

Fosetvl

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience. No part of the document or any information contained therein may be disclosed to any third? party without the prior written authorisation of Bayer CropScience

The summaries and evaluations contained in this document are based on mpublished O proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not grant, amend, or renew a registration on the from Bayer CropScience; or
 from Bayer CropScience; or
 from other applicants once the period of data protection has expired. basis of the summaries and evaluation of inpublished proprietary data contained in this document unless they have received the data on which the summaries and evaluation are based,

Version history

Date (yyyy-mm-dd)	Data points containing amendments or additions ¹ and brief description	Document identifier and version momber
2015-10-05	Original Document MCA – Section 7 of Supplementary Dossier	M-534116-62-1
2016-07-19	Dossier update according to "Request for additional information on	M-534116-03-1
	 the supplementary dossier submitted by Bayer CropScience for the approval renewal of the active substance Foretyl (2015-5865)" by RMS France on 2016-04-04 and its following on 2016-06 02: BCS responses to RMS requests have been added throughout Section 7. Summaries (including detailed result tables) of the studies used for the first approval of fosetyk and presented in the DAR and addenda to the DAR which are still relevant for the kist of Endpoints have been added throughout Section 7. 	

Table of Contents

		Rage ?	7
CA 7	FATE AND BEHAVIOUR IN THE ENVIRONMENT	Ş55	2
CA 7.1	Fate and behaviour in soil		
CA 7.1.1	Route of degradation in soil.		
CA 7.1.1.1	Aerobic degradation	×6	
CA 7.1.1.2	Anaerobic degradation	×	
CA 7.1.1.3	Soil photolysis		6
CA 7.1.2	Rate of degradation in soil		,® √
CA 7.1.2.1	Laboratory studies	<u>~</u> .83 ^O	"
CA 7.1.2.1.1	Aerobic degradation of the active substance	83	
CA 7.1.2.1.2	Aerobic degradation of metaboliter breakdown and reaction producto		
CA 7.1.2.1.3	Anaerobic degradation of the active substance	<u>\$118</u>	
CA 7.1.2.1.4	Anaerobic degradation of metabolites, breakdown and reaction products	118	
CA 7.1.2.2	Field studies	19	
CA 7.1.2.2.1	Soil dissipation studies	A19	
CA 7.1.2.2.2	Soil accumulation studies		
CA 7.1.3	Adsorption and desorption in soil 2 2 2	121	
CA 7.1.3.1	Adsorption and desorption and desorp	121	
CA 7.1.3.1.1	Adsorption and desorption of the active substance	121	
CA 7.1.3.1.2	Adsorption and desorption of metabolites, breakdown and eaction products	127	
CA 7.1.3.2	Aged sorption Strange Contraction Strange Cont	130	
CA 7.1.4	Mobility in soil	135	
CA 7.1.4.1	Column leaching studies	135	
CA 7.1.4.1.1	Column leaching of the active substance.	135	
CA 7.1.4.1.2	Column leaching of metabolites, breakdown and reaction products	143	
CA 7.1.4.2	Lystheter studies	156	
CA 7.1.4.3	Field leaching studies	156	
CA 7.2	Fate and behaviour in water and sectiment.	157	
CA 7.2.1 Õ	Route and rate of degradation in aquatic systems (chemical and photochemical		
, Ôj	degradation), 9	157	
CA 7.2.1	Hydrolytic degradation	157	
CA 7.2.1.2	Direct photochemical degradation	168	
CA 7.2.1.3	Indeed photochemical degradation	174	
CA 7.2.2	Route and rate of biological degradation in aquatic systems	179	
CA 7.2.2.1	""Řeady biode gradability". X. S. S. S.	179	
CA 7.2.2.2 🔊	Aerobic mineralisation in surface water	187	
CA 7.2.2.3	Water/sectiment study from a contract of the section of the sectio	194	
CA 7.2.2	Irradiated water sediment study	230	
CA 7.2.3	Degradation in the saturated zoneQ.	230	
CA Z.S	Fate and behaviour in air	231	
CA 7.3.1	Route and rate of degradation in air	231	
CA 7.3.2	gransport via airQ	233	
CA 7.3.3	Local and Sobal effects C.	234	
CA 7.4	Definition of the residue.	234	
CA 7.4	Definition of the residue for risk assessment	234	
CA 7.42	Definition of the residue for monitoring	235	
CA 75 O	Monitoring data	235	
	LE CONTRACTOR DE LA CONT		
ČQ°			

CA 7 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Fosetyl was included in Annex I to Directive 91/414/EEC in 2006 (Directive 2006/64/CE of 18 July 2006, Entry into Force on 1 May 2007). This Supplementary Dossier contains only data which were not submitted at the time of the Annex I inclusion of fosetyl under Directive 91/414/EEC and which were therefore not evaluated during the first EU review. All data which were already submitted by Bayer CropScience (BCS) for the Annex I inclusion under Directive 91/414/PEC are contained in the DAR, its Addenda and are included in the Baseline Dossier provided by BCS. These data are only mentioned in the Supplementary Dossier for the sake of completeness and only general information (e.g. author, reference etc.) is available for these data. In order to facilitate discrimination between new data and data submitted during the Annex I inclusion process under Directive 21/414/EEC, the old C data are written in grey typeface. For all new studies, detailed simmaries are provided within this Supplementary Dossier. However, for a better understanding of the fate and behaviour in the environment of fosetyl, short summaries including the results of all studies are given at the begivning of the relevant sections. Additional information requested by the RMIS France on 2016-04-04 and its follow up on 2016-06-02 during the evaluation of the Supplementary Dossier is highlighted in yellow?

Fosetyl is the ISO common name for etbyl hydrogen phosphonate (UPAC). Due to the fact that the aluminium salt, a variant of fosetyl, is used in the formulated product, it should be noted that the data in this section belong to the variant fosetyl-atuminitim (fosetyl-AD, unless otherwise specified.

In original reports study authors may have used different names or codes for metabolites of fosetyl-Al. In this summary, a single name or assingle code is used for each metabolite. A full list containing structural formula, various names short forms, codes and occurrences of motabolites is provided as Document N3.

Ø

As some pragmatic approach "physiphonic acid" formed as a major metabolite is reported in this Supplementary Dostrer as the free acid for the sake of clarity and unequivocal handling. After application, aluminium oris-Qoothyl phosphonate Q.e. Cosetyl Al) dissociates into the O-ethyl phosphonate and aluminium Yons & Any prosphonate formed from O-ethyl phosphonate in the following woold never be presen in the form of the free acid (i.e. phosphonic acid) under the conditions of the environment (pl 4 to 9). This conclusion is supported by the molecular structure and by the dissociation constant observed (dissociation constant for the first step of deprotonation: pKa = 20). Consequently, phosphonates in their fully protonated form are strong acids that spontaneously form salts in contact with soil or natural water with any suitable counter ion present (i.e. sodium, potassium, magnesium, calcium). With the ability to readily form salts in the environment phosphonates are, in terms of their addic or alkaline character, similar to the salts of phosphoric acid

The studies investigating the environmental fate of fosetyl-aluminium were performed with the following positions of ¹⁴C- and ³²P-radiolabel:

It should be noted that the two isotopes of phosphorus, i.e. ³²P and ³³P, do have a half-life of 14.3 and 25.3 days respectively. This limits the use for long-term tests, in particular when being compared to tests with ¹⁴C-radiolabelled compounds. Test durations at or beyond the half-life of the corresponding phosphorus isotope need to consider the decline from short half-life thus contributing to a higher complexity in interpretation of test results.

Bayer – Crop Science Division

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

Bayer – Crop Science Division

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

Report: Title:	KCA 7.1.1.1/09 ;; Fractionation of soil phosphorus	; 1957; M-234780-01-1	
Report No.:	C034357		
Document No.:	M-234780-01-1		
Guideline(s):	none		
Guideline deviation(s):	not applicable	°℃,	
GLP/GEP:	no	Ĩ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Report:	KCA 7.1.1.1/10 W; 2	2005; M-248853-01	5° 5° 49
Title:	Assessment of aluminium deposite	ed (a soil due to agricultural usaged	fosety al
	Code: AE F053616	R U U	
Report No.:	C047183	,	
Document No.:	M-248853-01-1		
Guideline(s):	none	Y 6° Å Å	1
Guideline deviation(s):	not applicable		
GLP/GEP:	no (,)		
	Ŏ ^Ŷ ,ŪĬ		· A
The route of degradation	on in aerobic soil of fosety	ningum (f@setvl-Al) had been io	vestigated under
laboratory conditions in	n a total of three studies in $\sqrt{2}$		

- three soils (20 and 12 °C, moisture at 70% of water retention capacity for one soft, 50% of water retention capacity for two soils) after application of 1-16- and ³²P-hoeled, fosetyl-Al (KCA 7.1.1.1/01);
- four soils (20 °C, moisture at 75% of water capacity at 0.33 bat) after application of 1-¹⁴C-labeled fosetyl-Al (KCA 7.1.1.1/92). In addition and for comparison, investigations were performed with 1-¹⁴C-labeled ethanol separately dosed to two soils and incubated under the same conditions as for the active substance;
- three soils under standard conditions (20 °C moisture at 40% of the maximum water holding capacity (MWHC) after application of 1-14 C-habeled fosetyl-Al (KQA 7.17 1.1/03).

The data requirement was addressed under Point 7(1).1.1.1 of the Bossier submitted and evaluated for the Annex I inclusion of foretyl under Directive 91/414/FEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005). Consequently there is no detailed description of this existing data in this Supplementary Dossier.

It should be noted that fosetyl-Al has a very simple structure to consist of portions to generate potentially organic? (ethanol') and inorganic (duminum ions, phosphorus) portions of residues in the environment. This nature to form small, short-lived species (apart from phosphonic acid) is the cause of analytical challenges to detect the active substance as well as for any components formed at trace level. Moreover, a new study according to OECD 307 would not be designed and conducted significantly different from studies available. New data would thus not contribute to a better understanding on route and rate of degradation of tosetyl-Al in soil.

The test designs of Studies KCA 7.1.1.101 to KCA 7.1.1.1/03 reflect typical designs as for current OECD 307 testing. The Studies included analysis of separate soil samples at the various timepoints after application of ¹⁴C-labelled active substance. Material balances were established and the distribution of degradation products at the various time points was reported.

In summary it is concluded that the studies are still valid with no major deviation from designs according to OECD 307.

The evaluation revealed that the degradation of fosetyl-Al in aerobic soil proceeded rapidly *via* biologically induced split of the molecule into 'non-organic' parts, i.e. 'phosphonates' (phosphonic acid, see also explanations in the following) and into ethanol being the predecessor of other transient, carbon containing transformation products. The degradation in aerobic soil was accompanied by formation of non-extractable residues (NER) and significant mineralisation to ¹⁴C-carbon dioxide.

Ethanol and 'phosphonate' (phosphonic acid, see below) occurred as major metabolites (>10% AR) in tests on route of degradation in aerobic soil. The transient character of ethanol and its degradation products is clearly indicated by its occurrence and decline within one day of incubation. Besides/the active substance, phosphonate in the defined form as the free phosphonic acid had been defined as the & residue in soil, groundwater and surface water for consideration in environmental risk assessments for Annex I inclusion.

It should be noted that 'phosphonates' are dealt with as phosphonic and in this dossier pragmatic approach for the sake of clarity and unequivocal naming. After application, aluminium tris-O-ethyl phosphonate (i.e. fosetyl-A) dissociate into the O-effyl phosphonate anions and aluminium kations. Any phosphonate formed in the following from Qeethyl phosphonate would thus never be present as the gree acid (is phosphonic acid) under the Ŷ conditions of the environment (pH 4 to 9).

This conclusion is supported by the molecular structure and by the dissociation constant observed². Consequently phosphonates in their fully protonated form are strong asids that spontaneously form salts in contact with soil or natural water with any Suitable ubiquitous counter in present (i.e. sodium, potassium, magnesium, calcium).

For actual environmental risk assessments within the approval renewal of footyl, ethanol was not considered due to its transient character in aerobic soil degradation tests. This sonclusion is supported by the nature of ethanol to be readily biodegradable. In addition, for nation and respiration in natural Ś biological systems like yeasts is well known. ð The metabolic pathway resulting from degradation tests in aprobic soil under conditions of the

laboratory is summarized in Figure 7.1.1. 121. 4. ^Q Ŵ

Ethanol is a natural product to predominantly result from formentation processes. These can also occur for some time in the environment, for example, during the decay of fruits. Following its simple structure to contain two carbon atoms hydrogen and oxygen only, the compound qualifies for exclusion from risk assessment at the first step when considering the criteria laid down in Guidance Document SANCO/221/2000 Yev.10, dated 25 February 2003 to exolude metabolites within the relevance assessment for groundwater. Ô

The data available on route and gate of degradation of ethanol in soil and water from tests with the active substance and from separately applied ethanol support a type of weight of evidence approach that ethapol is readily degraded. Based again on a casonal application rate of 3 x 3.6 kg a.s./ha = 10.8 kg a.s./ha (please refer to Document DO of the representative formulation Fosetyl-Al WG 80), this would be formally a maximum relase of 4.2 for ethanol distributed in 750 000 kg soil (area of 1 ha, 5 cm depth, soil density of 1. kg/L pto result in a maximum concentration of about 5.6 mg/kg soil. Considering the high dilution in combination with ready biodegradability, negligible effects can be estimated from ethanol residues in the environment following use of fosetyl-Al in the field.

Ŵ Within the process of Annex Proclusion of Fosetx Junder Directive 91/414/EEC, aspects of the fate and potential of aluminium originating from use of tosetyl-Al were also considered, i.e. the potential to set

request or automotion originating from use of tosetyl-Al were also considered, i.e. the potential to set effects in the environment. The request had been addressed in a document included as KCA 7.1.1.1/10.

Distribution constant of phosphonic acid for the first step of deprotonation: pKa = 2.00; for second step: pKa = 6.59. At environmentally relevant values of pH phosphonates will be thus present in their ionized form as $H_2PO_3^-$ or HPO_3^{2-} ions.

Following use of fosetyl-Al the inorganic portion of residues may be formally described as 'Al³⁺ ions'. For the sake of scientific precision in description it should be considered that Al^{3+} ions definitively do not exist in a free form in the environment. Aluminium (Al) has a very high affinity to oxygen resulting in very tight binding of the two elements. This binding is pre-determined in the molecular structure of fosetyl. In a first approach, Al residues species can be more typically characterised as 'AlO⁺' upon their release. 'AlO⁺'-type residues of Al undergo mineralisation by binding to counterions found ubiquitously in the mineral fraction of the environment such a \mathbb{S}^{n} Na⁺, K⁺, Mg^{2[‡]}, Ca \mathbb{S}^{n} as cations, but also to undergo binding to oxgen-containing anions like carbonates ('CO₃²O, phosphates ('PO4³⁻') and silicates ('SiO4²⁻'). As a result water-soluble, dissolved residues are fixed to form 'kaolin-type' and other minerals contributing as Al-containing fraction is a predominant portion to the 'earth crust'. The earth crust contains about 8% Al thus being the third most abundant element besides C oxgen (about 60%) and silicon (28%). Water-soluble residues of Al are thus found to a negligible extent in the environment. With Al being not defined as a composition of concern there was no requirement to set limits or define as a target in the Drinking Water Directive ð Ň The facts should be considered when evaluating the significance of Al residues in the environment S *°* released from fosetyl-Al use: Ľ Õ The total mineral portion of an area of 1 bestare in size and of 5 cm depth weighs about 1,250 000 kg (1250 tons). Assuming an abundance of 8% AT thereof this includes 100 000 kg (100 tons) of M'. A maximum annual residue 0.86 kg 'Al³ results' from use of losety Al when spoyed at the maximum seasonal application rate of 3 x 3.6 kg a.s. that (= 19.8 kg a.s. /ha an total please refer to Document D1 of the representative formulation Fosetyl-AI WG 80). The annual release reflects about 0.0008% of the total actual Al-content in soil. The contribution to the existing portion of As in soil is thus minimal. ° 6 Ĩ, Ą Õ

In summary, aluminium and ethan al residios undergo mineralisation either to contribute to the mineral portion of soil and to carbon dioxide via microbial oxidation processes.

Ũ

The basic information on transformation of phosphonate tromes terms phosphyte) into phosphate was demonstrated on the basis of publications (KCAF.1.1, 504 to KCA 79.1.1/07). The common element of the publications was that the oxidation of phosphonate to phosphate is a biologically induced process by soil microbes. In addition, a method for the extraction and thus characterization of inorganic phosphates occuping in soil was published and submitted as supplementary data in KCA 7.1.1 (09. A number of aspects dealing with the use of phosphonates in agriculture including the use as fertilizer and the potential influence on plant physiology were reviewed in KCA 7.1.1.1/09. Finally, the various key facts to describe the rout Cand rate of degradation of phosphonates in the soil and aquatic environment were suppharized in KCA 7. [4].1/08

Phosphate is a mineral deing matural component on the earth crust including soil. A potential release of phosphate in soil and water are strongly dependent on availability to biology/organisms. Phosphonates and their madation product phosphate are essential nutrients taken up by plants thus lowering the risk for accumulation in soil. In addition, availability to plants, but also potential for transporting the environment is strongly dependent on the actual form of the phosphate salt in soil. This effectives well known to be a problem of the effectiveness as nutrient for fertilizers. In particular, binding to earth-alkali metals like magnesiun and calcium can be very strong to result as a process of ageing in non-colubility in water and non-availability to plants, but also lowering the risk for any transport in the soil and water envitonment.

Phosphate is an essential sutrient, for all living organisms including animals, plants and microbia. For example, for vines in the EU typical annual amounts of phosphate fertilizers applied range from 22 to 110 kg/P2O5/ha A maximum of 10.8 kg (3 x 3.6 kg) fosetyl-Al/ha applied (please refer to Document D1 of the representative formulation Fosetyl-Al WG 80) thus may form 8.64 kg phosphate/ha in theory. In case of use in crops with low phosphate application rates, the amount of phosphonates applied should therefore be considered in the total annual phosphate balance.

Study summaries on rate of aerobic degradation in soil taken from the DAR

In addition and at the special request of the RMS France, summaries of existing studies on aerobic degradation in soil already evaluated for the Annex I inclusion of fosetyl under Directive 91/414 EEC were taken from the Draft Assessment Report of the RMS France (February 2005) and the Final Addendum (September 2005). Summaries of those studies are provided, from which data were used for the new kinetic evaluations and the actual risk assessment. These study summaries are written in grey typeface in the following to distinguish from new studies.

		- Contraction of the second se	Ű,	Č.		, ^v
Report:	KCA 7 1 1 1/01	h:	· ·	1978· M=1636	79-01-1	. 6
Title:	Aluminium ethylphosphi	te - Degradation in	the soil.	.0	\$ <u>`</u> ,0 [*] ,	S.
Report No.:	R002963	A	Q b°	Å 4	U L	<i>0</i>
Document No.:	M-163672-01-1	RO ^	y . 0*	°∛ ∖O`	, Q , Q'	
Guideline(s):	none			Ø D` >>		
Guideline deviation(s):	not applicable	× .0* \$	4.0	S.	4	
GLP/GEP:	no «				a 4	0
	S.		× A	St	S N	
Comment RMS: Stu	dy carried out before.	LP. No guideli	ne followed	. Thie stude	can be use	d
for	evaluation. Q.		× ×	L' S	O	
			Ő "S	S &	, Ôg	
Methods	Q, a				\approx	
Aluminium 1- ¹⁴ C-eth	vlnhosnl@nate & noi@	murit obs		nastes) (or	Aluminiur	n
32 P-ethylphosphonate (a few impurities oberry	red on TI (Vinlati	werthan	inlied at 500 i	mg/kg (abor	11 1f
10 times the normal ra	te) to 50 g mple of 3	and a (Table 8.1		abition was at	12/12/12 (0000)	C
and at 50% MWHC S.	aida wara avtraatiol with	Wistilled water		V in averate v	120120	d
and at 50% M w nC. So	oling were extracted with	ta willo appoint	Cauroactivity	y III exclacts v	C = CO	u
by LSC (PC) of Cerer	ikoi elett (- 6). Exou				C. CO ₂ wa	IS
trapped in methanol-o	henetro lamine (was che	cied by garium	myarograe)	. Onextracted	radioactivit	y
$({}^{14}C)$ was determined b	y combuston and was n	of chargeterized.	L C	7		
ð .		N 5	L' S			
Table 8.1.1.1-1: Soil cha	acteristics a co					
	🔬 📣 ersaittes soil	Ger@an	soi02.2	German s	oil 2.3	
Clave 2 µm) %		A 1 61	o^{v}	9.2		

	Versaittes soil	Gerthan soid2.2	German soil 2.3
Clay(\$2 μm) %	\$ \$0.5 ×	5 6.CO	9.2
Silt (2-20 µm) %	× × 21.10 ×	& <u>\$0</u> 70	12.4
Sand (20-200 µm) %	67 55 A . O	O″ 🔊 28.4	37.6
Sand (> 200 µm)%		\$ 55.0	40.5
Organic mat \mathcal{Q} (OC) \mathcal{Q}^{*}	0 1 4 (1 1 9 . C	0 4.71 (2.74)	1.72 (1.0)
pH		6.9	6.1
CEC	J 60 2	13.2	5.0
		•	

Table 8.1.1.1-2: Degradation of ¹⁴C-fosetyl-Al in 3 soils at 20 °C (mean of 2 replicates, % AR)

Soil	DAT	CO ₂ ^a	Extractable ^a	Non-extractable	Recovery	
Versailles	1	18.9 (5.0)	49.8 (84.5)	26.6	95.3	
	2	55.2 (16.2)	5.1 (50.8)	38.6	98.9	ď
	4	67.3 (58.7)	2.3 (5.2)	37.6	107.20	Ô
	8	67.5 (67.8)	-	29.7	97.2	¢ [×]
	16	70.0 (69.3)	-	26.7	X .7 X	/ Ro
	32	74.7 (74.5)	-	25,9	○ 8.6 ⊘	~?
German 2.2	1	38.6 (5.3)	21.7 (4.9)	\$9.7	100.07	Q a
	2	58.6 (17.4)	10.241.9)	<u>41.3</u>		Y "«
	4	70.7 (59.4)	10.8 (5.9)	of¥ 36.9 _★	108.4 C	, Ó [¥]
	8	70.1 (60.9)	8 .2	27.1	105.4 O	
	16	70.2 (65.3)	1.6	V 631.7 X	93.5	K,
	32	77.8 (68.9) 📿	- ~	20.4 ∼	0 98 0	¢ í
German 2.3	1	13.5 (5.9)	\$53.0	× 14 10	\$0.6 x	v
	2	58.9 (16.6)	2.9	~ 22 S	84.5	
	4	73.0 (57.8)	2	0° °0°3.5	× 106 5	C,°
	8	76.9 (55 5)		27.4	106	21
	16	77.6(71.1)	\sim		98.6	, ,
	32	83@(75.6)~	- °~		C104.2 O	

^a values into brackets are from studies at \mathfrak{P}

D Results

For ¹⁴C-labelled fosetyl, recorgares were acceptablowith a few speeptions (Tables 8 M1.1-2). For all soils, rapid and significant mileralization of the thyl group was observed at both temperature (> 50% in 2 or 4 days and > 70% in 4 to 16 d or 16 (32 d at 20 or 12 °C, respectively). No degradation product was detected in soil extracts at 12 °C scontaided the highest amounts of CA). At 20 °C, bound residue peaked at 33 % to 41 % after 2 to 4 d and was 20.4 of 23.9% after 32 d. For ³²P-labelled fosetyl, no figure was presented but no colatile was tord to be recovered and phosphonic acid was identified in the 2DAT foil extract from the Germon soil 2.2 at 12 °C Assuming no degradation product in soil extracts of 50% in the Germon soil 2.2 at 12 °C Assuming no degradation product in soil extracts of 50% is sumatted to be 1 d 20 °C and < 2 d at 12 °C.

 Report:
 KCA 7 (1.1/02)
 13 (1.1/02)
 1982; M-159391-01-1

 Title:
 Foseto Al (aliminium tris-OethylptosphorOte): Soil metabolism study

 Report No.:
 R06/825
 7

 Document No.:
 M-15939(-01-1)

 Guideline (s):
 Foseto All (aliminium tris-OethylptosphorOte): Soil metabolism study

 GLP/GEP:
 No

CommerceRMS: Study caroed our before GLE. No guideline was followed. This study can be

D Methods Aluminium 10^{4} C-cosylphocohonate (purity 97.7%) or 1-¹⁴C-ethanol (purity 99%) were applied at 100 or 39 mg/kg, respectively, to 25 g samples of sandy loam and clay loam soils (Table 8.1.1.1-3). Incubated was 20 °C and 675% of soil moisture at 33 kPa for 15 hours. Volatiles were trapped in NaOH and a salyset by LC and HPLC before and after adding barium hydroxide. Soils were extracted with 0.1M sulfure acid, 0.1N ammonium hydroxide, methanol and ethyl acetate, and extracts were analysed by LSC and HPLC. Soil residue was quantified by combustion and fractionated into humic costances. For fosetyl, degradation was also studied in 2 additional soils (loamy sand and silt loam, see Table 8.1.1.1-3) for 3 hours and in the 4 sterile soils for 1 day. Influence of soil moisture (25 to 75% of moisture at 33 kPa) and of concentration (20 to 500 mg/kg) was studied using the sandy

Bayer – Crop Science Division

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

loam soil. Influence of repeated applications was also investigated (unlabelled fosetyl was applied 4 times, every 2 d, before adding labelled compound at 100 mg/kg).

Table 8.1.1.1-3: Soils characteristics

ble 8.1.1.1-3: Soils charact	eristics		~	
	Sandy loam I	Loamy sand I	Silt loam I	Clay log m I
Sand (> 50 µm) %	62.3	81.2	15.2	24.0
Silt (2-50 µm) %	20.2	13.8	55,5	Q7.6 0 x
Clay (< 2 µm) %	13.6	3.1 🖒	25.0	x 37 x x
Organic matter (OC) %	3.6 (2.09)	1.3 (0.%)	20 (1.34)	2.6 (951)
pН	5.3	4	6.6	V Q.6 5 4
CEC meq/100 g	13	5	Q 14 K	21 C Q
Moisture 33 kPa %	24	16	v <u>0</u> 26 Q	0 26 Q
Bulk density	1.4	& <u>16</u> 5	L 1.3 0	0 × 25 × 5

D Results

For the main studies with fosetyl (sandy bam and clay bam foils), recoverio were acceptable (Tobles 8.1.1.1-4 and -5). Mineralization of the ethyl group was 9.4 to 190% after 15 to 16 h and significant amounts of ethanol were detected in paps (up to 30.6% after 15.6). Ethylol loges coold be due to the small size of soil samples. Extractable IC was mainly recovered of the Ridic Stracts mainly as fosetyl and ethanol (max. 78% after 1.2n). It as < 03% io NH₄GH extracts and neither fosetyl nor ethanol were detected by HLC. Epsetyl was opidly degraded (< 4% omaining after 7 h). Unextractable RA was 37 to 47% after 15% 16th and it was shown to be associated with the fulvic acid fraction (sandy loam) or the oulvic and hu@in fractions (clay 16µm). Setther dosetyl nor ethanol were detected in the fulvio fraction by HPLC. The behaviou of ¹⁴C-ethanol was been similar to that of aluminium 1-¹⁴C-ethylohosphonate. For foselyl, admilar pattern of degradation was observed in the additional soils (loany sand and site loan@No degradation was observed in the 4 sterile soils (data not alumin). Sail main to be the other and the statement of the solution shown). Soil moissire her no effect of the rate of degrad tion of foseful but the volatile fraction (probably ethand) was more important at low soil moissure (Cable 51.1.1-6). Concentration and previous treate onts her no effect of loseta degradation a soil vables 8.1.1.1-7 and -8).

R.Y.	01	ÓŇ	¹		\bigcirc	s s s s s s s s s s s s s s s s s s s	\sim \circ					
• 2		Ĩ,	Fos	ety	4	%	A A		Etha	nol		
	R	0.75 h	0 7.5 h	~≫3 h	% 7 h	©15h ≽	0 h	0.75 h	1.5 h	3 h	7 h	15 h
Total volatile	ΨQ -	2.8	7.7	30.1	42.	46.0	-	11.0	19.3	32.3	51.4	54.4
ethanol		2.0	S S	279	369	36.0	-	10.0	17.5	29.4	44.6	46.7
CO ₂		°€42 ▲	X .0	Q2.2	\$ 5.3	0.4	-	1.0	1.8	2.9	6.8	7.7
Total extract	99.5	91.8 🐔	81.0 °	51.8	15.3	12.6	99.1	80.3	69.9	48.6	10.5	10.6
H ₂ SO xtr.	97.3	89.9♥	78.3	48.0	20	2.0	98.7	79.6	67.3	44.6	2.1	1.4
A ffosetyl	Ð	Ĵ.	@ .2	ø,		-	-	-	-	-	-	-
ethanol	-	73 C	78	×48 () 5	-	99.5	81	67	44	-	-
NH4OH extr. 🖉	2.0	1.64	2	2.0	8.0	8.3	0.4	1.1	2.1	3.0	6.3	7.3
Unextract.	Q.T.	and the second s	¢¶ ∦	14.8	38.4	37.0	0.1	3.5	9.8	16.1	32.5	33.6
Recovery	\$99.6	68.3	€96.5 ≈	Q 96.6	96.5	95.6	99.2	95.3	98.9	97.0	94.3	98.6

Table 8.1.1 4: Degradation of ¹⁴ cosety Al and C-ethanol in Candy 10m soil at 20 °C (% AR)

Bayer – Crop Science Division

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

Table 8.1.1.1-5: Degradation of ¹⁴C-fosetyl-Al and ¹⁴C-ethanol in clay loam soil at 20 °C (% AR)

				Fosetyl								Ethan	ol				Û	ð
				0	1 h	3	h	7 h	16 h	0 h	1 h	3 h	7	7 h	161	h 🎾	NN	Ŝ
	Total v	olatile)	-	2.5	16	5.1	35.4	37.2	-	17.5	36.	5	2.2	54		A	0
	eth	anol		-	1.8	12	2.9	23.3	17.6	-	16.2	32	4	1.7	40.	2	- G	
	CO	2		-	0.7	3	.2	12.1	19.6	-	1.3	3.5	1	0.5	S 14.	1	ŗ	Ĩn
	Total e	extract		96.5	91.7	67	7.2	20.1	10.9	95.8	73.4	42.2	9	.4~	7.8			Ĵ
	H_2	SO ₄ ex	tr.	94.8	89.8	63	3.8	12.6	30	95.3	7,08	38.7		Ð	~	ş 	ŗĨ	J.
		fosety	1	95	64	2	21	4	L -	-	.0¥	-	×Ű		S -	Ş	, 1	, Ő ^v
		ethand	ol	-	27	4	13	6 3	Ľ -	96	ر ۲2 ∮	。 38	,0		¥ -	e O	, Ĉ	, Y
	NH	I4OH e	xtr.	1.5	1.6	2	.2	40	3.9	04	168	19	,3	Óľ	299)	Ĩ	
	Unextr	act.		0.1	3.5	14	4.7	, 40.0	47.0	Ø .2	3.2	Ø7.7	6	4.4	35.	3 😴	N.	
	Recove	ery		96.6	97.7	7 98	8.0 C	95.5	95.1	96.0	96.Q4	96.4	\$ 9	6.0	97.	4	c	
Table 8	8.1.1.1-6	5: Effe	ct of s	oil moi	sture o	n foge	ryl d	egradat	tion In s	andy lo	ancisoil			O' of aj	pplied		Ő Ž	
Soil mo	oisture	-	ź	25% FC	(°C ≪C	Ň		50%				75%		<u> </u>			
HAT		0	0.5	1 h	2.5	6.5	0	0.5	^{l h}	25,	6.50	0 0 0.		řh.	<u>, 29</u>	6.5	4	
Volatile	e ovtr	- 03 /	5.5 86.1	18.1	$\frac{22.4}{27.0}$	2.5¥ °≈46	- 6	× 4.7	75 26	54.2				0.8 2.2	63.7	49.	7	
fose	exu. etvl	93.4	43	23	24 24	- %.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	. 00.0	20	14.5	- 20	3 Onto		2 0 . 27	1	/./	_	
etha	anol	-	43	<u>n</u>	30	-20	-	49	- 55	50	~\$ ⁷	a 39		56	63	-		
			_			Q	- 4				26.2 3		¶ 2	0	11.2	2.4	_	
Bound		2.3	2.2	2.4	4.7	10.4	24	\$ 2,80	/ 4.1 <i>(</i> †	10.00.	20.2 Z	. – 46	S 2	1.7	11.4	34.	6	
Bound Recover	ry	2.3 95.7	2.2	2.4 93. 6	95.04	10.4 95.1	24 90.3	\$ 2,80 3 20 ³	4.1 91.2	91.00	91.3 9 5	5.7 9 8	.3 92	2.9	94.5	34. 91.	6 7	
Bound Recover Table 8	ery 8.1.1.1-7	2.3 95.7 7: E Č e	2.2 92 ct of of	2.4 93.6 oncentr	4.7 95.04 Vion	10.4 195.1	24 90.3	2,20 3 2,03 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4.1 91.7 91.7 tion in	91.0	20.2 2 91.3 595 Jam soi	© 7 38 wat 20 °	C (%	2.9 of a	94.5	34. 91.	6 7	
Bound Recover Table 8 Dose	ery 8.1.1.1-7	2.3 95.7 7: E O e	2.2 927 ct of 6	2.4 93.6 oncent	95.04 95.04 Vion	10.4 395.1	245 90.3	2,20 3,20 3,20 3,20 3,20 3,20 1 egrada	4.1 91.7 Vion in Vion in	91.0 91.0 91.0 91.0 91.0 91.0 91.0 91.0	20.2 2 91.3 995 Yam sol	© at 20 °	C (%	2.9 0 of a 0 mg	94.5 pplied	d)	6 7	
Bound Recover Table 8 Dose HAT	ery 8.1.1.1-7	2.3 95.7 7: ECe	2.2 92 ct of 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.4 93.6 oncentr 20 mg/k	↓.7 95.0 ∳tion ¢ g €	10.4 35.1	2013 90.3	iegrada	4.1 91.2 Vion in Vion in Vion mg/ 0.5	91.00 91.00 Vandy V kg	20.2 2 91.3 8 95 Vam sol	0	C (%	2.9 of a 0 mg	94.5 pplied	d)	6 7 3	
Bound Recover Table 8 Dose HAT Volatile	ery 8.1.1.1-7	2.3 95.7 7: Ecce 0 -	2.2 927 ct of of 7	2.4 93.6 oncentr 20 mg/k	¥.7 95.04 ¥tion g 2.4	10.4 395.1 20 20 20 20 20 20 20 20 20 20 20 20 20		² 2,80 2,80 1 2,81 1 2,81	4.1 912 tion in the mg/ 0.5	91.(0) 91.(0) andy (kg 10.4	20.2 2 91.3 % ? am sol	© at 20 °	C (% 500 0.5 4.5	0 mg	94.5 applied /kg 1 9.3	d)	6 7 3 3.7	
Bound Recover Table 8 Dose HAT Volatile CO:	ry 8.1.1.1-7	2.3 95.7 7: EOe 0 	2.2 927 ct of 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.4 93 for oncentra 20 mg/k	4.7 95.0 Viion 2.4 2.4	10.4 35.1 31.0 7.2 0 31.0 7.2 0		* 2,80 3 9,93 Yegrada ***********************************	4.1 915 100n in 100 mg/ 0.5 4.9	91.00 91.00 Pandy kg 10.40 0.40	20.2 2 91.3 95 2 am sol 3 3 35.6 3.0	0 	C (% 500 0.5 4.5 0.4	0 mg	94.5 pplied /kg 1 9.3 0.3	d)	6 7 3 3.7 .6	
Bound Recover Table 8 Dose HAT Volatile CO: etha	8.1.1.1-7	2.3 95.7 7: Ece	2.2 92 ct of 0 0 0 1 0 1 0 1	2.4 93 & oncenter 20 mg/k	95.0 95.0	10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.5		* 2,82 3 2,73 Yegrada *** *** *** *** *** *** ***	4.1 91.7 1000 infe	91.00 91.00 Pandy kg 0.4 0.4 0.4 0.4	91.3 91.5 91.5	0 - - - - -	C (% 500 0.5 4.5 0.4 4.1	0 mg	11.2 94.5 94.5 (kg 1 9.3 0.3 8.9	d)	6 7 3 3.7 .6 7.1	
Bound Recover Table 8 Dose HAT Volatile CO: etha Acidic o	ry 8.1.1.1-7	2.3 95.7 7: EOe 0 	2.2 92 ct of 0 0 1. 7 5 6 6 6	2.4 93 6 oncentr 20 mg/k	¥.7 95.0 ¥tion 2.4 2.4 8.8	10.4 195.1 20 31.0 22 31.0 22 32.4 25.1		* 2,8 3,2 4 2,3 4 2,3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	4.1 91,7 ion in 160 mg/ 0.5 4.9 4.9 4.1 0.5	91.00 ° 91.00 ° andy € 8 9.04 0 9.6 79.9 3	20.2 2 91.3 99 3 91.3 99 3 91.3 99 3 91.3 99 9 1.3 99 9 1	0 - 99.0 93	C (% 500 0.5 4.5 0.4 4.1 91.3	0 mg	11.2 94.5 94.5 /kg 1 9.3 0.3 8.9 82.7	d)	6 7 3 3.7 .6 7.1 7.5	
Bound Recover Table 8 Dose HAT Volatile CO: etha Acidic of fose	e C C C C C C C C C C C C C C C C C C C	2.3 95.7 7: EOe 0 25.3 95.3	2.2 92 ct of 0 1. 7 52 0 6. 7	2.4 93.60 0 ncentr 20 mg/k 1 0 1 1 2 2 1 2 1 1 2 2 7 0 0	↓.7 95.0 vtion ¢ g ¢ 2.4 2.0 vtion ¢ 2.4 2.0 vtion ¢	10.4 195.1 195.1 10 10 10 10 10 10 10 10 10 1		2.82 3 2.32 3 2.33 3 2.33 3 2.33 3 2.33 3 2.33 3 2.33 3 2.33 3 2.33 3 2.33 3 2.33 4 2.33	4.1 91-2 1000 info 1000 in	91.00 91.00 Pandy kg 0.4 96 79.9 3 77	20.2 2 91.3 99 91.3 99 91.9 91 91.9 91		C (% 500 0.5 4.5 0.4 4.1 91.3 15 76	0 mg	94.5 pplied /kg 1 9.3 0.3 8.9 82.7 5 78	d)	6 7 3 3.7 .6 7.1 7.5 - 7	
Bound Recover Table 8 Dose HAT Volatile CO: etha Acidic of fose etha Bound	extr. extr. etyl	2.3 95.7 7: Eoe 0 	2.2 92 ct of 8 0 1 0 1 5 6 6 7	2.4 93.4 0 oncenter 20 mg/k 20 mg/k 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	95.0 95.0 95.0 95.0 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	10.4 35.1 20 fosc 1.0 7.2 0 22,3 0 24,3 0 24,3 0 24,3 0 24,3 0 24,3 0 24,4 14,4		2.8 3.2	4.1 91.7 1000 in 1000 in 100 mg/ 0.5 100 mg/ 000 mg/ 000 mg/ 000 mg/ 000 mg/ 000000000000000000000000000000000000	91.00 91.00 Fandy kg 10.4 0 6 79.9 3 77 6.7	20.2 2 91.3 9 7 3 3 3 5.6 3.0 32.7 44.4 - 44 19.6	0 - 99.0 93 6 1.9	C (% 500 0.5 4.5 0.4 4.1 91.3 15 76 2.4	0 mg	11.2 94.5 applied /kg 1 9.3 0.3 8.9 82.7 5 78 2.7	d)	6 7 7 3 3 3.7 .6 7.1 7.5 7 .0	
Bound Recover Table 8 Dose HAT Volatile CO: etha Acidic o fose etha Bound Recover	e Ky anol extr. etyl anol etyl anol	2.3 95.7 7: EOe 0 -	2.2 927 ct of 0 7 0 1 2 0 6 7 7 0 6 7 7	2.4 93 % oncentra 20 mg/k 20 m	↓.7 95.0 ¥tion ¢ 2.4 2.0 8.8 - 2.4 2.0 2.4 2.0 2.4 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	10.4 195.1 107 107 107 107 107 107		2.8 3 2.8 3 2.3 7 2.3 1 2.3 7 2.3 7 2.3 7 2.4 <td>4.1 91,7 100n in 100 in</td> <td>91.00 91.00 Vandy Vandy Vandy</td> <td>20.2 2 91.3 99 3 3 35.6 3.0 32.7 44.4 - 44 19.6 99.6</td> <td>0 - 99.0 93 6 1.9 101</td> <td>S 3 92 C (% 500 0.5 4.5 0.4 4.1 91.3 15 76 2.4 98.2</td> <td>0 mg</td> <td>11.2 94.5 applied /kg 1 9.3 0.3 8.9 82.7 5 78 2.7 94.7</td> <td>d)</td> <td>6 7 3 3.7 .6 7.1 7.5 - 7 .0 2</td> <td></td>	4.1 91,7 100n in 100 in	91.00 91.00 Vandy Vandy	20.2 2 91.3 99 3 3 35.6 3.0 32.7 44.4 - 44 19.6 99.6	0 - 99.0 93 6 1.9 101	S 3 92 C (% 500 0.5 4.5 0.4 4.1 91.3 15 76 2.4 98.2	0 mg	11.2 94.5 applied /kg 1 9.3 0.3 8.9 82.7 5 78 2.7 94.7	d)	6 7 3 3.7 .6 7.1 7.5 - 7 .0 2	
Bound Recover Table 8 Dose HAT Volatile CO: etha Acidic o fose etha Bound Recover Table 8	anol anol anol anol anol anol anol anol anol anol anol anol	2.3 95.7 7: EOe 0 2.1 97.4 3: Effe	2.2 92 ct of 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 93 % oncent 20 mg/k 1 0 1 2 2 70 0 8 2 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70	4.7 95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0	10.4 35.1 20 20 20 20 20 20 20 20 20 20	245 90.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2, 2, 2, 3 3 2, 3 3 4 7	4.1 91.7 1000 info 100 info 10	91.0 91.0 91.0 91.0 9.0 9.0 9.0 9.0 77.0 77.0 0.7.0 0.7.0 0.0 in sa	20.2 2 91.3 9 7 3 3 3 5.6 3.0 32.7 44.4 - 44 19.6 99.6 andy loa	0 99.0 93 6 1.9 101 m at 20	S 3 92 C (% 500 0.5 4.5 0.4 4.1 91.3 15 76 2.4 98.2 °C (" " C"	0 of a	11.2 94.5 applied /kg 1 9.3 0.3 8.9 82.7 5 78 2.7 94.7 f appli	d) d) <u>388</u> <u>388</u> <u>388</u> <u>47</u> <u>47</u> <u>47</u> <u>47</u> <u>55</u> <u>91</u> <u>47</u> <u>55</u> <u>91</u>	6 7 7 3 3 3.7 .6 7.1 7.5 - .7 .0 1.2	
Bound Recover Table 8 Dose HAT Volatile CO2 etha Acidic o fose etha Bound Recover Table 8	ry 8.1.1.1-7 8.1.1.1-7 8.1.1.1-7 e & 2 anol extr. etyl anol extr. etyl 8.1.1.1-8	2.3 95.7 7: EOe 0 0 95.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3	2.2 927 ct of 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.4 93 % oncentr 20 mg/k 20 mg/k 20 mg/k 20 mg/k 20 mg/k 20 mg/k 20 mg/k 20 mg/k	4.7 95.0 7 7 7 95.0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10.4 35.1 25.1	248 90.3 90.3 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4	2 2 2 2 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 2 3 3 3	4.1 91,7 ion in 6 7 4.9 7 4.9 7 4.9 7 4.9 7 4.9 7 4.9 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	91.0 91.0 91.0 Fandy 8 7 7 7 77 6.7 77.0	20.2 2 91.3 99 3 30 3 35.6 3.0 32.7 44.4 19.6 99.6 99.6 0	0 - 99.0 93 6 1.9 101 m at 20	C (% 500 0.5 4.5 0.4 4.1 91.3 15 76 2.4 98.2 °C (%	0 of a	11.2 94.5 applied /kg 1 9.3 0.3 8.9 82.7 5 78 2.7 94.7 f appli 6.5	d) d) <u>388</u> <u>388</u> <u>47</u> <u>47</u> <u>41</u> <u>5</u> <u>91</u> ied) <u>h</u>	6 7 3 3.7 .6 7.1 7.5 - .7 .0 1.2	
Bound Recover Table 8 Dose HAT Volatile CO: etha Acidic o fose etha Bound Recover Table 8	anol anol anol anol AT	2.3 95.7 7: EOe 0 95.3 95.3 95 - 2.1 97.4 8: Effe apple	2.2 92 ct of 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.4 93 & oncent 20 mg/k 1 0 1 2 2 0 mg/k 1 0 0 mg/k 1 0 mg/k 1 0 mg/	↓.7 95.0 vrion v vrion v g v 2.4 2.0 vrient v v v v v v v v v v v v v v v v v v v	10.4 35.1 25.1	248 90.3 90.3 90.3 90.3 90.3 90.3 90.3 90.3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4.1 91.2 1000 in 10 1000 in 1000 in 10000 in 1000 in 1000 in 1000 in 10000 in 1000 in 1000 in 10000	91.0 4 91.0 4 8 8 91.0 4 8 7 10.4 0 9.6 79.9 3 77 6.7 9.7 07.0 0 n in sa	20.2 2 91.3 99 3 35.6 3.0 32.7 44.4 19.6 99.6 ondy loa	0 - - 99.0 93 6 1.9 101 m at 20	C (% 500 0.5 4.5 0.4 4.1 91.3 15 76 2.4 98.2 °C ('	2.9 0 of a 0 mg 2.9 0 mg 2.9 0 mg 2.9 0 mg 2.9 0 mg 0 mg 0 mg 0 mg 0 mg	11.2 94.5 applied /kg 1 9.3 0.3 8.9 82.7 5 78 2.7 94.7 f appli 6.5 5	d) d) d) d) d) d) d) d) d) d)	6 7 3 3 3.7 .6 7.1 7.5 - .7 .0 1.2	
Bound Recover Table 8 Dose HAT Volatile CO: etha Acidic of fose etha Bound Recover Table 8	anol extr. etyl anol extr. etyl 8.1.1.1-8	2.3 95.7 7: EOe 0 	2.2 92 ct of 0 0 1. 0 6. 7 0 6. 7 0 6. 7 0 6. 7 0 0 6. 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 93.4 93.4 93.4 93.4 93.4 93.4 93.4 93	95.04 95	10.4 35.1 20 fose 1.0 7.2 2.5 107 2.5 3.2 00 00 00 00 00 00 00 00 00 0	248 90.3 90.3 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4	2,80 3 2,31 4 7 4 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 6 7 7 9 5 7 5 7 6 7 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 <t< td=""><td>4.1 9.1 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9</td><td>91.0.8 (c) 91.0 (c) 791.0 (c) 70.4 (c) 79.9 (c) 77 (c) 77</td><td>20.2 2 91.3 9 3 3 3 3 3 5.6 3.0 32.7 44.4 - 44 19.6 99.6 mdy loa 5 5 3.6 2 8</td><td>0 - 99.0 93 6 1.9 101 m at 20 2.5 19 2.5 19 2.5 19 2.5 19 2.5 19 2.5 19 2.5 19 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5</td><td>S 3 92 C (% 50 0.5 4.5 0.4 0.15 76 2.4 98.2 °C ('(5 5 1.5 3.3</td><td>0 of a</td><td>11.2 94.5 applied /kg 1 9.3 0.3 8.9 82.7 5 78 2.7 94.7 f appli 6.5 47.</td><td>d) d) d) d) d) d) d) d) d) d)</td><td>6 7 3 3.7 .6 7.1 7.5 - .7 .0 1.2</td><td></td></t<>	4.1 9.1 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	91.0.8 (c) 91.0 (c) 791.0 (c) 70.4 (c) 79.9 (c) 77	20.2 2 91.3 9 3 3 3 3 3 5.6 3.0 32.7 44.4 - 44 19.6 99.6 mdy loa 5 5 3.6 2 8	0 - 99.0 93 6 1.9 101 m at 20 2.5 19 2.5 19 2.5 19 2.5 19 2.5 19 2.5 19 2.5 19 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	S 3 92 C (% 50 0.5 4.5 0.4 0.15 76 2.4 98.2 °C ('(5 5 1.5 3.3	0 of a	11.2 94.5 applied /kg 1 9.3 0.3 8.9 82.7 5 78 2.7 94.7 f appli 6.5 47.	d) d) d) d) d) d) d) d) d) d)	6 7 3 3.7 .6 7.1 7.5 - .7 .0 1.2	
Bound Recover Table 8 Dose HAT Volatile CO: etha Acidic o fose etha Bound Recover Table 8 HA Nu Vo	anol anol	2.3 95.7 7: EOe 0 95.3 95.3 95.3 95.3 95.3 95.3 97.4 8: Effe appl	2.2 92 ct of 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2.4 93 % oncentr 20 mg/k 20 mg/k 1 0 1 1 2 2 1 2 0 70 1 2 0 70 1 2 0 70 1 2 0 70 1 2 0 70 1 70 1 70 1 70 1 70 1 70 1 70 1 70	↓.7 95.0 √ fion ¢ 2.4 2.0 √ 2.4 2.0 √ 2.4 2.0 √ 2.0 √ 0.5 I	10.4 95.1 107 107 107 107 107 107 107 10	248 90.3 90.3 90.3 90.3 90.3 90.3 90.3 90.3	2,80 3 2,30 4 2 5 2 4 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 6 3 7 9 5 2 6 3 7 9 5 2 6 3 7 9 5 2 6 3 6 3 7 9 6 3 7 9 7 9 8 9 8 9 9 10 10 10 10 10 10 10 10 10 10 10 10	4.1 91.7 tion into 10.5 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	91.0 91.0 91.0 91.0 91.0 91.0 Variation 91.0<	20.2 2 91.3 99 3 35.6 3.0 32.7 44.4 - 44 19.6 99.6 3 35.6 3.0 32.7 44.4 5 3.6 8.8 29	0 0 - - 99.0 93 6 1.9 101 m at 20 - - - 95.7 - 99.0 - - - 99.0 - - - 99.0 - - - 99.0 - - - - - 93.6 - 1.9 101 m at 200 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <	C (% 500 0.5 4.5 0.4 4.1 91.3 15 76 2.4 98.2 °C (° 5 h 5 .3 .8 1	2.9 0 of a 0 mg 2.9 0 mg 0 mg 0 mg 0 mg 0 mg 0 mg 0 mg	11.2 94.5 94.5 1 9.3 0.3 8.9 82.7 5 78 2.7 94.7 6.5 6.5 5 47. 4.5	34. 91. 91. 38 1 37 47 91 ied)	6 7 3 3.7 .6 7.1 7.5 - .7 .0 1.2	
Bound Recover Table 8 Dose HAT Volatile CO: etha Acidic o fose etha Bound Recover Table 8	anol anol	2.3 95.7 7: EOe 0 -	2.2 92 ct of 0 7 0 1. 7 0 6. 7 0 6. 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.4 93 € oncent 20 mg/k 1 0 1 2 2 1 2 2 2 0 mg/k 1 2 2 2 70 0 1 2 0 70 0 70 0 70 0 70 0 70 0 70 0 70 0	95.04 95	10.4 35.1 20 20 20 20 20 20 20 20 20 20	248 90.3 90.3 90.3 90.4 90.4 90.4 90.4 90.4 90.4 90.4 90.4	2 2 2 2 2 3 3 2 3 3 4 3 3 7 3	4.1 9.2 4.9 4.9 4.9 4.9 4.9 4.1 6 4.2 9.5 4.2 9.5 4.2 9.5 4.2 9.5 4.2 1 8.1 8.1 8.1 8.1 8.1 5 18.5 1	91.00 91.00 91.00 8 91.00 8 8 8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1	20.2 2 91.3 99 91.3 99 91.3 99 91.3 99 91.3 99 3 35.6 3.0 32.7 44.4 19.6 99.6 99.6 andy loa 5 8.6 8.8 29 50	5.7 9% at 20 - - - 99.0 93 6 1.9 101 - m at 200 - - - - - - - 93 6 1.9 101 m at 200 - - -	C (% 500 0.5 4.5 0.4 4.1 91.3 15 76 2.4 98.2 °C (° 5 h 5 .3 .8 4 0	0 mg	11.2 94.5 94.5 1 9.3 0.3 8.9 82.7 5 78 2.7 94.7 f appli 6.5 5 477. 4.5	34. 91. 91. 38 1 37 47 91 1 37 47 91 1 1 37 47 91 1 1 37 47 91 1 1 3 5	6 7 7 3 3.7 .6 7.1 7.5 - .7 .0 1.2	
Bound Recover Table 8 Dose HAT Volatile CO2 etha Acidic of fose etha Bound Recover Table 8 HA Nu Vo Ag	anol extr. etyl anol extr. etyl anol extr. etyl 8.1.1.1-8 AT mber of place foseo ety nol	2.3 95.7 7: Eoe 0 	2.2 92 ct of 8 0 1. 7 0 6. 7 0 6. 7 0 6. 7 0 6. 7 0 6. 7 0 6. 7 0 6. 7 0 7 0 6. 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7	2.4 93.4 93.4 0 oncentr 20 mg/k 1 0 1 4 2 0 1 4 5 0 70 0 8 4 70 0 1 4 70 0 8 4 70 0 70 0 8 4 70 0 8 4 70 0 70 0 8 4 70 0 70 0 8 4 70 0 70 0 70 0 70 0 70 0 70 0 70 0 70	95.04 95	10.4 55.1 10.4 55.1 10.4 51.0 7.2 50.0 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2	248 90.3 90.3 90.3 90.3 90.3 90.3 90.3 90.3	2,80 3 2,30 4 2 5 2 4 2 5 2 5 2 6 2 7 1 6 2 7 1 6 2 7 1 7 2 8 2 8 2 8 2 8 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 <t< td=""><td>4.1 91.7 4.0 91.7 4.0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9</td><td>91.0 91.0 91.0 91.0 8 91.0 8 91.0 8 91.0 8 91.0 8 91.0 91.0 91.0 8 91.0 91.0 91.0 8 91.0 91.0</td><td>20.2 2 91.3 9 2 am so 3 3 35.6 3.0 32.7 44.4 19.6 99.6 10 199.6 10 199.7 10</td><td>0 - 0 - 99.0 93 6 1.9 101 0 2.5 - 5.7 21</td><td>S 3 92 C (% 500 0.5 4.5 0.4 4.1 91.3 15 76 2.4 98.2 °C (°C 10 5 .3 .8 4 0 .4</td><td>2.9 0 of a 0 mg 0 mg 0 mg 0 mg 0 mg 0 mg 0 mg 0 mg 0 mg</td><td>11.2 94.5 applied /kg 1 9.3 0.3 8.9 82.7 5 78 2.7 94.5</td><td>34. 91. 91. 38 1 37 47 91 1 37 47 91 1 1 37 47 91 1 1 37 5 2</td><td>6 7 3 3.7 .6 7.1 7.5 .7 .0 1.2</td><td></td></t<>	4.1 91.7 4.0 91.7 4.0 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9	91.0 91.0 91.0 91.0 8 91.0 8 91.0 8 91.0 8 91.0 8 91.0 91.0 91.0 8 91.0 91.0 91.0 8 91.0 91.0	20.2 2 91.3 9 2 am so 3 3 35.6 3.0 32.7 44.4 19.6 99.6 10 199.6 10 199.7 10	0 - 0 - 99.0 93 6 1.9 101 0 2.5 - 5.7 21	S 3 92 C (% 500 0.5 4.5 0.4 4.1 91.3 15 76 2.4 98.2 °C (°C 10 5 .3 .8 4 0 .4	2.9 0 of a 0 mg 0 mg 0 mg 0 mg 0 mg 0 mg 0 mg 0 mg 0 mg	11.2 94.5 applied /kg 1 9.3 0.3 8.9 82.7 5 78 2.7 94.5	34. 91. 91. 38 1 37 47 91 1 37 47 91 1 1 37 47 91 1 1 37 5 2	6 7 3 3.7 .6 7.1 7.5 .7 .0 1.2	

Request from the RMS:

(1982), the amount of the unknown metabolite detected at In the study by and retention time 0.65 (RRT 0.65) increases until the end of the study. Moreover, it is detected twige at 5% of the applied radioactivity.

A

A statement justifying that no risk assessment was performed for these compounds should provided. Å

Response from BCS:

The unknown RRT 0.65 was observed at 5% in sandy loam soil only and each following application of fosetyl or ethanol, thus suggesting its origin from ethanici. Formation in clay loam soil was sporadic (samples after 7 hours only), again following application of fosety Dand ethanok. Owing to the very short sampling intervals, interim steps in degradation of ethanol in aerobic soil could thus be observed such as the well-known oxidation to the corresponding aldehyde and carboxylic acid again being wry short-lived. Ø m

As supported by the existing evaluation in the DAR (see Section Bcs, page 401), this indicates that the compounds showed strongly transient character when considering a maximum incubation of 16 hours in the test. As indicated earlier, ethanol is readily degraded in soil at concentrations occurring from use , Ø of fosetyl-Al in the field. , Ô

Report:	KCA 7.1.19/03
Title:	The rate of degregation of (14C Gosety) Al in the soor unde Oerobic conditions at
	20 degere Celsmas
Report No.:	R011064 & D & A & Y & Q
Document No.:	M4984329901-1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Guideline(s):	EV (=EAC): 95/38/EC A 995); FTAG (1995); S
	Equivagent to 28 EPA OPPTO Guide The No. 835.4200
Guideline deviation(s)	none of the state
GLP/GEP:	
Č A	
Comment RXO: GU	r, SEJAC gardeliner Acceptable, Sr
<u>o</u>	
Methods	
Pure alugonium 1-14C-	whylp sphorate was applied at 13 mg/kg to 50 g samples of clay loam, sand,
or sandy loam soils	ible 84.1.1.29). Inceptation was at 20 °C and at 40% of MWHC for 120 d. Soils
were extracted twice w	vith 0.1 My forming acid, Extrags were analysed by LSC and HPLC. Volatiles
from all samples overe t	rapped but not quantified. Bound reedue was not determined.
, j	
Table 8.1.1.1-9 Soil char	$acteOstics$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$

	Ckey loam (\$261)	Sand (S262)	Sandy loam (S263)
Sand (> 63 µm) 🖇 🔺 🔗	0 3A	86.8	65.4
Silt (2-63 μm) %	Q 35.0	7.0	22.5
Clay %	30.7	6.2	12.1
OC (%)	2.5	1.6	1.8
pH water / Ca. C. Y	6.9 / 6.7	5.4 / 4.6	6.6 / 5.4
CE meq/10 g o s	× 20.6	9.3	18.1
\$\$ PC pF 2.5(%)	61.6 / 31.8	55.8 / 19.4	49.6 / 18.6
Biomaz start / est (mg C/100 g)	53.4 / 63.8	22.1 / 20.4	17.1 / 22.5

□ Results

Because volatiles and unextractable RA were not measured, no mass balance could be established. Because i) RA was fully recovered on day 0 and ii) amounts of extractable RA, fosetyl and ethnol were in accordance with data from the previous studies, results can be used for determination of degradation rate of fosetyl and they provide further information on degradation products of ables 8.1.1.1-10 and 11). In addition to ethanol, up to five unknowns were detected in soil extracts of which U1 and U2 were major and could reach 17.2 and 12.8%, respectively, after < 1 h. Because all unknowns were transient and were only detected for the first day, they are deemed to be not prevante and no further information is required. DT50 and DT90 for fosetyl were calculated using different models and results are shown in Table 8.1.1.1-12. Table 8.1.1.1-10: Degradation of ¹⁴C-fosetyl-Al in clay local soil at 20 °G mean of 2 repOcates. %AR)

Duration	Extractable	Fosotyl	Ethanol					
0 h	99.2	29.0		30	$\sqrt{2}$			× ×
0.25 h	87.4	15.0	6.0.3	₩4.5 _	07.60	8	N. K	
0.5 h	78.3	10.0	x 7 V.3 V	3.5~	7.3	4		
1 h	69.7	6.3	\$ 51.3	265	Q.1 6	4.4~	Ŕ	
2 h	37.1	2.0 Q	20.9	×2.4	♥ 3.0 ₺	Ö	A.6	¥ 4.2 O
4 h	17.8	0.20.	1 Alexandre	r 1.3 V		A.3 ,	D 2.1	Ţ.
8 h	13.9	- Q'	à à	ð	2			
24 h	10.2		J Ö		Ŭ Ô		>>	
7 d	7.5			· · ·	¥ _0*		_ 0	-
120 d	4.2		5-0	7 - 7	- 4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ç.	-

Table 8.1.1.1-11: Degradation of C-fos gyl-Al 2 soi at 20 (med vof 2 geplicate % AR)

	(// /					•	<i>v</i>		
Duration		and s				san san	dy@am soi	l	
	Extracoble	Rosetyl 🖉	∀Ethanol	N/	Extractable	Fusetyl	Ethanol	U1	U2
0 h		36.30	5 0 3	& 8.6 ×	1008	39.7	51.4	9.7	-
0.25 h	96.7	9.2	©75.8 _	11	7.6	154	65.0	17.2	-
0.5 h	94.8	\$3.2	70.1	11.0	92.2	No.	69.8	16.1	-
1 h	y 92.0	0 10.6 0	68.0	N2.8 . (D [™] 83% S [™] .	0'-	69.1	14.6	-
2 h	84.7) 5 r	£7.7 °	O 11.5	6 8.9 ž	- 1	53.6	15.3	-
4 h	68.8		@62.4	6.9	O _{31.3}	-	21.9	3.3	6.1
8 h	50.2				S 12 S	-	-	-	-
24 h	~0 ^{.0} č		Å,	V - X	6.8	-	-	-	-
7 d	2.7				4.9	-	-	-	-
120 d	1.5	\$ - Ô	× - Ø		2.4	-	-	-	-

Table 1.1.1-12: Rate of destalation of fose 1.AL is soils at 20 °C

	0						
Soil type		Linear	ordex 2	KIM	model	Timme	-Frehse
		ATE S	D190	DT50	DT90	DT50	DT90
Clay loam		₽7 min Õ	≈ 22 mín Q	17 min	104 min	29 min	96 min
Sand	V V	60 min	200 min	5 min	369 min	21 min	69 min
Sandy Isom		12 min	¥ 40 min	11 min	37 min	1 min	13 min
	<u>k</u>	The second se					

Request from the RMS:	
In the study by and (1999), unknown metabol	ite U2 is a major metabolite in two
soils (max. 17.2% of applied radioactivity) and the amount of unl	known metabolite U5 increases 👧 til 🐁
the end of the study in two soils (max. 7.1% of applied radioactivity)	ty).
A statement justifying that no risk assessment was performe	d for these sompounds should be
provided.	
Response from BCS:	
Unknown U2 was observed at 17.2% in maximum in soil sandy	loam after 0.25 hours of invubation
showing a decline to 3% after 4 hours. It was observed at 7.6%	in soll clay loam to deckine to 1,4%
after 4 hours. Finally, it was observed at 12.8% in the sandy soil	after 1 hour to decline of 6.3% after O
4 hours.	
The data illustrate that U2 is a very short-lived and thus transient r	netabolite. Q' O' o O'
Unknown U5 was observed at 7.1% in soil clay loam after the	ours and at 6.1% in soils and to am
again after 4 hours of incubation.	
Considering the fact that always several metabolities were obse	arved, an increase of a 'long-lived'
single component would be indicated in the course of the	study. However, total extractable
radioactivity including U2 decreased to 5 to 5% in the two s	sorts within 7 days of incubation to
decline to 2 to 4% at study end. Conclusively, there was no tre	nd for an increase of an individual
component in the course of the study again underliging the very te	ansient character.
The existing evaluation in the DAR (see Section B.8, pages 3)	94 and 409 supports the view that
components observed in short-term acrobic soil degradation	tests do have a strongly transient
character.	
A.M. (1999). Appendix 7 Determination of posphere	prous acid in soil extracts) of the
previous report 1736 (R01664) RPA study 12546. GLP, nOg	guidenne followed. Acceptable.
	л. <i>П</i> л
• Methods St V Y Y Y Y	Ũ ^Y , S
Acidic extracts were concentrated by freeze drying, residues we	re dissolved in tartaric acid solution
and derivatization was carried out by the use of diacomet one	e. Northylated phosphonic acid was
analysed boocc. Soils were further exacted with animory in b	or the second se
above. A A A A	Y
Results S	
Methylated phosenionic Acid was not detected in acidic extorts by	ut substantial amounts were detected

Methylated phosononic Acid we not precice in acidic extracts but substantial amounts were detected in ammonium, buffes extracts especially from the day loam soil and the sandy loam soil (chromatograd) s not chown recovery not precify. This phosphonic acid was not quantified but it was shown to be a degradation product of fractyl.

Overall conclusion on studies on route and rate of aerobic degradation of fosetyl-Al in soil

Two out of three studies (KCA 7.1.1.1/01 and KCA 7.1.1.1/02) in total were performed prior togethe introduction of GLP for environmental fate data with no citation of a guideline followed. Study & KCA 7.1.1.1/03 followed GLP and formally SETAC KCA 7.1.1.1/03 followed GLP and, formally SETAC guidelines prior to the availability of OECD 307.

Beyond formalistic aspects the laboratory data available are able to reflect adequately the behavior of fosetyl-aluminium (fosetyl-Al) in soil. Ô

For example, study KCA 7.1.1.1/01 was performed by an institution near to the French ministry of agriculture. With full material balances available, the deargn of the study was able to demonstrate the basic processes contributing to the understanding of the route of degradation in soil. The study has O some deficits in analysis since soil extracts were not fully analysed and thus no full pattern of active substance including metabolites was established. This was the major reason to exclude the study from the set used for calculation of degradation rates in soil later (see Section CA 7, 1.2)

Results of study KCA 7.1.1.1/02 are well in line with the earlier study KCA 7.1.1.1/01. Again, despite the study was designed prior to the availability of guidelines (which were at least drafted upon-conduct of the study and published by the US in 1982) its design and conduct are still able to fully support the understanding of the route of degradation of fosetyl-Alvin soft. In this context, it should be noted that results are consistent in demonstrating that fosetyl-Al degradation is a very rapid process which is very consistent with its simple structure Although criticized by the RMS the design to take small soil samples for investigation was appropriate when considering that the work-up and extraction of a soil sample till analysis is a time-consuming process. Small samples in this context simply eased the handling to result in fast possible work-up essential and supportive to have consistent results for an active substance degrading within hours when being in contact with soil. Study KCA 7.1.1.1/03 did not include the determination of volatile and non-extractable radioactivity active substance degrading within hours when being in contact with soil.

thus no full material balance was formally established. Again, considering the opticome of the study in context of the two additional studies, the results are fully consistent. Since the active substance fosetyl-Al is not volatile, the results are still adequate to determine degradation rates in aerobic soil.

The overall consusion is therefore that new information would bet contribute to a better understanding of the processes of degradation of fosetyl-Al in perobic soil. In view of deviations to actual guidelines the data can be understood as a worst case estimate since incubation, for example,

actual guidelines the data can be understood as a worst case estimate since incubation, for example, under conditions supporting microbial activity in solaris very likely to result in even faster rates of degradation.

Study summaries of existing studies and publications on route of aerobic degradation in soil:

Following another request by the RMS, this document was updated by inclusion of summaries for the existing data, i.e. studies and publications submitted and evaluated during the process of Annex I inclusion of fosetyl under Directive 91/414/EEC and being still of relevance for the EU approval renewal process.

					\bigcirc \bigcirc	A 5
Report:	KCA 7.1.1.1/01) <mark>-</mark>	- 2	; 1978;	M-163672-0	
	1	- A	, d'	Ő		, , , , , , , , , , , , , ,
Title:	Aluminium ethylph	osphite - Degradatio	on in the sole.	×,		(, O [¥]
Report No.:	R002963	4 O Y	Å.	0		
Document No.:	M-163672-01-1	A has	NY Q		, <u> </u>	, O
Guideline(s):	none					
Guideline deviation(s):	not applicable	K O°		ja jo i	°∼y 4J	
GLP/GEP:	no	O' U' ×		r & 1	. 1	0
				, Ô		1

O

Executive Summary

The biotransformation of [¹⁴C]-fosetyl al was investigated under a fobic conditions of the laboratory in three soils, i.e. French soil Versailles and the German soils 2.2 and 2.9, following accubation in the dark at 20 °C and soil moisture of 70% (soil Versailles) or 50% moisture of the maximum water retention capacity (German soils 2.2 and 2.3) for 32 days in maximum. A nominal test concentration of 500 mg active substance/kg will was applied based on a single maximum rate of 80 kg a.s./ha in the field. The test concentration thus, represented a 10 fold concentration when compared to the field application rate.

Incubation was also performed at 12 °C for another series of soil samples under the same conditions of moisture and test concentration for 64 days. In addition, the degradation behaviour of [³²P]-fosetyl-Al was studied following application to samples of the same soils.

Material balances at 20 °C ranged from 95.2 to 107.2% AR for soft Versalles, 93.5 to 109.9% AR for German soil 2.2 and 99.0 to 106.4% AR for German soft 2.3. Exceptions were for German soil 2.2 by day 4 (117.8% AR) and by days one and two for German soil 2.3 (80.6 and 84.5% AR, respectively).

Material Galances at 12 °C ranged from 95.2 to 10 2% AR for soil Versailles, 93.5 to 109.9% AR for German soil 2.2 and 93.0 to 106.4% AR for German soil 2.3. Exceptions were for German soil 2.2 by day 4 (117.8% AR) and by days one another for German soil 2.3 (80.6 and 84.5% AR, respectively). No full material Galances were determined for samples incubated at 12 °C or for samples incubated with [³²P]-fosegyl-Al

Following incubation at 20 °C the total extractable radioactivity decreased from 48.1% AR (soil Versailles), 11.3% AR (German soil 2.2) and 53.0% AR (German soil 2.3) by day one to 1.3% AR by day 4_{\star} 0.5% AR by day 16 and 2.9% AR by day 2_{\star} respectively.

Following incubation at 12 °C the total extractable radioactivity decreased from 82.9% AR (soil Versailles), 64.9% AR (German soil 2.2) and 75.1% AR (German soil 2.3) by day one to 0.5% AR by day 32, 0.4% AR by day 32, and 0.2% AR by day 16, respectively.

No quantitation of test item and degradation products was reported for soil extracts.

For samples, Heubacod at 20° C, degradation of [¹⁴C]-fosetyl-Al was found to proceed predominantly *via* sampling formation of carbon dioxide starting at the first sampling interval (day one) to reach maxima of 74.7% AR (soil Versailles), 77.8% AR (German soil 2.2) and 82.6% AR at the end of the study (day 32).

For samples incubated at 12 C, maxima of carbon dioxide formation were 74.8% AR (soil Versailles), 71.8% AR (German soil 2.2) and 83.5% AR (German soil 2.3) after 64 days of incubation (study end). For samples incubated at 20 °C non-extractable residues (NER) decreased from 28.4% AR by day one to 23.9% AR by day 32 (soil Versailles) and from 50.2% AR by day one to 20.4% AR by day 32 (German soil 2.2). Values of NER increased for German soil 2.3 from 14.1% AR by day one to 20.8% AR by day 32. With no quantitation of test item and degradation products reported to degradation estimated for fosetyl-Al in soil in this study. L The study is regarded as valid information to support the understanding of the principles of roote of order of degradation of fosteyl-Al in soil.

I. MATERIALS
I. MATERIALS
I. Test Items
[¹⁴C]-fosetyl-Al
Specific Activity:
not reported
n

Specific activity and radiochemical purity were not reported. However, the identity of test item was clearly indicated described by structure including the position of radiotabel.

Test Soils 2.

The study was performed using the three test soils as characterized in Table 7.1.1.1-1.

Ô	"O"		1	, S	- OF	<i>.</i>
Table 7.1.1 A- 1:	Physico	-chemical	propert	ies of te	st, soils	N N
~~ ×	0	& ¥/	1 North Contraction of the contr		S / / `	1 1

C

Parameter 2 2		Soil	
Soil Designation	Versaille 📎		<mark>2.3</mark>
Geographic Location			
City of C of the	Versailles	Speyer	<mark>Speyer</mark>
Country O S	France	Germany	Germany
Particle Zze			
Sand [> 200 μm]	0 ² 2 <mark>7.7</mark>	<mark>55.0</mark>	<mark>40.8</mark>
Fine Sand[20 – 200 μm] ⁵ (%) γ	€ <u>55.2</u>	<mark>28.4</mark>	<mark>37.6</mark>
$\frac{\text{Silt}[2-20 \mu\text{m}]}{\text{Silt}[2-20 \mu\text{m}]}$	21.1	10.0	12.4
<u>Clay[< 2 μβ</u> <u></u>	[≫] 20.5	<mark>6.6</mark>	<mark>9.2</mark>
<u>рн 8 х' 8 х «</u>	ф <u>6.4</u>	<mark>6.9</mark>	<mark>6.1</mark>
Organic Matter (%)	<mark>1.94</mark>	<mark>4.71</mark>	<mark>1.72</mark>
Organic carbon (%) *	<mark>1.13</mark>	<mark>4.17</mark>	<mark>1.00</mark>
Cation Exclange Capacity (meq/100 g)	<u>10.0</u>	<u>13.2</u>	<mark>5.0</mark>
Water Holding Capacity	not reported	not reported	not reported
* Calculated by dividing organic matter of	ontent by 1 72		

aing organic matter

Q

Ø

L

J.

\$ 1

Û

B. STUDY DESIGN

1. **Experimental Conditions**

The tests were performed in flow through systems consisting of glass flasks each containing 50 solution and attached to a trap for volatile radioactivity (mixture of methanol and phenethylamine, 2:1, $\sqrt[3]{v}$, i.e. ¹⁴C-carbon dioxide. Soil moisture was maintained during incubation by passing bumidified air through the samples.

The tests were performed at a concentration of approx. 500 mg/kg dry weight of soil. The test concentration was based on a field rate of 8 g/m² (80 kg a.s./ha), thus being equivalent to a 40-fold concentration in comparison to the field situation. [1-efficient-14C]- or [22P]-fosetyl-Al-was applied as aqueous solution (1 mL) drop wise onto the soil surface of the soil samples. Soil samples had been adjusted to 70% of the water retention capacity (soil Versailles) or 50% of the water retention capacity for German soils 2.2 and 2.3 one week prior to application. The samples were uncubated at 29 ± 2 under aerobic conditions in the dark for 32 days in maximum. Incubation was 64 days in maximum for samples incubated at 12 ± 1 °C.

2. Sampling

For samples incubated with [¹⁴C]-fosety AI, duplicate samples each were removed for analysis after

Ò

Ô

ď

Ø

S

3. Analytical Procedures

^S Soil samples were extracted up to three times successively with distilled water at ambient temperature. Radioactivity in extracts was determined by liquid scinfillation counting (LSC). Redioactivity present as ³²P in extracts was measured and confirmed by applying the Cherenkov effect.

Š

C

V

Soil extracts were concentrated and analyse by TAC/radio detection. No quantitation of test item and degradation products in soil extracts was reported. The identity of test item and degradation products (i.e. phosphonic acie) was confirmed by PLC co-chromatography with reference items.

Volatile radioactivity in traps (methanol/phenethylamine mixture) was determined by LSC. The identity of ¹⁴C-carbon dioxide formed and trapped as volation radioactivity was confirmed by coprecipitation with aqueous barium chlotte solution (barite water).

Ż S \bigcirc Following homogenesation non-extractable residues (NER) in extracted soils was determined by combustion/LSC. Selected samples were subject to an additional harsh extraction step using aqueous hydrochloric acid NER-were for quantified for samples incubated at 12 °C. No full material balance was therefore established for these samples. The same applied for extractable and non-extractable radioactivity in samples treated with [32] fosety - Al

×, Degradation kinetics of fosety Al or its degradation products were not evaluated owing to the fact that distribution of extractable radioactivity into the test item and degradation products was not reported. K

Ą, 1. RESULTS AND DISCUSSION

The established full material balances for the three test soils incubated at 20 °C following application of [14C]-fosetyl-A were summarized in Table 7.1.1.1- 2 to Table 7.1.1.1- 4. The corresponding data available for samples incubated at 12 °C were summarized in Table 7.1.1.1- 5 to Table 7.1.1.1- 7.

