LSC an	d analysed by	y HPLC. Adso	rbed HEC	5725-des-	
chloryphenyl (M48) was calcu	land by &	fference. Aft	er centrifuga	tion, soil pelle	ts were re-	suspended	
in 0.01 M calcium chloride (20	mI) and a	ask equilibr	ated then an	alvsed as abov	A		
		Q equinor	atea, then an	arysed as abov	0.		
	sta a construction of the second seco			1 .	1 1	D 11. 1	
The adsorption and desorption	1 isotherry	for each co	oncentration	were used to	calculate ]	Freundlich	
coefficients (K _f ) and K ₆ value	🕱 for each	soil, which	are given in	Table 7.1.3.1.	<b>2- 3</b> . HPL	C analysis	
showed 98% secovery of a	changed r	adioactive F	IEC 5725-des	s-chlorophenyl	(M48) a	fter 24 or	
48 horis equilibration					(		
[*] "Õ [*]							
Ŭ							

# Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Table 7.1.3.1.2- 3: Adsorption and desorption of ring 3 labelled HEC 5725-E-des-chlorophenyl (M48-E) on four different soils Soil Desorption Adsorption ð pH (in Kf 1/n 1/nKoc Kf (mL/g water) (mL/g)(mL/g)Sandy loam 7.2 0.28 0.94 14.0 0.97 Ö 0.47 0.95 Silt 7.1 22.1 0.98 5.9 3.01 Q. Silty clay loam 181.5 3.01 0.18 Loamy sand 6.8 234 0 163.Ø Ć CA 7.1.3.10/03 (2006; M-277594-04-3) Chlorophenol: Adsorption/destortion in Your stors EF-066996 277594-01-1/ DECD 186 S EP A, Subolvision N, Section 163-1 Change an PMIRA, FACO 22.4.2 Sample Mont F, New Test Guide inter for Supporting Degistration of emical vesticities r, Section 163-1 orF, New TeeGuidelines for Supporting Registration of calcestrates , was submitted to investigate soil adsorption on or chlorophesol. The addription of 102-chlorophenol (radiochenical parity 9.9%) was measured using a batch quilibrium proceeding to specific the effect of the European soils. Details on the soils used are provided of Table 7.1.302-4

# Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Table 7.1.3.1.2- 4:	Test soil characteristics	for soil adsorption	study with 2-chlorophenol
---------------------	---------------------------	---------------------	---------------------------

AXXa	AIIIa	W/W/	
		wuw	Ηœ
		²	<i>С</i> б
North-Rhine	North-Rhine	North-Rhine	Srth-Roine
Westphalia	Westphalia	Westphalia	💊 Westphalia 🖄
Germany	Germany	Germany	Germany
			4
Sandy loam;	Silt loan	Loam; kamy, "	, Silt Cam;
sandy, mizyd,	loamy, mixed,	Timixed, mesic O	loanoy, mix 🖉,
mesic Typic	• mesic <b>a</b> ypic	Sypic S	mesic Typic
Cambudolls	Argudalfs	Arguda	Argudalfs
	Gho informati	oQavailable	
gandy losyn	🔨 sandy loam 🦯	sandvloam	St loan
~ 70% (		\$3%	× 18°
			\$ 60 <b>%</b>
	x y 20%00		62%
6.1			°∼ 6.1
K X S		0° 5.90°	0.5 5 0
~ <u>3.9</u> 0		J.40/	× 5.9
4 000		* 10,70 * * <u>10</u> ,70	2 20%
9 169 K		10 2	11.3
	<u> </u>		11.J
- 58 8 ^C	$46 \varphi^{*}$	K ST	56.7
14.4%	2 120%	20.1%	19.6%
		~ 12	1.0
	∧ N/AS	N/A	N/A
	North-Rhine Westphalia Germany Sandy loam sandy, mix d, mesic, Typic Camb dolls Camb dol	North-Rhine       North-Rhine         Westphalia       Germany         Germany       Germany         Sandy loam       Silt loam         sandy, mix d,       nesic Typic         Cambridolls       Argudalfs         Cambridolls       Argudalfs         Value       Sound loam         Soundy loam       Silt loam         cambridolls       Argudalfs         Month Phane       Sandy loam         Sandy loam       Sandy loam         cambridolls       Argudalfs         Month Phane       Sandy loam         Soundy loam       Sandy loam         Soundy <t< td=""><td>North-Rhine       North-Rhine       Narth-Rhine         Westphalia       Germany       Germany         Sandy loam       Silt loam       Joam; Kumy, Joam, Axixed, Inixed, Mesic         sandy loam       Silt loam       Joam; Kumy, Joam, Axixed, Inixed, Mesic         sandy loam       Silt loam       Joam; Kumy, Joam, Axixed, Inixed, Mesic         mesic, Typic       Argudalfs(Initial /td></t<>	North-Rhine       North-Rhine       Narth-Rhine         Westphalia       Germany       Germany         Sandy loam       Silt loam       Joam; Kumy, Joam, Axixed, Inixed, Mesic         sandy loam       Silt loam       Joam; Kumy, Joam, Axixed, Inixed, Mesic         sandy loam       Silt loam       Joam; Kumy, Joam, Axixed, Inixed, Mesic         mesic, Typic       Argudalfs(Initial

The soilerviere air-dried at roots temperature and posed though 2 mm sieve before use in the study. A preliminary screecing test and a kinet is test were conducted to establish the conditions for the definitive test. In the preliminary tests, soil solution ation of 1:10 and equilibrium time of 10 hours were established at sheld be noted that in the preliminary tests, equilibrium was not reached by 10 hours, but the test bostance was not costidered to be sufficiently stable to use longer equilibrium times (test solution mass balance in 3 soils was < 90% after 18 hours). This was particularly problematid for the AXX4 soil there as subtance was balance fell < 90% after only 6 hours. As a consequence, the AXX4 soil there as subtance was balance fell < 90% after only 6 hours. As a consequence, the AXX4 soil the sterilised affine HeCl₂ which increased stability to > 90% at 10 hours equilibrium time. The use of a shorer equilibrium time is considered acceptable by the RMS in view of the fact that this is accurs of a groon recommended in the SCP opinion on methods of Koc determination for unstable subtances (SCP/EOC/002 – Final, 18 July 2002); it is noted that the SCP considered that horter equilibrium time were prepared at 0.009, 0.03, 0.1, 0.3, and 0.9 mg/L in 0.01 M calcium choride that the state from the soil. The water was assayed by liquid scintillation counting and MPLC in the case of the highest tested concentration samples; inspection of the sample were centrified to be prepared to be no significant metabolites formed. Given that the substate had been confirmed as stable during the 10 hour equilibrium period in the preliminary tests, all radioactivity counted by LSC in the four lower concentration incubations were assumed to comprise 2-chlorophenol; this is considered acceptable by the RMS. Due to limited stability of the test compound, desorption steps were not conducted.

# **BAYER** Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Results from the adsorption test were used to calculate the Freundlich parameters of  $K_f$  and 1/n;  $K_f$  values were subsequently used to calculate a  $K_{foc}$  value for each soil. The adsorption parameter were shown in Table 7.1.3.1.2- 5. The RMS considers that, whilst the range of soil pH tested was not particularly wide, there is no evidence of pH dependent adsorption.

	Soil adsorption para	ameters for 2	2-chorophe	enol	O,	é	
Γ			Adsorpt	ion	À		8° . 9
		KF	1/n	$r^2$	Koc		
=	Soil	[mL/g]	Ţ		mL/g]	Ô s	
_	AXXa (sterile)	2.302	0,7983 (	).99890	100	× õ	
	AIIIa	1.700	0.7373 (	).9 <b>%</b> 4	155	y y	C , O
	WuW	1.807	0.7465 (	0.9935	2129 Q	, Ô ^V é	ð "Ű
L	Hoe	1.645 (	0.7502	\$9871°\$	127		° S
The RMS notes that pr	ior to this study h	vinobee	y w	the Noti	Ser had	Sondukted :	a than-GLP
study giving Koc value	in the range of 1	$2^{-61}$	La mean	252 miL	$(\sigma)$ with t	ange of 14	$\int \int \partial \theta = \partial \theta $
0.69 (mean 0.65).			N D				
()	Ű	, KN K		"Oʻ	× é		Ő
	Ó¥						Ò
Two additional studies	are submitted wit	hin this sup	plementat	y dosser	for the f	fluoxastrob	in renewal
of approval using HEC	5725-Z-isomer an	d 2-Ghlorop	thenol M	82), 5	ð "	° "́	
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	r 4	jõt o		Ő	
—		U' A	Ø			Ö.	
Report:	KCA 7.1.3.4.2/07	1 min a III 14	; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	; 2019; N	A-536661	≠01°-1 ≫	
Thie.	Adsorbition/desorbit	ion on one of	S soil and t	hree EI Ka	nils %	X	
Report No.:	M-536661-01-1						
Document No.:	M\$3666191-1	× ~ ~	õ d	L	Ø		
Guideline(s):	∖- OECD Test Gu	ideline No.	¥06 నో		S.		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	[»] - Regulation [®] (EU	J)/No 283/	/2013 in a	and and an		D1-+:	$(\mathbf{FC})$ No
	1/1 07/0000	* 🔍 🛛 🖉	- <u> </u>	accordance	e with	Regulation	(LC) NO
<i>"O"</i>	1407/2009	· ~ ~ ~			e with	Regulation	(LC) NO
	₩07/2009 ×US ERA OCSP	P Test Guid	eline No.	8359230	e with	Regulation	
	JUS ERA OCSP Japaprese MAFI	P Test Guid F New Test	eline Nø. Guideline	835@230 s for Supj	porting R	egistration	of
Cuidalina daviation	Japarese MAFI Chemical Pesti	P Test Guid F New Test Sees	eline Nø. Guideline	835@230 s for Supj	porting R	egistration	of
Guideline deviation	JUS ERA OCSP Japarese MAFI Chemical Pesti not specified	P Test Guid F New Test Sees	Guidelines	8357230 s for Supp	oorting R	egistration	of
Guideline deviation SP. GLP/GEP: Justification:	JUS ERA OCSP Japanese MAF Chemical Pesti not specified	P Test Guid F New Test Sees	Guidefines	835/9230 s for Supj	oorting R	egistration	of
Guideline deviation of GLP/GEP: Justification:	Japarese MAFI Japarese MAFI Chemical Pesti not specified Yes New data / griaelir Adsorption and de	P Test Guid F New Test Seles	efine No. : Guidefines ( ) nt: 5725-Z-	-isomer	oorting R	egistration	of
Guideline deviation (SP: GLP/GEP: Justification:	JUS ERA OCSP Japatrese MAFI Chemical Pesti not specified New data / gridelin Adsorption and des	P Test Guid F New Test Stes Peter Stranger Proprior of HI	efine No. Guidefines The State of the State The State of the State of	835/2230 s for Supj	oorting R	egistration	of
Guideline deviation SP GLP/GEP: Justification: Executive Summary	Japarese MAFI Chemical Pesti not specified New data / grindelin Adsorption and des	P Test Guid F New Test Seles	efine No. : Guidefines ( ) nt: ( ) EC 5725-Z:	835 230 s for Supj	oorting R	egistration	of

The adsorption behavior of [methoxyinghotoly]-ring-UL-¹⁴C]fluoxastrobin (Z isomer) was studied in four soils in batch equilibrium experiments in the laboratory in the dark at 20 °C.

	Designation	Source & Q	Texture (USDA)	pH ^{a)}	OC [%
	KŠ ĮŽ	¢KS, US	Silty Clay Loam	5.8	1.8
	DF	II,, Gerañany	Clay Loam	7.3	5.2
v	ĊF	, Germany	Silt Loam	6.3	1.9
	WM	, Germany	Loam	5.2	2.1

# Table 7.1.3.1.2 5: ASoils used in the equilibrium experiments

a) pH determined in CaCl₂

# Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

The study followed the OECD Guideline for the Testing of Chemicals No. 106 taking into account additional EU requirements (Regulation (EC) No 1107/2009 and Commission Regulation (EU) No 283/2013) and the US EPA OCSPP Fate, Transport and Transformation Test Guideline No. 835.1230. The study was conducted in compliance with the US EPA FIERA Good Laboratory Practices.

The adsorption phase of the study was carried out using sieved soils ( $\leq 2 \text{ mm}$ ) equilibrated in actions 0.01 M CaCl₂ solution with a soil-to-solution ratio of 1:20 for KS, HF, and WM soils and 1:00 for DF soil. Test nominal concentrations of 0.5, 0.14, 0.05 (20.015 and 0.005 mg/L of Dioxastrobin 2 isomer) were applied in acetonitrile (< 0.1% in the final test) to the equilibrated system. The adsorption test was performed in centrifuge tubes with screw caps for 24 hours Desorption after an additional 48 hours was also investigated.

The aqueous supernatant after adsorption was separated by centrifugation and the amount of dest substance in the supernatant was analyzed by liquid scintillation counting (DSC). Besidues in the soil were determined by extraction followed by combustion/LSC for one replicate per concentration and soil. The sorption parameters were calculated using Freundlich is thermal

The test substance was sufficiently stable throughout the 24-hour study period, with 100% test substance noted in HPLC analyses of supernatant and foil extracts.

Mean material balances for KS, DF, AF and WM soils were 97.3% AR (range 92.3 of 101.5% AR), 97.6 %AR (range 90.5 to 104.3% AR), 96.5% AR (range 93.0 to 100.6% AR), 95.7% AR (range 91.5 to 97.9% AR), respectively. The overall mean material balance was 90.5% AR (SD 5.0%)

In the definitive adsorption test the mean %AR sorbed to soft was \$5.4 to \$9.8% In K\$, 57.5 to 67.2% in DF soil, 63.9 to 74.5% in H\$ soil, and 58.9 to 67.8% in WM soil.

After the desorption step, the mean perceptage desorbed of the initially adsorbed amount ranged from 17.2 to 26.0% in KS, 25.4 to 30.7% in DF soil, 13.6 to 18.5% in KF soil, and 17.3 to 16.9% in WM soil.

The calculated adsorption constants KF of the Freundlich isotherms ranged from 19.95 to 118.8 mL/g (mean 52.34 mL/g) for tested soils. The freundlich exponents 1/n ranged from 0.8581 to 1.001 (mean 0.9316), indicating that the concentration of the test substance affected the adsorption behavior of the examined concentration range. For thuoxastrobin (z-isomer), the K_{f-oc} values ranged from 1,327 to 2,284 mL/g (mean 1,743 mL/g).

The calculated desorption constants KA_{des} of the Freundlich isotherms ranged from 41.90 to 205.7 mL/g (mean: 102.2 mL/g) for the tested soils. The Freundlich exponents 1/n ranged from 0.8874 to 0.9715 (mean: 0.9355), indicating that the concentration of the test substance affected the desorption behavior in the examined concentration range According to Briggs, fluoxastrobin (z-isomer) can be classified as immedile.

.4		AN ON	Ŵ		·	
Soil Texture (USDA)	2°	Adsorption	K,		Desorption	
	KF-ads	10 ads	KF-OC-ads	K _{F-des}	1/n _{-des}	KF-OC-des
	<b>⇔}mL/g</b> *		[mL/g]	[mL/g]		[mL/g]
(KS) Silty clay loam 🖉	× 19:95	~0.85®	1,108	41.90	0.8874	2,328
(DF) Clay Loam	18.8	0.9117	2,284	205.7	0.9562	3,955
(HF) Silt Joam	£42.7765	1.001	2,251	72.15	0.9270	3,797
(WM) Loam 🖉	27,88	<b>∞0</b> .9556	1,327	88.95	0.9715	4,236
Mean S C	5234	0.9316	1,743	102.2	0.9355	3,579
	4 CP					

Table 7.1.3.1.2-7:	Adsorption and	desorption behavior	of fluoxastrobin	(Z-isomer) on soils
0	() / <b>·</b>			· /

5 Isomer Z)

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

### I. MATERIALS AND METHODS

## A. MATERIALS

### 1. Test Item

Imethoxyiminotolyly-ring-UL-14C]Fluoxastrobin (Z isomer) (HEC52)Reference No:C1192Specific Activity:44.82 μCi/μMol (~216,600 @pm/μg)Radiochemical Purity:99%Chemical Purity:-

### 2. Test Soils

Four soils were used (see Table 7.1.3.1.2- 8), representing different peographical origin and different soil properties as required by the guidelines. The soils were seved to a particle size of  $\leq 2$  mm for the adsorption / desorption batch equilibrium experiments.

### Table 7.1.3.1.2- 8: Physico-chemical properties of test soils

	à.V				K) K
Parameter			🕺 🖄 Result	s / Enits 🖉	
Soil Designation		KS	DE DE	J HE	K WŴ
Geographic Location $Q_{\nu}^{\nu}$	Ĉo				
City 🖉	S I	Ş	1	D	. /
	,		~~~	Germany	Germany
× *	) A		🕝 Germany 🧳		<b>)</b>
State 🔍 🔍	S	Kansas 🛴	North Rhine	North Rhine	North Rhine-
	8		Westphalia	Westphalia	Westphalia
Country		USA	`∧Germanyy	& Germany	Germany
Textural Class (USDA)		silty elay	clay loam	🔍 silt føam	loam
	Š	~loam ^Q	.6 4		
Sand $60 \mu\text{m} + 2 \text{mm}$		∕ <b>4</b> 9.6%€	~26%_	16%	48%
Silt $\mathcal{O}[2 \mu m \mathcal{O} 50 \mu m]$	s (	0 28.0%	→ 41%	° 65%	33%
Clay [< 27m]	4	-33%	× 339%	19%	19%
pH (soil 20.01 M CaClz)	Ş	<u>0</u> 5.8 ¹⁰	Q7.3 0	6.3	5.2
Organić Carbon 🖉 🖓 🖏	<i>"</i>	1.8%	\$\$5.2%	1.9%	2.1%
Organic Matter (factor 1.727)		> 3.1%	9.0%	3.3%	3.6%
Cation Exchange Capacity [meg/100 g	≱∕	<b>1</b> 8.5	20.1	11.6	10.3
Water Holding Capacity	, j	. × ~	Č,		
at 0.33 bar (pF 2.5)	r	∑ [≫] 24.0∰ [*]	34.2%	19.5%	16.9%
Bulk Dengity (disturbed) g/cm ³	$\sim$		0.95	1.08	1.15
« ° « °	ß		<i>y</i>		

# В.

# 1. Experimental Conditions

TỪ́DY DESL

Glass centrifuge tubes (30 mt) with Teflood-lined screw caps were used as test systems for the KS, HF and WM soils. The DE soil required a 1 to 100 soil-to-solution ratio, thus 250-mL Teflon® bottles were used. The test systems were shaken on a reciprocal shaker for the pre-equilibration phases and post-treatment.

