

Bayer CropScience Document MCP: Section 7 Toxicological studies Prothioconazole FS 100

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer PropSeience No part of the document or any information contained therein may be disclosed to any third party

The summaries and evaluations contained in this document are based on unsublished proprietary data submitted for the purpose of the assessment undertaken by the regulatory outboatter of the assessment undertaken by the regulatory outboatter of the summaries and to be assessment and the summaries and the summaries and to be assessment and the summaries are summaries and the summaries and the summaries are summaries and the summaries are summaries and the summaries are summaries are summaries and the summaries are summaries and the summaries are summaries a From Bayer CropScience; or
 From other applicants once the period of data protection has spiret.
 From other applicants once the period of data protection has spiret. summaries and evaluation of unpublished proprietary data contained in this document unless they

Version history

	version history	e° s
Date	Data points containing amendments or additions ¹ and brief description	Document identifier and
Ti is suggested tha SANCO/10180/201	t applicants adopt a similar approach to showing revision on 3 Chapter 4 How to revise an Assessment Report	d version history as putlingen

Table of Contents

	l able of Contents
	Page
CP 7	TOXICOLOGICAL STUDIES ON THE PLANT PROTECTION PRODUC
	INTRODUCTION
CP 7.1	Acute toxicity
CP 7.1.1	Oral toxicity
CP 7.1.2	Dermal toxicity
CP 7.1.3	Inhalation toxicity
CP 7.1.4	Skin irritation
CP 7.1.5	Eye irritation
CP 7.1.6	Skin sensitization
CP 7.1.7	Supplementary studies on the plant protection product
CP 7.1.8	Supplementary studies for combinations of plant protection froducts
CP 7.2	Data on exposure 20
CP 7.2.1	Operator exposure 21
CP 7.2.1.1	Estimation of operator exposure 23
CP 7.2.1.2	Measurement of operator exposure 5
CP 7.2.2	Bystander and resident exposure 7
CP 7.2.2.1 C	Estimation of bystander and resident exposure
CP 7.2.2	Measurement of bystander and resident exposure
CP 7.2.3	Worker exposure 53
CP 7.2.3.1	Estimation of worker exposure
CP 7.2.3.2	Measurement of worker exposure
CP 7.3	Dermal absorption
CP 7.4	Available to cological data relating to co-formulants

CP 7 TOXICOLOGICAL STUDIES ON THE PLANT PROTECTION

- <section-header>

 DISCOUNDED
 And Andrew And

CP 7.1 Acute toxicity

Prothioconazole FS 100 is a fungicide formulation containing the active substance prothioconazole at 100 g/L.

The acute oral, dermal and inhalative toxicity studies as well as skin and eye innation and sensitization studies have been performed in 2001 with batch 06528/0058(0054) of development 3000267751.

At the time of study conduct the formulation was named KAU 6476 100 KS

The specification of the product has not changed significantly and therefore all the studies are considered to be valid for this submission.

Full details of the formulation specification and the related Bridging Statement can be found in the confidential part of this submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the statement of the submission (Document Jack Confidence) and the submissi

The table below summarises the results from the acute toxicological studies conducted with the formulated product.

I		
Type of study	Results of the contract of the	Report / doeument no.
Acute oral rat	LD50: 2000 mg/kg bw	P. (2001)
		$\mathbb{S}^{\mathbf{P}}$ 7.1 $\mathbb{S}^{\mathbf{V}}$ $\mathbb{S}^{\mathbf{V}}$ $\mathbb{S}^{\mathbf{V}}$
		Report 31404 [M-137432-01-1]
Acute dermal rat	⊕D ₅₀ : ≫4000 mg/kg b₩ 4	, P. (201)
8		× P 7.1 Ø
		Report 31403 [M-076832-01-1]
Acute inhalation rat	DC 50: 2735 mg/m3 gr _ 0 /	, (2001)
	[max.tech, attainable concentration]	EP 7.1.3
		Report 31313 [M-070287-01-1]
Acute skin irritation	hot ingitating 2 5 0	, J. (2001)
rabbit 🔊 🔊		<u>CP</u> 7.1.4
		Report R8051 [M-075238-01-1]
Acute exe irritation rabbit	not irritating	, J. (2001)
	$b^{\mathbf{x}} \sim \mathbf{x} \cdot \mathbf{x}^{\mathbf{x}} \cdot \mathbf{x}^{\mathbf{y}} \cdot \mathbf{x}^{\mathbf{y}}$	CP 7.1.5
		Report R8052 [M-075102-01-1]
Skin sensitisation	sensitising 2	, H. W. (2001)
(maximization test on		CP 7.1.6
guinea pig 🗘 🗘		Report 31575 [M-087838-01-1]

The formulation prothioconazole FS 100 is a non-foxic after acute oral, dermal and inhalative administration. It is not irritating to the slon and eyes of rabbits. Prothioconazole FS 100 shows a sensitising potential in the maximisation test on guinea pigs.

The following classification/labelling is triggered: - Regulation (EC) No 272/2008 (CLP): Skin sensitisation Cat. 1; H317 (may cause an allergic skin reaction)

CP 7.1.1 Oral toxicity

\mathbf{U}	rai toxicity	
Report:	KCP 7.1.1/01	,; 2001; M-137432-01-1
Title:	JAU 6476 100 FS ·	- Study for acute oral toxicity in rats
Report No.:	31404	
Document No.:	M-137432-01-1	A. 67 29 9
Guideline(s):	OECD 423; Direct	ive 67/548/EEC, Annex IV, Part B&B.'1 tris; US-EPA 712-C-98-
Guideline deviation	190, OPP158/0.1	100
Guidenne deviation	undiluted and in re	adv-to-use dilution with wate Therefore, analytical
	determinations of s	tability and homogeneity of the aqueous formulations for a
	administration wer	e not performed.
GLP/GEP:	yes	
	I.s	Materials and methods A 6
	- A	
A. Materials	Ŗ	
1. Test materia	l: 4	TAU 6476 100 FS 2 5 5 2
Developme	nt no.:	300 \$26775\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$
Description	: 2 ³ , ³	red suspension & O O
Lot/Batch r	10: 0 0	\$0652\$10058(9054)
Content:		
Stability of	test compound: 🖉	guaranteed for study duration,
		expiry date 2001-00-26
2. Vehicle:	ÿ vo vy v	distilled mater 2 0 1
3. Test animals		
Species:	A P. V	Wistar rat 8
Strain:		Hsd Cpb WU S
Age.		≈ 9 weaks a $\approx 10^{-10}$
Weight at A	Sing Sing	$ma@s: 262 \sigma = 257 \sigma$; females: 185 $\sigma = 194 \sigma$
Source:-		Gormany
		, Octimally
Acclimatisa	ition period:	at least 5 days
Drot:		NAFAG No. 9441/W10 pellets (
.~	X A A	witzerland)
≪ Water:		tapovater
Housing		group caged in polycarbonate cages; bedding: low-dust
, OY		wood granules type BK 8/15 (
	<i>୰</i> ୢୖ ^ୠ ୢ୰ୣୖୖ	, Germany).
B. Study design	and methods	
1. Ammal assig	nment and treatment	
La Doste.		2000 mg/kg bw
Application	route:	oral
Application	volume.	10 mL/kg bw
r pprioutor	, ciuine.	

Document MCP: Section 7 Toxicological studies Prothioconazole FS 100

Fasting time:		before administration: approx. 17 hours \pm 1 hour after administration: 2 hours
Group size:		3 rats/sex
Post-treatment of	observation	
period:		14 days
Observations:		mortality, clinical signs, body weight, gross necrops
	II. 1	Results and discussion
A. Mortality		
Table 7.1.1-1 Doses	, mortality / anima	Is treated a frequencies of the
Dose	Toxicological	Occurrence of Time of death & Mortality
(mg/kg bw)	result*	O signs of the of the of the
male rats		
2000	0 0# 35	d^{2}
female rats		
2000	0 0#0 3	d^2
	Q , VL	D ₅₀ % 2000 mg/kg bw
The test item is non The study result trigg	ations at	day after administration. This is obviously related to the red not affected by treatment end invanimals sacrificed at the end of the study period. UP Conclusion administration lassification labelling:

CP 7.1.2 Dermal toxicity

Observations:	ations: mortality, clinical signs, skin effects, body weight, gross							
II. Desults and discussion								
A. Mortality			•		6			
Table 7.1.2-1 Dose	es, mor	tality /		als treated				
Dose (mg/kg bw)	lox	esults*	ical	Signs	I ime of death			
Male rats								
4000	0	0#	5	d2 ²⁰ d10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 0 0 ¹		
Females rats				ų gʻ				
4000	0	0#	5	d2 ≪d14 ℃		Le la la		
			J	D ₅₀ : 24000 mg/kg b	× A Ó			
 * 1st number = numbe 3rd number = numbe # referto B. Clinical of 	r of dead er of anin bservatio	l animals nals in th ons	, 2 nd Ba le group	mber mumbel of animation	s with Signs, J			
B. Clinical observ	ations	R.				Č [*] Y		
No systemic clinica	al signs	were o	bserv	ed after treatment wi	th 4000 mg/kg both	weight.		
The application site the red colour of th	e was d e test s	išcolof ubstan	ed red	Ouring the experime	ntal period. This is	obviously related to		
C. Body weight	×,	S.	, Q			ð)		
Body weight and b	ody-we	right ga	im wei	onot affected by tre	atment. O			
D. Necropsy	, joy	, A						
No gross pathologi		ges wer	e øbse	rvod in animals sacri	ifiged at the end of t	he study period.		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		, P	A	III. Conchrision	, d			
The test item is nor	naoxic	after ac	cute de	ermal administration.				
The study result to	ggers¢	he follic	wing	assification Aabellir	ing:			
- Regulation (EC)	No.127.	2/2008	(CKP)	): none				
			y ^					
À	ð		A.					
		Ŷ,	~					
N N			ŕQ					
		Ş						
-								



#### **CP 7.1.3** Inhalation toxicity





### * = p<0.05 B. Clinical observations

Mortality fid not occur at an exposure level considered to represent the maximum technically attainable concentration of 2735 mg/m³.

0, 2735 mg/m³: All hats to brated the exposure without clinical signs.

In a battery of reflex measurements made on the first postexposure day, rats of the 2735 mg/m³ group day not experience changes in reflexes.

Statistical comparisons of the rectal temperature between control animals and the 2735 mg/m³ group revealed that the difference to the control group was statistically significant, however, the magnitude of change is not considered to be of any toxicological significance.



La corsolized test substance di not reverse de serve de s



#### **CP 7.1.4 Skin irritation**



#### **A. Findings**

The study report describes for all three rabbits exposed for 4 hours to 0.5 mL JAU 6476 100 FS per animal (semi-occlusive condition) an "erythema (grade 1)"; animal no. one 24 hours to 7 days animal no. two 60 minutes to 4 days and animal no. three 60 minutes to 7 days after patch removable 0 As the tested formulation is a red suspension and taking into account the findings of the acute orat and dermal studies and the negative result of the eye irritation study, the grythema" is bviously a discoloration of the skin by the test item. Ø

Table 7.1	.4-1 Summary of irritant	effects	(Score)	Ş				
Animal	Observation (after patch removal)	24h	Aggsh	72h	Mean ^o Scores	Response	Reversible (days)	
1	Erythema (redness) and eschar formation							
	Oedema formation	×0×	ŇŐ /	>0	<u>, 0.0,</u>		na na	
2	Erythema (redness) and eschar formation				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ \$	<u> </u>	
	Oedema formation $\mathbb{Q}^{\mathbb{V}}$	õ	õ Ő				na 💦	
3	Erythema (redness) and second contraction			1 1	1.Q ^Q	6 ⁰ 6 ⁴	8	
	Oedema formation $\bigcirc^{\circ}$	0 ( ⁽		0	<u>, 090</u>		na	
na = not app	licable	0	, S		× v	Š		
Response:	= regative or mean sc	ores	SK-1.5		O(GHS)	4		
(Regulation (EC) No 1272/2008) (HS caregory 3) (HS caregory 3) (Regulation (EC) No 1272/2008 (Regulation (EC) No 1272/2008 and HS category 2) (HS caregory 2) (HS caregory 2) (HS caregory 2) (HS caregory 2)								
In any cas	e, classification is not trigg	øred.		) þ				
The study	result triggers the following	ng chass	ification	/labelli	ng:			
- Regulation (EC) No 1272/2008 (CLB). none								
		Ŷ						

There were no systemic intolerance reactions.



#### **CP 7.1.5** Eye irritation





Observations: clinical signs, eye effects, body weight (at beginning of study) **II. Results and discussion** A single application of 0.1 mL JAU 6476 100 FS per animal into the conjunctival sac of the right eye, did not cause any changes. The cornea, iris and conjunctivae were not affected by instillation of the test compound.

			Ø "°	Ĩ	Mean	ð 8 ⁰ 9	Reversible
Animal	Effects	24	48 h	jźh_	(scores,	Response	(days)
	Corneal opacity	A0 .	<u>ر</u> ۵ رو	0 - 0	0.0	~ Ô	a na a
1	Iritis	0	\$ <u></u> *	۵¢	×0.0 ×		na
1	Redness conjunctivae		×0 .		0.0	<i>9 6</i>	na
	Chemosis conjunctive	$ $	×~ 0 ≪	r Qy	<u>0</u> ,0	8 3	🔊 na
	Corneal opacity			ÓD	چ 0.0 <i>چ</i>	<u> </u>	na na
2	Iritis		[©] 0	^م ر و ک	0.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	na
2	Redness conjunctiva	5°0 ¢	р О Ф	0	~0 ⁰ .0	7 -9	na
	Chemosis conjunctivae		<u></u>	ő ^ç õ	×0.0	29	na
	Corneal opacity				ġ.ø	x	na
2	Iritis & &	^م کړ ^۲		e Co	ر 0.0 ر		na
5	Redness conjunctivae &		x 0		0.0		na
	Chemosis conjunctivae	×0,4		6	<b>Ø</b> .0		na
Response fo	mean scores: Corneal Iritis	Cononc	tival 🖉		Ő		
R.	opacity &	redness	Sedema		7		
$$ = negative $(\pm)$ = mild	tive () (1 % ()		×<2 (k)	(Regulati	on (EC) No	fracts reversible	GHS)
(+) – mild + = irrita	$111111127 = 21 - 50 \ge 1 - 52$	>2 0	≥2 © £74 ·	Regulati	on (FC) No	1272/2008 (GF	(S) category 2)
++ = irrev	ensible effects/ $\geq 3^{\circ}$ , $\geq 1^{\circ}$ , $\geq 1$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ŏ ^Ŧ	(Regulati	on (EC) No	. 1272/2008 (GI	GHS category 1)
serio	us damage	?" <i>b</i> ?					
na : not appl	cable, *: in respect of the resul	n post appli	ication				
, K	JA A	Û II.	Conclusi	on			
The test it	tem is not irritating to the eve	es ofrabt	oits.				
The follow	wine classification/labelling i	is trigger	ed:				
- Regulați	on (EQ) No 1272/2008 (CLA	§;:	none				
Ô		~					
	S A S						
C <b>P</b> ≈/. <b>1.6</b>	Skin sensitization						
$\bigcirc$							