A. DATA

Degradation of [¹⁴C]-fosetyl-Al at 20 °C in French soil Versailles under aerobic Table 7.1.1.1- 2: ¢° **conditions**

	••••••••							. 4	, L
Component		Replicate		I	ncubation	time (days		65	<u>o</u> v
Component		No.	1	<mark>2</mark>	<mark>4</mark>	<mark>8</mark> "	♥ <mark>16</mark>	5 <mark>92</mark>	6
	<mark>1 st</mark>	<mark>Mean</mark>	<mark>41.9</mark>	<mark>3.0</mark>	<mark>1.3</mark>	- 0	- -		
Ambient extract		SD SD	<mark>2.5</mark>	<mark>0.4</mark>	<mark>0.4</mark>	<mark>7</mark> 2	-	× - ×	, Ôj
	2 nd	Mean SD	6.2		,				
Total in ambient extra	acts	<u>, 22</u>	48.1	4,1	1.3	Q -	0		
Harsh extracts (aqueous hydrochloric acid)	1 st	Mean SD	1.3 0.1	<mark>€1</mark> 20.1	1.0 0.0	-		ç <mark>-</mark> Ör	
	2 nd	Mean SD	0.5 《 0.0			0 ⁷ - 0			
Total in harsh extract	s		1.8		رکم <mark>1.0</mark> کرک		\$ -	× _ ~	
NER from combustio	<mark>n</mark>	Mean SD	2,6.6 √, <mark>1.7</mark> %	38.6 1.1	37.0 ~4.4	09.7 3 0.5	26.5 0.3	23.9 0.7	ŝ
Total NER			√ <mark>28.4</mark> ∕ ∕	39,7	38.6 A	29A	2 <mark>%.7</mark> 🔬	, <mark>23.2</mark>	
Volatiles (¹⁴ C-Carbo	<mark>n dioxide)</mark>	Mean SD O	189 05	\$55.2 \$1.4	≶ <mark>67.3</mark> <u>1.0</u>	67 <mark>9.5</mark>	0 70.0 {\$ 0.0	749 Ø.2	
Total radioactivity		Mean SD	95.2 9.4	98.9 2.1	<mark></mark>	0° <mark>97.1</mark> ℃ 3	90.7 0.3	^{≪9} 98.6 [≫] 0.5	
* All values expresse	d as percen	tage of tota	l applied ra	idi@abel 🔏		ò	<u> </u>		-

Ũ NER = non-extractable residues, SD = standard deviation L. Total NER = sum of harsh exeracts and radioactivity determined after combustion

Table 7.1.1.1- 3: Degradation of [14]-fosetyl-Al ac 20 °C in German soil 2.2 under aerobic conditions

	\sim	- d	y J.	\bigcirc	a ^v .ſ ′		
Component	Replicate	\$ ~ \$	ر کې <mark>ا</mark>	neubation	time (days	<mark>8)</mark>	
	°≫ <mark>No.</mark> ≪	Ĩ <mark>4</mark> ∕	<mark>2</mark>	\$ <mark>4</mark> {	&	<mark>16</mark>	32
Ambient extract	🦻 Mean	17.3	🎸 2.5 🔊	1.0	40 ⁷ -	<mark>0.5</mark>	-
	SĐ	& <mark>0.7</mark> &	0,20	9.1	7, -	<mark>0.1</mark>	-
Harch extraction	∫ <mark>ð∳lean</mark> _≦	64 7	<mark>æ2</mark>	<mark>4.5</mark> 🖉	<mark>4.3</mark>	<mark>1.6</mark>	-
(aqueous by trochloric	SD 🖉	0.0	_{کہ} <mark>0.0</mark>	0.4 0	<mark>0.1</mark>	<mark>0.5</mark>	-
acid)	Meân	<mark>,4.4</mark> (ີ້ <mark>3.4</mark> ≪ຶ	_ <mark>,407</mark> ĭ	<mark>3.9</mark>	-	-
	<u>SD</u>	<mark>ര്[.] 0.0</mark> ്റ്	<mark>&.2</mark>	<mark>گُ(0.2</mark>	0.1		
Total in harsh extracts		105	<mark>0.6</mark> 💊	<u>9.2</u>	<mark>8.2</mark>	<mark>1.6</mark>	
NFR from combustion	Mean	\$ <mark>39.7</mark>	ر <mark>41.3</mark>	<mark>36.9</mark>	<mark>27.1</mark>	21.7 ¹	<mark>20.4</mark>
	<u>S</u>	<mark>0.6</mark>	D″ <u>1.1</u> ⁄O	0.3	<mark>0.3</mark>	-	<mark>2.8</mark>
Total NER	\searrow	× <u>50.2</u>	<mark>48,9</mark>	<mark>46.1</mark>	<mark>35.3</mark>	<mark>23.3</mark>	<mark>20.4</mark>
Volatiles C-Carbon dioxide)	Mean	× <mark>3899</mark> `	\$ 8.6	<mark>70.7</mark>	<mark>70.1</mark>	<mark>70.5</mark>	<mark>77.8</mark>
	SD SD		<mark>1.2</mark>	0.3	<mark>2.8</mark>	0.3	<mark>2.9</mark>
Total radioactivity	Mean	<mark>4100.0</mark> ~	<mark>109.9</mark>	<mark>117.8</mark>	<u>105.3</u>	<mark>93.5 1</mark>	<mark>98.2</mark>
	S SD (<mark>2.4</mark>	<mark>0.8</mark>	<mark>2.5</mark>	-	<mark>0.1</mark>
¹ single replicate		× _A					
* All values expressed as percent	age of total	applied rac	<mark>liolabel</mark>				
NER = non-expactable residues, S	SD = standa	rd deviation	on				
Total NER - Sum of barsh extract	ts and radio	activity det	termined af	fter combus	stion		

Table 7.1.1.1-4: Degradation of [¹⁴C]-fosetyl-Al at 20 °C in German soil 2.3 under aerobic conditions

Company		Replicate	Replicate Incubation time (days)						
Component		No.	<mark>1</mark>	<mark>2</mark>	<mark>4</mark>	<mark>8</mark>	16	<mark>32</mark>	P >>
A making the sectors of	1 st	<mark>Mean</mark> SD	<mark>43.9</mark> 8.3	<mark>2.9</mark> 0.3	-	-			<i>S</i>
Ambient extract	2 nd	Mean SD	<mark>9.1</mark> 0.6	-	-	- Ô	₽ - -		Ś,
Total in ambient extr	acts		<mark>53.0</mark>	<mark>2.9</mark>	-		- 0	0" <mark>-</mark> 6)"	
NER		Mean SD	<mark>14.1</mark> 0.3	22.7 0.2	<mark>∂33.5</mark> 0.8	27.4 0.5	21.0 05	20.8 ~0.0	Ô,
Volatiles (¹⁴ C-Carbo	n dioxide)	Mean SD	<mark>13.5</mark> 0.2	5809 4 0 /2	73.0 0.0) [≸] <mark>76.9</mark> 0.9	27.6 00.6	82.6 0.8	
Total radioactivity		<mark>Mean</mark> SD	<mark>80.6</mark> 9.4	 84.5 1.7 	106.4 0,9	0.3	98.6 1.1	93.0 √ ₽1.2 ~(

* All values expressed as percentage of total applied radiolabel NER = non-extractable residues, SD = standard doiation

Table 7.1.1.1- 5: Degradation of [14C]-fosetyl-Al at 12 °C in French soft Versalles under aerobic conditions conditions 2

	10 0						~¥	•
Component	Replicate	×.		S Incube	tion time	(days)	8 8)
Component	No.	" <mark>"</mark> 1	2 `		<u>s</u>	َدُ <mark>16</mark>	ר <mark>32</mark> ≪ׂ	<mark>64</mark>
L st	Mean K SD %	\$ <mark>69.4</mark> 1.8	50.8 0.4	9 <u>2</u> 2, 0.4	K <mark>-</mark> 8		0.5 0.2	-
Ambient extracts 2 nd	^y Mean D	<mark>∦⊉.2</mark> ,∕⊃` <mark>0.2</mark>		, - - ~		¢₹ ¥ €	• •	
3 rd	∫ <mark>Mean</mark>	♀ <mark>1.3</mark> ♠ ●			∾ <mark>-</mark> √)		-	
Total in ambient extracts		_ <mark>&2.9</mark>	\$ <mark>50.8</mark> %	∮ <mark>5.2</mark>	0 ⁸	≪ <mark>1.1</mark>	<mark>0.5</mark>	-
NER 5	∘ <mark>Mean</mark>	∫ ⁿ .d. n∡d.	n.d. n.d.	n <mark>.d.</mark>	n.d. n.d	, <mark>n.d.</mark> n.d.	n.d. n.d.	n.d. n.d.
Volatiles (¹⁴ C-Carbon doxide)	Mean SD	SOP ¹	√ <mark>16.2</mark> ∻ © 0.05	58.7 00	67.8	<mark>69.3</mark> 0.2	74.5 ¹	<mark>74.8</mark> 0.4
Total radioactivity	Mean A	89.5 [°]	67.0 4	<mark>€3.9</mark> \$\$ <mark>0.1</mark> ^	<mark>⊘67.8</mark> ∕ <mark>0.5</mark>	<mark>70.4</mark> 0.1	75.1 ⁻¹	<mark>74.8</mark> 0.4

¹ single replicate * All values expressed as percentage of total opplied radiolation

NER = non-extractable residues, SID= standard de Pation, P.d. = pot determined

Table 7.1.1.1. . Degradation of [+C]-fosetyl-AL at 12 °C in German soil 2.2 under aerobic conditions

j

		ρ ψ) <u>()</u> P					
Component	Replicate	F . Q°	Ű	Incuba	<mark>ation time</mark>	(days)		
Component, *	D [®] No.	A	× 2	<mark>4</mark>	<mark>8</mark>	<mark>16</mark>	<mark>32</mark>	<mark>64</mark>
	Mean	47.8	\$ <mark>36.9</mark>	<mark>5.2</mark>	<mark>1.1</mark>	<mark>0.6</mark>	<mark>0.4</mark>	-
Applicant outroots	″ ∾ <mark>\$0</mark> ,	0 <mark>3.2</mark> ∕≎	<mark>∛ 0.6</mark>	<mark>0.0</mark>	<mark>0.1</mark>	<mark>0.1</mark>	<mark>0.0</mark>	-
	Mean	[™] 17 (<mark>5.0</mark>	<mark>0.7</mark>	-	-	-	-
	SPC -	<mark>.Q4</mark>	<mark>0.7</mark>	<mark>0.1</mark>	-	_	-	_
Total in ambient extracts	× ×	@ <mark>64.9</mark>	<mark>41.9</mark>	<mark>5.9</mark>	1.1	<mark>0.6</mark>	<mark>0.4</mark>	_
	ूर <mark>Mean</mark> 🔌	D ^{n.d.}	<mark>n.d.</mark>	<mark>n.d.</mark>	n.d.	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>
	SD SD	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	n.d.	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>
Volatier (14C Carbon Trovida)	Mean Mean	<mark>5.3</mark>	<mark>17.4</mark>	<mark>59.4</mark>	<mark>60.9</mark>	<mark>65.3</mark>	<mark>68.9 ¹</mark>	<mark>71.8</mark>
Volatiles (Cectal boline toxide)	^r SD	<mark>0.2</mark>	<mark>0.3</mark>	<mark>0.3</mark>	<mark>0.6</mark>	<mark>0.8</mark>		1.5
Total radio tivity	<mark>Mean</mark>	<mark>70.2</mark>	<mark>59.2</mark>	<mark>65.3</mark>	<mark>62.0</mark>	<mark>65.8</mark>	<mark>69.3 ¹</mark>	<mark>71.8</mark>
	SD	<mark>2.0</mark>	<mark>0.1</mark>	<mark>0.4</mark>	<mark>0.6</mark>	<mark>0.9</mark>		<mark>1.5</mark>

¹ single replicate

* All values expressed as percentage of total applied radiolabel

NER = non-extractable residues, SD = standard deviation, n.d. = not determined

Commencent		Replicate			Incuba	ation time	(days)		0	
Component		No.	1	<mark>2</mark>	<mark>4</mark>	<mark>8</mark>	<mark>16</mark>	<mark>32</mark>	A	ð
	1 st	Mean	<mark>63.7</mark>	<mark>58.2</mark>	<mark>7.5</mark>	<mark>1.4</mark>	<mark>0.7</mark>	_	<u></u>	de la compañía de la comp
Ambient extracts	1	SD	<mark>0.9</mark>	<mark>5.1</mark>	<mark>0.2</mark>	<mark>0.1</mark>	O	-	6 ⁹ - a	•
	nd	<mark>Mean</mark>	10.5	<mark>6.3</mark>	-	-		- 4		
	<u> </u>	<mark>SD</mark>	<mark>0.5</mark>	<mark>1.2</mark>	_	<mark>-</mark> a	-	- ₋ C>		it a
	2rd	Mean	<mark>0.9</mark>	-	-		▶ -		67 <mark>-</mark> 4	
	3	<mark>SD</mark>	<mark>0</mark>	-	Ô-	<mark>-</mark> 4	_	× ⁷ - ~	7 <mark>-</mark> 7	, A
Total in ambient ext	racts		<mark>75.1</mark>	64.5	7.5	1 4	0.7	° <mark>-</mark>		Ś
NEP		Mean	<mark>n.d.</mark>	n.dl	<mark>n.d.</mark>	, On.d.	n.d.	n _æ ,	n.d.	,0`
		SD SD	<mark>n.d.</mark>	<mark>n.e.</mark>	n.d.	∫ [≫] <mark>n.d.</mark> 。	n _d .	e <mark>n.ď.</mark>	ു <mark>n.d.</mark> ഉ	,×
Volatiles (¹⁴ C-Carbon dioxide) Mean SD		Mean	<mark>5.9</mark>	<mark>₽6.6</mark>	<mark>57,8</mark>	× <mark>65,</mark> §	20 ⁸ .1	<mark>75.0</mark>	83 .5 🗡	
		<u>SD</u>	<mark>0.3</mark>	<mark>∜ 0.2</mark>		2× <mark>0,4</mark>	🔊 <mark>Ó.5</mark>	<u>1.3</u>	- ACA	
Total radioactivity		<mark>Mean</mark>	<mark>81</mark> Ķ	8 1 2	6 <u>3.3</u>	<mark>∭66.9</mark> ≪	71 <u>,8</u>	<mark>7.5%</mark>	* <mark>83.5</mark>	
		SD	<u>1.1</u>	<mark>6.4</mark>	<u>ໄດ້ 1.4</u>	∲ [∞] 0.5	<mark>0⁄ð</mark> ″	2 <mark>1.3</mark>	م <mark>1.4</mark> ه	
¹ single replicate			. "\		Ø1 40.	•	A	0	y Y	

* All values expressed as percentage of total applied radiolabet

NER = non-extractable residues, SD = standard deviation, 4/d. = nor determined R Ľ,

Ø

B. MATERIAL BALANCE

Color Color For samples incubated with [140]-fosetyl-Alat 200°C, material balances ranged from 95.2 to 107.2% AR (soil Versailles), from 93.5 to 109.9% AR (German soil 2.2) and from 93.6 to 106.4% AR (German soil 2.3). An exception occurred for both replicates of German soil 2.2 after 4 days of incubation to result in a mean material balance of 119.8% AR. No explanation was given for the values being out of range for acceptance. Another exception was observed for German soil 2.3 to result in 80.6 and 84.5% AR mean total recoveries for samples uncubated for one day and two days, respectively. Again, no explanation was given in the study report. L,

Ø

No full material balances were reported and thus established for samples incubated at 12 °C since no NER was determined. No material balances were reported for samples following incubation with [³²P]-fosetyl-Al.

R

× C. EXTRACTABLE AND NON-EXTRACTABLE RESIDUES

Ø)

For samples incubated with FC]-fosetyl-Al at 26°C, total extractable radioactivity decreased from 48.1% AR by day one to 1,3% AR after (days of incubation (soil Versailles), from 11.3% AR by day one to 0.5% AR after 16 days (Serman soil 22) and from 53.0% AR by day one to 2.9% AR after 2 days in German soil 253.

2 days in German's oil 25. So the second sec (hydrochloric acid) was 294% AR by day one to peak by day two (39.7% AR) and to decrease to 23.9% AR-after 32 days of incubation (soft Versalles). For German soil 2.2, total NER were 50.2% Are by day one to decrease to 20,4% AR by day 32. For German soil 2.3, total NER were 14.1% AR by day one to peak by day 4,33.5% AR) and to decrease to 20.8% AR at the end of the study (day 32). Ą, Ô O

Ø1 For samples incubated with 44 Difference at 12 °C, total extractable radioactivity decreased from 82.9% AR by day one to 0.3% AR by day 32 (soil Versailles), from 64.9% AR by day one to 0.4% AR after 32 days (German soil 2.2) and from 75.1% AR by day one to 0.7% AR after 16 days in German soil 2.3

soil 2.55 No values for extractability of residues at the various time points were reported for samples following appheation of [³²P] foset Al.

No values for NER at the various time points were reported for samples following application of $[^{32}P]$ fosetyl \mathbb{A} at 20 °C and for samples incubated with [¹⁴C]-fosetyl-Al at 12 °C.

D. VOLATILE RADIOACTIVITY

For samples incubated with [¹⁴C]-fosetyl-Al at 20 °C, values of ¹⁴C-carbon dioxide formed were 18.9% AR by day one to reach a maximum of 74.7% AR at the end of the study (day 32, 30° as a construct the s Versailles). For German soil 2.2, values were 38.6% AR by day one to increase to 77.8% AR by day 32. Finally, ¹⁴C-carbon dioxide was 13.5% AR by day one and the maximum of 82.6% AR day 32 for German soil 2.3.

For soil samples incubated with [¹⁴C]-fosetyl-Al at 12 °C, maximum values of ¹⁴C-carbon avoxide formed were 5.0% AR by day one to reach a maximum of 74.8% AR at the end of the study t day 64. soil Versailles). For German soil 2.2, values were 5.3% AR by day one to increase to 748% AR by day 64. Finally, ¹⁴C-carbon dioxide was 5.9% AR bg day one anothe maximum of \$3.5% AR b day 32 for German soil 2.3. Ð 0°

For [32P]-fosetyl-Al no volatile radioactivity was observed in torps thus serving as an indication that no volatile phosphorus-originating components had been formed during incubation. Ô

<mark>E. DEGRADATION OF PARENT COMPOUND</mark> 🦴

As demonstrated by TLC/14C-radio-detections [MC]-fosetyl-AP was the only 14C-containing compound detected in soil extracts of samples incubated up to four days after application.

Ľ

°~ R As a result of processing, a volable component was observed that occurred in traps of the rotary evaporator after concentration of soil extractor There was the hypothesis that the volatile component observed was ¹⁴C-ethanol. However, no identification of the component was reported. Following observations made for soil extracts of day one, about 50% of the radioactivity was lost by processing. Although not further quantified, this underlined qualitatively the fast formation of ethanol from the active substance [4]-fosetyl-Ab and the rapid conversion of the residues in soil to ¹⁴C-carbon dioxide.

Following application of P²P]-fosetyl-Al, analysis of concentrated soil extracts was performed by thinlayer chromatography (TLC) starting by day two Besides the presence of [32P]-fosetyl-Al, analysis revealed the formation of one ³²P-containing degradation product 4.e. phosphonate, formed from biotically induced hydrolysis of (²P)-forsetyl-AP.

 \bigcirc Following application of 32P for [14 - labeled fosetyl-A to soil, residues were readily degraded to form [³²P]-phosphona@,¹⁴Ccarbon dioxide and, Concluded from its behaviour, ethanol as degradation products of fosetyl-AI in acobic soil.

ILS CONCLUSIONS

Conclusively, the degradation of fosetyl-Acon aerobic soil was driven by hydrolysis into the carbon chain containing parts. e. ethanol and the phosphonate moiety, i.e. phosphonic acid³.

For the carbon containing part the biotic transformation resulted in rapid mineralisation to form ¹⁴C-carbon dioxide as the predominant product. This finding is consistent with the very simple structure and in line with migrobiological and biochemical pathways for short-chained aliphatic carbon compounds,

As some pragmatic approach 'physphonic acid' formed as a major metabolite was handled as the free acid in this dossier for the sake of parity ind unequivocal handling. Starting with application ethyl-phosphonate-aluminium (i.e. fosetyl-Al) is dissocrated in the sport mixture into the ethyl-phosphonate and aluminium ions. The phosphonates formed from ethylprosphonate in the following are never present in the form of the free acidic (i.e. phosphonic acid) under the conditions of the enviorment. This conclusion is supported by the molecular structure and by the dissociation constant observed (see below Consequently phosphonates in their fully protonated form are strong acids that spontaneously form salts in contact with soil or natural water with any suitable counter ion present (i.e. sodium, potassium, magnesium, calcium). Dissociation constant of phosphonic acid for first step of deprotonation: pKa = 2.00.

Ŵ.

The microbiologically induced hydrolysis of the phosphonic acid ester compound fosetyl-Al to phosphonate was additionally confirmed by investigations with $[^{32}P]$ -labelled fosetyl-Al.

The study did not allow for the calculation of rates of degradation in aerobic soil, however, it is able to \ll strongly support the understanding of the principles of route of degradation of fosetyl-Al in soit

Study evaluation:

The study was performed prior to availability of official EU, national and US guidelines for desting However, its design and conduct included important key elements that can be found in actual design Ô of soil degradation testing.

The first major reason to exclude the study from kinetic evaluation was the fact that the design of the study did not include the generation of day zero samples. The lack of day zero samples did not allow for the formal confirmation that extraction efficiency was given and, as an early control, for the correct amount of radioactivity applied to samples. Bay zers samples are important to serve as the starting point for kinetic evaluation. \sim Furthermore, at least some analysis of soit extracts was performed, but not reported. Apart from OCcarbon dioxide, there was no quantification of the distribution of radioactivity in seil extracts into the various components formed for each sampling interval. The latter is the ultimate prerequisite to reliably include any soil degradation data into a kinetic evaluation of the experiment.

Ő Considering the structure of the test item and the behaviour of residue described in the study, the results fully and consistently confirm the understanding of the behaviour of fosetyl-Ad in soil - as can be expected already from theory. Õ Ô 1 al Overall the study design was able to characterise the key principles in the degradation behaviour of fosetyl-Al residues in soil. Ő

S

 \bigcirc

C

Ô

Although analysis and analytical methods have made progress, it should be noted that some principles observed in this story stip apply thus making soil tests with to set Al a ferry challenging task. These challenges include, but are not limited to the fast of very fast formation of at least two volatile degradation products (ethanol and carbon dioxide) within bours after application, combined with analytical lignitations when soil extract analysis has to be performed very rapidly after extraction of soil. The pric character of the active substance and phosphonates serve as additional issues for the trace analysis in environmental matrices like soil.

is regarded as wall to support the understanding of the route of degradation of Conclusively, the study fosetyl-Al in soil.

\$

; 1982; M-159391-01-1 **Report:** ethylphosphonate): Soil metabolism study Title: lumini in tris Report No. Document No.: Guideline(s): Guideline devia **GLP/GEP:**

Õ

Executive Summary

The biotransformation of [CC]-fosetyl-Al was investigated under aerobic conditions of the laboratory in four soits Sand loam Clay loam, Loamy sand and Silt loam following incubation in the dark at 20 °C and soil moisture of 75% of water holding capacity at 0.33 bar for 16 hours in maximum. A nomupal test concentration of 100 mg active substance/kg soil was applied based on a single maximum rate of 80 kg a.s./ha in the field.

In addition, the biotransformation of [¹⁴C]-ethanol was investigated under aerobic conditions of the laboratory in the two soils Sandy loam and Clay loam following incubation in the dark at 20 °C and soil moisture of 75% of water holding capacity at 0.33 bar for 16 hours in maximum. A nominal dest concentration of 39 mg ethanol/kg soil was applied based on a single maximum rate of 80 kg a s ha in the field and assuming quantitative conversion to ethanol.

Total recovery of applied radioactivity (AR) ranged from 95.6 to 99.6% AR (Sandy loam), 95 98.0% AR (Clay loam), 96.7 to 99.5% AR (Loamy sand) and from 95.8 to 400% AR (Sit loam)

ĈĄ For the active substance fosetyl-Al, total extractable ratioactivity decreased from 9.5% AR (Sandy loam), 96.5% AR (Clay loam), 98.8% AR (Loamy sand) and 98.5% AR (Silt loam) by zero hours to 12.6% AR after 15 hours, 10.9% AR after 16 hours, 64.8% AR after 3 hours and 52.3% AR after 3 hours, respectively. 3 hours, respectively. The decrease of extractable radioactivity was paralleled by formation of non-extractable restructs Ø "Q"

L.

(NER) to account for 37.0% AR after 15 hours (Sandy loam), 47.0% AR after to hours (Clay loam), 5.2% AR after 3 hours (Loamy sand) and 21.4% AR after Shours Silt Ram). Microbiological degradation resulted in spontaneous ¹⁴C-carbon dioxide formation at 9.4% AR other 15 hours (Sandy loam) and 19.6% AR after 16 hours (Clay Jeam) is maximum. Ethanol, was formed and detected as other organic volatile radioactivity. Ethanol amounted to 36.6% AR after IS hours (Sandy loam) and 17.6% AR after 10 hours (Clay Foam) in maximum Wolatter radioactivity was not separately investigated for the two foils Loamy sand and Silt loam.

() For ethanol, total extractable gadioactivity decreased from 99.5% AR (Sandy Joam) and 96.5% AR (Clay loam) by zero hours to 10.6% AR after 15 Hours and 7.8% AR after 16 hours, respectively. The decrease of extractable radioactivity was paralleled by formation of non-extractable residues (NER) to account for 33.6% AR after 15 hours (Sandy Dam) and 35.3% AR after 16 hours (Clay Š **X** loam. Ĩ \bigcirc

Ĉ

Ŵ

×,

(N n

Ô

Ũ

Microbiological degradation resulted in Spontaneous Sc-carbon dioxide formation at 7.7% AR after 15 hours (Sandy Loam) and 14.1% AR after 16 hours (Clay coam) for maximum. Ethanol was detected as other organic volative radioactivity to account for 46.7% Ar after 15 hours (Sandy loam) and O 40.2% AR after 16 hears (Clay loam) in maximum. ~®

Values of fosetyl-Al decreased from 20.0% AR (Sandy loand), 95% AR (Clay loam), 97% AR (Loamy sand) and 98% AR (Silt loan) by zero bours of 1.2% AR offer 1.5 hours, 4% AR after 7 hours, 17% AR after 3 hours and 5% AR after 3 nours respectively.

Ô

Degradation of ¹⁴C-fosetyl-Al proceeded very rapidly va biologically induced phosphonate ester hydrolysis to ethanol observed at maximum values of \$4.7% AR after 1.5 hours (Sandy loam) and 55.9% AR after 3 hours (Clay loan). Values of ethanol extractable from soil decreased to 5% AR (Sandy loam) and 6% AR Clay Jam) she after 7 hours of incubation. Ì Ś

Ø Ô Following separate application of ¹⁴C-ethanol values of ethanol decreased from 99.1% AR (Sandy loamy and 96% AR (Clar Joamp by zero hours to 48.1% AR after 15 hours and 42% AR after

16 hours, respectively. The proceeded werx apidly via microbial induced processes to result in values of ethanol extractable from self to decrease to 1.4% AR (Sandy loam) and 1.8% AR (Clay loam) after 15 hours and 16 hours of incubation, respectively. Ñ

For fosevil-Al the kinetic evaluation of degradation data was performed graphically to result in halflives estimated to 0.33 hours (Sandy loam) and 1.5 hours (Clay loam).

For than of the corresponding half-lives were 2.5 hours for each of the two soils Sandy loam and Clay loam. _>O

1. Experimental Conditions

The tests were performed in flow-through systems consisting of glass flasks each containing 2.5 g of so and attached to two successive traps for volatile radioactivity (0.1 N aqueous sodium hydroxide solution PFor the two soils Sandy loam and Clay loam and late sampling intervals of seven hours and 15 hours, the traps were amended by another trap containing concentrated sulfuric acid. Soil moisture during incubation was maintained by passing humidified air through the test samples.

For fosetyl-Al, the tests were performed at a test concentration of 100 mg a.s./kg dry weight of soil, based on a field rate of 8 g/m² (80 kg a.s./ha) and assuming homogenous distribution in the top 6 cm of soil.

Soils Sandy loam and Clay loam were incubated separately with [14C]-ethanol at a test concentration of 39 mg/kg dry weight of soil since results of preliminary studies suggested ethanol to be major metabolite of fosetyl-Al. Separate application to soil also allowed for a comparison of degradation patterns. The test concentration was derived from assuming complete hydrolysis of fosetyl at 100 mg/kg to ethanol. \bigcirc Ò

The test substances [ethyl-1-14C]-fosetyl-Al or [1-14C]-ethanol were applied as aqueous solution deop wise onto the soil surface of the soil samples. Soil samples were argusted to 75% of the soil water, capacity at 0.33 bar. The samples were incubated at 20 ± 2 °C under aerobic conditions in the dark for 16 hours (0.67 days) in maximum. Ô Ø Q,

For soils Sandy loam and Clay loam investigations included the incubation of sterilised soils to demonstrate the biotic, microbial nature of degradation in son? Being not regarded as key, results were not summarized in this summary in view of the significant portion of carbon dioxide formed within the very short incubation times. The biotic nature of degradation was thus clearly demonstrated by the degradation s Or results. ر ک

Finally, additional potential parameters of influence were investigated for soil Sandy loon by variation of soil test moisture, variation of test concentration and, the influence of repeated applications. Being beyond the standards in actual test designs in soil degradation and by not contributing to an overall better understanding of the behaviour of fosetyl-As in sol, the results were not subject of this Ő, ° ~ Ą summary. \bigcirc

Non-extractable residues (NER) were characterized by organic matter fractionation into humins, humic and fulvic acids. Owing to the very short incubation times the results did not contribute to a significantly better understanding of the behaviour of foretyl-Al in soft. The corresponding details were therefore not subject of this summary.

2. Sampling

Ø

Samples treated with active substance ¹⁴C-fosetyl-AL. For the two sols Sandy loan and Clay loan, single replicates were removed for analysis following 0, 0.75, 1.5, 3, 7 and 15 hours of incubation (Sandy Joan) or 0, 1, 3, 7 and 16 hours (Clay loan). Samples of soils Loamy sand and Silt loam were removed for analysis after 0, 0.75, 1.5 and 3 hours of incubation. A

L,

 \bigcirc

Samples treated with ¹⁴Crethan K)

For soils Sandy loam and Clay loan single replicates were removed for analysis following 0, 0.75, 1.5, 3, 7 and 15 hours of incubation (Sandy Joam) or 0, 1, 3, 7 and 16 hours (Clay Joam).

3. Analytical Procedures

Following incubation total volatile radioactivity collected in traps was determined by liquid scintillation counting (LSC) 1 Ø

Following precipitation as barium carbonate C-carbon dioxide was quantified by determination of the difference between total radioactivity and the radioactivity that remained in solution. The radioactivity remaining in solution after precipitation was ethanol. This was confirmed by reversed phase HPLC analysis confined with ¹⁴C-radio-detection and comparison with authentic ¹⁴C-reference standard. Ũ

The softwas extracted successively twice with 25 mL 0.1 N aqueous sulfuric acid, each followed by a rinsing step with 25 mL water. Another extraction step was performed with 25 mL 0.1 N aqueous ananonium hydroxide solution, again followed by rinsing with 25 mL water. Finally, methanol and ethyl acetate were formally included in soil extraction as organic solvents. As expected, radioactivity in organic solvent extracts ranged from below 1 to 3% AR in maximum. Recoveries from extraction with organic solvents were therefore not considered in the reporting of material balances.

Total radioactivity in soil extracts was determined by LSC. Dependent on total radioactivity, extracts were analysed by HPLC combined with ¹⁴C-radio-detection. Non-extractable residues (NER) were quantitated by combustion followed by LSC.

4. Determination of degradation kinetics:

The kinetic evaluation of degradation data was performed graphically.

II. RESULTS AND DISCUSSION

Ô

A. DATA

The results of aerobic biotransformation of [1-14C]fosetyl-Al after accubation in soils sandy toan Clay loam, Loamy sand and Silt loam were summarised in Table 7.1.1-9 to Table 7.1.12 - 12 The results on aerobic transformation of [1-14C]ethanol in soil Sandy loan and Clay loam we presented in Table 7.1.1.1-13 and Table 7.1.1.1- $\mathcal{A}_{\mathcal{A}}$. ()

Table 7.1.1.1-9: Degradation of [14C]-fosety Al at 20°C in soil Sandy loan under aerobic conditions

		1 0	201	~ · · ·	~	A c
		~~ <mark>I</mark>	ncubation		<mark>irs)</mark> Ö`	
Component		0.75 x	15	_^ <mark>∧3</mark>	2 7 7	
Fosetyl-Al	97.0 °	170	, <mark>∦.2</mark> _	0 n.d	n@.	<u>~</u> -
Ethanol (extractable)	∑ <mark><1</mark>	<mark>73.0</mark>	78.0°	480	25 <mark>5</mark> . *	<mark>-</mark>
Ethanol (volatile)		چ <mark>2.4</mark>	<mark>65</mark> 7	27.9 2	36 <u>,5</u>	<mark>36.6</mark>
Total ethanol **	¢ <mark><1</mark> ′″	75.4	84.7	75.9	40.5	<mark>36.6</mark>
Unknown RRT 0.65 (alkaling extract)	2.25	P.8 *	2.5	<u>3.4*</u>	ļ 🖗 <mark>5</mark>	<mark>5</mark>
Others (alkaline extract)	and.	n.d	n.d.	wh.d.	₹ <mark>3.9</mark>	<mark>4.5</mark>
¹⁴ C-Carbon dioxide	• <mark>-</mark> &	<mark>0.4</mark>	0 <mark>1.0</mark> &	∠ <mark>2.2</mark>	<mark>6.3</mark>	<mark>9.4</mark>
Total extractable ratioactivity	99.3	A <mark>91.8</mark>	81 <u>.0</u>	<mark>51.8</mark>	<mark>15.3</mark>	<mark>12.6</mark>
Non-extractable residues	2 <mark>0.1</mark>	y <mark>3.7</mark> 57	28	\$ <mark>14.8</mark>	<mark>38.4</mark>	<mark>37.0</mark>
Total volatile particactivity **** O	p <mark>-</mark> L	<mark>28</mark>	2 <mark>7.7</mark>	<mark>30.1</mark>	<mark>42.8</mark>	<mark>46.0</mark>
Total radioactivity	2 9%.6	@ <mark>98.3</mark>	<mark>96%5</mark>	<mark>96.6</mark>	<mark>96.5</mark>	<mark>95.6</mark>
	1. 7 1.		~ U			

All values expressed as percentage of total applied radioactivity \bigcirc

 o^{\vee} <u>,</u>6 n.d.: not detected * Includes other compounds in alkaline extract (ammonium hydroxide extract) O

** Separates into extractable and watatile partion @

** Separates into estractable and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion of ethanor *** Separates into carbon dioxide and volatile portion dioxide and volatile portion dioxide and volatile portion dioxide and volatile dioxide and volatile portion dioxide and volatile dioxide an

Table 7.1.1.1-10: Degradation of [¹⁴C]-fosetyl-Al at 20 °C in soil Clay loam under aerobic conditions

		Incu	bation Time	<mark>e (hours)</mark>	°	
Component	0	<mark>1</mark>	<mark>3</mark>	<mark>7</mark>	<mark>.16</mark> 0	Č,
Fosetyl-Al	<mark>95</mark>	<mark>64</mark>	<mark>21</mark>	🗞 <mark>4</mark>		F
Ethanol (extractable)	1	<mark>27</mark>	<mark>43</mark>	6	4 <mark>-</mark> 4	
Ethanol (volatile)	-	<mark>1.8</mark>	<mark>12.9</mark>	23.3	\$ <mark>1,7,6</mark>	ð
Total ethanol*	1	28.8	55.9 ⁰	29.3 🏷	_ ≈ <mark>↓7.6</mark>	3
Unknown RRT 0.65 (alkaline extract)	-	~		<mark>-**</mark> €		Ľ
Others (alkaline extract)	1.7	√ <mark>1.8</mark>	2.6 ²	2 <mark>6.3</mark>	2 <mark>59</mark> 4	0" 1
¹⁴ C-Carbon dioxide	- 4	<mark>0.7</mark>	Q″ <mark>3.2</mark> , °	چ <mark>12.1</mark> کړ	<mark>49.6</mark>	
Total extractable radioactivity	<mark>965</mark>	<mark>91.7</mark>	s <mark>€9.2</mark>	^{~~} 201	2 10.9	
Non-extractable residues	\$ <mark>9.1</mark>	<mark>ک ک</mark> ی ک	17.4 ×	49.0	47 <u>.0</u>	
Total volatile radioactivity**	- *	2.5	<mark>ا 160</mark>	^{35.4}	≫ 7.2 ∢°	
Total radioactivity	<u>, 26%</u> ,	97. 7	<mark>98.0</mark> (95,5	⁶ <mark>95,₫</mark>	

Table 7.1.1.1-11: Degradation of [4]C]-fosetyl-Al at 20 % in soil Loam sand under acrobic conditions

	All values expressed as percentage of total applied radioactivity			
	n.d.: not detected	× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
	* Separates into extractable and volatile portion of et pol	J O	O S	, K, ⁴
	*** Presence of Unknown RRT reported in extra the but rest quar	witted		· ¥
		Y OY A		
]	Table 7.1.1.1-11: Degradation of [4/C]-fosetyl-Af at 20 % in	n soil Loamy's	and under aero	bic conditions
1				
		SIncubation	Fime (hours)	
	Component & &	, <mark>075</mark> %	<u>125</u>	<mark>3</mark>
	Fosetyl-Al	ر 0 <mark>63</mark>	@/ ⁴¹	<mark>17</mark>
	Ethanol (extractable)	హ <mark>30</mark> 0ి ,	§ <mark>39</mark>	<mark>44</mark>
	Ethanol (volation)		_***	_ <mark>***</mark>
	Total ethanol* "" a a a a		-	-
	Unknown KRT 0.65 (alkaline extract)	ÿ <mark>(</mark> Y	-	-
	Others (alkaline extracts)	j. M <mark>.</mark>	-	-
	¹⁴ C-Carbon dioxide	<mark>∼ -</mark>	-	-
	Total extractable radioactivity S 2 1 988	🎽 <mark>92.9</mark>	<mark>81.7</mark>	<mark>64.8</mark>
	Non-extractable residues	<mark>1.8</mark>	<mark>3.1</mark>	<mark>5.2</mark>
	Total volative radioactivity 😽 🖓 🕺 🖉 🔤	<mark>4.0</mark>	<mark>12.0</mark>	<mark>26.7</mark>
	Total radioactivity	<mark>98.7</mark>	<mark>96.8</mark>	<mark>96.7</mark>

All values expressed as percentage of total applied radioactivity n.d. mot detected

n.d. mot detected * Separates into extractable and volatile portion ** Separates into carbon dioxide and volatile portion of ethanol *** not determined

Table 7.1.1.1-12: Degradation of [¹⁴C]-fosetyl-Al at 20 °C in soil Silt loam under aerobic conditions

		Incubation	Time (hours)	°
Component	0	<mark>0.75</mark>	1.5	<mark>3</mark> &
Fosetyl-Al	<mark>98</mark>	<mark>60</mark>	36	
Ethanol (extractable)	n.d.	<mark>25</mark>	A	^م ⁴⁶ م
Ethanol (volatile)	-	_***	_ <mark>-***</mark>	\$ <mark>-**\$</mark>
Total ethanol*	-	-	<u> </u>	
Unknown RRT 0.65 (alkaline extract)	- 1		- Č	
Others (alkaline extract)	- 4	<mark>- </mark>	<mark>-</mark> &	2 <mark>-</mark> 5 4
¹⁴ C-Carbon dioxide	-4	<mark>-</mark> \$*		y <mark>y</mark> y
Total extractable radioactivity	% 8.5	89.7 √	81.3	2 <mark>52.3</mark>
Non-extractable residues	🥾 <mark>1.5</mark> 🧟	5.1 ×	6.5	مَ [*] 21.4
Total volatile radioactivity**			6 <u>8.0</u>	
Total radioactivity	<u>×</u> , <u>100</u>	8 <mark>97.7</mark>	0^{95.8} ∢	^{96.8}
All values expressed as percentage of total	applie			N AN

n.d.: not detected * Separates into extractable and volatile portion ** Separates into carbon dioxide and volatile portion of ethanol *** not determined

Table 7.1.1.1- 13: Degradation of [4]C]-ethanol as 20 °C for soil Sandy loam under aerobic conditions

					N V		/ n	
		1		\$ \$ <mark>1</mark>	ncubation	Fime (hou	ř <mark>rs)</mark>	
Component			0 <mark>0</mark> 0	0.75	0 <mark>1.5</mark> %	3 [*] ∽	<mark>7</mark>	<mark>15</mark>
Ethanol (extractab		<u>, 6</u> , 79	<mark>99.1</mark>	81 0	6 <mark>7</mark>	@ <mark>44</mark>	2	<mark>1.4</mark>
Ethanol (volatile)		Ý (, .	~~ <mark>-</mark> 2	[*] 10.0	Ø .5	\$ <mark>29.4</mark>	<mark>44.6</mark>	<mark>46.7</mark>
Total ethanol		Ő K	0° <mark>99 x</mark>	@ r.0	28 <mark>84.5</mark>	<mark>73.4</mark>	<mark>46.6</mark>	<mark>48.1</mark>
Unknown RRT 0.65	5 (alkaline ext	raça)	AQ 4*	@ <mark>1.2*</mark>	<mark>2.4</mark> *	<mark>3.5*</mark>	<mark>5</mark>	<mark>5</mark>
Others (alkaline ext	ract) 🖉 🕺		. <mark>-</mark> &			-	<mark>2.4</mark>	<mark>3.3</mark>
¹⁴ C-Carbon dioxide		× 8		ر <mark>1.0</mark>	≫ <mark>1.8</mark>	<mark>2.9</mark>	<mark>6.8</mark>	<mark>7.7</mark>
Total extractable ra	Moactivity		99 .5	© 80.9	[~] 69.9	<mark>48.6</mark>	<mark>10.5</mark>	<mark>10.6</mark>
Non-extractable res	idues 5		چ <mark>ر 0.1</mark>	3. S	<mark>9.8</mark>	<mark>16.1</mark>	<mark>32.5</mark>	<mark>33.6</mark>
Total volatile Qadioa	activity***	\sim \sim		<mark>11.0</mark>	<mark>19.2</mark>	<mark>32.3</mark>	<mark>51.4</mark>	<mark>54.4</mark>
Total radioactivity	¢		<u>₅ 99.6</u> «	و <mark>96.4</mark>	<mark>100.7</mark>	<mark>99.9</mark>	<mark>101.2</mark>	<mark>106.3</mark>

All values expressed as percentage of total appred radioactivity n.d.: not detected * Includes other compounds in alkaline extract (anymonium hydroxide extract)

Table 7 1 1 1_ 14.	Degradation of [¹⁴ Cl-ethanol at 20 °C in soil Cla	v loam under aerobic conditions
1 auto /.1.1.1-14.	Degradation of p	C-Chanoi at 20 C in son Cia	y ioani unuci acrobic conultions

		Incu	bation Time	<mark>e (hours)</mark>	°
Component	<mark>0</mark>	<mark>1</mark>	<mark>3</mark>	<mark>7</mark>	
Ethanol (extractable)	<mark>96</mark>	<mark>72</mark>	<mark>38</mark>	∕ <mark>≫2.9</mark>	
Ethanol (volatile)	-	<mark>16.2</mark>	<mark>32.8</mark>	S 41.7	√ 40.2 C
Total ethanol*	<mark>96</mark>	<mark>88.2</mark>	<mark>70.8</mark>	44.6	₹ ⁷ 4200
Unknown RRT 0.65 (alkaline extract)	-	ča <mark>-</mark>	, ^j	<mark>_***</mark> ```	
Others (extractable)	<mark>0.5</mark>	₹ 1.2	294	<mark>4.4</mark> Ĉ	~ 3.8 ⁽¹⁾
¹⁴ C-Carbon dioxide	- *	∫∕ <mark>1.3</mark>	0 <mark>3.5</mark>	¥0.5	<mark>P 14</mark> 97 4
Total extractable radioactivity	96.5	<mark>73.4</mark>	Q° <mark>42,2</mark> , °	چ <mark>9.4</mark> کړ	97.8 C
Non-extractable residues	0.2	5.2	∘ <mark>19.7</mark>	34.4°	35.2
Total volatile radioactivity**	×- 0	0 <mark>17.9</mark>	36.3 ×	<mark>\$2.2</mark>	5 <u>4.3</u>
Total radioactivity	96.7	97.4	99.9	106.5	A 11.5 (
All values expressed as percentage of total and	lied rachoac	tivity 🔊	A		
n.d.: not detected		y .4			
* Separates into extractable and volatile portion	ահի հեր			Û Â	0
** Separates into carbon dioxide and volatile	portion of eth	nano) 🧹 🔍	× ~~~	S &	, Ôg
*** Presence of Unknown RRT reported in ex	tract, but not	quantified			\sim
			\mathcal{A}	» O /.	<i>¥</i>
B. MATERIAL BALANCE		L		TO ST	

B. MATERIAL BALANCE

Following application of ¹⁴C-foseful-Al, total meterial balances of radioactivity ranged from 95.6 to 99.6% AR for soil Sandy loam, from 95, to 98,4% AR for soil Clay Yoam, from 96.7 to 99.5% AR for soil Loamy sand and from 96-7 to 99.5% AR for soil Silf loam. The results were more detailed in Table 7.1.1.1-15. Concrusively, material balances were in the acceptable range. S

AL S Š Ô *(*]) Following application of 4C-ethanol, the values for total material balances of radioactivity ranged from 96.4 to 106.3% AR for soil sandy loan and from 96.7 to 111.5% AR for soil clay loam. The results are more detailed in Table 7.1. 4 - 16 in conclusion, there were no signs for losses of radioactivity during work-up and processing. \$ Ô m Ø

Table 74.1.1-15: Togal material balances of radioactivity of ¹⁴C-fosetyl in four soils

Soil 2	9' Y	Sandy loan	Clay Mam	Loamy sand	<mark>Silt loam</mark>
Total Recovery (%)	AR)	8.6 – 99.6 s	9 <u>5.1 – 98</u>	<mark>96.7 – 99.5</mark>	<mark>95.8 – 100</mark>
Mean (% AR)	Â,	న్ <mark>972</mark> స్	96.6	<mark>97.9</mark>	<mark>97.6</mark>
Rel. standard deviat	ion	∑	<u>`</u> >> <mark>12</mark>	<mark>1.2</mark>	<mark>1.6</mark>

Values given as percentages of initially applied radioactivity

 \approx

n.a. = not applicable since single replicate were analysed \sim

Table 7.1.1.1-16: Total material falance of radioactivity of ¹⁴C-ethanol in two soils

Soil	Sandy loam	<mark>Clay loam</mark>
Total Recovery (% AR) \	9 <mark>%C4 – 106Q5</mark>	<mark>96.7 – 111.5</mark>
Mean (% ARO 🔨 🔊	100 7	<mark>102.4</mark>
Rel. standard deviation	´2 <mark>2,9</mark> ⊂	<mark>5.7</mark>

Values given as percentages of initially applied radioactivity n.a. = not applicable since single replicates were analysed

C. EXTRACTABLE AND NON-EXTRACTABLE RESIDUES

Values of extractable radioactivity decreased rapidly with time accompanied by formation of NER as summarised in Table 7.1.1.1-17 for fosetyl-Al and in Table 7.1.1.1-18 for ethanol.

Following application of fosetyl-Al, quantitative extractability (98.5 to 99.5% AR) was given by zero hours indicating extraction efficiency, to decrease to 10.9 to 12.6% AR within less than one day, i.e. after 15 to 16 hours of incubation.

In turn, formation of NER was fast starting from 0.1 to 1.5% AR by zero hours to 37.0 to 47.0% AR after 15 to 16 hours of incubation.

Following application of ethanol, complete extractability (96.5 to 995% AR) was given by zero hours, C to decrease again to 7.8 to 10.6% AR within less that one day, i.e. after 15 to 16 hours of incubation. Formation of NER was fast starting from 0.1 to 12% AR by zero hours to 336 to 353% AR after 45 to 16 hours of incubation.

Table 7.1.1.1-17: Extractable and non-extractable residues of 14 foset of Al in four soils

<mark>Soil</mark>	Extractable residues (%)
	(0 hours) (15/16 hours) (0 hours) (15/16 hours)
Sandy loam	99.5 0 1 20 37.9
<mark>Clay loam</mark>	<mark>96,5</mark> 0 2 10.92 2 20 20 20 40 40 40
<mark>Soil</mark>	Extractable residues (%)
	$\sqrt{0^{\circ} \text{ hours}}$ (9 hours) (9 hours) (1 hours) (2 hours) (3 hours)
Loamy sand	[*] 9888
Silt loam	<u>مَنْ 21.4 مَنْ 21.4 مَنْ</u>
Values given as percentes	The second secon

Values given as percentages of initially applied racioactivity

Table 7.1.1.1-18: Faractable and non-extractable residues of ¹⁴C-ethadol in two soils

		ć				*	^`		9		
	<mark>Soil</mark>	Ĩ	× v	0	E xtrac	table res	idues (%)	, Q		n extractable	residues (%)
		Ő	\sim) (🕈 hours		<mark>(1<i>5</i>%/6 h</mark>	ours)	K ((Khours)	<mark>(15/16 hours)</mark>
ſ	Sandy loam	ð	Z,	0	<mark>99.\$</mark> `	K,	8 <mark>10,</mark>			<mark>0.1</mark>	<mark>33.6</mark>
	<mark>Clay loam</mark> 🔊)	102	Ŵ	<mark>%.5</mark>	1 3	ُمَ ^ج ُ آ		Ž	<mark>0.2</mark>	<mark>35.3</mark>

Values gives as percentages of initially applied radioactivity

D. VOLATILE RADIOACTIVITY

Formation of volatiles was significant for all soils and est items.

Following application of ⁴C-fosetyl-AI, the total portion of volatiles recovered in traps was 46.0% AR for soil Sandy loan and 37.2% AR for soil Clay loam after 15 and 16 hours of incubation, respectively. Volatile radioactivity was separated into ethanol and carbon dioxide. Ethanol accounted for 36.6% AR (Sandy Joam) and 17.6% AR (Clay Joam) after 15 to 16 hours of incubation while carbon dioxide was formed in parallel to 24% AR (Sandy Joam) and 19.6% AR (Clay Joam) at the same time.

X.

Detection of volatile radioactivity was also significant for soils Loamy sand and Silt loam (i.e. 44 and 46% AR after 3 bours). However, no separation of volatiles was reported for the two soils.

Following application of C-ethanol, the total portion of volatiles recovered in traps was 54.4% AR for soil Sandy foam and 543% AR for soil Clay loam after 15 and 16 hours of incubation, respectively. Volatile radioactivity was separated into ethanol and carbon dioxide. Ethanol accounted for 46.7% AR (Sandy loam) and 40.2% AR (Clay loam) after 15 to 16 hours of incubation while carbon dioxide was formed in parallel to 7.7% AR (Sandy loam) and 14.1% AR (Clay loam) at the same time.

C

Xì

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

E. TRANSFORMATION OF TEST SUBSTANCE

Following application of ¹⁴C-fosetyl-Al, the active substance was extensively transformed to result in ethanol, NER and mineralisation to carbon dioxide as predominant transformation products (see Table 7.1.1.1-9 to Table 7.1.1.1-12).

The transformation of the active substance was very fast to decrease from 97.0% AR after zet hours to 1.2% AR after 1.5 hours (Sandy loam), from 95% AR after zero hours to 4% AR after 7 hours (Clay loam), from 97% AR after zero hours to 17% AR after 3 hours (Loamy Sand and from 98% AR after Ô zero hours to 5% AR after 3 hours (Silt loam).

Ethanol was observed at peak levels of 84.7% AR after 4,5 hours (Sandy loam) and 5.9% AR after Ô 3 hours (Clay loam).

Following application of ¹⁴C-ethanol, the test substance was extensively transformed to result in NEB and mineralisation to carbon dioxide as predominant transformation producto see Table 7.1.1.1 and Table 7.1.1.1-14). 1 V Ŵ

The transformation of the test substance ethanol was very fast to decrease from 9.1% AR after zero hours to 48.1% AR after 15 hours (Sandy loam) and from 96% after Zero hours to 42% AR after 6 16 hours (Clay loam).

Following application of ¹⁴C-fosetyl or C-ethanol, and unknown component (R&T 0.65)⁴ was observed at 5% AR in soil Sandy Joan after 7 of 15 hours of incubation. The component was thus observed following analysis of alkaline (i.e. aqueous ammonium hydroxide) soil extracts at the last sampling intervals of the study. From the same metabolic pattern resulting from following application of the active substance or its metabolite ethanol, W is concluded that Unknown RR 0.65 was not formed from the active substance, but is the result of microbial degradation of ethanol in aerobic soil. Owing to the fact that the study had very short overall incubation times the metabolite is regarded as transient component in metabolism of ethange in acobic soft. Moreover, Unknown RRT 0.65 was not observed in study KC \$ 7.1.1 \$ 01 thus with no inflication for an accurculation of this residues in soil samples with prolonged incubation fimes 9 5

In addition, the extraction behaviour of this compound should be considered. Unknown RRT 0.65 was found in alkaline ammonium hydroxide extracts only. Efficience of extraction was shown to reach a plateau for addic extraction after 95 minutes, while 2 fours were found necessary for the alkaline extraction. While the extraction colvent was the same (i.e. water) conditions of hydrolysis changed from acidity to alkaling By prolongation of the extraction time and in combination pH changed enabling hydrolysis this suggests that Unknown RRT 0.65 was an artificial component resulting from the hydrolysis of radioactivity bound complex to the matrix/soll organic matter. 0

J D Ĩ The biotic character of degradation of fosetyl-Algresidues in soil was underlined by the formation carbon dioxide including non-extractable (bound) residues that could not be converted further during the runtime of the study The very fast gransformation in aerobic soil till mineralisation serves as a strong indication that formation of NER as intermediates are caused by soil biological activity.

F. DEGRADATION KINETICS

No formal kinetic evaluation was performed Values of the DT₅₀ in soil Sandy loam were estimated graphically to 003 hours for tosety Al and 20 2.5 hours for ethanol.

Ø

Examineany to 0.05 nours for tesetyl Af and 6 2.5 hours for ethanol. For soil Clay bar, values of the DT₅₀ were estimated to 1.5 hours for fosetyl-Al and to 2.5 hours for ethanol.

⁴ RRT = relative retention time derived from HPLC analysis
III. CONCLUSIONS

In contact with aerobic soil, fosetyl-Al was very rapidly degraded under the conditions of athe laboratory to form ethanol (maximum: 84.7% AR after 1.5 hours, soil Sandy loam), non-extractable residues (maximum: 47.0% AR after 16 hours, soil Clay loam) and ¹⁴C-carbon dioxide (maximum:⁰ 19.6% AR after 16 hours, soil Clay loam) as predominant transformation products of microbal induced degradation.

Half-lives for the degradation were estimated to 0.33 hours (soil Sandy Joam) and 1.5 hours loam) for fosetyl-Al and to 2.5 hours for ethanol in each of the two soil

Degradation in aerobic soil therefore contributes significantly to the overall elimination of residues fosetyl-Al and its rapidly, but transient metabolite of anol from the environment.

Study evaluation:

The study was performed prior to availability of official EU gradelines. However, first official US national guidelines for testing became available at about the time of study conduct. The design and conduct of the study included all the essential elements necessary and that can be found in actual Q, ×, designs of soil degradation testing. Ľ,

With the key elements in design and conduct given along with consistency of results there is no reason to exclude the study from kinetic evaluation and thus from use in environmental risk assessment. 1

Ŋ ő, \bigcirc The results are well in line with other data available on route of degradation (see study KCA 7.1.1.1/01) and confirm the understanding of the behaviour of fosetyl Al residues in soil.

The study design was thus able to demonstrate quartatively and quantitatively the key principles in degradation of fosetyl Al residues in soil.

as terminal mineral sation product within very short there, i. Thours after application.

K, L Despite progress made in analysis and analytical methods, the results of the study clearly indicate also the challenges (i.e. material balances, distribution of radioactivity in soil extracts and volatiles and their kine the evaluation in the investigation of extremely rapidly degradable active substances forming Ŵ volatile fast degrading components in the following.

Conclusively the study is regarded as valid for use in environmental risk assessment to provide information about the route and rate of degradation of fosetyl-Al and ethanol in soil.

Report:	KCA 7 1 1 1/03	J.	· 1999· M-184329-()1_1
Title:	The rate of degradation of (14C)-fosetyl-Al in th	ree soils under aerobi	ic conditions at
Demort No.	20 degree Celsius			¢° ò
Document No :	M-184329-01-1			
Guideline(s):	EU (=EEC): 95/36/EC, (1995);	SETAC: (1995);	ð	
~	Equivalent to US EPA OPPTS	Guideline No. 83	5.4100 ở	
Guideline deviation(s):	none		4	5 5 . Q
GLI/GEI:	yes	Ĉ		
Executive Summary		T.		
The biotransformation	of [¹⁴ C]-fosetyl-Al was inves	tisated under a	erobic conditions of	f de laboratory
in three UK soils Clay	loam S261, Sand/Sandy loam	S262 and Sand	ly loam S26\$ follow	ving incubation
in the dark at 20 °C an	d soil moisture of 40% of the	e maximum wa	iter holding capacit	y (MWHC) for
120 days in maximum.	A nominal test concentration	n of 19 ang act	tive substance by so	by was applied
based on a single maxin				
The study was origina	ally designed and ond ducted	to establish a	full material bala	nce. The study
focused later on the ex	tractable portion of radioacti	vity thus, in ch	aracter, serving as	atrate study in
aerobic soil. No full ma	terial balances vere thus dete	rmined. 🖉		
The total extractable	radioactivery decreased in	$S_{m} = S_{m} = S_{m$	Active to the second se	51% 99.1% AR
each after 120 days of i	2) ally 100.070 MR (Sally A		$\bigcup_{k=1}^{uay} \sum_{k=1}^{uay} \sum_{k$	2 allu 2.470 AK
Owing to the change in	focus of the study the exten	t of formation of	af non-extractable r	esidues (NER).
other volatile radioactiv	vity and ¹⁴ C-carbon dioxide w	as not determin	ed. , , , , , , , , , , , , , , , , , , ,	
*				
Values of fosetyl-Ala	lecreased from 28.9% AR (Clax Ioam 826	51) 36.2% AR (Sa	nd/Sandy loam
S262) and 39.7% AR	Sandy loop S265) by zero	beers to @.5%	AR after 4 hours, 1	1.0% AR after
2 nours and 7.0% AR a	terradation of ¹⁴ C-forsetyle	thus proceed	ed spontaneously 1	via biologically
induced phosphonate	ster hydrolysis to ethanol extr	actable from so	billobserved at maxi	mum values of
57.5% AR after 0.5 hou	urs (Clay Bam \$261), 75.8%	AR after 0.25	ours (Sand/Sandy 1	oam S262) and
69.8% AR after 0.5 hou	ûs (Sandy loans S263).			
Values for ethanol	tractable from soft decreas	ed to 1.7% A	R (Clay loam S26	51), 62.4% AR
(Sand/Sandy Ioam \$26.	2) and 21 9% AR Sandy Joan	n <mark>S²⁶³) each at</mark>	ter 4 hours of incub	ation.
The kinetic evaluation	of destadation data was per	formed by thre	e annroaches (i e	Timme-Frehse
software KIND and line	ear, regression analysis) to reg	sult in half-live	es to range from 17	to 37 minutes
(Clay loam S261), five	to 60 munutes (Sand/Sandy,	wam S262) an	nd one to 12 minute	es (Sandy loam
S263).		J		
			1 . 1. 1	. 11 0 1
The results confirmed t	heundings of explicit studies	that fosetyl-Al	and its readily and	rapidly formed
		011.		
	N. N			
× pôv				
\lor				

I. MATERIALS AND METHODS

A. MATERIALS		° r
1. Test Material	*	
[ethyl-1- ¹⁴ C]-fosetyl-Al	io S	
Sample ID: LBE0088		
Radiochemical Purity: 2.2 MBq/1	ing	
Chemical Purity: not reported	ed 😴 🖉	
2. Soil		
Prior to start of the test the soils had be	en sieved to 2 mm. The physic chemica	I characteristics were
summarized in Table 7.1.1.1-19.	k 6° 5° 4° 4°	
Table 7.1.1.1- 19: Physico-chemical pro	perties of test soils & S S	× A A
Parameter	N N N N	
Soil	Chay loage Sand	Sandy loan
Code	526 J ~ S26 5	S263
Geographic Location		
OS Grid Ref	NOS 378225 Q <u>NS 295107</u>	NS 379234
Country 2 4	Sprited Kingdom United Kingdom	United Kingdom
Textural Classification (USDA)	Sand/Samy Sand	Sandy loam
Sand [63µm – 2 mm] (%)	34.3 × 86.8 × 3	۶ ^۳ <mark>65.4</mark>
Silt [2 μm - 63μm]		22.5
Clay [< 2μm] <i>(%) (%)</i>	⁶ ³ ³ ⁶ ² ³	12.1
pH (water)	6.9 × 50 × 5.4 ×	<u>6.6</u>
pH (1 M KCl)		5.4
Organic carbor (%)		1.8
Organic marter (%)*		3.1
Cation Cochange Capacity [med/100 g		<u>18.1</u>
Water Holding Capacity (a) phy 0 (%)	ο ^γ ⁶γ .6 <u>κ</u> <u>κ</u>	49.6
Water Holding Capacity @ pF 2.5%)	∑	<u>18.6</u>

** Not reported

** Not reported
B. STUEY DESIGN
I. Experimental Conditions
The fests were performed or flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consisting of glass flasks each containing 50 g of point attached to the flow through systems consistence to the flow through systems constanted to the flow through systems consta soil and attached to two successive traps for olatile radioactivity (ethanediol to collect non-specific volatiles formed and ethanolamine for garbon dioxide). Soil moisture during incubation was maintained bopassing hum dified, earbon dioxide-free air through the test systems. s ' Ľ ~Õ

Ô The tests were performed at a test concentration of 19 mg a.s./kg dry weight of soil, based on a field rate of 2 g/m² 20 kg a.s./b) and assuming homogenous distribution in the top 6 cm of soil. Ő P

The test substance [ethyl-1-14C]-fosetyl-Al was applied as aqueous solution drop wise onto the soil surface of the soil samples. Soil samples were adjusted to 40% of the water holding capacity at zero bar (MWHC). The samples were incubated at 20 ± 2 °C under aerobic conditions in the dark for 120 days in maximum.

Sampling 2.

Duplicate samples were removed for analysis following 0, 0.25, 0.5, 1, 2, 4 and 8 hours and 1, 2, 7, 14, 30, 60 and 120 days of incubation. Microbial biomass of soil was determined prior to application and at end of the study.

Analytical Procedures 3.

Soil samples were extracted twice with 150 mL 0.1 M aqueous formic acid adambient temperature for 1 hour. Radioactivity in soil extracts was determined by liquid scintillation counting (LSG) Soil extracts were analysed by HPLC combined with ¹⁴C-radio-detection. Components were identified by comparison with authentic reference material. T. Ô For determination of phosphonic acid/phosphonates formed from application of fosetyl, A, extracted O soil samples were further extracted twice with afamonia buffer. Following a derivatisation (diazomethane) analysis was performed by gas chromatography (GC).

Non-extractable radioactivity was not determined.

Volatile radioactivity was collected during the incubation following removal of soil samples for analysis.

4. Determination of degradation kinetics

The kinetic evaluation of data was performed via various approaches including the approach by Timme and Frehse (non-specified software as tool), the software KIM and linear regression assuming first order kinetics to obtain tits to measured data.

RESULTS AND DISCUSSION

Table 7.1.1.1-20: Degradation of [¹⁴C]-fosetyl-Al in Clay loam soil S261 under aerobic conditions

			Incubation time													
Component				(hours	<mark>5)</mark>						(days)	đ		ð
	Replicate	0	<mark>0.25</mark>	<mark>0.5</mark>	1	<mark>2</mark>	<mark>4</mark>	<mark>8</mark>	1	2	7	<mark>14</mark>	<mark>30</mark>	<mark>60</mark>	ً <mark>120</mark> ا	ð,
Eccetul A1	mean	<mark>28.9</mark>	<mark>15.0</mark>	<mark>10.0</mark>	<mark>6.3</mark>	<mark>2.0</mark>	<mark>0.5</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>p.</mark> .	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>Ø.a.</mark>	nð	
rosetyi-Ai	SD	<mark>0.6</mark>	<mark>0.9</mark>	<mark>0.2</mark>	<mark>1.1</mark>	<mark>0.1</mark>	<mark>0.0</mark>	-	-	-	0 ⁷	-	-	¥ <mark>-</mark> ∘		
Ethanal	mean	<mark>59.4</mark>	<mark>60.3</mark>	<mark>57.5</mark>	<mark>51.3</mark>	<mark>20.1</mark>	<mark>1.7</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	n 🔬	<mark>n.a.</mark>	<mark>n.a.</mark>	pa.	n.a.	n.a.	Ô
	<mark>SD</mark>	<mark>1.6</mark>	<mark>1.4</mark>	1.0	<mark>0.6</mark>	<mark>6.2</mark>	<mark>0,0</mark>	-	-	Ľ	-	<mark>-</mark>	7 <mark>-</mark>			¢`
Unknown 2	mean	<mark>7.1</mark>	<mark>7.6</mark>	<mark>7.3</mark>	<mark>5.1</mark>	<mark>2.9</mark> 4	<mark>4.1</mark>	<mark>n.a.</mark>	n.a.	<mark>n.a.</mark>	<mark>n.a.</mark>	nâ	n.a	n.a.	<mark>Ra.</mark>	L.
	SD	<mark>2.2</mark>	<mark>0.8</mark>	<mark>0.1</mark>	<mark>0.0</mark>	<mark>0,0</mark>	<mark>0.1</mark>	-	Ó	-	- 5	S <mark>-</mark>	ð	<mark>-</mark> <u>-</u>	<mark>7 -</mark> (O^{*}
Unknown 5	mean	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	n.d.	g <mark>Ø.2</mark>	<mark>7.1</mark>	n.a.	∫ <mark>n.a.</mark>	n _e a.	n.a.C	n.a.	n.a.	pea.	n.a	×
	SD	-	-	-	-0	7 <mark>0.9</mark>	<mark>0.0</mark>		- @	? -	₽Q [₽]	, ô	í <mark>-</mark> _Ô	-	ő	
Total of	mean	<mark>3.8</mark>	<mark>4.5</mark>	<mark>3.5</mark>	6.9	<mark>7.8</mark> 。	, <mark>7.6</mark>	Pr.a.	n?a	n.a.	≱ <mark>n.a.</mark>	n.a.	n.a.	n.a.	P <mark>ň.a.</mark>	
other Unknowns*	<mark>SD</mark>	-	-	-	∛ -	Ő	_ ₹ Û	, <mark>-</mark> .	Ç-		<mark>-</mark> 4	× -	* <mark>*</mark>		-	
Total extractable	mean	<mark>99.2</mark>	<mark>87.4</mark>	78.3	69.7	<mark>\$7.1</mark>	1 <u>9.8</u>	13	[*] 10.2	0 <mark>70.4</mark>	7.5	<mark>6.8</mark>	∕⁄ <mark>5.5</mark> /	<mark>6/1</mark>	<mark>40</mark> 3°	
radioactivity	<mark>SD</mark>	<mark>1.3</mark>	<mark>1.9</mark>	к <mark>Ј.6</mark>	0.9	<mark>5.7</mark>	<mark>/0.0</mark>	2.8 [°]	1 <u>4</u>	<mark>0.4</mark>	\$ <mark>0.1</mark>	0.4	<mark>0.2</mark> ©	<mark>ً 1.8</mark>	Ø.3	
Non-extractable	mean	<mark>n.d.</mark>	n.d	<mark>n.d.</mark> ۹	<mark>n.d.</mark>	næ.	n.d.	n.d.	<mark>a⁄d.</mark>	n.đ	n.d.	n.d.	<mark>st.d.</mark>	n.ds	n.d.	
radioactivity	<mark>SD</mark>	-	Ş	¢,	- (S <mark>-</mark>		<mark>-</mark> %	/ <mark>-</mark>	Ô <mark>-</mark>		<mark>-</mark> @) -	-	-	
¹⁴ C-carbon dioxide	mean	n.d	n.d.	Øð.	n.ď.	n.d.	K <mark>ní.d.</mark>	nd.	n.d	n.d.	a <mark>d.d.</mark>	n G.	n.d	P <mark>n.d.</mark>	<mark>n.d.</mark>	
	SD	- 2	<mark>-</mark> 0	<mark>} -</mark>	Ô <mark>7</mark>		-	5 <mark>-</mark>		 0	 	Û -	°≉⁄	-		
Total radioactivity	mean	Ga.d.	n.d.	n.d.	Ø <mark>n.d.</mark>	ø.d.	n 🕄	n.d.	<mark>ph.d.</mark>	n.d.	n.a	n.d.	n.d.	n.d.	n.d.	
	SD 🔊	- ()	-	×	-	<mark> -</mark>	<mark>∛</mark>		<mark>-</mark>	₽ <mark>-</mark>	<mark>ه -</mark>	<mark>-</mark> 0	-	-	-	

All values expressed as percentage of total applices radioactivity n.d.: not detected; n.a.: not analysed * Includes total of Unknowns reported as Unknown & Unknown 3 and Unknown 4. Maximum occurrence for each of the individual components was below 5% Adv at any sampling intervals

Table 7.1.1.1-21: Degradation of [14C] to setyl-Al in Sand/sandy loam soil S262 under aerobic conditions

^.~			0	$ \land$		57	a Y		<u> </u>						
	ò,	v (×	<u>~</u> 0"	- K	۶ ،	🔊 <mark>In</mark>	cubat	ion ti	me					
Component 🔗 🔗	ľ «J	Re	<i>.</i>	× (hours		1	Õ	J.			<mark>(days</mark>))		
	Replicate	N	<mark>0,25</mark>	<mark>0.5</mark> (1	2	<mark>4</mark> @)	<mark>8</mark>	0 <mark>1</mark>	<mark>2</mark>	<mark>7</mark>	<mark>14</mark>	<mark>30</mark>	<mark>60</mark>	<mark>120</mark>
Transfer and the second s	, mean &	2 <mark>36.2</mark>	- <mark>\$.2</mark>	13.2	10.6	<mark>∛1.0</mark>	n.d.	n.a	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>
	SD∕∑	<mark>5.3</mark>	<mark>5.0</mark>	3.3	_ <mark>2.</mark> ₩	0.0	- -	3 ^Y	-	-	-	-	-	-	-
Ethonal	mean	5 4.3	75.8	<mark>70.1</mark> מ	<mark>798.6</mark>	607	<mark>62_4</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>
	∭ <mark>8D</mark>	2.5 ²	47	<mark>3,4</mark>	0.6	<mark>⊳4.4</mark>	A.S	-	-	-	-	-	-	-	-
	D'mear	<mark>8.6</mark>	, <mark>11.7</mark> ,	<mark>.Q.6</mark>	12.8	<mark>11.5</mark>	<mark>6.3</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>
	8		<mark>0.5</mark> Ç	0.2	@<u>.0</u>	<mark>2</mark> 0	1.0	-	-	-	-	-	-	-	-
Total of 🔊	mean a	<mark>Jn.d.</mark>	pod.	n.d.	n.d.	(<mark>p.d.</mark>	<mark>n.d.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>
other Unknowns*	SD 🐬	-	, <mark>-</mark>	S		-	-	-	-	-	-	-	-	-	-
Totakextractable	mean	<mark>997)</mark> *	<mark>96.7</mark>	2 <mark>94.8</mark>	22% 0	<mark>84.7</mark>	<mark>68.8</mark>	<mark>50.2</mark>	<mark>10.0</mark>	<mark>11.6</mark>	<mark>2.7</mark>	<mark>4.0</mark>	<mark>2.9</mark>	<mark>1.8</mark>	<mark>1.5</mark>
radioactivity	BD	0 <mark>1.1</mark>	0.2	0.1	0.4 0.4	<mark>1.0</mark>	<mark>5.5</mark>	<mark>0.5</mark>	<mark>0.3</mark>	<mark>2.9</mark>	<mark>0.3</mark>	<mark>0.8</mark>	<mark>0.4</mark>	<mark>0.4</mark>	<mark>0.4</mark>
Non-extractable	, mean	n.d	a.d.	n	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>
radioactivity	S BC	- L	- -	م م	-	I	-	-	-	-	I	-	I	-	-
14C carbon diavide	man	<mark>%a⁄d.</mark>	n?¢Q	n.d.	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>
	[©] SD _€	J ^y <mark>-</mark>	-	-	-	-	-	-	-	-	-	-	-	-	-
Totaleradioactivity	Mean 🖓	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>
	SP	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Aff values expressed as percentage of total applied radioactivity

n.d.: not Offected; n.a.: not analysed * Includes total of Unknowns reported as Unknown 1, Unknown 3, Unknown 4 and Unknown 5.

Table 7.1.1.1- 22:	Degradation of [¹⁴ Cl-fosetyl-Al in S	Sandy loam soil S263	under aerobic conditions
	Degradation of	C 105ctyl min	Junuy Ioum Son Shoe	under act oble conditions

			Incubation time										1			
Component				(<mark>)</mark>	hours)						(days))	k		
	Replicat e	<mark>0</mark>	<mark>0.25</mark>	<mark>0.5</mark>	1	2	<mark>4</mark>	<mark>8</mark>	1	2	7	<mark>14</mark>	<mark>30</mark>	Ø	120 ⁴	d d'
	mean	<mark>39.7</mark>	<mark>15.4</mark>	<mark>7.0</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	nza.	<mark>n.a.</mark>	<mark>n.a.</mark> ∕∕	∲ <mark>n.a.</mark>	Ana.	
r osetyi-Ai	SD	<mark>1.2</mark>	<mark>1.4</mark>	<mark>0.2</mark>	-	-	-	-	-	-4	<mark>-</mark>	-		~	× -	Ra I
Ethonal	mean	<mark>51.4</mark>	<mark>65.0</mark>	<mark>69.8</mark>	<mark>69.1</mark>	<mark>53.6</mark>	<mark>21.9</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	a.a.	<mark>n.a.</mark>	n.a. _%	n.a.	s <mark>n.a.</mark>	n.a.	F
	<mark>SD</mark>	<mark>1.7</mark>	1.1	1.0	<mark>0.3</mark>	<mark>2.9</mark>	<u>Ø.7</u>	-	<mark>-</mark>	-	-	, ²	- ^	, , , , , , , , , , , , , , , , , , ,		. Q
Unknown 2	mean	<mark>9.7</mark>	<mark>17.2</mark>	<mark>16.1</mark>	<mark>14.6</mark>	15 <u>.</u> 3	[⊗] 3.3	<mark>n.a.</mark>	n Q	<mark>n.a.</mark>	<mark>n.a.</mark>	Øa.	n.a	n.a.	h.a.	6
Unknown 2	<mark>SD</mark>	<mark>0.7</mark>	<mark>0.3</mark>	<mark>0.3</mark>	<mark>1.6</mark>	S	0.2		Ç <mark>-</mark>	-	- Č	Υ <mark>-</mark>	₽	Ő	- %	۶.
Unknown 5	mean	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	n.d.	<mark>p.d.</mark>	<mark>6.1</mark>	n.a.	<mark>n.a.</mark>	p <mark>n.a.</mark>	gg a.	n.a.	∤ <mark>n.a.</mark>	n.a.	n a	1
	SD SD	-	-	-	- Q	-	<mark>0.7</mark>	No.	, C	1 <mark>-</mark>	* <mark>*</mark>	. ∖ <mark>-</mark>		- -	S.	
Total of	mean	<mark>n.d.</mark>	<mark>n.d.</mark>	n.d. §	<mark>n.d.</mark>	næ.	n.d.	<mark>≽n.a.</mark>	× <mark>n√a.</mark>	n∡a,	n.a.	P <mark>h.a.</mark>	îr⊳a.	n.å.	n.a.	
other Unknowns*	SD SD	-	-	<mark>-</mark> C) <mark>-</mark> «	9 -	ð	- 0	<mark>-</mark> (s ^{or}	Ð	<mark>-</mark> 4	-	A <mark>-</mark>	<mark>-</mark> 0	
Total extractable	mean	<mark>100.8</mark>	<mark>97.6</mark>	<mark>92,9</mark>	<mark>83.@</mark>	<mark>68.9</mark>	<mark>\$1.3</mark>	124	<mark>6.8</mark>	<mark>7.5</mark>	€ <mark>4.9</mark>	<mark>4.@</mark> `	5.4	2.6 ²	<u>2.4</u>	
radioactivity	SD	<mark>0.2</mark>	<mark>0.1</mark>	<mark>1.5</mark>	∼ <mark>1,3</mark>	<mark>2.6</mark> /	2.3	0 <mark>2.7</mark>	<mark>\$2</mark>	<mark>0,1</mark> 0	<mark>1.0</mark>	K <mark>Ø.6</mark>	<mark>1.8</mark>	<mark>0.0</mark>	₹ <mark>0.6</mark>	
Non-extractable	mean	<mark>n.d.</mark>	n-f.	n.¢	n.d.	n.d.	n ² dy	n.d	<mark>n.d.</mark>	, <mark>‰d.</mark>	n.¢	n.d.	On.d.	n <mark>Q.</mark>	<mark>n.d.</mark>	
radioactivity	SD	-	0 <mark>¥</mark>		•	~ - ,	S ^r	2 ⁰	-~~	۲ <mark>-</mark>	S		<mark> -</mark> (b <mark>-</mark>	-	
¹⁴ C carbon dioxide	mean	n.d	n.d.	n.d.	n.d.	<mark>n⊿d.</mark>	n.d.	J <mark>r.d.</mark>	p.P.	n.d.	In.d.	n <mark>n.d.</mark>	n d.	n.d.	<mark>n.d.</mark>	
	<mark>SD</mark>	@ <mark>,</mark>	X	<mark>-</mark> 6	-	, C		P <mark>-</mark>	5 <mark>-</mark>	8	<u>,</u> C	<mark>ہ -</mark> ر	-	-	-	
Total radioactivity	mean 😤	<mark>n.d.</mark>	<mark>∞n⁄.d.</mark>	n-d,	n.d.	<mark>h.d.</mark>	fixd.	n.Ø	n.d.	<mark>n.d.</mark>	n.d.	n.d	n.d.	<mark>n.d.</mark>	<mark>n.d.</mark>	
	SD ~~	<mark>-</mark> &	-	Ŭ.		- 7	* -	*		-~	9 -	Ø.	-	-	-	

All values expressed as percentage of total appled radicactivity

n.d.: not detected; n.a.: not analysed 🕰 Ø1

* Includes total of Unknowns reported as Unknown PUnknown 3 and Unknown 4. Ś S.

Ŝ

B. MATERIAL BALANCE

conducted during the incubation phase to stablish a full material balance of radioactivity. The study focused later on the extractable portion radioactive residues in soil. The results therefore represent values for the degradation of the active substance and for the dissipation of the portion of ethanol formed not being subject to volatilisation under the conditions of the test. N N

Ø

S X &. C. EXTRACTABLE AND NON-EXTRAGTABLO RESIDUES

Values of extractable radioactive residues decreased very rapidly with time as summarized in Table 7.1.1.1-10. Quantitative extractability (98.5 to 995% AR) was given by zero hours for all soils indicating

extraction officiency to decrease to 15 to 42% AR after 120 days of incubation. The decline in extractability was most pronounced within the first day after application, to result in values of total extractable radioactivity to tange from 6.8 to 10.2% AR by day 1 after application.

Independent of a full material batance given the allowed for the conclusion that the DT₉₀ expressed on the basis of extractable radioactivity was reached by day 1.

Owing to a change in conduct in comparison to test design NER were not determined and thus not quantified.

Table 7.1.1.1-23: Extractable and non-extractable residues of ¹⁴C-fosetyl-Al in three soils

Soil	Extractable 1	<mark>esidues (%)</mark>	Non-extractable residues (%)		
	(0 days)	(120 days)	(0 days)	(120 day	
Clay loam S261	<mark>99.2</mark>	<mark>4.2</mark>	n.d.	n.d.	
Sand/Sandy loam S262	<mark>99.1</mark>	1.5	n.d. న	n d	
Sandy loam S263	<mark>100.8</mark>	<mark>2.4</mark>	n.dC	An.d.	
Values given as percentages of in	itially applied radioacti	ivity	10%		
n.d. = not determined			4		

D. VOLATILE RADIOACTIVITY

Owing to a change in conduct in comparison to its design, volatile radioactivity however, not investigated following removal of sample's for analysis.

E. TRANSFORMATION OF TEST SUBSTANCE

Ô

The active substance ¹⁴C-fosetyl-Al was extensively transformed to result is ethanol detected as the predominant transformation product (see Table 7.1.4.1-20(to Table 7.1.4.2-22)? Since the portion of NER and carbon dioxide or other xolatiles formed was not determined no regults were available to formally confirm that degradation was drived by microbial processes. It should be noted that the results were very well in line and fully consistent with the behaviour observed in other tests performed with the active substance and its metabolite ethaned in aerobic soil , ^O (see KCA 7.1.1.1/01 and KCA 7.1³/.1/02).⁽⁰ Õ

The transformation of the active substance was very fast to decrease from 28.9% AR after zero hours to 0.5% AR after 4 hours (Chay loan S261), from 36.2% AR after zero hours to 1.0% AR after 2 hours (Sand/Sandy loam \$262) and from 39.7% AR after zero hours to \$0.0% AR after 0.5 hours Ś (Sandy loam S263). Ô Ŵ

The portion of ethanol extracted from soil was observed a peak levels of 57,5% AR after 0.5 hours (Clay loam S261), 75,8% AR after 0,25 hours (Sand/Sandy loam S262), and 69,8% AR after 0.5 hours (Sandy loam S263).

A total of five upknown components were observed in soil extracts in the course of incubation. Three components (coported as Unonown 01, 3 and 4) showed a maximum occurrence below 5% AR for all soils at any sampling interval in the course of the tests Ŵ m

Unknown 5 was detected in soil Clayloam \$261 and Sarrey loam \$263 at maximum values of 7.1 and 6.1% AR at the last sampling interval analysed fi.e. after 4 hours of incubation), respectively. These values should be put into the whtext of significant decline of extractability and thus maximum of potential occurrence of Unknown foin the course of the test: Total extractability declined from 17.8% AR after 4 hours to 0.4% AR after 1 day for soft Clay loam S261 and from 31.3% AR after 4 hours to 6.8% AR after day for soil Sandy Joan S293.

When considering that the origin of radioactive residues is known from the degradation pathway, i.e. ethanol this additionally lowers any risk to riginate from carbon-containing residues in soil following use of fosetyl-Al.

Unknown 2 was detected at maximum levers to occur rather early in the course of incubation, i.e. 7.6% AR after 0.25 hours (Stay loam S261), 12.8% AR after one hour (Sand/Sandy loam S262) and 17.2% AR after 0.23 hours (Sandy loam \$263). Values of Unknown 2 showed a decline to 1.1% AR after 4 hours (Clay loar S261) 6.3% AR after 4 hours (Sand/Sandy loam S262) and 3.3% AR after 4 hours (Sandy Joam \$263) of incubation. Unknown 2 thus showed very transient behaviour to result in half-lives significantly below one day.

Considering again that radioactive residues originate from ethanol, this additionally lowers any risk to originate from carbon-containing residues in soil following use of fosetyl-Al.

Õ

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

Keeping in mind that total extractable radioactivity always consisted of more than a single compound at all sampling intervals, there was no situation given for a single compound to 'accumulate' in the total course of the experiment.

Analysis of extracted soils for phosphonic acid/phosphonates by GC did not result in a clear trend for values determined with time. On the other hand results clearly demonstrated that the degradation of fosetyl-Al had resulted in the presence of substantial amounts of phosphonic acid/phosphonates.

Overall, the results of the study were very well in line and thus fully consistent with the behaviour observed in other tests performed with the active substance and its metabolite ethanial in a robic soil (see KCA 7.1.1.1/01 and KCA 7.1.1.1/02).

F. DEGRADATION KINETICS

Degradation rates of fosetyl-Al in aerobic soil were calculated using the Timme-Frehse approach, the software KIM and linear regression analysis. The results were summarized in Table 7.1.1.1-24.

Dependent on method of calculation values of the DT_{50} ranged from 17 to 37 minutes in soll Clay loam S261, 5 to 60 minutes in soil Sand/Sandy loam S262 and Ψ to 12 minutes in soil Sandy loam S263.

Ô

Table 7.1.1.1- 24:	Rate of degradatio	n‰f fosetøl-A	Al in three 🞯	ls under aer	obic condition
	· · · · · · · · · · · · · · · · · · ·	~	<i>1</i> /// 19/	* * *	10 11-

Ĩ.