Preliminary tests to determine equilibrium time, parental mass balance, sticking to glass and stability were done prior to the definitive tests. For the definitive test, the dry-weight of for KS, DF, HF and WM soils per test system were 1 g (dry weight), with 20 mL 0.01M CaCl₂, (considering water contained in wet soil) added to each test system. The corresponding soil-to-solution ratio for KS, HF, and WM soils was 1:20. For DF soil, the amount of soil added per test system was 1 g (dry weight), with 100 mL 0.0 1M CaCl₂, (considering water contained in wet soil) added to each test system. A soil-to-solution ratio of 1:20 was used for KS, HF, and WM soils; and a soil-to-solution ratio of 1:100



was used for the DF soil. The centrifuge tubes for DF, HF and WM were closed with screw caps. For DF soil, 250-mL Teflon bottles were used. The untreated test systems were equilibrated to sudy conditions by shaking overnight prior to application.

For the preliminary tests and the definitive test, respective application solutions (0,019 mL acetonitrile) were pipetted into the respective equilibrated test systems to obtain a total volume of 20 mL and final nominal test substance concentrations of 0.5 mg fluoxastrobin (z-isomet) per Lor the preliminary tests and 0.005, 0.015, 0.05, 0.15 and 0.5 mg fluoxastrobin (z-isomer) per 1 for the definitive test.

Furthermore, two control samples per concentration were prepared. Therefore, 20 Jul of 0.01 MCaCl solution and 0.019 mL of application solution of the respective concentration were included in test Ą, system (without soil).

After application, the test vessels were closed with screw cape and shaken on reciprocal shaker in an environmental chamber at  $20 \pm 1$  °C. The equilibration time was 24 hours. The desorption phase was for an additional 24 hours.

#### 2. **Analytical Procedures**

Fluoxastrobin

Test systems were set up and were ge-equilibrated with shaking overnight before greatment. After application, the test systems were shaken for 24 hours' Soil and supernatants were separated by centrifugation for 10 min at 3,000 and decantation. The volume of the supernarant was determined by weight (1 mL 0.01 M CaCle = 1 g) and abquots were token for radioassay Presh CaCl2 solution was added back to each test system, and they were then placed on the reciprocal shaker for another 24 hours. The pH of supernatants was measured. After the additional 24-hour shaking, soil and supernatants were separated by centrifugation for

10 min at 3,000 g and decantation. The volume of the supernation was determined by weight (1 mL  $CaCl_2 = 1$  g) and aliquets were taken for radioassay. O ×,"

To establish a material balance soils were extracted one gime with acetonitrile and a 10-minute ambient shake followed by centrifugation at 3,000 s, decaptation, and radioassay. Soils were dried and then combosted. The entire soft sample was combusted, and a Kinnwipe was used to wipe and collect any remaining soil on weigh boat or centraling tobe. Õ

The suspensions were contrifuged and the radioactionity contents on the supernatants were analysed by liquid sontillation counting (LSC). After the adsorption and desorption step, the soil of 0.5 mg/L samples was additionally extracted three times at ambient temperature using a reciprocating shaker and acetonitrile/water_{pHA} 4/1 (4/v). After each extraction step, extract and soil were separated by centrifugation and decentation. The radioactivity contents of the combined soil extracts after the adsorption and desorption step were determined by LSC. Aliquot of the combined soil extracts were concentrated. Aqueous 0.01 M QaCl₂ solutions and combined soil extracts were analysed by reversed phase HPDC/radiodetection. The extracted soll was dried and the radioactivity content determined by combustion/LSC to establish the material balance

The parental mass balances were determined for the 24-hour interval from the equilibration time test. After supernational sector and soils were extracted sequentially 3 times with acetonitrile. The solvent/soil mixtures were shaken for 10 minutes at ambient conditions and then centrifuged at 3,000 g for 5 minutes. Solvent estracts were decanted, volumes of each extract were recorded, and extracts were radioassayed. Aliquots of the supernatant and first soil extract for one replicate of each soil were analyzed by APLC to determine parental mass balance. Extracted soils were combusted using a Harvey oxidizer, and the overall material balance was determined by the sum of radioactivity in the supernatant, soil extracts, and non-extractable residue.

**Document MCA: Section 7 Fate and behaviour in the environment** Fluoxastrobin

#### **RESULTS AND DISCUSSION** II.

### A. MATERIAL BALANCE

The overall mean material balance for all four soils was 97.5% AR (SD 5.0%). The mean material balance for KS was 97.3 (range 92.3 to 101.5% AR), for DF was 97.6% AR (range 90.5 104.3%) AR), for HF soil was 96.9% AR (range from 93.0 to 100.6% AR) and for WM soil was 95.7% AR (range from 91.5 to 97.9% AR).

The complete material balances found for all samples for all soils demonstrated that there wa significant loss of radioactivity from the test systems or during sample processing.

## **B. DEGRADATION OF PARENT COMPOUND**

finitive test was onfirmed by Stability of the test substance during the time frame of the det parental mass balance.

#### C. FINDINGS

In the definitive adsorption test, the mean % AR sorbed to soil was 55.4 to 69,8% in KS 67.2% in DF soil, 63.9 to 74.5% in HF soil, 58 0 to 63.9% in WM soil. After the desorption step, the mean percentage desorbed of the initially adsorbed amount ranged from 17.2 to 26.0% in KS, 25.1 to 30.7% in DF soil, 25 to 30 % in DF soil, 13.6 to 18.5% in HP soil, and 17.3 to 16.9% in WM soil. Ð

For the adsorption phase, the calculated adsorption constants & F-ads of the Freudilich isotherms ranged from 19.95 to 118.8 mL/g (mean: \$2.34 mL/g) for the tested soils. The Freundlich exponents 1/n ranged from 0.0.8581 of 1.001 (mean) 0.93(6):

For the desorption phase, the alculated desorption constants KF-des of the Freundlich isotherms ranged from 41.90 to 205.7 mL/g (mean: 102.2 pL/g) for the lested soils. The Freundlich exponents 1/n ranged from 0.8874 to 0.9715 mean 0.9355).

In general, the organic matter in soil, determined as organic carbon content, is the most important component responsible for binding organic chemicals. Therefore, the adsorption coefficients KF were correlated with the organic carbon content of the soil to get a comparability of the adsorption behaviour in different soils. For fluorestrobin (z-isomer), the KF-OC-ads values ranged from 1,327 to 2,284 mL/g (mean: 1,43 mL/g). The KEOC-des values ranged from 2,328 to 4,236 mL/g (mean:

2,284 mE/g (mean: 12/43 mE/g). The KEOC-dQ values ranged from 2,328 to 4,236 mL/g (mean: 3,579 mL/g). From the desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone to desorption data it can be seen that once fluoxastrobin z-isomer is bound to soil, it is less prone data it is bound to desorption data it is less prone data it is less prone data it is bound to desorption data it is less prone data it is

Bayer CropScience Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Concn ID	Initial Constraints of Test sul	oncentration bstance ^{a)}	Soil [mg/kg]	Solution [mg/L]	Percentage Adsorbed	
	KS:	. KS. USA				4
Α	0.50	mg/L	5.5	0.223	55.4 ±	2.5.
B	0.14	mg/L	16	0.059	57.9 ° Q	9.96
<u>c</u>	0.049	mg/L	0.67	3 0.016 Å	68 1 × ±	
D	0.015	mg/L	0.20		$67.0^{\circ} \pm \approx$	$\overline{0055}$
D	0.010	iiig/ E	، 2000 پارل	0.00000		5 C
Е	0.0050	mg/L	0.069	0.00	69.8 ±	4.50
	DF:	II. Ge	rmany			
Α	0.50	mg/L	29.0	<b>14</b> %		<u>%</u> 12 ~
B	0.15	mg/L	87%	N0 058 V		$\frac{1.2}{4.3}$
<u> </u>	0.15	mg/I		<u>~</u> 0.030	$323.0 \pm 100$	125
D	0.040	mg/I	495 0 v		$67.2^{\circ} \pm$	JA
E	0.014	mg/L	103h	0.0040	664 +	06
Ľ	UE.	ilig/L	Company	<u>.</u>		0.0
•	0.50	ma/I			$\widehat{\mathbb{C}}_{722}$	15
A D	0.30	mg/LO ·	na v v	$\frac{9}{0.109}$	$(12.2)$ $\pm$	<u>6</u> ,5 5 1
<u>Б</u> С	0.14	<u> </u>	1.8			<u>93.1</u>
	0.049		0.003		$1 \pm 1$	0.7
<u>D</u> E	0.013		0.23		$0/4.3  \forall \pm$	8.3 1.9
L	0.0030	∞ mggL	0.004		03.9 ±	1.0
	WM:	, Ger	nany	A.2 21 2 2 2		2.2
A	0.50 7	mg/L	5.82° °Y		$0.8.0 \pm$	3.3
B		Amg/L Q			$\pm 60.8 \pm 100.8$	0.3
<u>C</u>		<u> </u>			$67.8 \pm$	6.7
<u>D</u>	103015 ×	mg)L			$63.9 \pm$	2.1

Table 7 1 3 1 2- 9. Demonstrate of adapthed fluevestrahin (z isomer) in soils (mean values)

### Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Table 7.1.3.1.2- 10:	Percentage of desorbed fluoxastrobin (z-isomer) in soils (mean values)	
----------------------	------------------------------------------------------------------------	--

Concn	Initially			In Solu	tion at		Sorber	to soil	after	Desorbed	ъ.Г
ID	adsorbe	d on s	soil after	equilbr	ium		desorn	tion	antei	Percentage	S
10	adsorption		lug ner	20 mL1*	ı)	lug ne	$r 1 \sigma l^{a}$	ð	Adsorbed &	0	
	lug per	1 g soi	11 ^{a)}	Ing ber	-•		Ins Pe	81	Ş		>
KS:	, KS,	USA									-
Α	5.5	± 0.	2	1.4	± 0.	1	4.0	± s	( 0.2	<u>\$</u> 25,40	<i>?</i>
В	1.6	± 0.	3	0.42	± 0.	1 (	≥1.2	±\$	0.2	× 260 5	
С	0.67	± 0.	01	0.13	± 0.	01 🚿	0.54	, je	0.003	0, 19.2 v	- K
D	0.20	± 0.	03	0.040	± 0.	01 🔬	0.16	0 [°] ±	0.03 🖋	j j 19.7 S	Į0
Е	0.069	± 0.	004	0.012	± 0.	0001	0.058	Ĵ ±	.0.004 O	17.2	2 ×
DF:	Ι	I, Ger	many		<i>N</i>	Ö, »	$\sim$		Q″	, õr a n	,
Α	29.0	± 0.	6	8.7	± 0.	1 。	200	°∕y±	0.2 -	\$0.1 \$	
В	8.7	± 0.	6	2.7	<b>≱</b> ∕0.	3	<u>6</u> 1	£±	9.3 Q	×30.7	
С	3.0	± 0.	07	0.84	± 0.	<b>60</b> ĭ	DŽ.2 🏾	) A	0.001 ⁰	27 <b>4</b>	c
D	0.95	± 0.	03	0.24 🚽	, <u>~</u> ], ± ∘Q	Ø1 🔊	0,71~	_{¶±	0.00	25.1	
Е	0.31	± 0.	003	0.088	°±∽0.	003	0.238		∿Q,003 _	28.0	
HF:			, (	Germany	, C	×,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Ľ,		
Α	7.2	± 0.	2	1.®♥	$\gg \pm 0$	68 "	5.9 0		0.2	185	
В	1.8	± 0.	1	Ø.322	τ <u>ω</u> ± 0.	04	1.5	Å.	0.0	N. 17.9	
С	0.63	± 0.	01	0.10	±20.	005	<b>\$</b> 3	£±	2.002 O	15.2	
D	0.23	± 0.	03 🔊	0.031	± 0.	0 <b>02</b> 🖉	0.20	÷ ±	0.03 0	13.6	
Е	0.064	± 0.	002 🖋	Q.009	≥y ± Q.	0011	0.054		0.001	14.7	
WM:	,	Gern	na nôy	o' à	ř	U	~	, Ç	~~ *	<u> </u>	
Α	5.8	± 0.	3¥ A	1.0	0.	03	<b>4</b> .8	۰۵ ± ۱	LØ.3 🔊	17.3	
В	1.7	± 🔬	01	0,50	$\mathbb{O}_{\pm 0}$	Ø %	1.4	/ ¢.	0.02	17.3	
С	0.66	÷0.	07	<u>@</u> .10 (		02 🔊	0.56	Ŭ	0.043	15.6	
D	0.19	<b>T</b> 0.		P.0.028	± 0.	0000	047	£ ±	@.01	14.2	
Е	0.061	J ^r ± _0	0003 🏑 🏾	0,010	$\sim \neq 0.$	0008	00.051	U ±	\$0.001	16.9	
a) (mean	$\pm SD $	Õ	,	× 1	V V	j* 🔊	, Sr	~~~~	r		

r P 

 Table 7.1.3.1.2-11:
 Adsorption and desorption constants and correlation coefficients in soils of fluoxastropin (Z=isomer).

		· N	A			<u> </u>			
	~?"	s i	🕉 Adşoi	rption		2	Desor	ption	
	a la compañía de la c	≤ K _F ⊘	1/10/1	$\tilde{\mathbf{R}}^2$		K _F	1/n ¹	R ²	Koc
	Soil 🦉	[mL/g]		Y S	[m <b>]</b> [m]	[mL/g]			[mL/g]
	(KS) Sinty Class	19.95	°~9.8584	0 0005	<u>1,108</u>	41.90	0.8874	0.0062	2,328
	Loam		× Q	0.8903				0.9962	
	(DEClay Loam	118,80	0.017	×0.997,5×	2,284	205.7	0.9562	0.9951	3,955
	(HF) Silt Loam	42.79	1.001	©0.92H	2,251	72.15	0.9270	0.9959	3,797
2	🖉 (WM) Loam	27,88	0.955 <i>0</i> °	0.2895	1,327	88.95	0.9715	0.9963	4,236
//	arithmetic mean	@52.34	0.9316	Ø <b>984</b> 7	1,743	102.2	0.9355	0.9972	3,579

The adsorption constant K₀ G_{ds} (arithmetic mean) of CGA 357261, a major photodegradation product of flux astrobin, was 1742 mL/g. The Freundlich exponent 1/n (arithmetic mean) was 0.9316.

****

# BAYER Bayer CropScience

# **Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin**

Report:	KCA 7.1.3.1.2/08 ; 2015; M-533623-01-1
Title:	[Phenyl-UL-14C]2-chlorophenol: Adsorption/desorption on two US soils and one U
	soil
Report No.:	MEHEN038
Document No.:	M-533623-01-1
Guidelines:	- OECD Test Guideline No. 106
	- Regulation (EU) No 283/2013 in accordance with Regulation (EQ) Now
	1107/2009
	- Japanese MAFF New Test Suidelines for Supporting Registration of
	Chemical Pesticides
	- US EPA OCSPP Test Guideline No. 835 4230
Guideline deviation(s):	not specified
GLP/GEP:	yes Q ~ ~ Q Q Q
Justification:	New data / guideline requirements
	Adsorption and desorption of the fluox strobin degradation product 2-Chlorophenol

## **Executive Summary**

The adsorption behaviour of  $[UL^{-14}Q]^2$ -chlorophenol, a degradation product of flux astrobin, was studied in three soils in batch equilibrium experiments in the dark at 20 °C:

			<u> </u>			
Soil	Source			Texture (USDA) 👌	γ pHO	<b>O</b> C ⁷ [%]
CA		, CA, USSA 🔊 🕅		Lowmy Sand	7.P	<b>0</b> .39
ND		, ND, USA	N A	🔊 🔊 🖓 🖓	s. Ø.3	3.7
DF		۰Щ [*]	, Germany	Clay Loam 🖉 🐁		5.2

The adsorption phase was carried out in sterilized soils using a pieous 0.01 M CaCl₂ solution. Soil-tosolution ratios of  $\sqrt{2}$ , 1/20 and 1/5 were applied for CA, ND and DF soils, respectively. 2chlorophenol was applied at nominal concentrations of 0.0005, 0.0015, 0.005, 0.015 and 0.05 mg/L. Preliminary tests were performed at a test concentration of 0.05 mg/L. All application solutions were prepared in editanol, and cosolvent concentrations in all test systems was <0.1%. Adsorption took place for 6 bours equilibration time.

The test substance 2 chlorophenol was stable during the test HPLC analyses revealed that the test substance was the only component in supernatants and extractable fractions. No major degradation product was observed.

The overall mean material balance for all three soils was 94.7% AR (SD 2.2%). The mean material balances were 94.3% AR (range from 89.3 to 96.4% AR) for soil CA, 96.1% AR (range from 91.4 to 99.5% AR) for soil ND and 93.8% AR (range from 91.2 to 96.8% AR) for soil DF.

The mean percentage adsorbed to soil after the 6-hour definitive adsorption test in CA, ND and DF soils were 14.5 to 19.6% AR, 24.7 to 27.7% AR and 27.7 to 31.5% AR, respectively.

Based on the measured [UK⁴C]2-chlorophenol concentration, the calculated adsorption constants  $K_F$  of the Freundlich sothern's ranged from 0.354 to 6.479 mL/g (mean: 2.874 mL/g) for the tested soils and the  $K_{OC}$  values (normalised to organic carbon content) ranged from 34.4 to 175.1 mL/g (mean: 100.1 mL/g). The Freundlich exponents 1/n ranged from 0.9727 to 0.9844 (mean: 0.9773), indicating that the concentration of the test substance affected the adsorption behaviour in the examined concentration range.

Using the Briggs classifications for the estimation of the mobility of chemicals in soil based on  $K_F$  and/or  $K_{OC}$  values, the mobility of 2-chlorophenol can be classified as intermediate, low and mobile in CA, ND and DF soils, respectively, for adsorption.

**Bayer CropScience** Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

/.1.3.1.2-12.	Ausor priori co	instants and v		vernicients in	sons of 2-cind	nopiienoi
		KF	1/n	R ²	Кос	X O
	Soil	[mL/g]			[ml@g]	
	CA	0.354	0.9727	0.9931	29.8	~~,~Ģ
	ND	6.479	0.9844	0.9972	175.1	S S A
	DE	1 700	0.0747	0.0002	2 2 4 4	

#### Table 7.1.3.1.2- 12. Adsorption constants and correlation coefficients in soils of 2-chlorophenol

[UL- ¹⁴ C]2-chlorophenol
Reference No:
Specific Activity:
Radiochemical Purity:
Chemical Purity:

Table 7.1.3.1.2- 13:	Physico-chemical properties of test soils

Parameter		<b>Results</b> / Units	
Soil Designation	CA	ND	II (D) F)
Geographic Location		Q	
City			
State	California	North Dakota	NortORhine
	<u>Ò</u>	ý	Westphalita
Country	USA 🐨	USA	CGermony 5
Soil Taxonomic Classification (USDA)	N N	o information availab	
Soil Series	Hanford sandy	Gardena silt loam, «	No information
	kvam	√0 to 2 porcent ~	Qavailable Q
	le v a °	Stopes 🔗	
Textural Class (USDA)	boamy Sand 🔬	Clay Loana	🛇 Clay Loam
Sand $[50 \ \mu m - 2 \ mm]$	78 0%	22.4	26% × 4°
Silt $[2 \mu m - 50 \mu m]$	() <u>16.2%</u>	349.49%	41%
Clay [< 2 μm]	_^~_5.2%©^	× @8.0%	\$ <b>3</b> 3% \$
pH (soil/0.01 M CaCl _{2:} 1/1 for CA an	& 7.	7.30	^{7.3}
ND and 1/2 for DF)			
Organic Carbon 🔗 👸	©0.4% 🖉	\$`\$Q7%_O`	Č 5:22%
Organic Matter ¹	©`0.7%	0.4% °	Q &9.0%
Cation Exchange Capacity [meq/100 g]	§ 6.0 ¥	24.9	© 20.1
Water Holding Capacity 🔊 💍			
at 0.33 bar (pF 2.5)	8.5%	× [*] 39.8% *	§ 34.2%
Bulk Density (disturbed) [g/cm ³ ]	1,05 %	0.84	0.95

¹ % organic matter % organic carbon x 1.724

# B.

# 1.

USDA: United States Of America The test system for adsorption on batch equilibrium experiments consisted of glass centrifuge tubes (volume 30 mL) closed with Feilon Qined sorew caps. Glassware and aqueous 0.01 M CaCl2 solution were sterilized using an autoclave. The experiments were performed in duplicate.