BAYER Bayer CropScience

Document MCP: Section 7 Toxicological studies Prothioconazole FS 100

Report:	KCP 7.1.6/01 ,; 2001; M-087838-01-1
Title:	JAU 6476 100 FS - Study for the skin sensitization effect in guinea pigs (guinea pige maximization test according to Magnusson and Kligman)
Report No.:	31575
Document No.:	M-087838-01-1
Guideline(s):	OECD 406; EC Guideline 96/54/EC, Method B.6.; US- EPA 712-C-98-
Guideline deviation(s):	The test item contains commercial products known to be stable and homogenous both undiluted and in ready-to-use duation with water. Therefore, analytical determinations of the stability and homogeneity of the formulations in physiological saline solution for administration were not performed. The documentation for the application of the control and dose finding anomals during the second induction is missing. These deviations donot limit the assessment of the cesults
GLP/GEP:	yes I. Materials and methods
A. Materials	
1. Test material:	6 JAN 6476 100 €3 6 2 2 2
Development no	5.: Q 3000267751 Q Q Q X
Description:	Q , L' red Suspension Q' Q' O Q &
Lot/Batch no:	~ (jo528/0058(0054) ~ (jo528/0058)
Content:	$ \begin{array}{c} \mathcal{O} \\ \mathcal{O} \end{array} $
Stability of test	compound: guaranteed for soldy duration, 67 expiry date: 2001-10-26
2. Vehicle:	A physiological saline solution
3. Test animals	
Specie 9.	guineacoig of C
Strair:	L L F HsdPoc:DH C C
Age:	$\gamma = \sqrt{2}$
Source:	g: ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
	Germany
Acclimatisation	period: A gat least 5 days
Diet:	A A A A A A A A A A A A A A A A A A A
Water:	Switzerland)
Housing	tope IV Makrolon® cages; adaptation: in groups of 5/cage, study period: in groups 2-3/cage; bedding: low-dust wood shavings (, Germany)
B. Study design and	l methods
1. Animal assignme	nt and treatment
Intradermal indu	action: $1\%$ (= 4 mg test item/animal)
Topical induction	on: $25\%$ (= 125 mg test item/animal)
Challenge:	6% (= 30 mg test item/animal)

Application route:	intradermal, dermal
Application volume:	0.1 mL/injection (intradermal induction)0.5 mL/patch (topical induction, challenge)
Exposure:	topical induction: 48 hours, challenge 24 hours
Group size:	41 females (test item group: 20, control: 10. range-finding: 11)
Observations:	skin effects, clinical signs, body weight (beginning/termination of study)
П	. Results and discussion
A Findings	
48 hours after the intradermal induction	n (1° onduction) the animals in the control group showed
The animals of the test item group show wheal.	wed 48 hours after the 1 st induction wheat red coloured
After 7 days the following effects were test item group: wheals and encreastatio	recorded at the injection sites in the control group and in the
From day 11-14 encrustations on the for in the test item group after the second i	eatment area of the 29 (tortical) induction in places appeared nduction.
The challenge with the 6% test item for (100%) in the test item group. No skip	roulation led to skin effects (grade, 193) in 20 of 20 animals effects were seen in the control group animals.
Appearance and behaviour of the test it	tem roup were no different from the control group.
At the end of the study, the mean body	weight of the treatment group animals was in the same range
than that of the control acoup and mals	
	$\mathcal{D}$
L ^Y G A L	
$\bigcirc$	

#### Document MCP: Section 7 Toxicological studies Prothioconazole FS 100

	Test item group (20 animals)						Control Group (10 animals)			
	Test item patch Cont			Contro	l patch	Te	st item p	atch	Control patch	
Hours	48	72	total	48	72	48	72	total	48 72	
Challenge 6%	20	20	20	0	0	0	0 _	б ⁴ 0		

The reliability of the Guinea Pig Maximization Test methodology was checked using alpha Hexylzimtaldehyd formulated in sterile physiological value solution at concentrations of 5% (intradermal induction), 25 (topical induction), 12% (challenge) [1000, 2001), 3020 [M-021611-01-1], 31458 [M-082311-01-1])

III. Conclusion

Under the conditions of the maximization test and with respect to the evoluation criteria the test item therefore exhibits a skin-sensitization potential.

- The following classification/labelling is triggered:
- Regulation (EC) No 1272/2008 (CLP): Skin sensitization Cat. 15

17 (may cause an altergic skin reaction)

## CP 7.1.7 Supplementary studies on the plant protection product

No supplementary studies have been performed

# CP 7.1.8 Supplementary studies for combinations of plant protection products

No supplementary studies have been performed.

## CP 7.2 Data on exposure

The non-dietary risk assessment is presented for prothioconazole using the representative formulation 'Prothioconazole FS 100', for the use as fungicide for the treatment of cereal seed. The formulation contains the active substance prothioconazole (100 g/L). Exposure is estimated using the Seed TROPEX model.

In addition to the risk assessment for the active substance prothioconazole exposure is also assessed to prothioconazole-desthio.

This is done by means of higher tier studies

Endpoints relevant for risk assessment:

## AOEL:

For **prothioconazole**, based on a NOACL of 25 mg/kg bw/day established in a subchronic oral toxicity sody in the mouse, and also in a subchronic oral toxicity study in the dog, and an assessment factor a 100 a systemic AQCL of 0.25 mg/kg bw/day is proposed.

Page 21 of 58 2015-12-08

For prothioconazole-desthio the systemic AOEL is based on the results of the rat gavage developmental toxicity study as described in the EFSA Scientific Report (on prothioconazole)¹ and amounts to **0.01 mg/kg bw/dav** including an assessment factor of 100.

For details please refer to Appendix I of the Document MCA: Section 5.

#### Dermal absorption:

Dermal absorption for prothioconazole was not evaluated with FS 100 formulation. This defailt dermal absorption values are used for the risk assessment based on the critical GAP uses:

25% for the concentrate (100 g a.s./L) $\neq$ 

To obtain also data for prothioconazole-desthio the active substance prothioconazolowas replaced prothioconazole-desthio and diluted with water to a concentration of 5 g prothioconszole-desthio 2). As a result of the dermal absorption study the following dermal absorption value is used for the risk assessment:

6% obtained with a conceptration of

For details see CP 7.3.

#### **CP 7.2.1 Operator** exposure

Operator exposure to prothic onazole during treatment of seeds and sowing of the treated seeds is estimated with the Seed TrOpEx Model. Detailed calculations are presented in CP 72.1.1.

In addition, operator exposure to prothioconazole as well as to its conversion product prothioconazoledesthio was estimated using results of compound and applycation specific exposure studies. The results of the studies are considered to represent ligher der data for the given application scenario.

One study was conducted during treatment of cereal seeds in professional seed treatment facilities in Germany with form dation containing the active substance provinioconazole. Furthermore, results of two operator exposure studies conducted during loading and sowing of cereal seeds treated with a prothioconagole containing formalation are applied to estimate the operator exposure during loading and sowing.

AP) for operator risk assessmen as presented in Table CP 7.2.1-1. The critical GAF

Ί	Cable CP 7.2.441	Critical GAP for operator exposure	e evaluations for	prothioconazole
	Crop 🗸 🎽	Application Wax application	Max.	Dermal
	(grouping)	method 🚿 🧊 rate (g a.s.//100 kg	application	absorption (%)
		sped) of	rate (g a.s./ha)	
	Barley, Oats,			DT7. 250/
	Rye, Triticale,	Seed Freatment 1/2 0/10	18	FIZ. 2370 DTZ desthict 60/
	Spelt, Wheat			P1Z-destillo: 0%
$\mathbf{T}$	C.11 C			

greenh<del>o</del>use

the corresponding exposure estimates with the proposed AOEL (in terms of the respective AOEL) is presented in table CP 7.2.1-2.

¹ EFSA (European Food Safety Authority), 2007: Conclusion regarding the peer review of the pesticide risk assessment of the active substance prothioconazole. EFSA Scientific Report (2007) 106, 1-98, doi:10.2903/j.efsa.2007.106r

#### Table CP 7.2.1-2: Predicted operator exposure to prothioconazole and prothioconazole desthio

				0
	Substance	PPE	Total systemic	% of 0
			exposure	AOE
			(mg/kg bw/day)	
			Seed TROP	EX S
Seed Treatment	Prothioconazole	With PPE ¹⁾	0.0750	5 ⁴ <b>3</b> 9' , 9
Loading /sowing	Prothioconazole	With POE ²⁾	0.0071	
		. K.	Neasurementof	exposure
Seed Treatment	Prothioconazole	With PPE ¹⁾	0.00071 J	
	Prothioconazole-desthio &	With PPE ¹⁾	\$.00013 ^{\$}	
Loading /sowing	Prothioconazole	With PPE	ی 0.00 <b>0</b> 65 کې	0.3
(Not normalized study results)	Prothioconazole-desthio	With PPE ²⁾	Q.00009	0.9
Loading /sowing	Prothioconazole	With PPE2)	0 0.00108	Č.4
(Normalized study results)	Prothioconazole-deghio	With PPE2)^	\$ \$\$00015 S	2 1.7
1)Standard protective garmen	t: protective gloves are worn during c	alibration, mixin@ar	nd loading, cleaning.	4

A PE2 OUD A SUBJECT OF A PE2 OUT A P Prothioconazole-deshio With PPE2) (0001; 1) Standard protective garment; protective gloves are work during calibration, mixing and loading, cleaning 2) Standard protective garment; protective gloves are work the direct of treated seeds is given. # AOEL prothioconazole: 0.25 mg/kg by/day; AOEL protheconazole desthic: 001 mg/g by/day AOEL prothioconazole: 0.25 mg/kg by/day; AOEL protheconazole desthic: 001 mg/g by/day AOEL prothioconazole: 0.4 mg/g by/day; AOEL protheconazole desthic: 001 mg/g by/day AOEL prothioconazole: 0.4 mg/g by/day AOEL prothiocon

#### Assessment

The results of the calculations reveal that the situation is favourable for the intended 'Prothioconazole FS 100'.

#### Predicted systemic operator exposure according to the Seed TROPEX model

The estimated systemic exposures prothioconazole are always well below the respective systemic if PPE is worn by the operators.

if PPE is worn by the operators. During seed treatment predicted systemic operator exposure accounts for 30% of the systemic A Ó (0.25 mg/kg bw/day).

and sowing amounts to 3% of The model predicted systemic operator exposure during loading systemic AOEL (0.25 mg/kg bw/day).

#### Estimated systemic operator exposure according to

Compound and crop specific studies were evaluated to exposure to eratôř assess prothioconazole and prothioconazole-desthio.

In both scenarios, seed treatment and loading/sowing of treat a seeds, the posure reveal that systemic exposure to prothioconazole accounts for \$1% of the AOEL. Exposure to prothioconazole-desthio amounts to 1% of the AOEL during seed to atment and 2% of the AOEL during seed sowing.

Based on these results in unapceptable risk is not inticipated for the operator with the intended use of 'Prothioconazole FS@00'. Operators are supposed to wear normal work wear (e.g. a coverall), protective gloves when handling the undiluted or diluted product as when handling treated seeds or contaminated surfaces

#### Estimation of operator exposure CP 7.2.1 4

### A) Estimation of operator exposure during seed treatment

SeedTROPEX differentiates for work tasks during seed treatment: calibration, mixing/loading, bagging, and cleaning All tasks are considered individually, however, it is assumed that one single operator performs all tasks during a working shift,

It is assumed that operators are exposed to the seed dressing liquid (neat or diluted) during all tasks except during bagging? Therefore, the generic exposure figures for these tasks are expressed in mL/operation (taking into account the concentrations of active substances in different seed dressing liquids) whereas for bagging a constant generic figure – expressed as mg/h – is proposed in the model.

Since the delivery, some of the generic exposure values have been revised and the values currently being

used are presented in Table CP 7.24 9.1-1.

	8	1	•	
TASK		Total Potential Dermal Exposure	Estimated Actual Dermal Exposure	Inhalation Exposure
		(ml/op)*	(ml/op)*	(ml/op)* (ml/op)
Calibration		0.0330	0.014	0.0010
Mixing / Loading	Fast-Couple	0.0052	0.005	29.0001 S
	Pre-mix	0.0047	0.001	
Bagging (mg/hr)	all data	1.8400	6,698	0.9054
	worst case			0,0540 0
Cleaning		048720 °	S 0:083 S	0:9160
* exposure during baggi	ng in mg/hour			OT AT AS
			$\approx A \delta'$	1. ^{\$\$} \$

#### Table CP 7.2.1.1-1: Task related generic exposures of seed treatment plant operatives

It is assumed that the daily work of operators will involve one calibration and one cleaning operation, eight hours of bagging and the required number of mixing loading operations. These assumptions are relevant for a static treatment plant with a low level of automation resulting in a throughput of about 75 tonnes of cereal seeds per day. It is generally accepted that although plants with higher levels of automation would achieve higher throughputs (resulting in higher faily product uses) sposure in these plants would be lower because of the less intensive involvement of operators during bagging which contributes most to the overall exposure in less automated plants.

It is noted that the type of normalisation used for bagging (mg a.s./hour) does not reflect all possible scenarios correctly. Exposure in this case is only three dependent and calculations will result in the same exposure value independent of the seed loading rate it is considered that dust is the main source of contamination during bagging. The contamination of the dust depends of the dose of a.s. loaded to the seed. Thus, the high loading rates in the model (370 -500 g a.s./tonne) would likely overestimate exposure to products with lower dose rates. Therefore, it is proposed that exposure during bagging should be normalised to mg a.s./kg a.s. thandled. This kind of normalisation reflects at best the relation between exposure and the amount of active substance(s) loaded to the seed.

Exposure values for bagging normalised to mg/kg a.s. kandled are available in the original study reports of SeedTROPEX and presented in the following table (it is noted that report values representing combined tasks e.g. bagging bagging calibration are not included).

## Table CP 72.1.1-2: Data on expositive for pure bagging determined in the UK

Potential Dermal Exposure	Actual Derma Exposure	Potential Inhalation Exposure
in mg a.s./kg a.s.(only bagging)	in mga.s./kga.s. (only bagging)	in mg a.s./kg a.s.(only bagging)
SeedTROPEX UK-data	© Seed TROPEX UK-data	SeedTROPEX UK-data
Ø.073	0.025	0.0023
	0.074	0.0100
\$225 \$ J	0.095	0.0115
\$ ⁵⁷ \$0.278 \$	0.120	0.0094
⊳O.		