		- V	1.	Method	DŤ50	ເຼັ ມ	Ro b	Kinetic
		Ro	×		0 30	× ~		model
	Soil [°]	× 4		ð _s g	(minutes)		nutes	-C
	Clay loan	S261	y Q	OTF &	×29		<mark>96</mark>	8FO
	a s	10%		_⊘ KIM	≦ 2 <mark>17</mark>	<u>ل</u>	<mark>004</mark> 🔏	/ SFO
		Å v	Ő, í	Linear .	37 ⁰	<mark>ا رک</mark>	<mark>22</mark> 🕡	<mark>SFO</mark>
	Sand/Sand	ly loans	<mark>\$262</mark>	Tr (ž <mark>2)</mark> š	Į,	6 9 🖓	<mark>SFO</mark>
~		0	Ő	KIM V	^> <mark>5</mark> ₄		<u>.69</u>	<mark>SFO</mark>
~	ð	Ś	<i>i</i> ca	Linear	S <mark>60</mark> C		<mark>.00</mark>	<mark>SFO</mark>
s N	Sandy loa	<mark>ŋ S263</mark> «		i i i i i i i i i i i i i i i i i i i		a Or	<mark>13</mark>	<mark>SFO</mark>
² S	Ö	ŝ	, L	KIM 🔗	M	O¥ I	<mark>37</mark>	<mark>SFO</mark>
	, , ,		~	Lineår	رم <mark>12</mark> م	۶ .	<mark>40</mark>	<mark>SFO</mark>
	<mark>¶</mark> ¥M:]	[imme-]	jehse aj	proach				
	Ø <mark>ĸim:</mark>	oftware	<u>Ki</u> netic	Modefling (Th	iomae)			
(7, Linear	Lincar	regréssio	on analysis 🍼	Ĩ			
~Ģ	Č	~Õ~		N N	2			
A		O' ~	9″ A	M. CONC	WISIONS			

Fosetyl-Al and its readily and rapidly formed metabolite ethanol were spontaneously degraded in contact with soil under the aerobic conditions of the test as the result of biological processes.

Half-lives for the degradation of fosetyl-Alovere estimated to 17 to 29 minutes (soil Clay loam S261), five to 60 minutes (soil Sandy Sandy Joam S262) and one to 12 minutes (soil Sandy Joam S263).

The results of the study confirmed earlier information that degradation in aerobic soil contributes significantly to the overall elimination of residues of fosetyl-Al including its rapidly, but transient metabolite chanol from the environment.

The study was performed according to SETAC (1995) guidelines for testing. Therefore, its design and conduct included the essential elements necessary and that can be found in actual designs in testing in particular for determination of the rate of degradation in soil.

With the key elements in design and conduct given along with consistency of results there is no reason to exclude the study from kinetic evaluation and thus from use in environmental risk assessment. 🛰

Ô The results are well in line with other data available on route of degradation (see study 7.1.1.1/01) and confirm the understanding of the behaviour of fosetyl- \mathcal{A} residues in \mathcal{A} . The study design was thus able to demonstrate qualitatively and quantitatively the key principles ¢Û degradation of fosetyl-Al residues in soil. \bigcirc The study confirmed ethanol to be the volatile, transient product of degradation besides carbon dio as terminal mineralisation product within very short time, i.e. hours after application.

Despite progress made in analysis and analytical methods the resolts of the study clearly indicate also the challenges (i.e. material balances, distribution of radioactivity in soil extracts and volatiles and their kinetic evaluation) in the investigation of extremely rapidly degradable active substances forming volatile, fast degrading components in the following Any repetition would therefore not result in a different understanding of transformation processes, transformation products formed and thus the behaviour of fosety I-Al residues in aerobic soft. 4.) X \hat{n} Õ

R \sim Ŵ Conclusively, the study is regarded as walid for use as information the route and rate of degradation of fosetyl-Al and ethanol in soil.

The to Stosphyse in soils The to Stosphyse in s 773-01-1 **Report:** 4/0 Title: sitior Report No. 234 73-01-1 Document No. Guideline(s): O Guideline devia GLP/GEP

Ô

Executive Summary

The objective of the publication was to determine the mechanism of oxidation involved in the transformation of phosphonates to phosphate in aerobic soil

The biotransformation of phosphonate, applied in the form of the disodium penta hydrate, Na₂HPO₃ x 5 H₂O, was investigated under aerobic conditions of the laboratory in US soil San Joaquin clay loam. Soils samples were incubated in the eark at 28 °C and soil moisture at field capacity for 16 weeks (approx 212 days) in maximum. The nominal test concentration was 80 mg 'phosphorus trioxide' (P₂O₃) equivalents/kg/soil.

Ŋ Chemical analysis for phosphonate (phosphile) was performed indirectly by determination of the amount of phosphates in soil extracts prior b and the total phosphate after oxidation of phosphonates by iodine for the same soil sample.

Following application of phosphonate, values of phosphonate residues decreased from 1.95 mg⁵ by week for to 0.97 mg by week 16.

At the same one, values at phosphate residues increased from 9.5 mg by week four to 10.4 mg by week 16. Ò

⁵ Residues of phosphonates in soil were expressed by the term phosphorus trioxide (P_2O_3) equivalents recovered/25 g subsample of soil in order to make the various portions of phosphorus involved comparable.

The influence of chemicals like toluene impacting as fumigating-type agents on microbial activity in soil was investigated in parallel.

Following application of phosphonate and incubation under the influence of toluene, values of phosphonate residues were 1.95 mg by week four to remain constant at 1.95 mg by week 16. At the same time, values of phosphate residues remained also nearly constant, i.e. 9.3 mg by week four and 9.4 mg by week 16.

The fact that the phosphonate concentration declined in soil combined with an increase of the total phosphate concentration during the same time served as the indication that phosphonate had been transformed in soil to phosphate.

The results from samples incubated under the influence of toluene indicated that the transformation of phosphonate in soil was hindered by fumigating, sold sterilizing agents thus reducing soil microbia activity and its ability for transformation of phosphorate to phosphate in soil.

Ø It was therefore concluded that the transformation process of phosphonate to phosphate in soil was related to microbial processes. X, Ô N ò There were also indications that the process of pricrobial oxidation of phosphonates was not a gole surface phenomenon, but phosphonates to be absorbed or assimilated as a sufficient by actively gowing

microorganisms before being oxidized

No kinetic evaluation of the data for a rate of degradation in soil was performed \hat{n} õ S Õ R

In view of major deviations from actual standards indesting of roade and rate of degradation in soil and the low number of sampling intervals the osults of the study was excluded from use in environmental risk assessment.

MATERIA

1. Test Material

AND METHODS Disodium phosphorate penta hydrate (Na2HPO3 x Sample 1 not reported Specific Activity not reported Radiochemical Puri not reported Chemical Purity

2. Test Soils

The soil reported as San maquin Aay loom had been seved to≤ 0.8 mm in comparison to the standard of 2 mm. No physico-chemical characteristics, were to ported.

STUDY DESIGN R.

1. **Experimental Conditions**

Particular incubation conditions such as the use of flow-through or static conditions were not reported. The test substance was applied to 400 a soil samples of which a 25 g subsample was removed for analysis after incubation.

The incubation was performed under aerobic conditions in the laboratory in the dark at 28 °C for 16 weeks (approx. 12 days) in maximum. Soil moisture was adjusted to field capacity with distilled water

The tests were performed at a test concentration of 100 mg disodium phosphonate/kg dry weight of soil, applied in the form of its penta hydrate (Na₂HPO₃ + 5 H₂O) and equivalent to 80 mg 'phosphorus trioxide' (P_2O_3) equivalents/kg soil. No reference was made to a field rate. The investigations included the incubation of soil treated with toluene as sterilizing/fumigating agent to demonstrate the influence of biotic, microbial nature of conversion of phosphonate to phosphate in soil.

Additional potential parameters of influence on microbial activity in soil samples were investigated by variation and maintenance of sterile conditions of soil (for example, tolnene versus autoclavation and autoclavation plus toluene during incubation) or, the amendment starch to samples to support microbial activity in soil. Being beyond the standards in actual test designs in soil degradation and by \bigcirc not contributing to an overall better understanding of the behaviour of phosphorate in soil, the results were not summarized in detail.

Sampling 2.

Single subsamples (i.e. 25 out of 400 g) were removed for cheroical analysis a and after treatment.

3. Analytical Procedures

The soil subsamples of 25 g were extracted by boying the mixture gently with 250 mL 2 b aqueous hydrochloric acid for 15 minutes Aliquots of soil extract syere passed through an ion exchange column filled with the sodium-saturated resin Amberthe IR Ø

L,

°

~ ()

 \bigcirc Chemical analysis for phosphonate (phosphite) was performed indirectly by determination of the amount of phosphate in sold extracts prior to and the total phosphate after exidation of phosphonates 1 by iodine. Ũ Č

For determination of phosphate a modification of the method of Defiges (i.e. colorimetric method) was used. Reference to the method was given, Fowever, no details were reported nor modifications made to the original method described. \sim Ø

Oxidation of phosphonates was performed by slightly alkalisation of the acidic soil extract (10 mL aliquot) with saturated aqueous sochum hydrogen carbonate (NaHCO2) solution followed by addition of 5 mL aqueous 0.01 N iodine solution. The mixture was allowed to stand at room temperature for 15 minutes Following acidification (20mL aqueous 2 N suppluric acid, H₂SO₄) the excess of iodine was back titrated with 0.01. Naqueous sodium thi Sulfate (Na₂SO₃) solution (disappearance of brown iodine colour). 🔬 🔬 \bigcirc K, A ×, L

Again, the determination of phosphate after oxidation of phosphonates followed the modified method of Deniges.

Determination of degradation kinetics **4**. No kinetic evaluation of degradation data for a rate of degradation in soil was performed.

RESULTSAND DISCUSSION

A. DATA

The results of serobie biotrassformation of disodium phosphonate after incubation in San Joaquin clay loam soil were summarised in Table 7.1.1-25 to Table 7.1.1.1-26.

Bayer – Crop Science Division

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

Table 7.1.1.1-25: Dissipation of disodium phosphonate and determination of phosphate in San Joaquin clay loam soil incubated at 28 °C under aerobic conditions

Component			Sa	<mark>al (weeks)</mark>		Ş	
	Sample	<mark>0</mark>	<mark>4</mark>	<mark>8</mark>	3 12		
Phosphonate	Mean *	<mark>n.d.</mark>	<mark>1.95</mark>	<mark>1.51</mark>	© <mark>1.15</mark>	0.97	
	SD	<mark>n.d.</mark>	<mark>n.d.</mark>	n.d.	n.d.	6 ³ n g	
Phosphate	Mean *	<mark>n.d.</mark>	<mark>9.</mark> ©%	<mark>9.8</mark>	<mark>10.2</mark> س	~ <u>10.4</u> §	()
	SD	<mark>n.d.</mark>	n.d.	n.dQ	n.d.	S [°] n.d. S	Ś

Ő Values given as mg 'phosphorus trioxide' (P_2O_3) equivalents 25 g subsample of soil recovered -Q Averages of four 25 g subsamples of one soil sample each extracted with 2 N aqueous hydrochloric acid.

nominal amount applied to 25 g subsample of soil was 2.04 mg. SD = standard deviation, n.d. = not determined/not reported ...

Ň ≪__ Table 7.1.1.1-26: Dissipation of disodium phosphomate and determination of phosphate in San Joaquin clay loam soil under aerobic conditions at 28 °C- influence of toluene as fumigant

Component		Samj	pling interval (v	væks)	Ő
	Sample 0 0		y 887 5	12 5 12	⁾ <mark>16</mark>
Phosphonate Phosphonate	Mean * na		<mark>ۇ 04</mark>	1 <u>05</u>	<mark>1.95</mark>
×	SD / A SD	. n.d. y	^w n.d. _o	n.d. Oʻ	<mark>n.d.</mark>
Phosphate 6	Mean * n.d	Ø 9 3	9 <u>9</u>	<mark>9.4</mark> 2	<mark>9.4</mark>
^م رج ^۲	SD Q R	n.d. S	n.d.	2 <mark>01.</mark>	<mark>n.d.</mark>

Values given as mg 'phosphorus prioxide," (P2O3) equivalents/25 g subsample of soil recovered Averages of four 25 subsamples of one soil sample each extracted with ON aqueous hydrochloric acid. The

nominal amount applied to a 25 Subsample of soil was 2.04 mg.

SD = standard deviation

B. Verification of extraction procedures Recoveries of phosphonate applied to sold samples at day zero were not reported.

S Ô R £. C. Decline of residues of phosphanate in soil

Ŵ

Residual concentrations of phosphonate in soil in terms of the amount of phosphonate recovered in a 25 g subsample showed a declare from 1.95 phosphorus trioxide (P2O3) equivalents/kg soil after four weeks to 0.97% phosphorus (proxide (P₂Q₃)) equivalents/kg soil after 16 weeks (approx.112 days) of incubation × incubation. R,

In turn, values of phosphate determined in the same samples showed an increase with time, *i.e.* from 9.5 phosphorus trioxide (P2O3) Requivalents (Rg soil after four weeks to 10.4 phosphorus trioxide (P2O3) equivalents/kg soil after 16 weeks (approx.112 days) of incubation.

0

Ô" For samples incobated under the influence of toluene as soil fumigant, no decline of the concentration of phosphonate was observed, i.e. values were 1.95 phosphorus trioxide (P2O3) equivalents/kg soil after four weeks, and \$.95, phosphyrus trioxide (P₂O₃) equivalents/kg soil after 16 weeks (approx.122 days) of incubation.

Values of phosphate determined in the same samples were nearly constant, i.e. 9.3 phosphorus trioxide (P₂O₃) equivalents/kg soil after four weeks and 9.4 phosphorus trioxide (P₂O₃) equivalents/kg soil after 16 weeks (approx. 112 days) of incubation. Ô

The fact that the phosphonate concentration declined in soil combined with an increase of the total phosphate concentration during the same time served as the indication that phosphonate had been transformed in soil to phosphate.

\$ 1

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

The results from samples incubated under the influence of toluene indicated that the transformation of phosphonate in soil was hindered by such fumigating, soil sterilizing agents thus influencing soil microbial activity and its ability for transformation of chemicals in soil. The influence of toluene was documented by no decline of phosphonate concentration in soil and the concentration of phosphate measured being nearly constant throughout incubation.

The mechanisms of oxidation processes in soils were discussed to consist of at least three general categories: (a) chemical or catalytic, (b) enzymatic, and (c) biological. Explaining the transformation in soil by category a) would result in phosphonate oxidation to proceed at about equal rates for all treatments. The involvement of category b) would restrict in the oxidation to proceed equally for all samples, but not for sterilised (autoclaved) soils. Obviously, the findings could not be explained by the first two categories.

The oxidation of phosphonates was observed for soil samples when microbial activity was not inhibited. In turn, little or no oxidation of physphonates occurred microbial activity was hindered by toluene. It was therefore concluded that the transformation process in soil was related to microbial ő processes.

There were also indications that the process of microbial oxidation of phosphonates was non a sole ° surface phenomenon, but phosphonates to be absorbed or assimilated as a nutrient by actively growing microorganisms before it was oxidized.

I. CONCEUSIONS The study results showed that the transformation of phosphonates to phosphate it soil was driven by Ő microbial processes. ñ Ø The objective of the study thus focused on principles of phosphonate biotransformation in soil.

`≫∏

S ~0 S Owing to the focus of the study if was not a major objective an design to follow accurately the decline of phosphonate conceptration in soil with time in the sense of actual designs of studies on route and

rate of degradation. O Ş 6 Ø No efforts were thus undertaken to confirm essential details like the concentration of test item applied by day zero and, in parallel, the extraction efficiency. The latter is standard in actual designs of tests on route and rate of degradation in soll. 1 \bigcirc

Moreover, four subsamples of 25 g were taken from a sample containing 400 g in total. Actual standards in tests on route and rate of degradation in soil require the processing of the whole soil sample at date of analysis. Such processing allows for clear material balances thus avoiding potential inconsistencies of results from sample inhomogeneity,

With no analysis performed for samples of dage zero the total number of sampling intervals available for kinetic analysis was reduced to just four 3

study was not regarded as valid to derive a reliable degradation rate for phosphonates in aerobic soil.

The study thus berved as supplemental information on the route of degradation of phosphonates in aerobic soil.

Bayer – Crop Science Division

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

Report: KCA 7.1.1.1/05 L: 1960: M-234777-01-1	
Title: Microbial oxidation and utilization of orthophosphite during growth	
Report No.: C034355	1
Document No.: M-234///-01-1	
Guideline (s): not applicable	
GLP/GEP: no S	
Executive Summary	
The objective of the publication was to find microorganisms able to take up phosphorus originating	U
would have given an insight into the mechanism product, phosphate in the glowing including this of	
growth A Q A A A	
Experiments were performed on culture media for microbes only and this in the absence of soil or soil	
extracts.	
Out of 23 microbial cell cultures investigated, a number of Q4 utilised phosphorate for growth,	
however, only the bacterial strain Psethdomoutos fluorescens, 195 Accumulated, phosphate in the	
medium following the objectives of the dudy of the study	
Further investigations with <i>Pseudomonas Juorescens</i> 195 desuited in reduced phosphore release to the	
The information therefore does not contribute directly to the understanding of the route of degradation	
in soil. The publication thus served as supplemental information about the potential mechanisms of	
uptake and use of phosphopate by microbes.	
A A MATERIALS AND METHODS	
A. MATERIALS & Y Y Y Y Y Y	
1. Test Item 2^{-1} 2^{-1} 2^{-1} 2^{-1} 2^{-1} 2^{-1} 2^{-1}	
Unlabelled Na HPO, was used as phospherate source for the meroorganisms tested.	
2. Lest Microorganisms	
Agrobacterium Azotobacter) and species (P, fluctescens) P denitrificans A radiobacter A	
tumefaciens) were used in the experiments.	
3. Test Meetium \mathcal{O}^{\prime} \mathcal{O}^{\prime} \mathcal{O}^{\prime} \mathcal{O}^{\prime} \mathcal{O}^{\prime}	
For the inoculum a liquid hosphonate medium (pH 7) was used consisting of glucose (0.5 g/L), yeast	
extract (Diffeo, 0.1 g/L); (NH ₄ 2SO ₄ @ [*] g/L); KCl, (0.1 g/L); FeSO ₄ x 7H ₂ O (0.01 g/L), MnSO ₄ x H ₂ O	
(0.01 g/L) , MgSO ₄ x \mathcal{H}_2O (0.03 g/L), CaCl ₂ (trace), Na ₂ HPO ₃ x 5H ₂ O (2 g/L). The latter compound,	
as a 10% solution, was addusted toph / with HUI and sternized separately by passage through a glass	
phosphonate overlation studies differed from the above only in that the alucose concentration was at	
2.5 g/L	
B. STUDY DESIGN C 2	
1 Experimental Conditions	
For prowth and phosphorate oxidation studies the growth medium was dispensed at 50 or 75 ml in a	
250 mL Evenmeyer flask and was inoculated with 3 drops of a respective culture which had been	
shaken 48 h at 25 °C. These flasks then were shaken on a Brunswick rotary shaker at 25 °C for up to	
four days. For experiments conducted at 37 °C a reciprocating shaker was used.	

Sampling 2.

Samples were taken on a daily basis.

3. Analytical Procedures

Samples were centrifuged to remove the cells and orthophosphate phosphorous in the supernation twas determined by the method of Dickman and Bray⁶. Orthophosphonate phosphorous was determined by the modified procedure of and ⁷ using enough sulphuric acid to adjust pH to 6. Residual carbohydrate in culture broth was determined by the anthrone method⁸. The number of viable microorganisms in culture broths was determined by the plate count technique.

For fermentation analysis for growth of strain 195 daily samples taken during 4 days of shaking at 25 °C were centrifuged and the supernatant solutions were analysed for orthophosphate phosphorus total of orthophosphonate plus orthophosphate phosphorus, pH, viable sells and residual carbohydrate as glucose.

The effect of the source of carbon for growth was studied by replacing the glucose of the medium with other carbon sources at the same concentration and with DL-alanine. II. BESULT AND DISCUSSIO

A. SURVEY OF MICROORGANISMS

Nineteen cultures, including bacteria, yeasts acting nycetes and fungi were infially tested. Ten of these cultures grew during shaking for 3 days at 25°C. It has been shown that certain microorganisms can utilize orthophosphonate phosphorus as a sparce of phosphorus for growth. Nine out of the 10 were gram-negative bacteria. Analyses for orthophosphate in Q3 mL samples of these cultures revealed that only *Pseudomonas fluorescens* strain 95 had accumulated free of thophosphate in the medium. \bigcirc 2 m \$ • •

Other members of the genus Pseudontonas were tested to see whether athophosphate accumulation during growth of orthophosphonate might be a general characteristic of this genus. The plate count determination revealed that all of the Pseudomonas strains grew well with phosphonate phosphorus at 25 and 37&C (except for one strain) Except for strain 195, no orthophosphate phosphorus was detected in the supernatants of the other cultures regardless of whether grown at 25 or 37 °C. Ŵ 0

Ø1

Ő B. FERMENTATION ANALYSIS FOR GROWTH OF STRAIN 195 ON PHOSPHONATE R

MEDIUM' Fermentation analysis for growth of Strain 195 showed that although the most rapid rate of growth occurred within the first 24 hours, phosphate phosphorus did not begin to appear in the medium until the second day, from which time the generation increased in a linear fashion through the third or fourth daw Cessation of the linear appearance of physphate phosphorus coincided approximately with the initiation of a maximal stationary phase of growth and with the disappearance of carbohydrate from the medium. Thus the accumulation of orthophosphate occurs during rapid cell multiplication and carbohydrate utilization and is not necessarily a result of death and autolysis of old cells.

All of the state o

Dickman, S. R. and Bray, R. H. 1940 Colorimetric determination of phosphate. Ind. Eng. Chem. Anal. Ed., 12, 665-66S. F. and J. P. 1953 Transition of phosphite to phosphate in soils. Soil Sci., 76, 361-371. Morris, D.L. 1948 Quantitative determination of carbohydrates with Dreywood's anthrone reagent. Science, 107, 254-255.

C. EFFECT OF MEDIUM CONSTITUENT VARIATION ON PHOSPHONATE **OXIDATION**

If phosphonate oxidation is a function of cell growth and metabolism then variations in the medium constituents should have a marked effect on the rate of orthophosphate accumulation in culture broths. Investigations on the effect of the source of carbon for growth revealed that orthophyphate accumulation occurred only with glucose and alanine. When the salt solution, which consister of trace amounts of iron, manganese, magnesium and calcium, was not present phosphate accumulation dia not occur and the amount of growth was negligible. The absence of yeast extract in the medium also had a marked effect on orthophosphate accumulation. Where no yeast extract was added to the medium, growth was retarded by one day and orthophosphate dite not accumulate until the third day at which tune a relatively large accumulation occurred. Initial addition of trace amounts of orthophosphate to these flasks did not have any appreciable effect. Also, in media containing yeas extract the effect of orthophosphate was negligible. All variations mied in the growth medium resulted in reduced accumulation of orthophosphate phosphorous.

III. CONCLUSIONS Ô

It was shown that soil microorganisms utilized orthopposphonate for growth under aerobic conditions and that one strain of Pseudomonas fluorescens (strain 195) was able to also accomulate the ordention product, orthophosphate, in the growth medium. This accumulation occurred after post of the initial phosphorus demands for growth was met and continued in a linear fashion as long as carbohydrate was present. Cessation of the linear appearance of orthophosphates in the medium coincided with the onset of a maximum stationary phases of growth. Thus the accumulation of orthophesphate occurred during rapid cell multiplication and carbobydrate utilization and was not necessarily a result of death and autolysis of old cells, \hat{Q} 0 Ô

Conclusively, the information therefore does not contribute directly to the understanding of the route of degradation in soil. The publication thus served as supplemental approximation about the potential mechanisms of uptake and use of phosphonate by microbes. Ø1

Report: 1966; M-234784-01-1 .1.1.9/06 terial exidation of or phose it Title: Report No Documen /84-0 Guideline(s): Guideline deviation **GLP/GEP:**

Executive Summary

Relying on the earlier publications referring to bacterfal oxidation, the objective of the publication was to provide information on the processes involved to oxidise phosphonate to phosphate by microorganisms. Ň \sim °~

The investigations were performed against the background as to whether the change of the oxidation state of phosphorus from +3 (phosphonate) to +5 (phosphate) might play a role in biological phosphorus cycles.

Experiments were performed on culture media for microbes only and thus in the absence of soil or soil extracts Ø C

The ability of utilize phosphonate as a sole source of phosphorus for growing in cell media was shown for a number of bacteria. The two bacteria Pseudomonas fluorescent 195 and Serratia marcescens 24 were investigated in more detail. From growth rates and total cell yields of the bacteria it was concluded that the bacteria could use phosphonate as efficient as phosphate.

The information therefore does not contribute directly to the understanding of the route of degradation in soil. The publication thus served as supplemental information about the potential mechanisms of uptake and oxidation of phosphonate by microbes.

MATERIALS AND METHODS I.

A. MATERIALS

1. **Test Item**

Unlabelled sodium orthophosphonate (Na₂HPO₃) was used as phosphorus source for the microorganisms tested. It was shown that the sodium phosphonate reagent used did bot contain significant amounts of phosphate.

Test Microorganisms 2.

In total eight microbial cultures representing different genera, and species were used in the experiments: Aerobacter aerogenes 68, Bacifus megaterium WS B. subulis 19 Escherichia coli H. Pseudomonas aeruginosa Lilly, P fluorescens 195 Serrara mancescens 24, S, marcersens 255.

3. Test Medium

Cultures were grown under shaking in sterilized basal medium (glucese, Nor4Cl, Na2SO4, MgCl₂ x 6H₂O, tris(hydroxymethylaminomethane (Tris)), adjusted to pH 7.9 with BCl. Liquid media contained a single filter-sterilized phosphores source added to the basal fredium at a final concentration of 10 µg of phosphorus per mL? Solid mediativere prepared by the addition of Ionagar and a phosphorus source (phosphate or phosphopate) to the basal medium to final concentrations of 0.85% and 20 μ g/mL, respectively 1t was shown that the basal medium did not contain a significant amount of phosphorus contamination.

B. STUDY DESIGN

1. Experimental Conditions

All cultures were grown at 30 °C with the exception of Bacillus subtilis, B. megaterium, and Escherichia con which wer grown at 37%C, and Pseudomones fluorescens 195 which was grown at 25 °C.

2. Sampling

Ô Samples were taken at intervals during the incubation period. J. Ô

Ŵ

3. Analytical Proceedires

Phosphate and phosphonate were solated by amon-exchange chromatography and the phosphorus content of each fraction was determined by a modification of the phosphovanadomolybdate method 9. The anions were eluted from the column at room teroperature by a gradient of KCl (buffered at pH 6.8 with an whonium acetate). The method of Chen, Foribara, and Warner¹⁰ was employed in all other phosphorus assays. 1

Ô The number of giable microgranismer in culture broths was determined by the plate count technique. Bacteria grown in liquid physphate medium were plated after appropriate dilution on solid medium containing prosphate, physphopate or no added source of phosphorus. The plates were incubated at the appropriate temperatures for 3 to 12 days.

Pollard, F. H., D. E. Rogers, M. T. Rothwell, G. Nickless. 1962. Separation of hypophosphite, phosphite, and phosphate by anion exchange chromatography. J. Chromatog. 9:227-230.

Cen, P. S., T. Y. Toribara, H. Warner. 1956. Microdetermirmtion of phosphorus. Anal. Chem. 28:1756-1758.

Assay of phosphonate-oxidizing activity of resting-cell suspensions

Cells were harvested from liquid media containing either phosphate or phosphonate as the sole phosphorus source, washed once with KCl, and re-suspended in Tris-maleic acid buffer (0.b)M. pH 7.0) to a protein concentration of 3.8 mg/mL. To initiate the reaction, sodium phosphonate was added to the cell suspension and, at intervals during shaking at 25 °C, 0.5 mL samples were siluted into KCl and centrifuged. The supernatant liquids were stored at 2 °C until assayed for phosphate.

Assay of phosphonate-oxidizing activity of cell-free extracts

Cells were harvested from either the phosphonate or phosphate medium, washed once with acetate buffer (0.1 M, pH 6.0), re-suspended in buffer, and crushed in a Frencle bress. After centrifugation the extract was diluted in buffer to a protein concentration of 2 mg/mL. An acetate-buffered sodium phosphonate solution (100 mg/mL) was added to the extract to initiate the reaction. For the measurement of the endogenous accumulation of morganic phosphate, seetate ouffer was added to the extract. The reaction mixtures were incubated at 25 °C. At intervals, 0.4 mL samples were with trawn and added to an equal volume of 10% trichloroaceticacid, After standing for 16 min, distilled water was added, and the suspensions were centrifuged the supernational liquids were stored at 2 C until assayed for phosphate.

II. RESULTS AND DISCUSSION R Ø Ľ

A. ABILITY OF BACTERIA TO UTILIZE PHOSPHONATE AS SOLE SOORCE OF P **PHOSPHORUS** Õ S Õ 1 Ŵ (N n

Several strains of bacteria were found to be capable of growth in the liquid medium containing phosphonate as a sole source of phosphorus, However, phosphyte-grown cells inoculated in phosphonate medium seldern attained an exponential growth rate within 48 bours

Ø

Ô Those bacteria capable of growth on phosphonate acquired the ability to utilize phosphonate by adaptation of the entire population rather than by the growth of small numbers of mutants, since the colony counts on phosphonate solid medium were equal to the colony counts on phosphate medium. No growth of any of bacteria examined was observed on the solid medium lacking an added phosphorus source. «Ô Ľ, X Õ Ô

O

When phosphate-grows P. Avorescens 195 and S. marcescens 24 were transferred to medium containing a growth-lighting amount of phosphale and excess phosphonate, a typical diauxie effect was observed. The initial long lag which preceded growth in fresh liquid medium was characteristic of P. fluorescens 195 and was independent of the age of size of the inoculum, the carbon or phosphorus source and the incubation temperature. After adaptation to growth on phosphonate, the reaction of the bacterium when it was transferred to phosphonate liquid medium was identical to that of phosphategrown cells when they were transferred to phosphate fiquid medium. The growth rates were identical in both physphonate and phosphate light media.

Since only those varieties of bactoria which were able to grow on the synthetic medium were tested, the possibility exists that several other types of bacteria not examined possess the ability to utilize phosphonate. The period of abaptation observed prior to growth on phosphonate and the absence of phosphonate oxidizing activity of extracts obtained from cells grown in liquid phosphate medium are similar to the characteristies of the well-documented inducible enzyme systems for the utilization of carbon sources and suggest that the induction period is required for the synthesis of an enzyme

responsible for the oxidation of phosphonate.

It was reported in previous studies that phosphate is reduced by microorganisms under anaerobic conditions to phosphonate and hypophosphonate and that detectable amounts of these compounds appeared in the culture medium. Since most phosphorus assays involve the oxidation of all phosphorus materials to inorganic orthophosphate, small amounts of phosphonate in nature may have escaped detection. Various species of bacteria may, therefore, have retained the ability to oxidize phosphonate as a result of continual exposure to the anion.

B. OXIDATION OF PHOSPHONATE BY RESTING CELLS

Resting cell suspensions prepared from P. fluorescens 195 grown in phosphonate medium we capable of oxidizing phosphonate to phosphate, although the activity was quite low. However, h S S S activity was detected in phosphate-grown cells.

C. OXIDATION OF PHOSPHONATE BY CHIL-FREE EXTRAGTS

Ô

O Cell-free extracts of P. fluorescens 195 prepared from cells harvested during the exponential phase of growth in phosphonate medium possessed considerable phosphonate-oxidizing activity? No activity was detected in cell-free extracts prepared from phosphatogrown cells Heating the active preparations at 70 °C for 2 min completely destroyed the activity. ô

The large difference in activity between intact and cell-free systems is not readily explained. However, it was observed that the presence of an oxidisable carbon source enhanced whole-cell phosphonateoxidizing activity. This suggests that the uptake of the anion may be coupled to an energy-requiring step. Alternatively, since the assay system employed is dependent upon the oxidation product's being present in the supernatant liquid, the observed low fate of phosphonate oxidation may indicate that the discharge of phosphate from the cells is the rate-limiting step in the process, Ø

 \bigcirc The results of the experiments presented have confirmed previous reported results and, in addition, that the ability of sertain bacterial populations to utilize physphonate as a sole source of phosphorus is obtained through induction of the entire population rather than by selection of small numbers of mutant organisms. Since only those varies of bacteria which were able to grow on the synthetic medium were tested, the possibility exists that several other types of bacteria not examined possess the ability to milize phosphorate. \hat{o} S

III. CONCEUSIONS

Ř The information therefore does not contribute directly to the understanding of the route of degradation in soil. The publication thus served as supplemental Information about the potential mechanisms of

in soil. The publication thus served as supplemental in uptake and oxidation of phosphonate by microbes.

Report:	KCA 7.1.1.1/07	<mark>.</mark> 22	; 20	001; M-
Title:	Phosphite (phosphorous acid): Its	s relevance in the en vation response	vironment and agricul	ture and
Report No.: Document No.:	C034360 M-234787-01-1		ð	
Guideline(s):	none		O ⁴	
Guideline deviation(s): GLP/GEP:	not applicable no	<i>р</i> ъ		
Executive Summary		R Q		
The publication is a re	view article dealing with the	relevance of pho	sphonate following	its inse in
agriculture and industry	. The review summarizes aspe	ects of potertial in	put of phosphonate	s lato food
Phosphonic acid [HPO(OH) applied in the form of	alkali metal salts	i e 🚳 phosphopate	
may act as a fungicide c	or, as a phosphorus some for	ant nutrition		ر (۱۹<u>۹</u>) (۱۹ ۹),
Evidence that phosphon	ate can be directly used by pla	ntsas a sole sourc	of nutritional phos	phorous is
lacking. However, trans	sformation of phosphonate to	phosphate (HPO) ²	⁻) may take place a	the result
of microbial oxidation p	rocesses.			Ő
The information does n	ot contribute directly to the	ter understanding	of the route of deg	Endation in
soil. The publication the	us served as supplemental info	mation about som	e principles of occu	irrence and
oxidation of phosphona	te in the mvironment.		<u> </u>	
		UCTION ST		
Phosphorus is one of th	e maior and essentiabelement	s required low all li	ving species Phosn	horus does
not occur as the free e	ment in nature being very reac	tive, in particular	when combining with	th oxygen.
When Phosphorus is or	kidlsed to the fullest extent, the	product is phos	phate (PO43-) being	present at
neutral pH in the form	0° HPQ ₄ ²⁷ or H ₂ PO ₄ jons. H ₂ P	O ₄ ⁻ ions areatans	ported into plant cel	lls to serve
for cellular topenered	tics, metabolic regulation	and as priporta	nt structural com	ponent of
Phosphores in the form	of physphate thus also plays	a crutical role in	metabolic processes	s in plants,
including photosynthesi	is and respiration. However, pl	hosphate is one of	the least available 1	nutrients in
many aquatic and terres	trial ecosystems resulting in th	s need to use phos	phate as fertilizer.	
In addition phosphonet	A (HANO -) Rous have appressed	toomroup the wi	ald of many arong	The orticle
tried to provide an object	ctivesummary of phosphonate	schemistry and b	iology	The article
A.			10108).	
	HEMISTRY OF PHOSPHA	ГЕ VERSUS PHO	DSPHONATE	
			1, 1, 1, 1, 1,	
In prosphonate, the form $+3$ in comparison to $+5$	for photobate	atom by hydroge	n results in the oxid	lation form
The oxidation stage and	d the molecture in co	omparison to phos	phate influence the	binding to
enzymes and phosphona	ate cannot enter into the same	piochemistry as ph	osphate.	
NA S S	I <mark>I. BOCTERIAL PHOSPH(</mark>	<mark>ONATE METAB</mark>	OLISM	
In sont the Widation of	bonnate to phosphate in the	soil was found to l	be largely due to the	e microbial
activity within the soil	to be enzymatically oxidize	d to phosphate b	efore being incorpo	orated into
organic forms or plants.				
The existence of a c	chromosomal region dedicat	ed to the micro	bial metabolism o	of reduced
phosphorous compound	is indicates that a redox cy	cle for phosphore	ous may be import	tant in the
metabolism of phosphol	nates by microbes.			

IV. THE USE OF PHOSPHONATE IN AGRICULTURE

Phosphonate was determined to be a very poor source of phosphorus, owing to the conversion to phosphate necessary first before to become relevant for plant nutrition.

Phosphonate was shown to effectively suppress several fungal plant diseases when being applied on the form of the ethyl ester derivative fosetyl-Al or in the form of the potassium salt. It is assumed that direct deleterious effects of phosphonate on Phytophthora metabolism are important in controlling the diseases which it causes in plants.

V. INFLUENCE OF PHOSPHONATE ON BEANT AND YEAST PHOSPHATE STARVATION RESPONSES Ô

Since phosphonate is phloem mobile and accumulates in sink pissues, plants treated with tosety of or phosphonate rapidly amass phosphonate within their cells. As plants are mable to metabolize phosphonate, it persists in tissues for extensive periods. Õ Ø

The effect of phosphonate on different plant was investigated in several studies and it was hypothesized that phosphonate exerts its effect on the signalling pathway of responsible for the detection of. and response to, internal phosphrate levels. Phosphotrate treatment regates the acclimation of plants to phosphate deficiency by disrupting the induction of enzymes (e.g., acie phosphatase) and transporters (e.g., high affinity plasma lemma phosphate transporters) characteristic of their phosphate starvation response. Thus, phosphorate intensifies deleterious effects of phosphoras deficiency by tricking' phosphate-deprived plant cells into sensing that they are phosphate sufficient, when, in fact, their cellular phosphate content is extremely low

> VE PHOSPHONATE AS PHOSPHORES FERTILIZER S

There is no evidence provising in peer-reviewed scientific journals which clearly documents that plants can use phosphonate as a curect source of phosphorus. Phosphonate could, of course, be indirectly providing prosphorous to the plant after its oxidation to phosphate by soil dwelling bacteria. However, relative to phosphate fortilizers, this is not acost effective or efficient means of meeting the phosphorors requirements of plants. Heanything, phosphonate functions as an 'antifertilizer' as it has a profoundly negative influence on plant growth and metabolism when nutritional phosphate levels are not optimal. X, A

PHOSPHONATE IN THE ENVIRONMENT

There may be several concerns regarding the use of phosphonates in agriculture and high-tech industries, Phytophthora species may become resistant and phosphonate treatment of plants may have a side effect on soil microflora?

D Ø Besides this, it is important that farmers ensure that crops are in a well fertilized stage with phosphate Q. prior to phosph@ate application.

A Ô Anyway, phosphonate restaues levels infood are well regulated to ensure that chronic consumption of phosphonate treated products do not pose a threat to the consumer.

VIII. CONCLUSIONS

S. I.

The information does not contribute directly to a better understanding of the route of degradation in soil. The publication thus served as supplemental information about some principles of occurrence and oxidation of phosphonate in the environment.

Bayer – Crop Science Division

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

Report: KCA 7.1.1.1	/ <mark>09</mark> of soil phospho	22 22	; 1957; M-2347	<mark>80-01-1</mark>	
Report No.: C034357		i us		O° >	\$
Document No.: M-234780-0	<u>1-1</u>				"
Guideline deviation(s): not applicable			Ő		
GLP/GEP: no			- Or		
Executive Summary		~	L.		
The objective of the publication wa	s to introduc	e a method for frac	tionation of sof	Phosphorus in	Ø
order to identify the portion available	e to plants.	L' Ô	4 <u>L</u>		1
The total phosphorus present in soil	in the form of	Anorganic phospha	te cân be classif	ted into the four	
main groups calcium phosphate,	aluminium	hosphate, iron ph	Sphate, and P	eductant-solable	
phosphate being the extractable portion	on after remov	val of the first three?	forms	NY VY	
The method for fractionation of soil i	inorganic nho	sphate was establish	e Using synthe	the formers of item	
phosphate and aluminium phosphat	e and, of an	apatite of known	composition for	tests with soil	
samples.			5 5		
Soil phosphorus availability to plants	sis suggested	to depend on the ex	tensity of the pl	posphate surface	
of the various chemical species. Con may extract a portion of all chemical	al forms for	contrast the approx	ynation of avait	able phosphorus	
allows for the fractionation of \mathcal{Q} inor	rganic sol pl	hosphorus into the	total amount of	M ₂ each discrete	
chemical form. This would permit th	ne determinați	on of the chemical	status of native	soil phosphorus	
and of the fate of applied phosphate f	ertilizer with	or without the effect	t of cropping.		
The information therefore dogs to t	Antribula dire	to the understar	ding of the rout	e of degradation	
of fosetyl-Al in soil The publication	h thus, served	as supplemental in	formation abou	t the separation.	
nature and behaviour of phosphatere	sidues in soil.		Q)	,	
			- S		
	VIALERIAL	S'AND MET PODS			
A. MATÉRIALS	A	Ĩ,	-		
For control tests of the new system of	Soil inorgani	cphosphate fraction	nal on, synthetic	iron phosphate,	
synthetic aluminium phosphate, and a	apatite of know	wn composition wer	e employed. Th	e methods were	
then tested with source samples.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	° ₈ ,			
Table 7.1.1.1- 27; Physico-chemical	properties of t	St soil			
Parameter	Q . 6	<u> </u>	il		
Soil Designation		Wahiawa clay loam	Miami silt loam	Barnes silt loam	
Soil type and a man	Untosols	Latosol (low humic)	Podzol	Chernozem	
Geographic Location				Chernozeni	
City (1)	v O [*] Ø <mark>Catali⁄na</mark>	Wahiawa	Miami	Barnes	
Country & A & V	Puerto Rico	USA	USA	USA	
Texture & & &	not reported	Clay loam	Silt loam	Silt loam	
pH , , , , , , , , , , , , , , , , , , ,	6.2	<u>6.7</u>	<mark>4.9</mark>	8	
Extractable Ferral (%)	<mark>18.2</mark>	<u>10.1</u>	1.7	<mark>0.93</mark>	
Total (%)	not reported	not reported	<mark>0.036</mark>	0.02	
W AND					

FRACTIONATION PROCEDURE FOR SOIL PHOSPHOROUS B.

1. Extraction and determination of phosphorus in aluminium phosphate

Soil samples were extracted with 1 N NH₄Cl to remove water soluble and loosely bound phospherus and the exchangeable calcium. After separation from the supernatant, the soil was further extracted using neutral 0.5 N NH₄F. The soil was separated from solution by centrifugation and decantation. The clear supernatant was used for determination of phosphorus and the extracted soil was used for the extraction of iron phosphate. For determination of aluminium phosphate in the extract subsequently distilled water, 0.8 M boric acid and chloromolybdic acid solution were added to an aliquot of NH₄Rextract and the solution was well mixed after each addition. Then, chiprostannous reductant A (10) g SnCl₂ x 2H₂O dissolved in 25 HCl conc.) was added to develop the coour. After addition of water, the colour was measured on a photoelectrocolorimeter at \$60 nm within \$ to 20 minutes. Q, Ì

Æ

Extraction and determination of phosphorous in iron phosphate 2.

The soil sample left after the extraction of aluminium phosphate was washed twice with saturated NaCl solution. It was then extracted with 0. KN NaQH. After centrifugation and decantation of the supernatant, the soil sample was saved for extraction of calcium phosphate. The extract was used to determine the phosphorus. Therefore, an aliquot gusually 2 mLy was supplemented with water. The solution was adjusted to about pH 3 by addition of 2 NNaOP until 2,6 din prophenol indicator colour turned to yellow and then was brought back to colourless by addition of 2 NCH2SOO Then sulfomolybdic acid solution and water were added. The solution was mixed and three drops of chlorostannous reductant \mathbf{B} (25 g SnCl₂ x 2H₂O dissolved in 100 HCl conc., diffield to 1 L) were added to develop the colour. Water was added to volume and the solution mixed. The colour was measured within 5 to 10 minutes at 669 nm. Ŵ L, Â Ő

For surface soils the decanted extract was usually highly coloured with considerable organic matter, in which case 2 N H₂SO₄, were added, prior to preparation for determination of phosphorus, to the solution and then one of a few drops of concentrated HSO4, until the organic colloids began to flocculate. The suspension was then centrifuged and the chear supernation collected.

Extraction and determination of phosphorus in calcium phosphate, 3.

The soil sample left after extraction of iron phosphate was washed wice with saturated NaCl solution and then extracted with 0.5 N H3804, After centrifugation and decantation an aliquot of the supernatant was mixed with water. The solution was adjusted to about pH 3 by addition of 2 N NaOH until 2,6 diffetrophenol indicator colour turned to yellow and the solution is brought back to colourless by addition of 2 N H₂SO₄. The colour was then developed and measured as for iron phosphate. To test the non-interference of ferric ions, two dentical aliquots were taken. To one enough standard phosphorus solution was added to give a final concentration of 0.2 mg/kg of the added phosphorus. Then phosphorus was determined in both aliquots. The complete recovery of the added phosphorus established the non-interference of the ferric ions of the solution. Lower recovery, indicating ferric ion interference, Quild be dimining shed by additional Morostannous acid or by use of reductor.

Extraction and determination of reductant soluble iron phosphate 4.

The soil sample left after the extraction of cale in phosphate was washed twice saturated NaCl. Afterwards, it was suspended in 0.3 M sodium currate solution and then solid Na₂S₂O₄ was added. The suspension was heated in water bath and centrifuged. The soil was washed twice with saturated NaCl solution, the washings being combined with the extract. The sample was saved for extraction of occluded aluminium phosphate. The solution in the flask was filled up to volume and aliquots taken for phosphorus (and Fe, it desired) analysis. A suitable aliquot taken for phosphorus determination was mixed and with distilled water and 30% P-free H₂O₂. During heating the mixture, one drop of 0.5 M FCl₃ was added to moderate the oxidation. After completion of oxidation, the solution was boiled for an additional 1 of 2 minutes and then dried on a steam plate. Afterwards, 2 N NaOH was addeed and the solution was boiled for 1 to 2 minutes and digested on a steam plate for 5 minutes. The suspension was centrifuged to throw down the iron oxide precipitate and the supernatant liquid was decanted. The original flask was washed twice with water and centrifuged together with the extracted soil. The combined supernatant solutions were made to volume and the phosphorus determined by the same method as for iron phosphate.

Extraction and determination of phosphorous in aluminium phosphate 5.

For soils high in iron oxide, the residue was extracted with neutral NH₄F to remove occluded aluminium phosphate. Alternatively, the residue was extracted with 0.1 N NaOH to remove occluded aluminium-iron phosphate (barrandite-like). The phosphorus in the solution was determined in the same way as aluminium phosphate or iron phosphate, respectively. In a complete system of fractionation of soil phosphorus, total phosphorus and organic phosphorus were determined on two separate samples.

RESULTS AND DISCUSSION II.

1. Solubility of pure phosphates

1. Solubility of pure phosphates The separate extraction methods were systematized in proper sequence in a complete system of fractionation to remove the respective discrete chemical form of inorganic phosphate. The percentage of phosphate dissolved in the fluoride solution increased continuously with the decrease of the colidsolvent ratio. A small percentage of iron phosphate also was dissolved in the NH4F, and the amount increased with decrease of solid-solvent ratio. For soil containing 50 to 200 mg/kg iron phosphate or 0.05 to 0.2 mg P per gram of soil, not more than 9-10% of iron phosphate would be dissolved during the extraction of aluminium phosphate. To correct for this a second extraction with NH4F nervy be made and the amount of P thus extracted subtracted from the aluminium phosphate obtained in the first extraction and added to the subsequent iron physphate extracted by NaOHSF or convenience, 10% of the iron phosphate as obtained by subsequent NaOH extraction may be subtracted from aluminium phosphate and added to the iron phosphate. Solubility pphosphorus in the form of aluminum phosphate and iron in 0.1 N NOOH was high (4100 and 3400 mg/L), while the solubility of apatite in the same extract was negligible. Therefore, on the sample from which ataminum phosphate was removed, the separation of from phosphate is complete. 1

Solubility of apatite is high in 0.5 N H₂SOF (3400 mg/L); but a very large quantity of aluminum phosphate and iron phosphate could also be dissolved in it. Tous, it was shown that the NH4F and NaOH extractions not be carried out in the procedure before the acid extraction.

a,

2. Extraction of Al-, Je-, and Ca- phosphate from soils

Two soil samples, an ion-rich latosol (Catalina) and a grey-brown podzelic soil (Miami) were used to test the method for fractionation of aluminium iron and calcium phosphorus. One gram of each sample, after treatment, with NH4Cl, was extracted successively with neutral 0.5 N NH4F, 0.1 N NaOH, and 0.5 NH₂SOC for one to three times each. The Satalina atosol contains a negligible amount of aluminium phosphate and also a relatively small amount of iron phosphate. The second and third extractions with NDF dissolved therefore, only a pegligible amount of phosphate. The Miami silt loam contains relatively large amounts of aluminium and iton phosphates. The phosphate dissolved in the second and third extractions with NH4F as shown above, can be attributed to iron phosphate. The next extraction with WaOH, therefore, gave only 94 mg/kg phosphorus in comparison with 128 mg/kg in the second sample given only one extraction of Net4F. Considerable iron phosphate was dissolved in the second and third extraction with NaOH in both Catalina latosol and Miami silt loam. Phosphorus in syntheric iron phosphate (equivalent to 3400 mg/kg in 1 g soil) can be completely dissolved in one extraction of NaOH, yet successive NaOH extractions of soils which contain much less P continuously dissofve a portion of iron phosphate in the second and third extractions.

The Catalina latosol and the Miami silt load contain about 320 mg/kg and 150 mg/kg P, respectively, in reductant soluble (occlused) iron phosphate. The portion of iron phosphate dissolved in the second and third extracts must come from the occluded form, through diffusion or from the freshly exposed iron phosphate wrface formed by the breaking of particles during the 17 hour shaking. The occluded form is only physically different from that unoccluded so the distinction between them would not be very sharp. The sudden drop from amount of phosphorus dissolved from the first extraction to that of the second extraction fully justifies placing the iron phosphate dissolved in the first extraction in a difference ategory from that of subsequent extractions. One single extraction with NaOH was adopted. therefore, to separate the iron phosphate from occluded phosphorus. The second extraction with H_2SO_4 also dissolved a small amount of phosphorus, attributed also to slow removal of some occluded phosphate.

Reductant soluble iron phosphate 3.

The portion of phosphorus not extracted by the NH_4F , NaOH, and H_2SO_4 treatments was almost completely dissolved by a dithionite-citrate reduction-chelation procedure for dissolving free join oxide coatings. The reduction-chelation treatment was given separately to synthetic iron phosphate and aluminium phosphate. Within the analytical error, 100% of the iron phosphate and a negligible amount of the aluminium phosphate dissolved. The soil phosphorus dissolved by this treatment new properly be termed, therefore, reductant soluble iron phosphate. An iron ox de precipitate apparently was formed on the surface of iron phosphate and on the surface of aluminium-iron phosphate (barrandite-like) in the course of chemical weathering in soils by hydrolysis of iron phosphate and other iron salts. The relative insolubility of iron oxide in the NH₄F, NaOH, or H₂SQ4 extraction must account for the fact that the phosphate thus covered can only be dissoved after the removal of the iron O oxide coating. The Wahiawa latosol, the Catalina atosol, and a Miami silt loam after removal of aluminium, iron, and calcium phosphate by successive extraction with NH4F, DaOH and H2SO4 were treated once with sodium dithionite-citrate and yrelded 504, 320, and 150 mg/kg of reductant source phosphorus, respectively. Further extraction with either NaQH or NH4F dissolved appreciable amounts of phosphorus. Since only aluminium phosphate is soluble in either NaCH or seutral NH4E-most of the residual phosphate must be aluminum phosphate. The somewhat higher amount extracted by NaOH than by NH4F indicated that there was also some from phosphate left after the reductionchelation, most likely in aluminium-iten prosphate (barrandite-like) since any pure fron plosphate Colored and the second L. would have dissolved in the dithion in the sectro extraction.

4. Fractionation of phosphorous

The phosphorus of soils belonging to the different soil topes was fractionated. The results of the replicated samples were in good agreement. Iron phosphate, particularly the reductant soluble form, dominated highly-weathered soils, but these forms were also the most abundant in the Miami silt loam soil. Aluminium phosphate and calcium phosphate occurred in significant amounts in the Miami silt loam soil, while calcium phospitate is dominant in the calcareous subsoil of the Barnes silt loam soil. The ratio of alumining phosphate of iron phosphate varies from 0.2 in Miant silt loam soil to 2 in the little-weathered Barnes silt loam obsoit In this connection fractionation of phosphorus in several soil profiles was found to vary even more widely as a function of the degree of chemical weathering. The fusion analysic of the residual samples of both Catalina lates of and Miami silt loam after all extractions yielded and and mg/kg of P, respectively. The difference between the added total and determined total amount of P in the soils was within the cumulative experimental error.

Ô

 \bigcirc III CONCLUSIONS

Ô

A method for fractionation of inorganic, soil phosphorus into the total amount of each discrete chemical form, was developed. It permits determination of the chemical status of native soil phosphorus and of the fate of applied phosphate fertilizer with or without the effect of cropping.

Overall, the information therefore does not contribute directly to the understanding of the route of degradation of foseto Al in soil. The publication therefore served as supplemental information about

CA 7.1.1.2 Anaerobic degradation

KCA /.1.1.2/01 First (aluminium tris-O-ethylphosphonate): Anaerobic aquatic metabolic study. R000917 M-159549-01-1 USEPA (=EPA): D, 162-3 none **Report:** Title: Report No.: Document No .: Guideline(s): Guideline deviation(s): none **GLP/GEP:** no

The <u>route of degradation in anaerobic soil</u> of fosety -aluminium (bsetyl-Al) had been investigated and the set of the set

two water-logged soils under standard conditions (20 °C) following application of 1-14C-labeled fosetyl-Al (KCA 7.1.1.2/01). In addition, investigations were performed in one soil following the application of 1-14C-labeled ammonium ethylphosphonate or 1-14C labeled ethanol to one soil

Ø1

The data requirement was addressed under Point 7. EI.1.2.2 of the Dossier subplited and evaluated for the Annex I inclusion of fosetyl under Directive 97/4144 DEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005). Consequently there is no detailed description of this existing data on this Supplementary Dossier. \bigcirc

The evaluation revealed that fosets Al wer degraded rapidly under the anaecobic conditions of the test to result in values of the half-life of 1. advs 40 h silty day loan soil and 0.35 days (14 h, sandy loam), respectively.

Ethanol was observed as the major degradation product and the route of degradation was thus the same as for aerobic degradation in soil. No other metabolites were observed at levels requiring further assessment following actual data requirements according to Commission Regulation (EC) ×,© No 283/2013 amending Regulation (EC) No 1109/2009 Ô Ô

Þ

The study was considered as indicative during the America I inclusion of fosetyl under Directive 91/414/PEC. The reason for assessment of the study as indicative was not clearly given in the existing DAR. Also considering the simple structure of fosety. Al the results of the study are very conclusive in comparison to aerobie degradation (see Section CA 7, OI.1). Nor the active substance, neither its residues formed contain structural elements that are suspeptible for a reduction and to form unique transformation products under the anaetobic conditions of the test (example: nitro to amino group). This observation is common for the predominant portion of active substances and documented by

Study summaries of existing studies and publications on route of anaerobic degradation in soil:

Following another request by the RMS, this document was updated by inclusion of summaries for the existing data, i.e. studies and publications submitted and evaluated during the process of America inclusion of fosetyl under Directive 91/414/EEC and being still of relevance for the EU approval 64 × 4 renewal process.

				. 🔍	
Report:	KCA 7.1.1.2/01	R; 1	1984; M-159549	<mark>-01-1</mark>	
Title:	Fosetyl-Al (alumin	ium tris-O-ethykposp	phonate): Allerob	vic aquat met	
	<mark>study.</mark>	Å.	Ő¥		
Report No.:	R000917	Ĩ	Å		
Document No.:	<mark>M-159549-01-1</mark>	À	N D°	Å Å	
Guideline(s):	USEPA (=EPA): D	, 162-3		× . \ .	
Guideline deviation(s):	none	k, b°,			
GLP/GEP:	no	O ^V U ^V X		a s	
		1 m 0		~ 04	D' A
Executive Summary	ř		s'A d		

Executive Summary

The biotransformation of [14C]-fosety -Al was investigated under anaerobic condutions of the laboratory in the two soils sandy loan and silty clay toam following incubation on the dark at 20 °C for 1.33 days (32 hours, sandy loam) and 10 days (240 hours, sitty clays in maximum. A pominal test concentration of 88 to 100 mg/kg soil was applied based on a single maximum rate of 80 kg a.s./ha in B the field. The biotransformation of [¹⁴C]-fosetyl-amponium was also investigated under the same conditions in

soil silty clay loam following incubation for 10 days (240 hours) in maximum.

In addition, the biotransformation of [1°C]-ethanol was investigated under the same conditions in soil silty clay loam for 5 days (120 hours) in maximum following application at P test concentration of A Ç S. 44 mg/kg soil. S \cap

Following application of 14C-fosetyl-Al material balances range from 92.2 to 101.8% AR for silty clay loam soil and 919 to 100.0% AR for the satedy loan soil Following application of 14C-fosetylammonium material balances ranged from 90.6 to 101.9% AR in samples of silty clay loam soil. Minor losses in the material balance were observed each for two additional sampling intervals per incubation series. With losses being lightly below 90% for most samples this was not regarded to

have an impact on the overall outcome of the study. Following application of C-ethanol to silty clay loam soil, material balances were from 90.3 to

100.0% AR, except for the same ling interval 48 hours (89,% AR). Ö 🔨 õ

For the silty elay loam sed values of non-extractable readioactivity from soil were 1.0% AR (fosetyl-Al) and 0.5% AR (fosetyl-amponium) at time zero, to increase to 5.3% AR (fosetyl-Al) and 7.1% AR (fosetyl-animonium) after 240 hours of incubation. Non-extractable residues from sandy loam soil samples were 0.3% AR at study start (0 hours) and 6.0% AR at study end (32 hours).

Following application of C-etitanol non-extractable residues from silty clay loam samples increased from 0.9% AR at study start (& hours) to 5.6% AR at study end (120 hours). Ľ

1 S For the silty clay form soft the maximum of ¹⁴C-carbon dioxide formed was 48.0% AR (fosetyl-Al) and 47.0% AR (tosety) ammonum) each after 240 hours of incubation. The maximum of carbon dioxide formed was 16.6% AP for the sandy loam soil after 32 hours of incubation.

Finally, 60.200 AR carbox dioxide were formed in maximum in silty clay loam soil following application of ¹⁴C-thanol after 120 hours of incubation.

Formation of other volatile compounds was insignificant (values of $\leq 0.1\%$ AR) at all sampling intervals).

For the total samples of soil silty clay loam values of the active substances decreased from 89% AR (fosetyl-Al) and 86% AR (fosetyl-ammonium) at study start (0 hours) to 7 and 9% AR at study end (240 hours), respectively. For total samples of soil sandy loam values of fosetyl-Al decreased from 86% AR at study start (0 hours) to 13% AR at study end (32 hours). For the total samples of soil silty clay loam values of the test substance ¹⁴ C-ethanol decreased from 83% AR at study start (0 hours) to 5% AR at study end (120 hours).
"U ~ ~ ~ ~
Conclusively, fosetyl-Al or fosetyl-ammonium was rapidly degraded in anaerobio soil under conditions of the laboratory via biotical induced ester hydrolysis to result in formation of ethanol (maximum of 22% AR after 120 hours, soil silty clay loam) and carbon dioxide (maximum 48% AR after 240 hours, soil silty clay loam). Very rapid degradation was also observed following application of ethanol and separate incubation in samples of silty clay loam soil. The biotransformation of ethanol resulted of formation, of carbon
dioxide (60.2% AR after 120 hours) as the predominant product of conversion. \sim
Half-lives for fosetyl were 1 67 days (40 hours) in a silty clay loan and 24 hours in a sendy loan soil.
The helf life of athenol in city day loam with was stimed to (92 days (8 hours))
The nan-me of emails in sity clay loan sources was estimated to 0.35 days (o nons).
I. MATERIALS AND METHODS 🔬 🖉 🖉 🗢
A MATERIALS
1. Test Material \mathcal{O} \mathcal{A} \mathcal{O} \mathcal{A} \mathcal{O} \mathcal{A} \mathcal{O} \mathcal{A} \mathcal{O} \mathcal{A}
$[ethyl-1-{}^{14}C]-fosetyl-Al \sim \& O' A m \sim A A A A A A A A A A A A A A A A A$
Sample ID: $\sqrt{2}$ GH 9352
Specific Activity: 0 MBa/mg & a S
Padioshamical Durity 2004 200 00 00 00 00 00 00
[ethyl-1- ¹⁴ C]-fosteryl-aneronium (************************************
Sample ID: \mathcal{O} \mathcal{O} \mathcal{M} JA-443 \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}
Specific Activity Q .01.3 MBg/m& Q .2
Padiochemical Purity 100% 4
Fosety Al
Batch ID: $\sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2}$
Specific Activity A Non-labelled of the second seco
Radiochemical Purity Non-labelled ~ ~ ~
Chamical Puerty 2 Change of C
Due to imprations in availability of the test substance fosetyl-Al, the study was conducted in part with
the ammonium salt coded MIA-413. Considering that fosetyl salts readily dissociate in aqueous

solution to the separate ions, the use of ammonium as counter-ion was regarded to have no impact on Solution to the separate longy the use of ammonium as counter-ion was regarded to have no impact on the study objective, i.e. to correctly reflect the behaviour of fosetyl under anaerobic conditions. Samples of solf silty clay loam were incubated with [¹⁴C]-ethanol in parallel in order to compare the degradation pattern with [⁵C]-fasetyl-A0.

The tests were performed in two soils each sieved to a particle size ≤ 2 mm as characterised detailed in Table 7.1 22- 1. S.

Ô_Ŋ

Tuble 7.1.1.2 1. Thysico chemical properties of test sons

Parameter	<u>S</u>	Soil]
Soil Designation	Sandy loam	Silty clay loam	
Particle size		Ĉ	
Sand [50 μ m – 2 mm] (%)	<mark>62.3</mark>	2 <mark>.7</mark>	
Silt [2 μm – 50 μm] (%)	<mark>20.2</mark>	⁶ 54.7	
Clay [< 2 μm] (%)	<mark>13.6</mark>	<u>32.6</u> O [×] Q	N L
pH	<mark>5.3</mark> 🖉	6.8 × ×	a a a
Organic Matter (%)	3.6 [°]	\mathcal{Q} 3.9	× 4
Organic carbon (%) *	2/1	<u> 2</u> 3	
Cation Exchange Capacity (meq/100 g)		<u>ໍ 6° ລ<mark>ີ39</mark> ລັງ ບ</u>	
Water Holding Capacity at 0.33 bar (%)	24 🔊		
* Calculated by dividing the organic matter	content by 1.72 S		<i>G</i> ^v
B. STUDY DESIGN			Å,
1 Even aview and al Can diffiance			K Y

B. STUDY DESIGN

1. Experimental Conditions

The half-life of fosetyl-Al in soil under aerobic conditions was known to be very short as compared to the time required for establishing anaerobic conditions in soil samples by booding. Therefore, the study design formally followed the protocol of an aerobic aquatic metabolism i.e. the application of the test substance when anaerobic conditions had been established. Õ

The alternative design (anaetobic soil metabolism) would have been to apply foset to aerobic soil followed by an ageing period to then establish maerobic conditions. In view of the very short halflives of fosetyl in aerobic soil, this design can hardly be followed when considering that the establishment of anaerobic conditions typically requires at trast several days.

However, it is concluded that degradation in soil under anaerobic conditions follows the same fundamental pathways as under aerobic conditions with no additional metabolites formed when considering the absence of susceptible functional groups under such reductive conditions in the L, molecule fosety Al. R W.

The tests were performed in 50 mL glass centringe bottles each containing 5.0 g of soil. Following flooding with 20.0 mL of water and amendment of 60 mg alfalfa meal, anaerobic conditions were established by storage of flasks in the dark at 20 ± 2 %C for 29 to 34 days prior to application.

At date of application each sample was treated and concentration of 88 to 100 mg fosetyl-Al/kg soil, equivalent to 20 to 25 mg fosety Al/L water, based on a maximum single application rate of 80 kg a.s./ha in the field Samples of fity clay loan soil were treated with ¹⁴C-ethanol at a concentration of 44 mg/kg soil, equivalent to 15 mg/leffi the water phase.

Following addition of the test substance, hasks were stoppered and samples homogenized for 10 minutes. Stoppers on flasks were replaced by manifold caps to allow flow-through conditions resulting from a stream of nitrogen to pass phrough each sample during incubation. Volatile radioactivity was collected by passing the nitrogen stream successively through two traps containing 0.1 N aqueous sodium hor roxide solution and one containing concentrated sulphuric acid.

The samples were incubated at 20 ± C in the dark for 240 hours (10 days) in maximum.

0 2. Sampling

Duplicate of site clay bam samples treated with ¹⁴C-fosetyl-Al were removed for analysis after 0, 2, 5, 8, 16,32, 120 and 240 hours of incubation.

Single replicates of silty elay loam samples treated with ¹⁴C-fosetyl-ammonium were removed at the same at the same sampling intervals.

Single *softicates* of sandy loam were removed for analysis after 0, 3 and 17 hours of incubation while duplicates were processed after 8 and 32 hours of incubation.

Following application of ¹⁴C-ethanol, silty clay loam samples were processed after 0, 2.5, 5, 18 and 120 hours of incubation.

3. Analytical Procedures

The water was separated from soil by centrifugation. Radioactivity was determined by liquid scintillation counting (LSC) followed by HPLC analysis/¹⁴C-radio-detection. For silty clay loam samples treated with ¹⁴C-fosetyl-ammonium, analysis was repeated each after removal of ¹⁴C-carbonate by precipitation with barium.

Soils were extracted successively with 0.1 N aqueous sulphuric acid, Water, 0.1 N ammonium hydroxide, water, and finally methanol. Radioactivity in extracts was determined by LSS. No chromatographic analysis of soil extracts was performed due to low radioactivity in most of individual extracts. V Radioactivity in extracted and air-dried soils was determined by combustion followed by SSC

Ø \bigcirc The radioactivity collected in traps was determined by LSC followed by HPLC analysis,

confirmed by co-precipitation as radiodetection of first traps. Identity of ¹⁴C-carbon dioxide barium carbonate. L,

4. Determination of degradation kinetics

The kinetic evaluation of degradation data was performed graphical Ø Ŵ

П.

A. DATA The results of biotransformation in anaeropic soil were summarized for [¹⁴C]-fosetybAl and the two soils silty clay loam and sandy to am in Table 7.1.12-2 and Table 7.1.42-3, for [¹⁴C]-fosetylammonium and the silty clay loan in Table 7. 2-4, and, finally, for [14 Fethand and the silty clay Ô R loam in Table 7.1.1.2-5. 0 Q

CRESULTS AND DISCUSSIO

 \bigcirc Table 7.1.1.2- 2: Degradation of [C]-fosetyl-ADat 20 C under anaerobic conditions in soil silty clay Sam [AR] Ŵ Ô Å

		- C	Incu	pation f	ime (ho	ure)		
Compound		6 [°] 2			16	32	<mark>120</mark>	<mark>240</mark>
Fosetyl-Al	Q <mark>mean ∆ 89</mark> SD ±1	876 *2			73 ±3	50 ±2	25 ±2	7 ±0
¹⁴ C-Carbon dioxide in Asaps	mean n:a. SD D -	_0 <mark>0.3</mark> <mark>¥0.1</mark> ≰	^{≪0} 0.7 ∘ ±0. 2	[©] 0.9 <mark>±0.1</mark>	2.0 ±0.1	<mark>5.9</mark> ±0.6	<mark>27.1</mark> ±4.2	<mark>48.0</mark> ±0.3
Total radioactivity in water	⁷ mean 7 88 ∰ S⊉o ≠0.7	89.♥ £ 9.6	<mark>86,0</mark> ,⊕0.6	<mark>84.5</mark> ±2.4	<mark>82.1</mark> ±0.5	<mark>70.8</mark> ±1.2	<mark>51.2</mark> ±2.4	24.7 ±3.3
Total expractable from oil	$\frac{1}{2} \frac{1}{2} \frac{1}$	9 <mark>10.6</mark> ⊁ <mark>±0.7</mark> ℃	© <mark>9.6</mark> ±0.6	<mark>8.0</mark> ±1.2	<mark>8.7</mark> ±1.2	<mark>8.4</mark> ±0.4	<mark>10.2</mark> ±1.0	<mark>10.7</mark> ±0.8
Total extractable radioactivity	mean 98.9 SD	100.2 °≄0.3	<mark>95.0</mark> ±0.6	<mark>95.0</mark> ±0.5	<mark>89.9</mark> ±1.0	<mark>79.6</mark> ±1.4	<mark>61.0</mark> ±2.8	<mark>33.8</mark> ±1.5
Non-extractable radioactivity	$\frac{1.0}{\text{SD}} = \frac{1.0}{2}$	<mark>21.4</mark> ±0.1	<mark>2.0</mark> ±0.5	<mark>1.8</mark> ±0.0	1.7 ±0.1	<mark>3.1</mark> ±0.1	<mark>4.1</mark> ±0.0	<mark>5.3</mark> ±0.3
¹⁴ C-Carbon dioxide including	mean nra.	0.3	$\frac{0.7}{+0.2}$	0.9	2.0 +0.1	5.9	$\frac{27.2}{+4.2}$	48.1 +0.3
Total radioacervity	mean (7 99.1 SD [*] ±0.3	$\frac{\pm 0.1}{101.8}$ ± 0.2	97.6 ±0.9	97.7 ±0.4	93.5 ±1.1	88.6 ±1.8	92.2 ±1.4	87.1 ±0.8

All values expressed as percentages of total applied radioactivity

SD: standard deviation; n.a. = not analysed

Other colatile redioactively was 50.1 % AR at any time point

¹ Sundof successive extraction sing sulphuric acid, water, ammonium hydroxide, water and methanol.

Table 7.1.1.2- 3: Degradation of [14C]-fosetyl-Al at 20 °C under anaerobic conditions in soil sandy loam [% AR]

								°	~
Compound		0	Incubat 3	<mark>ion tin</mark> 8	<mark>1e (hou</mark> 17	rs) ¹ 7 3	2		
Fosetyl-Al	mean	<mark>86</mark>	<mark>70</mark>	64	44	1 ₀ 13	4		10
	BD mean	<mark>-</mark> n.a.	<mark>-</mark> 0.6	±4 2.4		7 <u>16</u>	.6		
¹⁴ C-Carbon dioxide in traps	SD	-		±1.1	Â	±2	.2 0 [°]	S' 4	ĝ,
Total radioactivity in water	mean SD	85.9 T	^{78.8} گ	77.4 ±0.0	60. - 	.5 43. ₩2		, S	L
Total extractable from soil ²	<mark>mean</mark> SD	<mark>13.8</mark>	<mark>11.0</mark>	<mark>}0.3</mark>	14. -	2 0 ±1	.0 .6		, O ^A
Total extractable radioactivity	mean SD	99.7	89.8	^{88.1} ±1.2	ۍ [°] 74	€ 57 ¥1			
Non-extractable radioactivity	mean SO	<mark>0</mark> V		2.8 40.3	. 9.	$\frac{0}{2}$		к ^у 4	
¹⁴ C-Carbon dioxide including other		<mark>n.a.</mark> Ø	0.6	2.4		<mark>7, 16</mark>	<mark>x</mark>)
volatiles	SD SD			<mark>+4}]</mark>		0 <mark>* +2</mark>	.2	<u>A</u>	
Total radioactivity	^y meany (SD	100.0	, <mark>%1.9</mark>	9 3.3 ∳±2.6	87.	4 79 ±0	.9**	0	
All values expressed as percentages of total appl	ied padioactiv	<mark>aty</mark> 🗸		, d		<u></u>		1	
Other volatile radioactivity was ≤ 0.1 % AR at all	time point	Ő	5	LO LO	~°		, ¹ ~y		
¹ Duplicates removed for analysis after 8 and 32	hours of incu	banon ,		Ş,	<u> </u>	ð,	×		
³ Sum of successive extraction using sulphuric ac	cid, water, ap	imonium i	hydroxid	e, water	and me	thanol.	9		
Table 7.1.1.2.4. Degradation of $1^{14}Cl$	No atyl mr	nonfium	ata28 °C			obiccor	ditions	in soil	
silty clay loan [% AR			at¥u ⊂ O k		i allaci	6 6 7	luitions	in son	
			/ O Incube	v « vtion®i	me (by	≫ٌ ⁄urs)			
Compound	90. N	2 ~ 0	5 A		16	32	120	<mark>240</mark>	
Fosetyl-ammonium	86	35 8	10 2	gi .	∕° <mark>64</mark>	<mark>40</mark>	<mark>27</mark>	<mark>9</mark>	
Ethanol in water	ana. 🕺	0.0	.0	5 .0	<mark>10 4</mark>	<mark>16.5</mark>	<mark>22.0</mark>	<mark>13.5</mark>	
¹⁴ C-Carbon dioxide in water ¹	, <mark>n.a.</mark>	2	<mark>3</mark>	<mark>7</mark>	<mark>11</mark>	<mark>13</mark>	<mark>10</mark>	<mark>6</mark>	
¹⁴ C-Carbon Dioxide in traps	🔊 <mark>n.a.</mark> Ôr 🛛 ().1 0 0		1.0°	<mark>1.0</mark>	<mark>7.1</mark>	<mark>21.0</mark>	<mark>41.0</mark>	
Total carbon dioxide	n.a.		<mark>%</mark>	<u>§?0</u>	12.0	20.1	31.0	<u>47.0</u>	
Total radioactivity in water		8.8	6.3 ×8	1.2	82.3	70.6	50.5	29.1	
I otal extractable from Soil 47	12.1	1.30°		6.3	10.3	<mark>/.8</mark>	$\frac{11.6}{21}$	9.7	
Non extractable radioactivity	99.4 10			<mark>י (.)</mark> סיק	92.0 1.4	/8.4	02.1 5.1	<u>38.8</u> 7.1	
¹⁴ C-Carbon (avide including other		<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	.,,	2.1	1.4	J .1	J .1	/.1	
volatiles	Q [°] n.a. © 2		.8	8.0	12.0	20.1	31.1	47.0	
Total radioactivity		<u>09</u> 9	8.4 9	0 <u>1.2</u>	<mark>95.0</mark>	<mark>90.6</mark>	<mark>88.3</mark>	<mark>86.9</mark>	
All values expressed as percentages of total app Other volatile radioactivity was 0 1 % R at a	time point	vity t							
n.a. ≯not analysed		<u>-</u>							
¹ Difference between ethanol + CO before and	aftersarium	precipitat	ion		1 .1	1)			
² Sum of successive extractions (suppluric acid,	water, ammo	nium hyd	roxide, v	vater an	d metha	nol)			
	Ş								
	v								
J J A J									
li g i i									
Č O ^v									
\bigcirc									

Degradation of [¹⁴C]-ethanol at 20 °C under anaerobic conditions in soil silty clay Table 7.1.1.2- 5: loam [% AR]

		Incubatio	n time ((hours)] _ ພັ 🏷
Compound	<mark>0</mark>	2.5	5	18	<mark>120</mark>	
Ethanol	<mark>83</mark>	<mark>70</mark>	<mark>59</mark>	20	5	
¹⁴ C-Carbon dioxide in water ¹	<mark>12</mark>	<mark>9</mark>	<mark>16</mark>	<mark>19</mark> 🖉	<mark>9</mark>	
¹⁴ C-Carbon dioxide in traps	<mark>n.a.</mark>	<mark>2.6</mark>	<mark>3.2</mark>	14 ⁰⁰	51.2	
Total ¹⁴ C-carbon dioxide	<mark>12</mark>	<mark>11.6</mark>	<mark>19.2</mark>	<mark>,3-3,,0</mark>	50.2 (
Total radioactivity in water	<mark>89.0</mark>	<mark>76.6</mark>	<mark>77.3</mark>	€ <mark>56.5</mark>	12.9	
Total extractable radioactivity from soil	<mark>10.1</mark>	∕ ₹<u></u>13.9	12.4	14.6	1 <u>5</u> 0	
Total extractable radioactivity	<mark>99.1</mark> 🦼	<mark>90.5</mark>	<mark>890</mark> *	71.1 🖌	2 <mark>8.4</mark>	
Non-extractable radioactivity	© ₄ <mark>0.9</mark>	<mark>1.3</mark>	<mark>\$%6</mark>	<mark>4.1</mark> 0	<mark>5.6</mark>	
¹⁴ C-Carbon dioxide including other volatiles	12 ²	11.9	19.2	₽ <mark>33.3</mark> ,₫ [×]	55 X V	
Total radioactivity	100.0	94.7	95.5	895	20,3	
All values expressed as percentages of total applied rad	ioactivity		L L	2		

n.a.: not analysed

¹ Difference between ethanol + CO₂ before and after parium precipitation

B. MATERIAL BALANCE

Following application of ¹⁴C-fosetyl AI to silty clay loam soil, material balances ranged from 92.2 to 101.8% AR, except for the two sampling intervals 32 hours (82.4% AR) and 240 hours (87.0% AR). For the sandy loam soil incubated with sosetyles I, material balances were of 9.9 to 00.0% AR, except for samples of 17 hours (87.4% (AR) and 32 hours (79.9% (AR). \approx ×,

For the silty clay loam incubated with ¹⁴C cosetyl-ammonium, material balances ranged from 90.6 to 101.9% AR, except for samples of 1/20 hours (88,3% AR) and 240 hours (86,9% AR).

Following application of C-ethanol to silty clay foam soil, material balances were from 90.3 to 100.0% AR, except for the sampling intervable hours (89.9% AR). Q. Ø

K)

Ø) O Losses of radioactivity to result on total material balances below 90% AB, were thus observed for a limited number of samples and minor (i.e. about V to 3% AR below 90% AR) for most of these samples. Loss were preferably occurre at later sampling intervals. The significant portion of volatile radioactivity formed starting already at short time intervals during incubation can serve as an indication that losses occurred from leases in the through systems and during processing of samples. With losses being slightly below 90% for most samples, this did not affect the overall outcome and integrity of the study.

C. DISSIPATION OF RADIOAC TIVITY FROM WATER

Residues in water of sitty clay loans samples decreased from 88.3% AR (fosetyl-Al) and 87.3% AR (fosetyl-ammonium) at study start (0 hours) to 247 and 29.1% AR at study end (240 hours), A. respectively. Ō

Residues in water of sandy loam soll samples decreased from 85.9% AR at study start (0 hours) to , and the second 43.3% AR at study end (32 hours)

Ŋ Following application of ¹⁴Crethanol, radioactive residues in the water of silty clay loam samples decreased from \$9.0% AR at study start (0 hours) to 12.9% AR at study end (120 hours).

D. EXTRACTABLE AND NON-EXTRACTABLE RESIDUES

Ø1

Values of extractable radioactivity from soil were 10.3% AR (fosetyl-Al) and 12.1% AR (fosetylammonum) for the sity clay loam soil at time zero to remain nearly constant at 10.7% AR (fosetyl-Al) and 9.7% AR (posetyl-ammonium) after 240 hours of incubation.

Extractable residues from sandy loam soil samples were 13.8% AR at study start (0 hours) and 14.0% AR at study end (32 hours).

Following application of ¹⁴C-ethanol residues extractable from soil of silty clay loam samples increased from 10.1% AR at study start (0 hours) to 15.5% AR at study end (120 hours).

Values of non-extractable radioactivity from soil were 1.0% AR (fosetyl-Al) and 0.5% AR (fosetylammonium) for the silty clay loam soil at time zero to increase to 5.3% AR (fosetyl-Al) and 7.1% AR (fosetyl-ammonium) after 240 hours of incubation.

Non-extractable residues from sandy loam soil samples were 0.3% AR at study start (0 hours) and 6.0% AR at study end (32 hours).

Following application of ¹⁴C-ethanol non-extractable residues from silty clay to am samples incre from 0.9% AR at study start (0 hours) to 5.6% AR at study end (120 hours).

E. VOLATILES

The maximum of carbon dioxide formed was 48.0% AR (fosety Al) and 4709 ammonium) for the silty clay loam soil each after 240 hours of incubation. The maximum of ¹⁴C-carbon dioxide formed was 166% AR for the sandy loam Goil after 32 bours incubation. Ô Q,

Finally, 60.2% AR carbon dioxide were formed in maximum in silty clay loam soil following application of ¹⁴C-ethanol after 120 hours of incubation. Ľ

Formation of other volatile compounds was in significant 6 AR at all sampling r V intervals).