In preliminary tests, the stability of the test substance, the adsorption of the test substance to test vessel surface, the soil-to-solution ratio and the equilibration time for adsorption were determined.

The adsorption phase was carried out in sterio ed soils using aqueous 0.01 M CaCl₂ solution. Soil-tosolution ratios of 1/2, 1/20 and 193 were applied for CA, ND and DF soils, respectively. 2chlorophenol was applied as nominal concentrations of 0.0005, 0.0015, 0.005, 0.015 and 0.05 mg/L. Preliminary tests were performed at a test concentration of 0.05 mg/L. All application solutions were prepared in ethan and applied to the equilibrated test system. The cosolvent concentrations in all test systems was \$01%. A

The test systems were shaken on a reciprocal shaker in the dark at 20 °C in an environmental chamber for an explibitation time of 6 hours.

The untreated test systems were equilibrated to study conditions by shaking overnight prior to application.


#### 2. **Analytical Procedures**

The suspensions were centrifuged and the radioactivity contents in the decanted supernatants were analysed by liquid scintillation counting (LSC). Additionally, the pH value of the supernatative was determined. Representative samples of supernatants were analysed by reversed phase HPLC/radiodetection to prove stability of the test item.

To establish a material balance, soils were extracted once with acetonitzite by shaking for 10 min at ambient temperature. Soil and extract were separated by rentrifugation at 3000 x g and decantation. The radioactivity in the extract was determined by LSC. The extracted soils were dried and radioactivity was determined by combustion/LSC. The entire soft sample was combusted and kimwipe was used to wipe and collect any remaining soil on weighboat or centrifuge tube.

Adsorption isotherms were calculated by linear regre sion analysis of the accorption data according to the Freundlich equation.

## II.

## A. MATERIAL BALANCE

The overall mean material balance for all three soils was 947% AB (SD 2.2%) The mean material balances were 94.3% AR (range from \$9.3 to \$6.4% AR) for soil (A, 960 % AR) (range from 91.4 to 99.5% AR) for soil ND, and 93.8% AR (range from 91.2 to 96.8% AR) for soil DO. The complete material balances found for all soils and concentrations demonstrated that there was no significant loss of radioactivity dissipated from the test systems or during sample processing.

#### STABILITY OF PAREN B. T COMPOUN

Ô The stability was adequate to determine the text substance distribution based on LSC measurements of the supernatant on the adsorption experiments of the definitive test. No major degradation product was observed.

## C. FINDINGS

The mean percentage adsorbed to soil after the b-hour definitive adsorption test in CA, ND and DF soils were 14.5% to 196% A&, 24 V to 27.7% AR and 27.7 to 31.5% AR, respectively (see Table 7.1.3.1.2, 14).

Based on the measured  $[OL^{-14}CO-chlorophene]$  concentration, the calculated adsorption constants K_F of the Freundlich isotherms ranged from 0,354 to 6,479 mL/g (mean: 2.874 mL/g) for the tested soils and the Koc values mormalised to organic Carbon content) ranged from 34.4 to 175.1 mL/g (mean. 100.1 mL/g). The Freundlich exponents 1/n ranged from 0.9727 to 0.9844 (mean: 0.9773), (mean: 100.1 mL/g) The preundrich exponents 1/n ranged from 0.9727 to 0.9844 (mean: 0.9773), indicating that the concentration of the test substance affected the adsorption behaviour in the examined concentration range (see Table 7.9.3.1.2-15).

#### Table 7.1.3.1.2-14: Percentage of adsorbed 2-chlorophenol in soils (mean values [% AR])

		Te	st Concentration [r Adsorption ^{a)}	ng/L]	
Soil	0.0005	0.0015	0.005	0.015	0.05
CA	$14.5 \pm 1.8$	$19.6 \pm 2.2$	$16.9 \pm 0.6$	17.7 ± 0.7	17.2 ± 0.7
ND	$26.2 \pm 3.3$	$25.5 \pm 0.4$	$24.7 \pm NA^{b}$	26.0 🛓 3.4	27.7 £ 0,0
DF	$28.2 \pm 1.3$	$29.3 \pm 1.1$	27.7 ± 🚓 0.9	31.5 ± 1.8	29,9 ± \$0.5

a) end of adsorption phase, mean values expressed as percentage of the measured chlorophenol concentration

Table 7.1.3.1.2- 15:	Adsorption constants and o	correlation	coefficients in s	oils of 2-chlor	opheñol	ŝ
		A CONTRACT	~ Q	Ŵ, Ő	Y D	, Ø
b) NA = Not avai	ilable; one rep lost during shak	king O	Á.		, ^Q	
chlorophenol c	concentration	C	<u>Š</u> ¥	, V	Ň	Ň

Soil		C Adsor 1/n	ption ( R ²	Koc	
CA		0.9727	0.9931	90.8 175	
DF	1.7 <b>89</b>	0.974 ⁽¹⁾		) 1/&1 	
arithmetic mean	2,874 da	0.9673	<u>\$`0.9962`</u>	<u></u>	

## IH. CONCLUSION

The adsorption constants KF of 2-chloropheool for the tested softs calculated based on the Freundlich isotherms ranged from 0.354 to 6479 mL/g (mean: 2,874 mL/g). The respective K_{oc} values ranged from 34.4 to 175.1 mL/g (mean 0)00.1 mL/g). The Feundlich exponent 1/n ranged from 0.9727 to 0.9844 (mean: 0,9,973).

Using the Briggs chassifications for the estimation of the mobility of chemicals in soil based on K_F and/or Koc values, the mobility of 2-chtorophenol can be classified as intermediate, low and mobile in CA, ND and DF soil for adsorption S

## CA 7.1.3.2 Aged sorption

Commission Regulation (EU) No 283/2013 in accordance with Studies are not required under Regulation (EC) No 1107/2009

## Overall summary of adsorption/desorption of fluoxastrobin and its metabolites in soil

The adsorption and desorption behaviours of fluoxastrobin and its major degradation products in soil were studied using radioactive labelled fluoxastrobin, HEC5725-Z-isomer, HEC 5725-carboxylic acid (M40), HEC 5725-deschlorophenyl and [phenyl-UL-¹⁴C]2-chlorophenol. The studies have been performed in a number of soils in batch equilibrium experiments. Adsorption and desorption isotherms were calculated by linear regression analysis of the adsorption or desorption data according to the

# Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Freundlich equation. The calculated adsorption constants and correlation coefficients are listed in Table 7.1.3-1 to Table 7.1.3-6.

# Table 7.1.3- 1:Overall summary of adsorption constants KOC(ads) in soils of fluoxastrobin and its<br/>major degradation products

		A V	
	Koc(ads) ^{a)}	KOC(ads) ^{b)}	
Compound	[mL/g]	🔺 [mL/g] Ô	
fluoxastrobin (E)	Ča 848 🕰	752.0	
HEC5725-Z-Isomer	1743	1658	
HEC 5725-carboxylic acid ( <i>M40</i> )	59 °	56 A Ô	
HEC 5725- <i>E</i> -des-chlorophenyl ( <i>M48-E</i> )	605	, 19.3 without [≫]	
		søQ	
2-chlorophenol ( <i>M82</i> )	15.8,~>>	@ 104 \$ \$	v" sõ
a) arithmetic mean			₹
b) geometric mean	õ m s		4

# Table 7.1.3- 2: Overall summary of adsorption constants and correlation coefficients in soils of fluoxastrobin

		×					Ro.
Soil		Texture 🖉 🛛 🖉	pH 🏹	Annex Point/	Kprads)	¶ž∕n ∢	KOC(ads)
		(USDA) [™] ©	Ô	Reference No O	<b>_[@Ľ/g]</b>	°~>	[mL/g]
E-isomer			102		<u> </u>	×	
LH AXXa		sandy loam	7.2	KCA 7.1.3.k. 1/01	12.7	0.8356	629
HF am F	4a	silt of s	7.10×	KCA 7.1.3.1.1 /0	×46.21	0.8738	758
	01	silty clay loam	59	KCA 7 3.1.1 /04	26.26	0.8749	1582
	$\sim$	loarcy sand	Q6.8 Č	KCA 9.1.3.1 4/01	3,35	0.8493	424
	Ũ		Ċ,	arithmetic mean	14.63	0.8584	848
			$\sim$	N & geograean	Ø		752
		4 4 6			× ·		

Table 7.1.3- 3:Overall summary of adsorption constants and correlation coefficients in soils of<br/>HEC5725-P isomer,

	· ¥ &						
Soil	Â,	Texture 🛇	⟨pH ^a )℃	Annex PointO	K _{F(ads)}	1/n	KoC(ads)
	^```			Reference	[mL/g]		[mL/g]
HEC	5725-Z-isomer		. T	O' s.			
KS		Silty Elay Loam	\$.8	KCA 7. 1.3.1.2 /01	19.95	0.8581	1,108
DF		Clay Loam	7.3 O	KCA@.1.3.1.2 /01	118.8	0.9117	2,284
HF	NÇ U	Silt Loans	6.2	KCA 7.1.3.1.2 /01	42.77	1.001	2,251
WM		Loam	. <u>5</u> 2	KCA 7.1.3.1.2 /01	27.88	0.9556	1,327
	Z, D,			arithmetic mean	52.34	0.9316	1,743
. 5		ANO		geomean			1658

a) phy value determined in Ca $pl_2$  by  $q_1$   $q_2$   $q_3$ 

Table 7.1.3- 4:	Overall summary of adsorption constants and correlation coefficients in s	soils of	
	HEC 5725-carboxylic acid ( <i>M40</i> )	_©	$\gg$

Soil	Texture (USDA)	pH ^{a)}	Annex Point / Reference No	K _{F(ads)} [mL/g	1/n	Koč(ads)
BBA 2.2	loamy sand	5.4	KCA 7.1.3.1.2 /01	1.12	0.9590	5.60
LH AXXa	sandy loam	6.3	KCA 7.1.3.1.2 /01	0458	0.8610	- <b>56</b>
LUFA	sandy loam	6.0	KCA 7.1.3.1.2 /01	<b>\$0.5</b> 0	0.8993	<u>,</u> %37 ⊀√
	silty clay	5.5	KCA 9.1.3.1.2 /01	1.41	<b>0.</b> 8979	87
			arithmetic mea	n 0.90	Ø.9043	58 Ó
			geograe	in O	, Q	<u>66.4</u>

		// 32	- 63		$\sim$		
a) pH value determined	in CaCl ₂	A	Ą	¢ ô	1 2	0	- L
		RO CO	$\sim$ . (	V 👋	\O'	Ô,	Ľ
		lu ka°	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		, Y
Table 7.1.3- 5:	Overall summary of	f adsorption consta	ints and co	orrelation	coefficient	ts in sŏ	ils of
	HEC 5725-E-des-chl	orophenyl (M48-E)	, di	ð. (	or Ly	À	L°

	2				0	
Soil	Texture 🔊	рӉ҈Ӎ	Annex Point /	K _{Ods)}	1/n 🚿	K _O (Cads)
	(USDA)	, °~, ^Y	Reference No	,[mL/g],	<b>₩</b>	[ <b>m²</b> /g]
LH AXXa	sandy loan (	<b>7</b> .2	KCA7.1.3.1.2402	0.28	0,6)4	14
HF am 4a	silt 🏑 🕜	7.1 🥎	KCA7.1.3.52/02~	0.40	9.95 🧹	22
	silty chay loam	5.0	KOA 7.13 1.2 /02		0.98 🥎	182
	loamy sand	6.8	XCA 7.4.3.1.2002	0.18 🏷	0.92	23
	V 4. Å	× L	arithmetic mean	0.98	0.95	60
°~			Geomean (newtral		2	19.3
a) pH value determined in water				L'A		

### Ø **Overall summary of adsorption constants and correlation coefficients in soils of 2-chlorophenot** (M82) Table 7.1.3- 6:

		/~~				
Soil	Texture	рӉ҉	Andex Point	K _{F(ads)}	1/n	K _{OC(ads)}
	(USDA)	Ő	Reference No 🔗	[mL/g]		[mL/g]
LH AXXQ (sterile)	sandy loam	6.1	KCA, 7, 9.3.1.2, 03	2.302	0.7983	100.1
LH AIÎIă	sandy loam 🔊	6.4%	KÇA 7.1.3 2 /03	1.700	0.7373	154.5
LH	sandy loan	5.0	KGA 7.1.3.1.2 /03	1.807	0.7465	129.1
	satty loan	<b>%</b> .1	KCA 7, 9.3.1.2 /03	1.645	0.7502	126.5
CA 🖉 🔊	loamy and O	7.1 O	KCA@.1.3.1.2 /05	0.354	0.9727	90.8
ND ~ U O	clay loam	7.2	K 🗛 7.1.3.1.2 /05	6.479	0.9844	175.1
DF A	clay loam	, 7 <i>6</i> 3	KA 7.1.3.1.2 /05	1.789	0.9747	34.4
	Q A	, «() ) »°	arithmetic mean	2.297	0.8520	115.8
x, ~ A		Z°	geomean			104.7



#### CA 7.1.4 Mobility in soil

#### CA 7.1.4.1 **Column leaching studies**

No column leaching study was performed for the active substance fluoxastrobing Instead, the poblicity in soil is assessed by environmental modelling, using data on the degradation and aerobic conditions in the laboratory (CA 7.1.1), and on adsorption to soil as determined from batch equilibrium experiments (CA 7.1.3).

## CA 7.1.4.1.1 Column leaching of the active substance

Due to the argumentation provided under CA 7.1.4.4 above no soil column leacking study fluoxastrobin was performed.

## CA 7.1.4.1.2 Column leaching of metabolites, breakdown and reaction products

column leaching study with Due to the argumentation provided under OA above no soil metabolites fluoxastrobin was performed.

Due to the argumentation provided under CA 7.1.4. Sabove to lysineter study with fluoxastrobin is required.

### Field leaching studies CA 7.1.4.3

The leaching behaviours of fluovastrobut and its degradation products in soil under field conditions were evaluated during the Annex I inclusion using unlabelled fluovastrobut formulated as EC 100, and were accepted by the European Commission (SANCO/3921/05/final, 2012). The following study is included in the basebie dossier: Ô L)

			ř
Author(s)		Year Y	Document No
			M-136670-01-1

A short summary of the field study is provided in section of 7.1.2.2.1.

Hence, no additional field reaching studies are deemed necessary within this supplementary dossier for the fluoxastrobin.



#### CA 7.2 Fate and behaviour in water and sediment

### CA 7.2.1 Route and rate of degradation in aquatic systems (chemical and photochemical degradation)

#### CA 7.2.1.1 Hydrolytic degradation

The hydrolytic route and rate of degradation of fluoxastrobin in buffers under sterile conditions in the dark in the laboratory were evaluated during the Anne I inclusion is ing one radiolabel position, ring 3-label, and was accepted by the European Commission (SASCO/3921/072/inal, 2012) The following study is included in the baseline dossier:

Author(s)	Year Document Vo Q
	د من 1999 من 1999 من 1990 من 1999 من 1999 من 1999 من 1999 من 1999 من 1990 من 1990 من 1990 من 1990 من 1990 من 19
Report:	KCA 7.2.1.1/01
Title:	Hydrolysis of [n@noxynyinotol@-ring-TL-14@HEC 5725 in serile addeous Suffer
	solutions of a to a to a solutions
Report No.:	MR-058/99 & & & & & & & & & & & & & & & & & &
Document No.:	M-008681-901-1 & & & & & O & O & V & Y
Guidelines:	- EU 96/36/E& and 96/37/E& 0 0 0 0
	- SETAC-Europe Procedures, 1995
	- US EPA Subdivision No. 161-10
Guideline deviation(s):	patspecified & Q (
GLP/GEP:	ves A
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Ő	
The hydrolytic stality	Muniperspiration of the second s
Hydrolysis of Oing 3	abelies fluoxastrobing wascested of aquoous botter solution (0.24 mg a.s./L) at
50 °C at ployvalues 4,	7 and 9, Solutions was inculated in the dark under sterile conditions. After
0.08 0.21 0.92 2.5 a	17 date samples (mostly including the but some single samples) were analysed

Ad for chencical content by TLC I mL of the solvent acetonitrile was for radioactivity using

No additional studies are submitted within this supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the fluoxastrobin renewal of approval a study of the supplementary dossier for the supplemen

CA 7.2.1.2 Direct photochemical degradation

The photolytic route and rate of degradation of fluoxastrobin in buffers in the laboratory were evaluated during the Annex I inclusion using two radiolabel positions, ring 1- and ring 3-label as well as unlabelled fluoxastrobin for determination of the quantum yield of direct photodegradation. Furthermore, the DT₅₀ value for the photolysis degradation product HEC 5725-oxazepine (*M36*) was calculated. This photometabolite exhibits a completely different structure compared to the part and the formation is due to complex phototransformation processes in pure water with cyclisation and rearrangement. In order to further assess the formation of fluoxastrobin in irradiaed water/sediment systems were evaluated during the Annex I inclusion using one radiolabel position, ring 3-label (see also section CA 7.2.2.4). All studies were accepted by the European Commission (SANCO/3921/07-final, 2012). The following studies are included in the baseline dossier.