The corresponding geometric mean values are:

The corresponding geometric mean var	ues are.
Potential dermal exposure: Actual dermal exposure: Potential inhalation exposure:	0.1710 mg/kg a.s. 0.0678 mg/kg a.s. 0.00710 mg/kg a.s.
These values are used in the following	calculations to make predictions of exposure during bagging.
The following assumptions and require exposure during seed treatment:	ments were taken into account for the estimate of operator.
Crop:	Cereals & go of A A
No. of cleaning operations:	
No. of mixing/loading operatio	ns: $(1 \ )$ $(1 \ )$ $(1 \ )$
No. of calibration operations:	
Seed treatment rate:	To tomes per day A O &
Application rate:	v v 1 LFS 100/tonne seed v v v v v v v v v v v v v v v v v v
Active substance handled (kg/d	lay): 7.5 kg.prothioconazor day
Dilution factor:	S & 1 (uppliluted)
Dermal absorption: $\sqrt[3]{4}$	
Body weight:	en kg a har har har har har har har har har h
Clothing scenario?	Coverall and gloves during all operations except

The detailed spread sheet calculations are presented in Table CP 72.1.1.5

Table CP 7.2.0.1-3:	Calculation of o	perator exposure to	prothioconazole duri	ng <u>seed treatment</u>
---------------------	------------------	---------------------	----------------------	--------------------------

A			~*¥	(The state of the	ž			
	,≪Jjotal ≫	Estimated	Inhalation	[₩] PPE	Frequency	Total	Estimated	Inhalation
A CA	Dotential	ActualDermal	Exposure		(pperations/	Potential	Actual	Exposure
TASK 🗞	Dermal	Exposure 🔍	≥ (mg/op)		🥎 day)	Dermal	Dermal	(mg/day)
~Q	Exposure	(mg/op)	s,		<b>b</b>	Exposure	Exposure	
	(mg/op)			RP		(mg/day)	(mg/day)	
Calibration	Q3.2557	1,4028	⊘ 0.1384Q	no	1	3.2557	1.4228	0.1381
Mixing / Loading	0.51	\$4,5192	0.0102	no	1	0.5192	0.5192	0.0102
Bagging (mg/kg a.s.)**	0>1712	×0.06780, ⁹	020071	🖉 no	7.5	1.2838	0.5083	0.0530
Cleaning	87.1757	8.336	\$.6000 g	no	1	87.1757	8.3364	1.6000
	, Q							
	Absorbed d	lose mg/kg by	(day);	Calibration	ı		0.0059	0.0023
				Mixing/loa	ding		0.0022	0.0002
<i>x</i>	O (	)	.0	Bagging			0.0021	0.0009
, O`			Ô ^Y	Cle aning			0.0347	0.0267
	, s	K ^Y	¥					
				Total			0.	0750
	Ĉ â	) Y						
	% of AQEA	30						
	MoS	333						
	Ň							

* standard closing of the operators is one layer of work clothing during all tasks and in addition protective gloves except for bagging

** exposure during bagging mg/kg a.s. handled



#### B) Estimation of operator exposure during loading and sowing of the treated seed

Exposure during seed sowing is calculated with SeedTROPEX.

Exposure estimates include dermal and inhalation exposure. The normalisation used in the model (mg a.s./hour) does not take into account varying amounts of active substance applied to the seed. Due is regarded to be the main source of exposure during loading and sowing and the contamination of dust is proportional to the loading of active substances on the seed. Thus, calculations would result in a significant overestimation for substances applied with lower dose rates compared to those used in the SeedTROPEX studies (375 and 500 g a.s./tonne of seed) and an underestimation for substances applied with higher dose rates. Exposure normalized to the amount of a.s. handled reflects at best the relation between exposure and the amount of active substance loaded to the seed. Individual actual and dermate exposure values using this normalization are available in the SeedTROPEX, study reports and presented in the following table.

### Table CP 7.2.1.1-4: Actual dermal and potential inharation exposure figures of the study report of Seed-TROPEX (UK-data) for the tasks loading and sowing of the treated seed normalised to mg a.s./kg a.s. handled

<b>Operator ID</b>	Actual Dermal Exposure A Potential Inhalter on Exposure
	[mg[a.s./kg@t.s] 💜 🖤 🖉 🖓 🎢 🖉
1	
2	
3	
4	
5	7.440 5 7.440
6	× ~ 33810 ° ~ ~ ~ ~ ~ ~ 0.790
11	$\begin{bmatrix} 2^{3} & 0^{3} & 2^{3} & 2^{3} & 2^{3} \end{bmatrix} = \begin{bmatrix} 0^{3} & 0.049 \\ 0 & 0.049 \end{bmatrix}$
12	
13 💍	4.220 ~ (x x x x x x x x x x x x x x x x x x
14 🔊	$\left  \begin{array}{c} \mathcal{O} \\ \mathcal{O} \\ \mathcal{O} \end{array} \right  \left  \begin{array}{c} \mathcal{O} \\ \mathcalO \\ \mathcalO \\$
15	
16	× × 38.200 ° 0 0 0 0.692
<u>z</u> r	$\mathcal{O}$
geo. mean	5 $5$ $5.870$ $7$ $6$ $5.870$ $7$ $6$ $5.870$

In total, 13 operators (UK data) were monitored for dermal and inhalation exposure during loading and sowing. The geometric mean of actual dermal exposure is 0.87 mg a.s./kg a.s. and of potential inhalation exposure is 0.11 mg a.s./kg a.s. Thas to be mentioned that 8 operators handled treated seed without wearing protective gloves (e.g. to evenly spread the seed within the hopper). This is not in accordance with good agricultural practice. Therefore, the allowance of this data in the model represents the worst case when calculating dermal exposure.

The exposure calculation for 'Pfothioconazole  $\mathbf{F}$ S 100' is performed with the normalization as presented above.

The following assumptions and requirements are taken into account for the estimate of operator exposure during seed loading and sowing:

E Cron	Ĩ.		
Drilling	g rate:		
Work r	ate:		
Applica	ation rat	e:	

Cereals 180 kg/ha 15 ha/day 10 g a.s./100 kg seed

Amount of a.s. handled: Body weight: Clothing scenario:

270 g a.s./day 60 kg Coverall; gloves partly worn (only few operators gloves considered in the model)  $\gg$ 

The detailed spreadsheet calculations are presented in Table CP 7.2.1.1-5.

Table CP 7.2.1.1-5:	Calculation of operator exp	osure to p	orothioconazole d	luringloa	ding/sowing	Ì
of treated seed			Ő	Č.		

of treated	seed			Ţ			Ô		LU ^Y	Ľ
Route of	Specific exposure		Seed [kg/	day] x use 🎸	Route s	specific	Absorption	Absorb	ed Dose	0°
exposure	[mg/person x kg a.s.]		rate [kg a	.s./kg seed	[mg/per	§on/day]	[%]	[mg/per	son/da	Í
D _{L/S}	5.87	х	0.27	~~~~ =	1.585	× Q	25Q, 0	0.396		1
I _{L/S}	0.11	х	0.27	~~	0.0297	۶Ŋ	100	0:0297	~~	
Systemic e	exposure			× 9	2			0.4257	$\sim$	
					È. O	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0	1

Total absorbed dose [mg/kg bw/day]:

**CP 7.2.1.2** Measurement of operator exposure internal code: SXX 0665) during the drying procession clothing, skin or on certain plant surfaces. The conversion product, prothioconazole-desthio is known to have an embry otoxic potential in experimental animals.

Therefore, three operator exposure studies were conducted to determine exposure to prothioconazole and prothioconazole-desthio during seed treatment of cereal seeds under real use conditions as well as during loading/sowing of the treated seeds to get a better basis for a realistic risk assessment.

Subsequently, a osk assessment is performed for the seed meatment product 'Prothioconazole FS 100' based on the results of the operator exposure studies.

The exposure of operators to prothe conazole and its conversion product prothic conazole-desthio during seed treatment was experimentally determined in one operator exposure study. The study was performed in commercial seed treatment facilities in German during treatment of cereal seeds with EfA FS 76.25 (37.5 g/L fluoxastrobin, 25/g/L prothioconazole, 10 g/L triazoxide, and 3.75 g/L tebuconazole). The study was already evaluated by COP 2014/001477).

In two further studies the exposure of operators to prothioconazole and its conversion product prothioconazole-desthio was experimentally determined during loading and sowing of cereal seeds treated with EfA FS 76.25 (37.5g/L flut xastrobin, 25 g/L prothioconazole, 10 g/L triazoxide, and 3.75 g/L tebuconazole).

The substance and application type specific data will be applied to evaluate the exposure of operators to the active substance protitioconazole and its conversion product prothioconazole-desthio.

The studies are summarised if the following. The studies were conducted in compliance with the current OECD Principles of Good Caboratory Practice (GLP).

June the of Good Eabor, the free of Good Eabor, the free of the fr



#### Document MCP: Section 7 Toxicological studies Prothioconazole FS 100

Report:	KCP 7.2.1.2/04 =;	; 2011; M-418917-01-1 。
Title:	Determination of operator exposure to prothioc	onazole and prothioconazole-destre
	during seed treatment of cereals with EfA in Ge	ermany
Report No.:	MR07/313	
Document No.:	M-418917-01-1	A L P
Guideline(s):	OECD Guidance Document for the Conduct of	Studies of Occupational Exposure to
	Pesticides During Agricultural Application,	
	Series on Testing and Assessment No. 9, 1997	
Guideline deviation(s):	not specified	
GLP/GEP:	yes	

#### I. Material and Methods:

Eight professional seed treatment plants in Germany, which are regarded to be representative for a variety of technical standards for seed dressing were chosen. In these plants cereal seeds (winter wheat, winter and spring barley, winter rye, or triticale) were dressed with ECA FS 76/25 at application rates of 420 to 200 mL product per 100 kg seed (corresponding to 3,  $^{\circ}$ 5 g prothioconazole per 100 kg seed). The seeds were treated in batch treaters or continuous flow treaters representing the current echnical standard used in Europe. The treated seeds were bagged into paper bags (30,  $^{\circ}$  50 kg/bag) or big bags (500 – 1000 kg/bag).

At each plant one to three operators who usually conduct all activities necessary for the treatment of seeds and the bagging of the treated seeds were monitored for two consecutive days performing their daily routine. In total 16 operators were monitored for full working shifts of about 5 to 9 hours. 15 operators were monitored for two consecutive days 1 operators for one day resulting in 31 replicates monitored in the study.

The work in the second treatment plants covered two man areas

- Seed treatment: includes all activities in which the concentrated or diluted product is handled, i.e. mixing/loading calibration, cleaning of the treatment chamber, maintenance in the treatment chamber, operation of the treater.
- Bagging: includes all activities in which the treated seeds archandled, i.e. bagging into paper bags or big bags, stacking of paper bags, forking driving, maintenance at the bagging equipment, cleaning of the bagging area.

6 of the replicates were mainly performing activities connected to the seed treatment, 11 replicates mainly bagged the treated seeds and the other 14 replicates conducted a mixture of seed treatment and bagging activities during the monitoring period

An overview of the work conditions and details of the operators work in the different plants is given in the following table.



Plant		Operators'	or actains		ing conditions		<u> </u>	
	ID	Function #	Body	Working	Amount	Units bagged	Amount	S
			weight	time	seed handled	[bb = big bags,	prothiocon	102
			[kg]	[min]	[tonnes]	pb = paper bag]	handled [kg]	þ
	OA	Т	85	395	68.0	68 bb	2.72	
	OB	В	100	402	62.8	63-6b	200	,Ô,
Dlant 1	OC	В	65	393	62.8	€3 bb	<u></u> 2.50 ~ ~	2
Flaint I	OD	Т	85	405	<b>%</b> 4.0	هُطْ bb	0°2.570° , 0°	L.
	OE	В	100	382	64.0	_Õ [%] 64 bb 🛛 🐇	, 2, <b>5</b> ₽ <u>(</u> )	«O [″]
	OF	В	65	415	Ø 64.0	ć≯ 64 bb _O	2.57	Ď
	OG	Т	82	420	74.4	🐐 🎾 🕸 bb 🖉	<u>Å</u> 2.98	
Plant 2	OH	В	83	424	73.0	مَّ 🔨 77 bb	2.92	
	OI	Т	82	427	Q 25,5	, [∞] 29 bb, 9 pb	1.18	
	OK	В	83	405 🔬	26,5	29 <b>%</b> , 9 pb	A.15 A	0
	OL	T/B	85	A 372 O	<u> </u>	_{1116 pb	01.80	
Dlant 3	OM	T/B	70 🔍	, 36%∕	∕≫ ́41.3Ô°	× 1116 pb	U 1.80 S	
Plant 3	ON	T/B	85	\$ <b>3</b> 6 ,	ر 42 <i>5</i> م	[©] 14 bb≪862 pb	A)28 O	
	00	T/B	70 0	\$\$362\$	<u>^</u> 2.5 @	14, 55, 862, 55	1.28	
	OP	T/B	86	⁴ ⁰ 349 ³	24.1	0482 pb	Š 1.01 €	
Plant /	OR	В	_90	333	24	مر 482 pb	1.01	
	OS	T/B	80 %	308	d 19,1 á	🖗 382 pb 🛇	<b>9</b> .67	
	OT	B 🔊	90	€297 گ	19.1 🖧	>>382 pbc)	0.67	
	O8A	T/B 🖉	o j	350	25.3	~~ 31 bb x	1.01	
Plant 5	O8B	Т 🌂 🛓	90	<b>A</b> 1	253		1.01	
I failt J	08C	TMB S	″65, Ø	334 0	×40.0	≪ 50 bb 🔊	1.60	
	O8D	Â ^r	<u>90</u>	Ø 363	40.0	© 50 bb∳	1.60	
Dlant 6	08E 😞	T/B		<u>4</u> 41	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	∡,65 bb,@8 pb	4.25	
T fallt 0	O8FC	T B	° 75 🌾		× 6890	by bb	3.67	
Plant 7	OSG	T B O	800	<i>ر 10</i> °460	<b>⊘</b> \$2.0 €	8 bb, 1515 pb	1.56	
1 Ialli /	,,O8H	Ôť/B 🖏	80 4	440	67.8 ^O	≰ <b>)</b> 2259 pb	2.03	
~	[≈] 08I	T/B	68 2	596	<u> </u>	🎯 600 pb	1.20	
Ĕ,Ÿ	O8K	Bo S	88 🖉	<u>_</u> ∿536 Ô	×30.0 O	600 pb	1.20	
Plant 8	O8L	B X	65	536×	<u>چ</u> 30.0 <u>م</u>	600 pb	1.20	
	08M 🔊	T/B	<b>68</b> . N	376	0 [*] 27 <u>4</u>	29 bb	1.10	
	O8N	B	88 @	× 379	× 20.4	29 bb	1.10	
Main function	n of the ope	erator in the seed	treatment and	d bassing proc	ess: TO Treatment	B = Bagging		

Table CP 7.2.1.2-1:	Operator details and	working conditions
---------------------	----------------------	--------------------

Regarding the seed treatment phase several differences in the equipment and the work routines could be observed which may have had an influence on potential exposure of the operators.

Pre-mixture of the product is common practice in Germany. The product is diluted with water or combined with other products in mixing vessels prior to the application in the treatment chamber. Mixing/loading of the product was either performed by pouring the product directly out of 50 L containers into a mixing vessel (one plane) or via suction lances connected with pumps. Lances had to be transferred from empt() to full containers by the operators.