X

F. TRANSFORMATION OF TEST SUBSTANCE

Following application of fosety Al or fosetyl-ammonium, the test substances were extensively transformed by biotical induced ester by grolysis to result in sphanol NER and mineralisation to carbon dioxide as predominant transformation products (see Table 7.1.1 22 to Table 79.1.2 3. Ŋ

K, Ô Å, *©* The transformation was very fast to decrease from 89% AR (tosetyl-A) and 86% AR (fosetylammonium) by zero hours to 7 and 9% AR each after 240 pours of incubation in soil silty clay loam. For soil sandy loam values of fosety Al decreased from 86% AR (zeto hours) to 13% AR (32 hours) at the end of the study.

transformation product at peak levels of 22.0% AR after 120 hours of incubation.

K, Following application of ¹⁴C-ethanol to silty clay loan samples, the test substance was extensively 6 transformed to result in C-catbon doxide as the predominant brotransformation product formed at 60.2% ÅR by the end of the study (120 hours of inoubation).

Values of ¹⁴C-ethanol applied decreased from 82% AR(zero hours) to 5% AR after 120 hours.

×j' Ľ G. DEGRADATIONKINETICS

0

No formal kinetic evaluation was performed. The degradation data was evaluated graphically to result in half-lives of 1.67 days (40 hours) for fosety) in the sity clay loam and of 14 hours in the sandy loam Ĩ S Ŵ soil. Ĩ °

The half fe of ethanolyin the silty clay loam soil was estimated to 0.33 days (8 hours).

1

Fosetyl-Al of fosetyl ammonium was rapidly degraded in anaerobic soil under conditions of the laboratory to result in ethanol (22% Ack after 120 hours, soil silty clay loam) and carbon dioxide (48% ARafter 240 hours, soil sity clay loam).

The same applied for the degradation of ethanol applied and incubated separately in samples of silty clay foam soft. The Diotransformation of ethanol resulted in formation of carbon dioxide (60.0% AR after 120 hours) as the predominant product of conversion.

Half-lives for fosetyl were 1.67 days (40 hours) in a silty clay loam and 14 hours in a sandy loam soil. The half-life of ethanol in silty clay loam soil was estimated to 0.33 days (8 hours).

Study evaluation:

Considering the simple structure of fosetyl-Al the results of the study were very consistent and well in line with the tests in aerobic soil. Nor the active substance, neither its residues formed contain structural elements that are susceptible for a reduction and to form unique transformation products under the anaerobic conditions of the test (example: nitro to amino group). This observation is common for the predominant portion of active substances and documented by meanwhile numerous EFSA Conclusions. Also in line with this observation the conduct of a new study is not expected to substantial information about the behaviour of fosetyl-Atom anaerobic sul. CA 7.1.1.3 **Soil photolysis Report:** KCA 7.1.1.3/01 Title: Phosphorous acid: Soil 9h R009319 Report No.: M-179065-0 Document No .: Guideline(s): none Guideline deviation(s): not applicat GLP/GEP: no **Report:** KCA 7. 21.3/02 Photo Sgradation of phosphorous acidin so Ocode: A COLLEGE O Title: Report No .: M-201629-01 Document No .: Guideline(s): none Shot arts Guideline deviation(s): **GLP/GEP: Report:** 3-M-233852-01-0 degradation of phosphorous acid, the Dain metabolite of fosetyl-Al in soil viropmental distinct daper) 33802 33852-01-1 applicate 2003; M-233832-04-7 Title: Report No. Document No.: Guideline(s): Guideline deviation **GLP/GEP:** @999; @234789-01-1 **Report:** Title: surface waters ates in Report No Document No .: M-23 Guideline(s): Guideline deviation(s) **GLP/GEP: Report:** K℃A 7.KJ.3/05 ; 1990; M-234783-01-1 Title: Depth Dependence of direct and indirect photolysis on soil surfaces Report N COM 58 M-234783-01-1 Document Guideline(s none Guideline deviation(s): not applicable GLP/GEP no

In view of the spontaneous degradation in aerobic soil, no photolysis study on soil surfaces was performed with the active substance fosetyl-aluminium.

Instead, the potential for <u>degradation of phosphonic acid on soil surfaces</u> following irradiation had been investigated under laboratory conditions in been investigated under laboratory conditions in:

- one soil at 30 °C following application of non-labeled phosphonic acid (KCA 7.1.1.3/Q1)
- one soil at 22 °C following application of non-labeled phosphonic acid (KCA 7.1.1.30)2).

The data requirement was addressed under Point 7.1.1.1 2.2 of the Dossfer submitted and evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005). Consequently there, is no detailed description of this existing data in this Supplementary Dossier.

Study KCA 7.1.1.3/01 was submitted as preliminary fata to finally serve as supplemental information. Study KCA 7.1.1.3/02 was a follow up of the first study conducted at a ower incubation temperature (i.e. 22 versus 30 °C) and prolonged irradiation ture (45 versus 21 days).

The evaluation revealed that the decrease of phosphonic acid was faster under imadiated conditions in comparison to dark controls. It was concluded that photolytical fransformation had some effect on the degradation of phosphonic acid on soil surfaces to result in about the half of the half-life as observed for degradation in dark controls, The Def 50 of phosphonic and in dark controls was estimated to range between 50 and 60 days.

Due to the nature of the test compound and the analysis, no pattern of metabolites could be described for extracts from irradiated samples or from dark courols.

 \bigcirc

Ľ

Ô Since the potential for direct absorption of light by phosphonic acid is very limited (i.e. no significant absorption at waxelengths of more than 290 nm); the actual degradation observed is explained by indirect photolytic effects, i.e. the reaction of singlet oxygen, hydroxyl radicals and peroxy radicals as oxidative species formed in the top 2 mm of soil from infadiation as indicated by publications submitted (&CA 7.1.1.3/04 and K&CA 7.1.1.3/05).

No other metabolites were abserved at devels, requiring further assessment following actual data requirements according to Commission Regulation (EC) No 283/2013 amending Regulation (EC) Ô No 1107/2009.

Studies KCA07.1.1.0701 and KCA 7.1.3/02~were considered as indicative during the Annex I inclusion of fosetyl under Directive 912/14/EFC. Due to negligible light absorption above 290 nm, only indiract photolysis of fostly Ar could occur. Therefore, no new information will be obtained performing a direct photolysis study with fosety Al. Photolysis is more likely based on the reaction with photo-generated transfent oxidiants like singlet oxygen, hydroxyl radicals and peroxy radicals. All of these photooxidants cause are oxidation reaction which is expected to result in case of phosphonates in phosphate. Agreew study is not expected to provide more significant information.

andy is not expected

Study summaries of existing studies and publications on soil photolysis:

Following another request by the RMS, this document was updated by inclusion of summaries for the existing data, i.e. studies and publications submitted and evaluated during the process of America I inclusion of fosetyl under Directive 91/414/EEC and being still of relevance for the EU approval renewal process.

Report: KCA 7.1.1.3/01 Phosphorous acid: Soil photolysis. Title: Report No.: R009319 Document No.: M-179065-01-1 Guideline(s): none Guideline deviation(s): not applicable **GLP/GEP:** no **Executive Summary** The photolytic transformation of phosphorate was investigated by application of phosphoric acid at a nominal test concentration of 4 mg a.s. deg soil onto the surface of amples of soil followed by irradiation at 30 C under simulated suplight for 21 days in waximum. In Stigations were performed against dark controls. For irradiated samples, extract fility of residues identified is phosphonate decreased from 4.6 mg/kg soil by day zero to 2.2 mg/kg by day 21. L L Extractability of residues identified as phosphonate decreased from 4.6 mg/kg soil by day zero to Į, 3.3 mg/kg after 21 days for dark controls. Ô L 1 It was concluded that phosphonate was not subject to ready photo-transformation on soil surfaces. This study provided pretiminary data thus being regarded as supplemental information. The study was replaced by study K 7.1 3/02 conducted at a lower test temperature (22 °C) and prolonged time of irradiation (45 days). ND METHODS

A. MATERIA

1. Test Material Analytical grave phosphonic acid was SD2

Ô

Ď

Soil 🔊 2.

The test soil originated from France. The soil was air-dried and sieved to a particle size ≤ 2 mm No for the details of soil characteristics were reported.

A

B. STUDY DESIGN

1. Experimental Conditions The test was performed in 'state' systems consisting of stainless steel dishes each covered to a depth of approximately 1 cm with posistened soil to result in 50 g soil per sample.

The test was performed at a concentration of 4 mg/kg via drop wise application of the aqueous solution of the test material to the soil surface.

Samples were irradiated with a xenon burner (Hanau Suntest) simulating natural sunlight at an intensity of 602 W/m². Soil samples were cooled during irradiation to maintain a temperature of 30 ± 1 °C at the soil surface. Additional samples were incubated in the dark in parallel.

Loss of soil moisture was compensated for by daily weighing and appropriate addition of deionised
water.

2. **Sampling**

Duplicates of irradiated samples and dark controls were removed for analysis by day zero and after 1, 3, 7, 15 and 21 days of incubation.

3. Analytical Procedures

Soil samples were extracted with aqueous ammonia buffer solution at ambient temperature for one hour followed by rinsing of extracted soil twice with isopropanol. Combined extract and rinses were filled up to the mark with isopropanol followed by de-cationisation of an aliquot by use of a cation exchange resin. Following addition of trimethylsilyl diagomethane as derivatizing reagent the alignot was concentrated to a final volume of approx. 2 mL and filled up to the mark with sopropanol. The purified, derivatised and concentrated aliquots were analysed for the phosphonic acid dimethy ester derivative by gas chromatography (GC) and the use of a photometric flame detector. Phosphortic acid was quantified by use of external standards.

II. RESULTS AND DISCUS

A. DATA

The results of photo-transformation tests of phosphonic acid onto the sol were summarized along with dark control San Table 7. 1. 3-1.

Table 7.1.1.3- 1:	Photo-transformation of	f ph os phonic acid	g n	• • • • • • • • • • • • • • • • • • •	50
	NT 1	// /// // // // // // // // // // // //	~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	

D

		\sim	°0'	al a	a. S.	0	[™]	
Component	Irradiated / 🔊	🖉 <mark>mean</mark> 🖉	2	Ÿ	1 Incuba	ationstime	0	
	Dark control	SD SD	W 0	0° <mark>1</mark>		×7	⁾ <mark>15</mark>	<mark>21</mark>
	irradiated	mean 🔬	4.6 4	<mark>. 209</mark> °	3.6	3.5 to	<mark>2.6</mark>	<mark>2.2</mark>
Phosphonic		<mark>igd</mark> O		°≳ <mark>Ø.1</mark>	_ 8		<mark>0.2</mark>	<mark>0.0</mark>
acid	April	mean	4.6	ký <mark>2</mark>	30 [°]	≪ <mark>3.6</mark>	<mark>3.1</mark>	<mark>3.3</mark>
		≫ <mark>SD</mark> Ş _	0.2	i <mark>,</mark> Q	' <mark>(0.0</mark>	<i>Q</i> [↓] 0.3	<mark>0.1</mark>	<mark>0.0</mark>
A 11 1		1			ġŸ .			

All values expressed as residues recovered in terms of mg/kg sort Ø

DAT: days after treatment

Single value do to progems during extraction for one rep ² No value due to problems during extraction

B. MATERIAL BALANCO

Following use of non-labelled test material no material balance including the determination of nonextractable residues could be established? Ø

C. EXTRACTABLE AND NON-EXTRACTABLE RESIDUES

Ø

For irradiated samples, extractability of residues decreased from 4.6 mg/kg soil by day zero to Ŷ 2.2 mg/kg/by day 21.Ľ

Extractability of residues in dark controls decreased from 4.6 mg/kg soil by day zero to 3.3 mg/kg after 21 days.

D. VOLATILÆS

Owing to the pature of the st material the formation of volatile components was not expected and ~O thus not determined,

ñ E. TRANSFORMATION OF TEST SUBSTANCE

For itradiate samples, extractability of residues identified as phosphonic acid decreased from 4.6 mg/kg soil by day zero to 2.2 mg/kg by day 21.

Extractability of residues identified as phosphonic acid decreased from 4.6 mg/kg soil by day zero to 3.3 mg kg after 21 days for dark controls.

III. CONCLUSIONS

Following irradiation at soil surfaces residues of phosphonate extractable from soil were found to decrease slowly with time. The dissipation of the test substance could be affected by at least three factors, i.e. a decrease of extractability from soil in general, due to the influence of irradiation and, to some extent, due to microbial transformation as indicated by the dark controls investigated. In total, it was concluded that phosphonate was subject to slow photo-degradation at soil surfaces. This study was submitted as preliminary data to finally serve as supplemental information while study KCA 7.1.1.3/02 was submitted as a follow up, conducted at a lowe test temperature (i.e. 22 °C) and of for prolonged period of time (i.e. 45 days). tigated by application of photon surface of samples **Report:** KCA 7.1.1.3/02 Title: Photodegradation of phos C011841 Report No.: Document No.: M-201629-01 Guideline(s): none Guideline deviation(s): not applicabl **GLP/GEP:** yes **Executive Summary** The photolytic transformation was investigated by application of phosphonic acid at a nominal test concentration of 4 mg a.s./kg soil onto the surface of samples of soil irradiation at 22 C under simulated sumight for 45 days in maximum. Investigations were performed - AK Õ Ô against dark controls. « \bigcirc Ø For irradiated samples, extractability of residues identified a phosphonate decreased from 4.7 mg/kg soil by day zero to 1.0 mg/kg by day 45. Extractability of residues identified as phosphonate decreased from 4.7 mg/kg soil by day zero to 2.6 mg/kg after 45 days for dark controls 2.6 mg/kg after 45 days for dark controls. S Ì Ľ The dissipation of the test substance could be affected by at least three factors, i.e. a decrease of extractability from soil in general, due to the influence of irradiation and, to some extent, due to microbial transformation as indicated by the dark controls investigated. Ŵ 0 Phosphonate could therefore be subject to slow photo-degradation at soil surfaces caused by indirect photolytic processes influenced by soil components. Ø As supplemental information the study demonstrated that photo-transformation of phosphonate in soil was a potential mechanism for the etimination of phosphonates from the soil environment. The contribution is expected to be rather limited considering the slow photolysis process and residues transported after application to the soil surface in the following to deeper soil layers after rainfall under field conditions. MATERIALS AND METHODS MATERIA **A**. **Test Material** 1.

Analytical grade physphonic acid was used, batch EA5152SD2.

2. Soil

The test soil originated from **constructions**, France. The soil was air-dried and sieved to a particle size ≤ 2 mm. The soil characteristics were summarized in Table 7.1.1.3-2.

Table 7.1.1.3- 2: Physico-chemical properties of test soil

B. STUDY DESIGN

1. **Experimental Conditions O**

The test was performed in 'static' systems consisting of stabiless steel dishes each covered to a depth of approximately 1 cnr with moistened soil to result in 50 g soil per sample.

The test was performed at a concentration of mg the via drop wise application of the aqueous solution of the test material to the soil surface <u>`</u> Ś Å

Samples were juradiated with a xenon burner (Hanau Suntest) simulating natural sunlight at an intensity of 494 W/m² Soil cample Ower Cooled Huring gradiation to maintain a temperature of 22 °C at the soil surface. Additional samples were incubated in the dark in parallel.

Loss of soil moisture was compensated for by daily weighing and appropriate addition of deionised water.

> K, \bigcirc

A

2. Sampling

controls were comoved for analysis by day zero and after Duplicates of irradiated samples and dark 7, 15, 21, 30 and 45 days of circubation.

a

P 3. Analytical Procedures

Soil samples were extracted with aqueous ammoria buffer solution at ambient temperature for one hour followed by rinsing of extracted soft twice with isopropanol. Combined extract and rinses were filled up to the mark with isopropanol followed by de-cationisation of an aliquot by use of a cation exchange resin Following addition I trimethylsilyl diazomethane as derivatizing reagent the aliquot was concentrated to a final volume of approx. 2 mL and filled up to the mark with isopropanol.

The purified derivatised and concentrated aliquots were analysed for the phosphonic acid dimethyl ester derivative by gas dromatography (GC) and the use of a photometric flame detector. Phosphonic acid was quantified by use of external standards. The limit of quantification (LOQ) of the analytical method was \$100 mg phosphonic acid/kg soil.

à B.

a f 2.6

0.

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

II. RESULTS AND DISCUSSION

∘<mark>2.7</mark> 0.2 Q

⊘Ĭ.6 🖋 <mark>0.1</mark>

A. DATA

The results of photo-transformation of phosphonic acid onto the surface of summarized along with dark controls in Table 7.1.1.3-3.

Table 7.1.1.3-3: Photo-transformation of phosphonic acid on

Component	Irradiated / Dark control	<mark>mean</mark> SD	<mark>0</mark>	<mark>7</mark> _©	Incubation time
Phosphonic	irradiated	<mark>mean</mark> SD	<mark>4.7</mark> 0.1	3.4 9.1	3.0 0 2.3 0.2 0.1
acid	<mark>dark</mark>	<mark>mean</mark> SD	4.7 0.1	3.9 0.1	3^{4}

All values expressed as residues recovered in terms of mag/l DAT: days after treatment

B. MATERIAL BALANCE

ermination of non-Following use of non-labelled test material and extractable residues could be established. T

C. EXTRACTABLE AND NON-EXTRACTABLE RESIDUES

4.7 mg/kg soil y day zero to For irradiated samples, extractability of residues decreased from 1.0 mg/kg by day 45.1.0 mg/kg by day 45. Extractability of residues on dark controls decreased from 4.7 mg/kg

soil by day, zero to 2.6 mg/kg after 45 days.

D. VOLATILES

21

composents was not expected and Owing to the nature of the test material the formation of thus not determined. ð

E. TRANSFORMATION OF JEST SUBSTANCE

A

\$ 1

m'

For irradiated samples, extractability of residues identified as phosphonate decreased from 4.7 mg/kg soil by day zero to 1,0ang/kgby day 45. 1 \bigcirc Ô

Extractability of residues identified as phosphonate decreased from 4.7 mg/kg soil by day zero to 2.6 mg/kg after 45 days for dark controls. The data served as an indication that dissipation of phosphonate was faster for irradiated samples.

~0 Õ \sim °~ Ĉ

However, the dissipation of the test substance could be affected by at least three factors, i.e. a decrease of extractability from soil in general due to the induence of irradiation and, to some extent, due to microbide transformation as indicated by the dark controls investigated.

S The exact contribution of each of the potential factors of influence mentioned was thus not clear.

Ø

CONCLUSIONS

Following frradiation at soil surfaces residues of phosphonate extractable from soil were found to ~C decrease with tome.

The dissipation of the test substance could be affected by at least three factors, i.e. a decrease of extractability from soil in general, due to the influence of irradiation and, to some extent, due to microbian transformation as indicated by the dark controls investigated.

In total, it was concluded that phosphonate could be subject to slow photo-degradation at soil surfaces caused by indirect photolytic processes influenced by soil components.

As supplemental information the study demonstrated that photo-transformation of phosphonate in soil was a potential mechanism for the elimination of phosphonates from the soil environment. The contribution is expected to be rather limited considering the slow photolysis process and residues transported after application to the soil surface in the following to deeper soil layers after rapifall under field conditions.

Since the potential for direct absorption of light by phosphonic acid or the active substance fosets Al is very limited (i.e. no significant absorption at wavelengths of more than 290 nm), the actual degradation observed is explained by indirect photolytic effects, i.e. the reaction of singlet oxygen,

 Report:
 KCA 7.1.1.3/04
 L, 1999; M-234789-04-1

 Title:
 Predicting photoreaction vices in ourface daters

 Report No:
 C034361

 Document No:
 M-234789-01-1

 Guideline deviation(s):
 none

 not applicable
 no

 not applicable
 no

 Direct photolysis rates can be estimated only for the limit:

 hydroxyl radicals and peroxy radicals as oxidative species formed of the top 2 com of soil from

relations shown in the publication to consult intestingations for a maximum photolysis rate constant. Indirect photolysis rates can be estimated using pleasured or estimated rate constants for each major photo-oxidant (i.e. singlet oxygen, hydroxyl-radicals and peroxy-radicals) toward the chemical of interest. 2

The hydroxyl-radical is the dominant photo-oxidant in many deshwaters for many classes of organic compounds, Availability of indirect photolysis rate constants along with several good quantityactivity relationships (QSARs) could ensure that values of the indirect photolysis rate constants could be readily estimated also for new structures. A Y L,

 \bigcirc The publication was submitted as supplemental information that indirect photolysis is a fact to allow, in principle, the estimation of the corresponding photologis rates and thus transfer to structures for which experimental fates and not known

Environmental photoreactions are drived by surlight, which has significant photon fluxes only above 295 nm in the near ultraviolet, Phese reactions occur in surface waters, on soil, and in the atmosphere and are often the dominant environmental transformation processes. Photo-oxidation in the atmosphere, mediated by bydroxyl radical, controls the lifetime of most organic compounds found S O there.

there. So we were the second s photolysis capitake place any if a photon is absorbed by a compound, leading to bond cleavage or rearrangement to form a new, stable product. Rates of photolysis in dilute solution are the products of the rates of light absorption and the quantum yields (reaction efficiencies).

Indirect environmental photoreactions depend on formation of transient ground or excited state oxidants by insolation of naturally occurring sensitizers, such as dissolved organic matter (DOM), followed by reaction with other compounds present in the same environmental compartment, in thermal (dark) reactions. The rates of indirect photolysis follow simple bimolecular kinetics.

II. INDIRECT PHOTOREACTIONS

Photooxidants and Kinetics

Indirect photolysis is more important for compounds that absorb little or no sunlight, where the process usually involves oxidation by transient photooxidants formed by sunlight absorption of natural chromophores such as DOM or NO₃. The transient oxidants in surface waters include singlet oxygen, C HO radical, and peroxy radicals, all of which are electrophilic, plaking electrophich compounds the main targets of indirect photolysis. Many of these same compounds also undergo rapid direct photoreactions. Aqueous HO radical, which ovidizes almost all classes of organic chemicals, is derived mainly from photolysis of nitrate ion, HO appears to be important in degrading synthetic chemicals in a variety of nitrate-bearing freshwaters

Ô

Indirect Photoreaction Estimation Methods

Bimolecular rate constants for oxidations of a wide range of organic compounds by oxyradicals and singlet oxygen have been composed and used to develop reasonably accurate SARs for photooxidations. Estimating an indirect photoreaction rate constant for a specific compound requires that a reaction profile be developed for each axidant toward compound S in the form of kox[Ox] in Reaction. The HO radical oxidizes all structural units, each of which is assigned a reactivity value that, when summed over all units, gives the dotal reactivity of the compound doward HO. Sometimes reactivity of one molecular uniOhas been measured, but the reactivity of another unit must be Ő estimated from an SAR.

SARs for Environmental Oxidants Oxyradicals (perosy or alkoxy radicals), HQ radical and singlet oxygen are the most important photooxidants is aqueous environmental reactions with organics. SARs have been developed for reactions of these oxidants in organic solvents. Where comparisons are possible, relative reactivities in water and organic media are similar, although rate constants appear to be 2 to 10 times larger in water. Other photooxidants are not usually inprovident in aqueous environmental reactions with organics. One exception may be superoxide (0^{-1}) , which forms noise of the H₂O₂ in marine systems.

Most HO reaction constants have values around 5 x 100° M⁻¹ s and a large data-base of k_{OH} values is available for the gas and aqueous phases. Perfoxy radicals react with organic compounds by H-atom transfer or addition to double bonds with rate constants ranging from < 0.01 to 300 M⁻¹ s⁻¹ at 25 °C. They are rarely important under environmental conditions because the average concentration of RO2 in surface waters is 10⁻¹⁰ M Singler oxygen (109 reactivity, combined with its day-averaged surface water concentrations of about X x 10 M, Junit environmental reactions to compounds like furans, dialkyl sulfides, polycyclic aromatics, pyrroles, and phenolate anions.

Ø

Å °¢" Ð Estimation of kox for Selected Chemicals

Anthracene is used to illustrate the procedure for preparing an indirect photooxidation reactivity profile. Anthracene is a polycyclic conjugated structure that cannot be fragmented into smaller units for estimation purposes. Different oxidants have different preferred points of oxidation on the conjugated rings but the 9 and 10 positions are favoured because of symmetry and stabilization of benzylic radicats. Rate constants for oxidation of anthracene by RO₂, ¹O₂ and HO have been measured in solution or in vapor: kex(RO₂) is 60 M⁻¹ s⁻¹ in chlorobenzene at 25 °C; kox (¹O₂) is 5 x 10⁸ M⁻¹ s⁻¹ for the water soluble 1-sulfonatoanthracene; k_{ox}(HO) is 6 x 10⁻¹°M⁻¹ s⁻¹. The total indirect oxidation rate constant for anthracene is controlled equally by HO and ${}^{1}O_{2}$. In most cases, HO radical appears to be the most important species, as it is in the troposphere. One difference in aqueous systems is that HO concentrations in insolated natural waters largely depend on the NO_3^- concentrations, whereas 1O_2 and RO₂ appear to depend more on the DOM concentration.

III. CONCLUSIONS

Direct photolysis rates can be estimated only for the limiting case of a quantum yield of one. This maximum photolysis rate constant can be used to evaluate the possible importance of photolysis as a environmental fate process compared with other kinds of degradation processes Indirect photolysis rates can be estimated using measured or estimated rate constants for each major photo-oxidant (¹O₂, RO₂, HO) toward the chemical of interest. HO is the dominant photo-oxidant in many freshwaters for many classes of organic compounds. Availability of the liable values of knowling with several good SARs and correlation equations ensures that k_{HO} values for new structures can be readily estimated and used as baseline values for lifetimes of compounds in insolated surface wales. Oxidation kinetics by ¹O₂ and RO₂ are less well characterized in water, with the result that SARs for O these reactions are fewer and less reliable. Nonetheress, a reactivity profile for each chemical can usually be estimated, from which the rate for indirect photolysis can be estimated and compared with the rate for direct photolysis, as well as rates for other transformation and transport processes acting on × the compound.

The processes of indirect photo-transformation for compounds that absorb dittle or no sublight @.g. phosphonic acid) discussed in this publication may also be transferred to soil and its soil/pore water. Photo-generated, transient oxidants like singlet oxygen, hydroxyl radicals and peroxy radical Scan be the cause for oxidation reactions with such compounds.

		- ¥	, ĝ	Q))	Å	~~	. 0	, "\
Report:	K	CA 21.1.	370/5	5(1)			; 19	290; M	-23478	201-1
Title:	D	epth depeta	dence 🕷	directly	nd indir	ect pho	olysis	n soil@	urfaces	
Report No.:	Ç	<mark>00004358</mark> 0		Ŵ	¢	\$	J.S.		L.	
Document No.:	Ň	N-234 <u>7</u> 83-1	01-1	S.	a,	S.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L.	S.	
Guideline(s):	s n	one 🖓 🔭	<u></u>	0)))))		¥ %	, °r	$\sqrt{2}$	
Guideline devia	tion(s)	ot applicate	<mark>ž</mark>	S		, C	0	v A		
GLP/GEP:	l l l	k ,)	J.	▲.	.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ß	L	, Ø		
] _ /	~	. ¥	¹ A	A.S.	a	\approx		

Executive Supernary

The publication deals with the influence of soil depth on the arect and indirect photolysis of the two active substances flumetrality (distroanione herbicide) and disulfoton (dialkyl thioether organophosphorus insecticide as examples. The investigations were performed in four soils with residues of each compound exposed at 28 to 31 % to simulated sunlight for 8 days under conditions of the laboratory and under outdoor conditions. The tests were performed at a test concentration of 100 mg/kg dry waght of soil. Additional samples were included in the dark to serve as dark controls. Ő¥ õ P Õ Ô \bigcirc

Outdoor irradiations were conducted at Reno, US, for days between April and September (1985 and 1986). Laboratory irradiations used fluorescent lamp as light source (Westinghouse FS40 sunlamp). **P** Q

Q,

Ø Samples were analysed at 24 hours intervals over a total period of 8 and 5 days for laboratory and outdoor samples, respectively. O

Ø1 Photo-transformation was for flumetralin va direct photolysis while it was via indirect photolysis for disulfoton, supported by the reaction with singlet oxygen.

S. O Various depths of treated sols (0.4 to 4.0 mm) were exposed to natural sunlight and laboratory lighting until the further degradation of chemical was detected. An estimate for the depth of photolysis was determined by multiplying the soil depth by the percent loss of each chemical. Direct photolysis way found to be restricted to the photic depth of soils (0.2 to 0.4 mm), while the indirect photolysis depth was slightly deeper. Vertical migration of singlet oxygen to depths greater than the depth of light penetration appears likely, although greater chemical movement of the more volatile disulfoton may account, in part, for the enhancement in indirect photolysis. In all cases photolysis was limited to

less than 1.0 mm for laboratory irradiations. Irradiation of the soil in sunlight resulted in greater depths of photolysis (up to 2 mm).

The publication was used as supplemental information that effects of direct and indirect phototransformation exist in principle. Of course, such effects could be observed only for compounds that were susceptible for these two potential causes of photo-transformation.

I. MATERIALS AND METHODS

A. MATERIALS

1. Test Items

Non-labelled flumetralin (chem. purity 98.8%) and disulfoton (chem, purity > 95%) werequised

2. Test Soils

The study was carried out using four soils as summarized for their characteristics in Table 7.1.73-4. The test soils were air-dried and sieved to a particle are of 40.425 mm.

Q,

Ò

()

Table 7.1.1.3- 4: Physico-chemical characteristics of test soils

Parameter		. K. ¹	×,		Seil	N.	Ĩ	Ś	0
Soil Designation	K	Cacaws 2	M.	rin Statio Farm		Montana Gratu		Chic Orcha	<mark>Ø</mark> Ird
Geographic Location	L.	<i>W</i>	¢,	, er	ð	ð á	Ő	<u>&</u> ,	
City City		\$ //	"0"	<u></u>	Õ,			0 [×]	
Country &		BA O		VUSA			, Ô	<mark>US</mark> A	<mark>\</mark>
Particle size	Q	AL AL		S.	×Ú'		Ð,		
Sand [%]	Ç.	<mark>49</mark> (Ì, Ì	> <mark>∕34</mark> ∂		, <mark>50</mark> ,	り	<mark>55</mark>	
Silt [%]		ව <mark>්47</mark>	, S	^ا 32		28 [*]		31	
Clay [%]	≪v″	8				<u></u>		14	
pH S S	\$	<mark>73</mark>	ب ج	<u>7.2</u>	Ç	&y <mark>°7.6</mark>		<mark>6.5</mark>	
Organic Matter [%]	1 *	0.8 6		," <mark>2.0</mark> 👋		<mark>2.2</mark>		<mark>6.1</mark>	
	A	- S	O,	Ø1	Ĩ				

B. STUDY DESIGN

1. Experimental Condițions 🔬

Ø

Each of the soils was coated with a methylene chloride solution of flumetralin and disulfoton. The solvent was removed slowly from the soil shurry by rotary evaporation at 40 °C. This method gave a uniform pesticide distribution in the soil at 000 mg/kg. For each treated soil, 4, 8, 16, and 32 g portions were evenly spread on the bottom of glass Petri dishes (10 cm diameter), 10 dishes for each of the four soil depths. Five of these dishes were exposed to light and the other five were used as unexposed (dark) controls. Dark control trays were covered with 4 mil black polyethylene film.

Irradiations were conducted in the outdoors in Reno between April and September (1985 and 1986). One sunlight exposed and one dark control tray were removed at 24 hours intervals and placed in cold storage until the end of the 5 day irradiation period.

For laboratory irradiations Petri dishes were placed on a 400 x 40 cm grid consisting of 40 10 x 10 cm quadrants under eight 4.9 fluorescent PS40 Westinghouse sunlamps. The dark controls were covered with algorithmic foil. Electric fans were positioned under the light bank to stabilize temperatures between 28 and 31 % during irradiation.

2. ^{Sampling}

A complete set consisting of four soil depths and their respective aluminium foil covered dark controls were removed at 48 h intervals and placed in cold storage until the end of the 192 h irradiation period.

3. Analytical Procedures

Soil samples were transferred from Petri dishes to 100 mL beakers and homogenized. A 1 g subsample from each beaker was extracted three times with 4 mL of acetone and analysed by using a gas chromatograph equipped with a nitrogen-phosphorus detector.

II. RESULT AND DISCUSSION

A. DEPTH DEPENDENCE OF DIRECT PHOTOLYSIS

In preliminary studies measuring the light transmission on thin layers of soil ultraviolet hight was found to be greater than 90% attenuated in the top 0.2 may in all irradiated soils. Direct photolysis was expected to be similarly restricted to the same vertical region.

The dinitroaniline herbicide flumetralin was selected to estimate the mean depth dependence of direct photolysis.

Soil depth [mm]	Conditions	Kracaws Main Station Carm Monfana Grain Chico Occhard
0.4-0.5	<mark>outdoor</mark>	
0. 1 -0.5	indoor	
0810	outdoor 🔍	
<mark>0.6-1.0</mark>	indoor 🕡	
1620	outdoot	[*] [*] ^{0.6}
1.0-2.0	indoor §	
2140	Quidoor C	
<mark>5.1-4.0</mark>	indoor A	

Table 7.1.1.3- 5: Estimated mean photolysis depths of flumetraling

On all irradiated soils, the loss of furnetraffn was significantly slower than solution photolysis rates. In most instances, greater than 50% of the original concentration was recovered after 5 days of sunlight irradiation. A tapid initial loss of flumetralin was observed, but generally from day 3 to the termination of the experiment, no further significant loss was evident.

R

Temperatures measured at the surface of sunlight exposed soils typically exceeded 40 °C at noon. At these temperatures, pesticide provement at depths below the soil optical zone may have accounted for greater photochemical availability at the exposed surface of the deeper soils. Although the soils used in this study were ar-dried, consective transport to the soil atmosphere interface has been previously reported to be a significant process.

Pesticide sorption on national surfaces has been reported to suppress various fate processes including photolysis. It was reported earlier that photolysis rates of polynuclear aromatic hydrocarbons (PAHs) are appreciably slower on coar fly ashes that are relatively high in carbon and iron content. The role organic matter plays in direct photolysis of surface-exposed soils is not clear.

The averages of the mean photolysic depth values for all soils and at all soil depths were 0.32 and 0.23 nm for outdoor and taboratory irradiations, respectively. The higher direct photolysis depth estimates for outdoor exposures were not surprising in view of possibly greater photochemical availability of the fluthetrality from surface disturbances caused by wind and greater surface temperatures that could possibly increase chemical transport to the exposed surface.

Flumetralin absorbs sunlight over a wider wavelength range (300 to 500 nm) than most pesticides. Since humic substances have higher extinction coefficients in the shorter wavelengths, the penetration of light into soils is likely greater for the longer sunlight wavelengths. Therefore, the mean photolysis depths determined for flumetralin may be greater than for compounds absorbing only the shortultraviolet sunlight wavelengths.

Õ

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

B. DEPTH DEPENDENCE OF INDIRECT PHOTOLYSIS

The thioether pesticide disulfoton was selected to evaluate the depth dependence of indirect photolysis at the soil surface. Disulfoton does not absorb or undergo direct photolysis in the sunlight spectrum. On soils, however, photosensitized oxidation to its corresponding sulfoxide is rapid.

Table 7.1.1.3- 6: 1	Estimated mean	photolysis o	lepths for disulfoton		
Soil depth [mm]	Conditions	<mark>Kracaws</mark>	Main Station Farm	Soil Montana Grain	. Chico Orchard
0405	<mark>outdoor</mark>	0.2	<mark>0.</mark>	0.3	€ ~ <mark>0?3</mark>
<mark>0.4-0.3</mark>	indoor	0.2	0 M	0.2	ן א <mark>0.2</mark> ע א
0810	outdoor	0.3	ی <mark>ر 0.4</mark>	0 [°] <mark>0.4</mark> 🔊	
<mark>0.8-1.0</mark>	indoor	0.2	<u>ي 0.3</u>	0.3	
1620	<mark>outdoor</mark>	<mark>0.5</mark>	0.7		³ ^{1.2} ³
1.6-2.0	indoor	<mark>0.2</mark>	[∞] <u>8.2</u>		
2140	outdoor	0.6	لا ر <mark>ې 0.7</mark> کې	V X <mark>Ø.8</mark> 🖉	≫ <mark>2.1</mark>
<mark>5.1-4.0</mark>	indoor	0.4	<u>v</u> 0.40 0	0.4 °	k <mark>€€</mark> °
		. 4		~ ~ (

For the four sunlight-exposed soils containing distribution the mean depths for photosensitized oxidations were consistently greater than the simultaneously measured mean depths of photolysis for flumetralin. The averages of the mean estimated protolysis depth among the four soils were 0.28 and Ô 0.72 mm, for laboratory and sunlight-exposed samples, respectively. °~ AC. , ,

Ň The photo-oxidation of disulform was found to occur appreciably deeper than the optical depth. Mean indirect photolysis depths were reported to be greater than 9.7 may for outdoor exposures. This observed depth value is conservative when compared to calculated values of mean singlet oxygen diffusion in the vapour phase. In the aerated, unsaturated soil environment, penetration of singlet oxygen to soil depths greater than 2 mm is possible. The depth to which this oxydant vertically diffuses under environmental conditions will depend on moisture content, Soil porosity, and steepness of the spinlight exposed soil interface. The ported differences in direct and indirect photolysis depths may also, to a certain degree, reflect differences in chemical volatility of the two pesticides used in this study. L. X Ô

Ø The observed enhancement of indirect photolysis depths in relation to direct photolysis may also be attributable to differences in chemical volatility of pesticides used in this study; disulfoton is substantially more volatile than flymetration. Although loss in dark controls was negligible among all soils in this study, greater disulforon availability in relation to flumetralin on the exposed surface could be considerable and, in part, account for the observed enhancement of indirect photolysis to greater soil depths. Ô

control varied from 87 to 104%. Mass balances for dark £ ĮØ. **CONCLUSIONS** Ľ Ø

Direct photolysis was found to be restricted to the photic depth of soils (0.2 to 0.4 mm), while the indirect photolysis depth was slightly deeper. Vertical migration of singlet oxygen to depths greater than the depth of light penetration appears likely, although greater chemical movement of the more volatile disalfoto may account in part, for the enhancement in indirect photolysis.

For all asses protolysis was amited to less than 1.0 mm for laboratory irradiations. Irradiation of the soil in sunlight resulted in greater depths of photolysis (up to 2 mm). Br. Ô Â

The publication provided supplemental information on principles of the effect of soil depth on phototransformation.

Bayer – Crop Science Division

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

CA 7.1.2	Rate of degradation in soil
CA 7.1.2.1	Laboratory studies
CA 7.1.2.1.1	Aerobic degradation of the active substance
Report: Title: Report No.: Document No.:	KCA 7.1.2.1.1/01
Guideline deviation(s) GLP/GEP:	not applicable no
Report: Title: Report No.: Document No.: Guideline(s): Guideline deviation(s)	KCA 7.1.2.1.1/02
GLP/GEP: Report: Title:	NO KCA 7.72.1.1/63 The rate of degradation of (14C)-fosetyl-Al journee spils under aerooc conditions at 20 degree (essius)
Report No.: Document No.: Guideline(s):	$\begin{array}{c} R(91664 & \bigcirc \\ M-184329-01-1 & \bigcirc \\ EU(=SEC): 1936/EC, (1990; SETAC: (1983); \\ Equivalent OUS EQA OPS S Guideline No. 835.0100 \\ \end{array}$
Guideline deviation	These of the second sec

For the active subspance fosetyl-aluminium (fosetyl-AP), information on the <u>rate of degradation in</u> <u>aerobic soft</u> in the laboratory could be defined, in principle, from studies performed under the following conditions:

- three soils (20 and 12 °C, mosture at 70% of water retention capacity for one soils and at 50% for two soils) after application of 1-14 clabeled and 32P-labeled fosetyl-Al (KCA 7.1.2.1.1/01);
- four soils (20 °C, moisture at 75% of water capacity at 0.33 bar) after application of 1-14C-labeled fosetyl-AP(KCA7.1.29.1/02)
- three spils under standard ponditions (20°C, moisture at 40% of the maximum water holding capacity (MWHC) after application of 4²⁴C-labeled fosetyl-Al (KCA 7.1.2.1.1/03).

This data requirement had been addressed under Point 7.1.1.2 of the Dossier submitted and evaluated for the Annex Linclusion of tosetyl under Directive 91/414/EEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005). Consequently there is no detailed description of this existing data in this Supplementary Dossier.

Study KA 7, 5.1.1,01 had been excluded from existing risk assessment. No analysis of soil extracts was performed and consequently, this did not allow for distinguishing between active substance and metabolites. Moreover, reporting was unclear about the basis of soil moisture determination and its maintenance during incubation.

Following latest guidance on kinetic evaluation the data from existing studies KCA 7.1.2.1.1/02 and KCA 7.1.2.1.1/03 have been re-evaluated and therefore superseding the existing kinetic evaluations.

The evaluations were performed according to FOCUS Guidance in order to derive values for the halflives and the DT₉₀ for comparison with trigger endpoints and half-lives for modeling endpoints for input into environmental risk assessments.

Report:	KCA 7.1.2.1.1/04 ;; 2015; M-528985-01-1
Title:	Fosetyl-Al and Ethanol - Kinetic evaluation of aerobic degradation in soil according
	to FOCUS guidance
Report No.:	EnSa-15-0443
Document No.:	M-528985-01-1
Guideline(s):	Generic Guidance for Estimating Persistence and Degradation Kinetics from
	Environmental Fate Studies on Pesticides in EU Registration. EV Document
	Reference: None, version 1.1, 2015 amending Quidance Document on Estimating
	Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides
	in EU Registration. Report of the FOCUS Work Group on Degradation Kinetics PC
	Document Reference Sanco/10098/2005 Version 2.0, 2006
Guideline deviation(s):	none a co
GLP/GEP:	no A C Q A C O C Q
	$\mathcal{Y}^{*} \wedge \mathcal{Y} \wedge \mathcal{Y} \wedge \mathcal{A} \wedge \mathcal{O}^{*} \mathcal{I} \wedge \mathcal{A}$

Executive Summary

For the active substance fosetyl-aluminium (fosetyl-Al) serobic soil degradation data as referenced under KCA 7.1.2.1.1/02 and KCA 7.1.2.1.1/03 were kinetically evaluated according to actual guidance [FOCUS, 2015] to derive values for the balf-life and the DT on for modeling and trigger endpoints. Following application of 1-14 stabelled fosetyl-Al and incubation under conditions of the laboratory data were considered from two studies performed in seven soils in total,

The kinetic evaluation followed a stepwise approach, The first step consisted of identification of best fits to measured data starting with the SFO kinetic model, Tests with the bi-phasic model FOMC did not result in better bis thus best for half-fives for comparison agains trigger endpoints were derived from use of the SPO model. Finally, values for the DT50 were normalized to reference conditions (20 °C, pF2 moisture)

<u>Trigger endpoints:</u> O Non-normalised values of the OT_{50} and the OT_{90} were defined then SFO best fits in six soils with results summarized in able 1.2.1. I. No reliable half life could be estimated for the sandy soil of study KCA 7.1.2.1 103. K) \bigcirc L, ≪.

Non-normalised half-lives of setyl-Al from test at 20 °C ranged from less than 0.01 days (0.2 hours) for a sandy from soft to 0.06 days (1.5 hours) for clay loam soil 4 while values for the DT₉₀ were from 0.0 days 9.7 hours hours) to 02 days 5.0 hours) in the same soils.

For estimation of the trigger half the at 00° C, aQ_{10} factor of 2.58 was applied to result in a maximum value of the DT₅₀ of 0.15 days and a DT₅₀ of 0.51 days as observed in clay loam soil 4 (study KCA 7.4©2.1.1/02).

A SA A A A A A A A A A A A A A A A A A		, O' , O				
Table 7.1.2.1.1- 1:	Summary o	fivesults of k	inetic evaluation	n of degradation	for fosetyl-Al in ae	robic soil
, O	in the labor	atory for con	n arison agains	t EU triggers	·	

Parameter &	Fosetyl-Al
20 °C Non-normalised DT ₅₀ , range (days)	0.01 - 0.06
Worst case DT 50 (days)	0.06
2006, Non-prormatised DT ₉₀ , range (days)	0.03 - 0.2
worst case DT (days)	0.02
10 °C, Non-normalised DT ₅₀ (days)	0.15
10 °C, Non-normalised DT ₉₀ (days)	0.51

Modelling endpoints:

Values of the DT_{50} and DT_{90} in aerobic soil following normalization to reference conditions (20 °C, pF2 moisture) were summarized in Table 7.1.2.1.1-2.

For use as modelling endpoint, the overall geometric mean of normalised half-lives of fosetyl-AF was a calculated to 0.0161 days.

Table 7.1.2.1.1- 2: Normalised laboratory DT50-values for fosetyl-Al in aerobic soil for use as modelling input parameters in environmental exposure assessments

	- An			
Compound		Fosetyl-Al		Y QY SC
Normalised DT ₅₀ (20 °C, pF2), range (days)	().0054 - 0.456		
Geometric mean		🖌 0.0161 🛛 💭		
	1		d.	

I. Material and Method

For the parent compound fosetyl-Al details on study conduct and its results have been summarised in Section CA 7.1.1.1. The degradation data were evaluated following actual kiretic guidance [FOCUS, 2006, amended 2015] with the software kinGU12.

The measured values were taken into account as reported and thus treated as individual replicates. All sets along with their data points were weighted equally. Time zero restrues for fosetyl-Al were set to the recovered amount.

Following the recommended procedure for determining modelling endpoints by FOCUS, all datasets were evaluated using the simple first order (SFO) kinetic model with free optimisation of parameters. FOCUS kinetic evaluation rules aimed at deriving DT_{50} alues for use as model and trigger inputs and were performed according to the respective decision flowchart. The kinetic evaluations including statistical calculations were conducted with kinGUU (v2.0) using iteratively reweighted least-square (IRLS) optimisation.

II. Results and Discussion

Trigger endpoint determination

Following the flow hart, the kinetic model FOMC showed no improvement over SFO, thus evaluations using DFOP were not conducted SFO kinetice was determined to be the best-fit for all soils, but for the sandy soil of study CA 7,1.2.1, 903. No reliable kinetic endpoint could be derived for this soil.

The resulting non-mormalised values for the DT_{0} and the DT_{90} derived are summarised in Table 7.1.2.1.1-32

Modelling endpoint determination?

For use in environmental modelling degradation. Inff-lives were normalised to reference conditions regarding soil moisture (100% field capacity) and temperature (20 °C). The parameters used in the laboratory tests and the respective correction factors calculated were summarised in Table 7.1.2.1.1-4. The half-lives resulting from normalisation were summarised in Table 7.1.2.1.1-5.

The half-lives resulting from normalisation were summarised in Table 7.1.2.1.1-5.

Table 7.1.2.1.1-3: Trigger evaluation: Non-normalised DT₅₀-values for fosetyl-Al in aerobic soils under laboratory conditions

	1				1		
Soil	Label	Model	DT50	DT90	Chi ²	Parameter	Vistral ^{a)}
	position		(days)	(days)	(%)		S O'
Soil 1	$1^{14}C$	SEO	0.012	0.040	2.2	0° k = 57.66	, C
sandy loam, 20 °C (Study 1)	1- C	560	(0.3 h)	(1.0 h)	2.5	K = 37.00	
Soil 2	1 ¹⁴ C	SEO	0.049	0.162	02Å	k = 14	
loamy sand, 20 °C (Study 1)	1- C	560	(1.2 h)	(4.0 h)		K - 14.40	
Soil 3	1 14C	SEO	0.051	0.170	สี่งาา	$k = \frac{1}{2} \frac{1}{52}$	
silt loam, 20 °C (Study 1)	1- C	560	$(1.2^{\circ}h)$	(4.0 h)Q	012.2	K – @5.33	
Soil 4	1 140	SEO	\$.060	0.200 *	4.1		
clay loam, 20 °C (Study 1)	1- C	50	(1.5 h)	(5.0h)	4.1	(k) - 11.4 M	0, "0
Clay loom 20 °C (Study 2)	1.140	SECO	0.014	<u>0.047</u>			<u> </u>
Clay Ioani, 20°C (Study 2)	1-°C	Srug	(0,3 h)	@(1.0 h)>>́	11.4	K = 2.04	
Sand 20 °C (Study 2)	$1 - {}^{14}C$	S S	Q		Ŵ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Sund, 20°C (Study 2)	I C	U 4			~0°	0 L	<u> </u>
Sandy loam 20 °C (Study 2)	1^{-14} C	A SEQ 0	0.008	Q027	314	k = 961	
Sundy Iouni, 20°C (Bludy 2)			(0,2 h)	(0.7 h)			
Study 1. KCA 7111/02 KCA 713	$1 \frac{1}{102}$ and 1		<u>า/คก</u> / เ		°~∕		a all

Study 1: KCA 7.1.1.	1/02, KCA 7.1.2.1.1/0	2 and KCA 🔊	2.1.2/00 🕺	' O'	Y Q	
Study 2: KCA 7.1.1.	1/03, KCA 7.1.2.1.1/0	3 @ KC & 7.1.2	2.1 203	w R	Q' Á	y O
^{a)} Visual assessment:	+ = good, O = moder	aQ, - = poor				Ö.
	, O	y '0'		S ^Y O	Ŭ N	
	×					**
Table 7.1.2.1.1- 4:	Correction factor	s for soil temp	perature and	moisture conte	ent 🏷 🖇	1
	and a second sec	· " ~~ ·	~~~		~ 0.	

		4		U U	
Soil	🐇 Lab	Kemperature	Mncubation.	ор г 2	Correction
	^O position	<u>с</u> (°С)	møisture	møisture	factor
			(%w/w)≶`	(%w/w)	
Soil 1	×1 14C		0 11-3	× 10	0.603
sandy loam, 20 °C (Stady 1)		J 180		¥ 19	0.095
Soil 2			Leo O	1.4	0.600
loamy sand, 20 °C (Study I) 🦑		1 1 20 S		14	0.000
Soil 3	0 1 146	× 200	150	26	0.704
silt loam, 20 °C (Stute 1)	- 1- 0			20	0.704
Soil 4 🔍 🦿 🦿		20 .0	a Oiee	28	0.755
clay loan 2 0°C (Study D)			10.0	28	0.755
Clay loam 20 °C (Study 2)	× 1 14	°∼ 20	128	28	0.578
			12.0	28	0.378
Sand 20 °C (Stude 2)	1 <u>1</u> 40 w		_	_	_
Sund, 20 C (Study 2)					
Sandy loam $\approx 0^{\circ}$ C (Study 2)	1- ¹ 4€	× 20	10.8	19	0.673
		bí Tř	10.0	.,	0.075

Sandy loam, 20 °C (Study 2) 1-146 57 Study 1: KGA 7.1.1.1/02, KCA 7.1.2 9/02 and KCA 7.1.2.1 Study 2: KGA 7.1.1.1/03, KGA 7.1.2 1.1/03 and KCA 7.1.2.9

Document MCA – Section 7: Fate and behaviour in the environmen	t
Fosetyl	

Soil	Kinetics	DT ₅₀ (davs)	DT90 (davs)	Non- normalised	Normalised °
				DT50 estimate	[20°C and pF2]
				for modelling (days)	(dæys)
Soil 1 sandy loam, 20°C (Study 1)	SFO	0.012 (0.3 h)	0.040 (1.0 h)	0.012 (0.3 h)	0.0085 (0,29)
Soil 2 loamy sand, 20°C (Study 1)	SFO	0.049 (1.2 h)	©.162 \$\vee(4.0 h)	0.049 (1.2 h)	کی موروع 20.7 http://www.action.com/action/a
Soil 3 silt loam, 20°C (Study 1)	SFO	0.051 (1.2 h)	0.170 (4.0 h)	0.051 (1.2 h)	
Soil 4 clay loam, 20°C (Study 1)	SFO	0.060 [°] (1.5 [°] h)	0.20 (5.0 b)	0.60Q (1,5, h)	0 ⁹ 0.0456 ⁹ «(1.1) °
Clay loam, 20°C (Study 2)	SFO	(0.3 b)	0,047 (0,0 h)	© 0.014 © 0.3 h)	∞ 0.0082 √ (0,3 h) °
Sand, 20°C (Study 2)	- 2		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A -69 x	0. 2. 2
Sandy loam, 20°C (Study 2)	SFO	20.008 © € ≤ (0.2 h)€	0.007 (0.17 h) ×	0.008 0.0.2 h	© 0.0034 (0.1h)
Geometric mean					9.0161
Study 1: KCA 7.1.1.1/02, KCA 7.1.2.	1/02 and KC	A 7 2.1.2 02		<u>~~~~~~</u>	

Table 7.1.2.1.1- 5:	Normalised (20 °C and	pF2) DT50 values for fose	tyl-Al as modelling endpoints
	`		

Study 2: KCA 7.1.1.1/03, KCA 7.1 (1/03) and KC

III Tonchusion Ø

The kinetic evaluation according to FOCUS kinetic guidance esulted in the use of the monophasic model SFO to derive reliable values for the half lives and the DT90 of the active substance fosetyl-Al ° Ø from five soils in total. Ľ Ô

For comparison with FU trigger endpoints non-normalised half-tives of Josetyl-Al from tests at 20 °C ranged from loss that 0.01 Pays (0.2 hours) for a sandy loant soil to 0.06 days (1.5 hours) for clay loam soil 4 while values for the DT₉₀ were from 0.00 days (0.7 hours) to 0.2 days (5.0 hours) in the same soils.

For estimation of the tagger half-life at 10 °C, a O factor of 2 9 was applied to result in a maximum value of the DT₅₀ at 0.15 days and a DT₉Oof 0.51 days as observed in clay loam soil 4.

Ŷ For use as modelling ioput parameters in environmental fisk assessments the evaluation resulted in a geometric mean half life normalised for moisture (pF2) and temperature (20 °C) of 0.0161 days.

tests are regarded as suitable and reliable for use in environmental The values derived from laboratory exposure assessments.

Request from the RMS:

In the kinetic assessment by (2015, KCA 7.1.2.1.1/04), the default humidity values as provided by FOCUS Kipplic Guidance (2014) were used in the normalization process for the soils (1982, KCA 7.1.2.1.1/02). However, according to FOCUS Kinetic from and Guidance (2014), the humiday actually measured during the study should be taken into account in the normalization process when available. In this respect, additional normalization calculations should be provided.

Response from BCS:

For moisture normalization according to FOCUS (2014) two sets of values are necessary: soil moisture under study conditions and soil moisture under reference conditions (pF2). In the study from and final (1982, KCA 7.1.2.1.1/02) only the moisture content under study conditions (75% of 0.33 bar) and under non-FOCUS reference conditions (0.33 bar / pF 2.5) are provided. Thus, direct normalisation to pF2 is not possible. Mixing of moisture data from lab studies and the FOCUS default values should be avoided, because this would compare soil physical data for structured soil (field situation from FOCUS default values) and disturbed soil (laboratory), which are no comparable regarding the water holding capacity. Therefore, the default FOCUS values for both study and reference conditions were used for normalization, which provides consistent and realistic normalization factors.

for the risk assessment, the moisture content at p_1^{12} .5 can be used as a conservative estimate for the moisture content at p_1^{12} .5 can be used as a conservative estimate for the moisture content at p_1^{12} .5 can be used as a conservative estimate for the moisture content at p_1^{12} .5 can be used as a conservative estimate for the moisture content at p_1^{12} .5 can be used as a conservative estimate for the moisture content at p_1^{12} .5 can be used as a conservative estimate for the moisture content at p_1^{12} .5 can be used as a conservative estimate for the moisture content at p_1^{12} .5 can be used as a conservative estimate for the moisture content is lower at higher succion pressure. With this approach the water content under study conditions is 75% of the water content under reference conditions and a normalization factor of 0.818 results for all four soils p_1^{12} .

			1 V	~~	V a	* 1	A V		
	Texture	MWHC	Moist. at	Ancuba	tion moist	urg 🗸 🎽	° <mark>∕</mark>	₩ <mark>θref</mark> ≰ /	A CONTRACTOR
<mark>Soil</mark>	class	[%] ³	0.33bar	() <mark>[%M</mark> W	/HC+Ø.33b		1 <mark>%</mark>] _	(10k (10k (10k (10k (10k (10k (10k (10k	Õ
	(USDA)	• <u>•</u>	૾૾૾ૼૺ% ૺ	,	<u></u>				
Soil 1 ⁻¹	sandy loam		24 ⁰	. ~	75	Ő	180	²⁴⁴ ب	<mark>0.818</mark>
Soil 2 ⁻¹	loamy sand		¹		້ <mark>75</mark> ຄັ້	L.	1 <u>2.0</u>	0 <mark>16⁴</mark>	<mark>0.818</mark>
Soil 3 ⁻¹	silt loam	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	°∼ <mark>26</mark>	N W	76	Ş,	19.5 Õ	<mark>264</mark>	<mark>0.818</mark>
Soil 4 ⁻¹	<mark>clay loam</mark>	K" (, <mark>26</mark> 8	, L	<mark>_75</mark>		<mark>19.5</mark>	$\frac{264}{264}$	<mark>0.818</mark>
<mark>S 261 ²</mark>	<mark>clay loam</mark>	ക്ര <mark>32</mark> റ്റ്		Q ^V	^{'0''} 40	Ś	12.8°	, 🧟 <mark>28 ³</mark>	<mark>0.578</mark>
<mark>S 263 ²</mark>	<mark>sandy loam</mark>	َ ^م َرْ 27	Q		<mark>40</mark> ©``		20.8 🔊	[*] 19 ³	<mark>0.673</mark>
1	, et al. (s	982, KCA 7.	1,221.1/02			5 G			
2	. (199	9. KCA 7.1.2	1/030	S.	j ^y 0) N	L'Y		
³ from Ta	ble 2.2 of EOC	US (2014)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		y (ſ	<i>a</i> .		
⁴ The mo	isture content a	10.33 bar was	s used as a	conservativ	e estimate.	Ő,	C		
	Â Ô Â		\$,0		~ <u>{</u>	y K	ľ		
	TO S		o ş	Û,		. Ø			
	ů,	, Q	A	N O	, , ,				
~ (Q"			\searrow			
Ĩ.	**Q	ў. "б ^у		, Or	w .C)`			
v	\sim) . Ô ^y	17 4	, Å				
	J.		, N	N O	×				
	Q	A S	. ~ ~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	Ĵ, D	× ~ ~	Û O'	, O¥	O ^y				
	~Q° U	<u> </u>		a c	ř				
	2	° ₂ 9'	A.V	Q ⁴ , Ŭ	, ,				
	¢,	\$ ~~	U k	y "					
<i>R</i>			y Â	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
<i>L</i>	d'		, U	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
. A	^	The second	~~	0^{\vee}					
	ø`.			1					
	A A	`_& «	y v						
	E J	Å .	~0						
(a s	0 5	8						
~									
d'	67 67								
, S		. Š							
	G ^a	AL.							
ĉ)`								

CA 7.1.2.1.2 Aerobic degradation of metabolites, breakdown and reaction products

Donorte	E. 2015: M 528085 01 1
Title:	KCA /.1.2.1.2/00 F, 2013, M-526963-01-1
Thie.	to EQCUS guidance
Report No ·	EnSa-15-0443
Document No ·	M-528985-01-1
Guideline(s):	Generic Guidance for Estimating Persistence and Degradation Kinetics from
Guideline(5).	Environmental Eate Studies on Pesticides in EU Registration FC Document
	Reference: None version 1.1. 2015 amending Guidance Document on Estimating
	Persistence and Degradation Kinetics from Environmental Fate Studie On Permides
	in EU Registration, Report of the FOGUS Work Group on Degradation Kinebes, EQ
	Document Reference Sanco/10058/2005 version 2. 2006
Guideline deviation(s):	none () ,
GLP/GEP:	
Report:	KCA 7.1.2.1.2/07
Title:	Phosphonic acid - Rate of degradation in four sous under derobio conditions
Report No.:	M-532341-01-1
Document No.:	M-532341-01-1
Guideline(s):	OECD Guidelines for Testing Chemicals Aerobic and Amerobic Transformation in
	Soil, Guideline 307 (Adopted 24th April 2002)
Guideline deviation(s):	none Q V V V V V V V
GLP/GEP:	yes 2 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Report:	KCA 7.1,2.1.2/08
Title:	Phosphonic Acid (H3PO3) - Kinetic Kyaluation of Aerobic Transformation in Soil
D	According to FOCUS Kinetics Guidance
Report No.:	Enga-15-0652 2
Document No.:	
Guideline(s):	General Guidance for Ustimating Persistence and Degradation Kinetics from
, Ô	Environmental Fate Studies on Pesticides in EU Registration. EC Document
L.	Reference None, version 1.1, 2019 amending Guidance Document on Estimating
õ a	Persistence and Degradation Kapetics from Environmental Fate Studies on Pesticides
	Descreption of the FOCUS work Group of Degradation Kinetics. EC
Guideline deviation	pope
CL D/CFD	
~~ . U	

For metabolite ethanol data on the rate of degradation in actobic soil can be derived from existing laboratory studies performed with the active substance fosetyl-aluminium (fosetyl-Al) and from separate dosing of ethanol to soil under the following conditions:

- four soils (20 °C, more at 75% of water capacity at 0.33 bar) after application of 1-14C-labeled active substance. In addition and for comparison, investigations were also performed with 1-14Clabeled ethanol separately dosed to two soils and incubated under the same conditions as for the

 \bigcirc

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

For metabolite phosphonic acid data on rate of degradation in aerobic soil were additionally derived from the following existing information:

- one soil incubated at 28 °C and moisture at field capacity (FC) following application of nonlabeled disodium phosphonate (KCA 7.1.2.1.2/03);
- two soils incubated under standard conditions (20 °C, moisture at 45% MWHC for the first soil and at 75% of the field capacity at 0.33 bar for the second) following application of ³³P-labelled phosphonic acid (KCA 7.1.2.1.2/04);
- one soil incubated under variable semi-outdoor conditions of temperature and moisture following application of non-labelled phosphonic acid (KCA 7 2.1.2/05).

For metabolite phosphonic acid this data requirement had been addressed under Point 7.1.12 of the Dossier submitted and evaluated for the Annex Lorclusion of fosetyl under Prective 91/414/EEG as published in the corresponding DAR of RMS France, and its Final Addendum September 2005). Consequently there is no detailed description of this easting data in this Supplementary Dossier.

The existing soil degradation data were revealuated against requirements for design and conduct of OECD Guideline 307 and, in view of latest guidance on kinetic evaluation. For studies KCA 7.1.2.1.2/03 and KCA 7.1.2.1.2/05, the design conduct and reporting was significantly different from standards defined by OEGP 307 and consequently, the data were excluded Studies KCA 7.1.2.1.2/03 and KCA 7.1.2Q.2/05 are therefore regarded as supplemental information with no consideration in environmental risk assessment

In view of the potential data gap by information on rate of in aerobic soil, genew study was initiated investigating the degradation of non-labelled phosphonic acid in four coils as summarized under KCA 7.1.2.1.2/07. \bigcirc

The kinetic evaluation of study KC 2/04 and KOCA4.2.1.2707 was performed in KCA 7.1.2.1.2/08 in order to derive values for the comparison with trigger and modelling endpoints Con . for input into envitenmental risk assessments.

For metabolite thank, the data from existing study K 7.1 21.2/02 were evaluated following latest guidance on kinetic evaluation accounted under the control of the study of th

For metabolite ethanol, the data from existing study KG 7.1 21.2/06 guidance orekinetic evaluation as reported under KCAO.1.2.1.2/06 http://www.com/article/ar

ð

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

New information: New kinetic evaluations and rate of degradation study in soil for metabolites

The existing data for the active substance data were new evaluated following actual requirements, in kinetic assessment of the rate of degradation.

Report:	KCA 7.1.2.1.2/06 ,; 2015; M-528985-01-1
Title:	Fosetyl-Al and Ethanol - Kinetic evaluation of aerobic degradation in soft according
	to FOCUS guidance
Report No.:	EnSa-15-0443
Document No.:	M-528985-01-1
Guideline(s):	Generic Guidance for Estimating Persistence and Degradation Kinetics from Structure &
	Environmental Fate Studies on Pesticides in EQ Registration FC Document
	Reference: None, version 1, 122015 amending Guidance DocumentOn Estimating
	Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides
	in EU Registration. Report of the FOCL'S Work Group on Degradation Kinetics. EC
	Document Reference Sanco/10058/2005 version 2.0 2006
Guideline deviation(s):	none A O Q Q O O O
GLP/GEP:	no \mathcal{A}^{\vee} \mathcal{A}^{\vee} \mathcal{A}^{\vee} \mathcal{A}^{\vee} \mathcal{A}^{\vee} \mathcal{A}^{\vee} \mathcal{A}^{\vee}

Executive Summary

For metabolite ethanol degradation data could be derived from tests with the active substance fosetylaluminium (fosetyl-Al) as referenced under KCA7.1.2,92/02 The study also included tests performed with ¹⁴C-labelled chanol dosed separately to soils. The data were kinetically evaluated according to actual guidance FOCUS, 2003 to derive values for the half-life and the DT₉₀ in aerobic soil for modelling and trigger endpoints Following application of 1-14C labelled foset 1-Al degradation data were available from four soils in

total. From application of 1-2 - labelled ethanol to two spils tested with the active substance another two data sets were a Cailable for the metabolite.

The kinetic evaluation followed a stepwise approach. The first step consisted of identification of best fits to measured data starting with the SFO kinetic model. Tests with the bi-phasic model FOMC did not result in better fits thus best fit half-lives for comparison against trigger endpoints were derived from use of the SFO prodel Finally values for the DT were normalised to reference conditions (20°C, \$2 moisture).

Trigger endpoints

 \mathcal{A}

Non-normalised values of the DT_{50} and the DT_{90} were derived from SFO best fits in four soils with results summarzed in Table 9.1.2.1,2-1

O

Non-normalised half-lives of fosetyl-aluminium from tests at 20 °C ranged from less than 0.01 days (0.2 hours for a sandy beam soil to 0.66 days (1.5 hours) for clay loam soil 4 while values for the DT₉₀ were from 0.03 days (0.7 hours hours) to 0.2 days(5.0 hours) in the same soils.

Table 7.1.2.1.2- 1: <	EU	trigger end	point:	Non-morn	nalised D'	T ₅₀ - and	DT90-values	for ethanol	in aerobic
Ø	soil			Ŵ.					

Rarameter K, S	Ethanol
Non-nermalised DT ₅₆ range, 20 °C (days)	0.086 - 0.176
Worst case DT ₅₀ (days)	0.176
Non-normalised BU 90, range 20 °C (days)	0.32 - 0.58
Norst case DT (days)	0.58
× N	

Modelling endpoints:

Values of the DT_{50} and DT_{90} in aerobic soil following normalization to reference conditions (20 °C, pF2 moisture) were summarized in Table 7.1.2.1.2-2.

For use as modelling endpoint, the overall geometric mean of normalised half-lives of ethanowas a calculated to 0.091 days.

Table 7.1.2.1.2- 2: Modelling input parameter: Normalised DT₅₀-values for ethanol in aerobit soil

			()		, 4
Compound	<i>Č</i> a	Ethanol	, N		Å,
Normalised (20 °C, pF2) DT ₅₀ , range (days)	A A	0.06 - 0.124	ð.	~0~ .	, O S O
Geometric mean	A.	09.091		S Č	, ¹
(a, ^y	6		· . O'	×

I. Materia and Methods

For the parent compound fosetyl-Al details on study conduct and its results have been summarised in Section CA 7.1.1.1. The degradation data were evaluated following actual kinetic gutdance (FOCUS, 2006, amended 2015] with the software KinGUI2 The measured values were taken into account as reported and thus treated as individual replicates. All sets along with their data points were veighted equally. Time zero residues for losety Al were set to the recovered amount. Following the recommended procedure for determining modelling endpoints by FOCUS all datasets were evaluated using the simple first order (SFO) kinetic model with free optimisation of parameters. FOCUS kinetic evaluation rules aimed at detiving DT₅₀ values for use as model and togger inputs and were performed according to the respective decision flowchart. The kinetic evaluations including statistical calculations were conducted with KurGUI (v2.0) using iteratively re-weighted least-square (IRLS) optimisation.

JII. Results and Discussion

Trigger endpoint determination

Following the FOCUS flowehart, the kinetic model FOMC showed no improvement over SFO, thus evaluations using DbOP were not conducted. The SFO kinetic model was to result in best fits for all soils of study KCA 7.1.2.1.1/02. No reliable kinetic endpoint could be derived for ethanol in soils of study KCA 7.1.2.1.1/02. The esulting non-normalised values for the DT_{50} and the DT_{90} derived are summarised in Table 7.1.2.1.2.2.3.

Modelling endpoint determination:

For use in environmental modelling degradation half-lives were normalised to reference conditions regarding soil moisture (00% field capacity) and temperature (20 °C). The parameters used in the laborator resulting from normalisation vere summarised in Table 7.1.2.1.2-4. The half-lives resulting from normalisation were summarised in Table 7.1.2.1.2-5.

Table 7.1.2.1.2- 3: Trigger evaluation: Non-normalised DT₅₀-values for ethanol in aerobic soils under laboratory conditions

-							
Soil	Label	Kinetic	DT ₅₀	DT 90	Chi ²	Parameter	Vispal ^{a)}
	position	model	(days)	(days)	(%)		
Soil 1	1 ¹⁴ C	SEO	0.162	0.54	9.6	k = 7.15	0,00
sandy loam, 20 °C (Study 1)	1- C	510	(3.9 h)	(12.9 h)	(9.6)	K = 7.13 &	
Soil 1	1- ¹⁴ C-	SEO	0.171	0.57	8.3	$k = 7 \hat{\Theta}$	
sandy loam, 20 °C (Study 1)	ethanol	510	(4.1 h)	(13.6 h)	(& 0) ^{c)}	K = 7.04	
Soil 2	1 ¹⁴ C	SEO	0.12 <u>3</u>	0.41	<i>4.8</i>		
loamy sand, 20 °C (Study 1)	1- C	510	(3.0 h)	(10.0 h)	$Q_{(3.0)}^{b)}$		
Soil 3	$1^{14}C$	SEO	0,476	0.58 🔎	4 .3	$\tilde{\mathbf{A}} = 6 \tilde{\mathbf{A}}$	
silt loam, 20 °C (Study 1)	1- C	510	(4.2 h)	(13.9.6)	(1 b. 1) ^{b)}	OK = 0.5Y	õ', Ø
Soil 4	1^{14} C	SEO Ø	@0.086	0,29 [°]	20.0 Q		Ŵ
clay loam, 20 °C (Study 1)	1- C	510	(2.1 h)	(760 h) 🍾	≫(11.2) ^{b)}	K 10.50%	
Soil 4	1- ¹⁴ C-	SEA	0,695	~0.32 °	15.5	$\sqrt[9]{1}$ $k = 12$	
clay loam, 20° C (Study 1)	ethanol	510	(2.3 h) ((7.6 b)	(\$.0) ^{c)}	к – 12.1	
Study 1: KCA 7.1.1.1/02, KCA 7.1.2	2.1.1/02 and	KGA 7.1,2	@ <u>?/0</u> 2		4 <i>Q</i>		, O

Study 2: KCA 7.1.1.1/03, KCA 7.1.2.1.1/03 and KCA 74.271.2/08 Study 2: KCA 7.1.2.1.1/03, KCA 7.1.2.1.1/03 and KCA 74.271.2/08 Study 2: KCA 7.1.2.1.1/03, KCA 7.1.2.1.1/03 and KCA 74.271.2/08 Study 2: KCA 74.271.271.271.271.271.271.271.271.271.271		R
^{a)} Visual assessment: $+ = \text{good}, O = \text{moderate}, $	×	je j
^{b)} For system in combined evaluation with active substance	Ő	U
c) For system in combined evaluation with volatile fraction and a system in combined evaluation with volatile fraction	Ş. Q	
	1	
Table 7.1.2.1.2-4: Correction factors for soil temperature and moisture content	~	
	0	

Soil	🖉 Label ^y	Temperature	Mncubation.	₽ ₽₽	Correction
	🔍 position 🦼	» <u>(</u> °С) ~ «	moisture	møisture	factor
			(%w/w)∕`	% w/w)	
Soil 1 sandy loam 20 °C (Sordy 1)	~~ ¹⁻¹⁴	\$ 26C		1 9	0.693
Soil 1	129C-~~		â11.3~	19	0.693
sandy loam, 20 °C (Study I)	<i>ethanol</i>				
I Soil 2 loamy sand, 20 °C (Stordy 1)		\$ 20 ⁰		14	0.600
Soil 3 silt loam 20 °C (Study 10	¢r ⁴ C 0	20 <u>5</u>	~15.8	26	0.704
Soil 4 clay loam, 20 °C (Steely 1)	× 1- ¹⁴	2 2 0 2	18.8	28	0.755
Soil 4 clay loam. 20 °C (Study 9)	KJ ⁴ C- ≪ ∕ethanol	S ⁷ 20 S	18.8	28	0.755
Study 1: KCA (1.1.1/02) KCA (4.2.1, Study 2: KCA (7.1.1.1/03), KCA (4.2.1)	1 62 and K A 7. 03 and C A 7. 03 and C A 7. 04 54 04 54 040 04 54 04 54 04 54 04 54 04 54 04 54 04 54 04 54 04 54 04 54 04 04 04 04 04 04 04 04 04 0	Υα.1.2/02 22.1.2/09			

Soil	Kinetic model	DT50 (days)	DT90 (days)	Non- normalised DT50 estimate for modelling (days)	Normalised DT ₅₀ [20°C and pF2] (days)
Soil 1 sandy loam, 20 °C (Study 1)	SFO	0.162 (3.9 h)	0.54 (12.9 h)	Q.162 (3.9 h)	0.142, (2,79)
Soil 1 sandy loam, 20 °C (Study 1)	SFO	0.171 (4.1 h)	© .57 (13.6 h)	0.171 (4.1 h)	© 2.9 hy
Soil 2 loamy sand, 20 °C (Study 1)	SFO	0.123 (3.0 h)	0.41 (10.0 h) "	0.123 (3.0 h)	
Soil 3 silt loam, 20 °C (Study 1)	SFO	0.176 [°] (4.2 [°] h)	0.58	0.170 (42 h)	0.124 y (3.0 h)
Soil 4 clay loam, 20 °C (Study 1)	SFO	(2.1 b)	0,29 (7,0 h)	2.1 h)	[→] 0.065 <i>L</i> (140 h) ∘
Soil 4 clay loam, 20 °C (Study 1)	SFO	0.0905 (2.3 h) ^	₩0.32 [№] (7.6)	0.095 (2.9 h) «	(1.7 b)
Geometric mean					(2.2 hours)

Table 7.1.2.1.2- 5: Modelling endpoints: Normalised (20 °C and pF2) DT50 values for ethanol

Study 1: KCA 7.1.1.1/02, KCA 7.1.2.1.1/9 and K A 7.1.2.7.2/02 Study 2: KCA 7.1.1.1/03, KCA 7.1.2.1.1 3 and KCA 7.2.2.1.2/06

No. MI. Conclusion

The kinetic evaluation according to FOCUS sinetic guidance resulted in the use of the monophasic model SFO for all data sets to derive reliable values for the half-lives and the DT₉₀ of metabolite ethanol from four soils in total. ethanol from four soils in total. For comparison with <u>EU4riggerCondponts</u> non-normalised Galf-lives of ethanol from tests at 20 °C

ranged from less than 0.086 days (2.1 hours) for they loan soil 4 to 0.76 days (4.2 hours) for silt loam soil 3 while values for the DT5 were from 0.29 days (7.0 frours) to 0.58 days (13.9 hours) in the Ô Ľ, same soils.

For use as modelling input parameters in environmental risk assessments the evaluation resulted in a

The values derived from laboratory tests are regarded as suitable and reliable for use in environmental exposure assessments.

Bayer – Crop Science Division

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

-				
Report:	KCA 7.1.2.1.2/07 ,; 2015; M-532341	-01-1		
Title:	Phosphonic acid - Rate of degradation in four soil	ls under aerobic o	conditions	
Report No.:	M-532341-01-1			~
Document No.:	M-532341-01-1			Ô.
Guideline(s):	OECD Guidelines for Testing Chemicals: Aerobic	c and Anaerobic	Transformation in 🔗	ř
	Soil, Guideline 307 (Adopted 24th April 2002)	ð		
Guideline deviation(s):	none	S	4.0	
GLP/GEP:	yes	.0		
	-	A	0° 8° 19	

Executive Summary

The degradation rate of metabolite phosphonic acid was investigated on the four solution

(silt loam), (clay loam), (sandy loam) and (sandy loam) under aerobic conditions at 20 °C and moisture of 50% of the maximum water holding capacity in the dark. The study was performed with non-fabelled test material for a maximum incubation period of 117 days. The nominal application rate was 15 mg phosphonic acid/kg soil assuming a maximum occurrence of 100% AR from the active substance foset A-aluminium to resultin a single treatment rate in the field \bigcirc of 11.25 kg a.s./ha. Values for phosphonic acid recovered from soft were shown to decrease from 99 % (day zero) to 49.6% from \$3.5 to 7.2% in soft (day 117) in soil from 96.0 66.4% in soil and from 93.6 to 2.0% in soil Mean values of recoveries from fresh spiked soil samples (concurrent recoveries) for phosphonic acid

), 78:8% (). 99.5% (and 98.7% (were 102.3% (

). Processing during work-up of samples till analysis had therefore no significant influence on the detection of phosphonic acrd in soil.

The kinetic evaluation applying the SFO model resulted in values for the DT and DT 90 of phosphonic acid in aerobic soil as summarised in Table

Soil 🔊		Kinetic 📎	DT DT	DTsr	Chi ² error
		model	[days] 👡	(days)	[%]
		SFO N	[°] ر Õ114 √	<u></u> 980	3.34
		SFOO S	ر» 38. %	A″ 129	7.17
	N A O			8	
		SFO ~	S219 S	726	5.75
		y SFO O	× 27.5 °°	91.4	11.3
4					
, A	i a a a a a a a a a a a a a a a a a a a	O N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
L.		🗸 I.Mat	ersial and Me	ethods	
A. Materials					
1. Test Materia	l: Phospi	nopic acid (1	BCS-AT2787	8, AE 054009	9)
S	A Chemi	cal name (II	JPAC): Phos	phonic acid	
O.	Appea	rance@ v	white, sticky	crystals	
, S	Batch:	[∼] ♥ ()4911DN		
	D Quemi	cal purity: 9	98.7%		
	CAS:	1	13598-36-2		
	O ^Y SY				
2 Soils:					

DIS and DT's vantes of phosphonic aged in accobic soil Table 7.1.2.1.2

 \bigcirc

The test soils originated from the EU and reflected a range of physico-chemical characteristics as summarized in Table 7.1.2.1.2-7. The soils were collected fresh from the field and passed through a 2 mm sieve.

Table 7.1.2.1.2- 7:	Characteristics	of test soils

		Soi		
Geographic location				
(city / state / country)				
	/			
	Germany	Germany	Germany	
GPS Coordinates				
			Q O	
Textural class ^A	silt loam	clay loam	sandy lown	Sandyseam
Sand (%) ^A	25	29	\$ 52 ⁵	77
Silt $(\%)^A$	61 0	39		¢15 . °
$\frac{\operatorname{Clay}\left(\%\right)^{\mathrm{A}}}{\operatorname{Clay}\left(\%\right)^{\mathrm{A}}}$	14 %	6° 32° ×	×916 D	× 8 ×
pH (water)	6.40	7.3	~~ 5.3 ~~	645
(0.01 M CaCl ₂)	6 .0	Ø 7.2 Q	° 5 <u>0</u> (6 .1
(0.01 M KCl)	×5.8 ~~	<u> </u>	Â. Â.6 ,	\$5.9
Organic matter [%] ^B	2.8 ×	2× . 44 64	×2.8 ×	& 2.14°
Organic carbon [%]		4.3	0 1.6	1.2
Microbial biomass				
(mg C / 100 g soil), - DAT-0	Q″ à 450	> 12,50° C	\$37 8	s‱ 382
- DAT-117 🥡	497 6 * ~	892	° 436 °	<u>405</u>
Cation exchange capacity	A073	×1750×	\$ 9.1	0 [×] 71
[meq/100 g]	K C ^{y.,} S		<u>y v</u>	/.1
Water holding capacity at zero bar		00%6 X	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10.0
$(pF 0) [\%]^{11}$			\$ ^{903.1}	49.9
Water holding capacity				
at 0.33 bar (pF 2.5) (%)	Q7.0 S	32.9	D` 2₩.2	11.9
at 1/10 bar (pF 2) ()	30.8	<u> </u>	<i>2</i> 1.7	12.5
Bulk density (disturbed) (g/cm ³) 4/2	141	້ 🔊 ອີ້.96 🖉	\$ 1.11	1.25
			~	

USDA@lassification А

% organic matter % organic carbon x 1. В

B. Study design

1. Experimental conditions:

Samples of 100 g dry weight of soil each were filled into grass incubation flasks with each sample to receive 1.5 mg test substance kg soil, a dose representing a field rate of 11.25 kg test substance/ha. Following application the complex were attached to 'flow through' systems and incubated at 20 ± 1 °C and a moisture content of 90% PMW in the darl for 117 days in maximum. In addition, untreated soil samples were inculated under the same conditions for determination of soil microbial activity.