	<u>&</u>				Ŵ
Author(s)		y Year		cubrient No	<u> </u>
		2001	Met Met	33515-01-1	r _o r
		2001	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	091029-01-1	
					0
Report: KCA 7.2.14	201	Z_2001: MD0	3351 -01-1		
Title: Determinati	on of the quastum	viol and ases	surfent of the er	nyionmental hai	lf-life of
the direct pl	noto egradation in	ater of HEC	135 A	ð X	
Report No.: MR-540/00		s s) 、 ()	
Document No.: M-033515) - 1 N Q	"U" .		42	
Guideline(s): Grman UB	A (Dec. 1998)	Å S	, ^w _v v	ŝ	
Guideline deviation(s): ont sporte	d 🧔 O 👸		4 4. °r	O)	
GLP/GEP:	à o s	×,	o v		
			Í S		
The quantum wild of Quoxastrobi	n Was determined	using the T	st Method: E	CETOC (polyc	chromatic
light source).		Q Õ	Ø		
		To a,	W.		
About 50% degradation of Suo	xagobin was u	asurê v by	PLC-UV fo	ollowing the r	naximum
irradiation period of 00 montes.	in pure Water V	was clearly	hown that sur	nlight first inc	eases the
relative amount of Puoxast obin	isomer Using th	e V absorn	tion data and	the degradation	n kinetics
of the duplicate operizents agree	an anantuka vield	$(\Phi) \sim 0$	1000 Gala and	r) or 0.00089 (sum of F
and Z isomerse. Two offered ari	the stic model	C C C C C	and Frank &	Klönffer) wer	a used to
predict environment dir and	Aveis Malf live	UC-SOLAR	use obtained	for quantum	vield and
light absorption over a constant	f ward and a	us ge uie va	ided that the	for quantum	tol direct
nght absolution over a fange of	in the cicligatis. I	was conci	a = a = a = a = a = a = a = a = a = a =	days for the r	variada of
		as in the rang	$3e \ 01 \ 2.5 - 20$	days for the p	berious of
major use.					
Direct photolysis in aqueous goint	tion is expected to	o contribute	to the elimina	tion of fluoxa	strobin in
the environmet.	ŞË Q				
	× _Q				
	~~ ***	**			
Ô					
*					

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Report:	KCA 7.2.1.2/02 ,; 200	1; M-091029-01-1	
Title:	Photolysis of HEC 5725 in aqueous	solution	N° A
Report No.:	MR-072/00		
Document No.:	M-091029-01-1		
Guidelines:	- US EPA, Subdivision N, Parag - EU 95/36/EC amending 91/414	graph 161-2 4/EEC	
Guideline deviation(s):	not specified	4	5 2 B
GLP/GEP:	yes		

The aqueous photolysis of fluoxastrobin in a sterile borfer was studied.

Sterile aqueous buffer solutions (pH 7) were period, one contaiting ring 3 Noelled and rigg 1 labelled fluoxastrobin at concentrations of (\$53 mgg, and \$.23 ptg/L, respectively. Arquots were incubated at 25 °C in quartz glass test vesse? fitted with raps for organic volatiles (PU form plug) and carbon dioxide (soda lime). Vessels were eigrer kege in the dark for 8 days or exposed to bent from a Suntest unit with xenon lamp (with with off at 29 mm) for up @ 8 days. The irradiation From a Suntest unit with xenon tamp (with sur off at 290 nm) for up to 8 days. The irradiation exposure under Suntest conditions we 1755 W x h m^2 , based On radiometer determination) and 6.3 MJ x m⁻² for one hour. An exposure time of 3 chours was stored by the arguicant to correspond to one summer June day in Athens, Greece (38 N with global radiation for day of 20MD m⁻²). Samples at time 0, 1, 2, 3, 4, 7 and 8 days of irradiation and after 8 doys in the day (control) were quantified directly for radioactivity using LSC and analysed by HCLC at TLC. The Onajor photodegradate HEC 5725-oxazepine (*M36*) was further identified by NMR and LC MS/MS. The minor degradation compound HEC 5725-pheroxy-a@inopy@midir@ (*M56*) was identified by comparison of HPLC and compound HEC 5725-phetoxy-a@inopyomidir@ (M56) was identifed by comparison of HPLC and LC-MS/MS.

The total recovery of radioactive ranged from 99 to 106.4% Experimental half-lives were The total recovery of radioactively radioac conditions of Phoenix, AZ (333) in June of 21.6 and 18.6 days, respectively. For conditions at Athens, Greece (38°N) by Jun the prodicted environment half fives are 33.4 and 28.9 days (mean 31.2 days), respective

Photo-isomerisation of the E-isomer way the orst transformation process. The highest concentrations of the resulting Z^{3} som were 1.2% wrige 1.2% abell and 9% (ring 3-label) of the applied radioactivity after one day of indiation. The main photo degradation product, HEC 5725-oxazepine (M36), after one day of inditation. The main photo degradation product, HEC 5725-oxazepine (*M36*), accounted for a maximum of 23 % (ring 1-labe) and 07.1% (ring 3-label) of the applied radioactivity after 8 days of continuous irradiation fill other dissolved degradation products were less than 5% AR. Photo-materalisation of carbon dioxide leas to a maximum of 3.7% (ring 1-label) and 8.5% (ring 3-label) to f the applied radioactivity after 8 days.

\$

K,

Table 7.2.1.2- 1:Distribution of ring 1 labelled fluoxastrobin (in % AR)										
Sample	DAT	fluoxastrobin	HEC 5725-Z-	HEC 5725	HEC 5725	Unknow	n	Volatile	Material] 🔊
1		(E)	Isomer	-oxazepine	-phenoxy-	metabolit	es ^{a)}	compounds	balance	S'
				(M36)	aminopyri		Ĩ	O_2 Org.		Ŭ
					midine		- A	volatile		
					(M56)		4	- C		Ĉo
Irradiated	0	91.7	8.3	n.d.	n.d.	n.d 🔬	🏳 n	1.m. <u>n</u> .m.	Ø0.0 x	
	1	73.7	11.2	4.9	Čøl.	n.d	(0.1 🗶 0.1.	× 99.6	
	2	68.1	10.8	5.6	Mi.d.	0.0	(0.2 O < 0.4	0 102,9	- Å
	3	59.5	8.7	8.8	G 1.4	OŽ.8	(041 <61	190.3	
	4	52.0	7.4	11.6	4.0	Q 5.9	, " (9.7 < 0.1	¢٢00.8	, ^v
	7	31.7	5.4	16.50	4.3	× 14,9	- Qʻ	$2.3 0 \times 0.1$	101	
	8	23.1	3.5	23.8	4.7	\$\$5.8		3.7 < 0.4	140.2	_
Dark	8	88.0	7.7	sy.d.		n.d.		671 < 071	100.7	
Sample	DAT	fluoxastrobin (E)	HEC 57254	- HEX 5 (M3		aown oolite©'	7 0000 002	atiles	Material balance]
Irradiated	0	100.0	&nd.	y d	n n	Vi Vi	nomQ	18 m	100.0	-
	1	74.0%	9.80	4.3	r _ \n	.d. %	0:4	\$ 0.1	106.4	-
	2	61.8	A 8.9	AN 20	7 6 8	6	1.0 8	\$<0.1	101.5	1
	3	521	A K.8.7	<u> </u>	, ¥ 10	30 4	2.1.7	< 0.1	102.3	
	4	Ø5.9 r	29 8.0~	\$10.8	8.5 0.1	4.6	2.7	< 0.1	104.2	1
	7	\$24.10	3:5	~ 16		6.04	Ø .3	< 0.1	103.8	1
	8	0 26	\$ \$3.2	N W.	1 2	<u> </u>	8.5	< 0.1	105.2	1
Dark	8 (100.4	O On.d. &	n.d	Č A	.d <	< 0.1	< 0.1	105.9	1
DAT: days a) sum of	after 1 13 unk	reatment nown mino system	bokes, non Axe	eed of 5% Al	R R	No.				-

Indirect photochemical degradation CA 7.2.1.3

Indirect photochemical degradation of fluoxastrobin was not studied. However, the route and rate of degradation of fluoxastrobin irragated water/sediment systems were evaluated during the Annex I inclusion using one radiolobel position, Eng 3-label, and were accepted by the European Commission (SANCO/3921/07/inal 2012) The study is included in the baseline dossier and addressed under CA 7.2-24 in this supplementary dossier.

CA 7.2.2 Route and rate of biological degradation in aquatic systems

CA 7.2.2.1 "Ready biodegradability"

According to its molecular structure, fluoxastrobin was regarded not to be readily biodegradable. Therefore, a study was not conducted. However, a study for the determination of the route and rate of degradation of fluoxastrobin in surface water under aerobic conditions in the dark in the laboratory has been performed (CA 7.2.2.2) and is summarized in in the subsequent section.

CA 7.2.2.2 Aerobic mineralisation in surface water

A study for the determination of the route and rate of degradation of fluoxastrobin in surface water under aerobic conditions in the dark in the laboratory has been performed and is submitted within this supplementary dossier for the fluoxastrobin, renewal of approval using one cadiolabel position, ring 3-label.

Report:	KCA 7.2.2.2/01 ,; 2014; 2499357-01-1 & 2
Title:	[Methoxyiming] Ing_U/-14C [Auxastic bin: Aerobic mineral Sation in Surface water
Report No.:	EnSa-14-057 2° γ
Document No.:	M-499357.01-1
Guidelines:	- OECD, Test Grideline No. 209 2 2 2 20 20
	- DRACT SANCO 11802/2010/rev/1 in accordance with Regulation (EC) No
	1107/2009& & & & & &
Guideline deviation(s):	not specified a start of the second
GLP/GEP:	yes A S A S A S A S
Justification:	New data / guideline requirement: \sim
()	Route and the of degradation of flue xastrobin in aerobic surface water

Executive Summary

The route and rate of degradation of [methoxyuminotolyl-ring-UL \sqrt{C}]fluoxastrobin were studied in surface water under aerobic conditions in the dark in the laboratory/for 61 days at 20 ± 2 °C.

Study application rates of 10.3 µg/L and 104,2 µg/L surface water were applied for low and high concentration samples, respectively.

Mean material balances were 100.8% AR for the low concentration (range from 97.8 to 104.6% AR) and 100.1% AR for the high concentration (range from 97.5 to 105.3% AR).

Formation of carbon dioxide was insignificant as demonstrated by values $\leq 0.1\%$ AR at all sampling intervals and for both concentrations. The amount of volatile organic compounds was < LOD (0.7% AR) for low concentration test systems and $\leq 0.1\%$ AR for high concentration samples at all sampling intervals.

The amount of fluoxastrobin in the surface water was between 97.6 and 104.6% AR for low concentration test systems and between 96.0 and 105.3% AR for high concentration test systems for all sampting intervals

Since no degradation products of fluoxastrobin > 5% AR were found, no identification attempts were made. The total unidentified residues amounted to a maximum of 3.6% AR and no single component exceeded 1.0% AR at any sampling interval for both concentrations.

The experimental DT₅₀ and DT₉₀ values were calculated using a single first order (SFO) kinetic model. The half-lives for fluoxastrobin were extrapolated to be about 944 and > 1000 days for the low and high concentration, respectively.

Fluoxastrobin

	I. MATERIALS AND METHODS
A. MATERIALS	
1. Test Item	
[methoxyiminotolyl-ring-	UL- ¹⁴ C]fluoxastrobin
Sample ID:	KML 9652 \mathcal{A}^{\vee} \mathcal{A}^{\vee} \mathcal{A}^{\vee} \mathcal{A}^{\vee} \mathcal{A}^{\vee} \mathcal{A}^{\vee}
Specific Activity:	$3.7 \text{ MBq/mg} (100 \mu \text{Gr/mg}) \sim 2 \text{ Gr}^2 \text{ Gr}^2 \text{ Gr}^2$
Radiochemical Purity:	>98%
Chemical Purity:	>99%
2	
2. Test Water	
Natural water from a fresh	water dam that is used for the preparation of dimking water not receiving
effluent discharges was use	d (see Table 7.2.2.2- 1). The water was sampled freshly from the natural

effluent discharges was used (see Table 7.2.2.1). The water was sampled fightly from the natural water system (depth of approx. 10 cm) and sieved through a 0.069 mm sieve por to ose.

Physico-chemical properties of test water . Table 7.2.2.2-1:

ble 7.2.2.2- 1: Physic	co-chemical pr	operties of test	ater 5		
Parameter	~\$````\	Results / Umit	s 🗟 🧯	y a o	0 [×]
Water Designation			Ø Ý		Ô
Origin		Gear		, Nørth Rhine-We	stphalia, Germany
GPS Coordinates		N 565 56.8	<u></u>	E 007° 400	8
Water Temperature		7/1	NY O		
pH ^{a)}	L . 6	15.9 N	Ŷ		
Redox Potentia		255.37			
Oxygen Saturation [86]		8,33			
DOC [mg OL]	*	×2.0 °		, O	
TOC [mgpC/L]		∠<2.0	ð" _a ,		
BOD [mg/L]		n.a. ^{b)}	×,	Y	
Total Nitrogen [mg/L]		2.5° °			
Total Phosphorous [mg	/E/ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	°, Q°0.03≪″			
Microbial Activity c)		✓ DT ₅₀ → 2 days			
a) measured at sampling	site S		a start		
b) not applicable due to lo	w abdount of DO		>		
c) degradation of benzoic			0,		
DOC: Wesolved organi	arbon) ×			
GPS: Clobal positioning s	vstem ~				
TOC: total organic carbor		Û ^Y XY			
	ð ^r eð	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			

В. STUDY DESIGN

Experimental Conditions " 1. ~C

The static test system for degradation in surface water under aerobic conditions consisted of Erlenmeyer glass flasks with baffles (e.g. 250 mL). Each flask was fitted with a trap attachment (permeable for oxysen) containing soda lime for absorption of carbon dioxide and a polyurethane (PK) foam plug for adsorption of volatile organic compounds (VOC).

For preparation of the test systems, 100 mL of the natural water were transferred into each flask. The flasks were then fitted with trap attachments and equilibrated to study conditions for 2 days prior to application. The water was kept in motion during the entire study duration.

Study application rates of 10.3 μ g/L and 104.2 μ g/L surface water were applied for the low and high concentration, respectively.

The test item was applied dropwise onto the water surface of the respective test systems in 000 µL methanol using a pipette. After application, the test vessels were fitted with tap attachments (except of DAT-0 samples).

The test systems were incubated in the dark for 61 days at 30 ± 2 °C in a plimatic cabine

2. Sampling

Seven sampling intervals were distributed over the entire incubation period of 61 days. Duplicate samples of each concentration were processed and analysed 0, 7, 14, 21, 30, 48 and 61 days after treatment (DAT). Sterile controls were processed and analysed at DAT-61 for the both concentrations, microbial activity samples at DAT-0 and DAT-2.

3. Analytical Procedures

Carbon dioxide absorbed by soda lime was liberated with 18% aqueous hyprochloric acid and tapped in a scintillation cocktail selective for binding of earbon dioxide using an ad-tight assembly. The radioactivity content was determined by liquid scintillation counting (LSC).

The PU foam plugs of the trap attachments were extracted with effyl acetate in an ultrasonic bath to desorb VOC. The radioactivity content was determined by ESC.

C

At each sampling interval pH, oxygen contential and redox potential in the vater were determined. The water was transferred to a volumetric cylinder and the test vessel was ribsed additionally with acetonitrile. The rinsing solutions were pooled with the water. Additionally in samples was determined by LSC and amounts of test item and degradation products were determined by reversed phase HPLC/radiodetection.

The limit of detection (LOD) and limit of quantitation (LOQ) for HPCC/radiodetection analysis of the water in low concentration samples were 1.1 and 3.3% AR, respectively. The limit of detection (LOD) and limit of quantitation (LOQ) for HPLC/radiodetection analysis of the water in high concentration samples were 0.1 and 0.3% AR, respectively.

Test item was identified by HDLC-MS(/MS) including accurate mass determination and ¹H-NMR

The degradation kinetics of the test item was determined according to FOCUS kinetics (2006) using the software KinGUI with three different kinetic models: single first order, first order multi compariment and double first order in parallel. Model input datasets were the residual amounts found in each replicate test system at each sampling interval. The initial recovery at DAT-0 was included in the parameter optimization procedure, but for optimal goodness of fit, the value was allowed to be estimated by the model DT_{50} and DT_{50} values were calculated from the resulting kinetic parameters.

I. RESULTS AND DISCUSSION

Results indicated that the anticipated standardized conditions were maintained and that the water was microbially active over the duration of the laboratory study.

The pH \Re the water ranged from 7.8 to 8.9 for both low and high concentration.

Oxygen saturation (range from 90 to 99%) and redox potential measurement (E_H , range from 310 to 394 mV) indicated aerobic conditions in the water for both concentrations.

A. DATA

Fluoxastrobin

Table 7.2.2.2- 2:	Degradation of fluoxastrobin in natural water under aerobic conditions (low									
	concentrat	ion, mea	n values	and SD e	expressed	d as % A	R) ()		L' D	
	Mean					DAT	<i>°</i> C″	C]
Compound	SD	0	7	14	21	30	48	61 0	61 sperile	ĝ.
Fluovostrohin	Mean	104.6	101.1	100.2	r _≫ 101.2	100.2	97.6	99,3	×102.0 ×	
Fluoxastroom	SD	± 0.2	± 1.5	± 0.2%	± 0.3	±	± 2.2	£0.5 4	$O^{\forall} \pm 0 A^{\downarrow}$	Ľ
Sum of Unid./Diff.	Mean	n.d.	n.d.	n.d.	n.d.	Dď.	n.d. 😵	n.d.	n Qr. (\bigcirc^{ν}
Residues a)	SD			. 1 ⁰		Ő V	C C		ê, û	1
Total Extractable	Mean	104.6	101.1	J. O. 2	101,2	100,50	9706	. 89.5	102.0	
Residues b)	SD	± 0.2	± 1.5 ^{&}	2 ± 0.2	$\pm 03^{3}$	±≈1,0	2.2 ،	₩ 0.5 %	± 604	
Carbon Dioxida ^{c)}	Mean	n.a.	< 0.4	QŶ	0 ,1	0.1	🖉 0.1 🔊	0.1 🔊	< 0.1	
	SD		. 0	×,	Ŭ d		r d'	Å		
Volatile Organic	Mean	n.a.	<i>k</i> ≪}LOD _∞	CLOR	< LOD	< LOD	< QOD	< COD	\mathcal{L}	
Compounds c)	SD	Å	\sim . \sim		Ŭ,	Ś		Ç,	Č, Š	
Total Decovery b)	Mean	104	1012	100.4	×101.3	A00.5	97.8	99.6	@ 2.2]
Total Recovery "	SD	± 0.2	≝⁄1.6 ∝	€0.2	5 ± 0.3		± 251	±0.5	<u>گ</u> ± 0.3	

ŷ n.d.: not detected, n.a.: not analysed, DAT days after treatment, SD: standard deviation

a) Minor components are summed up to unidentified residue b) Difference to Material Balance values due to rounding errors well as clean to and chromatographic fosses c) Values taken from Material Balance

Table 7.2.2.2- 3:	Degradation of fluoxastrobin (in natural water under accobic conditions (hig	gh
	concentration, mean values and SD expressed as % AR)	,

	Mean	6 1	× ~))))	. @	DAT	¥_		
Compound		0	1	14	23	<i>3</i> 0	48	61	61 sterile
Fluovaster	Mean	105.3	26.0	×98.4	99.1	§97.7 °	^{96.3}	98.5	95.2
Fluoxastiepili	SD -	± 0.9	×40.6 €	0 ± 1.0	$D \pm 0.$	± 0@/	± 0.5	± 0.3	± 0.4
× P	Mean	n.d.A	0.8	0.90	64	A S	1.0	1.0	1.0
	õ SD _A Çõ		± 0.0	±00.0	_^€0.0	¥ 0.0	± 0.0	± 0.1	± 0.0
	Mean	"n.d.	Q0.6 🤉	0.5	[∞] 0.6 ∽	0.5	0.5	0.8	0.9
	ŚD "		1 ± 0.0	1 ± 0	± 0.1	± 0.0	± 0.1	± 0.0	± 0.0
р 🔊	AMean	n.đ.√	n.d.	n.d.	iOd.	n.d.	n.d.	n.d.	0.9
	SDS.	Ô	Ň,	¹ ¹					± 0.1
E C	Mean	🎢.d. 🏾	y n.d. 🕅	y n.d	n.d.	n.d.	n.d.	n.d.	0.5
	©\$D		6	O					± 0.0
Sum of Unid./Diff.	🗞 Mean 🎾	n.🗭	Ľ,Å	<u>∘</u> 194	1.6	1.4	1.5	1.7	3.6
Residues a)	SD♥	\sim	¢€0.0 €	Q ± 0.1	± 0.0	± 0.1	± 0.0	± 0.1	± 0.1
Total Extractable	Mean 🦕	Ø105.3	97.5	99.8	100.7	99.1	97.8	100.2	98.9
⁷ Residues ^{b)}	ĨØSD _Ĉ	± 0.9 [™]	± 000	± 1.0	± 0.4	± 0.5	± 0.4	± 0.3	± 0.5
Carbon Dioride	Mean	"n.a.	Q0.1	0.1	0.1	0.1	0.1	0.1	< 0.1
	S)	s a	v n						
Volatile Organie	Mean <	, n.æ.Ş	< 0.1	< 0.1	< 0.1	< 0.1	0.1	< 0.1	< 0.1
Convounds	\mathbb{C}^{\sim} SD		± 0.0	± 0.0	± 0.0	± 0.0	± 0.0	± 0.0	± 0.0
Total Pacetory b)	Mean	105.3	97.5	99.9	100.8	99.2	97.9	100.2	98.9
	s SD	± 0.9	± 0.6	± 1.0	± 0.4	± 0.5	± 0.5	± 0.3	± 0.5

n & not detected, n.a.: not analysed, DAT: days after treatment, SD: standard deviation a) Minor components are summed up to unidentified residues

b) Difference to Material Balance values due to rounding errors as well as clean up and chromatographic losses

c) Values taken from Material Balance

B. MATERIAL BALANCE

Mean material balances were 100.8% of applied radioactivity [% AR] (range from 97 % to 104.6% AR) for the low concentration and 100.1% AR (range from 97.5 to 105.3% AR) for the high concentration. The complete material balances found at all sampling intervals demonstrated that there was no significant loss of radioactivity dissipated from the test systems or during sample processing

C. VOLATILES

Formation of carbon dioxide was $\leq 0.1\%$ AR at all sampling intervals for both concentrations. The maximum amount of volatile organic compounds was < EOD (0.7% AR) and $\leq 0.1\%$ AR after 61 days of incubation for the low and high concentrations, respectively.