Calibration of the metering pumps was performed in two plants by measuring with a measuring cup the amount of product delivered by the pump in a defined time. In all other plants no calibration was performed since the dosing equipment was regulated automatically by the computerized control unit of the treatment equipment.

Cleaning of the treatment chamber was performed routinely in most of the plants at least once per day to remove residues which may have influence on the treatment or to remove seeds out of the system to provide purity of the seed variety after change of variety.



During all activities in which the concentrate or the diluted product was handled (i.e. mixing/loading, calibration, cleaning) operators wore in accordance with their usual practice chemical resistant gives to protect their hands. Furthermore a protective coverall was worn by two operators during cleaning of the treatment chamber.

Differences in the activities belonging to the bagging phase were due to the lovel of automation in the plants and the type of bags in which seeds were bagged (i.e. big bags or paper bags). Bagging into big bags was performed in two plants exclusively and in five plants during parts of the working shift. More or less the same manual activities were necessary in all plants to fill seeds into big bags. The bags had to be connected and disconnected manually from the filling head of the bagging station. Operators tied the big bag up and the full big bags were carried with forklift to the storage place. Bagging into paper bags was performed in one plant exclusively and in five plants in combination with bagging into big bag. Dependent on the level of automation the operations performed by the workers varied between the plants. In the low automated plants all activities (i.e. attaching of empty bags at the filing head, struching and labelling of the full bags, stacking of full@ags of pallet were performed manually. In these plants the bagging activities were performed by one or two baggers to cooperation, with the operator who mainly performed the treatment activities. In the medium automated plants attaching of empty bags at the filling head was still performed manually whereas stacking of the full bags was automated. Two operators were performing these activities. In the highest automated plant the bagging and stacking was fully automated. In this plant the whole seed treatment and bagging process was performed by a single operator. Ŵ

Dermal exposure of the body was determined via whole body underwear (long sleeved T-shirt, long johns), as well as by analysing a long sleeved shirt (cotton), a work jacket and a pair of trousers (both cotton/polyester) as outer garments. Two of the operators wore additionally an impermeable coverall (Tyvek) during cleaning. Exposure to the head was determined by face neck wires and a cap. Exposure to the hands was determined was rinsing of protective gloves) and by hand washings.

The results of the other gamments the gove rinsings, the face neck wipes, and the cap together with the results of the underwear and the hand washings correspond to prential dermal exposure whereas the results of the underwear plus the face neck wipes, cap and the hand washings are regarded as actual dermal exposure.

Inhalation exposure was measured via IOM samplers equipped with glass fiber filters which were fixed to the garments at the breathing zone of the operator and connected to a battery powered personal air pump. The pumps in for the duration of the respective working task.

All samples (clothing samples face-neck wipes, caps, gloves and hand wash bottles, IOM samplers) were transported to the test facility lates three days after sampling. The sample preparation was performed – if feasible – directly upon receipt of the samples or latest within 96 hrs after sampling. The extracted samples and sample extracts were stored in freezers and refrigerators, respectively, until analysis was performed

For the determination of the exposure to prothioconazole and prothioconazole-desthio, the samples were extracted and analysed by liquid chromatography with MS/MS detection. The results of the measurement are given in the study report as determined (i.e.  $\mu g$  prothioconazole per sample and  $\mu g$  protioconazole desthip per sample and expressed as specific exposures (e.g.  $\mu g$  of exposure per kg of prothioconazole handled)

# II. Findings

The recoveries performed concurrently with the analysis of the samples were good and revealed that the method used for samples analysis was well suited for determining residues of prothioconazole and prothioconazole-desthio in or on the dosimeter matrices. Field recoveries that were set up during the study showed that the sample residues were stable during transport and storage.

Operat	tor	Р	rothioconazole		Proth	nioconazole-de	esthic	4	
ID	Func-	DDE		IE	DDE			Ô ê	ST I
04	Т	1/3/	38.98	2 986	FDE 118 ሮጵ	ADE 🔊	1.040* \$	$\gamma \sim \gamma$	
OR	B	367.3	39.32	5.841	63	13.18	1.040*	~0	Ű
	B	495.7	84.66	7 996	\$2 70	21.70	1.040*	, Sr	S u
00	Т	4624	116.0	1.040*	©311.6	3671	1.040		) ×
OE	B	335.0*	35.00*	4 700	62 75	1275 9	1.000*	ý U	Ś
OF	B	378.8	53 31	1 591	145.3	77 95	1 040*.	<u></u>	
OG	T	135.0*	35.00*	4.78%	\$0.00* X	10.00* *	1.040*	°∼∕	s in the second
OH	B	172.0	72.01	3.40	50.00*	10.00* ~0	1.040	¢. ,٩	^
OI	T	2332	50.51	2 988	13008/	Q.0.00* O	1,Q40* C	× ,	Å
OK	В	255.2	123.2	K4.144 Y	52.34	12.54	<u>6040*.</u> ∕.	- C	
OL	T/B	4567	32.50*	1.958	Q24.2 ~	10.62	¥1.040 <i>2</i> (>		S.
ОМ	T/B	3674	32.50* Q.	1.616	146.2	\$00* 0	1.04	Ş C	)
ON	T/B	2284	35.67	2,748	22 <b>3</b> 45 ⁷ A	90.10	1.040*	, B	
00	T/B	1095	36.7.D	3.404	97.56 Â	9.00	£040*		
OP	T/B	381.9	81,93	1.040	64.01	14:01 🎓	1.0400	, "¥	
OR	В	137.6	~69.57 °~	1,040*	50.60	£\$ <b>6</b> 0	1.040*	×	
OS	T/B	349.4	49.36	A.040* L	61,00*	11.00*	12940*		
OT	В	361.7 🔊	61.70	\$1.040*	60.86	10.86	₩040*		
08A	T/B	2945 🏷	69.62	1.040*	85.26 ×	11.00*	1.040		
O8B	Т	335.Q*,	55.00* G	1.040*	60.00®	40.00*	1.040		
O8C	T/B	1140	046.22	A.040* N	102.9	$O_{11.44}$	1040*		
O8D	Т	400.0	100,5 ~	₹1.040*	\$P.24 (V)	17.24	1.040*		
O8E	T/B	3. 3. 682 O	46.15	1.049/* 2	285.7	14,25	1.040*		
O8F	T/B	23480	51.63 📞	1.040*	357.7	A. 68 🔊	1.040*		
O8G	T/B 🖒	16006	D42.90 [©]	Q.784	2103	12.38	1.040*		
O8H	T/B	589.6	32.50* .4	4.190	<b>A</b> 5.7	12.\$3	1.040*		
D8I	TAB	12775 🔊	4070	2.188	220.9 <b>Q</b>	1599	1.040*		
O8K	\$ <b>`₿</b> `	137.5	87.50* 🛇	3.958	53.00	₫4.00	1.040*		
08L ``	Ъ	137.5* *	¥ 37.5 <b>0</b> *,	A.689 N	51.00*	11.00*	1.040*		
08									
М	T/B	620280	38,25 🔊	1.040*	236.7 0	13.27	1.040*		
O8N	В	135 <b>C</b>	⁰ ج*5.00*	L.0440* 🚿	50.00	10.00*	1.040*		
Geom mean	etric 🔊	936.0 2	48.30	1 988		12 63	1 040		
75 th pe	rcentile	2638	55 50 -	3 438 -4	179 3	13.63	1.040		
$95^{\text{th}} \text{pc}$	reautile	21880	AQ08.0	50x13 ~	298.7	24.83	1.040		
Maxin	num					2 1100	1.010		

The measured exposure results are summarised in the following table.

PDE: Potential dermal exposure (= Sum of outer clothing, inner clothing, hand and glove washing, head) ADE: Actual dermal & posure (=Sum of funer clothing, hand washing, head) IE: Inhalation exposure (Breathing rate 0.8 L/nait)

": Main function of the operator in the seed treatment and bagging process: T = Treatment *: All samples LOQ B = Bagging

In general theorem and initialation exposure to prothioconazole and prothioconazole-desthio was low for all monifored operators. On many samples the residue level was below the LOQ of the respective sampling pratrix for prothioconazole as well as for prothioconazole-desthio.

The results in the table show that the replicates who were mainly involved in the bagging activities were less exposed dermally compared to operators who handled the pure or diluted product during mixing/loading, calibration or cleaning. Nevertheless, since potential exposure was mainly detected on the hands which were effectively protected by chemical resistant gloves, actual dermal exposure was in a close range for all operators.

Overall, inhalation exposure was low. For 13 of the replicates prothioconazole residues measured on the IOM filters were below LOQ and all prothioconazole-desthio values were below the LOQ. Differences in the extend of inhalation exposure were identified between plants and within single plants between bagging procedures (big bags vs. 50 kg paper bags). In some plants during bagging of big bags big here inhalation exposure was detected in others during bagging of small paper bags. Reasons for this may be seen in the level of automation or the quality of air exhaustion in different parts of the plants.

#### **III.** Conclusions:

The study results reflect exposure encountered during typical activities pecessary for cereal seed treatment in professional plants in Europe with standard seed treatment equipment. The level of PPE used in the plants (i.e. chemical resistant gloves when handling the concentrate and diluted product) was in accordance with good occupational practice and the common work practice in the plants.

Thus, it can be concluded that the study conditions file. selected plants, work tasks, work rate, work conditions, etc.) and subsequently the determined exposure figures are representative for cereal seed treatment in Europe.

Report:	KCNJ.2.1.2/05 ,; 2014, M-481,315-01-
Title:	Determination of operato and resident / bystander exposure to prothioconazole and
	prothioconazole desthic during loading and sowing of FIA treated cereal seed in
~	Germany of the second
Report No.:	M-481315764-1 A S S S S
Document No.:	M-481316-01-1-5 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Guideline(s):	OECD Quidance Document for the Conduct of Studics of Occupational Exposure to
	Pesticides During Agricultural Application, Series on Testing and Assessment No.
ð S	9,1997
Guideline deviation(s):	not specified
GLP/GEPx	Yes a a a
, Č	

#### I. Material and Methods

Nine operators were monitored on hine farms in Germany during loading and sowing of cereal seeds treated with EfA (FS containing 97.5 gf) fluorastrobul, 25 g/L prothioconazole, 10 g/L triazoxide, and 3.75 g/L (buconazole) in order to determine the decinal and inhalation exposure to prothioconazole and its conversion product prothioconazole.

The seed was treated in offerent commercial seed treatment plants and farmers were supplied by their local warehouse. One farmer used self-grown seed which was cleaned and treated in a local warehouse. Samples of the sown seeds were taken each farm and the loading rate was determined. The measured loading rates ranged from \$.1 to 5.4 g prothioconazole per 100 kg seed.

The montoring covered a whole working day and included all activities which are necessary to prepare the equipment for soving and the sowing of the seeds, i.e. loading of treated seeds into the hopper, calibration of the sowing machine, sowing, checking of sowing quality on the field, maintenance if necessary

All relevant methods of seed loading into the hopper were observed within the study, i.e. loading out of small paper bags, loading out of big bags and loading from a trailer via an auger. A wide range of sowing conditions and sowing equipment was covered. Mechanical or pneumatic sowing machines with

**Bayer CropScience** 

#### **Document MCP: Section 7 Toxicological studies** Prothioconazole FS 100

working width ranging from 3 m to 6 m were used. Dependent on the equipment used and the farm size the treaded area ranged from 6.2 ha to 49.5 ha. Duration of work ranged from 345 minutes to \$64 minutes. Sowing density was determined by the farmers and varied in dependence of the seed wriety and the sowing conditions between 90 kg and 170 kg seed per ha. The resulting amount of prothioconazole handled during the monitoring was between 50 g and 230 g per day. Details of the study conditions are summarized in Tables CP 7.2.1.2-7 and CP 7.2.1.2-8.

Dermal exposure was measured by passive dosimetry techniques. Beneath usual work entring (shirt or jacket and trousers) the operators wore long cotton underwear; all gothing was used as sampling clothing. Exposure of the head was measured by a cap and face-neck wipes, exposure of the hands by hand washes (with detergent) and after the last working task in addition with isopropanol. Protective gloves worn during loading and sowing were rinsed with isopropanol.

Potential dermal exposure of the operator was calculated from the sum of the residues detected on the outer clothes, the underwear, the protective gloves, hand washes, face-neck wipes and cap.

Actual dermal exposure was calculated from the som of the residues detected on the Qunderstear, hand washes, face neck wipes and cap.

Inhalation exposure of operators and bystander/residents was determined by dise of a personal air sampling pump connected to an IOM sampler with glass fibre filter, located in the breathing gone of the person.

All samples (clothing samples, face-neck wipes, caps, gloves and hand wash fortles, 40M samplers) were transported to the test facility lates three days after sampling. The sample preparation was performed – if feasible – directly woon receipt of the samples or lates within 96 hrs after sampling. The extracted samples and sample extracts were stored in freezers and refrigerators, respectively, until analysis was performed.

For the determination of the prothoconazole and prothoconazole-desthio exposure, the samples were extracted and analysed by liquid chromatography with MS/MS detection. The results of the measurement are given in the study report of determined (i.e. up prothoconazole per sample and µg protioconazole desther per sample) and expressed as specific sposures (e.g. µg of exposure per kg of prothioconazole handled). 

#### **II. Results:**

Field recoveries which were seeing at one site showed that residues can be considered stable for most of the matrices. Only for mer garments and norfile gloves recovery rates < 70 % were detected. The results of these matrices were conjected for the recovery rate.