2. Sampling:

Duplicate samples were removed for work-up after 0, 3, 7, 14, 30, 61, 90 and 117 days of incubation. The complete samples were an inectately processed by extraction. Samples for determination of soil microbial biomass were investigated after 0 and 117 days of incubation.

¹¹ Equivalent to the Maximum Water Holding Capacity (MWHC)

3. Analytical procedures:

The entire soil sample in each test vessel was extracted four times successively with aqueous ammonium hydrogencarbonate buffer solution of pH 9.2 at ambient temperature for 30 min. Ambient extracts were pooled and sub-samples concentrated to dryness (i.e. lyophilized). Residues were re- & constituted in 0.1 M aqueous tartaric acid solution of pH 2.0 assisted by ultra-sonication. And sis of soil extracts from incubated samples and from untreated soil samples freshly fortified with test substance was performed by HPLC coupled with MS/MS detection technique?

A. Verification of extraction procedures

Mean values of recoveries of phosphonic acid in soil extracts at day zero ranged from 93 & to 994% (see Table 7.1.2. 2- 8 Table 7.1.2 2- 10 and for soils and Table 7.1.2.1.2-11). A quantitative recovery was deponstrated underlining the spitability of the extraction method. For soil the mean recovery at day zero was 65.5% presumably owing to the higher calcareous content and an overall lower application of test substance. In addition, lower recoveries at day zero were also observed in a previous study (ICA 20.2.12/04) therefore demonstrating the potential of phosphonic acid to form, in contact, with soil, insoluble residues spontaneously. This assumption is confirmed by prean values for concurrent recoveries to be 102.3% (), 78.8% (II), 9\$\$5% () and 98.7% (thus indicating no major influence of the sail on the detection of hosphonic acid.

B. Decline of residues of phosphonic acid in soil

Residual concertizations of phosphonic acid in soil in verms of percentages of amount applied recovered are summarized in Table 0.1.2. 2-8 to Table 0.1.2. 2-11 Values for the concentration of phosphonic and showed a decline from 99.4% (soil

) and 23.6% of applied (63.5% ()»96.0%) after zero hours to 49.6, 7.2, 66, Wand 2.0% after 117 days of neubation, respectively.

Table 7.1.2.1.2- 8.	Degradation	phospho	onic acid in	soil		under aerobic
_Ø	conditions?	Č.	Ô, Ô	, d	у ^х	

Component		J A			Samp	oling int	erval (da	ays)		
		Sample		^م رح کر	7	14	30	61	90	117
Phosphonic acid		A Q	1015	100.9	92.4	85.1	80.9	68.6	57.5	54.8
Ø	,````		94.4	101.0	95.3	80.2	78.5	63.8	58.4	44.5
6 ⁴	A	Mean	99.4	100.9	93.9	82.6	79.7	66.2	58.0	49.6
Å	\$ ⁷ .6 ⁸	<u></u>	2.9	0.1	20.2	3.4	1.7	3.4	0.7	7.3

Values given as percentages of initially applied test item

SD = standard deviation

Table 7 1 2 1 2_ 9.	Degradation of	nhasnhanic acid in sail
1 abie 7.1.2.1.2-9	Degradation of	phosphonic actu in son

under aerobic conditions

under aerobic conditions

Component			Sampling interval (days)						ð
	Sample	0	3	7	14	30 渗	61	90 117	Đ,
Phosphonic acid	А	64.1	57.8	48.2	36.6	31.2	226	13,4 4,6	>
	В	62.9	54.3	48.8	44.3	32.9	24.2	\$73.2 7.2	ĉa
	Mean	63.5	56.0	48.5	40.4	\$32.1	23.4	13.2 7.2	K
	SD	0.9	2.5 «	0.4	5.4 Ĉ	1.2	10	30	`{~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Values given as percentages of initially applied test item SD = standard deviation;

Table 7.1.2.1.2- 10: Degradation of phosphonic acid in soif

			× 1	\sim		¥.	0	
Component		,	Sama Sama	oling inte	erval (da	iys) O	A A	ý°
	Sample 🔧		7	1 4 [*]	°~ 30	61	ر 90 _م	M17
Phosphonic acid	AS Q	7.8 87.1	90.4	80.8	74.4	62.0	65.6	64.9
	A CO	4.1 84.5	89.5	78.0	7 2 .4	65.9	69 .0	67.9
	Mean 9	6.0 84.3	20.0	79.4	°€ ^{3.9} ⊗	064.0	67.3	66.4
Â.	ST N	2.6 4.0	% 0.7	0 ⁵⁴ 2.0 0	0.7	2.70	2.4	2.1

Values given as percentages of initially applied test item SD = standard deviation;

Table 7.1.2.1.2- 11: Degradation of phosphenic acid in so under aerobic conditions

Component		J Sam	pling int	rval (da	ays)		
	Sample 0	3 7 70	140 ×	30	61	90	117
Phosphomic acid	× A 7 102.0	82.7	\$5.7	51.7	12.7	3.9	2.8
	B [®] 85.1	Õ79.6 ¥83.7	₽ [°] 78.6	45.7	14.9	2.6	1.2
	Mean 93.6	81 🖌 86.0	82.2	48.7	13.8	3.3	2.0
A A	SD 2 120	2.2 0.0	5.0	4.2	1.6	0.9	1.1

Values given as percentages of pritia SD = standard Qeviation;

C. Degradation kinetics

The test was kinetically evaluated following application of simple first order (SFO) to measured data to result in values as provided in Vable Q1.2.122 12. to result in values as provided in 12 12.

Table 7.1.2.1 D 12: Half-lives and DY90-values of phoshonic acid in aerobic soil according to SFO kinetics

ſ	Soil 🔗 🔗 (Rinetic Model	DT50	DT90	Chi ² error	r ²
			[days]	[days]	[%]	
		SFO SFO	114	380	3.34	0.9497
	O,	SFO	38.9	129	7.17	0.9628
		SFO	219	726	5.75	0.7240
		SFO	27.5	91.4	11.3	0.9551

The kinetic evaluation (soil), 219	according to SFO resulted in half-lives of 114 days (soil 1), 38.9 days 9 days (soil 1) and 27.5 days (soil 1). III. Conclusions
Residues of phosphoni from 27.5 to 219 days from 91.4 to 726 days.	c acid in aerobic soil were found to degrade with SFO fit half-lives ranging \mathcal{F} under the conditions of the laboratory. The corresponding DT_{90} -value ranged
Report: Title:	KCA 7.1.2.1.2/08 =; 2015 M-531799-01 V Phosphonic Acid (H3PO3) - Kinetic Evaluation of Aerobic Transformation in Soft
Report No.: Document No.: Guideline(s):	EnSa-15-0632 M-531799-01-1 Generic Guidance for Estimating Persistence and Degradation Kinetics from
(-).	Environmental Fate Studies on Pesticides in EU Registration. FC Document Reference: None, version 1.1, 2015 amending Fuidance Document on Estimating Persistence and Degradation Finetic from Environmental Fate Studies on Pesticides in EU Registration. Report of the FOCUS Work Group on Degradation Kinetics EC
Guideline deviation(s): GLP/GEP:	Document Reference Sameo/10038/2005 version 2.0, 2006

Executive Summary

For metabolite phosphonic acid degradation data could be derived from tests with the metabolite separately dosed to soil as referenced order KCA 7.P.2.1.2/04 and KCA 7.1.2, (22/07). The studies included tests performed with ³³P-labelled, (KCA 7.1.2, 2/04) or non-labelled phosphonic acid (KCA 7.1.2.1.2/07) dosed separately to soil. The data were kinetically evaluated according to actual guidance [FOCUS, 2915] to derive values for the half-file and the D6₅₀ in aerobic soil for modelling and trigger endpoints.

The kinetic evaluation resulted in the identification of the SFO kinetic model as the best fits to measured data. Tests with the bi-phasic model FOMC did not result in significantly better fits associated with high standard errors for the parameters α and β . Best fit half-lives for comparison against trigger endpoints were derived from use of the SFO model. For deriving a modelling endpoint for soil **and the back-calculation** from its slow phase to be appropriate for modelling endpoint determination. Finally, values for the DT_{50} were normalised to reference conditions (20 °C, pF2 moisture).

Trigger endpoints:

Non-normalised values of the DT and the DT were derived from SFO best fits in six soils with results summarized in Table 7.1.2-10

Non-normalised half-lives of phosphonic acid from tests at 20 °C ranged from 27.5 days for sandy loam soil while values for the DT_{90} were from 94.4 days to 726 days in the same soils.

Table 7.7.2.1.2 73: EL trigger endpoint: Non-normalised DT₅₀- and DT₉₀-values for phosphonic acid in aerobic soil

Bayer – Crop Science Division

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

Non-normalised DT ₅₀ , range, 20°C (days) $27.5 - 219$	
	Non-normalised DT ₅₀ , range, 20°C (days)
Worst case DT_{50} (days) 219	Worst case DT ₅₀ (days)
Non-normalised DT_{90} , range 20°C (days) 91.4 – 726	Non-normalised DT ₉₀ , range 20°C (days)
Worst case DT ₉₀ (days) 726	Worst case DT ₉₀ (days)

Modelling endpoints:

Values of the DT_{50} and DT_{90} in aerobic soil following normalization to reference conditions (20 °C, pF2 moisture) were summarized in Table 7.1.2.1.2-14.

For use as modelling endpoint, the overall geometric mean of normalised half-lives of phosphonic acid was calculated to 83.8 days.

Table 7.1.2.1.2- 14: Modelling input parameter: Normalised DT₅₀-values for phosphonic acid in aerobic

Son	<i>₿</i> ₽			
Compound		Phosp®onic aci	d Õ a	
Normalised (20°C, pF2) DT ₅₀ , range (days)		Z75 - 264		7 ~ .04
Geometric mean	, E	83.8	õ V	
	1			

I. Material and Methods

For the metabolite phosphonic acid details on study conduct and its osults have been summarised under KCA 7.1.2.1.2/04 and KCA 7.1.2.1.2/07. The degradation data were evaluated following actual kinetic guidance [FOCUS, 2006, amended 2015] with the software KinGU42. The measured values were taken into account as reported and thus treated as individual replicates. All sets along with their data points were weighted equally. Time zero restructs for phosphonic acid were set to the recovered amount. Following the recommended procedure for determining modelling endpoints by FOCUS, all datasets were evaluated using the simple first order (SFO) kinetic model with free optimisation of parameters. FOCUS kinetic evaluation rules aimed at deriving DT₅₀ alues for use as model and trigger inputs and were performed according to the respective decision flowchart. The kinetic evaluations including statistical calculations were conducted with KinGUU (v2.0) using iteratively reweighted least-square (IRLS) optimisation.

II. Results and Discussion

Trigger endpoint determination.

Following the FOCOS flowchart, the kinetic model FOMC showed to improvement over SFO, thus further evaluations were not conducted for the soils $\frac{97}{24}$ and $\frac{97}{25}$ of study KCA 7.1.2.1.1/04 and for soils $\frac{97}{24}$ and $\frac{97}{25}$ of study KCA 7.1.2.1.1/07. For soil $\frac{97}{25}$, the four kinetic models SEO, FOMC, DFOP and HS (Hockey Stick) were tested to result in the SFO model as best fit for brigger endpoint evaluation. For modelling endpoints and following FOCUS guidance the HS model to derive values of the DT₅₀. The resulting non-normalised values for the DT₅₀ and the DT₉₀ Grived are summarized in Table 7.1.2.1.2-15.

Modelling endpoint determination:

For use in environmental modelling degradation half-lives were normalised to reference conditions regarding soil moisture (100% field capacity) and temperature (20 °C). The parameters used in the laboratory tests and the respective correction factors calculated were summarised in Table 7.1.2.1.2-16. The half-lives resulting from normalisation were summarised in Table 7.1.2.1.2-17.

16. The half-lives resulting from normalisation were summarised in Table 7.1.2.1.2-17.

Table 7.1.2.1.2- 15: Trigger evaluation: Non-normalised DT₅₀-values for phosphonic acid in aerobic soils under laboratory conditions

	•						a s.
Soil	Label	Model	DT50	DT90	Chi ²	Parameter	Vispal ^{a)}
	position		(days)	(days)	(%)		
Soil 97/24 loam, 20 °C (Study 1)	³³ P	SFO	190	632	9.21	k = 0.00365	
Soil 97/25 sandy loam, 20 °C (Study 1)	³³ P-	SFO	130	432	6.88	k = \$ 0.00533	
Soil silt loam, 20 °C (Study 2)	-	SFO	114	379	@3.35	0,00607\$ €	L L L
Soil clay loam, 20 °C (Study 2)	-	SFO	38.9	129	7,17	k =Q 0.0≵783	
Soil såndy loam, 20 °C (Study 2)	-	SFO 🖉	219	<i>j</i> 26 ×	5.75	$ \widehat{\mathbf{Q}} = \widehat{\mathbf{Q}} \\ \widehat{\mathbf{Q}} \cdot 0031 \xrightarrow{\mathcal{P}} $	
Soil sandy loam, 20 °C (Study 2)	-	SFO	~2 1 .5	e 91.40	ð91.3 (k = 0.03519	↓ + °
Study 1: KCA 7.1.2.1.2/04 Study 2: KCA 7.1.2.1.2/07		$\sqrt[n]{\sqrt{2}}$	y N	à à	A J		

^{a)} Visual assessment: += good, O = moderate

Soil	° ≹∕abel	Temperature	Incubation	[©] pF2 [×]	Correction
К) ^х . Ф	¢ position	é (°G,	≪ moisture (‰∳/w)	o moisture (‰w/w)	factor
Soil 97/24 🔗 1 loam, 20 °C (Study 1) 🔬 🔗	3 ³³ P 5		مر لا 14.0 لا 14.0	<u>5</u> 25	0.666
Soil 97/25 sandy loam, 20 °C (Study 14)				۶ 19 ⁽	0.693
Soil			27.6	31	1.000
Soil cláy loans 20 °C (Studý 2)		Y B	39.8	36	1.000
Soil com, 20 °C (Stady 2)		₹ 20 °C	25.2	22	1.000
Soil sandy loam, 20 °C Study 2)			20.0	13	1.000
Study 1: KCA 7.12.12/040 - 55 Study 2: KCA 7.02.1.2/6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -					

Table 7.1.2.1.2-17:	Modelling endpoint	s: Normalised (20	°C and pF2)) DT50 values for 1	phosphonic acid

Soil	Kinetics	DT50 (days)	DT90 (days)	Non- normalised DT50 estimate for modelling (days)	Normalised DT ₅₀ [20°C and pF2] (days)
Soil 97/24 loam, 20 °C (Study 1)	SFO	190	632	190	0 ¹²⁷ 0 ⁹
Soil 97/25 sandy loam, 20 °C (Study 1)	SFO	130	₹ ₹ 432	©130	
Soil silt loam, 20 °C (Study 2)	SFO	114	379		
Soil clay loam, 20 °C (Study 2)	SFO	38	129	× 238.9 °	0 \$8 .9 \$
Soil sandy loam, 20 °C (Study 2)	HS*	0 264	\$76 \$76		264
Soil sandy loam, 20 °C (Study 2)	SFO	275	× 91.4	276 2	27.5 T
Geometric mean		K K	ĨŊ ≰		§ 83.80
Study 1: KCA 7.1.2.1.2/04	Ô¥ (S, S	NY W		

Study 2: KCA 7.1.2.1.2/07

* Derived from slow phase of Hockey Stick kingic mode

The kinetic evaluation according to FOCUS kpretic guidance resulted reliable values for the half-lives and the DT₉₀ of metabolite phosphonic acid from so soils in totak

Conclusion

The values derived from laboratory tests are regarded as suitable and reliable for use in environmental exposure assessments.

Request from the RMS:

Concerning the kinetic assessment by (20,5, KCA 7.1.2.1.2/08), some observations can be made:

Concerning the second second and second soils, since both SFO and FOMC are not visually acceptable, a DFOP kinetic fitting should have been performed to verify whether such kinetic would be more suitable to ceternine trigger endpoints.

- Concerning the **second state of the second solution** solution is visually more acceptable than SFO kinetic, a **SFOP** kinetic fitting should have been performed to verify whether such kinetic would be suitable to determine trigger andpoints.

- Concerning the **second solution** soil, although the HS and SFO kinetics are statistically acceptable, they are not visually acceptable. In order to take into account the potential of phosphonic acid for accumulation, DFOP kinetic should be preferred to determine trigger and modelling endpoints. In the table 3 of the study report, θ values for the soils from **second** (2015, KCA 7.1.2.1.2/07) seem to

In the table 3 of the study report, θ values for the soils from (2015, KCA 7.1.2.1.2/07) seem to be erroneous. A correction should be performed.

Response from BCS:

<u>so</u> i	<u>i1</u>				
For	soil, both SFO and	FOMC fits are visu	ally acceptable (no systematic dev	viations) and
the chi-square err	ors are low. There	fore, no further fit	s are required ad	cording to FOCU	US Kmetics
guidance. For the	convenience of the	RMS we have carr	ied out all four n	nodel 🔯s. It can b	<mark>e seen from</mark>
the plot that the di	fference between the	ne models is minor.	As SFO is accept	table, it should be	e chosen fór
modelling endpoir	nts according to FO	CUS Kinetics (2014	4).	A	
However, DFOP r	nodel indeed fits the	ne data better. Parai	meter uncertaintr	s are not relevan	t for trigger
endpoints, becaus	e no extrapolation	is involved. There	tore, DFOP can	be used to detern	mine trigger
endpoints. The D	Γ_{50} and DT_{90} derive	ed from DFOP wei	re listed below, in	Table I Cogether	swith those
calculated from SI	<u>'</u>O.	.1 ^{0^v}	Â.	·	
Table 1.	trigg	er endpoints based o	n DEORin corres	rison with the end	lints
	derived from SFO.				
Madal	-2 (0()	DT 0 .		8 8 °	4
NIQUEI SEO	$\frac{\chi^2 \text{ error }(\%)}{7.17}$				
SFU DEOD	/.1/ 2.27		$\frac{129.1}{1420}$		
DFOF	<u>3.37</u>				<u>s</u>
	soil	S 4 . F .	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Ča –
For the U2kä° (ex	び び す z ID・ h 詞の s	oil SEO fit is accer	table both visual	lly the systematic	deviations
and statistically (v	erv low chi souare	error) Add 4 model		to get to demo	onstrate that
the difference bet	ween the models is	minor SFO shoul	d be used for m	delling endpoints	s but DFOP
model indeed fits	the data better M	not considering the	parameter unce	ertainties and can	be used to
determine trigger	endpoints. The D	Formed DOF deriv	ed from DEOP	were listed below	in Table 2
together with thos	se from SFQ It sh	ould be noted that	Do degived fro	m DFOP model	is based on
extrapolation.	5 6 4		x o x	L.Y	
			, O	N Mn	
Č			3° 0° ~	Ş ^a	
				9	
, Os	à v 🔊		× o v		
°~?	L L'	A D' 'U		dol	
Ê9	80-27	S. 1 08		SFO	
**	S S S	0 × × ×	. j =	DFOP	
\$		N ON		HS	
Ű	Q 60 - Q		S.		
			· · ·		
\$ {	The second				
, and the second	6 S	O X X	•		
		25 50 50 7/5	100 125		
L.					
Table 2:		: frigger endp	oints based on DF	OP in comparison	<mark>ı with the</mark>
- S	endpoints derived.	from SEO.		1	
Model &	2 eres (%)	Dol 50	DTop		
SFO 0	× 3 348 ~	114 3	379 6		
DFOP S	2,604	114.5	440.6	—	
		<u></u>]	
L ^Y L					
Ĭ _r ôř					
\cup					

 \bigcirc

Study summaries of existing studies and publications on rate of aerobic degradation in soil for *metabolite phosphonic acid:*

Ø) Following another request by the RMS, this document was updated by inclusion of summaries for the existing data, i.e. studies and publications submitted and evaluated during the process of ownex for inclusion of fosetyl under Directive 91/414/EEC and being still of relevance for the EU approval

 Report:
 KCA 7.1.2.1.2/04
 ; 999; M-184316-01.4

 Title
 Aerobic metabolism of (33P)-phoephorous acid of wo soils

 Report No.:
 R011658

 Document No:
 M-184316-01-1

 Guideline deviation(s):
 USEPA (=EPA): N, 163-1/0982)

 Guideline deviation(s):
 none

 Yes
 Yes

 Executive Summary
 The biotransformation of phosphonate, applied in the form of the free [P³P]-phosphoric acid, was investigated under aerobic conditions of the laboratory in two soils UK Clay loam and US sandy loam

 investigated under aerobic conditions of the laboratory in two soils UK clay loam and US sandy loam in the dark at 20 °C and soil mousture at 75% of the field capacity at 0.33 bat for 117 days in s, O maximum. The nominal test concentration was 15 mg phosphonic acid kg soid was based on an application rate of maximum.

Ô 15 kg a.s./ha in the field. Ş ¢, L. K, Ô 1 P

Mean material balances of two replicates corrected for isotope half-life of 25.04 days ranged from 90.8 to 107.2% AR for the UK claydoam and from 92,6 to 98,0% AR for the US sandy loam soil. Exceptions were observed for samples of UK Fray loam (86.9% AR) and for the US sandy loam (88.4% AR) each by day 3 after application.

Volatile radio vivity was not collected owing to the use of 3P as radioisotope resulting in the conclusion that no formation of volatile components was anticipated,

Ś

Total extractable radioactivity decreased from 62.2% AR by day zero to 31.3% AR after 117 days of incubation for the UK stay loom and from 77.2% AR by day zero to 46.6% AR after 117 days for the US sandy loam. Non-extractable residues (NER) ranged from 34.4% AR by day zero to peak at 74.2% AR by day and to declare to 68.5% AR by day 117 for the UK clay loam. For the US sandy loam NER were 9.3% AR by day zero to increase to 49.4% AR after 117 days of incubation. Õ Ô n

õ Values for extractable radioactivity allocated to phosphonate decreased from 62.1% AR by day zero to \bigcirc 25.7% AR after 117 days of increasing for the UK day loam and from 77.2 to 30.9% AR for the US sandy loan within the same incubation period.

Degradation rates of phosphonic acid in aerobic soil were calculated on the basis of the simple first order kinetic model using Excel (linear regression analysis), the software KIM and the Timme-Frehse 1 approach. Ş Ì

Owing to the character of data to show a fast decline of phosphonic acid in a first phase followed by slower decline at dater sampling intervals, this resulted in non-acceptable fits when data of all sampling intervals were used as input.

Fits were acceptable when take sampling intervals were use as input data.

Based on late sampling intervals the calculated half-lives were 108.5 to 116.8 days for the UK clay loam and 224.7 to 136.5 days for the US sandy loam.
I. MATERIALS AND METHODS

<mark>A.</mark> N	IATERIALS					L' D
<mark>1. Т</mark>	<mark>'est Material</mark>					
[³³ P]	-phosphonic acid				à jê	, 6
Sam	ole ID:	PO 10998 A			Ö ×	
Spec	ific Activity:	<mark>100 mCi/mmole</mark>		4	y . Ö ^y	8 . Q
Radi	ochemical Purity:	<mark>> 98%</mark>	Č V	Ű,		Ĩ, ŜĨ, O
Non-r	adiolabelled phosph	orous acid (Batch 1	0007089 chemica	l purity of 9	8%) was used to di	ilute the O
radiol	abelled compound.		A ^{O'}	Q. s.º		
• 7				× . Ű	Q' O' Ø	Ŵ.
$\frac{2.1}{\text{The }\alpha}$	est Solls	to < 2 mm. The nh	King aboriales	oro Aristick	Wara and in	- Coblo
7 1 2	1 2- 18	$10 \leq 2$ mm. The phy	Sico-cileanical en			
1.1.2.	1.2 10.			Q A		Î Î
Tabla	7 1 2 1 2 18. Physica	o chamical prepartia	s of test goils			A C
	7.1.2.1.2- 10. 1 hysic	o-chemical propertie				
	Parameter			<u> Soil</u>	<u>S S 9</u>	_
	Soil Designation	<u></u>	<mark>ه 97/243</mark>	, o h	S <mark>97725°</mark> 😽	
	Geographic Location			Q ⁴ O	20 K	
	City	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		€. S.	Jola, Wisconsin	
	Country	\$ 0 [×] 5 [×]	Ű <mark>UK</mark>		Ž U 8A	
	Textural classification	(USDA)	loam		Sandy loam	
	Sand [63 µm –	2 mapri] (%)	24 24	Ő Å	<u>کې 57</u>	
	Silt [2, 63 μn	<mark>h (%)</mark>	^م ن من <mark>52</mark>		[™] <mark>36</mark>	
	<u>Clay</u> β ³² μm	<mark>1%)</mark> (* * * ~ ~	y ₂₄ 9	<u> </u>	<mark>7</mark>	
_	pH (water)	``````````````````````````````````	<u>7.3</u>	<u>s</u> r P	<mark>6.0</mark>	
_	pH (1 MKCl)	× a ·	<u>, 9 , 9 7.2</u> 0		4.8	
_	pH (0.01 M CaCl ₂)		0° <mark>6.90</mark>	~~~	5.0	
-	Organic Carbon (%)				1.3	
-	Organic Matter ⁴ (%)		3.61	/	<u>2.24</u>	_
-	Vation Exchange Cap	acity (Med/100 g)			4.4	
⊢	Water Holding Capac				47.3	_
F	water trong Capac	105 W 0.33 (%)	$\frac{23.1}{5.0}$		14.0 277	_
┝	Biomass, initial (µg C				<u>3//</u>	_
	Biognass, study end (hg (Qg soil)	<u>199</u>		201	
L.	% organic matter =	Corganic carbon x 1.	1119119 723			

B. STUDY DE SIG

1 of

1. Experimental Conditions The tests sere performed in flow through systems consisting of glass flasks (250 mL) each containing 100 g of soil. No traps for youtile radioactivity were attached due to the non-volatile character of the test item and as transformation products. Soil moisture during incubation was maintained by passing hundified air through the test samples. , S

The tests were performed at a concentration of 15 mg phosphonic acid/kg soil, based on a rate of 15 kg a.s./ha in the field. The radiolabelled material (3 mg) was diluted with unlabelled material (87 mg) and dissolved in deionised water to result in a concentration of 1.5 mg/0.5 mL.

The test substance was applied as aqueous solution drop wise onto the soil surface of soil samples. Soil samples were adjusted to 45% of water holding capacity at zero bar (pF 0) for the UK clay loam and to 75% of the water holding capacity at 1/3 bar for the US loamy sand. The samples we're incubated at 20 ± 1 °C under aerobic conditions in the dark for 117 days in maximum.

2. **Sampling**

Duplicate samples were removed for analysis following 0, 3, 7, 14, 28, %6, 87 and 11 incubation. Microbial biomass of soil was determined at start and at the end of the study

3. Analytical Procedures Volatile radioactivity was not collected since no volatile transformation products were articipated

Soil samples were extracted four times successively with aqueous animonia buffer (pH 9.3) at antipient temperature for one hour. Soil samples of dawzero were additionally extracted with 0.7 M aqueous tartaric acid solution (pH 1.9). Radioactivity in soft extracts was determined by lighted scinttillation counting (LSC). After pooling and concentration the soil extracts were analysed by HPL combined with radio-detection.

Non-extractable radioactive residues were determined for extracted and aightied foils. Following homogenisation and suspension of aliquots in water and scintillator radioactivity was determined by $\hat{\rho}$ LSC. ð ്റ് Ň Ŵ

Å

Extracted soils of samples of day 117 were subject to organic matter fractionation of soil into fulvic acid, humic acid and humins following a standard procedure involving dissolution in alkaline solution and precipitation by adjustment of pH

N S, Ô Soil extracts of day and the following were subject to analysis by GC to confirm the identity in particular of physphonic acid after derivalisation to the corresponding dimethyl ester.

 \bigcirc

S

Õ

4. Determination of degradation kinetics

4. Determination of degradation kinetics The kinetic evaluation of data was performed via the three approaches in total, i.e. use of an EXCEL spreadsheet (SFO model via thear regression function) the software KIM and, a non-specified software as tool for the approach by Fimme and Forhse to btain fits to measured data.

The results of aerobic biotransformation of [32] phosphonic acid following incubation in soils UK clay loam and US sandy loam were summarized in Table 7.1.2.1.2-19 and Table 7.1.2.1.2-20.

A. DATA

Table 7.1.2.1.2- 19: Degradation of [³³P]-phosphonic acid in UK clay loam soil under aerobic conditions

Component				Inc	ubation	time (da	<mark>ays)</mark>			<u>S</u>
	Replicate	<mark>0</mark>	<mark>3</mark>	<mark>7</mark>	<mark>14</mark>	<mark>28</mark>	≫ <mark>56</mark>	<mark>87</mark>	9 <mark>117</mark>	"O"
Phosphonic acid	mean	<mark>62.1</mark>	<mark>39.4</mark>	<mark>26.5</mark>	<mark>35.3</mark>	41.3	₹ <mark>40.6</mark>	28.8	2,5.Q	
(rrt = 1)	SD	<mark>1.0</mark>	<mark>0.5</mark>	<mark>1.7</mark>	<mark>1.5</mark>	<mark>044</mark>	<mark>0.3</mark>	0 %	2 0.3	ĊQ
<mark>Unknown 1</mark>	mean	-	-	ک -	-	х <mark>-</mark>	- *	, <mark>-</mark> ,	- Ç	
(rrt = 0.45)	<mark>SD</mark>	-	-	V -		9 <mark>-</mark>	<mark>-</mark> 0	\$ 9″	×	Å
Unknown 2	mean	-		-		-	Õ	- Q <mark>,</mark>	Ô ^y	, ,
(rrt = 0.50)	SD SD	-		-		ĝ° <mark>-</mark> (- {	
$\frac{\text{Unknown 3}}{(mt - 0, (4))}$	mean	- "		• <mark>-</mark> _		, P		Q <u>8</u>	<i>S</i>	
(rrt = 0.64)	SD	- ^N		N	<u> </u>			<u>07.2</u>	-	•
$\frac{\text{Unknown 4}}{(\text{rrt} = 0.74)}$	mean				~ _1	0 <mark>-</mark>	, <mark>-</mark> 0	^v 1.4		
$\left(\Pi t = 0.74\right)$	SD (í <mark>-</mark> ò			₹ Q	1.4 2		
$\frac{\text{Unknown 5}}{(\text{rrt} = 0.87)}$	SD O				V V			$\frac{31.3}{1.3}$	$\bigcirc \frac{3.3}{0.4}$	
Region 6	méan a	- <u>"0"</u> - <i>"</i> 0"	· • •						1.6	
(rrt = 1.45)	SD S					, <mark>o</mark>	°	⊱ <mark>-</mark>	<mark>0.4</mark>	
Region 7	mesen	8 <mark>-</mark>	4 <mark>-</mark> 1	67 <mark>-</mark> 1	6 <mark>-</mark> 5	2 <mark>-</mark> 0	-	<mark>0.7</mark>	-	
(rrt = 1.75)	SD &				N			<mark>0.7</mark>	-	
Region 8	Amean &	Ó	S.		& <mark>-</mark> 4		6) <mark>-</mark>	-	<mark>0.6</mark>	
(rrt = 1.96)	SRC S	Ø <mark>-</mark>	57 <mark>-</mark> ~	ν <mark>-</mark> _{α.}	<mark>-</mark> 0	* <mark>-</mark> 4	-	-	<mark>0.1</mark>	
Total Extractable 5	🎽 <mark>ingan</mark> 🗸	6 <u>2</u> ,2	<mark>39.4</mark>	265	<mark>35,3</mark>	49.3	<mark>40.6</mark>	<mark>33.1</mark>	<mark>31.3</mark>	
Radioactivity	[°] ^{SD} ^K	A	9 %.5	<mark>Ĩ.7</mark>	Q <mark>1.5</mark>	≪ <mark>0.4</mark>	<mark>0.3</mark>	<mark>0.8</mark>	1.1	
Non-extractable Residues	ký <mark>mean</mark> Q	34.4°	2 <mark>47.6</mark> .(<mark>≶ 64.3</mark> ©	62.90	<u>56.6</u>	56.0	74.2	<u>68.5</u>	
	SD F	* <u>1.9</u> 0*	0.3 0			1.4	0.6	0.3	5.7	
Total radioactivity	mean ~~	96.5 900	88.9 ≫ 0 0 /	≪90.8 00 Å	098.2	97.8	96.6	107.2	99.8	
	K X X	0.9 🔬	<mark>ر 0.9</mark>	0.9	2.9	1.0	0.5	0.4	<mark>4.0</mark>	l

Values given as percentage of total applied radioactivity, corrected for isotope half-life of 25.34 days rrt = relative retention time Unknowns to consist of polar trrt < than test substance) and "Impolar'(rrt > than test substance) components SD = standard deviation

Table 7.1.2.1.2- 20: Degradation of [33P]-phosphonic acid in US sandy loam soil under aerobic conditions
--

Component		Incubation time (days)					~			
	Replicate	<mark>0</mark>	<mark>3</mark>	<mark>7</mark>	<mark>14</mark>	<mark>28</mark>	<mark>56</mark>	<mark>87</mark>	2 17	S.
Phosphonic acid	mean	<mark>77.2</mark>	<mark>55.4</mark>	<mark>55.9</mark>	<mark>54.8</mark>	<mark>55.1</mark>	<mark>⊘</mark> ≸4.1	<mark>37.9</mark> @	30.9	
(rrt = 1)	<mark>SD</mark>	<mark>0.7</mark>	<mark>4.4</mark>	<mark>0.9</mark>	<mark>1.0</mark>	<mark>1.4</mark> 🔞	0.5 0	5 .9	1.1.3	
Unknown 1	mean	-	-	-	-		-	<u>0.0</u>	8.2 🖌	Ô,
(rrt = 0.45)	<mark>SD</mark>	-	-	ð	-	Ay <mark>-</mark>	- 🖌	2 ⁷ 1.0	8.2°	
<mark>Unknown 2</mark>	mean	-	-	, ^v » <mark>-</mark>	- 4	-	-¢		5.3	, or
(rrt = 0.50)	<mark>SD</mark>	-	- 0	¥ <mark>-</mark>	<mark>-</mark> 5	-	õ	<mark></mark>	0 <mark>3.3</mark>	Ķ
<mark>Unknown 3</mark>	mean	-		-		ĝ-	ĝ ^y <mark>-</mark> , ó	¥ <mark>4.1</mark>	1.4	
(rrt = 0.64)	SD .	-		• <mark>-</mark> /	d <mark>-</mark> ``	- - @-	ð	<mark>3%8</mark> °́	A	
Unknown 4	mean	- C	, ^z	- K		s ^o	Ô.	ر <mark>آ.1</mark>	0.6	
(rrt = 0.74)	SD	-4			-Q <mark>-</mark>		, <mark>-</mark> C	1.10°	0 .6 9	
Unknown 5	mean	Š.		y' <mark>-</mark> (* - 5			1.7 2	A CONTRACTOR	
(rrt = 0.87)	SD (- 40 -					\$1.7	9 <mark>-</mark>	l
Region 6	mean	tor [¥]	° <mark>∛</mark> ∛			P ô	7 <mark>-</mark> S	2.4	0.5	
(rrt = 1.45)	SD [*]) <mark>-</mark> 6		<mark>-</mark> O_		<mark>0%3</mark>	0.5	
$\frac{\text{Region 7}}{(mt - 1.75)}$	nacan 🗞		- °	₹	, Ö ^r	Ø .	°°-	⁸ ∕ <mark>0.4</mark>	1.1	
(m = 1.75)	[∞] SD &	<u>Č</u> ř		_@r <mark>-</mark>	× - *	y <mark>-</mark> Q) <mark>-</mark>	0.4	I.I	
$\frac{\text{Region 8}}{(\text{rrt} = 1.96)}$	mean mean		§ <mark>-</mark> ,	, <mark>-</mark> (-K ^v			1.4	0.6	
(111 - 1.90)						y <mark>-</mark>	0) -	1.4	0.3	
Total Extractable	mean			× <mark>>6.0</mark>	54.8 ()` <mark>)</mark>).I∧y	54.1	49.8	46.6	
Kauloactivity			4.4 ~ (0.5	0.2	0.7	ł
Non-extractable	mean &	19.3 ×	<u>354</u>	38.8 01 2		×92.9	38.5	44.8	49.4	
	K SD SD	<mark>1.≫</mark> ∞%06_4_ ≈	09.8 700 1 1	2.2 01.8	D ^{-0.3} @	9.4	1.4 02.6	0.0 04.6	0.4 06.0	-
Total radioactivity		20.4 (> <mark>00.4</mark> ℃ 3 €	* <mark>74.@</mark> ∱¶?		20.0	92.0 0.0	0 3	90.0	
Values given as percentage	e ở stotal appli	ed radio	cťrvaty, c	orrected.	for isoto	pe half-li	fe of 25.	34 days	1.1]

rrt = relative retention time O¥

than test substance) and 'unoolar'(rrt > than test substance) components Unknowns to compist of polar (rr SD = standard deviation

B. MATERIAL BALANCE

Material balances were corrected for isotope half-life.

Mean material balances of two replicates per sampling interval ranged from 90.8 to 107.2% AR for the UK that loam and from 22.6 to 98.0% AR for the US sandy loam. Exceptions were observed for samples after 3 days of mcubation for both Soils to result in mean material balances of 86.9 and 88.4% AR, respectively. While this applie of or both replicates of soil clay loam (86.0 and 87.8% AR for single replicates it was just one replicate of soil sandy loam (84.9 and 92.0% AR for single replicates). No explanations were given for the lack of material balance in the samples. Since fully acceptable balances were found at the other sampling intervals and since there were no general trends for lowered recoveries, with time, this finding was regarded to have no impact on the overall outcome of the study

ñ

Ľ

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

C. EXTRACTABLE AND NON-EXTRACTABLE RESIDUES

Total extractable radioactivity decreased from 62.2% AR by day zero to 31.3% AR after 117 days of incubation in UK clay loam and from 77.2% AR by day zero to 46.6% AR by day 117 in the US sandy loam.

Non-extractable residues (NER) ranged from 34.4% AR by day zero to peak at 74.2% AR by day 🕸 and to decline to 68.5% AR by day 117 for the UK clay loam. For the US sandy loam NER were 19.3% AR by day zero to increase to 49.4% AR after 117 days of incubation. Ô Organic matter fractionation of extracted soils showed that the remaining radioactivity was strongly associated with the fraction of fulvic acids to account for 32.6% AR (fulvic acids) (1.0% AR (huffic acids) and 14.4% AR (humins) for the UK clay loam. For the 68 sandy loam distribution was 0 33% AR for fulvic acids, 1.0% AR humic acids and 90% AR in humins.

D. VOLATILES

Volatile radioactivity was not collected since no volatile transformation products were anticipated originate from application of the ³³P radio-labelled test substance of the state of t originate from application of the ³³P radio-labelled test substance Ø Ą Ô

0

Ø

Ő.

E. TRANSFORMATION OF TEST SUBSTANCE

Values for extractable radioactivity all cated to phosphonate decreased from 62 2% ARby da Ozero to 25.7% AR after 117 days of incubation for the UK clay foam and from 77.2 to 30.9% AR for the US sandy loam within the same incubation period. Ô Ň °

The degradation of phosphonate was accompanied by the formation of a number of minor components and regions all observed clearly below 5% AR in the course of the experiment.

An exception was reported for a single coplicate of US sandy loam soil of day 117. A component reported as Unknown 1 was detected at \$2% AR as the mean of two replicates while it was found in one of the two replicates at 16,4% AR. The component was thus observed in just one of the two replicates and at the last sampling interval only. There were indications for the artificial character of this component twhen considering the following It was not observed in the UK clay loam soil and it occurred it was hadly observed at any time point before, i of at 1.9% ARGh one of the two replicates of the previous sampling interval, day 87. Drknown 1 had a relative retention time (rrt) of 0.45 thus showing up in the very polar region of the HPLC coromatographic system. It is a more general problem in the analysis of soil extracts, in particular these of late sampling intervals, that extracts have to be concentrated causing high matrix loads for the sample to be analysed, in particular, when sensitive methods such as ion pair chromatograph have to be used.

Another factor of influence contributing was the character of the ³³P-phosphorus isotope as test item with a half-life of 25.35 days only. The late sampling intervals of days 87 and 117 were already by more than a factor of these beyond the isotope half ife, it total radioactivity available had decreased already to less than 12.5% of the value initially applied after more than 75 days of incubation.

In addition, phosphorus compounds serve as potential nutrients being therefore subject for uptake into °~~ organisms including soil microbes. Ŵ

Higher matrix load combined with lowered total radioactivity and the progress in phosphorus digestion and uptake into microbes thus were factors of influence to impact on chromatographic results in particular for late sampling intervals

Ø1 F. DEGRADATION KINETICS

Degradation rates of physphonic acid in aerobic soil were calculated using the Timme-Frehse approach the software KIM and linear regression analysis. The results were summarized in Table <mark>7.1.2.129[°]21.</mark> ని

Ň Owing to the character of data to show a fast decline of phosphonic acid in a first phase followed by slower decline at later sampling intervals, this resulted in non-acceptable fits when data of all sampling intervals were used as input.

Fits were acceptable when late sampling intervals were use as input data.

Ú

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

Based on late sampling intervals the calculated half-lives were 108.5 to 116.8 days for the UK clay loam and 124.7 to 136.5 days for the US sandy loam.

Table 7.1.2.1.2-21: Rate of degradation of phosphonic acid in two soils under aerobic conditions							
Soil	Approach	<mark>DT₅₀ [days]</mark>	Quality of for ¹	Kinetic () model			
	Excel/all sampling intervals	<mark>120.9</mark>	<mark>0.327</mark>	SFO I			
	KIM/all sampling intervals	🔊 <mark>8.7</mark>	<mark>0.906</mark>	SKO S			
UK clay loam	Timme Frehse/all sampling intervals	89.2	<mark>@^v 0.388</mark>	SFO O			
OK Clay Ioann	Excel/late sampling intervals	, <mark>116.8</mark> 👸	لاً <mark>0.906 م</mark>	SFO I			
	KIM/late sampling intervals	[*] 108.5	<mark>0.996</mark> 0	😤 <mark>SEO</mark>			
	Timme Frehse/ late sampling intervats	<mark>116.8</mark> 🌂		SFO 🔬			
	Excel/all sampling intervals	102 8 🗞	0.730	SFO			
	KIM/all sampling intervals	<mark>ຸ 200.6</mark> 🔬 ໌	∢<mark>0.960</mark>⊖[©]	Ĩ∾Ĩ <mark>SFO</mark> IJĨ			
US condu loom	Timme Frehse/all sampling intervals	ک <mark>^{37.4} ک</mark>	~ 0.7 5%	C, <mark>SEO</mark> ,			
US sandy loann	Excel/late sampling intervals	<u> </u>	0 <mark>864</mark> C	SFO A			
	KIM/late sampling intervals	<mark>120:3</mark>	» مر <mark>0.985</mark> مر	, SFO			
	Timme Frehse/late san@lingantervals	1 2 4.7 0	0.617	SFO [®]			

r squared for Excel. 'modified i of r squared) for KIM.

KIM: kinetic modelling

Ò The degradation of phosphonic acid in aerobic sold under the conditions of the laboratory was 68 days for the UK. Pay loam and 124.7 to moderate to result in values of the DT 50 of 0108 136.5 days for the US andy Ram L

CONCLUSION

Report: ; 2001; M-203498-01-1 The poontial for phose to be acid residues in succeeding Title: Report N Document No. Guideline(s):

Executive Summary

Guideline deviati **GLP/GEP:**

Following treatment of bare soil at a rate equivalent to 15 kg test substance/ha (4.9 mg/kg soil) plants representing root crops (radish), leafy crops (lettoce) and grain crops (barley) were grown. Ŵ

 \bigcirc

Č[¥] The test was performed in plant pote containing 6.4 kg of soil. Before sowing, the soil pots (treated and untreated, were test in incubation during 32 days (additionally 182 days for one experiment with radish), outgoors but shered from rain. Water was added as appropriate to maintain moisture without drainage Õ

Duplicate or quadraple samples were taken for analysis before and immediately after treatment with phosphoni@acid, and then after 32 days (sowing time), 69 days (lettuce-radish harvest) and 182 days (barley harvest).

Phosphonic acid was extracted from soil with ammonia buffer solution and from plants with a mixture of water and acetonitrile.

Soil and plant extracts were quantified by gas chromatography on a semi-capillary column, using a flame photometric detector (phosphorus mode).

In the soil, no appreciable decline of phosphonic acid was observed during the ageing period of one smooth following treatment. However, significant degradation (or irreversible binding) was observed afterwards. The depletion of phosphorus was faster in cropped soil than in bare soil.

Data obtained on plants, although in some cases not very accurate, showed that for bartey (grain and straw) sown one month after soil treatment, and for radish (roots and leaves) sown 6 months after treatment of the soil, differences between treated and underated samples were not significant (residues clearly below 0.5 mg/kg) whereas in radish (roots and leaves) and indettuce (leaves) sown planted one of month after treatment, residues in treated samples were observed at levels significantly higher than in untreated samples, however not exceeding 1 mg/kg

As such residues were observed in plants installed only one month after application to the soil, at once, of phosphorous acid in amounts equivalent to the total offactive substance which is pormally applied over several months, it can be concluded from the results of these experiments that uses of fosetylare not likely to result in significant residues in succeeding crops.

			× O
	I. MATERIALSA	ND METHODS 5	, Q
	Q' B B		°∼γ
A. MATERIALS			,
1. Test Item	y i p a.		
phosphonic acid			
Sample ID:	of reported		
Chemical Purity:	ot reported		
	Ś " Ś		
The phosphonate for substance	e was applied as aqueo	s solution prepared by neutralizat	ion of the free
phosphonic acid with potassiu	m hydroxide, 🖉 🕺		
2. Test Soils			
The physics-chemical charact	wistics of the test soil w	ere sommarized in Table CA 7.1.2	.1.2-22.
Table 7.1.2.1.2- 22: Physico-cho	emical characteristic of s		
Parameter		- Or A Soil	1
		· · · · · · · · · · · · · · · · · · ·	
Geographic Loca			
City A		2	
Country A		France	
Textural class		Loamy sand	
@ oarse sand	200 - 2000 µm	5.4%	
Fine sand	<mark>[50 -^x2∕00 μm]</mark> ΄	<mark>31.9%</mark>	
Coarse sit	[20-50 µm]	<mark>25.7%</mark>	
Wine silt	[<mark>͡2 - 20 μm]</mark>	<mark>23.3%</mark>	
	<mark>[< 2 μm]</mark>	<mark>13.8%</mark>	
pH (Water)		6.5	
^{pH} (KCl)		5.34	
Organic Matter		1.9%]
Cation Exchange	Capacity [meq/100 g]	Not reported]
Water Holding C	apacity	Not reported	

ď

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

B. STUDY DESIGN

1. Experimental Conditions

The test was performed in plant pots (20 cm diameter, 15 cm depth) containing 6.4 kg of soil. The soil had been treated at a concentration of 4.9 mg phosphonate test substance /kg soil.

Plants in treated and untreated pots were grown for 32 days under outdoor conditions protected from rain. During growing plants were watered as appropriate.

Two treated and untreated pots each containing barley, radish, lettuce over harvested after s growing.

2. Sampling

Soil samples were taken for analysis just before and immediately after reatment with phosphonate and then after 32 days (sowing time), 69 days (lettuce-radish harvest) and 182 days (barley harvest) of growing of plants.

3. Analytical Procedures

Phosphonates were extracted from soil with anymonic buffet solution. Extracts were descationized by cation exchange resin and evaporated to dryness followed by derivatization with trimethylsilyldiazomethane.

Phosphonate residues were extracted from plants with aqueous acetomtrile by maceration. Plant extracts were cleaned up using an octadecyl cartridge followed by derivatization with trimethylsilyldiazomethane

Derivatized phosphonate residues were quantified by gas on on a semi-capillary column, using a flame photometric detector phosphorous piode and the use of external standards. The limit of quantification (LOO) was 0.2 mg/kg soft for samples analysed at time of treatment and 0.1 mg/kg in the following. For plants, the LOQ was 0.5 mg/kg. Attempts to lower, the LOQ to 0.1 mg/kg (or 0.25 mg/kg for barley straw) were not successful owing to inconsistent recoveries for low residue levels.

The results of determination of residues of physphone acid in soil and plants of succeeding crops at various sampling intervals were sumparised in Table 7.1.2.2.2 and Table 7.1.2.1.2 - 24.

RESULT AND DISCUSSION

A. DATA 💖

Table 7.1.2. 2.2. Residues of phosphonic acid in soil

Sample	ŝ			Sampling inter	rval	
[™]	×.	To C	^Q T₁ ^S	DAT 32	DAT 69	<mark>DAT 182</mark>
Soil, treated	/ 4		k k	<mark>3.9</mark>	<mark>1.3</mark>	<mark>0.1</mark>
Soil, lettuce pots	\sim			-	0.3	-
Soil, radish pots	Z Z		- -	-	<mark>0.1</mark>	-
Soil, bactey pots	, 1		-	-	-	<mark>< 0.1</mark>

Mean galues, sepressed as mg phosphonic acid equivalents/kg soil

 $T_0 = Ontreated; T_1 = Orectly after treatment, i.e. Day zero$

DAY = Days after treatment

Ũ

<mark>Crop</mark>	Sample	Treatment		Time (days)	, Q°	>
			<mark>to harvest</mark>	<mark>to harvest</mark>	to harvest	S.
			<mark>69</mark>	182	× 182/222	0
	laguag	untreated	<mark>0.04</mark>	- 8		
Dedich	Icaves	treated	0.35	-	. 09.09	Ô
Kauisn	reate	untreated	<mark>0.10</mark>	- L		
	TOOLS	treated	0.80	R	Q QBB X	. 6
Lettuce	leaver	untreated	0.04 0 ⁵	~~ <mark>-</mark>	õ <mark>9</mark> - ₂ 0" (Ķ
		treated	0.76			
	arain	untreated				
Barlow	gram	treated	ov <mark>−</mark> . ¢° ,	v v 14		
Balley	atrony	untreated		Q 0.19	Ô ^Y -Đ ^Y A]
	suaw	treated		<u>}</u>	k F g	

Table 7.1.2.1.2-24: Residues of phosphonic acid in plants of succeeding crops

Mean values, expressed as mg phosphonic and equivalents and plant \bigcirc 21 Sowing was 32 days after treatment of soft for lettice and barles and 18 days for radist ¢ ¢ m

Ò

B. Residues in Soil and Plants

No significant decline of residues of phosphonic aged was observed following sampling of soil one month after treatment. The decline of residue concentration was faster for cropped than for bare soils, however, the exact cause was unclear since dire@uptake by plants was minimal. Residues were low and variable for untreated soil samples as well as for treated soils at later sampling intervals. \bigcirc

0

 \bigcirc Ø Residues of phosphonic acid in radish were 0.35 mg/kg for roots and 0.80 mg/kg for leaves for plants sown 32 days after treatment and harvested after 69 days of growing. For comparison, residues were 0.76 mg/kg for Oettuc Oplants sown 32 days after treatment and harvested after 69 days of growing. Residues were significantly lower for barley grain and straw sown one month after soil treatment and harvested after 6 months of growing.

ILS CONCLUSIONS \bigcirc

The results indicated little uptage of phosphore acid residues to plants of succeeding crops. Õ¥ Ŵ Ô \bigcirc

By their design, the data and not contribute to a better understanding of the rate of degradation of phosphonate residues in aeropic soft. The results were therefore regarded as supplementary information with no use in engronmental risk assessment.

CA 7.1.2.1.3 Anaerobic degradation of the active substance

; 1984; M-159549-01-1 KCA 7.1.2.1.3/01 **Report:** Fosetyl-Al (aluminium tris-O-ethylphosphonate): Anaerobic aquatic metabolic Title: study. Report No .: R000917 Document No .: M-159549-01-1 Guideline(s): USEPA (=EPA): D, 162-3 Guideline deviation(s): none **GLP/GEP:** no

The rate of degradation of the active substance fose(yl-aluminium) (fosetyl-Al) was calculated with the respective study on route of degradation in an probic soil (KCA 7.67.2/01)

The data requirement had been addressed inder Point 21.1.2.4.4 of the Dessier submitted and evaluated for the Annex I inclusion of fosetyl under Directive 91/41/EEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005). Consequently there is no detailed description of this existing data in this Supplementary Dessier

The evaluation revealed that fosetyl-Al was rapidly degraded under the conditions of the test to result in half-lives of 40 hours (1.67 days) for a silty elay loan and of 14 hours (6.58 days) for a sandy loam soil.

The study was summarized under 6A 7.1.9.2 in detail including information on rate of degradation for the active substance in an acrobic soil.

CA 7.1.2.1.4 Anaerobic degradation of metabolites, breakdown and reaction products Report: Title: Report So: Report So: Report So: Ca 7.1.2.1.4/01 KGA 7.1.2.1.4/01 Fosetyl-AC (alumentium So-O-etholphorphonate) Anaerobic aquatic metabolism Report So: Report

The data requirement had been addressed inder Point 7.1.1.2.1.5 of the Dossier submitted and evaluated for the Annex I inclusion of tosetyl under Directive 91/414/EEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005). Consequently there is no detailed description of this existing data in this Supplementary Dossier.

The evaluation revealed that, besides the transformation products observed in aerobic soil, no metabolites were found that were specifically formed under anaerobic conditions.

Moreover, the intended use of osetyl-aluminium is for crops where anaerobic conditions in soil are not prevalent.

No specific study is therefore required.

The study was summarized under CA 7.1.1.2 in detail including information on rate of degradation for transformation products in anaerobic soil.

CA 7.1.2.2 **Field studies**

CA 7.1.2.2.1 Soil dissipation studies

U. This data requirement had been addressed under Point 7.1.1.2.2 of the Dossier submitted and evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEO as publishood in the corresponding DAR of RMS France and its Final Addendum (September 2005).

The evaluation revealed that the values for the DT₅₀ and the DT₉₀ of fosetyl-aluminium resulting from laboratory tests performed were all significantly below the current figgers set to investigate the degradation behaviour additionally under outdoor conditions of the field.

Values of the DegT₅₀ of metabolite phosphonic acid in aerobic soft in the laboratory were higher than 0 the specified trigger values in the EU. Ũ Rh Following data requirements of Commission, Regulation 283/2013 this Figger the generation of dissipation data for estimation of a DisT₅₀ of the metabolity in the field of possible, the time required for degradation (DegT₅₀/DegT₉₀) of the active substance shall be estimated. Where relevant, information on metabolites, breakdown and reaction products shall be provided. For the conduct of field studies, Commission Notice 2013/C 05/01 to Commission Regulation 283/2013 specified US EPA OCSPR 835 0100 as the corresponding test method, i.e. there is currently no agreed or accepted test design available at OECD or EU fevel addressing the investigation of dissipation in the field. M

In view of the more general context described, no particular field studies were performed investigating the dissipation of metabolite physphonic acid. Moreover and considering regulatory practise in the past and actually, the data requirement can be regarded as a higher tier option when considering the following context: Ô following context: \bigcirc Ø

1. With regard to the former, use of fata in regulatory practise and the risk assessment in the environment, Aaboratory data are lowest tier to estimate the potential of residues for persistence in the soil environment. In contrast, field data are used as higher tier to investigate the behaviour under the more realistic and practical conditions of use. ~~()

The background is that laboratory tests in the dark triggering field studies allow to investigate the contribution of microbial degradation only. Filed dissipation tests were a common higher tier to demonstrate study experimentally the behaviour of residues when allowing additional potential factors of influence to microbal degradation, dissipation by volatilisation and photolytic processes at soil surface and uptake by plants. These parameters were therefore finally taken into account for risk assessment mostly focused of the active substance

Resulting field DisT₅₀ toggered field accumulation data in case on being higher than 1 year. The set of dissipation data served as a basis to identify two sites of highest persistence to perform field accuratilation tests? The potential for accumulation was determined to derive the plateau concentration in soil after repeated application for several successive years. Q, K

With regard to actual regulatory practise the assessment of persistence of a compound in soil is 2. meanwhile based on laboratory degradation data as Tier 1. This approach allows for the risk assessment and reflects the most conservative approach. In turn, higher tier field data allowing for additional dissipation processes must be less conservative. However, such more realistic approach does not find regulatory acceptance as indicated by a number of EFSA publications in the form of Opimions, Guidelines and Guidances for evaluation, interpretation and use of field data in the recent past. Again, it should be noted that the major portions of changes in interpretation of data and requirements were published when preparations for the AIR3 process were at a late stage thus not allowing for their consideration in testing and dossier preparation.

Overall, the determination of field half-lives in soil for the active substance or metabolites, breakdown and reaction products would therefore not result in a more conservative assessment of the behaviour of residues in soil.

It should be noted that the same applies for the assessment of the long term behaviour in soil \dot{s} the estimation of accumulation. Based on worst case laboratory values of the DT_{50} the plateau concentration in aerobic soil can be reliably calculated conservatively from the existing taboratory data rather than to be determined in the field experimentally.

Considering current regulatory practise in assessment of residues in soil field DisT data to not contribute to an improvement of risk assessments neither do such experimental data contribute to an overall better understanding of degradation or dissipation processes in Soil.

Conclusively, data requirements resulting from formal fulfilment of EU persistence triggers can be adequately addressed by laboratory data for active substances as well as metabolites, breakdown and reaction products as the most conservative Tier. Q, O

No particular field dissipation or degradation tests are thus regarded as necessary as higher tier option K, for metabolite phosphonic acid. Ô Ľ

Moreover, there is still a lack of agreed of accepted field test designs at OECD or EU-level to adequately address the data requirements of Comprission Regulation 283/2003. The same applies for the use and interpretation of field data in the context of risk assessment in soil. Ľ Also in view of more general issues and inconsistencies in data requirements and its interpretation, the non-availability of field data for metabolite phosphonic acid should not be interpreted as a data gap.

Soil accupulation studies CA 7.1.2.2.2

Q,

This data requirement had been addressed under Point 7.1.1.2.1.5 of the Dossier submitted and evaluated for the Annex inclusion of fosetyl under Directive 1/414/EEC as published in the corresponding DAR of RMS France and its Frial Addenduar (September 2005)

Ŵ Õ \bigcirc The evaluation revealed that the values for the DT90 of fosetyl-alumnium from laboratory and field

The evaluation revealed that the dalues for the DT₅₀ of fosesyl-alumnium from laboratory and field tests performed were all significantly less than one year that with no indication for accumulation of the active substance in the soil environment.

Bayer – Crop Science Division

CA 7.1.3	Adsorption and desorption in soil
CA 7.1.3.1	Adsorption and desorption
CA 7.1.3.1.1	Adsorption and desorption of the active substance
Report: Title:	KCA 7.1.3.1.1/01
Report No.: Document No.:	R000784 M-159330-01-1
Guideline deviation(s) GLP/GEP:	none not applicable no
Report: Title:	KCA 7.1.3.1.1/02
Report No.: Document No.:	R001033 M-159778-01-1
Guideline(s): Guideline deviation(s) GLP/GEP:	none $(1, 1, 2, 3, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,$

Attempts to investigate the <u>adsorption of the active substance fosetyl-aluminian (fosetyl-Al) to soil</u> under conditions of the laboratory were made in:

- three soils under conditions similar to batch equilibrium tests following application of non-labeled active substance (KCA 7.131.1/01);
- bottom sludge of two ditches under conditions similar to batch equilibrium tests following application of 10⁴C-labeled losety 1.41 (KCA 7.1.51.1/02).

The data requirement had been addressed under Point 7,1.2.1 of the Dossier submitted and evaluated for the Annex I inclusion of fosetyl under Directive 97/414/DEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005) Consequently there is no detailed description of this existing data in this Supplementary Dossier.

For study KCA 79.3.1.1701 the evaluation for the Annex 1 inclusion of fosetyl under Directive 91/414/EEC revealed that the active substance fosetyl-Al was either not adsorbed (loamy sand and silt loam soil) or some decrease from the water phase was observed suggesting some adsorption to soil (sandy loam). Since the apparent adsorption was accompanied by degradation no measurable value for adsorption sould be determined.

For study KCA 7.1%1.1/% no investigations bad been performed to demonstrate the stability of fosety1-Al under the conditions of the test to differentiate between effects of adsorption and degradation as observed for study KGA 7.1%1.1/01. In addition, sediments were used thus being not regarded to be representative for '%1' in the EU. The study was therefore excluded from use in risk assessment.

Conclusively the value describing the adsorption to soil (Kf,oc) for environmental risk assessment was set near to zero, i.e. to 0.1 m/g.

New information: New adsorption study to soil for the active substance

In view of the existing non-GLP and non-guideline data available for the active substance new data were generated in order to fulfil the requirements as set by Commission Regulation (EC) No 2822013, amending Regulation (EC) No 1107/2009.

Report:	KCA 7.1.3.1.1/03
Title:	[ethyl-2-14C]fosetyl-aluminium: Adsorption/desorption on five soils 7
Report No.:	S15-03004
Document No.:	M-532010-01-1
Guideline(s):	OECD Test Guideline No. 106
	Commission Regulation (EU) No 283/2013 in accordance with Regulation (EC) No
	US EPA OCSPP Test Guideline No. 835 230 🖉 🖉 🖉
Guideline deviation(s):	none of the second second
GLP/GEP:	yes

Executive Summary

Tests to investigate the adsorption/desorption characteristics of [ethyl-2]4C]Fosetyl-aluminium were performed under conditions of batch equilibrium experiments in five soils. No definitive phase was performed day to insufficient stability of the dest compound under the conditions of the test. \bigcirc

Recoveries of the preliminary phase were in the acceptable range of 96.0 to 106, 2% AR for all soils investigated. However and dependent on soil fo-water-ratio the recoveries of the test item were 60.2 to 87.1% AR and thus outside an acceptable ange?

 \bigcirc Freundlich coefficient 1/n in soil No values for the Freundlich adsorption coefficie were therefore determined.

Material and Method

A. Materials

1. Test Material: Yethyk2-¹⁴Chosetyl,aluminium ▲ $\bigcirc^{\circ} 2.22$ MBq/mg (60.0 µCi/mg) Specific radioactivity: 8700AXU003-5 Batch: Radiochemical 100% (HPLC)

2. Soil:

Sorption sets were performed with four soils covering a range of pH, organic carbon content and Sorption tests were performed with four soils covering a range of pH, organic carbon content and texture. The characteristics of soils originating from the UK and the US are summarised in Table 7.1.3M.1-1.

Soil					
	(AX)	(DD)	(HH)	(HN)	(Way)
Geographic					
Location (City/State/Country)					
(City/State/Country)	, Germany	, Germany	Germany,	Germany	Gennany 🖉
GPS coordinates					
T 1 01	1 1				
I extural Class	sandy loam	loam	silt loam	loam	sand foam
(USDA)	72	20 00	10 0		50 0
Sand $(\%)^A$	10	29 ♥ ∆∆&			30
$Clav (\%)^{A}$	9	20	V 2.15	~ 19~ ·	1 8
pH (0.01 M CaCl ₂)	6.3	A.3 @	0 6.1 Q	jo ja Č	Ø5.1 ÅY
pH (Water)	6.5	×7.4 ×	~~ 63 · F	Ø.4 🔬	^{5.5}
Org. Matter ^B (%)	3.4	0 8,8 V	Ø <u>\$4</u> 8 0	\$ 5.3	3,4
Org. Carbon (%)	2.0	S & Y	~~2.1	<u> </u>	2.0
CEC (meq/100 g)	9.0	@1.5 ×	× 11.3× ?	Ç 99 Ş	10.4

 Table 7.1.3.1.1-1:
 Characteristics of test soils

^A According to USDA classification; ^{Ba}% Ofganic matter = Forgan carbon x 1.

Recording to OSDA endsmithed on the solution of the adequate soil-to-solution ratio (30 min, 1 h and 3 hrs) and the 'adequate times needed to reach adsorption equalibrium' at two test concentrations of 0.3 mg/L and 1 mg/C for all soils (two replicates). Supernatants after Centrifugation and soil extracts were analysed for radioactivity (mass boance) and for test item (parental mass balance). In view of the rapid degradability of the test item in the contact with soil, most of the tests including those on stability were performed in sterilized file. gamma-irradiated soil However, significant degradation of the test item was observed for all sampling points investigated

No definitive tests on adsorption or desorption to soil were therefore performed due to a lack of stability of the test item. Ø

For work-up the aqueous supernatant was separated from soil by decantation and centrifugation. Radioactivity on water and soil extracts was determined by liquid scintillation counting (LSC) and analysed for the test item by HPLG-MS/MS.

2. Analytical procedures:

Radioactivity was determined by rquid crintillation counting (LSC). The purity and stability of the test item was investigated by HPEC analysis using mass spectroscopic detection techniques (ESI, m/z

of 108.9/110.9 and m/z of 81.0 detected as test item ions).

II. Results and Discussion

A. Mass balance and results of preliminary tests

Pre-tests on adsorption to the walls of test vessels by shaking an aqueous solution of the test substance in the absence of soil showed no adsorption. The tests also confirmed the solubility and stability of the test item in aqueous calcium chloride solution. The test item was known to be degraded in the presence of microbially active soil (see also KCA 7.1.2.1.2) and thus sterilized soils were used in preliminary tests. The tests on determination of the adequate soil-to-solution ratio (30 min, 1 h and 3 hrs) and the 'adequate times needed to reach adsorption equilibrium' were accompanied by investigations for stability of the test item in supernatants after centrifygation and soil extracts. Analysis for radioactivity (mass balance) indicated recoveries to range from 92.100 94.7% for all soils and test concentrations.

B. Transformation of test substance

Following adsorption phases of 30 min, 1 hour or 9 hours to sterifized soil and HPLC analysis of water and soil extracts the stability of the test substance was significantly below 90% for the soil-to-solution ratio of interest. Analysis for test item (parental mass balance) indicated recoveries of 81.0% (0.5 hours, soil **10** minimum) or lignificantly below for all soils and test concentrations use Table 7.1.3.1.1-2).

Soil/Test conc./Ads. time							
0.3 mg/mL, 0.5h							
Total recovery of radioactivity 3° 3° 94.3 94.3 94.3 94.3	93.3						
Total recovery of test tem^* 35.2 59.6 75.2 59.6	70.3						
0.3 mg/mL, 1 hours $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$							
Total recovery of adioactivity* 1/2 93.8 93.8 92.6	92.1						
Total recovery of test 40° m [*] O O $\sqrt{8.3}$ 50° $\sqrt{84.9}$ 51.5	55.7						
0.3 mg/mL 3 hours 0 5 5 5							
Total recovery of radioactivity 32 32 94.6 89.6 39.6 39.6 91.2	93.0						
Total recovery of test itom 72^{4} 72^{4} 72^{4} 72^{2}	69.8						
1.0 mg/mL, 0.5 h							
Total recovery of ratioactivity $\sqrt{2}$ 94.0 $\sqrt{2}$ 94.7 93.9 94.0	93.8						
Total recovery of test item 5 65 65 45.1 60.3 53.9	57.7						
1.0 mg/mL, 1 køur 20 6 50 50 0							
Total recovery of radioactively 3.6 92.7 $0.94.9$ 0.53 93.6 92.7	94.0						
Total recovery of test item* 56% 41.1 59.2 44.2	45.3						
1.0 mg/mL, 3 hours 2 Q Q X							
Total recovery of radioactivity* 33.7 87.2 93.5 93.6	93.4						
Total recovery of test item 2 2 50.3 33.0 48.3 30.6	42.8						

Table 7.1.3.1.1-2: Preliminary test: Total recovery of ¹⁴C-fosetyk Al in samples after adsorption phase

* Mean values in terms of radioactivity applied in supernatants and soil extracts from two replicates

C. Findings

Following the tesults on tests on stability, no definitive phase on adsorption or desorption to soil was performed due to a lack of stability of the test item. This finding is well in line with the fast degradation observed in aerobic soil (see Section CA 7.1.2.1.2).

Consequently, no adsorption constants K_{F, ads} have been determined.

The adsorption behaviour of $[{}^{14}C]$ fosetyl-Al cannot be described reliably by batch equilibrium tests according to OECD Guideline 106 although precautionary measures were taken like a minimization of contact time with soil and the use of sterilized soils.

III. Conclusion

No adsorption constants $K_{F, ads}$ have been determined in five sterilized soils due to distability of fosetyl-Al under the conditions of the test.

Study summaries of existing studies and publications on adsorption of the active substance to soft

Following another request by the RMS, this document was updated by inclusion of summatics for the existing data, i.e. studies and publications submitted and cyaluated during the process of Avnex I inclusion of fosetyl under Directive 91/4140EC and being still of relevance for the EU approval renewal process.

Report:	KCA 7.1.3.107/01 ;; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Title:	Fosetyl-Al Suminium tris-O-ethylphosphorate): Onl soro ton stories
Report No.:	R000784 ~ & & & & & & & & & & & & & & & & & &
Document No.:	M-159330-04-1 "" " " Q" . " " "
Guideline(s):	none C (29)
Guideline deviation(s):	not applicate a gran
GLP/GEP:	
&	
Report:	KCA07.1.3 ¥.1/02 W; 1986; M-159778-01-
Title:	Qisorpt in of fosetyl any nonity salt and dity botter sludge
Report No.:	
Document No. O	<mark>M-199778-01-1</mark> 🗸 🖉 🖉 🖉
Guideline(s)	none la
Guideline diviation(s):	ot appendice of the second s
GLP/GK	
	$\chi^{\gamma} \stackrel{\sim}{\sim} \chi^{\gamma} \stackrel{\sim}{\sim} \chi^{\gamma} \stackrel{\sim}{\sim} \Lambda^{\gamma}$

For study KCA (3.1,1.01) the evaluation for the Annex I inclusion of fosetyl under Directive 91/414/EEC revealed that the active substance fosetyl-Al was either not adsorbed (loamy sand and silt loam soil) or some decrease from the water phase was observed suggesting some adsorption to soil (sandy loam). Since the apparent adsorption was accompanied by degradation no measurable value for adsorption could be determined

Study KCA 7.1.3. 901 served as supplemental information and it was therefore replaced by new information as submitted and er & CA 7. 83.1. 693.

In this context, it is noted that study QCA 74.3.1.1/02 was also excluded from use in risk assessment since the use of adsorption values from sediments was not regarded to be representative for 'soil' in the EU. Finally and as can be expected from the very fast degradation of fosetyl-Al in contact with soil stability of fosetyl-Al under the conditions of the test was not demonstrated. It was thus not possible to differentiate between effects of adsorption and degradation as observed for study KCA 7.1.3.1.1/01. Again, the new information submitted under KCA 7.1.3.1.1/03 was well in line with the existing data in KCA 7.1.3.1.1/01 and X CA 7.1.3.1.1/02.

In view of the fact that KCA 7.1.3.1.1/01 and KCA 7.1.3.1.1/02 were considered for risk assessment during Annex I inclusion and being replaced by new data in EU approval renewal, no detailed summary of this obsolete data was given.

ð

CA 7.1.3.1.2 Adsorption and desorption of metabolites, breakdown and reaction products

Report:	KCA 7.1.3.1.2/01	; 2000; M-189243-01-	-1
Title:	Phosphorous acid: Adsorption on three so	oils 🖉	
Report No.:	R014228	O ^y	
Document No.:	M-189213-01-1	4	
Guideline(s):	none	sto "	
Guideline deviation(s):	not applicable	Ő, S	
GLP/GEP:	no	Q . O	

to soil were reported th study Attempts to investigate the adsorption of metabolite phosphonic action KCA 7.1.3.1.2/01 using: Ś

three soils under conditions similar to batch equilibrium tests following application of non-labeled phosphonic acid as test substance. ô

The point had been addressed under Point 7.2.2 of the Dossion submitted and evaluated for the Annex I inclusion of fosetyl under Drective 91/444/EEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005). Consequently there is no detailed description of this existing data in this Supplementary Dossier.

The evaluation revealed that the study may be used for evaluation but results should be considered as indicative, i.e. as supplemental information with no use in risk assessment. It should also be noted that by its design the data resulted in values for the desorption of phosphonic acid (i.e. Kd) rather than values of adsorption that would result from batch equilibrium tests according to DECD 106. Values of Kd were determined to be 8.5, 30.1 and 139 bil/g for the three wils loam, silt loam and loam, respectively. The results were well in line with those described in the next section for KCA 7.1.3.2/01.

As an overall conclusion, sorption data to the metabolite phosphonic acid in terms of values of Kd

Study summaries of existing studies and publications on adsorption of metabolites, i.e. phosphonic acid, to soil:

Following another request by the RMS, this document was updated by inclusion of summaries for the existing data, i.e. studies and publications submitted and evaluated during the process of onnex for inclusion of fosetyl under Directive 91/414/EEC and being still of relevance for the EU approval renewal process.

Report: KCA 7.1.3.1.2/01 Phosphorous acid: Adsorption on three soils Report No.: R014228 Document No.: M-189213-01-1 Guideline(s): none Guideline deviation(s): not applicable **GLP/GEP:** no

Title:

M-189203-01-M-189203-01-M-189203-01-M-189203-01-M-18920-M-1990-M-1 Executive Summary The adsorption behaviour of phosphonate was studied following application of phosphonic action at a test concentration of 2 mg/L to three French soils. for 24 hours.

Values of adsorption constants in terms of Kd,ads were 8,55 mL/2 , **30**:15 mt⊮g (and 139.05 mL/g (The corresponding values referenced to organic carbon content of soil (Koc,ads) were 578, 2818 and 3254 mL/g, respect vely.

Ø, Due to performance at one lest concentration no values for the Freundlich adsorption coefficient (K_{F,ads}) or the Freundhich coefficient 1/n in soil were determined. \bigcirc O)

° The results of this non-GLP study were evaluated as supplemental information with no use in risk assessment. 🔊 Ľ \bigcirc ð Ô \bigcirc Designed as indicative in study conduct and reporting the study did not follow OECD Guideline 106.

for example, regarding pretests to determine adsorption equilibrium and stability of the test substance, the testing at various test concentrations, performance at controlled test temperature or determination of a material balance including the determination of the extent of test substance adsorbed to soil.

ERIALSAND METHODS

× 1

A. MATERIALS

The origin, purity and identity of the test material was not reported and thus not specified.

2. Test Soils The study was performed with three soils as characterised in detail in Table 7.1.3.1.2-1.

Table 7.1.3.1.2-1: Physico-chemical properties of test soils

Parameter		Soil	o »
Soil Designation			<u>F</u>
Geographic Location			Ó
City			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Country	France	France A France	, da
Textural Class	<mark>لے Loam</mark>	Silt loam	Å.
$\frac{\text{Coarse sand (\%)}}{[200 \mu\text{m} - 2 \text{mm}]}$	<mark>23.9</mark> 💎		~ ~
Fine sand (%) $[50 - 200 \mu m]$	<u>14.4</u>		¥ K
Coarse silt (%) $[20 - 50 \ \mu m]$	21.4	$Q^{2}\frac{43}{6}$ $Q^{22.6}$ $Q^{22.6}$ $Q^{22.6}$	L.
Fine silt (%) $[2 - 20 \ \mu m]$, Q'
Clay (%)	<u>د 16.6</u>	<u>24.5</u> <u>20.4</u> <u>2</u>	<u>J</u>
pH (KCl)	0 [°] 6.1		o
Organic Carbon (%)		$\sqrt{1.07}$ 0° 1.20°	<u> </u>
Organic Matter (%)			S. S
Cation Exchange Capacity (meq/100 g)			

B. STUDY DESIGN

1. Experimental Conditions

Details of experimental conditions were only briefly reported. The test was performed by incutation of 20 g soil samples with 100 mL aqueous solution of phosphonic acid at a concentration of 2 mg/L at unknown temperature for 24 hours.

0

2. Sampling

An unknown number of scill sample's were removed for analysis after 24 hours of incubation.

Ô

3. Analytical Procedures

Following centrifugation, soil and supermatant were separated and the supernatant filtered on GF/A filters.

The concentration of phosphonates in the supernatant was determined by derivatization with trimethylsilyl diazomethane (PMSD) to form the methyl derivative followed by gas chromatographic (GC) analysis and the use of a flame photometric detector (FPD). The determination followed method AR154-97 not reported in detail. No method timit of quantification (LOQ) was reported.

RESULTS AND DISCUSSION

A. DATA The results of adsorption tests of phosphonic acid onto three French soils were summarized in Table 7.1.3.1.2-2.

Table 7.1.3.1.2- 2, Adsorption of photophonic acid to soil

Soil Soil	′Kd, ads S L∫[mL/g₽	<mark>K_{oc, ads} [mL/g]</mark>
	8.55	<mark>578</mark>
	y 30.15	<mark>2818</mark>
	<u>139.05</u>	<mark>3254</mark>

~~

The adsorption of phosphonate to soil in terms of values for the adsorption constant $K_{d,ads}$ ranged from 8.55 and 139.05 mL/g. The corresponding values of adsorption constants based on organic carbon of soil ($K_{oc,ads}$) ranged from 578 to 3254 mL/g.

B. MATERIAL BALANCE

Following use of non-labelled test material no material balances including the determination of ponextractable residues could be established.

C. TRANSFORMATION OF TEST SUBSTANCE

The decrease of the concentration of phosphonate in the water phase was followed. Consequently, the degradation of the test item was not investigated.

III. CONCLUSTONS

Following application of phosphonic acid, values of adsorption constants of phosphonate in terms of $K_{d,ads}$ were 8.55 mL/g (), 30.15 mL/g (), and 39.05 mL/g (), and 39.05 mL/g (), the corresponding values referenced to organic carbon content of soil ($K_{o,Gds}$) were 578, 2818 and 3254 mL/g, respectively. Due to performance at one test concentration no values for the Freundlich adsorption coefficient

(K_{F,ads}) or the Freundlich coefficient 1/n in soil were determined. No correlation of adsorption was found for organic carbon content cation exchange capacity or pH of the soils. The results of this non-GLP study were evaluated as supplemental information with no use in risk

assessment. Designed as indicative in study conduct and reporting, the study did not follow QECD Guideline 106,

for example, regarding pretests to determine adsorption equilibrium and stability of the test substance, the testing at various test concentrations, performance at controlled test temperature or determination of a material balance including the determination of the extent of test substance adsorbed to soil.

CA 7132	A god sor	y" ntion (N Ö		
CA 7.1.3.2	Saged sol					0
Report:	KCA 7	1.3.2/01			2001; M¥204	613-01-1
Title:	Sing Sing Pif	ied sorption	rudy cophos	splorous alo	l on Øifferent	t soils
Report No.: 🔊	C01343	70 1		ð ^v	N.	
Document No.:	M-204	\$3-01-20			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Guideline(s):	, Ø none Ô		~^^ . O ^y	w .c)	
Guideline deviation	s) not app	licate O		&, A ^Y		
GLP/GEP:	yes		D (
5				A(32		

Following ageing of phosphonic acid residues by incubation in aerobic soil desorption from soil had been investigated under conditions of the laboratory in study KCA 7.1.3.2/01 using:

• five soils incubated at ambient temperature and 70% of MWHC under aerobic conditions of the laboratory following application of non-labeled phosphonic acid.

The point had been addressed under Point 7.1.2 of the Dossier submitted and evaluated for the Annex I inclusion of fosety under Directive 91/414/EEC as published in the corresponding DAR of RMS France and its Final addendum (September 2005). Consequently there is no detailed description of this existing data in the Supplementary Dossier.

The evaluation for the Annex I inclusion of fosetyl under Directive 91/414/EEC revealed that residues of phosphonic acid were found to undergo ageing in aerobic soil as indicated by increasing timedependent sorption. From results of extraction with water the RMS France calculated values of Kd for phosphonic acid after 1 day and 34 days of equilibration as summarized in Table 7.1.3.2-1.

Seil	Kd					
5011	Ageing time of 1 d	Ageing time of 34 d				
Soil A, Loam	3.3	7.1				
Soil B, Sand	2.3	5.7				
Soil C, Clay	6.7	48				
Soil D, Loam	8.0	65				
Soil E, Silty clay	65	م <u>الجمع 65</u>				
Values derived from mean valu	les of duplicate samples	S A				

he strong ador t cannot b The data were considered to be indicative, i.e. supplemental information, since the strong adsorption of phosphonic acid to soil observed was regarded in a correlation of the strong adsorption. of phosphonic acid to soil observed was regarded as a complex phenomenon that cannot be readily characterized by batch equilibrium data. It was also questioned that the sorption of phosphonic acid to soil could be described by use of Koc as input into environmental risk assessment

Study summaries of existing studies and pub of meta phosenonic acid, to soil:

Following another request by the RMS, this document was updated by inclusion of summaries for the existing data, i.e. studies and publications submittee and evaluated during the process of Annex I inclusion of fosetyl under Directive 91/414/EEC and being still of relevance for the EU approval renewal process.