E. DEGRADATION OF PARENT COMPOLIND

The amount of fluoxastrobin in the surface water was between 97.6 and 104.6% AR for low concentration test systems and between 96.0 and 105.3% AR for high concentration test systems for all sampling intervals.

No degradation products of fluoxastrobin > 5% were found. The total unidentified residues amounted to a maximum of 3.6% AR and no single component exceeded 10% AR at an sampling interval for both concentrations.

The same was observed in sterile controls

The experimental DT_{50} values of Huoxastrobin vere calculated using single first order (SFO) kinetics (see Table 7.2.2.2-4).

Table 7.2.2.- 4:Degradation kinetics of fluoxastrobia in natural pond water under aerobic
Conditions according to FOCUS

Test System	Visual Assessment ^{b)}
Low concentration (10.3 $\mu g/\beta$) $\rightarrow 944 \rightarrow 1000$	0
High concentration (104.20 g/L) ≈ 1000 ≈ 1000 2.1	0
a) SFO: single first order to a first dent to a first order to a first dent to	

b) visual assessment: o = figoderates

No degradation products >5% were identified.

² III CONCLUSION

Fluoxastrokin did not show significant degradation at two concentration levels in surface water under aerobic conditions in the dark in the laboratory. The calculated best fit half-lives were 944 and > 1000 days for low and high concentrations, respectively.

Formation of carbon dio tide was insignifican (0.1% AR) at study end (DAT-61).

Fluoxastrobin

CA 7.2.2.3 Water/sediment study

The route and rate of degradation of fluoxastrobin in water/sediment systems under aerobic and anaerobic conditions were evaluated during the Annex I inclusion using one radiolabel position, ring 3-label, and were accepted by the European Commission (SANCO/3921/07-final, 2012) A summary of these studies has been included in this dossier and the kinetics was newly evaluated since it has been used for the risk assessment. No additional experimental studies were performed A new kinetic evaluation of the water /sediment study was conducted to derive kinetic parameters according to EFSA Guidance 2014 and FOCUS Guidance 2014.

r			- A		
Annex Point / Reference No	Author(s)		<u></u>	Year	Document@No @
KCA 7.2.2.3			\sim 0^{*}	2002	M -038933-01-10
KCA 7.2.2.3				Ø002 Ö	M-033846-0471
	0×		,		
An aerobic sediment water	study was conducte	d 🔏 shoø si	um iQ ary of th	e laborato	oro studyo is given
below.			s'A	0 [°] 4	
			Y 0 4	N S	
					Ũ,
Report: KCA	. 7.2.2.3 01	· · · · · · · · · · · · · · · · · · ·	2002; M-63894	43-Ø₽-1	S J
Title: Aero	bic degradation and g	etabolom of [giethox Omino	toyl-rin¢	UL-149]HEC5725
in the	e wøer/sediorent syøe	em 🎸 🖉		° ~~	×
Report No.: MR-	396/01	đ		Čo –	O ·
Document No.: M-02		$\tilde{U}_{5,1}$		N C	Ì.
Guidennes Cat		x = 0.00 + 1.1 + 1.000	y w z	y "a	
- EU	TYC Decaduras M	1g 90414/00			
Guideline deviation(s) and s	pacified a second state of the second s		Ŭ Î	s,"	
GLP/GEP:			° L	Ŵ	
	× 4 ~	X N		Ŷ	
		× ~			
		********	. O ⁷		
	Y L OY 4	× 4,	A		
Report: NKCA	7.202.3/02	P.2002	M-033846-01-	1	
Title:	[5525]: Amerobic aqu	uatic degra ati	on and metabo	lism of HI	EC 5725
Report No.: OMR-	96/01~ O				
Document No. Mo	33846-91-1		-		
Guidelines: - El	9536/ECtamenorn	ig 91,414/EE	C.		
S SE	QC-Europe Roce	duites, March	1995		
	EPA Subdivision	Paragraph	162-3	D	(D) (1)
	vironmental herrys	try and Fate,	Guidelines fo	or Registr	ation of Pesticides
Cuideline device	anada, 1967/Canada,	1987			
CLP/CEP	opincapics v				
GELIGEL S yes	x ~~				
	à i				
Ring Whell fluor trob	(here in this study	r F + 7-Isom	er) was used	to dose t	he water laver at a
	i (nere in tins study		ier, wuo uocu	io dobe t	ne water rayer at a

concentration of $405 \ \mu g 47$ (equivalent to an application rate of 810 g/ha and assuming a water depth of 3 m). Sediment ('Fuquay – sandy clay) and some related water were collected from a small pond in Monteruma, Georgia, USA. The characteristics of the sediment and water are shown in Table 7.2.2.3-1.

Origin	Fuquay GA	
Sediment laver characteristics:	1 uquuy, 011	
Textural class (USDA)	Sandy	
Textural analysis (USDA):	<u>S</u>	4 . 67
2000 - 50 µm, sand (%)	46.3 Q	
50 - 2 μm, silt (%)	× 16.4	
< 2 μm, clay (%)	jý 37.3 ≰v	
pH value:		
Water	0 [×] 5.3 × 0 [×]	
CaCl ₂	Q [×] • 4.3	
KCI		B Û
Organic C (%)	× 0 ^{0.46}	
Organic matter ²	0.79	4
Cation exchange capacity (meq Ba/100 g)		à sì
Total nitrogen (% N)		¢ "Qʻ
Total phosphorus (mg P/kg dry matter)		
	$\mathcal{V} \xrightarrow{\mathcal{V}} (0, \mathbb{Q}^{\vee})$	
Redox potential prior pre-equilibration QmV)	- 46VS	, Ç
<u>Aerobic</u> microbial activity (mg CO gr/kg sediment (dry matter):		, ,
$\frac{1000796 \text{ BT} 172 \text{ (prior to starting the test)}}{12800 \text{ BS}(37112 \text{ Bio} + 7.5 \text{ (prior to starting the test)})}$		
No. of anaerohic bacteria colonies tested under anaerohic		-
incubation in malt agar at 20 ± 2 °GV		
DAT-0 after 28 days	dilution 107 338	
DAT-120 after 21 days, A O O O	dilution 10: 580	
DAT-120 after 21 des 0 0	Mution 10 ⁻³ : 416	
Water layer charageristica;		
pH S O Y Y Y	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Total organic obon, OC (mg/L)	V 14	
Dissolved or Onic caroon, DOC (mg/L)	Q 10	
Hardness (grad DH)	11.3	_
Total nitrogen, TNO ₅ , (og/L)	1.3	_
Total & Sphorus (mg@)	0.1	-
Oxygen saturation of at 200°C) a)	82	-
Redox potential (APV) ^{a)}	234]
DAT: days after treatment Q ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '		
a) data must be veterpresed with duition suce the regures set $e \leq LOO$		
70 organic matter $=$ 70 organic carbon x 7.724 , y		

 Table 7.2.2.3-1:
 Characteristics of the water/sediment system Fuquay

Homogenised sediment 123.4 g (corresponding to 78.4 g dry matter) and 142.6 g water were weighed into each flask. A portion of succese (2 g) was added to each system to enhance microbial growth and to produce anaerobio conditions with a notative redox potential once the test systems were sealed. The following doy the flasks were staken for 7 - 10 minutes whilst being purged with argon/methane to replace the wygen and cosed with a bubble counter attachment filled with water. Flasks were preincubated is a bay pured with nitrogen in the dark at 20 °C until anaerobic conditions were confirmed. Flacks treated with labelled fluoxastrobin were kept at 20 °C in the dark for up to 360 days. Records of wygen and redox potential showed strict anaerobic conditions in the water layer during the endire study duration. pH in the supernatant water was in the range 4.7 to 5.3.

At same Ong points the water and sediment layers had their radioactivity determined and identified. Radioactivity in the water was determined by LSC with identification of metabolites by TLC and HPLC. Dissolved CO₂ and carbonates were determined. Sediment was extracted three times with acetonitrile with radioactivity determined by LSC and metabolites identified by co-chromatography

with reference standards using TLC. The major metabolite HEC 5725 carboxylic acid (M40) was isolated and investigated by LC-MS. Volatiles trapped in the PU foam plug and soda lime gere quantified.

Distribution and total recovery of the radioactivity after application of fluoxastrobin in the Fuquay, GA we r/sediment so tem (in % AS) Table 7.2.2.3- 2:

						8			ด้		×,	~
Water/	DAT	Water		Sedime	nt	L.		O vatiles			Meriak	0
sediment			Extracted	NER	Sub-total	ĮO Š	Ó	CO2	۵ ۵	Org.	Galance	¥
system					sediment	Head-	Water	Sediment	SQtotal	valatiles		
					~~	space	a la		¹⁴ CO ₂			
Fuquay,	0.1	60.6	33.2	2.4	356	QV/A	≈h.m.	n.m. 🗶	n.new	N/X	96.2	
GA	1	60.9	30.9	5.0	<u> </u>	LOC	<lo@< td=""><td>n.</td><td>< 1000 Q</td><td>& LOQ</td><td>96.8 °</td><td></td></lo@<>	n.	< 1000 Q	& LOQ	96.8 °	
	3	56.4	32.6	3.6	36.2	< FOR	< LOQ	n.m.	L OQ	CLOR	92	
	7	43.6	42.8	9.5	5 <u>2</u> .Sy	\$ DQ	QOQ	Çn.m. 🗞	O <low< td=""><td>< LOQ</td><td>9.9</td><td></td></low<>	< LOQ	9 .9	
	14	33.4	46.3	120	(59.9	J-LOQ	LOQ	n.m&	< IQQ	<i>⊴</i> Q*OQ	O 93.3	
	30	27.4	49.8	Q.Y	\$66.6	<lqq< td=""><td>< L@</td><td>nDr.</td><td>\$OQ</td><td>< 0.1 Q</td><td>94.0</td><td></td></lqq<>	< L@	nDr.	\$OQ	< 0.1 Q	94.0	
	59	27.4	47.2	19.3	66,5	≪L0Q	<i>≨</i> ⊅OQ	O ^{n.m.}	CKL OG	<LQQ	93.9	
	91	49.5	24.8	23,4,*	48-3	& LOQ	PLOO!	🗸 n.m.🏷	< LOV	& LOQ	97.9	
	120	24.6	329	32.7	\$65.6	O <loq< td=""><td>< LQQ</td><td>nga.</td><td>< 200</td><td>OLOQ</td><td>90.3</td><td></td></loq<>	< LQQ	nga.	< 200	OLOQ	90.3	
	182	28.1	38.3	\$30.0	O 68.2	< I Q Q	< 0.1	în/m.	× 0.1	<loq< td=""><td>96.3</td><td></td></loq<>	96.3	
	240	27.5	33.3	35.16	6204	£ LOQ	< LOQ s	()n.m.≁Ç	$a < \Gamma C C$	< LOQ	95.8	
	360	30.1	285	36,2	65.0	ØK LOQ	× <lcqq< td=""><td>n.m.</td><td>< 6 Q</td><td>< LOQ</td><td>95.1</td><td></td></lcqq<>	n.m.	< 6 Q	< LOQ	95.1	
		Q	Ô [°]	Ś			0″	Å	L.Y.	Mean:	94.9	

Limit of quantities in , m = not detaured - Limit of quantities i

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

1 abie 7.2.2.3- 5	wat	er/sediment syste	em (in % AR)	ation of metabolites in an	
Compartment	DAT	fluoxastrobin	HEC 5725-	HEC 5725-carboxylic	Unknown mnor
*		<i>E</i> -+ <i>Z</i> -isomer	amide (<i>M38</i>)	acid (<i>M40</i>)	metabootes a)
Water	0	98.9	n.d.	n.d.	ńИ. ". «Ç
	0.1	59.5	n.d.	n.d.	Qn.d.
	1	58.8	n.d.	0.3	∿n.d.Q*
	3	55.6	n.d. 📿	n	N N
	7	42.5	0.2	QU.1	
	14	32.4	0.6	On.d.	Q < 0.1
	30	25.6	1.14	Q n.d. o L	n.c
	59	23.1	alox '		O Bd. O
	91 ^{b)}	36.6	4.4 °	Ø ¥.4 Ø ?	×
	120	13.0	× 1.9	6.8 × 5	n.d.
	182	15.2	3.4	6.0	n the co
	240	9.3 🖌		A.4 S	&.d. 0
	360	12.7	×1.1	LO \$10.6 \$	3.2
Sediment	0	Q.		Not treated	
	0.1	32.50*			jų įų.
	1	300	n.d. 🔊	and and	Prov Sn.d.
	3	21.8 L	6 0.1 C	0.2 ° ~ ~	n.d.
	7	~\$41.0 *>	n.d.	V OF OF	$\sim < 0.1$
	14	44%		Ý mi Q	n.d.
	30 💊	\$ 401 ~	3.9	n.d. K	n.d.
	59	42.8	\$ 4,10 Y	n.d. 🗸 🌾	n.d.
	91 👟	\$ 21.3			n.d.
	103	220	P \$3.0 5	@.9 ×	n.d.
	\$82 6	Y 23 0 V	3.9~9	6 L 5.7 O	n.d.
	C 240	≪í9.4∢	<u>∽</u> ″2,€ [♥] [▲]	P 11,37	n.d.
2	¥ 366	0 14.0° (C M D	J0.5	2.4

Table 7 2 2 3- 3. Dissingtion of flagmant which and formation of match alites in an anomalia

DAT: days after treatmost; n.d., bot detected a) unknown getabolites, none exceeded 2.59 the appred radioactiving 2.5%

b) samples of DAT-91 concern a portion of ganic sediment extract
c) samples of DAT-91: probably 191st extract way added to he water phase

A

One degradation product exceeded 10% AR during the oudy. This metabolite was identified as HEC 5725-carboxylic oid (1000). One minor metabolite packed a maximum of 7.3% AR in the entire system at D40-182Cit was dentified as HEC 5725-anide (*M38*). In the water and sediment extracts three unknown metabolite were detected. Note of these individually exceeded 2.5% AR in the water layer or soliment.

The deta were evaluated and a gimple erder kinetics (SFO model) and by a first order multi compartment model (FOMC).

Table 7.2.2.3- & Degradation of fluo Strobin an anaerobic water/sediment system

(7) n	
SKQ	FOMC
146	120
486	1890
0.928	0.962
*	****
	SkQ 146 486 0.928

An updated kinetic evaluation of the degradation behaviours of fluoxastrobin in water and sediment under aerobic conditions in the dark in the laboratory has been performed according to FOQUS kinetics (2006, 2014) to derive kinetic parameters suitable for modelling purpose and environmental risk assessment and is submitted within this supplementary dossier for the fluoxastrobin renewal of approval.

New kinetic evaluation submitted for Annex I Renewa

Justification for including this study in the Annex I Renewal Dossier: The objective opthis study is a kinetic evaluation of the aerobic water/sediment metabolism study of fluorestrobin (CA 72.2.3) included in the baseline dossier). The evaluation was conducted to derive kinetic parameters according to EFSA Guidance 2014 and FOCUS Guidance 2004.

Report:	v; 20¥5; Mz9457601-1
Title:	Kinetic evaluation of aerobic aquatic metabolism of fluoxastrobin in water sediment
	systems according to FOCUS kinetics using KineUI 2.1
Report No.:	EnSa-15-0222
Document No.:	M-534576-010 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Guidelines:	- FOCUS, 2003: FOCUS Surface Water Scenarios in the ED Evaluation
	Process under 91/414/EC. Report of the EOCUS Working Group on Surface
	Water Scenarios. EC Document Reference SANCO/4802/2001-rev2
	- FOOUS 2006: Gridance Document of Estimating Persistence and
	Degradition Karetics from Environmental State Studies on Pesticides in EU
	Registration. Report of the OCUS Work Group on Degradation Kinetics.
*	EC Document Reference Sanco 10058 2005 (v. 2.0, June 2006
íŞ	- FOCUS: 2014: Generic guidance for Estimating Persistence and Degradation
L.	Kanetics from Environmental Pate Studies on Pesticides in EU Registration.
ð, s	Version 1.1 Date: 18 December 2914
Guideline deviation(s):	none
GLP/GEP:	not a set of o
Justification	New date guideline requirement.
	Kinetic analysis of the degradation of Buoxastrobin and its major aquatic metabolites
	in the water-sediment systems for use in model simulations of environmental
~9 [′]	expression as persistence endpoints
e a la l	
~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Executive Summar	

The purpose of this study was to estimate degradation and dissipation times (DT_{50}) of the active substance fluoxastrobil and its major aquatic metabolites in the water – sediment systems for use in model simulations of environmental exposures and as trigger endpoints.