The measured exposure values to prophocomozole and prothioconazole desthio are summarized in the table below

y the problem of the



Table CP	7.2.1.2-3: E	xposure to	prothioconazole
----------	--------------	------------	-----------------

Operator ID	Prothioconazole			Pro	Prothioconazole			Prothioconazofe		
-	[µg/person/day]		[µg/kg bw]			🔍 [μg/kg a.s.ham)led] 🖉				
	PDE	ADE	IE	PDE	ADE	IE	PIQË	ADE	IEÔ	
OA	475.0*	35.00*	1.040*	5.163	0.380	0.0113	<b>3146</b>	231.8	\$6.89	
OB	998.6	36.38	30.63	12.178	0.444	0.3735	18424	\$71.1	C565.08	
OC	475.0*	35.00*	3.353	3.654	0.269	0.0258	9814	≈ 723.1	69,28	
OD	472.5*	32.50*	1.040*	4.295	© 0.295	0.0095	5363	368.9	<b>F1</b> .80	Ø
OE	610.1	84.76	2.589	6.290	0.874	ØØ267	10780	1497.5	<b>%</b> 45.73	ť
OF	475.0*	35.00*	1.759	3.398	0.250	0.0126	2128	Q 56.8	7.88	
OG	777.4	70.59	3.635	82637	0.784	0.0404	\$3415	🔬 310. P	1,5,997	
OH	472.5*	32.50*	1.040*	6.750	0.464	0.0149	~~860,7C	59230	.94	
OI	472.5*	32.50*	1.040*	₹5.0810	0,3249	00112	ר ק <i>ז</i> אָאָאָ 73	<u>5</u> 97.8	×16.25	
PDE: Potential dermal exp	posure (= Sum	of outer clot	hing, inner clo	thing, hand ar	nd glove wash	(ng, head)	- C			

ADE: Actual dermal exposure (=Sum of inner clothing, hand washing head)

ADE: Actual dermal exposure (=Sum of inner clothing, hand washing, head) $a$ $a$ $b$									
IE: Inhalation exposure (Breathing rate 20.8 L/min) $\Delta$ $\mathcal{V}$ $\mathcal{V}$ $\mathcal{Q}$									
*: All samples < LOQ									
			s .	Y X	O ^y	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		1	S Contraction of the second se
<b>T 11 CD 5313</b>	Б		L' in	1		0' 🔬		i C	
Table CP 7.2.1.2-4	: Exposu	ire to pro	thiocona	zole-desti				άř.	
	•			<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	$\int \sqrt{2}$		S. E	<u>s</u> o	
Operator ID	Prothie	oconazole-	-desthio	Prothic	oconazole-	desthio	🗘 Prothi	oconazole-	desthio
-	[µş	g/person/d	lay 🖉		[µg/kg bw]	K &	, βµg/l	kg a.š.han	dled]
	PDE	ADE >	JE .	PD	ADE 🧳	FIE .	PIDE	<b>XDE</b>	IE
OA	73.00*	×13.00*	1.040*	£0.793	0.14	0.0113	ال 483.4 ا	86.09	6.887
OB	148.23	12.00	5,202	@'1.808''	0.146	<b>~Q</b> ?0695	2734,9	221.40	105.21
OC	73.0°*	13,00*	1:040*\$	0,562	<b>@</b> .100	0.0080	1508.3	268.60	21.49
OD	72(00*	\$2.00* ¢	¢1.040®~	<b>0</b> ,655 «	0.10%	0.0095	s 817.3	136.21	11.80
OE	169.51	50.86	1.0#0*	A1.748	0.524	00107	<i>≰</i> y2994.9	898.62	18.37
OF	€73.00⊀	13.00	1.040*	~ 0.5Z	0,0093	_ 0.007 <b>4</b> _	327.1	58.24	4.659
OG 🔊	135 26	18,58	1.040*	1.503	<u>م</u> ن 0.206	0.0 <b>№0</b>	594.3	81.64	4.569
OH	72090*	12.00*	1.040*	×1.029	0.17	0.0149	1311.5	218.58	18.94
OI Ox	£2.00*×	12.00*	1.040* 、	Ø 0.77	0.029	<b>@</b> 0112	1125.0	187.50	16.25

PDE: Potential dormal exposure (= Sum of outer clothing, inner dothing, hard and glove washing, head) ADE: Actual dormal exposure (= Sum of inner clothing, hand washing, head)

IE: Inhalation exposure (Breathing rate 208 L/min

*: All samples < LOQ

Exposure values to profilioconazole and profilioconazole-cesthio > LOQ were found on clothing and hand wash samples of operators, however at a very low level.

K, Ó

Two of the operators with measurable residues on clothing loaded bulked seed from a trailer via an auger into the hopper of the sowing machine. The third operator handled seed which was packaged in used bags which were visibly contaminated. This operator was the only one with measured residues on the hands. The highest tesidues of prothioconazole and prothioconazole desthio in a hand wash solution of this operator were measured after he had handled treated seeds leaking out of a broken bag with bare hands. 1

Inhalation exposure to perhioconazole was low. Five operators showed measurable amounts of prothiocomized on the Alters. Only one operator had a significantly higher value than the LOQ. This operator also showed inhalation exposure to prothioconazole-desthio. Again, the reason for this is the type of loading wia an auger and a certain proximity to the outlet hose of the auger. For all other operators inhalation exposure to prothioconazole-desthio was found to be negligible, i.e. to be below LOQ.



#### III. Conclusions:

The study results represent exposure from typical seed loading/sowing activities with modern standard seed sowing equipment. The level of PPE used by the farmers (i.e. chemical resistant gloves when direct contact with the treated seeds or contaminated surfaces is given) was in accordance with good occupational practice.

Thus, it can be concluded that the study conditions (i.e. selected farms, sowing equipment, work tasks, work rate, work conditions, etc.) and subsequently the determined exposure figures are representative for the cereal seed sowing in Europe.

Report:	KCP 7.2.1.2/06 ,; 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1 , 20 1
Title:	First amendment to report - Determination of operator exposure to protheconazole
	and prothioconazole-desthio during loading and sowing of Efact treated cereal seed
	in Germany
Report No.:	
Document No.:	M-531731-01-1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Guideline(s):	OECD Series of Testing and Assessment No. "Guidance document on the O
	conduct of studies of occupational exposure to pesticides during agrecultural
	application Paris 1997. OCDE/GD(97) 148 D S S
Guideline deviation(s):	not specified of a b b a b b
GLP/GEP:	yes a way of a start o

### I. Material and Methods

Five operators were monitored on five farms in German during loading and dwing of cereal seeds treated with EfA (FS containing 37.5 g/L fluoxastrobin, 25 g/L prothio onazole, 10 g/L triazoxide, and 3.75 g/L tebuconazole) in order to determine the derma and inflation exposure to prothioconazole and its conversion product prothioconazole-desthio.

The seed was breated in different commercial seed treatment plants and farmers were supplied by their local warehouses. One farmer used self-grown seed which was cleaned and treated in a local warehouse. Samples of the sown seeds were takeforeach farm and the loading rate was determined. The measured loading rates ranged from 3.5 to 4.4 g prothjocona ble per 100 kg seed.

The monitoring covered a whole working day and included all activities which are necessary to prepare the equipment for sowing and the soving of the seeds, i.e. loading of treated seeds into the hopper, calibration of the soving machine, cowing checking of sowing quality on the field, maintenance if necessary.

Filling the hopper of the planted was conducted by toading out of big bags (500 to 1000 kg/big bag) or loading from a trailer via an auger. A wide range of sowing conditions and sowing equipment was covered. Mechanical or pneumatic sowing machines with a working width of 3 m were used. Dependent on the equipment used and the farm size the peaded area ranged from 6.6 ha to 20.5 ha. Duration of work ranged from 331 minutes to 585 minutes. Sowing conditions between 134 kg and 188 kg seed per ha. The resulting amount of prothiocong ole handled during the monitoring was between 38 g and 139 g per day Details of the study conditions are summarized in Tables CP 7.2.1.2-7 and CP 7.2.1.2-8.

Dermal exposure was measured by passive dosimetry techniques. Beneath usual work clothing (jacket and trousers) the operators wore long cotton underwear; all clothing was used as sampling clothing. Exposure of the head was measured by a cap and face-neck wipes, exposure of the hands by hand washes (with operator) and after the last working task in addition with isopropanol. Protective gloves worn during loading and sowing were rinsed with isopropanol.



Potential dermal exposure of the operator was calculated from the sum of the residues detected on the outer clothes, the underwear, the protective gloves, hand washes, face-neck wipes and cap.

Actual dermal exposure was calculated from the sum of the residues detected on the underwear hand washes, face neck wipes and cap.

Inhalation exposure of operators and bystander/residents was determined by use of a personal air sampling pump connected to an IOM-sampler with glass fibre filter, located in the breathing zone of the person.

All samples (clothing samples, face-neck wipes, caps, gloves and hand wash bottles, IOV samplers) were transported to the test facility latest two days after sampling. The sample preparation was performed – if feasible – directly upon receipt of the samples or latest within 48 bits after sampling. The extracted samples and sample extracts were stored in freezers and refrigerators, respectively, until analysis was performed.

Residues of Prothioconazole and prothioconazole desthio were determined by HPLC MS/MS in the multiple-reaction-monitoring mode (MRM) using an electrospray interface (ESI). The results of the measurement are given in the study report as determined (i.e. µg prothioconazole per sample and µg protioconazole-desthio per sample) and expressed as specific exposures (e.g. µg of exposure per kg of prothioconazole handled).

#### II. Results:

Field recoveries which were set up at two sites showed that residues can be considered stable for most of the matrices. Only for inner garments recovery rates of prothioconazole 70% were detected. The results of these matrices were corrected for the recovery rate.

The measured expositive values to prothioconazole and prothioconazole desthio are summarized in the table below.

	i~√	w.	. ~	.07'			0			
Opera	atói IĎ	Pro	othiocona	Žole 🔬	O ^v Pre	thiocor@z	ole	Pro	othioconaz	ole
	* *	الأسمال المركز	∲pers@n/d	lay] 🖇	N G	[µg/kg bw]		[µg/l	kg a.s.hano	dled]
	Å	SPDE 🚿	ADE	K a	PDE	ADÊ	IE	PDE	ADE	IE
OA	Č.	239,8	\$.00*	0.520	2.960	9.0864	0.0064	6396	186.7	13.87
OB	a	59.5	[™] 13.54Û	6,560	ð .595 í	0.135	0.0656	1149	97.56	47.27
OC	~Õ	0779.00	7₄Q <b>0</b> *	\$\$940	9.274	0.083	0.0707	9578	86.07	73.04
OD	1	1305.6	<b>SQ</b> .98	A3.650	12.005	0.514	0.1325	16822	682.6	175.88
OE	Ø,	2076.4	35.46	0 5.8 <b>30</b>	3,005	0.385	0.0634	2798	358.9	59.01

## Table CP 7,2.1.2-5: Exposure toprothioconazole

PDE: Potential dermal exposure (= Sum of outer clothing, inter clothing, hand and glove washing, head) ADE: Actual dermal exposure (= Sum of inner pothing, grind washing, head)

ung, Band v ...os/min) Q ( C C C C C C C IE: Inhalation exposure (Breathing fore 20. *: All samples < LOQ



Operator ID	Prothioconazole-desthio			Prothioconazole-desthio			Prothioconazole-desthio			Ŋ
	[µg/person/day]				[µg/kg bw]			🚬 [μg/kg a.s.hamiled] 🖤		
	PDE	ADE	IE	PDE	ADE	IE	PIQĚ	ADE Ø	IE Ô	
OA	87.00*	7.00*	0.520*	1.074	0.0864	0.0064	<i>©</i> 2321	186.72	\$3.87	
OB	87.00*	7.00*	1.670	0.870	0.0700	0.0167	626.9	\$0.44	¢″12.03	
OC	120.68	7.00*	0.520*	1.437	0.0833	0.0062	1484	≈ 86.07	6.39	
OD	139.90	8.20	2.500	1.358	<b>0.0796</b>	0.0243	1803	106.66	<i>\$</i> <b>2</b> .21	Ø
OE	99.88	7.00*	0.520*	1.086	0.0761	<b>QQ</b> 057	1010	70,85	∞ 5.26	1
PDE: Potential dermal exp	osure (= Sum	of outer cloth	ning, inner clo	thing, hand ar	nd glove wash	ing, head)	×2	Q (	N K	

#### Table CP 7.2.1.2-6: Exposure to prothioconazole-desthio

ADE: Actual dermal exposure (=Sum of inner clothing, hand washing, head) IE: Inhalation exposure (Breathing rate 20.8 L/min)

*: All samples < LOQ

Exposure values to prothioconazole > LOQ were found or clothing and hand wash samples of four operators, however, at a very low level. Exposure values to prothioconazole-desthio > LOQ were found on clothing and hand wash samples of two operators, however, at a very low level

The operator (Operator OD) with the highest measurable residues of prothioconazole and prothioconazole-desthio on clothing and in hand washes loaded bulked seed from a trailer via an auger into the hopper of the sowing machine. He also cleaned the empty trailer with a broom from dust and remaining seeds. Operator OE emptied the seed bags while standing in the hopper. As a result contamination on the legs of the oner and outer clothing was observed. Potential dermal exposure of operator OC was mainly attributed to the contamination of the nitrile glowes. The operator leveled the seed in the hopper several times with his hands after loading the seeds and during the sowing process. Since he was always wearing glover while doing this the actual hand exposure was <LOQ.

Inhalation exposed to prothic on azole was now, Four operators showed measurable amounts of prothioconazolo on the filters. The two opprators with the highest exposure to prothioconazole also showed inhalation exposure to prothioconazole-desthio. For an other@perators inhalation exposure to prothioconagole-desthio was found to be negligible, i.g. to be below LOQ.

#### III. Conclusions: 🏠

The study results represent exposure from typical seed loading/sowing activities with modern standard seed sowing equipment. The level of PPE used by the farmers (i.e. chemical resistant gloves when direct contact with the treated seeds or contaminated surfaces is given) was in accordance with good Ť occupational practice.

Thus, it can be concluded that the study conditions (i.e. selected farms, sowing equipment, work tasks, work rate, work conditions, etc.) and subsequently the determined exposure figures are representative for the cereal seed sowing in Europe

### **Overall Conclusion**

Ċ Both stadies were designed a loading/sowing-studies as this type of study reflects best the real work situation of fammers in Europe when handling treated seeds. In total, 14 operators were monitored.

The first study was conducted in 2009 with nine professional farmers in their fields. To increase the number of replicates the second study was conducted in 2013 with five professional farmers loading and sowing prothioconazole treated cereal seeds in their fields.



In Table summar parame	e CP 7.2.1 ry form. F ters encour	.2-7 and from the ntered in	Table Cl overviev Europe f	P 7.2.1.2-8 s w it can be for cereal see	tudy parameters are concluded that the ed sowing:	shown in a detailed as study conditions real	well as in a ly cove@all
• area	as ranging	from 8 h	a to 50 h	a;		ð	
• sow	ving widths	s ranging	from 3 r	n up to 6 m:		Ĩ.	
• mea	chanical an	d nneum	natic sow	ing machine	S	A Ó	
	ding out of	cmall no	nor bogs	or hig hage	loading Wilked seed	la fum trailar	N O U
• 1040	ung out of	sman pa	iper bags	of org bags,			
The tra	ctors were	equipped	d with a	cabin as it is	s standard practice n	owadays. The back wi	ndow of the
tractory	was not all	ways clo	sed durir	ng sowing fo	r someof the operato	přsy or or a	
				Ô			4
Table (	CP 7.2.1.2-	7: Stu	udy para	meters of re	plicates		L' É
Study	Operator	Body	Area	Seed sown	Seed C	Sowning equipment	Nosof
		weight	treated	8 y	packaging Loading		loading
	ID				by procedure		tasks
1			[ha] >		Diekans (		5
1	OR	92 82		1760	Bulked seed	Sm mechanical	5
1	СЪ	02			Joaded from trailer		5
1	OC	130	7.3	1193 5	25 Cg paper bags	3 m pneumatic	12
1	OD	Å10 4	16.265	2100	500 kg big bags	3 m mechanical	2
1	OE ô	970 20	627	1054	50 kg and Jy kg	3 moneumatic	3
1	QF	Ø <b>1</b> 40	42.8	6200	1000 kg big bags	f m mechanical	4
1	°∧OG	90×	34.9	5700	Bulked seed	6 m pneumatic	5
1	OH	<u></u> 70 <i>i</i>	€ 8.5 ×	12100 *	30 kg bags A	3 m mechanical	7
1	OI 🧳	93 <u>A</u>	9.00	1350	50kg bags	3 m pneumatic	4
2	OA ~Q	Str.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Bolked sped Yoaded from trailer	3 m mechanical	2
2	ДОВ	100 ©	169	3290 .	1000 kg big bags	3 m mechanical	2
2	© OC	-84	4Q.5	2300	500 kg big bags	3 m mechanical	5
2	OD	×103	₽,12.5 _©	2125	Bulked seed	3 m mechanical	4
2	OF @	<u></u> 02	<u> </u>		600 kg big bags	3 m pneumatic	2
2		94 		Groon Q.	000 Kg big bags	5 III pileulliatie	2

Table CP 7.2.1.2-7:	Study parameters of	replicates
	Study parameters of	Milences

Parameter	Study parameter	
Seed sown	Winter barley	
Seed Sown	Winter wheat	
	EfA (FS containing 37.5 g/L fluoxostrobin, 25 g/L prothioconazole, 10 g/L	,
Seed treatment	triazoxide, and 3.75 g/L tebuconazole) in an application rate of 200 mL/dt seed	
	to winter barley, 160 mL/dt seed to winter wheat	¢ L
No. of replicates	14 operators (at 14 locations) combined work cycles (loading and soving)	5
Application technique	Sowing with mechanical or pneumatic sowing machines (3, -6 m working)	
Application technique	width)	
Time	331 to 658 minutes (mean 476 minutes)	
Area treated	6.2 to 49.5 ha (mean 18.5) 0 0 0 0 0 0	
Sowing rate	89 to 188 kg ged /ha mean 49 kg seed /ha	
Total a.s. handled	37.5 to 228 g a.s. day (mean 100 g a.s./day)	
DDE/alathing	Nitrile Stoves: during loading of seeds during owing only if necessary (e.g.,	
rrt/ciouniig	wher Chandling containinate Surfaces; one ayer of Clothing	

#### Table CP 7.2.1.2-8: Summary of study parameters

Although detailed exposure data from the studies are not presented in this overview some general observations are summarised nevertheless.