Report: ; 2001; M-204613-01-1 Title: Report No. 2046/13-01-1 Document No Guideline(s) Guideline devi GLP/GEP

Executive Summarv≀ A simplified sorption study was performed by application of phosphonic acid to five French soils at a concentration of mg/kg and ageing of residues by incubation in the dark under conditions of the laboratory (20 & C, 70 & of max. WHO) for & day on maximum. ~Õ

ð Ô, Results from extraction with water in comparison will aqueous ammonia buffer demonstrated that the latter was significantly more officient.

In conclusion, extraction of phosphonate residues was more exhaustive when using aqueous ammonia buffer solution, than for water. Following ageing under aerobic conditions extractability of phosphonate residues decreased significantly with time. Among other potential factors of influence (i.e. microbia Ptransformation) there wer indications that the extent of extractability was dependent on soil characteristics such as the cary and organic carbon content

Being a non-guideling study in its design, the data were considered as indicative, i.e. supplementary information J.

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

I. MATERIALS AND METHODS

A. MATERIALS

1. Test Material

2. Test Soils

1. Test Material		- E A 61620D2	1		
Analytical grade phosphonic acid w	as used (batch	1 EA51528D2	, chemical pu	<u>rity</u> 98.3%).	
2. Test Soils			7	° (
Five soils originating from France	were used as	characterised	in detail in	Table 7.1.3 2^{-3}	2. The soils
had been sieved to a particle size \leq	<mark>2 mm.</mark>	Ö	<u> </u>	ž.	
		V	Q	, C	
Table 7.1.3.2- 2: Physico-chemical	l characteristic	es of the soils	<u></u>	[°] [°]	
Parameter			Soit Soit	R, O	Ø Ø
Soil Designation	A &	کہ <mark>B</mark>	× Z	r jo v	
Geographic Location	0"	K Ö		Ø L	A
City					
Country	France	France		France &	Pance
Textural Class (USDA)	Loap	Sand 1	Clay	N Loan	² Silty clay
Coarse sand (%) [2000 μm – 2 mm]	2 <mark>23.2</mark>	° €.3		⁰ <mark>40.4</mark> ≻	0.2
Fine sand (%) [50 μm – 2000 μ@n]	、∜^{19.8} ⊘ ້	S <mark>4.8</mark> 0	2 <mark>3.6</mark>	∼ <mark>3.6</mark> &	<mark>1.0</mark>
Coarse silt (%) [20 μ m – 50 μ m]	23 🕵	<mark>0.9</mark> [∞]	10.42	8.7 °	<mark>17.3</mark>
Fine silt (%) [2 μm – 20 μm]	2 <u>37.1</u>	1 <u>.5</u>	2 <u>2,6</u> °	y 2 <u>25</u>	<mark>32.0</mark>
<mark>Clay (%)</mark> [< 2 μm] 🖓 🔬	12.8 ×		<u> </u>	2 2 4.8	<mark>49.5</mark>
pH (water)	[©] 6.8 [©]	∑ <mark>5.2</mark> √	[∞] 8.¥	<u>کم 8.3</u>	<mark>6.8</mark>
pH (1 M KCl)	» م <mark>%</mark> «	× 4 a	7.9	∛ <mark>8.0</mark>	<mark>6.1</mark>
Phosphorous (H ₂ O ₅) 🚱 👌 🏷	≪ <mark>0129</mark> ~~	<u>\$</u> 9.137	<mark></mark>	<mark>0.259</mark>	<mark>0.027</mark>
Organic Carbon (%)	& 0.573	چ <mark>1.534</mark>	3.166	<mark>1.391</mark>	<mark>3.588</mark>
Organic Matter 🕅 🖉 🖉	<mark>٥[%]٩% رو</mark>	<mark>` 0.294</mark> (5 65	<mark>2.39</mark>	<mark>6.17</mark>
Cation Exchange Capacity (meq/100 g)	<u>6.4</u> ~~~	A .2	<mark>26.3</mark>	<mark>8.7</mark>	<mark>25.0</mark>
Water Holding Capacity (%)	29.8 [°]	_	∕≫ <mark>56.3</mark>	<mark>48.8</mark>	<mark>53.6</mark>
	N°.				

B. STUDY DEST

Experimental Cooditions

1. Experimental Conditions The tests were performed in glass flasks (250 mP) each containing 50 g dry weight of soil and the samples adjusted to soil moisture of 70% of the maximum water holding capacity (MWHC). The test substance was applied as aqueous solution drop wise to the surface of soil samples to result in a test concentration of A mg/kg soil. The samples were incubated at ambient temperature in the dark for 83 days in maximum. 🚄

2. Sampling Duplicate samples were removed for analysis after 1, 34 and 77 days of incubation by using water and, after 1, 34 and 83 days of facubation by using aqueous ammonia buffer as solvent for extraction.

Analytical Procedures 3.

Soil samples were extracted with water or aqueous ammonia buffer solution at ambient temperature for one hour. The extracted soil was rinsed twice with isopropanol. Combined extract and rinses we're filled up to the mark with isopropanol. An aliquot of the combined solution was subject to decationisation using a cation exchange resin. An aliquot was concentrated and phosphonate cisidues were derivatized with trimethylsilyl diazomethane and the methyl ester derivate quantified by as chromatographic (GC) analysis on semi-capillary column using a flame photometric detector and the use of external standards (method AR 214-99). The method limit of guantification (LOG) 0.100 mg phosphonic acid/kg soil.

Page 133 of 237

2016-07-19

П. **RESULTS AND DISCUSSIO**

Ø

A. DATA

The results of extraction of phosphonate residues from soil after ageing of residues under accobic incubation conditions were summarized in Sable 22.3.2, 3 (extraction with water) and in Table 6 7.1.3.2-4 (extraction with aqueous ammonia buffer solution). Ø M

C Table 7.1.3.2- 3: Phosphonate residues extracted with water from five soils following ageing at various Į incubation interval 1 K) Ň Ô

		.0″	~~	•. Š	J.Y	. 6		N.	Ň	Ĉ
<mark>Soil</mark>	Mean		103		lacubat	ion time	days)	õ	S	l C
	SD a		<mark>ໍ 1</mark>	r 4	ž (9 <mark>84</mark> {	1	7 <u>~</u>	3 <mark>77</mark> 🦕	V
A	mean		<mark>38,1</mark>	j.	4	22 J	, Q		<mark>11.4</mark> 0 [®]	
A	<mark></mark>		<mark>€0.9</mark>	Ő.	, O	±2.8	S .		±324	
B	mean A		60.2	ý, No,		25.5			9.6	
				A A	<u></u> >	<u>=10</u>	-0¥	- K	±3.1	
C C	SD A		<u>±0,5</u>			@.⊃ ² ±0.0		D	<5% n.a.	
<u> </u>	^o mean ^o SD <i>b</i>	0	20.0 ±16.5	N. C. C.		34 ±1.1 ×	ŷ.		<mark><5%</mark> n.a.	
E E			3.4 €9.1		- S	2.6 ±0.4	*		< <mark>5%</mark> n.a.	
All values	spressed as percent	nage of	hosph	onate req	vered	A				
DAT: days	after treatment &	D: stæødå Ø	rd devis	ation; n.	a. = nor	pplicable	due to l	ow resid	dues	
			y O		ð S					
A A		Ő			Ŭ					
L.										
L. C. L. C. L.			Ŕ	,						
		~	D							
Č ^{O'}										

Table 7.1.3.2-4: Phosphonate residues extracted with aqueous ammonia buffer from five soils following ageing at various incubation intervals

<mark>Soil</mark>	Mean		Incubation time (day	ys)	٦.٩.٩
	<mark>SD</mark>	1	<mark>34</mark>	<mark>∕∼ 83</mark>	
Δ	mean	<mark>89.0</mark>	78.3 ¹	^م 25.6	Y
A	<mark>SD</mark>	<mark>±1.8</mark>	-	<u></u>	29 B
B	mean	<mark>81.4</mark>	رچ <mark>73.1</mark>	^{33.6} [∞] ∕	
	SD SD	<mark>±0.9</mark>	💎 <mark>±9.9</mark>	<mark>±0.℃</mark> ~	
C	mean	<mark>66.9</mark>	<u>کې 22.4</u>	1915 1 Q	S 4
	<mark>SD</mark>	±3.9		° & - & .	
П	mean	<mark>75.3</mark> 🖓	33.1 ~	19.0 v	
	SD	±3.5 ×	©° <mark>⊉1.9</mark> `	× <mark>8.8</mark> ×	
F	mean	<mark>54.8</mark> ట్	<mark>్ర 33.6</mark> రో (30.8 ~	°↓ ¢
	<mark>SD</mark>	<u><u></u> <u></u> </u>	∽ <mark>≭l.l</mark> ∡	<u></u>	, di

All values expressed as percentage of phosphorate recovered 4 DAT: days after treatment, SD: standard deviation value for single replicate

\$ 1

B. MATERIAL BALANCE

Following use of non-labelled test material, no material balance including the determination of nonextractable residues could be established.

C. EXTRACTABLE AND NON-EXTRACTABLE RESIDUES

Ø1

The results demonstrated aqueous ammonia buffer to be a significantly more efficient extraction solvent than water.

Recoveries of phosphonale residues from soft were \$9.0% (soil 4), 81.4% (soil B), 66.9% (soil C), 75.3% (soil D) and 54.8% (soil E) for aqueous ammonia buffer after one day in comparison to 38.1% (soil A), 60.3% (soil B), 22.8% (soil C), 20.0% (soil J) and 3.4% (soil E) for water after the same time of incubation.

Recoveries of phosphorate residues from soil decreased steadily to 25.6% (soil A), 33.6% (soil B), 19.5% (soil C), 19.0% (soil D) and 30.8% (soil E) for aqueous ammonia buffer after 83 days in comparison to 11.4% (soil A), 9.6% (soil B), <5% (soil C), <5% (soil D) and < 5% (soil E) for water after 77 days of inclubation.

There were therefore indications that the difference in extraction efficiency for the two solvents was due to the clay content and the organic carbon content of soil.

D. VOLATILES

Owine to the nature of the test material the formation of volatile components was not anticipated and thus not determined.

E. TRANSFORMATION OF TEST SUBSTANCE

The study was designed to characterize the behavior of phosphonate residues under conditions of desorption following various time intervals of ageing. It was therefore not the objective of the study to derive a rate of degradation for phosphonate residues in aerobic soil.

Ø

III. CONCLUSIONS

In conclusion, extraction of phosphonate residues was more exhaustive when using aqueous ammonia buffer solution than for water. Following ageing under aerobic conditions extractability of phosphonate residues decreased significantly with time. Among other potential factors of influence (i.e. microbial transformation) there were indications that the extent of extractability was dependent on soil characteristics such as the clay and organic carbon content. Being a non-guideline study in its design, the data were considered as indicative, i.e. information within the EU Annex I inclusion process. N. CA 7.1.4 Mobility in soil CA 7.1.4.1 **Column leaching studies** Column leaching of the active substance CA 7.1.4.1.1 15\$\$29 KCA 7.1.4.1.1/0 **Report:** Fosetyl-Al (algoinium ris Title: /hlpkosphoi Report No.: R000781 M-159329-Q1-1 Document No .: Guideline(s): US Fedgral Registe 835.1200 and 885 Guideline deviation(s): none **GLP/GEP:** ų0Ø 163677-01-\$ **Report:** ndum to repo@AG/C&LD/AN/025.82 dated Jan. Title: Report No .: Document No. Guideline(s): Guideline degiation(s) GLP/GEP: 199**6**;/M-16**3**681-01-1 **Report:** PachingStudiesAddeedum to report AG/CRLD-AN no.025/82 Title: Report No .: Document No. Guideline(s): Guideline deviation(s): **GLP/GE**

The mobility of residues of fosetyl-auminum (fosetyl-Al) in soil had been investigated under conditions of column leaching in the boratory in:

soil columns of four test soils eluted at ambient temperature with 200 mm rainfall-equivalent of water under conditions of the laboratory following application of 1-¹⁴C-labeled active substance (KCA 7.1.4.1.1/01, amended by KCA 7.1.4.1.1/02 and KCA 7.1.4.1.1/03).

This data requirement had been addressed under Point 7.1.3.1 of the Dossier submitted and evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005). Consequently there is no detailed description of this existing data in this Supplementary Dossier.

Column leaching studies were thus performed with the active substance fosetyl-Al and evaluated, however, resulted in view of the significant non-stability of fosetyl-Al in difficulties in interpretation of data. Conclusively there was no use of the information since no reliable estimation could be naade regarding the potential for mobility in soil.

The observed non-stability under the conditions of column leaching was well in line with existing and actual results in adsorption tests to soil (KCA 7.1.3.1.1/01 and KCA 7.1.3.1.1/03) or as indicated by tests on aerobic soil degradation.

The evaluation revealed that the mobility in soil was assessed conservatively by assuming no significant adsorption to soil as indicated by a value of Kfoc set to 6 mL/g for use in environment risk assessments.

Considering the non-stability of fosetyl-Al a new column leaching study would not contribute to better understanding of the mobility of the compound in soil therefore being regarded as not necessary.

Study summaries of existing studies and publications on column leaching of the active substanc ×)

K, V Following another request by the RMS, this document was updated by inclusion of summaries for the existing data, i.e. studies and publications submitted and expluated during the process of Annex I inclusion of fosetyl under Directive 9/7414/FEC and being still of relevance for the EU approval renewal process. ő.¥ \sim

K)

.	V G.			N D	
		S D	<i>"0"</i>		× Ŷ
Report:	KCA 74.4.1.1	/01			91982; M-159329-
×	<mark>⁄01-1</mark> 🌮 🎺				2
Title:	Fosetyl-Al Glu	min um triso-et	yhophosphonat	e): Soil leaching	g studies
Report No.:	R 20784	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9.0	L 0	
Document No.:	M-159929-01	-1 × L			
Guideline(s):	US Coderal Og	iste, 1978, 1, 1	32 2971	equivalent to U	IS EPA OPPTS
<u> </u>	835.4230 and 8	<mark>35.1240 🔊 🕺 </mark>	Q O	4	
Guideline deviation(s):	zone 🖉	Å Ö		Ф [°]	
GLP/GF	<mark>no</mark> S &	×, A		¥	
	27 4	S. N			
Executive Summary	4 8				

The potential for leaching of non-aged and aged residues of [14C]-fosetyl-Al was investigated under laboratory conditions for the four soils sandy loam, loamy sand, silt loam and clay loam by soil column leaching and by somethin-layer chromatography (soil-TLC).

Non-aget column leaching: Investigations were performed with soil columns of 30 cm in height. Following application of fosetyl-Alvat a rate equivalent to 80 kg/ha columns were irrigated drop wise with in total 1190 mL of water equivalent to 200 mm rainfall for approx. 14 hours. Soil segments and leachate were analysed.

Aged colume leaching: Samples of soil sandy loam were treated with fosetyl-Al at an application rate equivalent to 80 kg a.s. That (500 mg/kg soil) and incubated at 21 °C and 72% moisture of water capacity at 0.33 bar in the dark for 30 days. Radioactive residues were determined after 30 days for duplicate samples followed by placement of subsamples (representing 80% of the total sample each) on top of the soil columns. The leaching phase was conducted in the dark at 21 °C for 45 days. Soil segments and leachate were analysed.

¢°

Soil thin layer chromatography: Soil-TLC was performed on both sterilized and biologically active soils. The elution behaviour of fosetyl-Al was investigated against 2,4-dichlorophenoxy acetic acid as a reference compound. Soil was segmented and radioactivity determined by combustion.

Extensive transformation of fosetyl-Al was observed in microbial active soil under conditions of nonaged and aged soil column leaching in the laboratory. The transformation under formation of volatile radioactivity resulted in significant losses in the total material balance, in particular when microbial active soil was used. Results of investigations via soil-TLC using sterilised soil indicated a potential for mobility of fosetyl-Al in soil in case other factors of influence like degradation can be excluded.

In view of the rapid transformation of fosetyl-Al and its residues inder the conditions of the fest the results can be used as indicative information on the potential for mobility in soo only of the fest the set of the fest the fest the set of the fest th

I. MATERÍALS AND MÉTHODS	
	0
$\mathbf{A} \mathbf{MATERIALS} \qquad \qquad \mathbf{A} \mathbf{A}$	
Test Material	
[ethyl-1- ¹⁴ C]-fosetyl-Al $O^{\vee} \swarrow \checkmark \checkmark$	
Sample ID: KW6/1025	
Specific Activity: 1.2 mBa (3.5 us/mg)	
Padiochemical Durity	
Radiochemical Funty.	
	_
he specific activity of the test substance was diluted by addition of non-labelled fosetyl-Al (batch	n
EA-1167-1).	
Test Soils	
The study was performed by using three soils sieved to a particle size < Man and as characterized in	n
The study was performed by using three soles of two was a particle size - Anni and as characterized in	
able 7.1.4.1.1.2. For preparation of soil-11.2. plates, the soil was sieved to 0.5 mm.	
Cable 7.1.4 11 Devoice chamical protocortice of test file	
abie 7.1.3. kr - 1. r nysteu-enekaten properties of test solls	
Parameter , W , B S S S Soil	٦

Parameter	<u> </u>	<u> </u>		<u> </u>	<mark>Soil</mark>	
Soil ID	S)	4 8	» Sandy Koam	Clay Poam	Loamy sand	Silt loam
Geographic Loca	ation 🖉			, Not	reported	
Textural Class	cation		Sondy loan	Clay loam	Loamy sand	<mark>Silt loam</mark>
Sand (%)	50 -2000	Part S	62 <i>6</i>	34.0	<mark>81.2</mark>	<mark>15.2</mark>
Silt (%)	2 μm – 5	<mark>0 μm]</mark> 🔊	20 <u>9.2</u> x	<mark>ر 27.6</mark>	<mark>13.8</mark>	<mark>55.3</mark>
Clay ()	<mark>< 2 μιτι</mark>	, ^Q ~	13.6 ×	<mark>37.5</mark>	3.1	23.0
pH 📣	J.		U 5,3	<mark>7.6</mark>	<mark>6.6</mark>	<mark>6.6</mark>
Organic Materia	<mark>l (%)</mark>	Ø jÖ		<mark>2.6</mark>	<mark>1.3</mark>	<mark>2.3</mark>
Cation Exchange	Capacit	y [mæg/100 æ	2 <mark>13</mark>	<mark>21</mark>	<mark>5</mark>	<mark>14</mark>
Water Capacity	@ 0.33 ba	ar 🛞 👘 🕬	<u>24</u>	<mark>26</mark>	<mark>16</mark>	<mark>26</mark>
1	N.	O N	~Q			

B. STLØY DESIGN

1. Non-aged column leaching

The sieved soils were packed up to 30 cm height into a column (8.7 cm in diameter), assembled from 5 cm height glass cylinders. The soil columns were topped with a glass fibre filter, on which 12 mL of an aqueous solution containing 47.5 mg of fosetyl-Al (specific activity of 151 kBq/mg) were dripped.

The application rate was 80 kg/ha, which is equivalent to the highest recommended rate of fosetyl-Al assuming a treated area of 59.4 cm².

After treatment, each column was eluted with 1.19 L of water equivalent to 200 mm rainfall, of which 25 mL were delivered first with a pipette and the remainder being applied at a flow-rate of 8 mL/min⁰ using a pump. After complete elution of the water after approx. 14 hours the soil columns were allowed to drip for an additional 24 hours period. The soil column was then desassembled to afford six 5 cm height segments. Ô

The percolates were analysed by liquid scintillation counting (LSC for total radioactivity and the contents were characterized by GLC and HPLC. Radioactivity on the soil was determined by combustion/LSC. combustion/LSC.

2. Aged column leaching

The test was performed using duplicate samples of soil sandy toam. The insubation phase was performed under flow-through conditions consisting of glass flasks each containing soil samples of 98 g dry weight. Volatile radioactivity was collected each by two successive traps containing sodium hydroxide and sulfuric acid, respectively, Fosety-Al was applied at a concentration of 500 mg/kg soil equivalent to an application rate of 80 kg a.s that in the field 3° $3^{$ and 72% moisture of water capacity at 0.33 bar in the dark for 30 days Õ Volatile radioactivity was collected and determined after 3, 8, 15 and 30 days of incubation. Ø

Ĩ, Ŋ Following 30 days of incubation, the total radioactivity of homogen, seal was determined. The portion extractable with water was determined for a sub-sample of \$ 2 by extraction twice with 50 mL of water for 30 minutes (magnetical stirring) A sub-sample (80% of the fotal residual radioactivity, equivalent to 47.7 mg fosteyl-Al) each was

placed on top of a sold column confirming the same type of untreated soll. Ĩ Ŵ Ø

05 \sim 2 The soil columns were irrigated with water in the dark at 21,44 C at a daily rate of 29 mL (i.e. 4.9 mm height for 45 days Water started to drip from the soil columns after six days of irrigation to result in the collection of eleven successive leachate fractions of about 100 mL.

After irrigation, the soil in the columns was segmented into the originally treated layer and six layers of 5 cm The radioactivity was determined by LSCOn leachates and in soil by combustion/LSC.

Test item and transformation products in percolates were quantified by HPLC/radio-detection. Following derivatization fosets and phosphonic acid were determined in percolates by gas chromatography (GC) and the use of a phosphorus specific flame photometric detector.

~^~ Ô 3. Soil thin-layer chromatography Q

Following steving to 0.5 mm two soil thin layer plates were prepared per test soil. One plate consisting of biologically active soil was developed while the other was sterilized by heating overnight at 120 °C. ¹⁴C-Fosetyl-Al and C-2,4=D as ofference were spotted as aqueous solution onto the plates. The airdried plates were developed at 10 °C horizontally with distilled water. Following development the radioactive spots were located on the air dried plates and scraped off for determination of total radioactivity by combustion SC. Land Charles

~[©] **11. RESULTS AND DISCUSSION**

Results of tests using biologically active soils indicated significant transformation of fosetyl-Al. It was therefore for possible to provide conclusive information on the mobility of the active substance fosetyl-Ad in soil.

Transformation of fosetyl-Al was insignificant following application to sterile soil-TLC plates. The results can be used as indicative information to evaluate the mobility of fosetyl-Al in soil.

Xì

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

Non-aged column leaching 1.

The data representing the results of non-aged column leaching of fosetyl-Al in soil were summarized in Table 7.1.4.1.1-2 to Table 7.1.4.1.1-5.

Total material balances were 82.8% AR for soil sandy loam, 89.2% AR for clay loam, 81.6% AR for a loamy sand and 84.4% AR for the silt loam.

In this context it should be noted that the total runtime of the leaching phase was at least about 38 hours. In addition, the soil columns were an 'open system' with no traffs to collect volatiles. In view of the spontaneous transformation of fosetyl residues in contact with biologically active soft (see a for example, Section CA 7.1.1.1), the losses can be explained by formation of the volatile components Ô like ethanol and carbon dioxide that escaped from the test system.

The radioactivity retained in the soil was nearly unitermly distributed within the entire soil column for soils loamy sand and the silt loam. For soils sandy foam and clay loam some gradient was observed for the distribution of radioactive residues along the soil columns resulting in decreasing concentrations from the top to the bottom. K,

Total radioactive residues in column percentates were 0.4% AR for the sandy boam, 13.2% AR for the clay loam, 43.8% AR for the loamy sand and 14.0% AR for the silt loam. A start was a sand and 14.0% AR for the silt loam. A start was a sand and 14.0% AR for the sellective residues in percolates of the sandy loam soil were thus hegligible. Total radioactive residues in percolates distributed and forsetyl (3.4% AR), ethanol 🔀 2% R) and an unknown component (7.5% AR) for soil clap loam, into fosetyl (< 2% AR), ethenol (36% AR) and an unknown component ($\leq 2\%$ AR) for soil loamy sand and interformer for $(\leq 2\%$ AR) ethanol ($\leq 2\%$ AR) and an unknown component (10% AR) for soil silt loam. ő, L, \bigcirc

It should be considered that the situation of non-aged soil column leaching testing was not comparable to those of standard degradation tests in aerobic spil. While the soil columns and the percolates contained biologically active soil and its organisms on one hand there were limitations on aeration of soil due to the 'flooded' situation on the other hand. In the absence of detailed information about the conditions of collection, storage and handling of the samples in the following, this is likely to be the cause of artifact formation for test substances rapidly transformed like foretyl and its rapidly formed residues.

<u> </u>	Compartment	、 <mark>Recovery</mark>
	Segment 1 (top 5 cm)	<mark>6.3</mark>
	Segment 2 (3-10 cm)	<mark>17.3</mark>
	Segmen O (10-5 cm) O O	<mark>19.9</mark>
Soil (Segment 4 (1520 cm) $\sqrt{20}$	<mark>19.3</mark>
4	Segment 5 (20-25 cm)	<mark>13.9</mark>
	Segment 6(25-30cm)	<mark>5.7</mark>
~	Total reproactivity in sold segments	<mark>82.4</mark>
\sim	Fosetyl-Al (CC/phosphorus Detection, FPD)	<mark>≤ 1</mark>
, v	Fosetyl-Al (HPLC readio-detection)	<mark>n.a.</mark>
	Phosphonic acid/GC/phosphore detection, FPD)	<mark>≤ 1</mark>
a contraction of the second	Phosphonic acter (HPLC/radio detection)	<mark>n.a.</mark>
Water 🖉	Ethanol (Gcophosphorus detection, FPD)	<mark>n.a.</mark>
	Ethanol (HPLC/ratio-detection)	<mark>n.a.</mark>
	Wiknown (GC/ Prosphorus detection, FPD)	<mark>n.a.</mark>
	Unknown (HPEC/radio-detection)	<mark>n.a.</mark>
	Total radioactivity in percolates	<mark>0.4</mark>
Total adio	activity recovered	<mark>82.8</mark>

Table 7.1.4.121- 2: Non-aged column leaching of 14C]-fosetyl Al residues in sandy loam soil

n.a.: not analyzed/not applicable

All values expressed as percentage of applied dose

Table 7.1.4.1.1- 3: Non-aged column leaching of [¹⁴C]-fosetyl-Al residues in clay loam soil

	Compartment	Recovery (%)	l e a
	Segment 1 (top 5 cm)	17.4	
	Segment 2 (5-10 cm)	<mark>13.4</mark>	
	Segment 3 (10-15 cm)	<u>13.7</u>	
<mark>Soil</mark>	Segment 4 (15-20 cm)	<u>11.9</u>	
	Segment 5 (20-25 cm)	<u>11.4</u>	
	Segment 6 (25-30 cm)	6.2 L	
	Total radioactivity in soil segments	74.8	
	Fosetyl-Al (GC/phosphorus detection, FPD)		
	Place basic set (CC// last basic set of CD)	× 3.4	
	Phosphonic acid (OC/phosphorus detection, FPD)		
Water	Ethanol (GC/nhosphorus detection (FPD)		
w ator	Ethanol (HPL C/radio-detection)	$\sqrt{\frac{1}{\sqrt{2}}}$	
	Unknown (GC/phosphorus detection FPP)	Q na	
	Unknown (HPLC/radio-detection)	7 C	
	Total radioactivity in percolates		
Total radio	pactivity recovered	× 89.2 Č	
n.a.: not ai	nalyzed/not applicable		
All values	expressed as percentage of applied dog	Š, Č, Č	Ö 😽
			~~ ~
able 7.1.4.1	.1-4: Non-aged column leaching of [1/C]-fosetyl-A	Al residues in loa	pay sand soil
		Recovery	
	Compartment * 3° ° °	<u>(%)</u>	, ô ^g
	Segment (top form)	0. <mark>-</mark>	
	Segment 2 (5, 10 cm) S	6 , <mark>7.4</mark>	1
0.1	Segment 3 (00-15 cm)		4
<mark>5011</mark>	Segment (15-20 cm)		
_	Segment 6 (25-20 cm)		-
	Total radio edivity by soil sements	× 0.2 × 0.7 8	-
<u> </u>	Fosetyl-A (GC/mosphores detection FBD)	$0^{\prime} < 1$	
47	Fosety-Al (HPIC/radio-detection)	$\sqrt[3]{2} < \frac{2}{2}$	
	Phosphonic, acid (G6/phosphorus detection@PD)	12.6	
	Phosphonic acid (APLC/radio-detection)	n.a.	
Water	Chanol C/phosphorus detection, FPID	n.a.]
	Ethanol (HPL Oradio detection)	<mark>36</mark>	
A	Unknown (Gt/nhosphorus/Hetectico FPD)	na	
4	Olikhown (GC/phosphorus detection, TTD)		
	Unknown HPLC adio-delection	≤ <u>2</u>	
	Unknown GHPLCoadio-detection Total reducactivity in percolates	$\frac{\leq 2}{43.8}$	
Total radio	Unknown HPLC adio-detection Total redioactivity in percolates	≤ 2 43.8 81.6	
Total radio	Unknown (HPLC) adio-detection Total redioactivity in percolates pactivity recovered nalyzed/not applicable	≤ 2 43.8 81.6	
Total radio n.a.: not an All values	Unknown GEPhicapholus detection Total redioactivity in percolates pactivity recovered nalyzed/not applicable expressed as percentage of applied dose	≤ 2 43.8 81.6	
Total radio n.a.: not an All values	Unknown GEPhicapholus detection Unknown GEPhicapholus detection Total radioactivity in percolates pactivity recovered nalyzed/not applicable expressed as percentage of applicodose	≤ 2 43.8 81.6	
Total radio n.a.: not an All values	Unknown (HPLC) adio-detection Total redioactivity in percolates pactivity recovered nalyzed/not applicable expressed as percentage of applicables	≤ 2 43.8 81.6	
Total radio n.a.: not an All values	Unknown (HPLC) adio-detection Total reducactivity in percolates activity recovered halyzed/not applicable expressed as percentage of applied dose	≤ 2 43.8 81.6	
Total radio n.a.: not an All values	Unknown GEPhicapholus detections Total redioactivity in percolates pactivity recovered nalyzed/not applicable expressed as percentage of applie@dose	≤ 2 43.8 81.6	
Total radio n.a.: not an All values	Unknown dipple diagnorus detector, i i gre Unknown dipple diagnorus detections Total redioactivity in percolates pactivity recovered nalyzed/not applicable expressed as percentage of applico dose	≤ 2 43.8 81.6	
Total radio n.a.: not an All values	Unknown di PLC padio-defection Total radioactivity in percolates pactivity recovered nalyzed/not applicable expressed as percentage of applicodose	≤ 2 43.8 81.6	

Table 7.1.4.1.1- 5:	Non-aged column	leaching of [¹⁴ C	l-fosetyl-Al residu	<mark>es in silt loam soil</mark>
	a con agea containing	i i i i i i i i i i i i i i i i i i i	1000001111100100	

	Compartment	Recovery (%)	
	Segment 1 (top 5 cm)	_	
	Segment 2 (5-10 cm)	<mark>8.6</mark>	
	Segment 3 (10-15 cm)	<mark>14.1</mark> //	
<mark>Soil</mark>	Segment 4 (15-20 cm)	18.0 🔬	
	Segment 5 (20-25 cm)	<mark>16.6</mark> 🔬 🎙	
	Segment 6 (25-30 cm)	13.1 ×	
	Total radioactivity in soil segments	<mark>7004</mark>	
	Fosetyl-Al (GC/phosphorus detection, FPD)		
	Fosetyl-Al (HPLC/radio-detection)	Q [°] <u>≤ 2</u> °	
	Phosphonic acid (GC/phosphorus detection, FPD)	<u>∼y <mark>≤ 1</mark>0[°]</u>	
	Phosphonic acid (HPLC/radio-detection)	0 , <mark>n,a.</mark> 0	
Water	Ethanol (GC/phosphorus detection PD)	A <mark>n.a.</mark>	
	Ethanol (HPLC/radio-detection)	<u></u>	
	Unknown (GC/phosphorus detection, RPD)	<mark>n<u>a</u></mark>	
	Unknown (HPLC/radio-detection)	<u> </u>	
	Total radioactivity in percentates	<mark>14.0</mark> ≫	
Total radi	oactivity recovered	<u>~ 7 84.4</u>	
n.a.: not a	nalyzed/not applicable	s' 6' ¢	
All values	expressed as percentage of applied dose		

2. Aged column leaching Following an aerobic aging period of 30 days of soil sandy loam the results of the column leaching phase were summarized in Table 7.1.4.1.1-6. Following 30 days of aging and a feaching phase of As days the mean material balance of two

replicates was 71.5% AR. During the leaching phase, the soll columns were an open system' with not raps to collect volatiles. In view of the spontaneous transformation of fosetyl residues in contact with biologically active soil (see, for example, Section (A 7.101.1), the losses can be explained by formation of the volatile components that escaped from the test system Ľ P

The radioastive residues of fosetyl in soil after aerobic aging were predominantly retained in the soil segment applied to the columb (68.9% AR). Ŵ $\hat{\mathbf{O}}$

Radioactivity in other soil column segments way minor and pearly uniformly distributed. Since total radioactive residues in column percolates were below 0.1% AR, percolates were not subject to HPLC analysis. Following derivatization, G@ analysis of percolates was performed in order to investigate the leaching potential of phosphonic acid. Prosphonic acid was absent in any of the eluate fractions

Table 7.1.4.1.1- 6: Column leaching of [¹⁴C]-fosetyl-Al residues aged for 30 days in sandy loam soil

	Compartment	Recovery (%)	
	Radioactive residues in treated soil	<mark>68.9</mark>	
	Segment 1 (top 5 cm)	<mark>0.7</mark>	
	Segment 2 (5-10 cm)	0.2	
Soil	Segment 3 (10-15 cm)	<mark>0.1</mark>	
501	Segment 4 (15-20 cm)	0.1 🔊	
	Segment 5 (20-25 cm)	0.1	
	Segment 6 (25-30 cm)	<mark>9:Q</mark>	
	Total radioactivity in soil segments	£1 .3	
Water	Total radioactivity in percolates	∕Q <mark>∕0.0</mark> ∕o	
Total rac	lioactivity recovered	∼y <mark>71.@</mark>	
All valu	es expressed as percentage of applied dose 🕺 🔬 💿 👘	Ø XY V	
Mean va	lues of two replicates		

Mean values of two replicates

3. Soil thin-layer chromatography

In view of the extensive degradation of fosety) under conditions of soil column teaching, additional tests were performed by using soil-TOC. Soil-TLC is faster and readily applicable to sterile soil to separate factors of leaching and degradation. The results of tests under conditions of soil TLC were summarized in Table 7.1.4.1.1-7. R N

N Ø Ø The total radioactivity recovered as fosety-Al and for 2,4-D from the elution lane of sterilized soil was about 90%. In a preliminary experiment, the radioactivity recovered from soil of the chromatographic lane had been shown to be extractable with water (80% of the radioactivity recovered in aqueous extract). HPLC analysis of the extract indicated the presence of parent compound fosetyl only. Conclusively, the predominant portion of tosetyl remained unchanged ander conditions of soil-TLC using sterilised soil layers. An Rrof 1 was determined for the four soils thus to indicate higher C) D mobility than the deference compound 2,4-D. K,

Ø For biological active soil results in terms of Revalues of soil FLC were similar as for sterilised soils. However, radioactivity recovered as fosetyl-Ad was about 15 to 50% of the radioactivity applied to the lane of the plate.

Table 7.1.4.1.1- 7: Recovery of [R]-fosetyl-Alin Soil-BLC

ď

C.				
	2 µg spot ap	opfied to kane	🖓 12 🙀 spot ap	oplied to lane
Soil Soil	Non-Sterile >	Sterile 🔊	Non-Sterile	<mark>Sterile</mark>
Sandy loam		<mark>86</mark>	13	<mark>91</mark>
Loamy sand	<u>ని 21</u> ని	° <mark>90</mark> ∼y [*]	🖉 <mark>23</mark>	<mark>90</mark>
Site loam	<u>41</u> × ×	8	<mark>48</mark>	<mark>94</mark>
_∞ <mark>Clay loam</mark>		y <mark>Ø2</mark> S	<mark>54</mark>	<mark>94</mark>
$R_{\rm f}$ of fosetyl = 1	à à			
All values expres	sed as percentage	of Cotal radioactiv	ity recovered per l	ane

III. CONCLUSIONS

Extensive transformation	on of fosetyl-Al was observed in microbial active soil under conditions of mon-			
aged and aged soil column leaching in the laboratory.				
The transformation under formation of volatile radioactivity resulted in significant losses in the total				
material balance, in par	ticular when microbial active soil was used.			
Results of investigation	s via soil-TLC using sterilised soil indicated a potential for mobility of fosetyl-			
Al in soil in case other	factors of influence like degradation can be excluded,			
In view of the rapid tra	insformation of fosteyl-Al and its residues under the conditions of the test the			
results can be used as in	ndicative information on the potential for mobility in soil only.			
CA 7.1.4.1.2 Co	Jumn leaching of metabolites, breakdow wand reaction products			
Report:	KCA 7.1.4.1.2/01			
litle:	Leaching of (33P)-physphortons acid in two strils			
Document No :	M 158753 01 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Guideline(s):	USEPA (=EPAN $67-1$ (1072) 477			
Guideline deviation(s):	none L & Y Y Y Z J L Q			
GLP/GEP:	yes Q' & & & & Q' O O O 'N			
Report:	KCA, M.4.1.2/02			
Title:	Predicted environmental concentrations in groundwater (RECgw) for the fosetyl-Al			
	main metabolite prospherous acid following a serie ater ater and a under european			
Poport No ·	Conditions Code: AE E 936150 0 4 5 5 5 5 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
Document No :	M_{236511}			
Guideline(s):				
Guideline deviation(s):	vot applicable, ~ , ~ , ~ , ~ , ~			
GLP/GEP:				
Report: 🔊	KCA 7.k #.1.2/03			
Title:	Phosphonic age - Soil colume leaching in three soils			
Report Nø.:	20190226 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			
Guideline(s):	EPA Decertified assessment Guidelines (1982) Subdivision N. Paragraph 163-1 with			
Ourdennie(s).	modifications DECD Guidelines for the testing of chemicals: Leaching in Soil			
	Columns Guideline 912 (Adopted 13th April 2004)			
Guideline deviation(s):	none of Q of the			
GLP/GEP	yes J J A L			
Report:	KCA 7.1.4 12/04			
Title.	Phosphonic Acid Evaluation of Soil Column Leaching Data for Sorption Parameters			
Peport No :	for Use in Environmental Modelling			
Document No	M-SI1831-M-1 @-			
Guideline(s)	not applicable \sim			
Guideline deviation(s):	Got appreciable			
GLP/GEP: 2 A	no			
V				
\bigcirc				

The mobility of residues of phosphonic acid in soil had been investigated under conditions of column leaching in the laboratory in:

soil columns of two test soils eluted at ambient temperature with 508 mm rainfall-equivalent of water under conditions of the laboratory following application of ³³P-labeled phosphotic acid[®] (KCA 7.1.4.1.2/01).

In the absence of other reliable information characterising sorption and mobility of phosphorae acid residues in soil this data requirement had been addressed under Point 7, 3.2 of the Dossier submitted and evaluated for the Annex I inclusion of fosetyl under Directive guidade a published in the corresponding DAR of RMS France and its Final Addendum (September 2005).

Designs by OECD Guideline 312 follow existing guidelines, i.e. US EPA Subdivision N, as of 1 given as reference in the study KCA 7.1.4.1.2/019 The test design is also in line with newsoil courtemn leaching data submitted to be fully consistent for the whole data package. In summary this allows for the conclusion that the study KCA 2.1.4. 2/01 had no major deviation from designs according to OECD 312.

The evaluation revealed that the results of the column leaching test indicated very low mobility of phosphonic acid in soil. In the following the data of study CA 31.4.1 Sol were evaluated as submitted in document KCA 7.1. 1.2/02 in order to derive sorption parameters for use as input in environmental risk assessment. \$1 N

Sorption values in terms of Kalior physionic acid were derived from application of Aromatographic theory to describe the relation between mobility observed in column leaching and the transfer into sorption data as published by Lambert (1965) to result in values of Kd of 44 m kg for the sandy soil Fengate Farm and 46.3 mL/g for the sandy loam

Calculations were also performed according to problecations by Hamaker (1975) and MacCall (1981) as cited in OECD Guideline 3 (April 2004) to sesult in sorption values in terms of Kd for phosphonic acid of 48 m /g for the sandy soil Fengate Farm and 47.1 m /g for the sandy loam

The value of Rd of A mL/g from sandy soil Fengate Farm along with a value of 1 for the adsorption coefficient Ø/n was finally chosen to reflect a worst case to describe the sorption behaviour of

result as is in Fergate Farm and the construction of the construct
,Ø

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

New information: Sorption data to soil for metabolite phosphonic acid from additional soil column leaching study

For the Annex I inclusion of fosetyl under Directive 91/414/EEC, sorption data to soil were available for phosphonic acid from two soils.

In order to fully fulfil data requirements set by Commission Regulation (EC) to 283/2013 amending Regulation (EC) 1107/2009, additional sorption data to soil are submitted in the following in order to serve as a robust data set as input for environmental risk assessment. Ô

	8	
Report:	KCA 7.1.4.1.2/03	; 2015 M-532553-01
Title:	Phosphonic acid - Soil column leaching i	n three soils
Report No.:	20140226	
Document No .:	M-532553-01-1	a in a stra
Guideline(s):	EPA Pesticide Assessment Guidennes (A	982), Subdivision N, Paragraph 163-1 with
	modifications; OECD Guidelines for the	testing of chemicals? Leaching in Soil
	Columns Guideline 2 2 (Adopted 1 9th A	prif2004)
Guideline deviation(s):	none	
GLP/GEP:	yes O Y	

Executive Summary

The mobility and sorption characteristics of phosphenic and to soil were determined by column leaching tests on three soils

Phosphonic acid had been applied to the top of pte-equilibrated soil columns at a test concentration of 3 mg per column, equivalent to a field application rate of 15 kg/ha The soil columns were irrigated under saturated flow conditions of the laboratory at a temperature of 23.8 \$1°C in the dark by allowing $525 \pm 5 \text{ mm}$ aqueons of 0.01 M CaCl₂ solution to pass as artificial same for five successive days

Average total recoveries of phosphonic acid were 46.7% of the applied amount for columns of soil and 66.0% for soil II T.1% for soil No phosphonic Ĺ acid was found in the leachates of any soil column.

Phosphonic acid was mainly located on the top soil segments (0 to 3 cm) of columns to amount to 24.7% (5).1% and 35.8% of applied in average from two columns for the three soils, respectively.

and Methods

A. Materials

1. Test Material:

2. Soil:

range of pHQ organic carbon content and texture of soils amended the AKCA 1.4.4 2/01. The soil characteristics are summarised in Table 7.1.4.1.2-1.

2

Table 7.1.4.1.2- 1:	Characteristics	of test soils
	C	01 000000000000000000000000000000000000

% Gr Gr F

1. Experimental conditions:

1. Experimental conditions: The test systems consisted of three soil columns for each soil of car 30 cm in length and 5 cm in diameter. Duplicates were worked ap and analysed following the ingation phase while one column per soil serving as reserve with no further work up in the course of the stady. The columns consisted of PVC material with a glass wool plug at the bottom, followed by a layer of 5 cm silica sand. The columns were packed with air-dried soil 2 mm sieved to result in a total height of approx. 31 cm. The columns were saturated with aqueous 0.01 M CaCh solution overnight thus avoiding enclosure of air into the soil pores. Following this phase the surplus of CaCl Solution was allowed to drain and volume of drained water (oppping volume) were determined For final pre-equilibration the soil columns were re-watered from the bottom till the CaQl₂ solution just covered the top soil layer of the column.

A solution of phosphore acid was applied on top of each columns to result in a total amount of 3 mg test item applied percolumn equivalent to a field application rate of 15 kg/ha.

Õ The soil volumns were irrighted with aqueous 0.01 M CaCl₂ solution equivalent nominally to 50.8 cm/m² or 508 pair (actual: 525 ± 5 mm) sumulated rainfall for five days. The CaCl₂ solution percontated through the columns of a flow rate of approximately 8 to 9 mL/h while maintaining a constant aqueous layer at the top of the soil columns during the irrigation phase (saturated flow). The tests were performed at temperature of 23.8 1 °C in the dark.

It should be noted that the study setup was not intended to represent a realistic leaching scenario, but was designed to provide mobility parameters (sorption characteristics) of phosphonic acid under worst case to extreme wonditions of eaching. The set-up allowed for a constant flow of water through the soil columns thus enabling conditions of saturated flow and the latter being the prerequisite for an estimation of Kd alues according to the mathematical relationships derived from the theory of chromatographic flow (for evaluation, see KCA 7.1.4.1.2/04).

ĉ

2. Sampling:

Following irrigation the soil columns were frozen and cut into segments of 1 to 2.5 cm in height (i.e. five 1 cm segments from top to 5 cm, ten 2.5 cm segments for the following per column). Each as oil segment was extracted four times successively at ambient temperature with 50 mL accessively at ammonium buffer (pH 9.2, ammonium hydrogen carbonate/ammonia) by shaking for 30 \dot{m} in. An⁴ aliquot (30 mL) of the combined extracts was lyophilized to dryness and the residue re-constituted in 30 mL 0.1 M aqueous tartaric acid.

Column leachates were sampled at five successive days during the irrigation period to result is about 200 mL leachates per column and day. The total amount of CaCl₂ solution percolated per column was), 1028 and 1018 mL for columns 4 and 5 1043 and 1038 mL for columns 1 and 2 (soil) and 1022 and 1047 mL for contumns 7 and 8 (soil (soil

respectively.

3. Analytical procedures:

3. Analytical procedures: Residues of phosphonic acid in soil extracts and coumn heachates were determined by LCAMS/MS analysis (LOQ = 0.1% of applied for soil extracts and leagnates) including the confirmation of stability of the test item in aqueous CaCl₂ solution.

In parallel to soil segments, the extraction efficiency and sensitivity of the gallytight method was confirmed by fresh fortification of unreated soil samples with phosphotic acid and work upaccording to the same procedure to result in mean recoveries of \$6.9% Dapplied for soil 103.9% for soil and 107.2% for soil

m

 \bigcirc

HResult and Discussion

A. Recovery of test item

Overall mean recoveries of test frem from duplicates were 46.7% of applied for columns of soil , 77 D% for Soil and \$6.0% for solf (see Table 7.1.4.1.2-2). The results indicated a fast and fight adsorption of phosphorae acid to soil particles thus reducing the potential for mobility in soil significantly. The results were well in line with observations made in existing and new studies including tests performed with ³³P tabelled phosphonic acid (KCA 7.1.2.1.2/04, KCA 7.1.2) 2/07 and K&A 7.1.4.1.2/04)

B. Findings

The predominant potton of phosphonic ocid was found in the top five cm segments of the soil columns (see Table 7.1.4 Q-2) to account for 35.2 and 38.5% for columns 1 and 3 (soil II), 73.0 and 74.1% for columns 4 and 5 (soil) and 54.5 and 51.3% for columns 7 and 8), respectively. Notest item was found in the leachates of soil columns thus (soil there was no contribution of leachates to the total recovery of phosphonic acid in the test systems.

The results of the study were of ther evaluated to derive sorption values (Kd) by use mathematical relationships based on the theory of chromatographic flow (KCA 7.1.2.1.2/04).

... on the theory of chrom

Soil						XXa	
Column	1	3	4	5	7		Ş
Segment 0-1 cm (%)	6.8	4.5	39.3	35.5	≈11.7	0.0	07
Segment 1-2 cm (%)	11.4	9.2	21.3	23.5	£ 13.6	£12.2 D	1
Segment 2-3 cm (%)	7.0	10.4	8.2	10.3	© 11.6	12:4	
Segment 3-4 cm (%)	5.6	8.6	3.6	2.6	10.4	× 26	Ĉ.
Segment 4-5 cm (%)	4.4	8.6	1,6	2.2	7.2	×7.1	2
Segment 5-7.5 cm (%)	5.0	5.8	a de la companya de l	1.0	5.7	8.2 O	@
Segment 7.5-10 cm (%)	3.3	6.3	0.4	Ø\$8	2.¢	S 3, Z	Ő
Segment 10-12.5 cm (%)	0.8	1.5	0.4	× 0.5	7 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ØŠ	×
Segment 12.5-15 cm (%)	0.5	1.5	-*	°% -*⊘°	<i>∲</i> 0.4 <i>√</i>	1.3 4	1
Segment 15-17.5 cm (%)	0.3	0.6	_* 《	ו•	0.4 ^O	Q 0.3	
Segment 17.5-20 cm (%)	_*	-*&	~* ~~		× `@`` >>		
Segment 20-22.5 cm (%)	_*	-0	0*-**	~*~~	~*	-*	
Segment 22.5-25 cm (%)	_*	-* °		0° -*°	_*	~* ×	
Segment 25-27.5cm (%)	_*	₹ ~~	×* ~~		×.	~*~	
Segment 27.5-30 cm (%)	_*	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0~-*.~	<u>~</u> * ~~			
Leachates (%)	-*		22	× -* õ	-* 6	<u>_</u> *	
Total recovery (%)	45.2 🔊	@\$.2 ~~	76.9 \land	775	N 64 S	<i>√ 6</i> 7.4]
Mean total recovery (%)	~ 46	j.76 0	o Z	7.1 0 0	<u> </u>	5×0	

Table 7 1 1 1 2_ 2.	Total recovery of	nhosnhonic acid in	soil columns foll	owing irrigation
1 able /.1.4.1.2- 2:	Total recovery of	phosphonic actu in	Son columns ion	owing irrigation

All values given as percentage of applied test item. Below FOQ OU.1% of applied

> III. Conclusion

The results of the study demonstrate that the predominant portion of phosphonic acid was found in the top three cm layer of each soil column. No phosphonic acid was observed in the column leachates despite the simulation of extreme origation conditions equivalent to more than 500 mm rainfall in five successive days. Ň Ø

Phosphonic acid was therefore shown to be in fact, immobile in Soil when transferring to the situation Sol and the second seco of outdoor environmental conditions. Ł

The results of the test allowed for the calculation of sorption constants Kd presented under KCA 7 4.1.2/04. From distribution of phosphore acid in soil columns, Kd-values were calculated using mathematical relationships derived from the theory of chromatographic flow following the

talculation of is phosphonic acid in inps derived from the theory that is the theory of the theory that the theory of the theory of the theory that the theory of the theory of the theory of the theory theory of the theory of theory of the theory of theor

Report:	KCA 7.1.4.1.2/04 ; 20	015; M-531831-01-1	
Title:	Phosphonic Acid - Evaluation of Soil Column	n Leaching Data for Sor	rption Parameters
	for Use in Environmental Modelling	C	
Report No.:	EnSa-15-0633		
Document No.:	M-531831-01-1		N R
Guideline(s):	not applicable	ð	
Guideline deviation(s):	not applicable	S	
GLP/GEP:	no		

Executive Summary

The sorption characteristics of phosphonic acid to soil in terms of the sorption constants Kd were determined from column leaching tests performed in two studies KCA 7 54.1.2/0 and KCA 7.1.4.1.2/03 on five soils in total.

Phosphonic acid had been applied to the top of pre-equilibrated soil columns at a test concentration equivalent to a field application rate of 15 kg/ha. The soil columns were irrigated order saturated flow conditions of the laboratory at ambient temperature in the dark by allowing its total approximately 500 mm artificial rainfall to pass the columns for fifteer (KCA 7.1.4.1.2/01) or five successive days (KCA 7.1.4.1.2/03).

Following the distribution of phosphonic acid in soil columns the linear sorption distribution constants Kd were derived by applying the theory of chromatographic flow and us mathematical relationships according to approaches published by Lambert et al. and Hamaker/McCall.

Linear sorption distribution constants Kd were found to range from 19.2 mL/gfor sol

to 86.9 mL/g for soft and the conservative approach of Lambert. A geometric mean value for Ked of 30.1 mL/g was derived for the range of five soils investigated.

Since the evaluation was based on linear sorption the value for the Freundlicht disorption coefficient 1/n was set of 0 mL/g

KI. Material and Methods

The sorption characteristics of phosphonic acid to soil in terms of the linear distribution constants Kd for sorption were determined from column leaching tests performed in two studies KCA 7.1.4.1.2/01 and KC2 7.1.4.1.2/03 on five soils in total.

Phosphonic acid had been applied to the top of pre-equilibrated soil columns at a test concentration equivalent to a field application rate of 15 kg/ha. The soil columns were irrigated under saturated flow conditions of the laboratory at ambient temperature in the dark by allowing in total approximately 500 mm artificial ratefall to pass the columns to fifteen (KCA 7.1.4.1.2/01) or five successive days (KCA 7.1.4.1.2/03). Within the tests phosphonic acid was mainly located in the top soil segments (0 to 3 cm) of soil columns. No phosphonic acid was found in the leachates.

The results of study KCA 7.1.4.1.2/01 had been evaluated in the process for the Annex I inclusion of fosety) under Directive 91414/EfC in secure KCA 7.1.4.1.2/02. The evaluation was accepted by RMS France to result in two values of sorption coefficient Kd to characterize the mobility in soil and quantify the extent of adsorption for use in invironmental risk assessment. Kd-values were calculated from distribution of phosphonic acid in layers of soil columns. The evaluation followed the approaches published by Dambert¹², Hadaker¹³ and McCall et al.¹⁴ based on principles of the theory of

¹² Lambert, S. H., Porter, I.J.; Pease, H.L. (1965). Movement and sorption of chemicals applied to the soil. Weeds 13, pp 185-190

¹³ Hamaker, J. W. (1975). The interpretation of soil leaching experiments, in: Environmental dynamics of pesticides (Eds. R. Haque & V. H. Freed, Plenum Press, New York), pp 115-132

¹⁴ McCall, P. J., Laskowski, D. A., Swann, R. L. & Dishburger, H. J. (1981). Measurement of sorption coefficients of organic chemicals and their use in environmental fate analysis, in: Test protocols for

chromatographic flow and its mathematical relationships. The results of study KCA 7.1.4.1.2/03 have been evaluated for determination of values of Kd the same way in KCA 7.1.4.1.2/04.

For evaluation of study KCA 7.1.4.1.2/03 the two approaches (Lambert versus Hamaker/McCall) were transferred to an Excel-based following the corresponding basic mathematical equations and relations finally allowing for the calculation of Kd on the basis of various soil and column-specific input parameters.

The description of columns included the total irrigation volume, the saturation and dropping excess volume, dry and wet soil weights, column diameter, surface area and length, the number of segments and the segment with maximum concentration. For sols used their organic carbon content, total volume of water in the column and void volume. For details it is referenced to document KCA 7.1.4.1.2/04.

II. Results and Discussion

The evaluation of study KCA 7.1.4.1.2/03 resulted in values of Kd for soils and as summarized in Table 7.4.4.1.2.3 along with the values derived earlier within KCA 7.1.4.1.2/02 for soils Fengare and Aldhams farm

Table 7.1.4.1.2- 3: Values of Kd and Koc of phosphonic acid resulting from self column leaching experiments

			- 4	10° 1.		~
Soil						
	(sand)	(sandy) to a	.m) 🖉	(clay loam)	(sandy toam)	
			A A A A A A A A A A A A A A A A A A A			(sandy loam)
Values accordi	ng to Lambert et al.	Ŷ Q	<u> ^</u> 0			
K _d	4 3.9 O	46.2	, A	×28 C) 0 [×] 87, [×]	20
K _{oc}	£1829£	6 1593	~~·	^م ن 650 @	5429	1650
		× ×				
Values accordi	ng to Hamaker/Mc	Call et al. 🦯 🦷			Çi Ki	
K _d	¥8.0 ()	47.1	, Q	37	° 🖉 114	26
Koc 🔊	1998	¢ 1570		® 857	7129	2163
		, <i>Q</i> '	Ú d	× ~(? `	\sim	
Worst case of I	Kd (Lambert) takon	for input in e	nvirqn@	ental řísk asse	sment	
K _d	43.9 €	260 ³	*	& 28 Å [*]	87	20
Koc	N 1829	j 1343	, O	O 659	5429	1650
		× ~ ~ ~		× 4		
Geometric mea	® of Kd@erived for	risk assessio	ent: 。O	[°] 39.1		

Geometric mean of KdQerivee for risk assessment: O

The approaches were derived on the basis of linear sorption. The distribution constants Kd for sorption should therefore be used accordingly when it comes to the description of concentration dependency (i.e. value for the Frequellich exponent 1/n to be set to zero).

QII. Conclusion

The evaluation of two soft column learning studies performed allowed for the calculation of linear sorption distribution constants Kd for five soils.

Phosphonic and was strongly bound to soil as indicated by values of Kd of 20 to 87 mL/g when following the approach by Lambert. The approach by Hamaker/McCall resulted in a range of values of

environmental fate and movement of toxicants; Proceedings of AOAC Symposium, AOAC, Washington, DC, pp 89-109

26 to 114 mL/g. When following the more conservative approach by Lambert, this resulted in a mean value of 39.1 mL/g to serve as modelling endpoint from five soils in total.

Since the evaluation was based on linear sorption the value for the Freundlich adsorption coefficient 1/n was set to 1.

Request from the RMS:

and (2015, KCA 7.1.4.1.2/04), the calculation of the "ds" parameter In the study by seems to be performed with the "dry soil weight per column" for the Ferregate and Aldams softs and with the "wet soil weight per column" for the other soils? An explanation should be provided to state on the reliability of the results.

Response from BCS:

For all soils, the parameter "ds" was calculated from the bulk density of the soil divided by (1-0), as stated in Section 9.5, Table 13 (, G.; 2015 M-53 831-0 1; KGA 7.1 4 1.2/04). In , S.; the soil bulk density was calculated the case of soils from the dry soil weight (Ms) divided by the total volume of the column. The soil weight was, however, not reported explicitly by **second A**. M. 1988 M-158753-61-1 (\$CA 7.1.4.1.2/01) for soils Fengate and Aldhams. Anstead a procedure was described to prepare columns with constant soil density, for which values of 1.10 g/cm² (Fengate) and 1.12 g/cm³ (Aldhams) were reported. These bulk densities were employed for the calculation of ds, an consistency with the , G.; 2004, M-236511-06-1 (KCA 7.14.1.2/02). However dt might be the case evaluation by that the reported density refers to the wet soll where the dry soll density would be appropriate for calculation of ds. If ds is recalculated based on dry soil, Kd values of \$7.6 and 60.7 mL/g result from the Hamaker/McCall equation for soils Fengate and Aldhams, respectively. These Ka values are higher than the reported values and would not be used in the exposure calculations, which were based only on the lower K_d values derived from the equation by Rambert K.,

Studv summaries **ร**ัท coumn Raching of metabolites. phosphonic aci@ n Ľ C Ô Ø Ľ

Following another request by the RMS, this document was applated by inclusion of summaries for the existing data, i.e. studies and publications submitted and evaluated during the process of Annex I inclusion of fosetyl under Directive 91/474/EEC and being still of relevance for the EU approval renewal process.

Report: ; 1998; M-158753-01-1 .1.4.QŽ Title: id in two soils Report No.<mark>;</mark> 1 Document Oto. Guideline(s): Guideline deviation(**GLP/GEP**:

Executive Summary

The potential for teaching of non-aged gesidues of [33P]-phosphonic acid was investigated at 20 C in two UK soils sand and bamy and under laboratory conditions for 16 days in maximum. Based on a rate of 13 kg/kg 3 me of phosphonic acid were applied to each column.

Ĩ Ŵ Mean material balances were 96.9 and 94.4% AR for soil columns of the sand and the sandy loam, respectively.

Phosphonic acid was found at 63.2% AR (sand) and 54.0% AR (sandy loam) each in the top zero to 2.5 cm segments of the soil columns with no findings in lower soil column segments.

Phosphonic acid and assoc 2.5 cm segment of soil colu	iated radioactive resignments while no radioac	dues were therefo tivity was found i	re located predom n the percolates af	inantly in the top
15 days of irrigation simula	ting heavy rainfall of	508 mm.	under conditions	
column leaching performed	for two contrasting s	oil types.		or non-aged son
	I. MATERIA	LS AND METH	ODS S	
A. MATERIALS				5 5 <u>5</u>
1. Test Material		Ö		
[³³ P]phosphorous acid		L.		
Sample ID:	P33C4897	(160 m Ci/mmala)		
Radiochemical Purity:	> 98%			
NT 1' 1 1 1 1 1				
non-radiolabelled phosphor radiolabelled compound.	ous acid (Batch 1000	0/089, chemical g	arity of 98%) was	used to enjute the
2. Test Soils The study was performed h	w using who soft sie	ver to a particle	size mayind a	Characterized in
Table 7.1.4.1.2- 4.				
				×,
Table 7.1.4.1.2- 4: Physico-	chemical characteristi	cs of test soils		0
Parameter Q		R	espits / Units	
Soil Designation		<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	<u> </u>	23ª
City				
Country &			ŷ Ş <mark>U</mark>	ζ
Textural class (LCDA)		Sand Stand	Sandy	loam
$Sana$ $[63 \mu m]$		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	57.3	0% 1%
s s s s s s s s s s s s s s s s s s s		5. <u>13%</u>	8.90	<mark>)%</mark>
pH (water)		6.9 ⁴	<mark>5.</mark> -	<mark>4</mark>
pH (1 M K@)			4.4	4 c
Organic Carbon		[™] [™] [™] [™] [™] [™]	3.0	<mark>%</mark>
Organic Matter ¹		<u>4.1%</u>	5.2	<mark>%</mark>
Catton Exchange Capac	ity{meq/100 g]	³ <u>13.2</u>	<u> </u>	2 79/
Water Holding Capacit	$\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{3}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$ $\frac{1}{\sqrt{10}}$	<u>* 81.03%</u> 16.81%	22.4	7%
Biomass austart of stud	y fig C/g soil]	<mark>647</mark>	51	5
USDA Onited States I	partment of Agricultur	re		
	Ś			
ČO*				

B. STUDY DESIGN

1. **Experimental Conditions**

The test was performed with soil columns of 30 cm in height consisting of glass segments (each 5 x 5.1 cm in diameter) packed with the soil. At the bottom of each column a funnel shaped segment in addition allowed for the collection of percolates whilst supporting the soil column. Soil columns were prepared in duplicate for each of the two soils investigated. Following packing of columns. The columns were pre-wetted by submerging in aqueous calcium chloride (0.01 M) solution. ∞

A dose equivalent to 3 mg phosphonic acid was applied to each soil column based on freid rate of 15 kg/ha and the cross sectional area of each column of 20.43 cm² For preparation of the aqueous application solution the radiolabelled material was diffeted with non-labelled material at ratio of 1:9 Q, with deionised water.

Following application, soil columns were irrigated drop wise with aqueous Calcium chloride (0.01 M) solution at a flow rate of 2.9 to 4.0 mL/h for simplate rainfall equivalent of 508 mm of 'rainfall' equivalent to a total volume of 1040 mL for each column. The irrigation phase was performed at a temperature of 20 ± 1 °C for approximately 15 days.

2. Sampling During the irrigation phase percolates were collected at a daily basis and the volume of each percolate was recorded. At the end of the brigation phase the soil columns were abowed to stand and drain. Following draining, the soil columns were separated into Geven Sections, i.e. ax soft segments and including the sand section used to support the soil column as section 7.

Ô

3. Analytical Procedures

Volatile radioactivity was not collected doe to the nathre of the 33P-radio Dabelled test material. A formation of volative components was therefore not anticipated. L \bigcirc Ôĭ

The soil segments resulting from separation of the columns were extracted with aqueous ammonia buffer and/or up to there times with tartafte acid and ultra-sourcation at ambient temperature (sand soil) and additionally by Soxhlet extraction as alternative to Otra-solution for the sandy loam soil. The extent of extraction procedures for each segment was dependent on the total radioactivity extracted and detected after combustion.

The extracted soils were dived, homogenized and suspended in water and scintillation fluid. The nonextractable residues were then determined by LSC. Organic matter fractionation into fulvic acid, humic acid and humins was performed with post extraction residues from the top 2.5 cm segment of one column of each soil.

st n

Radioactivity in leachates and extracts was determined by liquid scintillation counting (LSC). After concentration the extracts were avalysed by FPLC/33P-radio-detection. The identity of phosphonic acid was confirmed by gas chromatography (GC) after derivatization with diazomethane. Due to the low radioactivity determined for lower soil column segments, only soil extracts of the first two column segments (i.e. zero to 2.5 cm and 2.5 to 5 cm) were analysed.

A CHARACTER CI.C ~Õ

II. RESULTS AND DISCUSSION

A. DATA

A. DATA The data representing the results of non-aged column leaching of phosphonic acid in a sand and a sandy loam soil were summarized in Table 7.1.4.1.2- 5 and Table 7.1.4.1.2- 6. Table 7.1.4.1.2- 5: Leaching of non-aged [³³P]phosphonic acid in sand soil Fengate Farm

Table 7.1.4.1.2- 5: Leaching of non-aged [³³P]phosphonic acid in sand soil Fengate Farm

Component				<i>R</i> a	Segment	d .			
		<mark>1</mark>	2		<mark>4</mark> (y <mark>5</mark>	6	<mark>7</mark>	dy 'a
		<mark>0-2.5 cm</mark>	<mark>2.5-5 cm</mark>	$\frac{5}{6}$ 10 [°] cm	10-15 cm	15-20 cm	20 2 5 cm	3 3-30 cm	. 0
Phosphonic acid	<mark>Mean</mark>	<mark>63.2</mark>	n.d.	€ ^Y n.a.	n.a	<mark>n.a.</mark>	⊙ <mark>n.a.</mark> 🦓	n Q	
r nosphonic acid	<mark>SD</mark>	<mark>±1.0</mark>	n.d. 🎽	n.a.	n.a.	စ္တ <mark>ိn.a.</mark> ကိ	n.a.	n.a.	Ś
<mark>Unknown 1</mark>	<mark>Mean</mark>	<mark>n.d.</mark>	6.8	<mark>n.a.</mark>	S <mark>n.a.</mark>	n.a. 🚿	n <mark>n.a.</mark>	, Q <mark>n.a.</mark>	Ľ.
(RRT = 0.65 - 0.83)	SD .	n.d.	<mark>∉1.8</mark>	ക <mark>ന്.a.</mark> ്ല്	n.ax	<mark>.p.a.</mark>	Ö <mark>n.a.</mark> 🗞	, <mark>n.a∠</mark>)	
<mark>Unknown 2</mark>	<mark>Mean</mark>	<mark>n.d.</mark>	2.2 x	🖉 n.a. 💭	n a.	na.	n.a.	<mark>n a.</mark>	0
(RRT = 1.41 - 1.57)	<mark>SD</mark>	n.d.	<u>±1.4</u>	na,	D .a.	^{©®} n.a.∞	næ	ma.	S .
Total extractable	<mark>Mean</mark>	<mark>62.7</mark> 🔾	7.9×	0 03	کہ <mark>0.07</mark>	n.e	<mark>پ n.d.</mark>	[®] n.d.	
residues from soil	<u>SD</u>	<u>±15</u> ×	<mark>≠2.1</mark>	@ <mark>≚0.0</mark> ⋌	<u>+04</u>	<u>nxd.</u>	R <mark>n.d.</mark> 🖉	n.ds	
Non-extractable residues	<mark>Mean</mark>	<mark>207</mark>	5.5 ×	9 <mark>0.03</mark> 9	<u>0%.05</u>	<mark>ر 0.00</mark> ن	0.00	<mark>0.00</mark>	
in soil	<u>SD</u>	_{ <mark>¥3.1</mark> (€ <mark>±1.7</mark>	_ <mark>_±Q∕0</mark>	<mark>,⊈0.1</mark> _^) <u>+0.0</u> (<mark>±€€0</mark>	_ <mark>@⊉0.0</mark>	
Total recovered	Mean 4	Q″ <mark>83.4</mark>	1 <u>3.4</u>	<mark>⊘0.05</mark>	^{(۲} 0.11	<mark>0_00</mark>	🗞 <mark>00.9</mark> 6	≫ <mark>0.00</mark>	
radioactivity in soil	SD _Q	±4.6	₹.8		₽_ <u>+0<</u> ₽	<mark>0.0</mark>	© <mark>±0.0</mark>	<mark>±0.0</mark>	
Total radioactivity in	Mean	°N "	\sim	or L	6.00	ŝ, (
percolates	<u>ŠD</u>	& .C	j <u>s</u>	<i>a</i>	<mark>₩0.00</mark> %	<u>, 0</u>	i de		
Total recovered	Mean	p. S	Å.	J	96,9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L.		
radioactivity	SD SD		AN (ñ S		s and a second s	Ş		

Ô

Ø

n.d.: not detected; n.a.: not analysed; Mean values of two replicates; SD = standard deviation All values expressed percentage of total applied radioactivity \bigcirc Ż

Ľ a. Leaching of non-aged [33P]phosphonic acid in Sandy loam soil Table 7.1.4.1.2

Component	- Or	K A	<u> </u>		S	C	Segment			
	*	, s	A	ି <mark>2</mark>	<u> </u>	Ø		<mark>5</mark>	<mark>6</mark>	<mark>7</mark>
	Ö.		0\$2.5 cm	2.5-5 cm	<u>5-10</u>	em	10-15 cm	15-20 cm	20-25 cm	<mark>25-30 cm</mark>
Dhosphonia agid	Š	🏻 🎢 🕺 🕺	, <mark>54.0</mark> 令	n.d.	n.	a. 🔏	🕅 <mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>
r nosphonic aciu	\$9°.	N SD S	±0,8	<mark>n.d.</mark>	<mark>) n.a</mark>	a.	n.a.	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>
Unknown 1 @		Mean	<mark></mark>	لان <mark>2.8</mark>	n	Ç	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>
$(RRT = 0.65 _{a}0.65 _{b}0.65 _{b}0.6$	83) 🔗	SD .	℃ <mark>±0.0</mark>	∕ <mark>±0∱</mark> ∿″	A A A A A A A A A A A A A A A A A A A	å <mark>.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>
Unknown 2	õ	Mean	[∦] n.đ.	n.d.	🔊 <mark>n.</mark>	a.	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>
(RRT = <u>1</u> ,41 - 1.	<mark>57)</mark>	© <mark>SD</mark> Q″	n de	© <mark>n.d.</mark>	n.	a.	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>	<mark>n.a.</mark>
Total expactable	, Ô	Mean	®1.9	2.8 ×	<mark>0.0</mark>	<mark>)()</mark>	<mark>0.07</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>
residues from so	il 🏹	_ <mark>ŠĎ</mark> ∧	🔪 <mark>±0.8</mark>	∠ <mark>±00</mark>	± 0	<mark>.0</mark>	<u>±0.1</u>	n.d.	<mark>n.d.</mark>	n.d.
Non-extractable	residues	Mean 🕅	* <mark>30.8</mark> /	2%9	<mark>0.0</mark>) <mark>1</mark>	<mark>0.00</mark>	<mark>0.00</mark>	<mark>0.00</mark>	<mark>0.00</mark>
in soil		Š <mark>S₽</mark> , [≫]	<mark>±1.4</mark>	_O <mark>≚0.2</mark>	<mark>±0</mark>	<mark>.0</mark>	<mark>±0.0</mark>	<mark>±0.0</mark>	<mark>±0.0</mark>	<mark>±0.0</mark>
Total recovere	, ``	Mean	88.7 🖉	४ <mark>5.7</mark>	<mark>0.0</mark>	<mark>)1</mark>	<mark>0.00</mark>	<mark>0.00</mark>	<mark>0.00</mark>	<mark>0.00</mark>
radioactivity fr s	oil A	STD 🛛	گ <mark>±2.1</mark>	' <mark>±0.1</mark>	±0	<mark>.0</mark>	<mark>±0.0</mark>	<mark>±0.0</mark>	<mark>±0.0</mark>	<mark>±0.0</mark>
Total radigactivi	ty in	(Mean)	~0				<mark>0.00</mark>			
percolates A	S D	SD	ÿ				± 0.0			
Total recovered	.1	Mean					<mark>94.4</mark>			
radioactivity	Č,	SD ⊗					<u>+2.2</u>			

n.D. not detected; a.a.: not analysed; Mean values of two replicates; SD = standard deviation All values expressed as percentage of total applied radioactivity

B. MATERIAL BALANCE

Mean material balances of radioactivity of the soil columns including the percolates were 96.9% AR for the sand and 94.4% AR for the sandy loam.

C. RESIDUES IN PERCOLATES

No radioactive residues were detected in the percolates of the soil columns

D. EXTRACTABLE AND NON-EXTRACTABLE RESIDUES

Values of extractable radioactivity in the top segment (0 to 2.5 cm) of soil columns, were 62/7% A for the sand and 57.9% AR for the sandy loam soil. For segment 2 (2) to 5 cm) extractable residues were 7.9 and 2.8% AR for the sand and the sandy loam, respectively Extractable residues were below ,0 0.1% AR for any of the other soil column segments.

Non-extractable radioactivity in the top segment (0 to 2.5 cm) of solv columns was 20.7% AR for the sand and 30.8% AR for the sandy loam soil. For Segment 2, 2.5 to 5 cm) extractable residues were 5.5 and 2.9% AR for the sand and the sandy loam, respectively. Non-extractable residues were at or below ő 0.1% AR for any of the other soil column segments.

Non-extractable residues of the top soft column segment were subject to organic matter fractionation to result in values of 13.0, 8.0 and 30% AR for humic acids, fully ic acids and Jumins fractions of the sand soil, respectively. The corresponding values were 13.0, 14.0 and 5.0% AR for the sandy loam, respectively.

E. VOLATILES

Volatile radioactivity was not collected due to the nature of the 33P-radio-labelled test material. A formation of volatile components was therefore not anticipated, K)

F. TRANSFORMATION OF SEST MATERIAL

F. TRANSFORMATION OF THE LATATEMIAL S Phosphonic acid astecovered by extraction of soil was observed in the top segment of columns at 63.2 and 54.0% AR for the sand and the sandy loan soil respectively. Phosphonic acid was not detected in O the other soil column segme as. Ŵ Ô Ø Two unknown components were observed each in soil extracts of the second segment of the columns

while none of the components exceeded 6.8% AR. Ê C

ID. CONCLUSIONS No. 0 ð

Phosphonic acid and associated radioactive residues were found located predominantly in the top 2.5 cm segment of soft columns while no radioactivity was found in the percolates after approximately 15 days of irrigation simulating heavy ramfall of 508 rpm.

It was therefore concluded that phosphonic acid immobile under conditions of non-aged soil column

CA 7.1.4.2 Lysimeter studies

This data requirement had been addressed under Point 7.1.3.3.1 of the Dossier submitted and evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005)

The evaluation revealed that the potential for mobility of fosetyl-aluminium residues to ground water can be adequately assessed by the simulation of vulnerable scenarios representative for the El along with the specific input parameters of the active substance under assessment. The simulation's are able to cover a range of worse cases rather than to be limited to soil and dimatic conditions reflected by lysimeter studies.

Separate lysimeter studies with fosetyl-aluminium are therefore regarded as not here

Field leaching studies CA 7.1.4.3

This data requirement had been addressed under Point 7.1.3.3.2 of the Dossier submitted and evaluated for the Annex I inclusion of fosetyl under Directive \$17414 EC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005)

L, The evaluation revealed that the potential for mobility of fosetyl-aluminiun residues to ground water can be adequately assessed by the simulation of vulnerable scenarios representative for the EU along with the specific input parameters of the active substance under assessment. The simplations are able to cover a range of worse cases rather than to be limited to solv and stimatic conditions reflected by

Separate field leaching studies with description and there one reserved as not necessary.

- CA 7.2 Fate and behaviour in water and sediment Route and rate of degradation in aquatic systems (chemical and CA 7.2.1 photochemical degradation) CA 7.2.1.1 Hydrolytic degradation 981; M-159693-**Report:** KCA 7.2.1.1/01 Vdrolysis stud© Title: Fosetyl-Al (Aluminium tris-O-ethy hosphonate) Report No .: R000987 Document No.: M-159693-01-1 Guideline(s): USEPA Federal Register, Foretyl-aluminium European Guideline deviation(s): none **GLP/GEP:** no **Report:** KCA 7.2.1.1/02 European Commission Gemical 111 Sydrolysis as Title: Hydrolysis under 1×br Report No.: C012596 M-203000-01 Document No.: Guideline(s): European Uni Directive 96 a function o Equivationt Guideline deviation(s): none **GLP/GEP:** 9**049-**01-1 **Report:** Title: Hvdrølvsis and 🔊 Report No .: R409302 Ô Document No .: 79049-01 Guideline(s): Guideline deviation(GLP/GEP: 🔊 ; 2000; M-189210-01-1 Report ation at 1944 4, 7 and 9 Title: Report No .: Document No .: Guideline(s): Guideline devision(s) GLP/GEP: 1) was investigated in: The hydrolysis of foretyl-aluminium (fosety Ŵ various non-buffered, non-sterile, aqueous solutions at pH ranging from 1 to 13 following application of non-labeled foset Al activo test concentrations (10 and 200 mg/L) and incubation at 22 and 90 °C KCA 2.1.1/01); _@ sterile squeors buffers at pit 4, 7 and 9 following application of non-labeled active substance and
- incuration at 50 °C (KCAO7.2.1.1/02).

In addition, the hydrolysis of phosphonic acid was investigated in:

- sterile aqueous buffers at pH 4, 5, 7 and 9 following application of non-labeled test substance and incubation at 25 °C (KCA 7.2.1.1/03);
- sterile aqueous buffers at pH 4, 7 and 9 following application of non-labeled test substance and incubation at approximately 22 °C (KCA 7.2.1.1/04).

The data requirement was addressed under Points 2.9.1 and 7.2.1.1 of the Dossier, Submitted and evaluated for the Annex I inclusion of fosetyl under Directive 91/44/EEC as sublished in the corresponding DAR of RMS France and its Final Addendum (September 2005). Consequently there is no detailed description of this existing data in this Supplementary Dossier.

The test designs of studies KCA 7.2.1.1/01 to KCW 7.2.1.1/04 are in line with actual designs in sterile aqueous buffer hydrolysis testing. In summary this allows for the conclusion that the studies are all consistent with no major deviation from designs according to OECD 111.

The evaluation revealed that fosetyl-Af and its metabolite phosphonic acid were stable to abiotic hydrolysis under the conditions of the test and within the pH relevant for environmental conditions (pH 5 to 9). No half-life was therefore determined for the various values of pH investigated with no hydrolytic pathway proposed.

It is concluded that abiotic hydrolysis is an insignificant process for the elimination of osetyl-Al or its metabolite phosphonic acid from the natural aquatic environment. For the active substance, losetyl-Al this is true, in particular, when comparing the result of abiotic sterile hydrolysis with the results of tests in roh-sterile natural water systems.

Study summaries of existing studies and publications on hydrolytic degradation of the active substance and metabolites i.e. prosphonic acide

Following another request by the RMS this document was updated by inclusion of summaries for the existing data, i.e. <u>studies and publications</u> submitted and evaluated during the process of Annex I inclusion of fosetyl under Directive 91/414/EEC and being still of relevance for the EU approval renewal process.

Report: Title: Report No: GLP/GEP: Condense deviation(s): Report No: GLP/GEP: Condense deviation(s): Condense deviatio

Executive Symmary

The rate of hydrolysis of foseto-Al was investigated in aqueous solutions at pH 1, 3, 5, 6, 8, 9 and 13 in the dark at 22 and 70 °C at a nominal test concentration of 200 mg/L.

 \sim

Another analytical series was performed at pH 3, 6 and 9 and at a nominal test concentration of 10 mg/L. Investigations at pH 1 and 13 and 70 °C were performed for 48 hours, while the other tests were performed for one month (i.e. 33 days) in maximum.

Fosetyl-Al was found to be stable under conditions of aqueous buffer hydrolysis of pH 5, 6, 8 and 9 following 33 days of incubation in maximum at 70 or 22 °C.

L

Fosetyl-Al was degraded hydrolytically under conditions not representative for the environment in terms of pH and temperature.

The study results were consistent with other data available on the behaviour under conditions of abiotic hydrolysis testing in sterile aqueous buffer.

Being overall scientifically valid, the study was replaced by additional data in line with actual requirements in testing of hydrolysis in sterile aqueous buffer according to DECD 111. The study was therefore regarded as supplemental information.
I. MATERIALS AND METHODS
A. MATERIALS
I. Test Material
Fosetyl-Al Sample ID: DA-67 Chemical Purity: 99%
2. Test Solutions
Aqueous test solutions of pH 1.2 and 13 consisted of aqueous 0.1 N sulfurfe acid and 0.9 N sodium hydroxide, respectively. Test solutions of pH 2 to 6 were prepared using out at buffer, while solutions at pH 8 and 9 consisted of borate buffer.

hydroxide, respectively. Test solutions of pH 2 to 6 were prepared using curate boffer, while solutions at pH 8 and 9 consisted of borate buffers. at pH 8 and 9 consisted of borate buffers.

B. **STUDY DESIGN**

1. **Experimental Conditions**

O O Ô The tests were performed in crew eapped glass flasks The nominal test concentration of fosetyl-Al was 200 mg/L at pt 1.2, 3, 5, 6, 8,9 and 13. The samples were incubated in the dark at 70 ± 1 °C or at 22 ± 3 °C.