The degradation and dissipation behaviour of fluoxastrobin (here - assuming worst case conditions - as sum of E+Z (somets) and its metabolites HEC 5725-*E*-des-chlorophenyl (*M48-E*) and HEC 5725carboxylic acid (*M40*) was investigated by kinetic evaluation of an aerobic water-sediment study conducted with *C*-labelled fluoxastrobin in 2 different test systems for up to 122 days at 20 ± 1 °C and darkness. loomy sediment and loamy sand sediment (CA 22.2.3)

According to recommendations of FOCUS kinetics (FOCUS, 2006, 2014), (Level P-I) dissipation and degradation DT_{50} of fluoxastrobin for water, sediment and total systems were derived, separately, for modelling and trigger endpoints, using the software tool KinGui 2.1, based on the IRLS error model (Iteratively reweighted least square).

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Furthermore, a 2-compartmental approach was taken into account to estimate the degradation of fluoxastrobin in water and sediment compartment, in parallel, including partitioning processes via reaction rates (Level P-II). However, as the degradation rates in water as well as sediment were not significantly different from 0 (t-test), these values are not recommended to use in further assessments?

Additionally, Level M-I dissipation or degradation in water, sediment or total. Sistem of the metabolites HEC 5725-*E*-des-chlorophenyl (*M48-E*) and HEC

As in the experimental study report, HEC 5725-carboxylic acid O140 was analysed only in the sum together with HEC 5725-amide (M38). This sum was used to represent the fate and behaviour of HEC 5725-carboxylic acid in water/sediment systems, conservatively, O

For the soil and aquatic metabolite HEC 5725-*E*-deschloropheny \mathcal{O} (*M48-E*), for reliable and statistically significant DegT₅₀ values could be evaluated in the total system together with the appropriate parent fit (χ^2 error, t-test). However, a set of conservative formation fractions could be estimated by forcing the degradation curve of the metabolite through the highest measured residues. Thus, for **a** formation fraction of 0.51 and for **b** of 0.13 was considered as sufficiently conservative, in combination with a DegT-of 1060 days

An evaluation of the dissipation from water or sediment of the E-des-chlorophenol was not possible, due to the fact that no sufficient data points after the maximum have been available. Finally, a conservative DT₅₀ of 1000 days could be assumed for all compartments.

The half-life of flux astrobin (E+Z) for modelling purpose (geometric means) was 16.0 days in the water, 313 days in the sediment and 298 days in the total system. The half-life of HEC 5725-carboxylic acid (MF0) for modelling purpose (single value) was 64.9 days in the sediment, 67.9 days in the total system and could not be evaluated in the water.

The half-lives of fluoxastrobin (E+Z) for trigger evaluation were between 1.4 and 3.4 days in the water, between 268 and 365 days in the sediment and between 148 and 351 days in the total system. The half-life of HEC 5725-carboxylic acid (M40) for trigger evaluation was 64.9 days in the sediment, 67.6 days in the total system and could no be evaluated in the total system.

~Ģ~	(É+Z) in water.	sediment and total wate	r-sediment system		
Compartment	System S	Kinetie level	Kinetic model ^{a)}	DT50, initial [d]	DT90, initial [d]
Water			FOMC	3.38	179
		P-Fr water DisT50	FOMC	1.36	22.9
Sediment		D I Constitution D'aT	SFO	268	892
Å		P-Ic sediment Dis 1 50	SFO	364.8	> 1000
Total system 🧳		D L	SFO	143	474
L S S		P-1: system Deg 1 50	FOMC	351	> 1000

Table 7.2.2.3- 5: Trigger endpoints, best it model, for dissipation and degradation of fluoxastrobin (E+Z) in water, sediment and total water-sediment system

a) STO: Single first order, FOMC: First order multi compartment

Table 7.2.2.3- 6: Modelling endpoints for dissipation and degradation of fluoxastrobin (E+Z) in water, sediment and total system

one 7.2.2.3- 0.	water, sediment	and total sy	stem	of huoxastroom	(۲۲) m
Compartment	System		Kinetic level	Kinetic model ^{a)}	DT50 mod
Water				DF OP	
vv ater			P-I: water DisT ₅₀	FOMC	\$6.90
	geo mean		P-I: water DisT50	N in	16.6
Water	all		P-II: water DegT ₅₀		Thys.
Sediment			P-I: sediment DisT.	SFO Ø	S ²⁶⁸ 0
				SFØ	Q 3650 ^v
	geo mean		P- J ; sediment DisT%		313
Sediment	all		PAII: sediment DegT 50 %		1.S. ~
Total system		×	DI. Contractor	SFQ	*≫ 143*
			P-1: wystem, seg 1 50	DFOP &	3.99
	geo mean	× A	P-I: system DegT30		238
n s not significant ((t test) not reliable	_			

- n.s. not significant (t-test), not reliable a) SFO: Single first order, FOMC: First order matic compartment DFOP: Double first order@ paralle

Table 7.2.2.3- 7:	HEC 5725-E-des-charopheavl	(MAS)	endpoints fr	om wate	r-sediment study.	for
	trigger and modelling nurbose	S		Õ	~~~~~~~,,,	
	trigger and modeling purpose	102	L 6.4	A.	Or is	

			Ú
System	DegT ₅₀ /Deg total system	sT ₅₀ /DT ₉₀ Distro /DT ₉	B Method of
2	nr o na		SFO
	page of the	ne ne	⊮ SFO
Geometric mean at 20	°C a)		

nr not for reliante, mathematical on to significantly different from the not usable S

ne not evaluabl@not sufficient data points

a) Normalised using a Q10 of 2 38 Ŕ

Ś HEC 5725-catboxylicacid (M40) endpoints from water-sediment study, for trigger Table 7.2.2.3-8:

 \bigcirc

System	DegT \$ /DT90	DosT 50 / DOT 90	DisT ₅₀ /DT ₉₀ sediment	Method of calculation
, a la l	iour system	a water of	seament	calculation
		nr 🖉	64.9/216	SFO
	A 67.62225	na (ne	trigger, SFO
	(parent FOMC)	*		
	67.9226			modelling, SFO
	(parent DF9P)			
Geometric mean at 20				

nr snot full Geliable not usable ng not evaluable of sufficient data points) Normalised using a Q16 of 2.58

0

Table 7.2.2.3-9: Estimated formation fractions of major metabolites of fluoxastrobin from the total system Ŵ

	Formation fraction
Parent to HEC 5725-E-des-chlorophenyl (M48-E)	0.51 0.13
Parent to HEC 5725-carboxylic acid (M40)	- 0.4841 ~ ~
I. METHO	

METHODS

Residue data from the aerobic water/sediment degradation study M-038943-01-1 (Kaseline dossier, CA 7.2.2.3 KCA 7.2.2.3) were used. In this study, the degradation of fluoxastrobin was studied in under aerobic conditions in the dark and water/sediment systems in the laboratory for up to 122 days at 20 °C and test concentrations of 55 \$ µg/1@water, Ũ

The FOCUS kinetics report distinguishes between two levels of kinetles: At Level 1 a single compartment is used to derive degradation endpoints from the whole system or dissipation endpoints from each compartment separately the water column or the sedment Level is for twocompartmental approaches to estimate the real degradation in the water column and sediment compartment considering the exchange rates between water and sediment

The parent substance fluoxastrobin and its major aquatic metabolities - HEC 5708-E-des-chlorophenyl (M48-E) and HEC 5725-carboxylic acid (M40) were addressed for the total system (Level 1) and water and sediment phases (Level 1 and 2). All evaluations for metabolites in fotal systems were carried out together with the appropriate the of parent for modelling or trigger purpose and all evaluable metabolites 🔊

The kinetic evaluation was performed according to the guidance given by the FOCUS Kinetics report (FOCUS, 2006, 2004); degradation parameters were fitted with the software KinGUI 2.1. Four kinetic models, the single first order (SFO), first-order multiple-compariment FOMC, Gustafson-Holden), the hockey-stick mode (HS or known as QPOS = double first order sequential), and the bi-exponential model (DFQP = double first order parallel) may be ased to adequately describe the experimental residue values of the applied parent substance. These models use increasing numbers of parameters to describe degradation.

The objective of a Dinetic vevaluation of to select appropriate kinetic models in order to derive degradation endpoints from their respective calculations. These degradation endpoints, namely the DisT₅₀ and DisT₅₀ parameters from dissipation and the DegT₅₀ and DegT₉₀ for degradation, are established differently depending on whether one considers these parameters to assess if further trigger studies are needed (trigger endpoints) or one plans to use them as inputs for pesticide fate models (modelling endpoints). Both options are considered here. As defined in the FOCUS guidance, for modelling endpoints, if the SFO model is deemed sufficiently descriptive then the corresponding DT₅₀ parameter is taken; if not, AOMC, DFOP and MS kinetics are tested. For trigger endpoints, SFO and FOMC kinetics are tested in a first step, is not acceptable or worse than FOMC, DFOP and HS kinetics are tested, too.

 \bigcirc

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

П. **RESULTS**

For the dissipation of fluoxastrobin the trigger and modelling endpoints and the statistical parameters for the water layer are given in Table 7.2.2.3-10 and for the sediment in Table 2.2.3-11.

For HEC 5725-E-des-chlorophenyl (M48-E) the dissipation in water, sediment or total system was not possible to evaluate, due to the fact that not sufficient data points after the maximum have available.

The dissipation data for HEC 5725-carboxylic acid (M40) for the total system and sediment are summarised in Table 7.2.2.3-12. Ŵ

For the degradation of fluoxastrobin in total system the trigger and modelling endpoints and the statistical parameters are given in Table 7.2.2 13.

For the degradation of HEC 5725-E-des-chlorophen total system the figger and modelling endpoints are given in Table 2.2.3 14 and respectively including the statistical parameters.

The degradation data for HEC 5925-carboxylic acid (M40) in the total system are summarised in Table 7.2.2.3- 16 for trigger purpose and in Table 7.2.2.3- 10 for modelling purpose.

Estimated parameters for the degradation and partitioning of fluoxastrobic in water and sediment, separately (level P II) are given in Table 7.2.2 T17 and Table 7.2.2 18,

separately (level P II) are given in Table 7.2.2.2 17 and Table 7.2.2.3 18 the stimated formation fractions of the major thoxastrobin factabolites from the total systems are given in Table 7.2.2.3 9 in the Executive Summary

BAY

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Fable 7.2.2.3	- 10:	Esti (lev	imated para el P-I), for	ameters fo trigger an	or dissipation of ad modelling end	fluoxastro d <u>points</u>	obin (E+.	Z) from [•]	water phas	e ©
Kinetic	Mo	kfast	kslow	t-test	g _{fast} (DFOP) o	r DisT50	DisT90	DisT50	χ ² -test	sual 🔊
model ^{a)}				kslow	t _b in d (HS)	initial	initial	delling	error	ït ^{b)}
	[%]	[1/d]	[1/d]			[d]	[d] 🖉	🎾 [d]	[%]	S
				1	1				<u> </u>	
SEO	88.93	1	0 1038	< 0.001	I Ò	6 6 7 8	2 18	6 678	28 58	Ś
FOMC ^{c)}	98.85		0.1050	\$ 0.001	- The second sec	3 382	22.10	54 @	3 6 7	S.
DFOP ^d	98.56	0 3584	0 009408	< 0.001	02683	3 5 \$ 4	122.7	36.96	\$936 O	+
HS	98.82	0 2133	0.011366	< 0.001	\$067	3 249	Ø125	33 89 d	7 039	+~
	> 0.02	0.2100	0.011200	0.001				× ×		Q'
aeo.	0(()		0.0795	< 0.001		Š &) ^v
SFU SFU	96.62		0.2785	< 0.001(2.489	8.008	2489 (905	24.86	-
	99.12	0 6 4 5 7	0.02059		× 0 75 X	1 614	22.89	, 6.895 0.050		Đ"
UFUP	99.15	0.0437	0.03038		2 2 4 0 1 3 4		29.44	0.800 911	4.011	
пз	99.10	0.3093	0.03333		× 2,984		2092		(8.19 U	Τ
DT., .	half liv	og for m	Halling: ROU	womean,	$\frac{\sqrt[8]{2}}{1} = DT_{1} \approx 2.22$	\rightarrow	}	×15.90	L.L.	
D150 mod	DFOP	or HS:		VIC. D150 m	104 - D190 - 3.32,	β	~ [°]		, ¹ N	
	if resid	ues > 10	%: DFs0 mod C	f slow phas	se o L	, ŝ	0 7a	ð j	×-	
DTractory	if resid	ues < 10	%: NDAT 50 mod =	= DT ₉₀ CS.3		~~ `	y . Q		/	
a) SFO: sin	gle first	order, F&	MC: first or	der matter	artment, DFOI	2: double fir	st order in	parallel, I	HS: hockey st	tick
b) visual ac	ceptabili	ity: 🧹 📌	= good; o =	pedium,	bad	, ^y K	≪J [*]	6	-	
c) best fit m	nodel for	trigger e	valuation	j Di		O' (¥		
d) best appr	oach for	Griodelli	fig purpose	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Č.	, an			
, , , ,	Ô	° C			X X S		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Fahla 7 7 7 7 3			Q			C C Barrack	whin (E)	7) from	adiment fu	
abie 7.2.2.3	- F1.	may	kimum, onw	ards (leve	P-I), for trigg	er and mo	delling e	ndpoints	seument n	om
Kinatic	3				est S Dist	Dista	DisTeo	w ² -to	et visual	
model ^a)					A mitial	modelling	erro	or fit ^{b)}	
		Ձ՞լ%		\$ \$		[d]	[d]	[%		
	Ĉ	A				ř			-	
SFO ^{c), c}	i) 🖉	\$8.6	64 Q0.0025	$ _{\mathfrak{Q}_{0}}$	001 268.4	891.5	268.4	3.18	2 o	
FOMC	~Q	60.7			© © 000	>1000		3.00	2 0	
			J.J.	and the second						
SFO ^{°č), d}	l)	73.1	0. 10.001)	0040 364.8	>1000	364.8	1.70	3 +	
ROMC		73.1	\mathfrak{A} \mathfrak{A}	Ŭ,	364.8	>1000		1.94	-5 +	
Y		Ô	🕺 🖉 geo	mean 🧃	O ^Y		312.9			
DT50 mod	Chi Chi	<u>lf-lives f</u>	or modelling	@FOMC P	$DT_{50 \mod} = DT_{90} / 3$.32;				
	^o if	residues	20 %: DT ₅₀	mod @slow	v phase					
, A	Ĭ	residue	10 % DT50	mode DT90	o/ 3.32					
$\frac{DT_{50}}{2}$		itial half-	life, for trigg	er evaluation	<u>)n</u> ulti compartment 1	DEOD: davi	la first or	lar in nora		
a) SFC	. surgie kovstici	instord		ist order mi	ini compartment, I	Drop: doub	ne mst or	iei in para	шеі, П.5.	
D) vig	al accer	Gability	+ = good	, o = mediu	ım, - = bad					
[™] c) besi	fit mod	el for trig	gger evaluatio	on						
d) dest	approa	en for me	odelling purpo	ose						

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

 Table 7.2.2.3-12:
 Estimated SFO parameters for dissipation of HEC 5725-carboxylic acid (M40) in water, sediment or total system from maximum onwards (level M I), for modeling or trigger purpose

								Å	, V . I	107
Compartment	System	Mo	k	t-test	DisT ₅₀	DisT90	DisT50	χ ²⁻ test	visual	
				k	initial	initial	modelling	errør	fit	
		[%]	[1/d]		[d]	[d]	[d]	~ %		la c
Water		5.96	0.028433	0.0088	24.38 b)	\$0.98	24.38 s)	P22.59¢	∑ 0 ≪	S.
		5.55	0.00612	0@\$39	113.3 ^{b)}	§∕ 376.2	113.3¢) ³	16.5%	-9	
Sediment		2.33	0.010676	0.0013	64.92	215.7	64,92	₩Q 47	~9	L.
		only 2 dat	a points	6	0×	-	× -		S (kΟ'
Total system		7.86	0.02393	0.0075	2896 b)	96.2	28.96 ^{b)}	20.4€	o @	e v
-		only 2 dat	a points		- 0	P - Q	, ô ^y	ČA -	a di	
a) visual acce	ptability: += good	d, o = medi	um, - = bad			Ø	»	Ŵ.	Ş	

b) not fully reliable, not usable

Residues of HEC 5725-*E*-des-chlorophenyl ($M48^{\circ}E$) were still increasing at end of study. Therefore, in <u>both systems, no reliable</u> and statistically significant degradation parameters (E° error, t-test could be evaluated for HEC 5725-*E*-des-chlorophenyl.

So, for predictive <u>modelling</u>, a **conservative default DT**₅₀ of **1000 days** might be assumed in a total water-sediment system for HEC 5725-E-des-onlorophenyl (FOCUS 2003 2006)

In combination with statistically and visually unvertain degradation rates, formation fractions of the metabolite from parent bear a similar unvertainty.

However, to check for reasonable and at least conservative formation fractions some <u>comparisons</u> were carried out (see Table 7.2.2 14). The DegT₅₀ of HEC 5725-*E*-des-chlorophenyl was fixed to a conservative value of 1000 days together with fixing most of the before fitted parameters. Mainly, only the formation fraction parent – HEC 5725-*E*-des-chlorophenyl was varied, to result in a conservative cormation and degradation curve which just passes through the highest measured residues. So, for **E**-des-chlorophenyl was sufficiently conservative, in combination with a DegT₅₀ of 1000 days.

In case of **Construction**, for the in Parallel formed metabolite HEC 5725-carboxylic acid (*M40*) a reliable formation fraction of 0.4841 could be evaluated (Table 7.2.2.3-15). Obviously, then no higher fraction than 0.5459 (100.4841) can be formed as HEC 5725-*E*-des-chlorophenyl from parent. Assuming this formation fraction (0.5159) together with a DegT₅₀ of 1000 days results in a very conservative and by far too high esidue curve for HEC 5725-*E*-des-chlorophenyl. This leads again to the conclusion, that the formation fraction of 0.13 is a reasonable conservative estimation in the system.

Table 7.2.2.3- 13:	Estimated SFO parameters for degradation of HEC 5725-E-des-chlorophenyl
Ø	(M48-EX in total system level M-I), for trigger purpose

T	est system	Parent prodel ^a	[√] f _{Fxa} ⊮⊊	k [1/d]	DegT50 [d]	DegT90 [d]	χ² ⁻ test error [%]	p > t	visual fit ^{b)}
	1	SFO	0.3070	2E-14 °)	>1000 ^{c)}	> 1000	43.31	0.5	-
	۵. ۲	FOMC	0.0766	3E-11 °)	>1000 ^{c)}	> 1000	30.08	0.5	0

SFQ single first order, FOMC: first order multi compartment

b) visit al acceptability: += good, o = medium, -= bad

c) (not fully reliable, mathematically not significantly different from 0

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Table 7.2.2.3-14: Estimated SFO parameters for degradation of HEC 5725-E-des-chlorophenyl (M48-E) in total system (level M-I), for modelling purpose

Test system	Parent	f Fxa - E-des	k	DegT ₅₀	DegT90	χ²⁻test	p>t visual
	model ^{a)}					error	fit ^{b)}
			[1/d]	[d]	[d]	~ [%]	
	SFO	0.3070	2 E-14 °)	> 1000 ^c)	> 1000	43.31	
Comparison 1					s s		
	SFO	<u>0.51</u>	$0.00069 {\rm \ fix}$	1000 fix	> 1690	74.3 🖉	fix of
	DFOP	0.0764	<1E-7 °)	≫1000 c)	2000 ×Q	30.4%	
Comparison 2				Ž.		Ž	
	DFOP	<u>0.13</u>	0.00069 fix	1000 fix	> 1000	60 .2	fix © o + @
Comparison 3				\sim	, O	R∕ , C	
	DFOP	0.52	0.00069 ^{°fix}	_∘1000 ,® `	×1000	y 46 3	offx X

 $+ = \text{good}, \text{o} = \text{medium}, - = \text{bad} \ll$ visual acceptability: b)

Ċ not fully reliable, mathematically not significantly different from 0, not usable c)

ð

All evaluations for metabolites in total systems were carried out logether with the appropriate fit of parent for modelling or trigger purpose and all evaluable metabolites.