It is remarkable that only 7 replicates (out of 14) had measurable residues of prothioconazole on their outer clothing and only five operators showed measurable residues of prothioconazole on their undergarments.

For prothioconazole desthio in 5 out of 14 replicates measurable residues were found on the outer clothing but only two operators showed measurable residues on their undergarments.

Only one of the operators had measured residues of both prothioconazole and prothioconazole-desthio concurrently on his undergarments.

Measurable exposure to prothic onazore of the head was determined for 1 replicate. For all other replicates – for prothic onazore as well as for prothic conazole-desthio – the results were "<LOQ".

In each of the studies exposure to protheconazole and prothioconazole-desthio measured in the hand wash samples was > LOQ for one of the monitored operators

The results of the protective gloves show measurable exposure figures for prothioconazole and prothioconazole desthio only for the second study. For prothioconazole this is due to the lower LOQ. Most of measured values of the second study are smaller or slightly above the LOQ of the first study. The prothioconagole desthio exposure is >LOQ for only one glove sample.

However, one should be aware that residues on protective gloves should be regarded to have an indicative character only similar to the residues on outer clothing or estimates of potential dermal exposure

Essential figures for risk assessments should always relate to real actual dermal exposure data whenever they are available.

The potential and actual dermal exposure figures from all studies are listed in Table CP 7.2.1.2-9 for the exposure to prothioconazole and in Table CP 7.2.1.2-10 for the exposure to prothioconazole-desthio. Normalization was performed with regard to the actual bodyweight of the individual operators and the amount of prothioconazole handled per day.

Ô

		mg /kg a.s. h	andled)			<b>~</b> .	Š	- Or
Study	Operator	Poter	ntial dermal exp	osure	Actu	ial downal expo	sure	2
	ID	[mg]	[mg/kg bw]	[mg/kg a.s.	[mg]	[mg/kg bw]	[mg/kg a.s.	
				handled]	, k		O handied]	Ŝ
1	OA	0.475	0.00516	3,146	0.0350	0.000380	0.23	
1	OB	0.999	0.01218	18.42	0,6364	0.0004444	3 0,671	
1	OC	0.475	0.00365	¢9.814	0.0350	0,000269	[©] €9.723 (	
1	OD	0.473	0.00430	5.363	0.0323	Q.000295	0.369	1
1	OE	0.610	0.00629	10.78	0,0848	0.000874	<u>,</u> ≪ 1, <b>49</b> 8	
1	OF	0.475	0.0033	2.12×	Q.0350	0,000250	<u>م</u> 0.157	
1	OG	0.777	0.00864	3.405	Q 0.070	0.00078	0.310	
1	OH	0.473	0,00675~	8,607	0,0325	0.000464	0,692	
1	OI	0.473	Ø.00508	7.382	Ø.0325K	0.000349	<b>0</b> .508	
2	OA	0.240	0 0.00296	<u>,</u> 9 6.396	0.0079	\$0000 B	ۇ 0.187	
2	OB	0.160 #	Q 0,00160,	ما.149	S 0, 0 35	<u></u> 0.000	م الحي الحي المعام المعام المحية محية المحية محية محية محية محية	
2	OC	0.77		\$9.57 <b>8</b>	¢.0070	× 0,000083,	0.0861	
2	OD	1,396	0.01208	16.82	0.0550	0.00051 ⁰	0.683	]
2	OE	¢0.276 (	0.00300	õ <i>2</i> .798	0.0355	¢¢ 0.000 1000 € 5	0.359	]
		× .4				X ~Q		-

Table CP 7.2.1.2-9: Dermal exposure to prothioconazole (in total n	ng as well as in mg/kg l	ow and
mg /kg a.s. handled)		Ň

The results show that potential dermal exposure to prothigeonazole and prothigeonazole-desthio covers a range of a factor of about 8 (0.169-1.366 mg, 0.00169-0.0127 mg/kg bw) and 3 (0.072-0.170 mg, 0.00052-0.00181 mg/kgbw), respectively. Normalized to the amount of a schandled potential exposure to prothioconazele and prothioconazele-desthro covers a range of (1.149 – 18.42 mg/kg a.s. handled) and 9 (0.327- 2995 mg/kg a. handred). Ś Õ

For the actual dermal exposure the range of exposure to protheocona be amounts to a factor of 12 (0.007 - 0.0848 mg, 0.000083 0.000874 mg/kg bw). The range of the normalized exposure values covers a range of about 17 (0.0561 - 4.498 mg/kg as. handled) Š

For prothioconazole-desthio thierange amounts to a factor of about 7 (0.007 - 0.0509 mg, 0.00007 -

For prothioconazole-desthio this range amounts to a factor of about 7 (0.007 – 0.0509 mg, 0.00007 – 0.000524 mg/kg bw). The range of the normalized exposure values covers a range of about 17 (0.0504 – 0.899 mg/kg a.s. handled)



		mg/kg by	N)					Ő
Study	Operator	Poter	ntial dermal exp	osure	Actu	al dermal expo	sure	S.
	ID	[mg]	[mg/kg bw]	[mg/kg a.s.	[mg]	[mg kg bw]	[mg/kg a.s.	5
				handled]		¹	handled	
1	OA	0.0730	0.00079	0.483	0.0130	م الجي من الجي	0 0.0 61	Q,
1	OB	0.148	0.00181	2.73	0.0120	0.00014	0.221	× (
1	OC	0.0730	0.00056	1.508	0.04Q0	0.0001000	S 0.2 <b>69</b>	Å
1	OD	0.0720	0.00065	Ø.817	00120	0.000109	Q 036	× ·
1	OE	0.170	0.00175	2.995	Ø.050Ø	° 0,000524	0.8994	9 1
1	OF	0.0730	0.00052	0.327	0.0130	0.000093	× 0.0582	
1	OG	0.135	0.00150	Ø.594	Q.0186	0.000206	°≫ 0.0816	
1	OH	0.0720	0.00103	× 1.31	Ø.012	0.000171	/ <u>.</u> 219	0 //
1	OI	0.0720	0.00077	`~>`	0.0420	6.000129	© 0.18	
2	OA	0.0870	0 <b>,0</b> 0107~	Ø.321 ·	0.69700	× 0.0 <b>00</b> 86	<u>بالمجمع من المجمع ا</u>	
2	OB	0.0870	<b>\$</b> .000 <b>%</b> 7	0.62	0070Q	0,0000702	0.0504	
2	OC	0.121	0.00144	1.484		D.00005	رٍ ∛ي 0.0861	
2	OD	0.140	<b>0.9</b> 0136	§ .803	0.60820	0.000080	× 0.106	
2	OE	0.100	[°] 0.00109	1.01€	0.00700	0.000076	Ø 0.071	
		ž	&. CV	L m	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ô.		

#### Table CP 7.2.1.2-10: Dermal exposure to prothioconazole-desthio (in total mg as well as in

 $\bigcirc^{\vee}$ Ň prothioconazole desthic are presented in The inhalation exposure to prothisconarde and O Table CP 7.2.1.2-11.  $\bigcirc$ 

Prothioconazole wa found in eight replicates. Residue Jevels to prothioconazole were in general low. In first study except for me operator residues on all samples were below LOQ or in maximum 3 times the LOQ. Only one operator (OB) had higher residues mainly due to the loading of bulked seeds which resulted in a higher dust emission. In the second study the residue level on the air semplers was in general higher but the absolute figures are still low. Residues of prothiocon zole-desthio > LOQ was found on the air samplers of the three operators with the highest residues of prothioconazole.

The higher figures for the replicates with festidues <LQQ in story 1 are due to the number of samples





		total ing	as well as III I	ng/kg Dw)			L.	
Study	Operator		Prothioconazol	e	Prothioconazole-desthio			Ĩ
		In	halation exposi	ure	Inl	nalation expos	ure 🦉 🏾	5
	ID	[µg]	[µg/kg bw]	[µg/kg a.s.	[µg]	[µ@kg bw]	[µg/kg ass.	
				handled]		4	handled)	Ç0
1	OA	1.040	0.0113	6.887	1.040	0.0113	<b>6</b> .887	
1	OB	30.63	0.3735	563.1	5.702	0.065	<b>\$</b> 105 <b>2</b>	S S
1	OC	3.353	0.0258	69.28	1,040	0,0080	Q 2049	×°
1	OD	1.040	0.0095	11.80	^Q 1.040	° 67.0095{	f 1.804	
1	OE	2.589	0.0267	45.73	1:040	0.0107	18.24	ſ
1	OF	1.759	0.0126	چ ۲۹.879	¢ک (آ:040	× 0,0074	× 4.659	
1	OG	3.635	0.0404	× 15.9	01.040	0.0116	4.569	0
1	OH	1.040	0.0149	°∼∕ <u>1</u> 8594	1.040	⁽²⁾ 0.0149	\$ 18, <b>2</b>	Í
1	OI	1.040	<b>6</b> :0112~	Ø.25	5 6.040	× 0.0 12	16.25	
2	OA	0.520	~0.00 <b>6</b> 4	13.8	0.520	.0064	13.87	
2	OB	6.560	<i>∽</i> 0.0€56	47.27		6 ³⁰ 0.0167	ي ≪ي* 12.03	
2	OC	5.940	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$3.04	\$ \$20 ·	0.0062	6.394	
2	OD	13:00	`∕≫0.1325	®175.9	2.500	9.0243	≶ 32.21	
2	OE	5.830	<i>‱</i> 0.0634	59001	0,320	.00057	5.263	
		9						•

# Table CP 7.2.1.2-11: Inhalation exposure to prothioconazole and to prothioconazole-desthio (in

Assessment of operator exposure and its A risk assessment is presented in the following for the setive substances prothioconazole and its conversion product prothioconazole desthiowhen applying 'Prothioconazole FS 100'. Calculations are performed for operators during seed treatment and seed sowing using the experimentally determined specific exposures.

Ő

# Calculation of operator exposure during cereal seed treatment

For the calculation of the operator exposure during cereal seed treatment data of the study conducted with EfA FS 26.25 are used. This database covers a wide range of technical equipment, technical standards and working conditions and includes a large oumber of replicates.

EfA FS 7625 contains 37.5 g/Fluoxestrobit, 25 g/F prothioconazole, 10 g/L triazoxide, and 3.75 g/L tebuconazole and is applied in an application rate 20 to 200 mL/100 kg seed corresponding to 3 to 5 g protheconazole/100 kg seed. A two to three tunes higher application rate is foreseen for the active substance prothioconazole during the treatment of cereal seeds with 'Prothioconazole FS 100'. To evaluate the operator exposure to prothioconazole and prothioconazole-desthio the measured exposure values of each single operator will be corrected with the factor 3.

The following assumptions are made:

Operator bedy weight:	individual body weight of the operators
Dermal absorption:	
Prothioconazole	25%
Prothioconazole-desthio	6%
Inhalation absorption	100% for prothioconazole and prothioconazole-desthio



Log normal?