C

Another analytical sectors was performed at pH3, 6 and 9 and at a nominal test concentration of Ô Õ 10 mg/L. Ŵ Ş Ŵ

Investigations at pH 1.2, and 13 and 70°C were performed for 48 hours, while the other tests were performed for one month (i.e. 33 days) in maximum.

2. Sampling

At a nominal test concentration of 200 mg/L, samples of 9H 1.2 and 13 were removed for analysis O after 0, 2, 4, 6, 8, 24 and 48 pours of incubation at 0 °C.

Q.

At a nominal gest concentration of 10 mg/L, samples of pH 3 were removed for analysis after 0, 2, 4, 8, 16 and 32 days of incubation at 70 °C At a nontrial test concentration of 10 mg/L samples of pH 6 were removed for analysis after 0, 7, 14

and 28 days of incubation at 70 °C > 5

At achominal test concentration of 10 mg/L, samples of pH 9 were removed for analysis after 0, 8, 16 and 32 days of incubation at 70°C.

Ĩ At a nomina test concentration of 200 mg/L, samples of pH 1.2 and 13 were removed for analysis after 0, 1, 2,7, 14,21 and 00 days of incubation at 22 °C.

At a nominal tere concentration of 200 mg/L, samples of pH 3, 5, 6, 8 and 9 were removed for analysis after 0, 8, 20 and 33 days of meubation at 22 or 70 °C. An additional sampling was made by day 5 for the incubation at 70°C.

At a nominal test concentration of 10 mg/L, samples of pH 3 and 9 were removed for analysis after 0, 8, 1@and 32 days of incubation at 22 °C.

At a nominal test concentration of 10 mg/L, samples of pH 6 were removed for analysis after 0, 7, 14 and 28 days of incubation at 22 °C.

Analyt	ical Proce	dures							
ollowing re	emoval, the	e pH was det	termined.						
nalysis fo	or fosetyl-	Al and pl	osphonic	e acid was	by gas	chromato	ography ((GC) fo	ollowing
erivatizatio	on and dete	ction of the	derivative	es with a phos	sphorus s	pecific flai	ne photor	netric de	tector.
		TT	DECH	I TO AND D	ICCUCO	ION	ð	Ő	?
		<mark>11.</mark>	KESU.	LIS AND D	<u>150055</u>	IUN	a a a a a a a a a a a a a a a a a a a	Ş	
. DATA						4	0	Å.	59 (
ecoveries (of fosetyl-A	Al following	, incubation	on in test solu	utions of	pH 1.2, 3,	5, 6, 8, 9	and 13	at 70 C
22 °C for	33 days in	maximum	vere sum	marized in 🏹	tole 7.2.1	.1- 140 Ta	ble 7.2. 🗘	1-6 ₋₀	Ű,
				Å		Ő	×,		Å 4
able 7.2.1.1	- 1: Rec	overy of fose	etyl-Al afte	er incubation	in aqueo	s test solut	ions/at pH	1.2 and	13 at ©
	<mark>70 °</mark>	C in the dar	k	Q0°	\sim	`	₽ (C	, ¢	<u> </u>
				Incubation t	me (brou	s) x		No.	2
рн	<mark>0</mark>	<mark>2</mark>	<mark>4</mark>	O <u> </u>	Å.	2 <mark>8</mark> 2	<mark>~24</mark>	2 L	<mark>48</mark> 。
<mark>1.2</mark>	<mark>106</mark>	<mark>82</mark>	<mark>65</mark> _1	<u></u> <u>50</u>	V Q	38.5	<u>~</u> <2 C) 2	<mark><2</mark>
<u>13</u>	<u>103.5</u>	<u>93.5</u>	79.5			<mark>_ 63</mark>	<u>) 19,5</u>		
values give	n as percent	age of nomin			I ZUO Mg/	b ×	Ĵ,	ĴS [®] () ~
	A D	0.0					S. S		
able 7.2.1.1	- 2: Rec	overy of fose	fyl-Al aft dork	er incubation	at 70%C	in aqueous	buffer sol	utions at	рН 3, 5,
	<mark>0, 0</mark>			<u> </u>	<u> </u>	<u>o</u> y or	<u>~~</u>	<u>&</u>	
<mark>рН</mark>	<mark>0</mark>		Inex	bation time (c	<mark>läÿs)</mark> «)	
	01 5			7 <mark>8</mark> ′0			<u>* 33 6</u> * <mark>/*</mark> /		
<u> </u>	91.5 98		6 &	<u></u>		55	8 5		
<u></u> 6	100.5				7 a	06 🖇	¥01.5		
<mark>8</mark>	108	K B		<mark>ే102</mark> స్		16	⁹ 107		
9	1098		<u>3.5</u> ≪	<u>~ 100,5</u>			<u>102</u>		
alues given	as percenta	$\sim 01 \text{ nominal}$		centration of	200 mg/JC	× ×			
	<u> </u>	w and				. 🖉			
able 7.2.]. ¥	₽3: Rec	overy of tose	etyl-AH afte	ermicubation	at 22 °C	in _o aqueous	test solution	ons at pH	1.2
				<u> </u>	J ^V . C)″			
pH –	<mark>^</mark>			Incubation	time (day	<mark>S)</mark>	21		20
12		→ <mark>1</mark> 0 [×]		<u>"0" U</u> © <u>~ 85</u>		<u>1</u> 4 69.5	21 55	2	13 5
13	1003.5 C	101.5 «	93.®		Î I	49.5	<u>33</u>		23
All values g	iven as perc	entage of not	ninal initia	al concentratio	<mark>n of 200 r</mark>	ng/L			
A	7								
able 7.2.1	- 4: Rec	overy of fose	tyl-Al aft	er incorpation	at 22 °C	in aqueous	buffer sol	utions at	<mark>рН 3, 5,</mark>
1	6,8	and 9 in the	dark Ø						
_x [®] €		Q n	cubation t	ime (days)					
	8			20		<mark>33</mark>			
pH									
рН 3	0 0 <u>1085</u>	<u>\</u>	<u>.</u>	104 <u>104</u>	1	01			
pH 3 5	0 0 <u>103</u> 0 <u>9</u> 0 5		1.5 7.5 7	104 89	1 8	01 4.5			
pH 3 5 6 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0		³ ³ ³ ³ ³ ³ ³ ³	104 89 99.5	1 8	01 4.5 94			
pH 3 5 6 8 7 8	0 0 0 0 0 0 0 0 0 0 0 0 0 0		3 9 5 5	104 89 99.5 108 106 5	1 8 1 1	01 4.5 94 06)4 5			
pH 3 5 4 6 9 8 9 8 9 8 9	0 103 6 6 7 7 7 8 6 7 8 5 7 8 8 8 8 8 8 8 8 8 8 8 8 8	 <!--</td--><td>3 9 6.5 1 initial cor</td><td>104 89 99.5 108 106.5 ncentration of</td><td>1 8 1 1 200 mg/L</td><td>01 4.5 94 06 04.5</td><td></td><td></td><td></td>	3 9 6.5 1 initial cor	104 89 99.5 108 106.5 ncentration of	1 8 1 1 200 mg/L	01 4.5 94 06 04.5			

 Table 7.2.1.1- 5:
 Recovery of fosetyl-Al after incubation at 70 °C in aqueous buffer solutions at pH 3, 6 and 9 in the dark

	anu	⁷ III the uar	<u>^</u>				a no s	▶.
nH			Incubation	<mark>1 time (days)</mark>			. 4)°
рп	0	<mark>2</mark>	<mark>4</mark>	<mark>8</mark>	<mark>16</mark>	<mark>32</mark>	57 07	
<mark>3</mark>	<mark>100</mark>	<mark>59</mark>	<mark>46</mark>	<mark>12.5</mark>	<mark><2</mark>	<u></u>	Ű D	
			Incubation	<mark>1 time (d</mark> ays)		Ĩ		
<mark>6</mark>	0	7	<mark>14</mark>	28		A	8 X .0	
<u>~</u>	<u>113</u>	<mark>104</mark>	103	100		s ^e		
	0	_	Incubation	n time (days)	Û	ž č		,Ø
<mark>9</mark>	<u>0</u>	8 04.5	107	$\frac{32}{162}$	²	Ŵ		1
Values give	100	94.3	initial concern	tratian of 10 m				
values giver	i as percentago		lintial concen					
				Q [°]				
Table 7.2.1.	1-6: Reco	very of fose	tyl-Al after 🕅	cubation at 2	2 ^{°°} C in aque	ous buffer solu	itions at pH 3, 6	
	and 9	in the darl	K O	X Ö	j ja j			
		Inc	ubation, time	(days)				
- pn	<mark>0</mark>	8		∀ <mark>16</mark> Ջ՝ լ	○ <mark>32</mark>			
<mark>3</mark>	<mark>100</mark>	<mark>42</mark>	<mark>.5</mark>	12 >	× 🔏	N Q	Ş O	
	_	Inc	uDation time	(days)	<u></u>		, Q	
<mark>6</mark>	0			<u>Í4</u>	<u> 28 0°</u>		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	<u>113</u>				<u>, 92</u>	ð _s õ	\$.	
	0		cubation time	(days)	<u> </u>)»	
<mark>9</mark>	100				<u>~~32</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- ~~ ~		
Values giver	n as percentage	e of nominal	initial concert	tration of 10 f				
v ulues giver	a us percentug		è O			~~		
B. MAT	ERIAL BAT			S N	0. %	L. L.		
							1.0.0.0	
Total mater	rial balances	ot tosety -	Al including A	ecoveries of	phosphonic	acid at 70 °C	<u>and 200 mg/L:</u>	
Values for	maternal bara	nces for a p	of 1.2 range	ged from /1 t	<mark>0 1900%.</mark> ×	J		
Material ba	liances for a j	of of 5 ran	ged from 102	2050 110 28.	O V			
Material 1	reances for a j		ged from 85		, , 0			
Material Ba	hances for \mathcal{R}	oH of the ran	ged from 106	10 10070.	. 08			
Material be	lances for a	oll of 0 ron	ged from 100	110/0.	AN AN			
Material ba	lances for a j	All of 1 2 to	nged from 0	$\frac{111}{5}$ to $\frac{11}{10}$ 5 to $\frac{11}{10}$ 5 $\frac{1}{5}$				
					<mark>/-</mark>			
Total mater	riabbalances	of foretyl-4	V including f	evoveries of	nhosnhonic	acid at 22 °C	and 200 mg/L:	
Values for	material bala	nces for a r	$H \alpha Q 2 ran$	ed from 92 t	<u>o 107 5%</u>	<u>uoid ut 22 C</u>	<u>una 200 mg/11</u> .	
Material ba	ances for a	aH of 3 an	geo from 97	5 to 408%	<u> </u>			
Materia	lances for a	oH of S rap	ged from 87	5 96 5%				
Material ba	lances for a	Hof 6 rate	ged from 93	te 101%.				
Material ba	lances for a	All of 8 man	ged from 99	to 108%.				
Material ba	lances for a	oH of yran	ged from 98.	<mark>5 to 106.5%.</mark>				
Material ba	lances for a	oH of 13 ra	nged from 86	5.5 to 105%.				
لہ		ð ×	~					
Total mate	rial balances	of fosetvl-A	<u>Al including r</u>	recoveries of	phosphonic	acid at 70 °C	<u>and 10 mg/L</u> :	
Material ba	lances for a	oH oC3 ran	ged from 78.	<mark>5 to 112%.</mark>				
Material ba	lances for a	old of 6 ran	ged from 100) to 113%.				
Material ba	Pances for a	of 9 ran	ged from 98.	<mark>5 to 126%.</mark>				
, Ov								
\bigcirc								

Total material balances of fosetyl-Al including recoveries of phosphonic acid at 22 °C and 10 mg/L: Material balances for a pH of 3 ranged from 95.5 to 112%. Material balances for a pH of 6 ranged from 92 to 113%. Material balances for a pH of 9 ranged from 85 to 125%. Apart from few exceptions at 70 °C and at a pH of 1.2 and 3, material balances were thus most acceptable range. C. TRANSFORMATION OF TEST SUBSTANCE Fosetyl-Al was found to be stable under conditions of agueous buffer by drolysis following 33 days of incubation in maximum at 70 or 22 °C. following Fosetyl-Al was found to be hydrolysed in aqueoustest solutions of pH 2.2 and 13 24 hours (pH 1.2) or 48 hours (pH 13) of incubation in maximum at 70 %. Fosetyl-Al was also found to be hydrolysed in aqueous test solutions of pH 12 and 13 following S S 30 days of incubation in maximum at 22 °C. phosphomic Gas chromatography after derivatization showed major transformation product besides recovered fosetyl. CONCI Fosetyl-Al was found to be stable under conditions of aqueous buffer hydrolysis of off 5, 6, 8 and 9 following 33 days of incubation in maximum at 70 or 22°C. Ŋ Ô Fosetyl-Al was degraded bydrol fically under conditions not representative for the environment in terms of pH and temperature. Ő \bigcirc The study results were consistent with other data available on the behaviour under conditions of Lon C abiotic hydrolysis festing on sterile aqueous buffer. Being overall scientifically valid, the study was replaced by additional data in line with actual requirements in testing of hydrolysis in sterile aqueous buffer according to OECD 111. The study was therefore regarded as supplemental information. Ê ; **2001; M-203000-01-1 Report:** Sunder Cooratory conditions at pH 4, 7 and 9 Title: Report No Document /4/EEC as amended by European Commission Guideline S Guideline for Testing of Chemicals 111, Hydrolysis as TS Guideline No. 835.2110 Guideline deviation(s **GLP/GEP:** Executive Summary The rate of hydrolysis of foset A-Al was investigated in sterile aqueous buffer at pH 4, 7 and 9 in the dark at 50 °C for 5 days in maximum. The nominal test concentration of fosetyl-Al was 100 mg/L. Ŵ

Fosetyl-Adwas found to be stable under conditions of sterile aqueous buffer hydrolysis at pH 4, 7 and 9 following 5 days of incubation at 50 °C.

The design of the study was in line with actual requirements in testing of hydrolysis in sterile aqueous buffer according to OECD 111.

I. MATERIALS AND METHODS

A MATEDIALS				
A. MATERIALS				
1. Test Material			ð	
Fosetyl-Al			Â,	
Chemical Purity: 97.6%			.1	S S &
chemiearranty.		×a	s in the second	
 Test Buffer 			× Š	
Sterile aqueous buffer solutions (0.05 M)) were prepared	by adjusting ac	ueous solution	s of potassium
biphthalate to pH 4 and of boric acid to a	pH of 7 and 9, r	espectively.	° 4° 4.	
D STUDY DESIGN	QD [°]	~`	° Qʻ _N O ^y	
B. STUDI DESIGN	k, o°		x ? >>	
1. Experimental Conditions			Q. P. L	
The tests were performed in borosilion	cate glass vial	each filled	with approx	30 may of the
fosetyl-Al was 100 mg/L. The test vials	ere incubated in	the dark at 50	\pm^{2} C for 5 day	Ke a
2. Sampling $\mathcal{A}^{O^{*}}$		j _n n		Â.
Single replicates were removed for analy	sis after 0, 2, and	15 days of incu	bation.	
				1
3. Analytical Procedures	Contrained out			
Following temoval, the physical determine	sa nonya sub-sa	inpie.		
Analysis for fosetyl-Al was by direct anie	ction intown ion	Promatograph	ic system and	conductimetric
detection. The limit of quantification (LC	Q) was Smg/k	each for foset	-Al and phosph	nonic acid. The
LOQ for phosphoric acid was 8 mg/L.		20 d.	- Øj	
		S Q L	Ş	
	SUCETS AND D	SCUSSION	<i>9</i>	
Results of rel determinations in request	buffare indicated	L constant avalue	e during incuba	tion
Recoveries of phosphokate following me	ubation in sterile	aueons buffe	r of pH 4 7 and	19 at 50 °C for
five days in maximum were summarized	in Table 7.2.1.1.	.7. x≫	or print, i une	
A. DATA & A		Å		
Table 7.2.1.1- 7 Recovery of fosetyl-AL	after incubation	n sterile aqueou	is buffer solution	ns at pH 4, 7
and 9 at 30 °C bi the d	ark Q D			
	Ancubation	t <mark>ime (</mark> days)		
pH ~ 0 ~ ~		2	<mark>5</mark>	
		(%)	(mg/L)	(%)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3.7	101.6 101.8	83./ 102.0	101.6 101.7
9 88.5 2 140	<u>90.0</u>	101.3	<u>90.9</u>	102.7
B. MATERIAL BALANCE	owarad ware for	$m 100 \pm 102$	70/ for the news	o of pU tooted
and the total incubation partiad	overed were fro	100 to 102.	70 for the rang	e of pri tested
and the total medidation period.				

The actual application rate was determined by averaging the results of the Day zero analyses.

2. Sampling

Duplicate samples were removed for analysis after 0, 3, 7, 12, 20 and 31 days of incubation. Sterility was checked for all samples of day zero and for samples after 31 days of incubation.

3. Analytical Procedures

Following removal, the pH was determined. Sterility was checked by culturing aliquots of the test solutions on agar plates in an incubator at 35 °C for 48 hours. The cultures were evaluated for microbial growth.

Analysis for phosphonic acid and its potential transformation product phosphoric acid was by anion exchange HPLC and by comparison with authentic reference material.

II. RESULT AND DISCUSSION

Results of pH determinations in aqueous buffers indicated constant values during incubation. Recoveries of phosphonate following incubation of sterile aqueous buffer of pH 4, 5, 7 and 9 at 25°C for 31 days in maximum were summarized in Table 7, 1.1-8°

A. DATA

 Table 7.2.1.1-8:
 Recovery of phosphonic acid after incubation in stelle agreous buffer solutions at pH

 4, 5, 7 and 9 @ 25 % in the Cark
 2

 4
 4

			· ÿ		Y Q ^v	- An	0.	
рН	Compound	Ŵ [°] 🥋	e e e e e e e e e e e e e e e e e e e	<u> </u>	Incubation [®]	time (days)		
		lớg O [°]	<u></u>	© 3	<mark>7</mark>	<u>12</u>	20 <mark>20</mark>	<mark>31</mark>
<mark>4</mark>	Phosphonic acid	[™] Mean SO	94.9 2 ±0.2	9 2 4 0.0	∲ <mark>94,2</mark> 9 <mark>±3,2</mark>	× <mark>9)7.8</mark> ∢±2.1	≫ <mark>98.6</mark> ±0.3	<mark>99.2</mark> ±0.9
	Phosphoric actor	Mean (SD)	2007	چې <mark>2.9</mark> <mark>±02</mark>	3.8 [@] <u>40.4</u>	⊜້ <mark>5.5</mark> √໌ <mark>±9,2</mark>	4.4 ±0.6	3.1 ±0.4
	Total	Mean SD	97.0 <u>+0.0</u>	<mark>95∕.3</mark> ∡ <u>≇0.1</u> ⊳	5 [°] <mark>98.0</mark> 0″ ± 2€8	₹ <mark>97.3</mark> ±2.3	103.0 ±0.4	102.3 ±1.3
	Phosphonic acid	≪ <mark>Mean</mark> ₂, <mark>SD</mark>	94.7 2-0.0	94.5 ±0.2			<mark>98.3</mark> ±0.5	<mark>98.3</mark> ±1.3
<mark>5</mark>	Phosphoric acid	Masan SD	€ 0.0 ±0€	2 <mark>8.6</mark> √ ∞_ <u>±0.0</u> √	∲ <mark>0,0</mark> ≩0,0	0.0 ±0.0	0.0 ±0.0	1.1 ±1.1
	Total	[¶] Mean SD	<mark>99.7</mark> _≪ <u>#0.0</u> ≪		∕ <mark>*99.9</mark> ⊘∕ <mark>±2.9</mark>	93.2 ±1.2	98.3 ±0.5	<mark>99.4</mark> ±0.2
	Phosphonic acid	Í <mark>Meðan</mark> SD	>0° <mark>99.9</mark> ≠1,0	\$ <mark>95.0</mark> °∼y <u>±0.7</u>	y [≫] 99.2 ±0.7	<mark>99.4</mark> ±0.9	100.6 ±1.2	102.2 ±0.5
<mark>7</mark>	Phosphoric acid	Mean S	2,3	ହ <mark>1 ଯୁ</mark> ଦ୍ୟ ୁ <mark>≭√.4</mark>	1.4 <u>±1.4</u>	2.8 ±2.8	3.5 ±0.0	3.1 ±0.4
	Total	Mean ASD	102.2 +0.0	≫ <mark>96.4</mark> ≫ <mark>±2.1</mark>	<mark>100.6</mark> ±0.6	102.2 ±3.7	104.1 ±1.2	105.3 ±0.1
	Phosphonic acid	SO Mean	^ <mark>%5.7</mark> ⊘ <mark>±0.9</mark> ≮√	≠ ^v 92.0 ±0.5	94.8 ±3.7	<mark>93.4</mark> ±1.4	<mark>98.5</mark> ±0.5	<mark>97.1</mark> ±0.0
<mark>9</mark>	Phosphoric acid	SD SD	> [∞] 1.7 - 20.2	0.0 ±0.0	0.0 ±0.0	0.0 ±0.0	1.4 ±1.4	1.2 ±1.2
	Total	O Mean SD	97.4 <u>±0.7</u>	92.0 ±0.5	94.8 ±3.7	93.4 ±1.4	<mark>99.8</mark> ±1.8	98.3 ±1.2

All values given as percentage of dose applied

SD: standard deviation

B. MATERIAL BALANCE

Total material balances were 95.3 to 103.0% for pH 4, 93.2 to 99.9% for pH 5, 96.4 to 105.3% for pH 7 and 92.0 to 99.8% for pH 9.

C. TRANSFORMATION OF TEST SUBSTANCE

The recovery of phosphonic acid was from 94.9% by day zero to 99.2% after at days of incubation at pH 4, from 94.7% by day zero to 98.3% after 31 days of incubation at pH 5, from 99.9% by day zero to 102.2% after 31 days of incubation at pH 7 and from 95.7% by day zero, to 97.1% after 31 days of incubation at pH 9. Phosphoric acid was found at 2.1% by day zero to 3.1% after 31 days of incubation at pH 4, from 0.0% by day zero to 1.1% after 31 days of incubation at pH 5, from 2.3% by day zero to 3.1% after 31 days of incubation at pH 7 and from 1.7% by day dero to 1.2% after 31 days of incubation of pH 9 The maximum occurrence was at 5.5% after 12 days of incubation in samples of pH 45 Ø At all pH tested the values determined for phosphonic acid or phosphoric acid thus followed no clear trend with time indicating stability of the two compounds towards about hydrolysis under the conditions of the test. Phosphonic acid was found to be lodrolytically stable under the conditions of the test **O** Ñ Ŵ Ø Ø The design of the study was infine with actual requirements in testing of hydrolysis in sterile aqueous buffer according to OECD 111. ×, Stion s H 4 and 9 4 4 **Report:** 2000: M-214/0)210-0**4≥**1 Title: Report No. Document No. Guideline(s) Guideline de iation(s) GLP/G **Executive Summary** \bigcirc The potential of phosphonic acid to andergo oxidation in sterile aqueous buffer solutions at pH 4, 7 and 9 was studied under laboratory conditions at 22 °C for 30 days in maximum. The tests were performed at a test concentration of 1 g/b Ò r Qi Ì Phosphonic acid was not oxidized in sterile areated aqueous buffer solution of pH 4, 7 and 9 under the conditions of the test **B**IALS AND METHODS

A. MATERIALS

1. Test Material

2. Test Solutions

Sterile aqueous buffer solutions (0.02 M) were prepared by adjusting aqueous solutions of citric acid to pH 4, of imidazole to pH 7 and of boric acid to pH 9, respectively.

B. STUDY DESIGN

1. **Experimental Conditions**

The tests were performed under flow-through conditions allowing sterilised air to pass through 125 mL glass flasks filled with 50 mL sterilised aqueous buffer solution containing phosphonic acid at a test concentration of approx. 1 g/L. The test vessels were incubated at approx 22 °C for 36, day maximum. Another series of samples was kept under a stream of nitrogen to serve as control

Sampling 2.

Duplicates of aerated samples were removed for analysis after 16 and 30 days of incubation control samples under nitrogen were removed after 30 days of incubation.

3. Analytical Procedures

After 16 days, the aerated samples were disconnected and aliquets of 20 mL were transferred to 1 J. tubes. Afterwards, the samples were re-connected and the incubation continued unit 30 days.

 \bigcirc

At each sampling interval samples were analysed by ³¹Phosphorac

II. R

A. MATERIAL BALANCE

Material balances were not established.

B. FINDINGS

Values for phosphate were low to very by for all samples, i.e. phosphate was detected in a pH 4 sample after 16 days, but the value did not prcrease after 30 days of incubation as summarized in Table 7.2.1.1-9. No transformation was observed for samples of pH 7 and 9. *(*]) \cap

Table 7.2.1.1-9: Relation of phosphate versus phosphonate after incubation at 22 °C

	C.			/ &ľ		
	pđ (Sampl	e o ký	<u>~</u> 5	Day 16	Day 30
	Ŏ Â	Aerate	d 🦄 🔪	Mean O		<mark>0.6</mark>
	ू 🖗 <mark>4</mark>		AN	[®] ŚD _@ ,		<mark>± 0.6</mark>
\$		Nitrogen (co	strol) ¹		≫ <mark>0</mark>	<mark>0</mark>
K		Aerate	d a lot	Mean 🔪	<mark>0</mark>	0
	<mark>7</mark> 🔬 2			S <mark>SD</mark> A	<mark>± 0</mark>	<mark>± 0</mark>
		A Nitrogen (co	etrol) ¹ 2	0 ô	<mark>0</mark>	<mark>0</mark>
		Q Aerate		Mean	<mark>0</mark>	0
	3 <mark>9</mark> ~			<mark>∑SD</mark>	<mark>± 0</mark>	<mark>± 0</mark>
	, ¥ °	Nitrogen (co	ntrQl) ¹	0	<mark>0</mark>	0

alues expressed as percentage phosphate area per percentage phosphonate area observed

n ³¹P-NMR 🗞 D: standard deviation

III: CONCLUSIONS

Phosphonic acid was not exidized in sterile, aerated aqueous buffer solution of pH 4, 7 and 9 under the conditions of the tes

CA 7.2.1.2 Direct photochemical degradation

Report:	KCA 7.2.1.2/01
Title:	Fosetyl-Al: UV absorption characteristics
Report No.:	R000762
Document No.:	M-227366-01-2
Guideline(s):	none 🔨 🖉 🖉
Guideline deviation(s):	not applicable
GLP/GEP:	
Report:	KCA 7.2.1.2/02
Title:	Phosphorous acid: Aqueous phytolysis
Report No.:	C012598
Document No.:	M-203005-01-1
Guideline(s):	EU (=EEC): 94/37/EC, \$5/CT 2, \$2; SEAAC: PART 1, \$ECT 1
Guideline deviation(s):	none O L C A L A
GLP/GEP:	yes A TO A A O L A A
The potential for direct	t photolysis of fosetyl-alterniniten (fosetyl-Alowas investigated in

• aqueous solutions of non-labeled fosetyl-Al and the recording of the W absorption spectra for various test concentrations (KCA 7.2.1.2/0.)

The direct photolysis of metabolite phosphonic acid was investigated in

• sterile aqueous buffer at pH 7 following application of non-labeled test substance and irradiation at 20 °C (KCA 7 × 1.2/02). Direct photolysis of phosphonic acid was also investigated under the same conditions but the presence of iron oxide or thanium oxide as catalysts.

This data requirement was addressed under Point 2.9.2 as well as under Point 7.2.1.2 of the Dossier submitted and evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005). Consequently there is no detailed description of this existing data in this Supplementary Dossier.

The test designs of studies, KCA, 7.2.1.201 and KCA, 7.2.1.202 are in line with actual designs in testing of direct photolysis in sterile aqueous briffer solution. In summary this allows for the conclusion that the studies are consistent with no major deviation from designs or requirements according to OECB 316.

For the active substance fosets Al the evaluation revealed that there was no potential for photolytic degradation in water due to the low extinction coefficient (\mathcal{E}) of 1.03 mole/L to be significantly below the value of 10 mole/L at wave lengths of 290 nm and higher.

For phosphoni@acid the evaluation revealed that the compound showed stability towards direct aqueous photolysis under the conditions of the test.

Photolytical degradation of phosphonic acid in water was induced in the presence of catalytic amounts of titanium oxide while from oxide had no effect.

No photolytic half file was therefore determined for the active substance fosetyl-Al and phosphonic acid in steppe aqueous buffer solution.

Photolytic processes are therefore rather unlikely to contribute to the elimination of fosetyl-Al or phosphonic acid from the aquatic environment.

Study summaries of existing studies and publications on photochemical degradation of the active substance and metabolites, i.e. phosphonic acid:

Following another request by the RMS, this document was updated by inclusion of summaries for the existing data, i.e. studies and publications submitted and evaluated during the process of ownex lo inclusion of fosetyl under Directive 91/414/EEC and being still of relevance for the EU approval

Ņ

L1

 Report:
 KCA 7.2.1.2/01
 ;; 1981; M-227366-01-2

 Title:
 Fosetyl-AL: UV absorption characteristics

 Report No.:
 R000762

 Document No.:
 M-227366-01-2

 Guideline deviation(s):
 none

 not applicable
 o

 Description characteristics of fosetyl-AL were determined between 200 and 360 min.

 Faceutive Summary
 The UV absorption characteristics of fosetyl-AL were determined between 200 and 360 min.

 The change of absorbance as a function of the concentration to 10000 min.
 10000 min.

 was determined at 290 nm. The motar extinction coefficient was graphicall odetermined.

Additionally, comparative experiments were carried out in parallel on fosetyl-Na (5, 10, 25 and 50 g/L) and various inorganic aluminium salts. To investigate the contribution of impurities of fosetyl-Al, photometric examination of a solution of FeCl₃ was performed. Ľ, 0

For fosetyl-Al a mola extinction coefficient of 1.93 L mol⁻¹ cm[©]was calculated at 290 nm. For fosetyl-sodium the value, for the molar extinction coefficient at 290 nm was calculated to 0.053 L mol⁻¹ cm². The value was significantly lower than the one for posetyl-Al. It was concluded that the higher obsorption observed for fosetyl-At was not essentially due to the phosphonate moiety. For Al3+ cations the molatextinction coefficient was found to vary between 0.05 L mol-1 cm-1 and 0.30 L mol 2 cm⁻¹. Adsorption of Al³⁺ this corresponded only to a small proportion of the overall value of absorption determined for fosetyl-A. A.

Consequently, the light absorption of tosety Al observed at 290 nm was attributed mainly to the absorption of the aluminium cation and the presence of other metal ions such as iron at trace level. The light adsorption observed for fosetyl-sodium was assigned to a photometric reaction of the fosetyl anion itself. The value determined was significantly below the limit of 0.1 L mol⁻¹ cm⁻¹ adopted by the US EPA for the conduct of photo-transformation test

Any effect of photo-transformation on the overall elimination of fosetyl residues from the aquatic environment can these considered to be negligible.

R. MATERIALS AND METHODS

A. MATERIALS

Ŋ

1. Test tems & & & Experiments were performed with non-labelled fosetyl-Al (batch EA. 1167-1) and fosetyl-sodium (batchEA - 2124-2) dissolved in distilled water. Å

Ŀ,

B. STUDY DESIGN

Aqueous solutions of fosetyl-Al were prepared at concentrations of 5, 10, 25 and 50 g/L each followed by filtration through cellulose acetate membranes to minimize micro-particles causing scattering phenomena.

Absorption spectra were continuously recorded for the range between 290 and 360π UV-spectrophotometer with reference to distilled water.

The change of absorbance as a function of the concentration of the solutions was determined 290 nm, the latter serving as reference wavelength in FPA instructions for performance of photo transformation studies. × 1

The influence of counter-ions on UV absorption was investigated by comparison of solution containing fosetyl-Al and fosetyl-sodium (5, 10, 25 and 50 g/L), respectively. 1 V

The resulting molar extinction coefficients were determined graphically

X, II. RESULTS AND DISCUSSION

Õ

Ø

The results in terms of absorbance of fesety (A) at 290 nm were summarized in Table 70.1.2- C Values of absorption increased towards lower wavelengths reaching a relative maximum at about 225 nm. For fosetyl-Al a molar expiration coefficient of 1.03 Lynol⁻¹ m⁻¹ was calculated at 290 nm.

	<u></u>		- M	Ş	, en	Ô.	ð	P
Table 7.2.1.2- 1:	Absorbance of f	fosetyl-A	@t 290 .1	nm for	various	eoncen	gration	s S

						// IP	• //		
	<mark>Ø</mark>	oncenti	ation	foset	<mark>¶-Al</mark>	, L	Absorbar	ice	4
	N N	1	<mark>(g/Ľ)</mark>	- Ali		Ş.	<mark>aț 290 n</mark> i	m 🖉 🕺	Ş
	Ø	Ş	ু <mark>থ</mark> ় <mark>5</mark>	O	<u></u>	\$ \$	Ø.014)
Q)	ν γ	°0° ~~	ې <mark>10</mark> (D .		<u>у</u>	0.02®	- ~~	
S	Å) <mark>25</mark> ,7	×.			<mark>0,076</mark>	Ø	
		~	_{له} <mark>50</mark>		Š	Z,	@146	Å.	
	\bigotimes		\sim	(Corriginal States)	NY .	~			

experiments with fosetyl-softum were summarized in Table 7.2.1.2-2. Results of the comparative

Angernange	nt tosetvi_soannn	n at /yu nmetor y	values concentrations
1 NUMBER OF DIAMEN	JI 103Ct y1-3W&HUH		valious concentiations
	a/ 01 //		105 1

	<u>`</u>		\bigcirc^{v}	. V (n		
	~? 	Concentrat	ion of foset	yl-Na 🔊	Abso	rbance at
Ő			<mark>(ダイ)</mark> 、ベ) () () ()	2 2	<mark>90 nm</mark>
(II)	. 64		3 <mark>5</mark> 🔿	Ô	~ ~	0.005
~Q~	Û	\circ \sim	10 ²		< <	0.00 <mark>5</mark>
2	() ₂ 0′	26 × 0	Ň.Ű		0.009
Ö, Y	Ŵ,		<mark>180</mark> 2	2°		0.020
			, L	~ % ′		

For fosetyl-sodium the ratue for the molar extinction coefficient at 290 nm was calculated to 0.053 L mol⁻¹ cm⁻¹. The Value was significantly lower than the one for fosetyl-Al. It was concluded that the higher absorption observed for fose 1-Al was not essentially due to the phosphonate moiety. 0 Ø)

For Al³⁺ carions the motor extraction coefficient was found to vary between 0.05 L mol⁻¹ cm⁻¹ and 0.30 L m@ 3 cm 3 Adsorption of Al $^{3+}$ thus corresponded only to a small proportion of the overall value of absorption determined for fosetyl-Al.

The UV absorption of fosetyl-Al and that of the other aluminium salts may therefore not be associated with intrinsic characteristics of the compound but should be attributed to other secondary phenomena such as the content of heavy metals like iron. Impurities by iron were very likely the cause of UV absorption observed for fosetyl-Al.

III. CONCLUSIONS

The light absorption of fosetyl-Al observed at 290 nm was attributed mainly to the absorption of the aluminium cation and the presence of other metal ions such as iron at trace level. The light adsorption observed for fosetyl-sodium was assigned to a photometric reaction of the fosetyl anion itself. The value determined was significantly below the limit of 0.1 L mot⁻¹ cm⁻¹ adopted by the US EPA for the conduct of photo-transformation tests. Consequently, an effect of photo-transformation on the overall elimination of fosetyl residues from the aduatic environment can be considered as negligible.

B. STUDY DESIGN

1. **Experimental Conditions**

The tests were performed in 50 mL borosilicate glass flasks filled with 50 mL of sterile aqueous buffer solution containing phosphonic acid at a nominal test solution concentration of 100 mg/L. The lasks had outer glass jackets for cooling and screw caps fitted with a quartz top window. For dark controls 30 mL borosilicate glass flasks were filled with 30 mL of the treated sterile access buffer.

Samples were irradiated with a xenon light source simulating natural sumlight (Heraeus, Suntes Samples were infadiated with a logical structure of the same sequence o

Sampling 2.

1, 2, 4, 6, 8 and 16 (irradiated) Duplicate samples were removed for analysis after 0, 0, 25, 1, 2, 4 and 7 day of irradiation Samples containing iron (III) oxide in addition were removed for analysis at the same time points of incubation. Õ

Samples containing titanium dioxide were removed for analysis after 4 or 25 (dark) hours after treatment (HAT)? °∼ Ø Ô

Sterility tests were performed at the first and the last sampling interval

Ŵ

3. Analytical Procedures

Following removal of undissofield catalyst by centrifugation, where applicable, sub-samples were subject to analysis by ion chromatography followed by conductometric detection. The limit of quantification (LOQ) for phosphonic acid was 3mg/L. The limit of quantification for phosphoric acid O Star was 8 mg/L.

RESULTS AND BISCUSSION

A. DATA

The results of the boto-transformation tests of hosphoric acid in storile aqueous borate buffer solution of pH 7 were summarized in able 7.2.1.2-3 for fests in the absence of photo-sensitizing agents. The data demonstrating the potential for influence on photo-transformation by photosensitizers was summarized in Table 7.2.1.2-2 for iron (III) oxide and in Able 7.2.1.2-5 for titanium dioxide.

Ø)

Table 7.2.1.2- 3:	Photo	rtransf@m	ation of	phosphon	ieacid at 20	°C in sterile aqu	eous buffer of pH	<mark>I 7</mark>

-4 M n				Inc	ubation	<mark>time (da</mark>	ys)	
<u> </u>		Replicate	$\mathbb{A}^{\mathbb{Q}^1}$	<mark>0.25</mark>	<mark>1</mark>	<mark>2</mark>	<mark>4</mark>	<mark>7</mark>
Im diat of	Dhoonhort and	Migan	0.000	<mark>101.7</mark>	<mark>102.8</mark>	<mark>103.7</mark>	<mark>104.3</mark>	<mark>92.2</mark>
		8 <mark>8D</mark>	[€] <mark>±0.5</mark>	<mark>±0.5</mark>	<mark>±0.6</mark>	<mark>±1.1</mark>	<mark>±0.4</mark>	<mark>±1.4</mark>
Dork	Phosthopic and	Wean Q	<mark>100.0</mark>	100.5	<mark>100.8</mark>	102.7	103.5	<mark>86.7</mark>
Dar.		SP SP	<mark>±0.5</mark>	<mark>±0.1</mark>	<mark>±1.1</mark>	<mark>±1.3</mark>	<mark>±1.1</mark>	<mark>±9.9</mark>

¹ Day zero samples wereaken as applied dose Q00%) for both irradiated and dark samples; All values given as percentages of apprend test concentration by day zero

Table 7.2.1.2- 4: Photo-transformation of phosphonic acid at 20 °C in sterile aqueous buffer of pH 7 in the presence of iron (III) oxide

				Incubation time (days)					, S	
			Replicate	<mark>0 1</mark>	<mark>0.25</mark>	<mark>1</mark>	2	<mark>4</mark>	A	- Or
Irradiated	Phospho	nic acid	<mark>Mean</mark>	<mark>100.0</mark>	<mark>86.9</mark>	<mark>67.0</mark>	<mark>8,5</mark> 9	<mark>86.0</mark>	9 <mark>2.1</mark>	Ô
	r nospho	r nospholite acid	SD	<mark>±1.8</mark>	<mark>±10.1</mark>	<u>±5.1</u>	∕ <mark>∌0.4</mark>	<u>±1.1</u>	[≫] ±7.5	ð -
<mark>Dark</mark>	Phospho	nic acid	<mark>Mean</mark>	<mark>100.0</mark>	<mark>85.3</mark>	<mark>76.9</mark> 🤦	<mark>86.8</mark>	<mark>88.0</mark>	785	Ô
	r nospito	Phosphonic acid		<mark>±1.8</mark>	<mark>±8.4</mark>	±2. %	[≫] <mark>±1.5</mark>	±1, A	s <mark>±2.0</mark>	d S

¹ Day zero samples were taken as applied dose (100%) for both irradiated and dark sample All values given as percentages of applied test concentration by day zero

Photo-transformation of phosphonic acid at 20 °C in sterile acticous buffer of pH 7.4 Table 7.2.1.2- 5:

				<u> </u>			())*	×	St Di
		C		? ₄ , ₂ ,	Incubat	tion time	(hoars)	»	
		Replicate	0 <mark>∜</mark> €	, O	Ž	<mark>64</mark>	^{'0°} 6	🛠 <mark>8</mark> 🌋	<mark>16 / 25</mark> 2
Irradiated	Phosphonic acid	Mean Spy ~	<mark>1∕00.0</mark> ¥2.8	∕ <mark>¥00.8</mark> ,> <mark>±3.0</mark> €	96.8 ±3.9	89.7 +2.7	78.5 +2,5	72.€ ≠2.2	3 9.3
<mark>Dark</mark>	Phosphonic acid	Mean SD	/ <mark>100.€</mark> 8	104.5	199.6	<mark>⊉04.0</mark> ⊃ <u>±0.1</u> ≲	Ø <mark>4.7</mark> ≷ <mark>±2.0</mark> €	€00.0 ≥ ±1.7€	[©] 96.6 ±2.9
Irradiated	Phosphoric acid	Mean Sty	n.d.	8.3 ±0.0	> <mark>11.3</mark> ±0,⊈	² 20.4 <u>≠</u> 6,4	26.0 ₩0.7	35.1 ±2.2	<mark>66.7</mark> ±4.3
<mark>Dark</mark>	Phosphoric acid	Mean & SD	n.d.© n.d.	n d.	n.d. 2	n.d. n.d. Ø	<mark>ĥ.d.</mark> n.d.	<mark>ð ⁿ.d.</mark> n.d.	n.d. n.d.

n.d.: not detected Day zero samples were taken as applied dose (190%) for both in adiated and datk samples; All values given as n.d.: not detected percentages of applied test concentration by day zero

Incubation was 16 hours for irradiated and 25 days for dark controls

Ő L. B. TRANSFORMATION OF TEST SUBSTANCE

Ø

No. For samples inadiated in the absence of photo-sensitizers, recoveries of phosphonic acid were 92.2 to 104.3% in the course of the study, Recoveries for dark control range from 86.7 to 103.5% during the same time of incubation. The petential photo-Cansformation product phosphoric acid was not detected in irradiated samples of a dark controls. S \bigcirc

No photo-transformation was therefore observed for phosphonic acid under the conditions of the test. \bigcirc

For samples irradiated in the presence of iron (III) oxide as potential photo-sensitizer, recoveries of phosphonic acid were 7.0 to 100.0% in the course of the study. Recoveries for dark controls ranged from 76.9 to 100.0% during the same time of mcubation. Overall, recoveries were more scattering with no clear trend for a decrease of values of phosphonic acid in the course of the test. The potential photo-transformation, productophosphoric acid was not detected in irradiated samples or in dark controls.

No clear contribution of iton (III) oxide to the photo-transformation of phosphonic acid was therefore observed under the conditions of the test.

For samples pradiated in the presence of titanium dioxide as potential photo-sensitizer, recoveries of phosphonic acid decreased from 100.0% by day zero to 39.3% after 0.67 days (16 hours). Recoveries for dark control granged from 34.7 to 109.6% after 1.04 days (25 hours) of incubation. Recoveries for irradiated samples in the presence of titanium dioxide thus showed a clear trend for decrease of values of physical physical definition of the test. In parallel, the potential photo-transformation product phosphoric acid was detected at 66.7% in irradiated samples after 0.67 days (16 hours) of irradiation. There was observed a clear contribution of the photo-sensitizer titanium dioxide to the phototransformation of phosphonate/phosphonic acid to phosphate/phosphoric acid under the conditions of the test.

Ľ

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

The DT_{50} - and DT_{90} -values for photolytic transformation of phosphonic acid in the presence of titanium dioxide were estimated to 11.6 and 38.5 hours, respectively.

III. CONCLUSIONS

No direct photo-transformation was observed for phosphonic acid following irradiation m aqueous buffer solution of pH 7 at 20 °C for 7 days.

No clear contribution of iron (III) oxide to the indirect photo-transformation of phosphonic Ĉ observed under the conditions of the test.

There was observed a clear contribution of the photoesensitizer titatium dioxide to the indirect pho transformation of phosphonate/phosphonic acid tophosphate/phosphorfe acidomder the c nditio the test.

Indirect photochemical degradation CA 7.2.1.3

Being a new potential data requirement to data were submitted in the existing Dossier and evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005)?

In the following data are submitted from a test that had been performed in order to fulfil data requirements outside the EU, ic. Japan. The new information is more detailed below.

M-2\$5973-01-1 **Report:** KČA 7 🎝 1.3/01 [2-146]FosetyPaluminium (QE F053616): Phototransformation in natural water and Title: destilled water

Report No .: M2F-05/198 Document No.: M-255973-01-1 Document No.: Jul-253845-01-1 Guideline(s): Japanese MAFF, 12 Nousan 8147, Annex 246-2 Guideline deviation(s), none GLP/GEP; 🖏

Executive Summary

The photolysis of 9-14C-labeled rosety aluminium (fosetyl-Al) was investigated in sterile natural water (pH 8.1) and pure water at a test concentration of 5 mg a.s./L. Samples were continuously irradiated at 25 ± 2 °G with artificial sunlight (<200 nm cut-off filter) for 7 experimental days (168 experimental hours requivalent to 74 environmental days when considering the light intensity at Tokio, Japan, at sea level in Jung

The recovered radioactivity was above 940% AR for irradiated samples. Values of ¹⁴C-fosetyl-Al decreased from 100.8% of AR (101.3%) at time zero to 50.3% (30.2%) at the end of irradiation in natural and pure water, respectively. Three photo-transformation products ethyl phosphate, ethanol and acetic acid were observed while no degradation occurred in dark controls.

The photoly transformation of fosety Al in sterile natural and in pure water was found to be negligible to result in mean photolytic half-lives of 77 and 35 environmental days, respectively, when being reference to natural light conditions of Tokio at sea level in June.

×, Direct (pur water) or indirect photolysis (natural water) therefore does not contribute significantly to the overall elimination of fosetyl-Al from the aquatic environment.

I. Material and Methods

A. Materials

1. Test Material:	[2- ¹⁴ C]fosetyl-aluminiu	m		
	Specific radioactivity:	0.83 MBq/mg (22.43	μCi/mg)	
	Radiochemical purity:	98.8%/99.4% (radio-	TLC, two method	ds)
	Chemical purity:	not reported	Š	,
	Sample ID:	SEL/1588	-0- 4	
				6

2. Test water

The natural water used for the test was collected from river

Germany. Water samples were characterized as summarized in Table 72.1.3- 1.9 The natural water used for the test was prepared from a Milli-Q bioger A10 water purification whit equipped with a Quantum EX ultrapure filter cardidge. The water had a resistivity of 18.2 M Ω *cm at 25°C (equivalent to 0.055 µSiemens/cm) and atotal organic sarbon content of 8 µs/L (8 ppb).

Sterilised water and natural water were used in the test.

Physico-chemical characteristics of Gatural water Table 7.2.1.3-1:

	a())		~	~ /		r.	
Water	10×				Ô,		
pН	Q"			Ž	.0	8.P	õ
Oxygen satu	iration (%)	, <i>6</i>	Č		4	85.6	<u>~</u> 0
Redox poter	nti§r (mV)ঁ≫		10%	<i>\$</i>	Ĵ	م 209	Ů Ć
Conductivity	y (μS/&m)		4 a	لم ۲	*	ĩ 521Q	
Suspende	olids (mg/L)		, .(- 0		A.A	de la companya de la comp
Evaporation	residue (mg	Ľ) 🔊	~ Õ	Č.	() a	≪ 3 ĭ90	
Water hardn	çşš (° dH)	0		» ۲	ñ N	11.7	y)
Total organi	c carbon (TC)@mg/L)		J N	0	°4∛≶	
Dessolved on	rganic carbon) (DOC, m	ng/L∌Ô	ß	L	B	
Nitrate (mg/	L) (\sim	s.	Ç,	J.	\$13	
Ortho-Phos	hate (ng/L)	<u>«</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			0.18	
S N				0	×,		
		A. 🏷	"0"	<i>a</i> .	074		

B. Study design

1. Experimental conditions:

The test was performed with 2-1C-fosetyl-Al at an unitial concentration of 5 mg/L. The 'static' test systems consister of quartz glass vessels attached to traps or volatile components. The samples were continuously irradiated in a Suntes Csystem at 25 2 °C with simulated sunlight (xenon burner, range of wave lenger spectrum 290 to 3000 nm i.e. spectral distribution similar to that of natural sunlight) with cut-off of UV radiation < 290 nm by the ase of alters. In parallel, samples were incubated under flow-through conditions at the same temperature in the dark thus serving as dark controls. Based on intensity measurements a continuous light exposure of 7 days in maximum (168 experimental hours) was equivalent to about 74 environmental days under light conditions at sea level at Tokio or, to about 36 environmental days under light conditions at sea level at Phoenix, Arizona, US, each at summer solstice, i.e. in June. 🔬 🛇

Duplicate or Opplicate samples were removed each for analysis after 0, 1, 2, 3, 4, and 7 experimental days of irradiation. Duploate samples of dark controls were removed for analysis at 4, and 7 days of incubation. Sterve water and natural water was used for incubation.

2. Analytical procedures:

Following determination of oxygen saturation and pH samples were analysed directly with no additional steps for extraction, clean-up, or sample concentration using LSC for determination of total radioactivity and HPLC with ¹⁴C-flow-through detection as the chromatographic method. Representative samples were analysed by TLC as confirmative analytical method.

3. Kinetic evaluation:

The kinetic evaluation of fosetyl-aluminium transformation data was performed by use of the software Model Manager, version 1.1. Values for half-lives and DT_{90} were calculated for irradiated samples and dark controls. The quality of fit was expressed in terms of the correlation co-efficient r².

II. Results and Discussion

The total irradiation time of 7 days (168 experimental hours) in maximum corresponded to about 740 environmental days under light conditions at sea level at Tokio or, to about 36 environmental days under light conditions at sea level at Phoenix, Arizona US, each at terms solstice, i.e. in June to reflect a worst-case approach.

Tests were performed with sterile samples throughout the whole testing period The temperature was maintained at 25 ± 2 °C for irradiated samples and tark controls during the test.

For natural water and pure sterile water the material balances and distribution of radioactivity are summarized for irradiated samples and dark controls in Table 7.2.1 2 and in Table 7.2.1.3, respectively. For natural water material balances ranged from 99.7 to 101.4% AR for irradiated samples and from 100.9 to 101.9% for dark controls. For pure water material balances ranged from 96.9 to 101.3% AR for irradiated samples and from 100.7 to 104.4% for dark controls. Formation of ¹⁴C-carbon dioxide was therefore insignificant for both types of water tested.

In irradiated samples of natural water, fosetyle Al degreased from 100.8% AR we time zero to 50.3% (mean value of two irradiation series) after 7 experimental days. Degradation was negligible in dark controls as it is demonstrated by a value of 100.9% AR after the same time of incretation in the dark. In irradiated samples, three components were formed to occur at 24.3% (ethyl phosphate), 14.3% (ethanol) and 6.9% (acetic acid) in maximum each after 7 experimental days (see Table 7.2.1.3- 2). In dark controls, the test substance reprinted stable with no detection of transformation products.

In irradiated samples of pure water, fosetyl Al decreased from 401.3% AR at time zero to 30.2% (mean value of two irradiation series) after 7 experimental days. Degradation was negligible in dark controls as it is demonstrated by a value of 100 % AR after the same time of incubation in the dark. In irradiated samples, three components were formed to occur at 12.9% (ethyl phosphate), 9.6% (ethanol) and 44.6% (acetic and) in maximum each after 7 experimental days (see Table 7.2.1.3-3). In dark controls, the test substance remained stable with no detection of transformation products.

The transformation products formed were all considered to be readily biodegradable thus with no further assessment in onvironmental exposure assessments required.

The findings should be considered also against the fact that 7 experimental days for irradiated samples were equivalent to 73.5 days under natural light conditions of Tokio (i.e. comparable to light conditions of Athens, EU). In view of the total irradiation time and intensity during the test indirect photolytic processes were found to contribute to a negligible extent to the overall elimination of fosetyl-aluminium from the aquatic environment.

It should be noted in addition, that to setyl-At was stabilized under the rather artificial conditions of the test due to sterilization of samples. This should be compared to the non-sterile situation under outdoor conditions to result in fast biotical induced hydrolysis of fosetyl-Al (see, for example, also Section CA 7.2.2.3) As a result of ready degradation of fosetyl-Al no material would be available for photolytic transformation processes in a natural aquatic environment for a prolonged time.

The DT values for fosetyl-Al in irradiated and dark samples were calculated by applying the simple first order kinetic model.

For natural water, the half-life was determined to 77 days under outdoor light conditions of Tokio being also equivalent to those at Athens in the EU. No value for the DT₅₀ could be estimated for dark controls due to insignificant degradation.

For pure water, the half-life was determined to 35 days under outdoor light conditions of Tokio being δ equivalent to those at Athens in the EU. No value for the DT₅₀ could be estimated for dark controls due to insignificant degradation. due to insignificant degradation. Ś

due to insignificant deg	radation.			IC D150	could by		u ioi uair ار	
						- Contraction of the second se	~	
Table 7 2 1 3_ 2• Phot	otransformation	of [2_14C]	fosetvl_A	l in steri	le natu r é	A b water		S' R
Table 7.2.1.5- 2. Thou	oti ansioi mation		losetyl-A	S S S S S S S S S S S S S S S S S S S				
Component		S	ampling	mterval	(experin	nental day	sp 🔊	
	Irradiated	0	1 K	2	O ^y	4 🗶	ĩ 7 ₀	
	Dark control	-	1º	- ,	0 ^y -	。4	7 ×	õ "Oʻ
Fosetyl-aluminium	Irradiated*	100.8	@94.2	83.Z	*78.4°	72Q9	<u></u> 30.3	Ū,
	SD	±0.1	±0.7。	±80%	±0%2	@≠0.1 %	\$\±0,5\$_`	Å.
	Dark control*	-~~	Ő	<u>s</u>	£ -	¥101.9	100.9	4
	SD	4-	<u> </u>	0 - 0	° - D	±0.1	€0.5	
Ethyl phosphate	Irradiated*	""m.d. »	<i>0</i> 4.3∕∽	9.5	1310	\$3.4	24.3	
	SD		±0,2	. ≠0.4	≱ 1.5	°∕>≠±2.5,	±kQ	A. C.
	Dark control	L.S.	Ž		ý - ý	n.d	jard.	0
	SD 2	~~ ``	Ş'- 4	ž - ~		L.		D
Ethanol	Irradiated	s n.d. S	2.8	58	6 0	9.1	14.3 _y	
	SD 🖉 🔍	i O	±0.1	£0.4	ó¥2.0	O* ±0.90	≰0. 9	
	Dark control*	Å,	, -	~ (r <u>-</u> Ø	n.d.	Gh.d.	
	SD SD	~~~	1 _ 7	- "%	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	°~~0	ò -	
Acetic acid	*Ayradiated*	n.d	n.d.	<i>2</i> ,4	×3.5 "	5.9	6.9	
*	SD SD	Õ	&- ~	©±0.6 %	√ ±1,0	±1.®	±2.8	
Ş	Dark control*	Øj - 🐇	Ş - K	" - ⁰	- OX	∕¢d.	n.d.	
	SP . O	Ş -	~Õ	<u>D</u>	a(-	<i>a</i> , -	-	
Unidentified	Irradiated*	pr.d	n.d.	۵ň.d.	Øn.d. 🌂	n.d.	n.d.	
, Č	SD _O	40° s	Ű - 🏷	, - S	-	-	-	
	Dark control*	n.d.s	n.d.S	n.d.	"n"d.	n.d.	n.d.	
, Q	KSD 🔊 👘	× - 0			0-	-	-	
Total volatiles				ĴŶ.C) *	-	-	
	Irradiated	Ĵ700.8	101,3	1014	100.9	101.3	99.7	
Total% recovery	SD	∀±0.10	±	<u>≈</u> ±0.1	±0.2	±0.1	±0.2	
Q _	Dark Sontrol	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>.</i> C? -	<i>Q</i> -	-	101.9	100.9	
<u> </u>	SDÔ 🔬	<u> </u>	p* - ") ² -	-	±0.1	±0.1	
				. 1 .	· 1	•	•	

Table 7.2.1.3- 2:	Phototransformation of [2-14C] fosetyl-Al in sterile natural water

Component	Sampling interval (experimental days)							
	Irradiated	0	1	2	3	4	7	
	Dark control	-	-	-	-	4	7	S V
Fosetyl-aluminium	Irradiated*	101.3	90.6	66.4	63.3	33.2	30.2	
	SD	±0.1	±1.3	±2.3	±8.1	±\$2.0	±6.7	
	Dark control*	-	-	-	-	الم	1007	
	SD	-	- (۴ی -	- 2	±0.1	¥0.2	Y Q
Ethyl phosphate	Irradiated*	n.d.	2.6 📎	4 .8	6 P	11.0	Ĉ12.9	
	SD	-	± 0.2	±0.6	Ð.1	±3.6 ≪	±3,70°	
	Dark control*	-	<u> </u>		ô ^y	\circ n.d $^{\bigcirc}$	n.d.	Č,Č
	SD	-	F'-	-~,	×?	Ŵ.	0 ⁷ - m	<u> </u>
Ethanol	Irradiated*	n.d. 🧖	2.1 。	5.0	7.5	@8.5 🎓	\$\9 <u>,</u> 6≪	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	SD		±	÷0.7	£≠0.2	±1.6\$	±1.3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Dark control*	4-	£-	,0 - <i>,</i>	P - O	n.d.	ar.d.	
	SD		v - N		A		- 4	
Acetic acid	Irradiated*	🖇 n.d 🔊	58	26.5	22.4	°∕~∕44.2	44(6	- Ali
	SD Q	^ل کي ا	¥.2 ,	¥2.4	€±6.4 č	±9.00°	4 .1	0
	Dark control*	<i>6</i> - °	y - 4	v -~		nÌÌ.	Sn.d.	2
	SD 🖓	a - a	-8-	R	Ģ	0- Č	- ~	
Unidentified	Irradia@d* 🔍 🖔	n.dØ	pd.	<i>.</i> @.d.	On.d.	°n.d⊳	¢a.d.	
	SD		, [–]	~ - "®	1 [*] <u>-</u> Q	<u>~</u>	O`-	
	Dark control*	n.d. ∅	🎽 n.d. 🖉	n.d.	n.d.	°∼p.d.	🖗 n.d.	
	°∕S¢D ₄	¢ - \$	Ś	¹	<u> _</u> ,	§ - ~	-	
Total volatiles 🔬		Ő	ð,	0′ %	, V 6	\sim		
j.S.	Irrachated*	d 01.3	\$101.K	″99.8 [©]	1001	\$6.9	97.3	
Total% recovery	SP . O	\$±0,1	±0.0	±0.1	_±0.7	@#±0.9	±1.0	
	Dark control*		х Х	Š'-	Q ^v - ,~	7 101.4	100.7	
	SD _O	60 5	Ű ⁸ - 🎓	- \$	-	±0.1	±0.2	

Phototransformation of [2-14C] fosetyl-Al in pure sterile water Table 7.2.1.3- 3:

* mean values of two oplicates, SD = standard deviation; n.d. = not determined All values expressed as percentage of total applied adioactivity

III, Conclusion The indirect photolytic transformation of tosety Al in sterile natural water and direct photolytic transformation in pure water was found to be negligible to result in mean photolytic half-lives of 77 and 35 environmental days, respectively when being referenced to natural light conditions of Tokio at sea level in June. A S

Å

Irradiation of ¹⁴C-fosetyl-AD in storile natural and pure sterile water resulted in the formation of the three photo-transformation products ethyl photophate (24.3%), ethanol (14.3%) and acetic acid (44.6%) in maximum. (In Q,

Overall direct (pute wate) and indirect photolysis (natural water) is therefore unlikely to contribute significately to the overall elimination of fosetyl-Al from the aquatic environment. S. LE ST CO

Bayer – Crop Science Division

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

CA 7.2.2 Route and rate of biological degradation in aquatic systems CA 7.2.2.1 "Ready biodegradability" **Report:** KCA 7.2.2.1/01 01-1 Title: BOD of the product fosetyl-Al Report No .: R000927 Document No .: M-159568-01-1 Dutch NEN 3235-5.4, 1972 Guideline(s): Guideline deviation(s): none **GLP/GEP:** no **Report:** KCA 7.2.2.1/02 Title: Fosetyl-Al: Assessmer Report No .: R011742 Document No .: M-184475-01-1 EU (=EEC): 92 Guideline(s): Guideline deviation(s): none **GLP/GEP:** yes **Report:** KCA 7 , 2001; M-904283-01 Assessment of the biodegradabilts of phosphorous acid in an Title: acid: ous medium Report No .: Document No .: Guideline(s): Guideline deviation **GLP/GEP:**

The ready biodegradability of foset Q-aluminium (foset QAI) was investigated experimentally in:

• activated sludge following application of non-labelled bsetyl Al at four test concentrations of up to & mg/L in maximum and incubation at 20°C under the conditions of a biochemical oxygen demand (BOD) gest for a maximum of 21 days (K&A 7.2.2.1/01);

n

• aqueous buffer of pH 7.4 isoculated with activated slodge following application of non-labelled fosetyl-Al at a test concentration of 98 3 mg/L* and incubation at 21 °C under the conditions of a carbon dioxide evolution test for a maximum of 29 days (KCA 7.2.2.1/02).

The read biodegradability of hosphonic acid was investigated experimentally in:

• aqueous buffer moculated with activated Sudge following application of non-labelled phosphonic acid at a test concentration of 20 mg/L and incubation at 22 °C under the conditions of an ultimate biodegradability test for maximum of 28 days (KCA 7.2.2.1/03).

The data requirement was addressed under Point 7.2.1.3.1 of the Dossier submitted and evaluated for the Annex I inclusion of foseryl under Directive 91/414/EEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005). Consequently there is no detailed description of this existing data in this Supplementary Dossier.

¹⁵ equivalent to 19.5 mg carbon/L

Requirements in design and testing of chemicals according to OECD 301 did not change since adoption of the guideline in 1992 including no major changes at times before. In summary this allows for the conclusion that the studies KCA 7.2.2.1/01 to KCA 7.2.2.1/03 are consistent with no major deviation from designs or requirements according to OECD 301.
The evaluation revealed that fosetyl-Al was significantly degraded (i.e. 75% after 28 days, study KCA 7.2.2.1/02) thus fulfilling the classification criteria to be readily biodegradable. No transformation was found for phosphonic acid under the conditions of the test (KCA 7.2.2.1/03). Phosphonic acid therefore did not fulfill the criteria to be classified as readily biodegradable following the strict criteria set for evaluation of this type of test.
Study summaries of existing studies and publications on ready biodegradability of the active substance
and metabolites, i.e. phosphonic acid:
Following another request by the RMS, this document was updated by inclusion of sommaries for the
existing data, i.e. studies and publications submitted and evaluated during the process of Appex I
inclusion of fosetyl under Directive 91/414/BEC and being still of relevance for the EU approval
renewal process. $\mathcal{A} \rightarrow \mathcal{A} \rightarrow \mathcal{A}$
Report: $KC\Delta 7 @ 2 1/0 4$
159568-01-1
Title: BOD of the roductoset and
Report No.: Ry00927 Q S A A A A
Document No.: $\sqrt{M-159568-0}$ $\sqrt{N-159568-0}$
Guideline(s): Control Dutcon NEN 235-54, 1972 Control
Guideline deviation and a second se
GLP/GEP: ST V V V V ST ST ST
Exacutive Sufferments
The biological avygen demand (BOD) of for the Align active shifting was determined at 20 °C for
21 days in maximum. The test was netformed at fosetyl-Alconcentrations of 0, 2, 4, and 8 mg/l
The value for the biological oxygen. Comand after five days (BOD) found for fosetyl-Al was
insignificant. However, there were indications for some oxygen consumption after 21 days to result in
a BOD ₂₁ of 0.16 ± 0.04 mg $0^{1/2}$ mg besty Al. This corresponded to about 18% of the theoretical
oxygen demand.
In view of results from tests of read biodegradability available following OECD 301, the study was
regarded as supplemental information.
UNITEROALS AND METHODS
A. MATERIALS \mathcal{A} \mathcal{A} \mathcal{A}
1. Test Item N & .
Fosetyl-M Sample ID: A Batch DA318 Chemical Parity: A technical
Active Sludge 2.

A sample of active sludge was taken from an oxidation ditch for treatment of domestic sewage. The original sludge (2 g of solid substance/L) was allowed to settle and 1 mL of the decanted supernatant was used to inoculate 1 L of BOD dilution water. The inoculated dilution was aerated vigorously before use.

B. STUDY DESIGN

The BOD of fosetyl-Al was determined in test BOD-bottles in quadruplicate samples of followin concentrations: 0, 2, 4, and 8 mg/L. A stock solution of the substance was made by dissolving 0.032 ¢ ¢ of fosetyl-Al in 100 mL of BOD dilution water. T.

The activity of the inoculum was checked using glacose and glatamic acid. The toxicity of the tes substance to the inoculum was tested in dilution water containing glucose and glutanic acid using a concentration of fosetyl-Al of 8 mg/L. A nitrification control was included by addition of alfylthiourea using a concentration of fosetyl-Al of 2 mg/L

Ŵ The oxygen concentration was measured after 0, 5 and 2 day

The test was performed at 20 °C for 21 days in maximum.

RESULTS AND DISC ILÔ \hat{n} Ñ 2 R

No significant value (BOD₅) was found for the test substance after five days of incubation (see Table 7.2.2.1-1). The incubation time was this prolonged to 21 days. After 21 days of incubation, the controls containing inoculum had a BOD value of only 4.5 mg O. F. A check on the activity of the inoculum to glucose/glutamic_acid led to BOD21 values of 9.0 mg OL and even higher in the presence of test substance. \bigcirc \bigcirc

The BOD₂₁ values found for foseryl-AK appear, to be significant with 0.16 \$\vert 0.04 mg O_2/mg fosetyl-Al possibly independent of concentration. This amounts to about 18% of the theoretical oxygen demand of fosetyl-Al (0.9 mg (02/mg) ų. K \bigcirc X 0 A Ô

0

 \sim

The controls containing only inoculum were found to have a very high BOD value of 2.9 mg O₂/L after 5 days of incubation. However, since the Doculum activity control (addition of glucose and glutamic acid) was normal, the background was regarded as acceptable. Testing the activity of the inoculum towards the glucose/guitamic acid mixture in the absence and presence (8 mg/L) of fosetyl-Al, BOD₅ values of 3. Sand 4. mg CV/L were found, respectively, showing that the test substance did not significantly inhibit the activity of the inoculum. The result in the presence of 8 mg/L test

Table 7.2.2.	.1-1: Resu	lts of the determination of th	he BOD of Fo	<mark>setyl-Al</mark>		
Incubation time	BOD	Additive	0	Applied fose 2	<mark>tyl-Al [mg/L]</mark> <mark>4</mark>	
<mark>5 days</mark>	BOD₅ [mg O₂/L]	- glucose and glutamic acid allylthiorea	2.88 6.70	3.00 2.63	2.8 ¹	213 (7.65 (7.65 (7.65) (7.65)
	BOD ² [mg O ₂ /mg]	-	-	~ 0.04	<mark>0</mark> Ć	
21 days	$\frac{BOD_{21}}{[mg O_2/L]}$	glucose and glutamic acid allylthiorea	4 90 8.98	5.15 9.00	5.4 5	~7 ^{5.68} ∂7 > 9 - 9 - 9
	$[mg O_2/mg]$	-		° [™] <mark>0.20</mark> 0	Q [×] 0.17	0.12
¹ One of the 4	4 replicates was	deviating; mean of three measure	mentso D		7 8 v	
² The BOD o	<mark>f the control has</mark>	been subtracted.		2 ~0	Â.	ý ·
			CLUSIONS		ŝ ^a ĉ ^a	
The BOD₅	value found	for fosetyl-Ad was usign	ifficant. How	ever, there v	vereindicatio	ons for some
oxygen cor	nsumption at led to about 1	tter 21 days 40 result in a 8% of the theoretical oxyge	BOLL 01 A	$1.46 \pm 0.004 \text{ m}$	gg@ ₂ /mgstos	etyoAl. This
correspond						¥
In view of	results from	tests of ready biodegradab	offity availabl	edollowing (DECD 300, t	he study was
regarded as	s supplementa	al information.	° °		ĝ 1 .ĝ	
			à sì			
Report:	× C	KCAR7.2.24/02	1996. M-184	€ 475-0 ¥≁1		
Title:	Ű	Fosetyl-A Assessment of Sea	ady bodegrada	ability; CO2 ev	olution test.	
Report No.:						
Guideline(s)		NI-1844/3-01-1 EU (OEEC) O2/69/2 C. MAT	hod CO-C: Q4	D: 301B. (1	992)	
Guideline de	eviation(s)	none la la	Â, O	*		
GLP/GEP*	, Y			\sim		
Executive	Summary			8		
The potent	ial of fosetyl	-Al to undergo ready biode	egradation w	as investigate	ed in an aque	ous medium
inoculated	with micro-	rganisms from activated s	ewage studge	e at 21 °C ur	der aerobic	conditions in
the dark f	or 28 days	h maximum. Fosedyl-Al G	was applied	at a test co	ncentration e	equivalent to
19.32 mg c	arbon/L.					
The evaluation	ation reveale	d that fosetyl-Al was sign	wificantly de	graded (i.e.	75% after 2	8 days) thus
fulfilling th	ne classificati	on criteria to be readily byo	degradable.	-		
	<u>ر</u>			HODE		
	L ^O as		S AND ME I	HODS		
A. MAT	ERIALS					
1. Test	Material (
Fosettel A	1 (pon-label	A A				
Sample II Chemical	Purity:	960203 97.6%				
`						

Test Solution 2.

A mixed population of activated micro-organisms originating from sewage sludge was used to inoculate the test medium.

B. STUDY DESIGN

Experimental Conditions 1.

The test was performed under flow-through conditions by flushing 5 L sealed witure containing 3 L of test solution with CO₂-free air and the collection of O_2° formed by traps.

()

The test was performed at a test concentration of fosetyl-Al equivatent to 19.52 mg carbon/L in the test solution (i.e. inoculated culture medium). Reference samples with sodium benzoate were propared at a concentration of 10 mg C/L in inoculated culture medium. X toxigity control (one vessel only) was prepared with the test material plus the standard material in inochated culture medium at a shal concentration of 29.52 mg C/L to assess any toxic effect of the test material on the sewage sludge micro-organisms used in the study. In addition, a control vessel was prepared consisting of inoculated culture medium only. Ô

The incubation was performed under continuous stirring in the dark at 21 °C for 28 days in maximum. By day 28, inorganic carbonates formed were driven offyby the addition offy1 mL concentrated hydrochloric acid to each vessel. The wessels were researed, aerated overnight and the final samples taken from both absorber vessels or day 29

2. Sampling

Duplicate samples were removed for analysis after 0, 1, 2, 3, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27 and 28 days of incubation. By day 29 camples were processed and analysed after addition of hydrochloric acid to the test vessels the previous day.

3. Analytical Prosedures

At each sampling oterval (except DAT 12 and DAT 18) the first absorber vessel was analysed for CO2 immediately, The second absorber vessel was sampled on DAT-0, and DAT-29. On DAT-0 and DAT-28 samples were removed from the test vessels and centerfuged prior to analysis for dissolved organic carbon (DOO). A

The samples from the absorber vessels were analysed for COousing a total organic carbon (TOC) analyser. Aliquots of the samples were injected into the inorganic carbon channel of the total carbon Analyser. The samples from the sest vessels were analysed for DOC using a TOC analyser. Samples were injected into the total carbon and inorganic carbon channels of the TOC analyser. Each analysis was carried out in trip ocate.

The results of biodegradation tests of fosetyl-Al, sodium benzoate (reference) and the toxicity control were summarized in Table 7.2.2 - 2.

tests of foset I-Ak tests of

Table 7.2.2.1- 2: Biodegradation of fosetyl-Al, sodium benzoate (reference), and toxicity control at

21 °C													0	° 🔉
Component						Incub	ation	time	(days)			. 8	
	1	<mark>2</mark>	<mark>3</mark>	<mark>6</mark>	<mark>8</mark>	<mark>10</mark>	<mark>14</mark>	<mark>16</mark>	<mark>20</mark>	<mark>22</mark>	<mark>24</mark>	<mark>27</mark>	28 2	<mark>9 1</mark> P
Fosetyl-Al	7	8	13	<mark>16</mark>	<mark>17</mark>	28	<mark>57</mark>	<mark>58</mark>	<mark>64</mark>	<u>S</u>	<mark>71</mark>	<mark>73</mark>	, Ø 5 7	8
Sodium benzoate	7	<mark>25</mark>	<mark>42</mark>	<mark>47</mark>	<mark>61</mark>	<mark>61</mark>	<mark>75</mark>	<mark>75</mark>	<mark>92</mark>	/ <mark>89</mark>	<mark>91</mark>	86	86 。	<mark>14</mark>
$\frac{10x_{1}c_{1}t_{2}}{(fosetyl-Al + sodium benzoate)}$	<mark>6</mark>	12	<mark>19</mark>	<mark>23</mark>	<mark>36</mark>	<mark>39</mark>	<mark>52</mark>	<mark>53</mark>	<mark>57</mark>	<mark>53</mark>	<mark>56</mark> ू	<u>Ô</u>	58 5	8
All values given as percentages	of ap	plied		l	l	Ö		1					×i V a	ș o
¹ DAT-29 values corrected to in	clude	anv c	arry-c	over of	CO ₂	detect	ed in	trap			Ŵ	Ş	' L	
		j	j		Ĩ,	1		L)	/	C	K)	Q,	.05	&O
The biodegradation of fose	tyl-A	l inc	crease	d fro	m 7	<mark>% at</mark>	day	[®] €∕ (st	undy	start	to 🔊	1,5% a	it [©] day 2	28.
Fosetyl-Al attained $\geq 60\%$ do	egrad	lation	after	284	ays b	out m	oreth	nan 1	Ø∕day	s wer	e bet	ween	this re	<mark>ult</mark>
and 10% of biodegradation.	Thus	, the	10 - da	ay&wii	ndowy	valic	lation	ı çtite	rion	was r	Q m	etand	theref	ore
fosetyl-AI cannot be conside	red t	to be	readi	lØbic	odegra	adabi	e und	st the	e <u>stori</u>	ct teg	hs an	d con	<u>ditions</u>	of
OECD Guideline No. 301 B.			A	, ,	ŗ.	Ň	_ Q) 	Ú	S	0		ŗ'	Y
Sodium hanzoota attained &	60/	Jagra	Ation	2°afta	′ へ ァ つ <i>図</i> 』		Mara	h	» nfire	0 hing #		while	ity of	the
inoculum and test conditions	070 (uays «			ли <mark>а</mark> н О					uic
inocularit and test conditions.		~~···			Ý	Ś	\sim	r r	S-	S	- W		2	
The toxicity control (fosetyl-	<mark>Al pĺ</mark>	us so	diaum	benzo	oate	attair		8%8	egrad	ation	after	28 day	ys there	eby
confirming that the test mate	erial	was	not to	oxic to	o take	sewa	ge tr	atme	ent m	icrô	rgani	spins us	sed in	the
study. The relatively low deg	rada	tion r	ate 🔊	ðserve	ed in	the to	xicity	y con	tiol v	essel	was	onsid	ered to	be
due to the sewage treatment	micr	Torga	anism	s ben	ng un	able	to de	grade	both	the sthe	sociu	m ben	zoate a	nd
test material present simultar	negus	sly ar	nd her	nce th	ie deg	grada	pion r	ate o	btain	éd wa	s low	ver tha	n that	for
either sodium benzoate or the	Cest	mate	rial v	essel.	ð,	.~	× 0	∀ (
		Ş,		<u>,</u>	ý ×			C)	4		~	1.1	
Inorganic carbon apalysis of	the s	econç	absc	orber v	vesse	Is afte	st 29	days	of in	cubati	on co	onfirm	ed that	no
significant carry over of CO_2	1840	the so	econd		rber v	vessel		wred	J.					
Analysis of the tast madi t) rom	O ¹	ost m	oterie				a b		zoro	and a	ofter 7	2 dave	of
incubation for dissolved orga	nie e	arbor				mean	merce	s γy Σινθάσε	Day e deg	radati	on va	$\frac{1101}{100}$	8 uays 85%	
	S		S(DC	℃9 gu	S	S		Y	uc <u>s</u>	luuuti			0.5 / 0.	
	0) 1 .	« 1			O KCLE	JSIO	NŜÝ	/						
\$°.4		× :	°		Ô	¥ 								
The evaluation revealed that	it So	sety	Al w	as sig	gnific	antly	degr	aded	(i.e.	75%	afte	r 28 d	lays) tł	nus
fulfilling the classific from cr	iferia	stobe	read	ily bi	Megr	adabl	e.						•	
		Y Y		6	Č Č	7								
The study followed in its desi	ign a	ctual	requi	remer	nts of	the c	orresp	pondi	ng O	ECD	Guide	eline 3	<mark>01.</mark>	
	R,	► .			Ŝ.									
		0 ^y	Ű		ช้									
× Ö	õ	/	Q,	Õ										
	2		ź	¥										
ja da s	2	Ŀ	01 1	/										
	Ł	~	Ş											
	Ő													
Y & A S														
Ô														

-				
Report:	KCA 7.2.2.1/03	+; 2	.001; M-204283-01-1	and the second second
Title:	Phosphorous acid:	Assessment of the blo	baegradability of phospi	lorous acid in an
Report No.:	C013264			
Document No.:	M-204283-01-1		*	
Guideline(s):	<mark>EU C-4A, 1992</mark>		Č,	
Guideline deviation(s):	none		O ^y	
GLF/GEF:	yes		_A	
Executive Summarv		Ś	Å.	
The possible biological	degradation of ph	osphonic acid by n	nicroorgatisms was s	turdied in an aqueous
test system under aero	bic conditions in	the dark at 22 °C	for 28 days in max	mum. The test was
performed at a phospho	onic acid concentr	ation of 20 mg/kg.	Sodium acetate was	serving as reference
item.				
N. J J. C				
No degradation of phose	phonic acid was o	bserved. Prosphore	ac acid had no influe	nce on the microbial
degradation of sourcin a	icelate in aqueous			
The study followed in in	ts design actual <i>fe</i>	ouirements of the c	Spresponding OECD	Suidelinge 301
	Q			
	I. MAT	TERIALS AND M	ETHODS ~ ~	
<mark>A. MATERIALS</mark>			S L C C	õ v
1. Test Item				
Phosphonic acid (non-		ð á m		Č.
Sample ID:	[™] 04911DNÔ			S
Chemical Purity:	98.3% B	Ő NY Ő		7
, and a second s				
2. Biological Reagents	4 5 5			
Microorganisms and i	n this study were	obtained from the	influent of the	
(Rhone, France)	vaste water freatr	neut plant dealing	with domestic sewag	e. Gross particulate
matter was removed fr	om the sample by	y coarse filtration.	The mogalum was t	hen concentrated by
centrifugation, washed	and placed in a s	ingeosolution 1/40	at wasokept under ae	robic conditions and
spectrophotometer and	was comprised h	uoli. Michoolganis	⁷ vills/mI The inoc	ulum was used at a
dilution of 1% in the tes	st.		, Sensinil. The moe	ululli was ased at a
Q A			r	
B. STUDY DEST	ŚN ŚŚ . Ć	N. N. R.		
1 Experimental Co	aditions 2	Y 6 D		
The test was performed	a in 1 DErlemmer	ver flasks containin	g 500 g of test medi	um and 2 mL of the
inoculum. An initial con	ncentration of pho	sphonic acid of 20	mg/kg was applied.	
	A. O'	Ŭ, ŝ		
Samples were incubated	1 m the dark at 22	± 1 or 28 days	<mark>in maximum.</mark>	
		Q		
In addition, samples to	intaking only the	inoculum (blanks)), reference item and	inoculum (controls)
and test item, reference	igen plus NaNo	ut without inoculur	n (test for possible ab	iotic transformation)
were incugated under th	same conditions	and removed for a	narysis at selected fm	e points.
2. Sampling A	, D			
Triplicate samples for	tests with the tes	t item and duplica	te samples for blank	s and controls were

analysed, 7, 14, 21 and 28 days after treatment (DAT).

Analytical Procedures 3.

At each sampling interval the amount of phosphonic acid was determined by ion chromatography. The amount of dissolved organic carbon (DOC) was analysed at each sampling interval with a carbon analyser.

The degree of biodegradation of the reference item was calculated by expressing the concentration of DOC removed (corrected for that in the blank inoculum control) as a percentage of the concentration initially present.