As in the experimental study report, HEC 5725-carboxylic acter was analysed only in the sum together with HEC 5725-amide (M38), this sum (in study report: $M_{0}^{2} = M_{2}^{2} + M_{2}^{2}$) was as a sed to represent the fate and behaviour of HEC 5728-carboxylic acid in water/sediment systems, conservatively.

statistically significant degradation parameters could be evaluated for HEC5725-For carboxylic acid (level M-I) (Table 7.2.2.3- 6 and Lable 7.2.3&16). However the visual assessment and χ^2 test did not result in an appropriate fit. Thus, this evaluation seems not to be reliable for any modelling use.

reliable and statistically significant degradation parameters could be For evaluated for HEC 5725-carooxylic acid (kevel Mar) (Taore 7.223.3-16). The χ^2 error slightly above 15 % is considered to be acceptable together with a significant t-test, as it just reflects the low absolute residue data of a metabolite.

2 So, for further modeling assessments, the DegTstrotal system of 67/89 days is considered appropriate and reliable for HEC 525-carboxylic acid (M40) pt total water-sediment systems, in combination with a formation fraction of 0.4841.

Sestimated SEO parameters for degradation of HEC 5725-carboxylic acid (M40) in Table 7.2.2.3-45: total system (level M-I), for trigger purpose

Test system	Å K	Raprent Drodel ^{a)}	T Fxa - Edes	K IL/d	DegT50	DegT90 [d]	χ²-test error [%]	p > t	visual fit ^{b)}
	~	STEÓ	©0.6930 [®]	0.0 0 /67 °)	14.54 ^{c)}	48.31 ^{c)}	48.99	0.047	-
	Ň	FOMC	/ 0.4845	6.01025	67.63	224.7	20.57	0.0049	+

SFO: single first order, FOXE: first order multi compartment a)

b) visual acceptability. good, o = medium, - = bad

not fully reliable, mathematically not significantly different from 0, not usable c)

Table 7.2.2.3- 16:	Estimated SFO parameters for degradation of HEC 5725-carboxylic acid ((<i>M40</i>) in	
	total system (level M-I), for modelling nurnose	a	P

	total syst		1), 101 <u>mouen</u>	n <u>c</u> purpos	<u> </u>		
Test system	Parent model ^{a)}	f Fxa - E-des	k	DegT ₅₀	DegT90	χ²-test eroor	$p > t$ visual $\tilde{\phi}$
			[1/d]	[d]	[d]	\$%]	
	SFO	0.6930	0.04767 ^{c)}	14.54 ^{c)}	48.31 ^{c)}	48.99	0.047
	DFOP	0.4841	0.01021	67.89	225.5	20.17	0.0047
a) SFO: single first	t order, DFOP: d	louble first or	der in parallel	Ĉs	Å		

b) visual acceptability: + = good, o = medium, - = bad

c) not fully reliable, mathematically not significantly different from 0, not usable

A 2-compartmental approach was taken into account to estimate the degradation of fulloxastrobin (E+Z) isomers) in water and sediment compartment in parablel, inclusive partitioning processes via reaction rates. A simple first-order (SFO) kinetics was used to describe degradation separately in the water and sediment phase, as well as reversible transfer or partitioning between these compartments.

The evaluation resulted in a good to moderate fit to the measured data of fluoxastrobin in sediment. In water, a moderate to bad fit was reached, visually as well as statistically \mathcal{O}_{c}^{2} error (Table 7.2.2.9-17).

However, in all cases the t-test indicated, that the degradation rates are not significantly different from 0 and thus not reliable. In all systems, the rates in water k or sediment k both are not statistically reliable. Thus, as none of these corresponding degradation rate pars k_w and k_s are fully reliable, they are not recommended to use in further assessments.

Additionally, the F_{sed} test according to FOCUS kinetics was carried out to assess the reliability of the modelled parameters. The fraction of parent compound that transfers into the sediment at equilibrium (F_{sed}) is calculated using: 1. fitted Level P-II model parameters (F_{sed} , modelled o excellent conformity, which might confirm the reliability of estimated parameter parameters (F_{sed} , $F_{$

Table 7.2.2.3- 49.	Estimated (SFO) parameters for degradation and partitioning of fluoxastrobin in
à	Water and sediment, separately (level P II)

Test system	Compartment		[™] k	DegTsrinitial	ADegT90 O initial [d]	χ ²⁻ test error [%]	p > t	visual fit ^{a)}
	S water	96.69	≥ 0.01 £9 2	Q43.53 ^{b)}	144.6	8.033	0.107	0
6	sediment	<u>0</u> 7	2:3 E-14 4	$> > 1000^{\text{b}}$	> 1000	5.968	0.5	+
	- Owater	89.43		57.27 ^{b)}	190.2	26.37	0.39	-
A	sediment 🔊	0,5	2.3 E-14	∠> 1000 ^{b)}	> 1000	2.272	0.5	+

a) visual acceptability: + = good, o = medium = bad

b) not fully reliable, mathematically not significantly different from 0; not usable

Table 7.2.2.3- 18	Estimated (SFOP parameters for degradation and partitioning of fluoxastrobin in
~	Awater and sediment, separately (level P II)
O'	(in the second s

Test system	Partitioning from compartment	kwat-sed [1/d]	k _{sed-wat} [1/d]	p > t	F _{sed} modelling	F _{sed} theoretical
D.	A water	0.2048		< 0.001	0.7202	0.5687
	sediment		0.07957	< 0.001		
	water	0.4975		< 0.001	0.8448	0.8328
	sediment		0.09139	< 0.001		

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

III. CONCLUSIONS

The half-life of fluoxastrobin for modelling purpose (geometric means) was 16.0 days in the water, 313 days in the sediment and 238 days in the total system. The half-life of HEC 5725-carbox flic acid (*M40*) for modelling purpose (single value) was 64.9 days in the sediment 67.9 days in the total system and could not be evaluated in the water.

The half-lives of fluoxastrobin for trigger evaluation were between 14 and 3.4 days in the water, between 268 and 365 days in the sediment and between 143 and 357 days in the total system. The half-life of HEC 5725-carboxylic acid (*M40*) for trigger evaluation was 64.9 days in the sediment of 67.6 days in the total system and could not be evaluated in the total system.

For the soil and aquatic metabolite HEC 5725-*E*-des-chorophenyl (M48-*E*), no, reliable and statistically significant DegT₅₀ values could be evaluated in the total system together with the appropriate parent fit (χ^2 error, t-test). However, γ set of conservative formation fractions could be estimated by forcing the degradation curve of the metabolite through the highest measured residues. Thus, for **a** formation fraction of 0.51 and for **b** for of 0.18 was considered as sufficiently conservative, in combination with a DegT₅₀ of 0.000 days.

An evaluation of the dissipation from water or sediment of the *E*-des-chlorophenol was not possible, due to the fact that no sufficient data points after the maximum have been available. Finally, a conservative DT_{50} of 1000 days could be assumed for all compartments

m

CA 7.2.2.4 Irradiated water/sediment study

The route and rate of degradation of fluorastrobin in in addiated water/sediment systems were evaluated during the Anney I inclusion using one radiolabel position, ring 3-label, and were accepted by the European Commission (SANCO/3921/07 foral, 2012). The following study is included in the baseline dossier:

 \bigcirc

<u>_</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		\mathcal{S}' '0'			
Author(s)		Å,		Year	Document No	
		~ ~	N G	2001	M-091063-01-1	
~			à õ			
Č.			Ĭ 🔊			
Report:	́О́ КСА? 7.2.2	2.4/01) 2001,0	М-091063-01-1		
Title: 🔊	O Phoolysis	HECS#25	in Water/Sdi	ment systems		
Report No.:	MR-3229		Ô, Ũ			
Document Mo.:	QM-091@63	-01-🖗 🍃				
Guidelines:	- US EPA	l∕, Subdivisio	on NO Paragi	aph 161-2		
	🗸 - 🖧 ER/	, Subbvisic	N, Paragi	aph 161-4		
/	-ÆU 9,00	6/EC amend	ng 91/414/	EEC		
Guideline deviation(s	s): not application	ible Q				
GLP/GEP:	yes yes					
	J 6 4	, ~~				
Ů Ô						
The aqueous Noto	olvais of Quox	astrobin in	two natural	water sedime	ent systems was studied.	The

The active solution of Quoxastrobin in two natural water sediment systems was studied. The study was done with reference to photolysis and aerobic aquatic metabolism studies (EPA Guidelines 1642 and 162-4 (1983) and EC Directive 95/36/EC (1995) as there is no guideline for the measurement of photolysis in natural water sediment systems.

The aqueous photo-transformation of fluoxastrobin was studied under continuous artificial light in two natural water/sediment systems sampled from and (Germany).

was a loam sediment according to USDA system of classification and had a pH of 6.6 and a %OC 4.8. The system was a loamy sand (USDA), with a pH of 8.5 and a %OC of 1.37. The tests were conducted with ring 3 labelled parent compound, which was applied to the supernatant water. The initial concentration of the test substance in the water over was 1.0 mg a.s./L (based on 390 mL supernatant water). Each micro-ecosystem consisted of 1.37 mL wet sedurent and 390 mL water which equated roughly to 1.5 cm depth sediment and 4.5 cm of overlying water. The two systems had pH values of 7.34 and 7.65 initially and 8.7 and 8.39 ofter irradiation respectively. The samples were continuously irradiated with artificial togeth sources simulating sublight Sunte unit equipped with a xenon lamp) for a maximum testing period @ 288 hours @ 2 day. The two irradiation systems had light intensities of 3.91 and 4.33 MJ x m⁻² respectively. The temperature of the water layer confirmed that the conditions were applied.

The total recovery of radioactivity ranged from 94.100 99.0% AR. The amount of radioactivity in the water layer decreased rapidly in the case of the in addiated samples to 26.2% (2000) and 23.8% (2000) of the applied station civity after 258 hours. In the case of the dark samples the remaining radioactivity in the water phase was higher are amounted to 40, and 3.2%, respectively. Table 7.2.2.4-1 and Table 7.2.2.4-2 sammed se the distribution and total recovery of the radioactivity in the two systems. Table 7.2.2.4-3 shows the distribution of the active substance and metabolites. The disappearance of Huoxestrobic (calculated as sum (2.2.3.6) was calculated with a half-life of 106 hours (near), which are about 4.4 pays using Model Moder (shaple first order kinetics).

Isomerisation of fluoxastiobin was the first reaction step. The maximum amount of Z-isomer in the water phase was 11.9% (sample) of the applied ratioactivity at 2 exposure to light for 24 hours. This conficted the photolytical activation of the test subsolice in the aqueous layer under water/sediment conditions. The amount of radioactive latelled substance in the aqueous phase decreased steadily throughout the course of sontinuous exposure (light After 288 hours (12 days) of exposure to articial anlight (day and night), which excrespends to a light intensity of 36 summer days under natural conditions at Phoenix, Arizona, SSA (S^o N), five degradation products were detected in the water phase. The maximum amount of any engle constormation product in the water phase was 5.4% AR. If the gark samples the same degradation products were identified. Therefore, these products were considered net to be motor-ironsformation products. In addition, the sediment was analysed after 288 pours of exposite. Fraoxastophin Disomer was detected at a maximum of 13.1% in the irradiated samples. The dark samples the phase the phase was 0.7%.

The test vessels were us Q without tray attachments. Therefore ${}^{14}CO_2$ in the gas phase was not determined. However, based on the mass balance (9.41 – 99.0% AR) it was considered that ${}^{14}CO_2$ was only generated to a low extend

These data indicate that under natural conditions in aqueous systems the first step of transformation was isomerisation folloged by further degradation and adsorption to sediment. Further photodegradation contributed only to a very low extent in the disappearance of the test substance in the water layer. The cyclic phylo-transformation product HEC 5725-oxazepine (*M36*), which was the main metabolite in an articial system (sterile, buffered solution at pH 7) under comparable light conditions was not seen under more realistic natural conditions. It is concluded from this study that under expironmental conditions solar radiation contributes only to a very small extent to the primary degradation of fluorestrobia (sum of isomers) in water. Isomerisation of fluoxastrobin occurs to some extent as a phecific photogramation process.

k

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

Table 7.2.2.	4-1: D	istributi	on and tota	l recov	very of the	radioactivi	ty after a	applicat	ion of		
	fl	uoxastro	obin in the		۵.	water/sedi	iment sy	stem (in	1 % AR)	Ů	ð
Incubation	Incubation	Water	S	edimer	nt		¹⁴ C0	\mathcal{D}_2		Material	P
condition	time (hours)		Extracted	NER	Subtotal	Water	Sedir	ngữ S	Subtotal	alan <i>e</i> s	
					sediment		6		$^{14}CO_2$,	
Irradiated	0	100.0	n.m.	n.m.	n.m.	n.m.	n .1	n.	n.n	Ann.	Po.
	1	98.9	n.m.	n.m.	n.m.	n.m.	s n.r	n.	n n	n.m. «	P
	3	89.9	n.m.	n.m.	n.m Ć	n.m.	n.r	n.	🐙.m. 💊	n.m	
	24	69.2	n.m.	n.m.	n.m.	n.m. 🖌	0 . n.r	n. 🔊	, n.m.Q	n Kon.	S
	72	48.5	n.m.	n.m.	n fx.	n.m.	n.r	n. 🖋	n. 1 0	æ.m. (O'
	144	33.8	n.m.	n.m.	1.m.	n.nQ.	⊳ °n.r	n. L	.n.m.	On.m.	1
	192	30.9	n.m.	n.m.	On.m.	AS.M.	a n.r	nQ (On.m. a	n	
	288	26.2	59.7	8.5	68.2	.002		1 2	0.3	\$\$¥6	
Dark	0	100.0	n m	n æ	in the second	n md		n 🖓	n m	nm	
Durk	1	$204 \ 1^{a}$	n m	.n m	V m	n	O n r	n. 💞	all m	n mf	
	3	003	n m	. 1 m S	n n	. n m	• 11.1 • n.f	CV CV	n m 🛇	n	
	24	97.0	n m	n m	n an	Con m		<u>».</u>	n #n.	in in	
	72	87.0	n n		Ma Im	11.111.0 ⁴	Non r	n	11.80	On m	
	144	68.0	n Q	11. 11.	s Sn m	.n 6	→ nr		Son m	n.m.	-
	144	58.1	Com	pr.111.	n m	M.MI.	n (n.m.	-
	192	40.1	51.2	2 8	5002				0.2	04.5	
n m · not men	200 sured	40.1		5 MG2			Q.		<u></u>	94.3	J
1 due to the sh	ort equilibratio	n timeVa	mole was not	Somoo	eneous	,	, Q	ta.	0		
due to the si	ion equinoratio	li tillio, su			TO TO	· *	\$~~	i b)		
			. <i>6</i>	Ş	L	\sim \sim					
Table 7.2.2.	4-2: D	istributi	on and tota	il perov	very of the	adioactivi	ty after :	apolicat	ion of		
	Č.	uoxa	bin in the			nter/s@lime	ntsyste	nXin %	AR)		
Incubation	Incub	Water		odimo		0, .	14CO	¥	Matori	al	
condition	time Aburs	Oralei			Sitetal	Quator	diaOnt	Subtoto	balanc	a1	
condition	time Hours)			S	soliment				Dalanc	C	
Irradiated		1000		Yn m 6	b n no.		7m 100	n m	n m	_	
maulateu		102.2	11.111. Ø 11.111.				91.111.	11,111.	11.111.		
°~				11. O¥	11.M1.		II.III.	11.111.	11.111.		
Ĕ ^Ġ		93.2	n co.	n.m.	O ^{n.m.}	^v n.m v	n.m.	n.m.	n.m.		
* *	24	/*	, ^{n.m.} √	(≫n.m.∘	n.m.	n'asy.	n.m.	n.m.	n.m.		
	120	50.7	Con.m.	n.m.	n m	fī.m.	n.m.	n.m.	n.m.		
	- CO	41.7	e n.mo	12(1)1.	n.m.	O'n.m.	n.m.	n.m.	n.m.		
	192	35,00	C.M.	M.m.	O ^{h.m.}	n.m.	n.m.	n.m.	n.m.		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23.8	×9.5 ~	9.3	68,8	1.2	0.3	1.5	94.1		
Dark	0	0.000	<b>⊘″</b> n.m <u>(</u> )≪	n.p.	ngon.	n.m.	n.m.	n.m.	n.m.		
Ø	× 1 č	94.4	) n. <b>Ø</b> .	nm.	<b>、</b> ₩.m.	n.m.	n.m.	n.m.	n.m.		
- C	3	81.2	nm.	(n.m.•	Q″n.m.	n.m.	n.m.	n.m.	n.m.		
, Ku	24	£1.9	On.m. O	n.m	n.m.	n.m.	n.m.	n.m.	n.m.		
~~	72	68.6	n.m. 🗸	nO.	n.m.	n.m.	n.m.	n.m.	n.m.		
	@44	50.7	p.n.	ar.m.	n.m.	n.m.	n.m.	n.m.	n.m.		
	A 192 A	480	Ku.m	h.m.	n.m.	n.m.	n.m.	n.m.	n.m.		
	288	\$3.2	. 60.80	4.8	65.6	0.2	< 0.1	0.2	99.0		
n.m.: not ma	Sured $\mathcal{O}$		) }					• • •		1	
~()		0									
, K	6 A	J.									
st la	, The second sec	Ň									
44 _C		L"									
¢°											

Table 7.2.2.4- 3:Distribution of the active substance and metabolites after application of ring 3<br/>labelled fluoxastrobin to two water/sediment systems (in % AR)

							<u>s</u>	.~~
Water/sediment	Incubation	Phases	Incubation	fluoxastrobin	HEC 5725-Z-	HEC 5725-	Unknown 4	6 ⁷
system	conditions		time (hours)	( <i>E</i> )	Isomer	ox@zepine	met olites ^{a)}	
						(M36)	4 4	
	Irradiated	Water	1	n.m.	n.m.	n.m.	C n pa	<i>R</i> o
			3	83.8	3.9	n.d.	\$ K	
			24	59.8 🖒	8.3	n.d. 🔊	~1.2 <del>\$</del>	(
			72	40.0	8.60	n.d	∽ <b>9</b> ″ n.d∢	Š
			144	2462	7.∞*	nkd.	5° 2,5° g	O.
			192	341.5	<u>.</u> 5.	And.	¢ 6.0 ,0	ľ
			288	015.6	3.6	Qn.d.	6.9	
		Sediment	288	41.4	J 11.6y	nd.	6.50	
	Dark	Water	1	P BR. &	jan ang ang ang ang ang ang ang ang ang a	iQn.	n.m.	
			3,0	×93.5 O	02.4 8	h.d.	3.4 °	
			24	\$ 92.2	\$ 1.94	S n.d.	\$ 2.8 Ø	
			¥.	× 84.¥	O 14 V	n de v	1	
			944 K	\$07.5 °	× 9.6 ×	Ø.d. 🗘	<b>0</b> .0	
			0*192*	\$54.1	\$ 0.8 S	Sn.d.	© 3.1	
		C	288	35.3	0.80	on.do	≪ 3.9	
		Sediment	<b>28</b> 8		D vig. >		\$ 5.2	
	Irradiated	Water	°≫ 1	<b>Ø</b> .m. L	álym.	Qĩ.m. 🗡	n.m.	
		w ,		L m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ø.		
		ĝ Ć		82.9	5 5 V A	N 1%d	4.6	
	×	L Y	24	68.5 5	/ 11.9 ×	ÂS.d.	2.6	
	Ś	Ś,	72 0	043.3 ℃	9.6 %	°∼ n.d.	2.8	
		10	× 140	\$ 31.2	7.20	∽ n.d.	3.3	
		f , Ò	x1,92	.301 0	e zo e	n.d.	5.9	
	0	- A	6 288 V	لا 14.0	<u>3.7</u>	n.d.	6.2	
~	¢ Å	Sodiment	O 286 0	41.00	J 13.1	n.d.	5.4	
, C	Dark	Water 🔊		n av	O nstru	n.m.	n.m.	
	 K)	s s		77.2 @	07	n.d.	2.3	
	Ô	ŝ	24	87.6	01.9	n.d.	2.5	
k∖y'	×	× *	725	\$ 6528	▲¥ 1.5	n.d.	1.3	
			°144 m	567 .	n.d.	n.d.	n.d.	
	6 A		≈192, <i>∜</i>	40.8	0.4	n.d.	1.7	
0		J.	0 28m	0 ² 29.8 m	n.d.	n.d.	3.4	
~0	ĨÕ.	Qdiment	288	54%	0.7	n.d.	5.5	1
n m · not measured	l: n d : not de	Peted O					- /=	1

a) sum of cont unknown moor met folites, whe exceeded 5.5% AR

No additional studies are submitted within this supplementary dossier for the fluoxastrobin renewal of approval.