Table CP 7	.2.1.2-12:	Operator ex	posure t	o pro	thioconazol	e during seed	l treatment a	and	_ 0
		comparison	of the ol	bserve	ed operator	exposure to	the AOEL (a	ctual	Ø 2
		exposure, wi	ith PPE)				•	N.	
Operator	Body	Actual	Poter	tial	Systemic	% of	ð		\$
	weight	dermal	inhala	tion	exposure	AOEL		Š.	-Q
ID		exposure	expos	sure	Г /1-	FO 25	4	\$ ~	Ý ľ
ID					[mg/kg	[0.25			L.
	[ka]	[ug/dav]	[ug/d	lov]	bw/day	mg/Kg	, A		ŝ
04	[Kg] 85	28.08	2 086	ayj	0.00045	Uw/day		S *	u d
OR	100	30.30	5.841		0,00043 0,00047		× v	Q O	* &
00	65	84.66	7 006		0.00047			, Č	s O`
OD	85	116.0	1.040	L	0.00105	$\sim 0.3$		, Ô,	Ű
OF	100	35.00	4 700	6	0.00100	$\begin{pmatrix} & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ \end{pmatrix}$	jo de		, Y
OE	65	53.31	1 591	- Ň			r S	~ .4	
OG	82	35.00	4 786.4	l		Q, 0.2		*	Ś
OH	83	72.01	3 475	<u>≯ %</u> ∧	0.00078		1 Ô ⁵⁷	, and the second	Ø S
OI	82	50.51	2 688		\$00078		N Q	L 2	7
OK	83	123.2	23444	<u>v</u>	√9.0003 <u>/</u> √0.0040%	0.2			
OL	85	32.50	×1 958	· <u> </u>	0.00036		, Š	, Q	
OM	70	32.50	1.550	Ô	0.00030		o õ		
ON	85	35.67	\$2,748	- OF	A 00042	$\mathcal{Q}_{0,2}$	× ~ ~	S	
00	70	36 79 %	3 404	Ç¥				) *	
OP	80	81.98	1 040	, <u>"</u>	0.000091	~(TY 3			
OR	90	3787 4		<u>s</u>					
OS	80	4936	\$2040	Ő	$\sim 0.0005$		1.5		
OT	90	61 70	1 040	-	0.000 <u>0</u> 55	O' m			
08A	65	6962	1.040	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	and 00085	<u> </u>	4 ¹⁷ 47 -		
08B	90	3500	.1 040	A.Y	2 1 0003 ¥				
080	650	$\mathbf{Q}_{6}^{0}$	1.040	<del>d</del> i i	× 0 00058		1		
08D	90	100%	$1.040^{\circ}$	<u> </u>	0400087	0,8/3	1		
08E s	975	46.15	1.040	- A	000050	@ 0.2	1		
08E &	, <i>15</i> 75	<b>G</b> 63	\$ 040		~0.00056	× 0.2	1		
086	80 °∕	42.90	2 784	× %		$\sim 0.2$	1		
08H	80	32.50	1 1 100	Ś	0,00031 0,00046	0.2	1		
081	68 0	40,70	2 488	K)	0.0005	0.2	1		
08K	887	ST 50 5	C3 958	<u> </u>	$5^{\circ}0.00045$	0.2	1		
08L	AG Ĉ	37.50	1 689		0290051	0.2	1		
08M 4	68	3995 0	1.040	- CA	Ø/00048	0.2	1		
08N	88	\$3.00	P040	<u>z</u>	× 0 00033	0.2	1		
5011 (%	 @		Y _		§	0.1	J		
unnaarv s	tatistic 🔊			Ŕ	1				
tatistic				<u> </u>					
tatistic			Wit bw/d@	hPPE %	of AOEL	_			
mpirical 7	th percenti	le 0 .00	063		0.3	=			
mpirizar 95	5th percenti	<b>Å</b> ç (25 0.00	0116		0.5				
1aximum	n d	<u>\$</u> 0.00	0135		0.5				
'arametric	75th perce	entile 0.00	0714		0.3				

no

Table CP 7.2.1.2-13:	Operator exposure to prothioconazole-desthio during seed treatment	and 。
	comparison of the observed operator exposure to the AOEL (actual	Q

		comparison of	of the observe	ed operator	exposure to th	e AOEL (actual	Q.	ð
		exposure, wi	th PPE)			_	N G	Ş
Operator	Body	Actual	Potential	Systemic	% of AOEL	ð (		J
	weight	dermal	inhalation	exposure		S 4		
ID		exposure	exposure	F (1	50.01 /1 4	.0 _Q		₿ _₽
ID	<b>F1</b> 1	F (1 ]	F / 1 ]	[mg/kg	[0.01  mg/kg]			<i>Q</i> ,
0.1	[kg]	[µg/day]	[µg/day]	bw/day	bw/day			<i>a</i> r
OA	85	16.43	1.040	0.00000/1			, K	S
OB	100	13.18	1.040	0.000055	00.5		~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	v √
	05	21.72	1.040	0000108			Û JÛ	v
OD OE	85	31./1	1.040	0.000104		Q', O' Ø	Ű	
OE	100	12.75	1.040	0.000054			2 S	
OF	65 92	27.95	1.040	0.000123			4	
OU	82	10.00	1.040					
OH	83	10.00	1.040	0.000959		S. S	, N	
0I OV	82	10.00	1.040	0.000000			SV.	
OL	05 05	12.34					0	
OL	83 70	10.02	$0.040 \sim$			S & S	)	
ON	70 85	9.00	1.040°	0.000008				
	70	0.00	1.040 °	000000				
OP	80	9.00 × ×	1.040	-0.0000000				
OR	90	10.649	1.040		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$.\$		
OS	80		1.040	0.000050				
OT OT	90	11.00	$\hat{\psi}_{040}$		0.00	. 5		
084	65	×1100 ×	1040	50.0000078				
O8B	90	10.60 5	1.020	0.000078				
080	65	N 44	1 040	0.0000550 0.000080	Ø 0.5			
08D	940	9724	040 0	× 0 000069	07	•		
O8E	75 0	11.25	1 040	0.090069	0 , 907			
08E sa	975	1\$68 \$	1.040	0.000070%	© 0.7			
08G	80	9.38	£040	A.00087	0.7			
088 × ×	80 %	12.73 ×	1.040	0.000068	× 0.7			
081	68	15.79 5	1.040	0.000088	0.9			
O8K	88	1400	1.040 .	0.00006	0.6			
O8L	657	OT1.00	Q.040	0.000078	0.8			
O8M	76 <b>8</b> (	13.20 ~	1.040	0.000081	0.8			
08N 🛎	.88	10.00	1.040 . 9	0,000056	0.6			
, Co				¹ 2	-			
Summary sta	ıtistic 🚿	× A Å	× 6, × ~	Q°				
Statistic	<i>\$</i> 0'			F				

Statistic	Wit	<b>OPPE</b>
	@mg/kg/bw/d	% of AOEL
Empirical 750 percentile	<u>x0</u> .00002	0.7
Empirical 5th percentile	0.00011	1.1
Maximum	0.00013	1.3
Parametric 75th percentile	0.00008	0.8
Log normal?	1	no



#### Calculation of operator exposure during sowing of treated cereal seeds

Systemic operator exposure to prothioconazole and prothioconazole desthio is calculated base from the study results in two alternative ways.

- A) Calculation of the systemic exposure for each operator with the not normalised study results and individual body weights of the operators.
- B) Calculation of the systemic exposure based on formalised dermal and inhalation exposible values (mg/kg a.s. handled) considering a default sowing size and area sown as well as a standard body weight.

For the estimation of the systemic exposure of operators to prothioconazofe and prothioconazole-destrio the actual dermal exposure figures are used.

A) Estimate based on not normalised study results

EfA FS 76.25 contains 37.5 g/L fluoxestrobin, 25 g/L prothis conazole, 10 g/L trazoxide, and 9.75 g/L tebuconazole and is applied in an application rate 120 to 200 mL/100 kg seed corresponding to 3 to 5 g prothis conazole/100 kg seed. A two to three times higher application rate is foreseen for the active substance prothis conazole during the treatment of cereal ceeds with 'Prothis conazole FS 100'. To evaluate the operator exposure to prothis conazole and prothis conazole during the treatment of cereal ceeds with 'Prothis conazole FS 100'. To evaluate the operator exposure to prothis corrected with the factor 3?

The following assumptions and made

Prothioconazole 25% 25% Prothioconazole-desthio 6% 25% 25% Inhalation absorption 2100% for prothioconazole and prothioconazole-desthio

The calculation of the systemic exposure is performed according to the following equation:

Systemic experience [mg/kg bw/day] ((ABE x DA) + PIB) x CF

- ADE = Actual dermad exposure [µgday]
- PIE _ Potential malation exposure [pg/day]
- $DA = Dermal_absorption [\%]$
- BW = individual body weight of the respective operator
- CF = correction factor (3 for prothoconazole and prothiconazole-desthic)

 Table CP 7.24.2-14
 Calculation of systemic operator exposure to prothioconazole using a representative operator exposure study conducted during loading and



		sowing (no	t normalized	l study result	s, actual exposu	re, with PPE)	•
Study/ Operator	Body weight	Actual dermal exposure	Potential inhalation exposure	Systemic exposure	% of AOEL		
	[lea]	[ug/day]	[ua/dav]	[mg/kg	[0.25 mg/kg	Ĩ,	
1/OA	<u>[Kg]</u> 92	μg/day] 35.00	[μg/day]	0.000319	0.13		§ 29 0
1/OR	82	36.40	1.040	0.000319	0.13	<u></u>	
1/OC	130	25.00	30.03	0.001434	0.58	Ő	
1/OD	110	22.50	3.333	0.000279		× č	7
1/OE	07	52.50 94.90	1.040	0.000230			
1/OE	97 140	84.80	2.589	0.000736	\$0.29g	Ŷ, ô	in the second
1/00	00	55.00 70.00	1.759	≪Q.000225	0.09		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1/0U	90 70	/0.60	3.635				¥~~~
1/ОП 1/ОІ	70	32.50	1.040		0.16	, ⁰	à sì
1/01	95	32.50	1,040	· 09000296	× 0.12	0 ³ 4,	
2/0A	81 100	7.00	<b>0</b> ∕520 ₅	° ≯0.000084			, <u>\$</u>
2/0B	100	13.50	Q 6.560	, 0.000298			Č,
2/0C	84	7.00	5.940	°0,0002755°		S. \$.	K ²
2/OD	103	53.00	[™] <b>}</b> 3.65	0.000883	$\mathcal{S} \stackrel{\mathrm{OI}}{\sim} \mathcal{S}$		¥
2/OE	92	35.50	<u>\$5.830 '0</u>	<u>0.000480 (</u>	0.19		
ummary sta	atistic			ý oʻ		Ŷ LĴ	
tatistic	Å	ž Ž	With #	PE C C			
Empirical 75	ith percen	tile ⁶ 0.0	00652			<i>v</i>	
mpirical 95	thercenti			0.4			
1aximum y			0014	\$6 \$			
arametric 75	5th percont		Q0620 0				
og normal?	ţ,	Ó S	jo xes		)ř		
	~ Č		$\sim$				



_



	S	owing (not 1	normalized s	study results	, actual exposure, with PPE)
		Actual	Potential		
Study/	Body	dermal	inhalation	Systemic	je standard s
Operator	weight	exposure	exposure	exposure	% of AOEL
				[mg/kg	[0.01 mg/kg
1/0.4	[kg]	[µg/day]	[µg/day]	bw/day]	bw/day]
I/OA	92	13.00	1.040	0.000059	
1/OB	82	12.00	5.702	0.0002\$5	
1/OC	130	13.00	1.040	0.000042	
1/OD	110	12.00	1.040	0.000048	
1/OE	97	50.90	1.040	000127	
1/OF	140	13.00	1.040	0.000039	
1/OG	90	18.60	1.040	, 0.0 <b>0</b> 0072	
1/OH	70	12.00	1.040	Q.000078	
1/OI	93	12.00	1.040	0.000057	
2/OA	81	7.00	\$0.520 [^]	y 0.000035	
2/OB	100	7.00	0. 1.679	000063>	
2/OC	84	7.00	0520	ר.000034	
2/OD	103	8.20Q	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.000087	
2/OE	92	7.00	×× 0.520°	0.000031	
		÷,	A ~Q	<u> </u>	
Summary stat	istic			õ o	
Statistic		× 4	Quist and		
	×		with ser		
		@mg/kg	w/d	Coff AQEL	
Empirical 75th	percentile	0.000	0075	0,19	
Empirical 95th	Dercentile	0.000	Q65 &	£ 1.65 °	
Q	40%	K Kan			
				<u></u>	
Parametric 75	th percent	ile 🗸 🗍 0.000	(090, Ô ×	0.9%	
Log normal?	Q L		No yes	\$ \$	у ^у
		× 0		<u>,                                    </u>	
4	7	$\mathcal{O}$			
- A	Č		Ő N	, K	
Į.		* _ ^Q ~		$\sim 0^{\gamma}$	
s the second sec	d'	A.O		, y'	
· *	~	or _c r		•	
	SO AN	Ő.	Q Q		
		<u> </u>	ĵ Qĵ		
Ś			$\sim 0^{-1}$		
	Û,				
	S A	, S			
	, O,	No. 10			
		~			
õ					





	(norn	nalized study	results, actual	i exposu	ire, with I	PE)		×.
	~ 1							
	Study	ADE	IE	1		ð		
	ID	[mg/kg a.s.]	[µg/kg a.s.]			Ĩ	~	
1	OA	0.232	6.89		8	A		. 8° . 5°
1	OB	0.671	565.10	Ŭ	a,	,		
1	OC	0.723	69.28	¥"	Ŗ	~//	ø ž	
1	OD	0.369	11,80		A	Ö		
1	OE	1.498	45.73			° Q		
1	OF	0.157	7.879			NO 2		~9
1	OG	0.310	1507		Å.	r S		4
1	OH	0.592	\$ \$.94		Q Ö	, .0. ~	Ô	à s
1	IO	0.508	16.25	× >	Å	Ő ×		
2	OA	0.187	² 13 87		Ú ^Ý 3	5 6		O Star
2	OB	0.097	s49.27 ،	Ŝ' ~	Ø "S			ò
2	OC	0.0861	73.04	Ň		Ö	, , , , , , , , , , , , , , , , , , ,	~
2	OD	0 <b>6</b> 83 v	© 175 <b>.90</b>			8 ₂ 0	%, "	
2	OE	£0.359 ×	59.01	× 4	( ^{0,4} , Ø	Ča	$\bigcirc^{*}$	
Minimu	m 💦	0.0861	6.89	D'			^j	
Maximu	im 🍾	<u>1,498</u>	\$\$565.40		. *O* 5		<i>y</i>	
75th per	centile 🔬	<b>Q</b> .651 ©	<u> </u>		× «.			
95th per	centile	©0.924	§12.1 ¥	$\wp''$	v õ	K"		
75th par	ametric extimate 🗸	0.60%	~~83.43°		-	A1		
Log nor	mal N 1	yes 📎	yes y	5	Ĩ A	¥		
DE = actual	dermal xposure H = ir	nhalation exposure	O L			ř		

Table CP. 72.1.2-16b: Calculation of systemic operator exposure to prothioconazole using a representative operator exposure study conducted during loading and sowing (normalized study results, actual exposure, with PPE)

	Ø Actual	Potential	ð	
	🕺 denomal 🍾	inhalation	Systemic	
	exposure	exposure "	exposure	% of AOEL
	fmg/kg@š.	[nong/kg a 🛇	[mg/kg	[0.25 mg/kg
	🖓 handted] 🕔	handled	bw/day]	bw/day]
Empirical 75th percentire	0.651 🔊	0.0667	0.00103	0.4
Empirical 95th percentile	0.994	×Q.312	0.00252	1.0
Maximum	گې 1.498	0.565	0.00423	1.7
Parametric 757th percentile	0.623	0.0834	0.00108	0.4

able CF	7.2.1.2-17a: Ope ? nori	rator exposur malized study	e to prothioc results. actua	onazole-desthio during loading and sowing ( al exposure, with PPE)
Study	Operator	ADE	IE	
-	ID	[mg/kg a.s.]	[µg/kg a.s.]	
1	OA	0.0861	6.89	A 5 2 2
1	OB	0.221	105.20	
1	OC	0.269	21.49	
1	OD	0.136	11.80	
1	OE	0.899	18:37	
1	OF	0.0582	Q659	
1	OG	0.0816	ky 4.56%	
1	OH	0.219	18,94	
1	OI	0.188 🦋	Å.25 ×	
2	OA	0.187	13.87	
2	OB	0.0504	¥ 12.03	
2	OC	0.0861	° 8.39	
2	OD	0.106	32.2	
2	OE	~~0.07 t~~	5.26	
Minimu	ım	0.0504	¢ک 4.57	
Maxim	um 🔊	0.899	\$105.2 <b>Q</b>	
75th pe	rcentile	0.211	0 18.50	
95th pe	rcentile	0.489	U .S	
75th pa	rametric estimate	<u>∘0</u> ,2242 √	~_ 24. <b>2</b> ®	
Log-noi	rmal	yes	yes (	

# _ 0

ADE = actual demandexposure TE = inflation exposure Table CP. 72.1.2-17b: Calculation of systemic operator exposure study conducted during loading and representative operator exposure study conducted during loading and sowing (normalized study results, actual exposure, with PPE)

				, ,
	🖉 Actual	Potentia	ð	
	🦉 degmal 🔨	, inhalation	Systemic	
	exposureO'	exposure "	) [©] exposure	% of AOEL
	ſmg/kgæs.	[øg/kg a	[mg/kg	[0.01 mg/kg
	Shandfed]	@nandle@	bw/day]	bw/day]
Empirical 75th percentile	0.211	0.0488	0.000142	1.4
Empirical 95th percentile	Ø.489 🏈	10,0578	0.000392	3.9
Maximum 🏾 🌮	ັ້ 0.89 🏹	³ 0.105	0.000715	7.2
Parametric 75th percentile	0.242	0.0242	0.000174	1.7

#### **Summary**

For a reasonable conservative assessment the 75th percentile is used for the estimates of exposure to prothioconazole and prothioconazole-dethio. The selection rule proposed in the EFSA Gurdance considers the higher value of the empirical and the parametric percentile as long as this value is below the sample maximum. Otherwise, the sample maximum should be chosen. Ň

	· •				_* %	
			4	~~ V		8-
				$\bigcirc^{v}$		$(\mathcal{A})$
				. 0	Co"	
			×., "	2	6. K	×)
		۵.	ſ	. 7		<b>~</b>
		(A)		st n'		× -
			@. ^V	i v		v At
		1577		Cn . c	- U	, U
		<b>W</b>	<u> </u>			a .
		•	$\sim$		/ _~	ä٧
Table CD 7 3 1 3 10.	Commence of the same suite of	Aal Gatamaina	d a Duatan arma	at the design		. ())
1 adie UP /.2.1.2-18:	Summary of the experiment	itaiagetermine	u operator exdo	sure aumm	12 Seed	0
	лана у от так так так так так так так так так та		- <b>TL L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L L</b>		<b>B</b> ~ <b>O</b>	×
	Ano stress and and losding algorith	·····	all no with DD	DA V	~	@. ^v
	treatment and ioading/sow	ing (actual ext	Døsure, with PF		()	W)
		- <u>7</u>			Sec. 1	•

	Substance	PAPE	Total systemic exposure	S of AQEL [#]
			(mg/kg pw/day)	
Seed Treatment	Prothioconazole	WOth PPE	× 0.00071 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.3
	Prothioconazole-desthio	With $P P E^{1)} \approx$	0.00008	
Loading /sowing	Prothioconazole	With PPE	<u></u>	لم الم الم الم
(not normalized study results)	Prothioconazole-desthio	With PPE ²⁾	25 0.00009 5 55	
Loading /sowing	Prothioconazole	With PPE ²⁰	00.00108	© [~] ≫0.4
(normalized study results)	Prothioconazole-desthio	With PPE ²⁾	⁴ 0.00017, 0	0 1.7
1) Standard protective g	arment; protective glores are won	during	, mixing and loading, cleaning.	.Q

2) Standard protective garment; protective gloves are form when direct contact to preated seeds is given.

Based on these results there is no macceptable risk anticipated for operators during seed treatment and when loading and sowing treated seeds. According to good agricultural practice the use of adequate work clothing (e.g. trousers and a long sleeved shirt as well as sturdy footwear) is considered. Protective

when roading and sowing treated seeds. According to good agricultural practice the use of adequate work clothing (cd. trouvers and a long sleevel shirt as well as sturdy footwear) is considered. Protective gloves should always be worn when handling the product and when getting into contact with treated seeds or contaminated surfaces.



#### **CP 7.2.2** Bystander and resident exposure

A <u>bystander</u> is a person

• who is located within or directly adjacent to the area where pesticide application or treatment of process or has been made

• whose presence is quite incidental and unrelated to work involving pesticides but put them at risk of exposure

A <u>resident</u> is considered to be a person who lives in the vicinity of the application. Exposure of residents might be expected where drift of residues and subsequent deposition in areas adjacent to the application area can be assumed (e.g. spray applications in the field). In certain cases vapour drift could be another source for resident exposure.

In this context it has to be taken into account that with the intended use of 'Prothioconazole PS 100' treatment of the seeds is performed in protessional seed treatment plants where no person's around whose presence is quite incidental and unrelated to the work. Furthermore, no other (uninvolved) persons are allowed to enter the plant. Concerning sowing of the seed again i has to be taken into account that the seeds are placed directly into the ground and immediately afterwards the seeds are covered with soil.

Hence, with normal use conditions there is no exposure scenario expected that could involve the bystander or resident.

Accordingly, concerning the intended use of 'Prothiocomazole FS 100' Bystander- and resident exposure is considered to bonot redevant of the second s

## CP 7.2.2.1 Estimation of Bystander and resident exposure

Considered to be not applicable with the intended use of Prothiconazole FS 100'. For details please refer to OP7.2 Z

### CP 7.2.2.2 Measurement of bystander and resident exposure

Considered to be not applicable with the intended use of 'Prothioconazole FS 100'.

For details please refer to CP 7.2.2

## CP 7.2.3 Worker exposure

ĸ,

The only intended use of 'Bothioconazole'FS 100' is dressing seeds prior to sowing. During sowing the seeds are immediately covered by soil. Consequently no re-entry scenario is given that could result in worker exposure.

Therefore, worker posure to 'Prothioconazole FS 100' is considered to be not applicable.

## **CP 7.2.3.1** Estimation of worker exposure

Considered to be not applicable with the intended use of 'Prothioconazole FS 100'.



For details please refer to CP 7.2.3.

#### **CP 7.2.3.2** Measurement of worker exposure

Considered to be not applicable with the intended use of 'Prothioconazole FS 200'.

For details please refer to CP 7.2.3.

#### **CP 7.3 Dermal adsorption**

The extent of dermal absorption of PTZ-desthio (prothioconazole-desthio) for fulated as a dilution of the 'Prothioconazole FS 100' (PTZ FS 100) formulation was investigated *in vitro* using human skin. A summary of the study is given in the following section along with the mean values based on the study results and following application of the new EPSA², gridance rules. The study summary and conclusion and recommendation regarding the dermal absorption of PTZ-deschio formulated as a Gilution of the FS 100 formulation is given below.



² EFSA Panel on Plant Protection Products and their Residues (PPR); Guidance on Dermal Absorption. EFSA Journal 2012;10(4):2665. [30 pp.] doi:10.2903/j.efsa.2012.2665.

Document MCP: Section 7 Toxicological studies Prothioconazole FS 100

	Batch: KML 9567.
	Specific activity: 2.45 MBq/mg.
	Radiopurity of the formulation: 98.5%.
Formulation:	The formulation used in this experiment was 5 g/L dilution of the PTZ FS 100 formulation (specification number 102000030977) containing PTZ 5
Test system:	A static diffusion cell system (PetineGear Inc) was used. The static $\frac{1}{2}$ of \frac{1}{2} of $\frac{1}{2}$ of \frac{1}{2} of $\frac{1}{2}$ of $\frac{1}{2}$ of \frac{1}{2} of $\frac{1}{2}$ of \frac{1}{2} of $\frac{1}{2}$ of $\frac{1}{2}$ of \frac{1}{2} of $\frac{1}{2}$ of \frac{1}{2} of $\frac{1}{2}$ of \frac{1}{2} of $\frac{1}{2}$ of \frac{1}{2} of
	The surface area of exposed skin within the cells was $0.64 \text{ cm}^2$ . The receptor chamber volume was nominally 5 mL, with each receptor chamber individually marked with the actual volume by the manufacturer. The receptor fluid was PBS containing PEG (va 6%, w/v), streptomycin (0.1 mg/mL), penicillin G (100 units mL) and sodium azide (0.01%, w/v). The fH was adjusted to 7.4, and the receptor fluid was
Skin integrity:	degrees by sonication for 10 min after being made before being stored in a refrigerator set to maintain a temperature of 4°C prior to use on the study Skin samples were allowed to equilibrate at 32°C ± 1°C for <i>ca</i> 30 min. Phosphate buffered saline (1 mL) was then added to the donor chamber and the skin samples were allowed to equilibrate for a further <i>ca</i> 30 min. The electrical resistance was then measured using a Tinsley Databridge (Model 6404) set at low soltage alternating current, 1000 Hz with a
	maximum voltage of 300 mV root-mean-squared (rms) in the parallel equivalent circuit mode. Any skin sample exhibiting a resistance less than 10.9 K2 was excluded from subsequent absorption measurements. A cross reference of skin cell number, donor number and electrical resistance (k $\Omega$ ) is presented in Appendix 7. The phosphate buffered saline was removed from the skin surface the skin was rinsed with water (2-3 mL) and dried with a subsequent absorption was removed with a subsequent absorption and a subsequent absorption measurements.
Trestment:	The neat formulation was applied over the surface of the stratum corneum of nine samples of skin (3.14 cm ² ) using a positive displacement pipette set to deriver 24.4 $\mu$ L (10 $\mu$ L/cm ² ). The spray dilutions were applied over the surface of the stratum corneum (0.64 cm ² ) using a positive displacement pipette set to deriver 6.4 $\mu$ L (10 $\mu$ L/cm ² ). To accurately quantify the concentration of test preparations applied to the skin samples, representative aliquots of the test preparations were taken at the time of dosing. These samples were mixed with methanol:scintillation fluid (1:5, v/v; 12 mL) and analysed by liquid scintillation counting.
Sampting:	Receptor fluid aliquots were collected at 1, 2, 4, 8 and 12 h post dose as described in Section 6.11. All receptor fluid samples were mixed with

methanol:scintillation fluid (1:5 v/v; 12 mL) and analysed by liquid scintillation counting.

At 8 h post dose, the both static and dynamic cells were washed by applying commercial hand wash soap (50 µL) to each Kin sample and gently rubbing into the skin surface using a tissue swab. The skin was then washed with 10 aliquots (0.5 mL per aliquot) of an aqueous commercial soap solution (2%, v/v).

At 24 hours the stratum corneum was removed with 20 successive ape strips. The skin sample was totated 90° after each tape skip unloss any epidermis was removed. If epidermis was removed, rotation was stopped and details of epidermis femoval documented Each tape strop was placed into an individual vial containing methanol; scintillation fluid (1:5, v/v; 12 mL) and then analysed by liquid sciptillation counting. The skin under the cell flange tanexposed skin) was cut away from the exposed, ° skin. The exposed and mexposed skin samples were placed into separate vials containing Solvable® (2,mL). The skin samples were placed into a waterbath selto 60 °C to at solubilisation. When full dissolved, stannous chloride solution (0.2 g/m) in ethanol, 150 pt) and scintillation fluid (10 mL) was added to the skin samples and analysed by liquid scintillation counting.

#### **Radioassay:**

All samples were counted together with representative blanks using a liquid scintillation analyser (Packard 2100-TR) with automatic opench correction By external standard Representative blank sample values were subtracted from sample count rates to give pet d.p.m. pet sample, Prior to analysis,

#### Table CP 7.3-1: Mean distribution of radioactivity at 24 hours after dose application of [¹⁴C]-PTZ-desthio in an FS 100 formulation at the rate of 5 g/L to human skin samples.

Resuits expressed in terms of perce	mage of appaea radioacarago
	Distribution of radioactivity (% dose)
Dose Levels	5 g/L
Species	Human (n=8)
	Mean N SD
SURFACE COM	PARTMENT Q Q X X
Skin swabs (total) ^a	93.70 3.04 0
Surface Dose (1 st two tape-strips)	0.44
Donor chamber	0,66 Q 0.64 A
Total % non-absorbed	94,80 % 2,34 %
SKIN &ØMPA	RETMENT A A A
© Skin b	0.77 2 00.40 1
Stratumecorneum	0.420
Total % at dose site	× 38 A 0 0,66 ~
RECEPTOR COM	BARTMENT NY LY LY
Total % dectly absorbed	2.74 2.74 2 2.74 0
STUDY.	
Total % Potentially Absorbable e	
TOTAL % RECOVERY	98.92 L 1.52
Evaluation according	o EFSA Guidance
absorption >75% within half of study duration	No 71%)20
standard demation 25%	V ves v Ø
Salar Covery 95%	V NOV NOV
Adjusted, Total % Potentially Absorbable	$\vec{b}$

Results expressed in terms of percentage of applied radioactivits

a: sum of radioactivity found in Sabs at the and 24H.

b: sum of radioactivity ound in kin after tape stripping procedute and in surrounding skin.

": tape-strip excluding numbers 1 & 2 which are considered to be non-absorbed cose.

d: sum of adioactivity found in receptor fluid (0-24k), receptor fluid terminal and receptor chamber. e: total % directly absorbed + total % at dose site

f: values considered for the adjusted Total % Potentially absorbable according to EFSA are in bold Italics

À

SD. standard devigion

n.d.: not detected (below the limit of detection)

n.a. : not applicable

Ŷ

In the above table, the presented means do nov always ealculate exactly from the presented individual data. This is the to rounding-up differences resulting from the use of the spreadsheet program.

O

### Conclusion:

The extent of dermal absorption of PTZ desthip (prothioconazole-desthio) formulated as a dilution of the 'Prothioconazole FS' 100' (PTZ FS, 100) formulation was investigated in vitro using human skin. A summary of the study is given in the following section along with the mean values based on the study results and following application of the new EFSA guidance rules. A conclusion and recommendation regarding the dermal absorption of PTZ desthio formulated as a dilution of the FS 100 formulation is given below.

The nean percentage of PHZ-desthio in the FS 100 formulation that was considered to be potentially absorbable adjrectly absorbed plus total remaining at dose site) over a period of 24 hours for the 5 g/L dilution was 4.1% for the human skin. Applying the new EFSA guidance this value adjusts to 6%.



According to the new EFSA guidance³ there is the provision that when the sampling period is 24 hours (which is the case for this study) and over 75% of the total absorption (material in the receptor fluid at the end of the study) occurred within half of the duration (12 hours) of the total sampling period that the absorption will be taken as the sum of receptor fluid, receptor chamber washes and the skip sample excluding all tape strips. These criteria were not met in this study. There is also the provision that a standard deviation equal to or larger than 25% of the mean of the absorption requires the use of an alternative value or rejection of the study. The guidance prefers the approach of adding the standard? deviation to the mean to cover the upper 84th percentile value of the results. Additionally where an overall recovery of less than 95% occurs, a normalisation procedure is to be used by preference. Albeit that the notifier considers that both the value of 25% for the standard deviation limit and the 95%that the notifier considers that both the value of 2.3.4 for the staggard deviation infrared to value of 2.3.4 for the staggard deviation in the following values for [14C]-PTZ-desthio in a 5 g/L dilution of the PTZ FS 100 formulation:
6% for the neat formulation (5 g/L)
6% for the neat formulation (5 g/L)
6% for the neat formulation (5 g/L)



³ EFSA Panel on Plant Protection Products and their Residues (PPR); Guidance on Dermal Absorption. EFSA Journal 2012;10(4):2665. [30 pp.] doi:10.2903/j.efsa.2012.2665.