## .2.3 Degradation in the saturated zone

The degradation of fluoxastrobin in the saturated zone was not studied since fluoxastrobin is not expected to reach the saturated zone after its use according to good agricultural practices.



## Overall summary if the route and rate of degradation of fluoxastrobin and its metabolites in the aquatic environment

*****

Fluoxastrobin (*E-isomer*) is moderately degraded in water and sediment to the major degradation products HEC 5725-*E*-des-chlorophenyl (*M48-E*) and HEC 5725-carboxylic-acid (*M40*), carbon dioxide and non-extractable residues. HEC5725-carboxylic acid (*M40*), and HEC5725-amide (*M39*) could not be separated in the course of the study and were therefore mantified as sum. In presence of light, the HEC 5725-*Z*-isomer was observed. The photodegradation product HEC  $\frac{5725-Z}{25-x}$ -azepite was observed under artificial conditions in sterile buffer only, but not under more realistic conditions for irradiated natural water/sediment systems. However, the degradation of fluoxastrobin in water and sediment is driven by microbial degradation under typicar conditions in the environment and photodegradation plays only a minor role in the overall fate of fluoxastrobin.

The route and rate of degradation of fluoxastrobin in the aquatic environment were studied using two different radiolabel positions, ring 1- and ring 3-label. The studies have been performed in boffers, natural surface water and water/sediment systems in the Taboratory at different temperatures. The maximum occurrences of degradation products in percentage of applied radioactivity [% AR] are given as means of duplicates. The DT₅₀ values were taken from study reports. These values may slightly differ from the List of Endpoints (SANCO/3921/076inal, 2012).

Fluoxastrobin is hydrolytically stable in sterile baffer solutions under neutral to alkaline conditions. The  $DT_{50}$  of fluoxastrobin could be estimated to be more than one year at any environmental pH and temperature value, especially at 25 °C

Under <u>photolytic conditions</u> in the laboratory in sterile buffers at pH 7, fluoxastrobin (*E-isomer*) was well degraded ( $DT_{50}$  3) days). Fluoxastrobin (*E*) isomerised to its major *Z* isomer (HEC 5725-Z-Isomer with max, 23.6% AR. Under photolytic conditions in natural water/sediment systems only isomerisation of fluoxastrobin (*E*) to its *Z* isomer (max. 11.9% AR) was observed without formation of any major photodegradation products. The cyclic photodegradation product HEC 5725-oxazepine, which was the main metabolite in an artificial system (sterile, buffered solution at pH 7) under comparable light conditions, was not formed under natural conditions.

In <u>surface water</u> under aerobio conditions in the dark in the laboratory, fluoxastrobin (*E*) did not show significant degradation  $(DT_0 \ge 944)$  days

In water sediment systems under <u>aerobic</u> conditions in the dark in the laboratory, fluoxastrobin dissipated rapidly and moderately from the water and sediment, respectively, and was moderately degraded in the total system to the single analor degradation products HEC 5725-*E*-chlorophenyl (*M48-E*), HEC 5725-carboxylic acid (*M40*) and HEC 5725-amid (*M38*). The maximum amount of fluoxastrobin in the sediment was 3.3% AR. HEC 5725-*E*-chlorophenyl (*M48-E*) and HEC 5725-carboxylic acid (*M40*), in sum with HEC 5725-amid (*M38*)) had maximum amounts of 15.9 and 5.9% AR in the water, respectively, and 2.4 and 5.8% AR sediment, respectively. Further degradation led to carbon dioxide with a range of 2.1 to 2.9% AR. Non-extractable residues ranged from 12.1 to 12.7% AR. Undated kinetic valuations resulted half-lives for trigger and for modelling evaluations. An overview of the estimates half-lives (dissipation or degradation DT₅₀) for fluoxastrobin and its major acutic metabolite HEC 5725-carboxylic acid (*M40*) for trigger evaluation and modelling purpose is given at the end of this section. Due to a possible back-reaction the fluoxastrobin was calculated as sum of E- and Z-Isomer. For the metabolite HEC 5725-*E*-chlorophenyl (*M48-E*) the

evaluation for the half-lives for trigger and modelling evaluation was not possible.



In water/sediment systems under anaerobic conditions fluoxastrobin (E) was moderately degraded in the total system ( $DT_{50} = 146$  days) to the single major degradation product HEC 5725-carboxylic acid (M40). The maximum amount of fluoxastrobin in the sediment was 44.8% AR. HEC 5725-carboxylic acid (M40) had maximum amounts of 10.6 and 11.3% AR in the water and sediment, respectively. Significant amounts of carbon dioxide were not formed and non-extractable sesidues amounted to a

Significant amounts of carbon dioxide were not formed and non-extractable esidue amounted of a maximum of 36.2% AR. and on the order of the order o maximum of 36.2% AR.





A summary of  $DT_{50}$  and  $DC_{50}$  values for degradation of fluoxastrobin in aerobic surface water for trigger evaluation is given in the table befow:

Temp. Surface Water 7	Concentration [µg/L]	Kinetic Model ¹	DT50 [days]	DT90 [days]
20 2	10.3	SFO	944	> 1000
	104.2	SFO	> 1000	> 1000

SFO: s@gle first order



A summary of estimated half-lives (dissipation or degradation  $DT_{50}$ ) for fluoxastrobin (E+Z) in aerobic water/sediment systems for modelling purpose and trigger evaluation is given in the table below:

	Madall	ng Purness	T	r Evaluet	
Water/Sediment	Vinotio		I Kinotia	T Evaluat	NANI () V DTC
water/Seument System	Model ^{a)}	DI 50 [davs]		[davel	Labory s]
system	Wouch	[uays]	with the second		
Total System (degradation)		Ĉ5	L'	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× Q
Total System (degradation)	CEO.			<b>0</b> 1420	Y ()j [*] 19 <del>5</del> 1 A
	SFU	143 200 Ô	SFU (		474
	DFOP		FOMC	33¥,	Orution a
	geomean	n 238 🐳		<u> </u>	<u> </u>
	Ŵ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$\sqrt{\sqrt{2}}$	
Water (dissipation)	<u> </u>			Y' 💊	K) ^V
	DFO	37.0	FOMC	3.38	<u> </u>
	FOMC	6.90	I®MC [™]	0 ^{P.36}	» [»] 22.9
	🖉 geonnean	u > 1%0° ,≓	× . 0 [×] «		
		U., G	17 5	, L	N.
Sediment (dissipation)				Ĩ.	0
	SPO Y	268	SFO S	\$268, ⁽	892
	SFO @	the art of	SFOD Č	365	> 1000
	C S Como			<u> </u>	
SEC: single first order EOMC	st order multie Separtment	DEOB: daub first		<del></del>	
i) SFO. single hist order, FOMC an	st otder munt compartment	, DFOP. douple fils		l Ro	
summary of estimated h	alf-lives (dissipation)	for degradation	DISO) tor	HEC 57	25- <i>E</i> -des-
nlorophenyl (M48-E) an aerob	e water/seducent sest	ems for modellin	g purpose and	d trigger e	evaluation
given in the table below:		× 0	S 4		
			1 Trigge	r Fyaluat	ion
Water/Sediment	Kinetic		Kinetic		
System			Model ^{a)}	[davs]	[davs]
			iniouci	[uays]	[uays]
Fotol Switten (dogradation)		V , ~			
i otal System (degradation)			<b>GEO</b>		
	SEC.	∞ n.r.O	SFO	n.r.	n.r.
		<u>k</u> <u>n</u> ¥.	SFO	n.r.	n.r.
	D goomean				
		Â,			
Water (dissipation)		J.			
Water (dissipation)	The state of the s	n.e.	SFO	n.e.	n.e.
Water (dissipation)	SFO SFO	n.e. n.e.	SFO SFO	n.e. n.e.	n.e. n.e.
Water (dissipation)	SFO SFO SECON	n.e.	SFO SFO	n.e. n.e.	n.e. n.e.
Water (dissipation)	SFO SFO SFO SFO	n.e. n.e.	SFO SFO	n.e. n.e.	n.e. n.e.
Water (dissipation)	SFO	n.e. n.e.	SFO SFO	n.e. n.e.	n.e. n.e.
Water (dissipation)	SFO SFO SFO SFO SFO SFO SFO SFO SFO SFO	n.e. n.e.	SFO SFO	n.e. n.e.	n.e. n.e.
Vater (dissipation)	SFQ SFQ SFQ SFQ SFQ SFQ SFQ	n.e. n.e.	SFO SFO	n.e. n.e.	n.e. n.e.
Vater (dissipation)	SFQ SFQ SFQ SFQ SFQ SFQ SFQ	n.e. n.e. n.e. n.e. n.e.	SFO SFO SFO SFO	n.e. n.e. n.e. n.e.	n.e. n.e. n.e.
Water (dissipation)	SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ geomean	n.e. n.e. n n n.e. n.e.	SFO SFO SFO SFO	n.e. n.e. n.e. n.e.	n.e. n.e. n.e. n.e.
Water (dissipation)	SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ	n.e. n.e. n.e. n.e. n.e. n.e.	SFO SFO SFO SFO y not significantl	n.e. n.e. n.e. y different :	n.e. n.e. n.e. from 0; not
Water (dissipation)	SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ	n.e. n.e. n.e. n.e. n.e. n.e.	SFO SFO SFO SFO not significantl	n.e. n.e. n.e. y different :	n.e. n.e. n.e. from 0; not
Water (dissipation)	SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ	n.e. n.e. n n.e. n.e. n.e. n.e.	SFO SFO SFO SFO not significantl	n.e. n.e. n.e. y different t	n.e. n.e. n.e. from 0; not
Water (dissipation)	SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ SFQ	n.e. n.e. n n able, mathematically	SFO SFO SFO SFO not significantl	n.e. n.e. n.e. y different t	n.e. n.e. n.e. from 0; not
Water (dissipation)	SFO SFO SFO SFO geomean SFO SFO geomean to points; n.r.: not fully reli	n.e. n.e. n n able, mathematically	SFO SFO SFO not significantl	n.e. n.e. n.e. y different f	n.e. n.e. n.e. from 0; not
Water (dissipation)	SFQ SFQ SFQ SFQ geomean SFQ SFQ geomean to points; n.r.: not fully reli	n.e. n.e. n n n.e. n.e. n able, mathematically	SFO SFO SFO not significantl	n.e. n.e. n.e. y different	n.e. n.e. n.e. from 0; not



A summary of estimated half-lives (dissipation or degradation  $DT_{50}$ ) for HEC 5725-carboxylic acid (*M40*) in aerobic water/sediment systems for modelling purpose and trigger evaluation is given in the table below:

	Modelli	ng Purpose	Trigge	r Evaluati	en O
Water/Sediment	Kinetic	DT 50	Kinetio	DT ₅₀	D.1 '90'
System	Model ^{a)}	[days]	Model ^{a)}	days	days]
		<i>⊳</i>	stor "	۶ ۲ ۲	
Total System (degradation)		G	a		
	SFO	, ^v n.r.	SFO 🦉	v n.r., S	pre de
	SFO	67.9 🛴	SFO 🕺	67.0	<u>.</u> 325
	geomean	- Q	le à	L	
	QO	· ~ .	Ű N	⁰ Ø	<u> </u>
Water (dissipation)	6 4				
	SFO	Mn.e. 🔗	SFQ S	p.e.	« n.e.
	SFQ 💭	n.r.	\$PO	An.r.	n.r.L
	S geomean				
	S BOMAICUIT			, «,	
Sediment (dissination)			Nº Ö	Ş	0
		6/80	REO ST	\$64 Q	216
	SEO &	• 04.%	SFO &	$\int_{n}^{\infty} \frac{04.3}{n}$	210 n.e
¥				/ 11.0.¥	II.C.
	geomean			<u> </u>	
n.e.: not evaluable, not sufficient data points;	n.r.anot lully relia		S O		
	S O			Q	
N A				1	
	Õ N	NO ^V Ky			
	a, 59	V O'			
	~~~~~	ð o	) '¥		
S O S I	U' ,~~ ~~				
			d v		
		ð <i>Š</i>	7,,		
	A ~~ (\$` \ \			
	F O				
		Ň, O			
	S N	6 47			
ý A S X		, Or			
		Ĩ			
		~			
Ú ^C a ^C					
	Å				
A A A	\mathbb{Q}				
	Q				
	Ŷ				
S & A Y					
A A B					
, solve the second s					
\bigcirc					

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

CA 7.3 Fate and behaviour in air

CA 7.3.1 Route and rate of degradation in air

The degradation rate of fluoxastrobin in air was evaluated during the Annex inclusion using the Atkinson method, and was accepted by the European Commission (SANCO/3921/07-final, 2012) No additional studies are submitted within this supplementary dossier for the fluoxastrobio renewal approval.

A theoretical calculation of the potential for photo oxidation of the theoretical calculation of the potential for photo oxidation of the theoretical theoretical calculation of Assistant and the theoretical calculation of theoretical calculation of the theoretical calculation of submitted, using the method of Akinson OPWIN (vosion 1.87). The global 12 hour concentration of OH radicals of 1.5 x 2° cm³ was Sumeo in the calculation. A race constant of 13.02 x 10⁻¹² (cm³/molecules sec) was calculated for reaction with OH6 adicals. This corresponds to a first order DT₅₀ for fluoxastrobin in air of 9.9 bours and a chemical Mfeting of flooxastrobin in air of 14.3 hours. A more conservative assessment of the overall OH race all race constant could be made by using only half of the estimated races for all the assumed figures. This approach could result in a maximum chemical lifetime of from astrobin in the air of less than 18.3 hours. Or account of the relatively short chemical lifetone of Suoxas Pobin II the ar it is inlike that the active substance will be transported in the gase of sphase over large d@tance

CA 7.3.2 Transport via air

The transport via air of fluox strobin was not studied since its vapour pressure (6 x 10⁻¹⁰ Pa, see Document MCA 2.2, NR058487-01-19 is below the trigger value of 10⁻⁵ Pa.

CA 1.3.5 **Local and global effects** 10^{10} Local and global effects 10^{10} Local and global effects of fluxastrobin were not considered since its half-life in air is ≤ 10 hours (see M-007809-01-1, CA 7.3.16)

Document MCA: Section 7 Fate and behaviour in the environment Fluoxastrobin

CA 7.4 **Definition of the residue**

CA 7.4.1 Definition of the residue for risk assessment

The proposed residue definitions relevant for risk assessment for each compartment are the follow

0 1 1	
Compartment	Residue Definition
Soil	fluoxastrobin (E- isomer), $\sqrt[4]{9}$
	HEC 5725 -Z-isomer, \mathcal{O} \mathcal{O} \mathcal{O}
	HEC 5725-carboxylic acid (M40), $\sqrt[8]{}$
	HEC 5725- <i>E</i> -des-chlorophenyl (<i>M</i> ϕ <i>S</i> - <i>E</i>), A
	2-chlorophenol (<i>M82</i>)
Groundwater	fluoxastrobin (E-isomer),
	HEC 5725-Z-isomer, $\langle \zeta \rangle = \langle \zeta \rangle^2 + \langle \zeta \rangle^2$
	HEC 5725-carboxylic acid $\mathcal{O}M40$ \mathcal{O}
	HEC 5725- <i>E</i> -des-chlorophenyl \mathcal{M} 48- \mathcal{M} , \mathcal{Q} \mathcal{Q} \mathcal{Q} \mathcal{Q}
	2-chlorophenol (M82) (32)
Surface water	fluoxastrobin (E- isomer), $(x^{2}, y^{2}, $
	HEC 5725-Z-isomer, & S S S & S
	HEC 5725-carboxylic acid ($M40$), γ γ γ γ γ γ
	HEC 5725- <i>E</i> -des-chlorophengl (M_{4}) E_{2} K_{2} K_{3} K_{3} K_{3} K_{3} K_{3}
Sediment	fluoxastrobio (E- isomer)
	HEC 5725-Z-isogner
Air	none O O A A A A

Definition of the residue for monitoring CA 7.4.2

The proposed residue definition for monitoring is Auoxastrobin only for all compartments since none of the major degradation products is of toxicological or cotoxicological relevance.

Monitoring data CA 7.5 Å

Laboratory and field data dependent the degradability of fluoxastrobin and its residues in the various compartments of the environment, with no indications for persistence or accumulation.

Under recommende cuse conditions, no unacceptable leaching of parent compound or of any relevant degradates to groundwater is to be expected. Therefore, monitoring studies under outdoor conditions