II. **RESULT AND DISCUSSION**

Recovered residues of phosphonic acid ranged from 99.2 to 1027% of applied at all samplin intervals as summarized in Table 7.2.2.1- 3. Thus the trend for degradation of phosphonic acid was observed under the test conditions. Ø Q, Ô The reference item sodium acetate was completely biodegraded after 7 days of incubation in the

presence or absence of phosphonic acid. Phosphonic acid had therefore no effect on microbial degradation of sodium acetate in the aqueous medium.

Table 7.2.2.1-3: Residues of phosphopic acidess a function of time

	A())	~~~	·~ ~ /	*	C		
Component	N.S.S.			ation time	(days)		
	Ny in		8 <mark>1</mark>	🔊 <mark>14</mark> 🔘		6<mark>40</mark>	2
Phosphonic acid	Mean	102.7	\$ <u>102.0</u> ©	993	99.7 4	9 <mark>101.2</mark>	
· 📣 🍾	🏑 <mark>SD</mark>	1.3	$\pm 2.0^{\circ}$	<mark>,∉°1.2</mark> ,	2 ± 1.4	<u>± 1.5</u>	
SD: standard/aleviat	im 🐇	y Ø	, <u>"O</u>	~0		<u>Q</u>	

Expressed as mean percentage of applied of three sepl

No degradation of physphonic acid was observed. Phosphonic acid had no influence on the microbial degradation of sodium aceta@ in aqueous medium under the conditions of the test.

CONCLUSIONS

The study followed in its design actual requirements of the corresponding OECD Guideline 301.

CA 7.2.2.2 Aerobic mineralisation in surface water

Being a new data requirement this point had not been addressed in the existing Dossier submitted and evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2005)

Report:	KCA 7.2.2.2/01	· • • • • • • • • • • • • • • • • • • •	2015; M-52994	0-01-1 🔊	^{\$} 23 .Q
Title:	[2-14C]Fosetyl-alumir	nium: Aerobic minera	lization in surfac	e water 🏷	
Report No.:	M-529940-01-1		Ŭ	ð,	
Document No.:	M-529940-01-1	Ŷ	R.		Y N. O
Guideline(s):	OECD Test Guideline	No. 309 🎢	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, O ^N , M
	Commission Regulation	on (EU) No 283/2013	in accordance w	ith Regulatio	n C
	(EC) No 1107/2009		y . Ű [*]	∛ <u>`</u> 0″	¢ Û
Guideline deviation(s):	none			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
GLP/GEP:	yes	ð . Ø			.1
GEI/GEI.	yes			O ^Y L.	4

Executive Summary

The mineralisation of ethyl-2-14C-labeled active substance fostyl-aluminium (fosetyl-Ale was investigated in non-sterile natural water at ## 8.0 at test concentrations of 10 2 µg/L flow dose) and 101.3 μ g/L (high dose). Samples were insubated at 20 \pm 2 °C in the dark for 63 days in maximum. Microbial activity of the test wate was demonstrated by incubation of phenyl-UL C-labeled benzoic acid serving as reference. m (M n The mean material balances were 99.4 \pm 3.0% AR for low dose and 97.5 \pm 4.2% for the high dosed

samples. Ñ 1 al

Values of the test substance in the test water decreased from 100.9% of AR for the low dose (100.5% for high dose) at time zero to 42% (2,1% for high dose) afor 63 days of incubation.

Fosetyl-Al was transformed predominantly to carbon dioxide amounting to 44.2% AR for the low dose and 58.1% for the high dose each after 63 days of incubation. Formation of other volatile components was negligible amounting to less than 3.6% AR (LOQ of low dose) and 0.4% (LOQ of high dose) in maximum for both concentrations tested.

Formation of other transformation products was observed to occur at@.0% in total for all components in the course of the study.

Values of the DT50 of fose Al, under conditions of mineralization testing were calculated to be 6.9 days (low dose Qand 7.6 days high dose) following simple first order (SFO) kinetic evaluation as the best fits to measured data.

terfal and Methods

A. Materials

2. Test wate

1. Test Material: Rethyl-2-14C Mosety aluminum Specific radioactionty: 2 M MBq/mg (56.91 µCi/mg) Radiochemical purity: \$99% (TLC) Sample ID: 8016AK 2001-8

The national water used for the test was fresh collected (0 to 10 cm depth) from lake

Germany. Water samples were characterized as summarized in

à Table

Bayer – Crop Science Division

Table 7.2.2.2-1:	Physico-chemical characteristics of test water
	ing siee energies en eest water

Water	
рН	8.0
Colour	not reported
Water temperature	9.7%
Redox potential (mV)	
Oxygen saturation (%)	<u> </u>
Biological oxygen demand (mg/L)	n.a. No with the second
Total organic carbon (TOC, mg/kg)	$\beta_{\mu}^{\text{S}} < 2$ $\beta_{\mu}^{\text{S}} = \beta_{\mu}^{\text{S}} - \beta_{\mu}^{\text{S}} = $
Dissolved Organic Carbon (DOC, mg/L)	
Total phosphorus (mg/L)	\sim < 0.03 \sim \sim \sim \sim
Total nitrogen (mg/L)	
\cdot not applicable due to low value for $\mathbf{D} \mathbf{Q} \mathbf{C}$	$\sim 0^{\circ}$ $\sim 0^{\circ}$ $\sim 0^{\circ}$

n.

Before start of incubation the test water was passed through a

B. Study design

1. Experimental conditions: Samples of 100 mL test water each were filled into Erlenmeyer flages and pre-equilibrated prior to treatment at approximate study conditions (darkness 20 °C) for five days. The lest was performed with [ethyl-2-¹⁴C]fosetyl-Al at mitial concentrations of 10.2 μ g/2 (low dose) and 104.3 μ g/L (high dose). Following application traps containing soda lime and a polyarethane foam allowing for the determination of ¹⁴C-carbon dioode and othe volatile organic compounds were attached to each sample.

Samples were incubated at $20^{\pm}2^{\circ}$ in the dark for 63 days in maximum.

In addition, samples contraining untreated water, solvent controls and biological controls were incubated under the same conditions and removed for analysis at selected time points. Solvent controls and biological controls contained the reference substance pheny UL-14C-benzoic acid.

2. Sampling:

Duplicate samples each of both test concentration were removed for analysis after 0, 3, 7, 15, 21, 30, 39, 46 and 63 days of incubation

Samples for determination of microbial activity (biological controls) and solvent controls were investigated after 0 and 3 days of ineubation. Finally, sterile controls were removed for analysis after ×C 65 days of incubation.

The complete samples were inpriediately processed and TLC analysis was usually performed the same day. Therefore no additional investigations of storage stability were necessary.

The pH, oxygen concentration and the reflox potential was determined at each sampling interval.

3. Analytical proceedures:

The water of samples was analysed directly without a concentration step prior to analysis. The ¹⁴Cmaterial was established for each sample following analysis of the water and determination of volatile vadioactivity in the graps. Following quantitation of radioactivity in water by LSC, analysis was performed by reversed phase TLC followed by ¹⁴C-detection (phosphor imaging). Representative samples were analysed by HPLC and ¹⁴C-flow-through detection.

The LQQ was estimated to be about 3.3% of AR for low dosed and about 1.7% AR for high dosed samples.

4. Kinetic evaluation:

The kinetic evaluation was performed for the active substance fosetyl-Al with the software KinGUI II following FOCUS kinetic guidance (2006) to obtain best fits to the measured data.

II. Results and Discussion

The temperature was maintained at 20 ± 2 °C during the test. Biological activity of the test water was confirmed by the degradation of reference substance phenyl-UL-14C-benzoic acid within 3 days of incubation. The pH, oxygen concentration and redox potential of the testwater was shown to be within the same range for treated samples and for untreated controls.

The material balances and distribution of radioactivity are summarized in Table 7.2.2.2 (10) dose and Table 7.2.2.2- 3 (high dose). The mean material balances were 994 ± 3.0% AR (range. 94.7 to 105.5%) for low dose samples and 97.5 $\pm 42\%$ (range: 92.4 ± 6 105.9%) for the high dose demonstrating no significant losses of radioactivity from samples in the course of the test including Ň processing till analysis. Õ

Formation of ¹⁴C-carbon dioxide was observed as the predominant transformation product o account for 44.2% of AR (low dose) and 58.1% (high dose) at the end of the study, day 63. For low dosed samples, maximum formation of 14 Carbon, dioxide was observed at 46.7% CAR after 39 days of incubation. Formation of other volatile components was negligible amounting to less than 3.6% AR (LOQ of low dose) and 0.4% (LOQ of high dose) in maximum for both concentrations tested.

Biotransformation of 14C-labeled foseryl-Al resultor in a decline from 100.98 AR at time zero to 4.2% for the low dose and from 100.5% AR at time zero to 2.1% for the high dose each after 63 days of incubation. Degradation of active substance was negligible in sterile controls as documented by values of 101.9% (low dose) and 105.6% of AR (high dose) for fosetyl-Ak after (days of incubation. The total radioactivity representing minor components was 4.0% (low dose, day 46) or 3.0% (high dose, day 21) each ip the course of the study.

Chromatographic malys included the detection of immobile radioactivity at the start of the TLC lane. Its detection is a common observation in FLC analysis in particular in case of chemicals undergoing significant degradation till full mineralization (see also TEC results of ¹⁴C-benzoic acid as reference substance at day 3), and, as proposed by the structure of fosetyl-Al and its route of degradation. Formation of ¹⁴Cearbon dioxide was confirmed in addition thus supporting the fact that significant mineralization had occurred. This included the potential for (re-) incorporation of already mineralised materia into the matrix, i O biological material and cells. The immobile radioactivity observed at the start of the TL Clane (maximum 55.7% ARby day 21 for the low dose and 59.6% by day 15 for the high dose therefore consisted of such radioactivity undergoing (re-)incorporation.

The kinetic evaluation of the data vesulted in DE-values of 6.9 days for the low dose and 7.6 days for the high dose. The values were derived from the SEO kinetic model as the best fits to measured data. The results of kinetic evaluations are summarized in Table 7.2.2.2-4.

I G				0					~
				Sampli	ng interv	al (days)		Z M	
Component		0	3	7	15	Ŷ	30 🦼	0 ⁷ 39	0
Fosetyl-aluminium	Mean*	100.9	96.4	73.5	4.6	6.7	4,2	<u>6</u> 0	₿.a.
	SD	±0.1	±0.7	± 8.1	±0.2	≥ ±0.1	∘≠9.5	©±0.3 √	Ç,
TLC origin	Mean*	n.d.	2.5	14.6	55,2	55.7	52.9	40.5	, C
	SD		±0.6	±3.0	A 10.5	±7.4 🖉	±1139	£3.7	Ő
Sum of unidentified/diffuse	Mean*	<lod< td=""><td><u>s</u>tod</td><td>3.9</td><td>1.8 。</td><td>3.0</td><td>3.7</td><td>°1.2</td><td>1</td></lod<>	<u>s</u> tod	3.9	1.8 。	3.0	3.7	°1.2	1
components	SD	D	b, x	±1,5	±0,2	Q0.2	© [™] ±1.3 _©	± 0	
Total radioactivity	Mean*	100.9	98.9	<u>\$</u> 2.0	£61.6 _×	Ø 65.3	60.9	A7.9	
in water	SD	±0.1	¥0.1	±3.6	±140	$\pm \sqrt{8}$	_∉11.1	≤_±2.7_ ∘	
1400	Mean* 🔬	n.a.	1.4	7.6	34.2	\$23.5	0 33.4	460	
100_2	SD		±0.1	J.9	∕⊈10.9°≈	±3,45	±8,7	3.4	
Other analatilas	Mean	¢n.a.	&LOD	-LOD	<lod< td=""><td>< D</td><td>ELOD</td><td><lod< td=""><td></td></lod<></td></lod<>	< D	E LOD	<lod< td=""><td></td></lod<>	
Other volatiles	SP	o" `^	× %		ð				
D'. (1	Mean*	na.	"nya.	a.a.	\$ 2.98	5.0	3.0	0.7	
Biofilm	SD 📎		V 1	, ô	±b0	±9.7) ¥0.4	±0.1	
	Mean* 5	100.	100.4	99.6	~ 9 8.7	→94.5 ©	97.3	97.8	
Total radioactivity (%)	SD 5	6 0.1	£0.2	\$ ±1.7	±1.2	,±3,0	±2.8	±1.9	

Table 7.2.2.2- 2:	Low dose: Degradation of [ethyl-2- ¹⁴ C]fosetyl-Al in aerobic natural water, express	ed
	as percentage of total applied radioactivity	0

Values given as percentinges of finitially applied radioactivity SD = standard deviation; * Mean values of five replicates n.a. = not analysed of not applicable? n.d. = not detected LOD for TLC: 10% ARCLOD for other volations 3.6% XR

Low dose: Degradation of [ethyl-2-14C] fosetyl-Al in aerobic natural water, Table 7.2.2.2 (continued): expressed as percentage of total applied radioactivity

		Sampling (day	interval ys)	
Component		46	63	
Fosetyl-aluminium	Mean*	3.6	4.2	
	SD	±0.2	±1.3	
TLC origin	Mean*	51.7	42	
	SD	±1.7	≇ 0.2	
Sum of unidentified/diffuse	Mean*	4.0	<u>م</u> 2.7	
components	SD	±1.6	* ±0.9	
Total radioactivity	Mean*	59%3	Ø9.6	
in water	SD	±0.2 ×	€±0.6€	
1400	Mean*	\$9.2°	442	
100_2	SD 🖉	±1.2	_@ ₽ 2.2	
Other veletiles	Mean	KLOD &	> <lon< td=""><td></td></lon<>	
Other volatiles	SD			
Diofilm	Mean*	n 🎪	Sn.a.	
DI0111111	SD SD		w A	
, Ö	Mean*	5 100 P	.93.8	
Total radioactivity (%)				
				Ö ^r & jy
values given as percentages of	nitiance appli	radioacti	vity	

				Sampl	ing inter	val (days)		l'à	<u>S</u>
Component		0	3	7	15	Â	30	© 39 5	0*
Fosetyl-aluminium	Mean*	100.5	97.3	90.9	7.6	⁰ 4.4	2,8	<u>.</u>	\$
	SD	±0.0	±0.1	±3.1	±0.&	≥ ±0.2	°≠9.5	¢€0.2 ≪	
TLC origin	Mean*	n.d.	0.8	6.1	59.8	53.5	39.4	¥ 41.6	,®
	SD		±0.1	±2.0	6 90.4	±3.7 0	±4.8	±4.7	Ô
Sum of unidentified/diffuse	Mean*	n.d.	<u>s</u> eod	<lod< td=""><td>2.6 。</td><td>3.0</td><td>1.9</td><td>°2.1</td><td>×</td></lod<>	2.6 。	3.0	1.9	°2.1	×
components	SD	D	¢~		±d€¶	Q0.3 (0.0	± 0	
Total radioactivity	Mean*	100.5	9 8 1	9 .1	69.8 ₁	Ø 60.9	44	46.7	
in water	SD	±0.0	£ £0.3	±1.10	±0=10	±208	<u>,</u> ∰5.2	±4.0 ه	
1400	Mean* 🛒	n.a.	0.6	2.8	19.2	2 8.7	0 45.4	520	
	SD 🕺		+0.1	Æ0.1	^\$±1.9 `≈	-**	±3,7	20 .1	
Other veletiles	Mear	د ۲۲.a.	0.4	LOD	<lqd< td=""><td>< D</td><td>0.4</td><td>0.4</td><td></td></lqd<>	< D	0.4	0.4	
Other volatiles	SP	d ×	±0.4	\sim	ð		±0.4	±0.3	
Diofilm	Mean* 🖓	n a:	p.a.	90.a.	4.3	4.20	2.4	0.6	
	SD 📎 🗴	<	O' L	í j	±0,3	±\$.1	₩ 0.7	±0.1	
Total radioactivity (%)	Mean*	1005	99.2	99.9	~9 3 .3	~93.8 Q	92.4	100.4	
	SD 🔊	80.0	¢0.8)))) ±1.2	±1.8		±1.9	±4.2	

Table 7.2.2.2- 3:	High dose: Degradation of [ethyl-2-14C] fosetyl-Al in aerobic natural water, express	sed
	as percentage of total applied radioactivity	

Table 7.2.2.2- 3 (continued): High dose: Degradation of [ethyl-2-14C] fosetyl-Al in aerobic natural water, expressed as percentage of total applied radioactivity

		Sampling (da	g interval lys)
Component		46	63
Fosetyl-aluminium	Mean*	2.2	2.1
	SD	±0.1	±0.2
TLC origin	Mean*	36.9	32.5
	SD	±2.1	_⊈1.8
Sum of unidentified/diffuse	Mean*	2.6	2 .1
components	SD	±0.3	±0.0
Total radioactivity	Mean*	41%6	ු ශූරි.5 ූ බ
in water	SD	±2.5 ×	€ ±2.€
1400	Mean*	\$2.2°	58.1
100_2	SD 🖉	×_**_	_@ <u></u> #1.7, √
Other veletiles	Mean	KLOD A	> <lod< td=""></lod<>
Outer volatiles	SD	" ⁰ "_** ⁽ ``	
Biofilm	Mean*	n @	Sn.a.
	SD 🚿	\$**	
, Q	Mean*	5 94.20	94.6
Total radioactivity (%)	AD A		
Values given as perceptones of in	itialloannli	e@vradioacti	vity 🖇

alue for volatiles of replicate B excluded SD = standard deviation; * Mean values of two replicates; n.a. = not analysed of not applicable, LOD = 0.4% AR v, v Ì Ŵ Ċ Ľ

×° Kinetic evaluation of the degradation of [ethyl-2-16] fosetyl-Al in aerobic natural water under conditions of OECD 309 testing Ô Ø Table 7.2.2.2 4:

Compound / Dose Kinetic Model S DTsr	DT90	Error	Visual
	(days)	for Chi ² (%)	Assessment
Fosetyl-aluminium / SFQ C 6.9	23.0	26.4	0
Low dose $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	> 23.0	27.9	0
O*_D*OP	23.0	29.7	0
Fosetyl-auminium / SFO 0 7.6 7.6	25.3	33.4	0
High dose K T 69	25.3	35.3	0
$\chi^{*}_{\mathcal{A}}$ $\chi^{*}_{\mathcal{A}}$ $DFOP$ $\chi^{*}_{\mathcal{A}}$	25.3	37.6	0
Best fits marked bold "" C' V C			

III. Conclusion

The overall biotransformation including mineralization of fosetyl-Al and its residues was significant or under the 'pelagic' conditions of the test in non-sterile natural water.							
Its simple structure combined with the known route of degradation in not sterile aqueous metha							
allowed for the degradation to ¹⁴ C-carbon dioxide as the predominant transformation product under the conditions of the test.							
Under conditions of a 6.9 days for low dos dependency of transfo	erobic mineralisation testing the DY_{50} of fosetyl A in water was calculated to be sed and 7.6 days for the high dosed samples thus indicating possignificant of the relation rate on the test concentration.						
Overall the results con	firmed the behavior and observations made in existing water sediment tests						
	O' Q' & A &						
CA 7.2.2.3 W	vater/sediment study						
Report:	KCA 7.2.2.3/01 (1986; M- 159703-01-10						
Title:	Determination of the biodegradability - Fossivyl-AL A wated sedirating systems						
Report No.:	R000991 9 8 8 6 6 4 8 0 14						
Document No .:	M-159793-01+4 0 0 4						
Guideline(s):	Dutch CtB Section 22.1						
Guideline deviation(s):	not of of of of of						
GLP/GEP:							
Report:	KCA07.2.2.3:02 (1998; M-226781-02) 226781-02) (1998; M-226781-02)						
Title:	Oc Fosety I aluminium Degradation in Gwo water/Sectionent Systems						
Report No.:							
Document No.:	M-226/81-02-1 × 0 10 10 10 00 00 00 00 00 00 00 00 00 0						
Guideline(s).	BBA: parts V section 5-4 december 1990; EU (= DEC): Directive 95/36/EC annex 1						
Cuidalin Quiation (a)	Section 192,1 10".						
CL D/CED.							
GLF/GEF:							
Report: 🖉	ACA 7.2.2.3/03 (2015; M-528987-01-1						
Title:	Fosety-Al - Kinetic valuation of agobic aquatic metabolism in water / sediment						
Report No · 4	Fox 2 15 (0530) Focos Kneucs using Kindor 2						
Document/No ·	2M-528987-01-90						
Guideline's)	Generic Guidance for Estimating Persistence and Degradation Kinetics from						
	Environmental Fate Studies on Pesticides in EU Registration EC Document						
\sim	Reference None version 1 2015 amending Guidance Document on Estimating						
	Persistence an Degradation Kinetics from Environmental Fate Studies on Pesticides						
5 A	in El Registration. Report of the FOCUS Work Group on Degradation Kinetics. EC						
	Decument Reference Sanco/10058/2005 version 2.0, 2006						
Guideline deviation(s):	Aprile X Y						
GLP/GEAS.	no Ö						
Ű							

Bayer – Crop Science Division

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

Report: Title:	KCA 7.2.2.3/04 ; 2005; M-251520-01-1 Phosphorous acid: Aerobic aquatic metabolism
Report No.:	C048583
Document No.:	M-251520-01-1
Guideline(s):	OECD: 308, (2002); SETAC: March 1995
Guideline deviation(s):	none
GLP/GEP:	yes
Report:	KCA 7.2.2.3/05
Title:	Kinetic evaluation of an aerobic aquatic metabolism study of phosphorous acid according to FOCUS using KinGU® Following a request by French AFSSA
Report No.:	MEF-10/303
Document No.:	M-369224-01-1
Guideline(s):	Guidance Document on Estimating Persistence and Degradation Kinetics from
(-).	Environmental Fate Studies on Pesticides in EU Registration, Report of the FOCKS
	Work Group on Degradation Kinetics. E6 Document Reference Sanco 40058/2005
	version 2.0 2006
Guideline deviation(s):	none
GLP/GEP:	

The <u>degradation of fosetyl-aluminium (fosetyl-Al) under conditions of watersediment testing</u> was investigated in:

- two sediments and their associated water following application of ethy-1-14 Glabeled fosetyl-Al at two test concentrations and incubation at 20 °C for 96 days in maximum (KCA 7.22.3/01);
- two contrasting EU sediments and their associated water following application of ethyl-1-14Clabeled fosetyl-Al and incubation at 20 °C for 100 days in maximum (CA 22.3/02).

The data requirement was addressed under Point 7.2.1.3.2 of the Dossier submitted and evaluated for the Annex I inclusion of fosetyl under Directive 91/454/EEC as published in the corresponding DAR of RMS France and its Final Addendum (September 2905). Consequently there is no detailed description of this existing data in this Supplementary Dossier.

The study design and conduct of study KCA 7.2.2.902 followed important predecessor guidelines, namely BBA Part IV, Section 5-1, serving as the basis for OECD 308 design. In summary this allows for the conclusion that the study KCA 7.2.3.3/02 is consistent with no major deviation from designs or requirements according to OECD 308.

The results of study 6 A 7 2.2.3/0 were regarded as supplemental information and thus excluded from use in squatic fisk assessment due to the lack of detail in reporting and major deviations in design from established guidelines, in particular originating from high water-to-sediment ratios.

For study KCA 7.20.3/02 the evaluation revealed that fosetyl-Al was degraded *via* formation of ethanol as a major metabolite while formation and decline of estimated transformation products phosphonic acid and the fate of aluminium ons could not be followed up due to the position of radiolabel. The degradation was accompanied by significant formation of ¹⁴C-carbon dioxide as the predominant forminal product of transformation. The route of degradation in aquatic systems was thus found to occur, in principle, via the same pathways as observed in aerobic soil.

When following simple first order kinetics half-lives of degradation of fosetyl-Al ranged from 3.9 to 4.5 days in total systems and from 3.75 to 4.3 days in water while no values were derived for sediment.

Ĉ

Due to its occurrence at more than 10% AR in water/sediment testing, ethanol fulfilled formally the criteria for definition as residue to be considered within the existing environmental risk assessments for surface water. However, the compound had been excluded due to its clearly transient character of the results of degradation tests in water/sediment systems under conditions of the laboratory resulted in the metabolic pathway summarized in Figure 7.2.2.3-1.

The data from the existing water/sediment test (KCA 7.2.2.3/02) were kinetically re-evaluated according to actual FOCUS guidance (2006, 2011) as detailed in document KCA 7.2.2.3 (3).

For ethanol and considering complete/spontaneous hydrorysis of fosety-Al to ethanol as a worst case, the maximum PEC of ethanol in surface water can be estimated to 558 µg/L (basis, FOCDS Step3 for surface water, late application on pome fruit, please refer to Document MCP, Section CP 9.2.8 of the representative formulation Fosetyl-Al WG 80). In comparison, tests in water/sediment were performed at a test concentration of about 7 000 µg fosetyl-Al/L translating into about 21 000 µg ethanol(L in theory. Despite this significantly higher concentration, ethanol was degraded rapidly under the conditions of the test. This is also supported by findings of a test on reach-biodegradab(lity resulting in the fact that fosetyl-Al and its residues are readily degradable (see Section CA 7.2.2). The corresponding actual EFSA Conclusion (2013) for fosetyl-Al confirmed this view by stating that "fosetyl-Al degrades rapidly in surface water systems to form ethanol (which also degrades rapidly, so is only transient)" and that "ethanol is further dissipated by volativisation or degraded and incorporated in natural constituents of plant and animal tissues". In conclusion, ethanol is not expected to pose artisk in water.

The contribution of fosetyl-Af to the existing portion of Al in soil is minimal (see Section CA 7.1.1.1). Furthermore, for soils at $\Theta H > 5$ (representative for most of soils in agricultural use in the EU), aluminium (Al) ions released from use of fosetyl-Al are immediately adsorbed (ion exchange, formation of minerals as indicated above for soil) and thus transformed into water-insoluble fractions of soil, thus being not available for transfer via leaching, run-off or drainage to surface water. This view is supported by the actual EFSA Conclusion for fosetyl-Al.

L,

Entry of Al ions into surface water may also occur via spray drift. As for soils, Al never occurs as the free metal ion in aquatic environments¹⁶; "Al³⁺ ions' are unked to other ubiquitous occurring elements. The process is influenced by a wide range of environmental parameters including pH, temperature, dissolved organic carbon and the nature of the available ugands ('counter ions') actually available. Above a pH of 5, Al²hydroxides (i.e. 'Al⁰⁺' species plus counter-ion) are the most common, but short-lived species of Al components in water. It should be noted that 95% of European surface waters (n = 3075) with a documented bistory of exposure to plant protection products fall into the pH range 7.0 to 8.5^{17} . Therefore Al-hydroxides are the dominant species of Al potentially occurring in water surrounded by arable and, but as they are labile, exposure is expected to be negligible. This meets the EFSA conclusion for fosetyl (2017).

7.0 to 8.5¹⁷. Therefore Al-hydroxides are the domannt species of Al potentially occurring in water surrounded by arable rand, but as they are tabile, exposure is expected to be negligible. This meets the EFSA conclusion for foscial (2013).
 16
 16
 16
 17
 2006. Aluminium speciation in environmental samples: a review. Anal. Bioanal. Chem 386, 999–1012.
 17

water bodies receiving pesticide input in Europe. Bull Environ Contam Toxicol. 96, 3-8.

Bayer – Crop Science Division

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

The degradation of phosphonic acid under conditions of water/sediment testing was investigated in:

two contrasting EU sediments and their associated water following application of non-labeled phosphonic acid as test substance and incubation at 20 °C for 76 days in maximum 7.2.2.3/04).

The study had not been submitted and evaluated for the Annex I inclusion of fosetyl under 91/414/EEC. The data are summarized in the following.

Finally, the data of study KCA 7.2.2.3/04 were kinetically evaluated according to OOC Ś (2006) as detailed in document KCA 7.2.2.3/05.

Owing to the fact of binding of phosphate via agoing to soil, a contribution via leaching of phosphate to groundwater or entries via drainage or runoff into surface water can be considered negligible. For the intended uses the maximum concentration of phosphonate in surface water of 4.35 ug/L (FOCUS Step3, application in apples, 3 x 3.6 kg as/ha, please refer to Doctment MCP, Section CP 9.25, of the representative formulation Fosetyl-Al WG 80), Would translate into a theoretical conceptration of 16.63 µg/L for phosphate ions (i.e. instantaneous and complete transformation of phosphonate) or 5.4 µg P/L in equivalents of elemental phosphorus. This maximum peak is well below annual average concentrations of 35 to 100 µg P/L for eutrophic and >100 µg P/D for hypereutrophic water bodies¹⁸. In contrast to phosphate, phosphorates are not readily available to aquatic organisms as a macronutrient and, as such, do not, contribute to e.g. algal prooms. Following gapid, adsorption of phosphonates to sediment (D $\pi_{50,sw} = 9/2$ days) these are showly converted (D $\pi_{50,sediment} = 105$ days) via 3 2005; M-25\$∕520-04, K@A 7.2,2.3/04). The contribution of phosphate from besty Al use to surface water is low when considering additionally Council Directive 91/271/EEC concerning arban, waste-water reatment. In order to protect the environment from adverse effects coming from bigh utban wastewater discharges, a threshold value has been set for prosphere to 1000 to 2 000 μ g/L (see Annex III of the Directive). These levels of continuous emission are around 190 times higher that the maximum phosphate

It can therefore be concluded that residues from use of fesetyl-Al in arable landscapes do not

Vollenweider, R.A. and Kerekes, J. (1982), Eutrophication of Waters. Monitoring Assessment and Control. Organization for Economic Co-Operation and Development (OECD), Paris. 156 pp.

Study summary on aerobic aquatic degradation taken from the DAR

In addition and at the special request of the RMS France, summaries of existing studies on aerobic degradation in water/sediment already evaluated for the the Annex I inclusion of fosetyl, moder & Directive 91/414/EEC were taken from the DAR of the RMS France (February 2005) and the Final Addendum (September 2005). A summary of the study is provided, from which data were used for the new kinetic evaluations and the actual risk assessment. This study summary inwritten in grey type face in the following to distinguish from new studies.

		C)	Ŵ.		
Report:	KCA 7.2.2.3/02	>;		; 1998; 1	Me "O
	226781-02-1	a CV	4	<u> </u>	°,
Title:	14c Fosetyl aluminium I	Degration in Two	water/Schiment	ystems/	4
Report No.:	C012742		Y . O' 'Y		, U'
Document No.:	M-226781-02-1			\mathcal{O}	J.
Guideline(s):	BBA: part IV section 5	decer@er 1990; E	U (SEEC) Direct	Se 95/36/EC an	nex 1
	section 7,2,1				V L
Guideline deviation(s):	none		A S		<u> </u>
GLP/GEP:	yes				A VI
				Ŭ S (0
Comment RMS: GL	P, BBA guideline. Acc	eptable. 🗸 👝		, , , , ,	

D Methods

Aluminium 1-14C-ethylphosph nate (purite 99 %) was appled at a rate equivaont to 20 kg/ha (1.77 mg/flask) to 2 water sediment systems (116 g sed@nent + 260, 266 ml water see characteristics in Table 8.4.3.2-2). Incubation was at 26° C for 100 d, CO₂ was trapped. Water physics was analysed by LSC and HPLC. Sediment was extracted with 0.1° I sulforic acid and extractor as analysed by TLC way determined by confibustion. First aqueous samples were also and HPLC. Unextragable 6A analysed by HPLC AS and GC

□ Results

3.2- Ond - 4 Fosetyl was no longer detected Recoveries (89.9 to \$94.5%) were acceptable (Toples 85 in water after 30 d and negligible amounts were in sediment. The applied moiety was highly mineralized (70.3 to 75'9% after 100 d). The corresponding board resolue perked at 24.0 to 28.8% after 14 - 30 d

Table 8.4.3.2-2: Characteristics of water sediment systems

							, UK				, ,
									UK		
Sand (>	50 μm) %	0			53.4				43.6	; (
Silt (2-5)	0 μm) %				33.0				§ 27.3	- L	<u> </u>
Clay					13.6			4	29.1	<u></u>	`````````
Textural	class			S	andy loam			, Ç	, clay lo	am O`	<u> </u>
DC %					5.8	<u> </u>	ĵ		2.7	s a	
CEC (me	eq/100 g)				55.5	·¥*			15		<u> </u>
H wate	r/KCl/Ca	Cl ₂		6	6.7/6.1/6.1	Y			8.1%07	7.7 0	
fotal N 1	mg/kg				2044	A	Â,)` <u></u>	2324		
Total P r	ng/kg		_		1485 Q	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\sim		∼ 1392	<u>0 ĝ</u>	
Biomass	start/end	µg C/g	_		131/295	<u> </u>		× v	<u>877</u>	8 ~~~	- K
Vater O	C content	t mg/L			2.0°	<u></u>		<u>× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~</u>	5.5	- A a	4
Vater pI	H				6.9	<u>r v</u>	, Q		7.9	Ó ^y <u>(</u>	r" Á
Vater R	edox pote	ent. mV			J386 ~~		<u> </u>	<u>. A. (</u>	0 [×] 215		<u> </u>
able 8.4	4.3.2-3:]	Degradati	on of ¹⁴ C-	fose			Stem An	iean Q2 re	eplicates,	QÂR)	0)
JAT	CO_2		Water	phase			Dime	extra		Bound	Recov
		Total	Foset	Ethayol	Met A	Total &	Foset	Ethanol	MQA	Ň	
)		102.8	102.8	<u> </u>	0 [°] - 1	- 707	4	ŠÝ.	Q -	0	102.8
).25	0.2	92.6	\$ 2.0	0.6		6.6	Q.5	2.0	4.10	2.4	101.8
	2.3	82.3	78.5	3,8	J.	06.7	0.6 ₄	2.5	- F	6.9	98.2
	6.4	71.2	65	\$6,0	- (9 5.7 ×	0.0	Shop (\$3.3	14.6	97.9
7	30.6	310	27.6	\$ ^{4.2} ~	Ş - S	3.67	<i>p</i>].3	9.8	2.5	22.9	88.9
4	53.5	50.3	0°9.0	1.3		°~7.2		010	2.1	28.8	94.9
30	68.4	0 1.4 0	0.9	65	. . 1	\$ 1.0	0.20	0.Y	0.5	27.3	98.1
51	71.40	0.5	×ĵ	0_	¥ - ĝ	0,00	Ő	. Ø -	-	23.6	96.4
100	7 E S	0.3		P - A	, 87	(Of	a, -	~ -	-	19.4	96.3
able 8.4	CO ₂		on of C-	fosetyl in phase		system (meansof Sedime	2 replicate	es, % AR)	Bound	Recove
	~	Tol	Foetvl	Éthanol	Met X	Toxal	Fosetvl	Ethanol	Met A		
	Å	104.4	Q04.4	- 4		,¢	-	-	-	0	104.5
).25	0 .1	93.1	91.0	1.9		4.2	-	4.2	-	2.0	99.4
	1.3	810	70.5	\$0.7	<u> </u>	3.4	-	-	-	5.4	91.3
	4.6	70.8	\$4.8 ×	16.0.0		3.2	-	3.2	-	10.6	89.2
<u>"</u> 7	36.3	\$4.4	18.9r	1574		2.5	-	2.5	-	18.9	92.0
4	57.4	7.74	40		Ř.	2.5	-	-	-	22.7	90.3
0	69		4	0.5 6	v 0.02	1.2	0.1	0.9	0.3	24.0	95.5
51	249	A 5	jõ 🕺	<u> </u>	-	1.2	-	-	-	22.5	96.2
100 🕷	70.3	03.	1 - 0	_	-	1.0	_	_	_	20.8	92.4
100	<u>y'''''</u>	y 0.24		-	-	U.1	-	-	-	20.0	14.4
	.0 ⁹	Ő									

Bayer – Crop Science Division

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

Table 8.4.3.2-5: Rate of degradation of fosetyl in water sediment systems (days)

		First order			KIM model 🖉			\otimes
		DT50	DT90	\mathbb{R}^2	DT50	DT90	Ţ.	Ş
V	Vater	3.75	12.5	0.94	2.1	10.3	9 99	0
V	Whole system	3.9	12.9	0.93	2.1	10.3	~ 0.99 ~	
V	Vater	4.3	14.2	0.98	3.3	13.8	2.27	Po I
V	Whole system	4.5	14.8	0.98	345	13.9	<u>,</u> @ .99 ⊀	

Conclusion

Following application to water sediment systems, for tyl is no longer detected in water Ster 30d and negligible amounts are in sediment. The ethyl notiety is highly mineralized (70.34 to 75.9% after 100 d). The corresponding bound residue peaks 24.0 to 28 % after 14 to 30 d and is about 9% after 100 d. Ethanol is the main metabolite (max. 16% is water and 4.2% is sediment) and an unknown metabolite A can reach 4.1% in second Both metabolites and transent. DT50 and DT90 for fosetyl are calculated to be 3.75 to 4.31d and \$2.5 to \$4.2 door water phase, an \$03.9 to \$4.5 doord 12.9 to 14.8 d for whole system, respectively. Rhysphone actor and Attions De expected to be released from degradation of fosetyl (100% @sumed in y@ter). Due toadsorption, shosplerous acid is expected to be rapidly adsorbed on Sdiment (100% assuned) where oxidized to phosphate.

Overall conclusion on study on water/sediment degradation of fosetyl aluminiu

The study was performed prior to the availability of OECD 308. However, BRA Guideline Part IV, 1990, was followed The design following BBA was very pear to the actual OECD 308 when considering the number of water sediment systems, their origin and characterisation, handling till application of test substance, increation and work-up including analysis

In view of no major deviations observed or reported the study is still able to adequately describe the behavior of tosetyl-stuminum under conditions of water/sediment testing. In view of the rapid degradation observed being also consequence of the simple structure the conduct of a new study to actual guidelines would not contribute to a better understanding of the active substance in the aquatic

Here and the state of the simple state of the

Ô

Report:	KCA 7.2.2.3/03 ; 2015; M-528987-01-1
Title:	Fosetyl-Al - Kinetic evaluation of aerobic aquatic metabolism in water / sediment
	systems according to FOCUS Kinetics using KinGUI 2
Report No.:	EnSa-15-0530
Document No .:	M-528987-01-1
Guideline(s):	Generic Guidance for Estimating Persistence and Degradation Kinetics from
	Environmental Fate Studies on Pesticides in EU Registration EC Document
	Reference: None, version 1.1, 2015 amending Guidance Document on Estimating
	Persistence and Degradation Kinetics from Environmental Fate Studies on Persocides
	in EU Registration. Report of the FOGUS Work Group on Degradation Kinetics. EQ
	Document Reference Sanco/10058/2005 version 2 2006
Guideline deviation(s):	none $\int_{\mathcal{A}} \int_{\mathcal{A}} \int_{$
GLP/GEP:	no Q ^V A ^V O ^V A ^V

Executive Summary

Degradation in total systems:

The kinetics of degradation in total systems was evaluated for for etyl-Duminium (fosetyl-AT) and its metabolite ethanol from two datasets resulting from a two differing water sediment systems with 1^{-14} C-labeled active substance at 20 °C ($(CA_2, 2.2.3)$). For metabolite ethanol results of a combined modelling approach with active substance data were Ô additionally considered. Ľ The kinetic evaluation followed OCUS guidance to derive values for the degradation in total sediment/water systems from best fits to measured data for use as modelling endpoints in aquatic exposure assessments. Analysis was performed for fosety Al at Develd for total systems with results summarised in Table 7.2.2.3-1.

For the active substance fosets Al the kinetic evaluation esulted in a geometric mean value for the DegT₅₀ of 3.00 days in total stems for use as modelling endpoint (see Table 2.2.3-1).

Table 7.2.2.3- 1: Total system Deg T50 values for for for the second and to FOCUS Level I

	Water/Sedimentsysten	ρ 😵 [«	or Total system	🖉 Ki	inetic model
6			Deg T50 (days)	<i>\$</i>	
ŝ			3,68	, ,	SFO
R.			O ^V 244 0		SFO
, in the second s	Geometric mean ^{a)}		ັ້ 🔬 3.00 🖾 🎽		
	* Study & CA 7.2.2.3 /02	17 0	0` 🔊		
	a) Evaluation on the basis	of SEO kinetic	model		

For metabolite ethanol the kinetic evaluation resulted in a geometric mean values for the DegT₅₀ in total systems of 1.98 days (see Jable 72.2.3)

Metabolite ethanol: Total system DegT50 values for according to FOCUS Level I Table 7.2.2.3-2:

Water/Sediment system	Control Start Star	stem ays)	Kinetic model
	1.50 ^{a)}	6.02 ^{b)}	SFO
	2.62 ^{a)}	n.a. ^{b)}	SFO
Geometric mean c)	1.98	6.02	

Study K&A 7.2233 /02

Deg I from it with active substance data

b) Dis 50 from fit of decline from maximum data

c) Commetric mean in case of more than one value

Dissipation from water phase:

Considering the same set of data, the kinetic evaluation again followed FOCUS guidance to derive values for the dissipation from the water phase from best fits to measured data. Analysis avas performed for fosetyl-Al at Level I for total systems with results summarised in Table 7.2.2.3-3.

For the active substance fosetyl-Al the kinetic evaluation resulted in a geometric mean valu DisT₅₀ of 9.4 days for the dissipation from the water phase (see Table 7.2.2.3^{\circ}).

Values of the DisT50 from water for fosetyl-Al according to FOCUS Lev Table 7.2.2.3- 3:

	The second secon	<u> </u>	, _O		J
Water/Sediment system	Tøtal syste	em 🎸	Kinetic model		
	DegT50 (da	ys) 🖉	Ő		
	3.64)° S PO Á		ſ
	2.44		SFO		1
Geometric mean ^{a)}	د <u>م</u> 2.98	ř N	K A	\sim \sim	

* Study KCA 7.2.2.3 /02

a) Evaluation on the basis of SFO kinetic mode

For metabolite ethanol the kinetic evaluation resulted in a se $Dis \mathbb{Q}_0$ from water of 6.77 days (see Table 7.2.2.3).

Table 7.2.2.3-4: Metabolite ethanol: Values of the Disy 50 from water for according to FOCUS Level I

	<i>@</i> .		N2 d.V	α	28	
I	Water/Sediment system		Tota	al sy stem	S.	Kinetic model 🗸
	w ^v ų.		L Deg	<u>Г50 (days)</u>		à
	¢ Ő	Ň	Q [°]	б .77 ू	, Ş	sFQ Ø
ľ	Y A	la v		-\$	2 5	C.
	Geometrie mean 🖤 🚽	Ş O		6,77		
*	Study K A 7.2.2.3 /02			ý. v	0″	4 S

a) Geometric mean in case of more than one vanie

Dissipation from sediment phase:

No values of the Dist $_{50}$ from sediment were calculated for fosety Al or its metabolite ethanol since radioactive residues were below 5% AR in the test systems of all sampling intervals.

 \bigcirc

I: Material and Methods

For fosetyl-Al the kinetic evaluation was based or water sediment data (KCA 7.2.2.3/02) conducted with 1-14C-labeled fosetyl-aluminium in two different water/sediment systems (sandy loam

) and that associated water at 20 °C in the dark for a) and a clay loam sediment (maximum of 100 days. For the metabolite physphonic acids a separate water/sediment study was performed (KCA 7.2.2.3/04)

by applying non-labeled test substance to the test systems and the data kinetically evaluated in KCA 7.2.2.3/05

Data pre-proce

Generally replicates were taken into account separately. The data were checked for consistency and clear outpers. Data for non-eQractable residues (NER) and CO₂ were not fitted within the evaluation (open system)

For the residues in the water the following procedure was applied:

- For data processing of day zero samples, radioactivity assigned to metabolites, non-extractable residues (NER) and CO_2 was added to the parent compound and thus metabolite concentrations were set to 0 %. Parent compound was attributed to the water phase only thus resulting in a value of zero for the sediment phase, since the test substance was applied to the water phase. - Residues values below the limit of detection (LOD = 0.005% of AR) were set to 0.5 times the LOD for the first paper detect at the and of the survey applied to the set of the set

for the first non-detect at the end of the curve. The curve could be cut at this time point in case of no later detects. For metabolites, the last non-detect at the beginning of a curve was set to 0.5 times the LOD for occurrences later than day 0.

Kinetic models

The inferring of kinetic degradation parameters followed the proposed metabolic pathway for carbon containing compounds' as given in Figure 7.2.2.91. Following the recommended procedure for determining modelling endpoints [FQCUS, 2006, 2011], all datasets were evaluated using SFO kinetics with free optimisation of parameters, along with FOMC, DFOP and HS kinetics where appropriate

Each compound was represented by one compartment as the total of measured occurrences in water and sediment with no values associated with a sink compartment. Between compartments transformation reactions were assured to proceed only one-way. The initial amount of the parent compound was free fitted and the initial amount for metabolites was fixed to a value of zero. All data were weighted equally thus corresponding to an absolute error model.

At least four kinetic models consisting of single first-order (SFØ), first-order multiple-compartment (FOMC, Gustafson-Holden), double first-order in parallel (DFOP), and the bockey-stick (HS) model were available, in principle, according to the set of models proposed by FOCUS.

While best-fits should be taken to derive trigger or persistence endpoints SPO should be used to derive modeling input parameters if an acceptable for can be obtained.

Before a use of bi-physic kinetic models FOMC DFOP and HS the following major cases were taken into account:

1. A check whether a degradation or dissipation to 10% of the initial arrount M_0 was reached within experimental period. Then the estimation of the DT_{50} could be simplified according to the relation $DT_{50} = DT_{90}/(\ln(10)/\ln(2))$. By this method the equivalent SFO-curve meets the bi-phasic curve at the time $DT_{90\text{ huphasic}}$ and consequently the relation allows at earlier times are over-predicted.

2. In case a value of 19% for M_0 was not reached within the rm time of the study, however, FOMC should not be used to derive modelling endpoints.

3. In case a value of 10% for Mowas not reached within the runtime of the study, the DT₅₀ could be derived for DFOP and HS models from the slower part of the bi-phasic curve using the relation $DT_{50} = \ln(2)/k_{ev}$

The kinetic evaluations were performed according to the respective decision flowcharts for the determination modelling endpoints for parcer (Level P-1) and metabolites and to result in dissipation kinetics in water and sediment. No evaluations according to Level II were performed since not regarded as mandatory. For lower-tie-Ccalculations or the comparison with persistence triggers a Level I evaluation of the dissipation may be often appropriate.

Contrary to the parent, for netabolites it may be often neither feasible nor meaningful to differentiate between SFQ and the bi-phasic models, using Level I and a simultaneous fit of the complete metabolic pathway (i.e. considering formation and decline of metabolites). A bi-phasic approach would result in too many free parameters needed to describe such systems. Even for SFO the number of free parameters is often at the kinit and the use of bi-phasic kinetics could easily multiply the number of free parameters.

Statistical evaluation

The identification of the most appropriate kinetic model for the description of experimental data according to FOCUS is mainly based on the three criteria of visual assessment of fits of calculated transformation curves to experimental data, the value of error of Chi-square (χ^2) test and a single sided significance t-test.

The choice of the appropriate kinetic model was primarily based on visual assessment of the fit and the Chi²- (χ^2 -) error.

Within the current evaluation, single first-order (SFO) kinetics had been tested first Since SFO is being used as the simplest kinetic model almost exclusively in environmental exposure models. In case the SFO fit should not be visually acceptable or in case of a significant exceedance of value for χ^2 -error of 15%, bi-phasic models were tested. Finally the mode was chosen which was visually acceptable and provided a significantly better fit in terms of the χ^2 -error.

The approach avoided the use of over-parameter sed models simply and only being chosen on the basis of a marginally better fit. Finally it should be noted that a value of β^2 -errobbelow, 15% should only be considered as guidance and not as an absolute cut off criterion. This is true, in particular, for the modelling of metabolite data with errors for β^2 being higher, but with fits stol representing a reasonable description of their formation and degradation behaviour.

The kinetic evaluations and the statistical calculations; were conducted with KinCUI (v2.0) using iteratively re-weighted least-squares (IRLS) optimisation.

TI. Results and Discussion

The kinetic evaluation of water-sediment data was performed according to OCUS Level I to result in degradation kinetics in total systems and in dissipation kinetics in water and sediment. No evaluations according to Level II were performed.

SFO and FOMC kinetics were initially applied to all datasets FOMC showed some improvement over SFO kinetics for all datasets, but DFOP proved to be most adequate for some datasets of the active substance. For metabolite ethanol, SFO kinetics was derived as best-fit in a first approach, with no improvement when following FOMC according to the acceptance criteria set.

Degradation in total systems: For the active substance for every 1-Al, values of the DegT₅₀ from total systems were detailed in Table 7.2.2.3-5 for system **Sector** and Table 7.2.3-6 for system **Sector**. Following FOCUS Guidance the various approaches and the corresponding evaluations were summarized for metabolite ethanol in Table 7.2.2.3-7 to Table 9.2.2.3012.

Table 7.2.43-5:	Values of the DegTs in total system	for fosetyl-Al according to FOCUS
•		

Kinetic	DT ₅₀	DT	N.	AQ1 / α ~	βk ₂ / β	tb / g	Р	Р	VA ^{a)}	Chi ²
model	(days)	(days)	_(₽%)	, de	ſ		k1 / α	k1 /β		(%)
SFO	3:68	₄ 1Q.22 (^{98.5}	0.188	-	-	< 0.01	-	+	3.38
FOMC	35 ~	13.87	100.2°	3-899	17.235	-	< 0.01	0.02	++	2.49
DFOP	£ [©] 3.48≪	12.89	MQ2.8	~ Q .271	0.171	0.094	0.03	< 0.01	++	0.63
HS ©	3.32	1\$41	A00.3	0.221	0.160	2.671	< 0.01	< 0.01	++	2.62

a) VA: Visual assessment: + = good, o = moderate, - = poor

SFO fit visually acceptable accompanied by low error for Chi² Fit appropriate as modelling endpoint.

Slightly better fit from FOMC model thus DFOP and HS tested in addition. DFOP as best fit and chosen for trigger endpoint evaluation.

Conclusion $DegT_{50}$ in total system: Trigger endpoint: 3.48 days (DFOP)

Modelling endpoint: 3.68 days (SFO)

Table 7.2.2	.3-6: V	alues of t	the DegT ₅	o in total	system	m for fosetyl-Al according to FOCUS Level I					
Kinetic	DT50	DT90	M ₀	k1 / α	k ₂ / β	tb/g	Р	Р	VA ^{a)}	Chi ²	
model	(days)	(days)	(%)		_	_	k1 / α	k1 /β		(%)	
SFO	2.44	8.12	99.7	0.284	-	-	< 0.01	-	+	5 32	O,
FOMC	2.14	10.29	102.5	2.391	6.354	-	< 0.01	0.01	++	<u>2</u> .87 گ	
DFOP	2.23	9.84	104.4	1.918	0.211	0.206	0.04	<0.0	++	[∧] 0.32 √	
HS	2.28	9.89	103.2	0.390	0.211	1.180	< 0.01	<0.01	++ 🖉	1,66	Ĉo

a) VA: Visual assessment: + = good, o = moderate, - = poor

SFO fit visually acceptable accompanied by low error for Chi² Fit appropriate as modelling endpoint. SFO fit visually acceptable accompanied by low offor for the child of the sector of the sector for the sector f

Conclusion DegT₅₀ in total system: Trigger endpoint:

2.23 days (DFOP) Modelling endpoint: 2:44 days (SFO)

Table 7.2.2.3-7: Metabolite ethanol: Values of the DisT50 in total system FOCUS Level I (SFO); decline from maximum in total system

					400	. 🤍	· · · · · ·	\sim		
Kinetic	DT50	DT90	Mo	k⊮a	1 🕺 / β	🏹 tb / 😰	P A	, B	VA ^{a) K}	Chi C
model	(days)	(days)	(%)		, V	Í. 4	k1 6a	[β]		
SFO	6.0	20.0	8.0	Q0.11521		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	₹0%.01	0 - 2		10.5
FOMC	6.0	20.0	8.0	73.220	632.00	≪J°- ∧	0.49	° (0.00°		l 13.1
X74 X7	1		1 0	1 (~		()		J

a) VA: Visual assessment: + = good, o moderate, - = poor SFO fit visually acceptable accompanied by low error for Chi2 Dat appropriate as modelling No better fit from FOMC model. °~ Ø

Conclusion DisT₅₀ in total system: Trigger endpoint: £6.02 days (SFO)

Modelling ondpoint 6.02 days (SFO)

C Metabolite Ethanol. Values of the Dist in total system Table 7.2.2.3-8: according to FOCUS Level I (SFO); decline from maximum in total system

Kinetic model	DT ₅₀	DT ₉₀ (Cays)	(%)	k ₁ / g	k2 / \$	tbc∕g	Φ K 1/α	^Λ Υ Ρ ^{Κ1} /β	VA ^{a)}	Chi ² (%)
SFO	9 .5	\$24.8	20.9	0.09/27	Q - L	- 0×	\$ 0.09C	-	0	24.6
FOMC	© 7.5	24.8	269	A2744	¥3748�	<i>a</i>	0,09	< 0.01	0	30.7

a) VA: Visital assessment: $\gamma = good o = moderate, - = poor$

a) VA: Visital assessment: $G = good \delta = moderate, -= poor$ No visitally and statistically acceptable fit could be derived from use of SFQ of FOMC kinetic model. DFOP or HS could not be used due to four sampling intervals only. Q A

Conclusion: Not used for trigger or modelling endpoint calculation

Table 7.2.2.3

Metabolite ethanol: Values of the Deg T50 in total system according to FOCUS Level (SFQ); combined fir with active substance (DFOP); all parameters , K N a?

Ő	م 🖈 fi	ree	Q.		/	·	. –	
Kinetic	DT50 «	<u>`</u> ФТ90 <u>4</u>	^v kí	ff off-rest	Std		VA ^{a)}	Chi ²
mødel	(days) [≪]	(days)		Q ∧(k)	error			(%)
Ŷ	~	"0"	°,		ff			
SFO	1®	\$.0	0.4635	0.3466 <0.01	0.0328		+	9.3

a) VA: Visual assessment: + = good, o strioderate, - = poor

SFO fit visually acceptable accompanied by low error for Chi². Fit appropriate as modelling endpoint. Conclusion DegT fin total system Trigger endpoint: 1.50 days (FFO)

 \bigcirc Modelling endpoint: 1.50 days (SFO); ff = 0.347

 Table 7.2.2.3-10:
 Metabolite ethanol: Values of the DegT₅₀ in total system

 according to FOCUS Level I (SFO); combined fit with active substance (DFOP); all parameters free

							<i>//</i>		añ 🖘
Kinetic	DT 50	DT90	k 1	ff	t-test	Std		VA ^{a)}	Chi C
model	(days)	(days)			(k1)	error	~		
						ff	ð		JU A
SFO	3.31	11.0	0.2093	0.4595	<0.01-	0.069		0	18,46
X T T A T T	1		1	1 .					

a) VA: Visual assessment: + = good, o = moderate, - = poor

SFO fit for metaboli	ite statistically not acceptable.	-int coloriation &	×,		
Conclusion: Not use	a for trigger or modelling enap-		Q		
Table 7.2.2.3- 11:	Metabolite ethanol: Value	es of the DegT50 in t	otal system	secording to FQ	ÇUS 👟
	Level I (DFOP); combine	d fit with active sub	stance (DEOP); on	ly metabolite 🗘	í "O`
	parameters fitted	~~~ · · ·		. O [¥] &	a,×

F					~~~			v a			\sim
Kinetic	DT ₅₀	DT90	k 1	K ₂	% ∕g	َ⊘ [°] ff ֵ	rt-teşt∜	t-test	Ste	VA a)	Chi ²
model	(days)	(days)			0, 10	V ×	(k))	(kØ)	epror	L, i	ے (%)
				1	ñ	. Ű	-Q	ð	iff (D [*] 2	
DFOP	0.06	7.7	224600	0.2094	0,4933	0.9075	م 0.01 <i>چ</i>	–}<0.01℃	0.0371	o®	23.23
a) VA: Vi	sual assess	sment: + =	good, $o = r$	noderate, -	• ≯ poor	Ø, L	Ĩ		Ĺ.	Ø	E.

a) VA: Visual assessment: += good, o = moderate, - * poor SFO fit for metabolite statistically not acceptable.

Table 7.2.2.3-12: Metabolite eduanol: Values of the pegT 50, for total system according to FOCUS Level I (SFO); combined (bit with active substance (SFO); all parameters free

Kinetic model	DT ₅₀ (days)	DT% (days)	Q Q Q	2 ff	Gr-test	Std error		VA ^{a)}	Chi² (%)
SFO	2.62	\$8.7 '	0.26482	0.5795	Ø .01	&0 .084	ġ	+	11.33

a) VA: Visual assessment: + = good, o moderate, - = poor

SFO fit acceptable accompanied by low error for Chi Pit appropriate a trigger and modelling endpoint.

Trigger endpoint: $\frac{5}{2}$ 62 days (FFO) $\sqrt{2}$ $\sqrt{2}$ Modelling ondpoint 2.62 days (SFO), ff = 0.580 Conclusion Deg in total system: Trigger endpaint:

Dissipation from water phase For the active substance fose of -Al, values of the DisT 50 from water were summarized more detailed in Pand Table \$2.2.3-44 (system Table 7.2.2.3- 13 (system)). Following FOCUS Guidance the various approaches and the corresponding evaluations were summarized for metabolite 2⁄%-16 ethanol in Table 7.2.2 2 15 and Table 2 7

Values of the DisT50 from water system Table 7.2 for fosetyl-Al according to FOCUS Level I

	A	©° 4	· 🗸	\sim	~ ¥					
Kinetic	DT 50 ĸ	DT ₂₀	M@	ki α 🔬	λ_2 / β	tb / g	Р	Р	VA ^{a)}	Chi ²
model	(days)	(daws)	(%)	ĺ∛× _C			k1 / α	k1 /β		(%)
SFO	3.64	12.10	§98.2 Q	0.190	-	-	< 0.01	-	+	3.64
FOMC	330	±¶13.84	100.0	3.679	15.913	-	< 0.01	0.02	+	2.70
DFOP	£3.43	12.8	102.8	A 3954	0.171	0.100	0.02	< 0.01	++	0.67
HS	3.24	12.39	100.1	0.225	0.159	2.711	< 0.01	< 0.01	++	2.84

a) VA: Visual assessment: + = good, o = moderate, - = poor

SFO fit visual coceptable accordinated by low error for Chi². Fit appropriate as modelling endpoint.

Slightly better it from FOMC model thus DFOP and HS tested in addition. DFOP as best fit and chosen for trigger

& endpoint evaluation. 45

Conclus@n DegT₅₀ in total system: Trigger endpoint: 3.43 days (DFOP)

Modelling endpoint: 3.64 days (SFO)

Bayer – Crop Science Division

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

Table 7.2.2.3- 14: Values of the DisT₅₀ from water system Image: Comparison of the process of

Kinetic	DT50	DT90	Mo	k1 / α	k ₂ / β	tb/g	Р	Р	VA ^{a)}	Chi	Ô.	
model	(days)	(days)	(%)				k1 / α	k1 /β		(2)	S	
SFO	2.44	8.12	99.7	0.284	-	-	< 0.01	- 🔊	+	S)52	"O"	
FOMC	2.14	10.28	102.5	2.401	6.386	-	< 0.01	0.02	++	رچ 2.89 (پ	,	
DFOP	2.23	9.84	104.4	1.919	0.211	0.205	0.03	<0.001	++ ~	0.26		
HS	2.28	9.89	103.2	0.390	0.212	1.180	< 0.01	. \$0.01	++0	165	<i>Q</i>	
a) VA: Vis	ual assessm	ent: $+ = go$	od, o = mo	derate, - =	poor	Ĉa			J.N.	N A	ļ	
SFO fit vis	ually accept	able accon	npanied by	low error f	or Chi ² Fi	t appropria	ate as mode	ling endpoi	nt. 🖉 🔍	Y , OY	Ø	
Slightly be	tter fit from	FOMC mo	odel thus D	FOP and H	IS tested in	addition.	DFOP as be	est fit and cl	h@sēn for tr	igger 🔊	, O	
Complusion	nt evaluation	n. . totol avat	om Triga	ar and naint		/ davia (DEC		,Ő	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	O ^V	×,	
Conclusion	Deg 1 50 m	i iotai sysi	Mode	elling endno	2230	lays (DFC			Å		J	
			widuc	ining chup		ays (51 Q	$\langle , 0 \rangle$	\sim		ĝ "Q		
				Ķ	, . <i>b</i>				ð" v~	d d'		
Table 7.2.2	.3-15: N	Aetabolit	e ethanol:	: Values@	f the Das	T50 from	water sys	têm	a	ccording to)	
FOCUS Level I (SFO)												
T Z• 4•	DT	DT	<u>`</u>								1	
Kinetic		D190	N10	$\mathbf{H}_{\mathbf{u}} / \boldsymbol{\alpha}$	<u>ж</u> 2 / р	tb/g			VA ^a	Con ²		
model	(days)	(days)	(%) ()				$\kappa_{\rm P}/\alpha$	<u> Кі /р₀, кі</u>		<u>((</u>)%)	-	
SFU	6.8	22.5	<u> </u>	120 ²⁰	122200	× ×				<u>6</u> 10.2	-	
FOMC	0.8	22.3	0.4%	13940 domento —	136200			<0,01	$\mathcal{Y} + \mathcal{X}$	12.8]	
SFO fit vis	ual assessin	ent. + – go atistically l	ou, o -ano	Melaie,	podel Ext	annrahtiat		and model	ing effetnoir	t		
Conclusion	$De\sigma T_{50}$ in	total syst	em Trioo	endercoint	·· 677	days SFO				l l		
Conclusion	1 2 6 5 1 30 m	i total 535	Mode	ellingendpo	oint 6.77 c	laws (SFO	5 °5	, Ø	<i>R</i> a			
		, Ô	\bigcirc				,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S.			
		1	A		, O	S.		st <u>s</u>	1			
Table 7.2.2	.3-16: N	/letabolit	eethanok	Values	of the Dis	T30 from	water sys	tem	accordi	ng to		
	F	OCUS L	evel 🕵 F	0)	S.	V V	° Oʻ	A.				
Kinetic	DT	DT	M		, k₂ /⟨₿ [©]	th / 🧐	Â,	Р	VA ^{a)}	Chi ²	1	
model	(days)	(davs)	% %) &	\sim		~~~~~ ~ ~~~	an / a x	× k1 /B		(%)		
SFO	2	25.5	17.70	0.0903	<u>~</u>	ð - 4	\$ 0.09	-	0	24.9		
FOMC	\$ 7.7	25.5	1767	8243.9	×9243	₽ <u></u> -C	0.19	< 0.01	0	31.1		
a) VA: Vis	ual assessm	ent: ⊀≢ go	od of = mo	deråte, - =	poor _		NO NO		, , , , , , , , , , , , , , , , , , ,		1	
No visually	or statistic	allyaccept	able fits fac	m use of S	FO a FO	MC Mneti	c model.					
Conclusion	: Not used f	før trigger	or modellin	ng enepoint	t calculatio	n 🍾	Ý					
)' 4	Ş			× ^>						
Dissipation	n from Bec	<u>liment:</u>		Ś. Ś		Ő						
No values	of the Di	s a fror	n Sedince	nt were	calculate	d for for	setyl-Al o	r its meta	abolite etl	nanol since	e	
radioactive	residues	were bel	ow 500 A	R în the	test syste	ems at al	ll samplin	g interval	s.			
4	1	Ö	~?"	AN G	ð Íð)	1	0				
Ĺ	y 7	Ö.	ã (V X								
	A		~~~	्रीधाः	. Conclu	sion						
Kinétic eva	aluation f	or totals	ystêms:	Q ^	Ç ⁴							
For the act	ive substa	ance fose	tyl-Al g	od møde	el fits we	re deriv	ed by an S	SFO appr	oach for	each of the	e	
two system	ns tø resul	t in a ged	metric m	hean 🖓 lu	e for the	DegT ₅₀	of 3.0 day	ys.				
For metabo	oliteeethar	pol a good	d model	fit@ras d	erived by	v an SFC) approac	h for eacl	h of the ty	vo system	S	
to result in	geomet	ric pean	value fo	r the De	T_{50} of 1	98 dave	For syst	em	2	DegT ₅₀ 0	f	
6 02 dag	vas abriva	ad by use	Of the SI	FO mode	landad	eclina fr	om mavi	nim ann	, cach	. 2051 30 0	•	
0.02 uass	was genive	u by use		no mode	anu a u			num appi	Uacii.			

Kipetic evaluation for dissipation from water phase:

For the active substance fosetyl-Al good model fits were derived by an SFO approach for each of the two systems to result in a geometric mean value for the $DisT_{50}$ of 2.98 days.

For metabolite ethanol a good model fit was derived by an SFO approach for one system to result in DisT₅₀ of 6.77 days for system while no DisT₅₀ could be derived for system via this approach.

Kinetic evaluation for dissipation from the sediment:

No values of the DisT₅₀ from sediment were calculated for the active subspance fosetyl- Δp or its² metabolite ethanol since radioactive residues were below 5% AR in the test systems at all sampling intervals.

 Report:
 KCA 7.2.2.3/04
 2005; M-251520-01-1;

 Title:
 Phosphorous acid: Aerobic eduatic metabolism

 Report No.:
 C048583

 Document No.:
 M-251520-01-1

 Guideline(s):
 OECD: 308, (2002); SETAC March 1995

 Guideline deviation(s):
 none

 gus
 yes

 Executive Summary
 yes

 The biotransformation of non-labelled phosphonic acid was studied in two differing water-sediment systems
 and water was studied in two differing water-sediment of the park for 76 days in maximum.

 at 20 2°Can the dark for 6 days in maximum. systems and

dissipation from water was documented by a decline from 100% by day For system zero to 0.7% of the initial concentration after % 6 days of incubation. Dissipation from sediment was indicated by a decline from 100% by day zero to 34.5% of the mitial concentration after 150 days of incubation. , dissipation from water was observed by a decline from 100% by day For system

zero to 0.9% of the initial concentration after 29 days of preubation. Dissipation from sediment was from 100% by day zero to 37,5% of the initial concentration after 150 days of incubation.

Half-lives for the dissipation from the water were calculated to 9.20 days for system and 3.3 days for both determined from best fits to measured data following application of the SPO kinetic model. L,

Half-lives for the desipation from sediment were calculated to 105 days for system and 98 days for resulting from best fits following application of the SFO kinetic model.

Material and Methods A. Materials 1. Test Material: 🔍 Phosphonic acic phosphorous acid Purity 98% \$99.8% Lot/Batches No. Add 5546301 / A017963001 (Acros Organics) Sample ID: none 2. Test System:

The study was carded out with two contrasting water/sediment systems collected at two locations in Germany Sediment and its associated water were each collected from the same area. While system " was from " originated from the standing water of a pond, system " an artificially dammed creek and thus originating from flowing water. No pesticide was applied to or around either area prior to collection. Sediments and water were collected from the top 0 to 20 cm and

Bayer - Crop Science Division

Document MCA - Section 7: Fate and behaviour in the environment Fosetyl

stored at ambient temperature overnight prior to further processing. Before set-up of samples, the wet sediment was passed through a 2 mm sieve by use of the associated water. The characteristics of the sediment was passed through a 2 min sieve by use of the absorbance. Table 7.2.2.3-17 and Table 7.2.2.3-18.

Table 7.2.2.3- 17:	Physico-chemical characteristics of w	vater
1 4010 / 1400 1/1	I hysico chemical characteristics of v	auci

		~	<u> </u>
Water		J.	
Temperature at collection (°C)	4.3	1.8	
pH at sampling	7.6	A70°	
Hardness (degrees German hardness)	≱ Q.1	3.2	
Oxygen concentration at collection			
(% saturation)	101.3 N	95.S	
Total Organic Carbon (TOC, mg/L)			
Initial, day zero		8 / 18	
Final, day 76			à Q'
Dissolved Organic Carbon (DOC, mg/L)	$(4, 6)^{\circ} < 2 \sqrt{2}$		
Total phosphorous (mg/L)	$O^{\mathbb{Y}}$ $O^{\mathbb{Y}}$ $Q^{\mathbb{Y}}$ $Q^{\mathbb{Y}}$	0.23	.1
Total nitrogen (mg/L)		03.4	à s
Redox potential at collection (mV)	γ γ γ 120 γ A	130	
 Ø			J. J
			, U
Table 7.2.2.3- 18: Physico-chemical character	pristics of associated sediments	S S 1	<i>Q</i>
			<i>y</i>

Table 7.2.2.3- 18:	Physico-che	mical Cha	racteris	ties of a	ssociated	L sedime	Ŵ
--------------------	-------------	-----------	----------	-----------	-----------	----------	---

Sediment		
Geographic location		
L &		s. C
	Germany S	, Germany
Latitude and longitude 🦘 🔏 🔍	not reported	y not reported
Texture class [USDA] 🧹 🖓 🤇) 🖧 sand 🗸 🌾	silt loam
Sand $(2000-50 \ \mu m)$ (%)	\$95.1 O	علام 🖉 🕺 🕹
Silt (50-2 μm); (50)	4.20	Ø 59.4
Clay $(< 2 \mu m)$ (%)		16.0
pH (0.01 M Ca@)		5.2
pH (water)	<u>\$</u> 7.1 0 U	5.5
Organic matter (%)	N ^A O' a, T	
- Before filling into vessels		9.6
- Initiak je. day zero samples 🖉 🕺	, O' ^w .4 , O	8.6
- At termination, day $\delta \partial f = \delta \partial f = \delta \partial f$	<u> </u>	9.6
Organic carbon (%)		
- Before filling into vessels	\$\$ \$ \$ \$5	5.57
- Initial, i.e. da @zero samples 🖉 🔬 💭	<u>م</u> (۲۵۰ م	4.97
- At termination, day 76 🔊 🔿	<u>ک</u> 0.62	5.59
Microbial blomass (mg/kg dry weight)		
Post collection	16	43
Initial, day zero	× 14	42
Final, day 76, without test substance	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	25
Final, day 76, including test substance	<u> </u>	27
Cation exchange apacity	3.7	17.7
(meq/100 g sediment)		
Total nitrogen (%) 🖉 炎 💊	0.08	0.39
Total phosphorus ing P/kg dry weight)	148	653
Dry matter content (%)	78	33

B. Study design

1. Experimental conditions:

The tests were performed in individual glass cylinders as test vessels filled with sieved sediment to a depth of 2 cm. Associated water was added to each test vessel up to a depth of 6 cm above the

sediment to result in a sediment-to-water ratio of 1:3 (v/v). The test vessels were pre-incubated at 20 ± 2 °C in the dark for 6 days in order to equilibrate the systems with regard to oxygen content, pH, redox potential and phase separation. During periods of acclimation and incubation the water phase was aerated by gentle agitation of the water phase by an orbital shaker.

The nominal initial test concentration of 4.87 mg test substance/L was derived by assuming a con-fold factor for analytical reasons for the originally calculated dose. This resulted when assuming full overspray at the maximum single application rate of 7 kg/ha for the active substance for solution aluminium being equivalent to 4.87 kg phosphonic acid/ha. Assuming fall overspray on translated into a test concentration of 487 µg phosphonic acid/L for a water depth of 100 cm. The actual test concentrations was about 5 mg test substance/L to result in a dose of 2 mg applied pertest vorsel. Following decantation, the water phase was analysed at each sampling interval.

Background levels of phosphate were determined to 250 to 600 mg/kg for the two sediments. This level was too high for the analytical method applied to differentiate between the background level and the phosphate formed from application of phosphonic acid, The study design was therefore amended: Following decantation of the water phase from test vessels the tomaining sediment was treated by a second application with 2 g phosphorous and per test vessel corresponding test concentrations of about 10 g/kg sediment for and 35 g/kg sediment for Each sample was dosed by applying of aqueous solution of phosphonic acid dopwise onto the water surface or sediment surface, respectively. Ŵ % Two replicates were prepared for each sampling interval. The water sediment samples were incubated

under static conditions (gentle shaking of test vessels, test masks permeable to $\frac{1}{20} \pm 2$ °C for a maximum period of 76 days. The sediment was incubated at 20 ± 2 % in the dark for 150 days in maximum after a second application at the higher dose.

Non-sterile, untreated samples were prepared in parallel for water sediment system for monitoring of total organic carbon (TOC) on the water and the microbial biomass in the sediment phase, respectively. One sample per water/sediment system was analyzed at time zero and after 76 days of incubation.

2. Sampling>>

2. Sampling Duplicate samples of both systems were removed for analysis of water after 0, 1, 3, 7, 14, 29 and 76 days of incubation. Duplicate samples of both systems were removed for analysis of sediment after 28/30, 70/73, 120 and 30 days of incubation.

3. Analytical procedures:

At each sampling interval for water malys, the essolved oxygen content was measured in the water. In addition, the pH and redex potential was determined in the water phase and the sediment.

Water and sediment were separated by decantation. Following the second application of sediment and incubation an aliquot was extracted with 2 aqueous sulfuric acid by gentle boiling the suspension for 30 min. M

Water samples and sediment extracts were analysed for phosphate and for phosphonic acid ('total oxidizable portion of phosphorous by sidation (sulfuric acid/peroxodisulfate) to phosphate. Analysis for both compounds was by colorimetric determination at a wave length of 880 nm in the form of motobdate blue. The LOQ of the colorimetric analytical method was estimated to 0.1% in water and to 1 g/kg in sediment. For phosphate the LOQ in sediment was estimated to 1 g/kg.

Determination of degradation kinetics:

Dissipation rates from the water phase after the first application and, from sediment after the second application were calculated by use of the software ModelManager, version 1.1. A separate kinetic analysis of the water phase and the sediment degradation data was performed according to FOCUS kinetics in another report in order to derive input data for modelling within aquatic environmental risk

assessments (KCA 7.2.2.3/05).

II. Results and Discussion

A. Findings

The anticipated test conditions were maintained throughout the incubation period, each after application of the test substance.

The pH in the water of system **Example** remained constant at 7.3 at start (day zero) and at the last sampling interval, day 76. The pH in the water of system **Example** showed a negligible decrease from 6.4 by day zero to 6.2 at the last sampling interval,

Measurements of the redox potential in water and sediment and the oxygen content in the water indicated aerobic conditions for both water/sediment systems during inclustic (see Table 7.2.2.3 19) and Table 7.2.2.3 20).

The results of microbial biomass determinations in sediments showed that biological activity of the test systems was given during the entire incubation period. From lower values of biomass after 76 days of incubation some trend for a reduction could be derived for both systems. The decrease may be regarded as a typical situation within laboratory tests on soils and sediments with microbial activity suffering from a lack of nutrients under the closed conditions in test thasks and separated from the outdoor environment.

Sampling	<u> </u>	🖉 Water	NO Y	Se	diament
interval *	O2-Sat.	pł¢ «	Eobs ~	× pn ×	Eobs
(day)	(%)		<u>(mV</u>)`		(mV)
-6	958/98.4	×2.9 / 8.0		₹ <u>1</u> 2 / 7 2 × °	174 / 197
-5	24 .4 / 93.8	7.9 48.0	ジ 172× 170	7.2 / 7.3	170 / 76
-4	\$91.3 ₁ /92.4	ջ՞ 8.1%-8.1_^	204/120	7.5 7.6	63 / 167
-1	O 86:🙏 89.2 🚿	\$ 0 / 8.0	207 / 253 j	7≪2 ∛/ 7.3	290 / 183
0	7507 / 76,00	9.7 / 1×2	202@180 ×	_@ 7.3 / 7.2	45 / 131
1 🔊	78.9 / 77.8	õg 7.9 <u>/</u> 8.0 🔬	188/163	👟 7.3 / 7.2	172 / 160
3	78.7 78.1	8.10-8.1	170/204	° 7.4 / 7.4	168 / 177
	807 78.50	8.2 / 8.2 💊	0 [™] 195 ₩₩99O°	7.4 / 7.1	194 / 202
14	815 / 81.2	<u>%</u> 8.2 / 8	1977/192 S	6.9 / 6.7	165 / 92
29	<u>91.6</u> /91.2	8.3 8.3	185 / 209	7.0 / 7.3	287 / 200
76		8.0 7 8.0	203 / 265	7.6 / 7.0	226 / 236

Table 7.2.2.3-19: Measurements of dissolved oxygen pH and reduce potential in Ostem

 \overline{E}_{obs} = Redox potential as measured with reference, electrode (Ag/AgCl). The redox potential referring to the hydrogen standard electrode (E_h) results from the sum of the measured value (Eobs) and a fixed value of +197 mV for the potential of the reference electrode used (\overline{E}_{ref}), i.e. $E_h = E_{obs} + E_{ref}$.

Table 7.2.2.3- 20:	Measurements of dissolved oxygen,	, pH and redox potential in system
--------------------	-----------------------------------	------------------------------------

_					a)°	~
Sampling		Water		Se	diment	
interval *	O ₂ -Sat.	pН	Eobs	pH 🔈	Eobs	O,
(day)	(%)		(mV)		(m)) (m))	
-6	98.6 / 99.4	7.0 / 6.5	203 / 190	6.4 / 6.D ^y	55/55	
-5	96.8 / 96.0	6.6 / 6.4	208 / 175	6.2 (46.2	24 / 39 S	Ô
-4	95.0 / 95.5	6.7 / 6.6	180 / 207	6. ≵ ∕∮ő.2	°∼60 / 165° ã	Ϋ́
-1	85.6 / 87.0	6.5 / 6.4	192,499	6A/6.3	~1512¥44 O	,C
0	75.9 / 77.0	5.8 / 5.7	208/198	\$ 6.3 / 6.5	Ø 83 162 ×	Ň
1	79.5 / 79.6	6.3 / 6.3	206 / 146	6.2 / 6.2	AQ34 / 950 ×	K -
3	80.2 / 82.0	6.5 / 6.6	🖧 97 / 197 🔏	6,1 % 6.2 🔨	L 122 / 80 L	
7	79.9 / 81.4	7.2 / 6.9	198 / 202	<u></u>	\ [©] 141&115 ©	
14	79.6 / 77.2	7.7 / 8.3	1960/ 188	× 6.3 / 603	48/27	
29	91.0 / 88.6	7.8 / 7.3 👸	× 196	6.3~6.0	62 / 40	
76	76.8 / 73.8	7.6 / 7.3	212/204	6007/6.4	81/59 L	P

 E_{obs} = Redox potential as measured with reference electrode (Ag/AgCl). The redex potential referring to the hydrogen standard electrode (Eh) results from the sum of the measured value (Eobs) and actived value of +197 mV for the potential of the reference electrode used (E_{ref}) , i.e. E_{t} =Æobs

 $\widehat{}$

B. Data

Ļ For system **Example** the results of determination of total recovered test substance was summarized in Table 7.22.3-20 for the dissipation from water, and in Table 7.2.2.3-22 for the sediment. The corresponding data was summarized for system in Table 7.2.2.3-23 and Table 7.2.2.3- 24 X

Table 7.2.2.3- 21:	Biotransfo	ormation of	f phosphonic a	eid in water	orsystem	at 20 °C
		<i>«</i> «.		4		

Compound 🖉 🚿			🖉 Sampli	ingmtervat	(day)		
Phosphorouscacid	" "		30		14	29	76
Replicate (mg/L)	676	6.49	A.64 2	448	2.55	0.30	<loq*< td=""></loq*<>
Replicate B (mg/L)	×7.55 €	590	\$ 5.46	4.45	2.83	0.17	<loq*< td=""></loq*<>
Mean concentration ong/L	7.16	8.20	5. 0 5	4.47	2.69	0.24	0.05**
% of initial concentration	190	86.6	\$0.5 K	62.4	37.6	3.3	0.7
* LOO = 0.1 ms L			×~ ~				

** Value of half of LOQ

Table 7.2.2.3-22: Biotransformation of Phosphonic acid in sediment of system at 20 °C

F

Compound		× Ó	Sampling interval	(day)	
Phosphorous acid		∞ 28	73	120	150
Replicate A (mg/L)		2 1.70	1.66	0.82	0.77
Replicate B (mg/L)	2	1.70	1.51	0.72	0.61
Mean concentration (mg/L)	2.0	1.70	1.59	0.77	0.69
% of initial concentration	100	85.0	79.3	38.5	34.5

¢,

			0 /
Table 7 7 7 3_ 73+	Rintransformation of a	nhosnhonic acid in water	of system
1 auto / .2.2.5- 25.	Dioti ansioi mation or	phosphonic actu in watch	UI SYSTEM

at 20 °C

Compound	Sampling interval (day) 🖉 🖉					~		
Phosphorous acid	0	1	3	7	14	29	×96 5))
Replicate A (mg/L)	5.72	3.77	2.40	1.04	1.43 🏷	<loq*< td=""><td>QLOQ*</td><td></td></loq*<>	QLOQ*	
Replicate B (mg/L)	5.67	3.85	2.43	1.32	1.65	<loq* td="" 🖗<=""><td><loo*< td=""><td></td></loo*<></td></loq*>	<loo*< td=""><td></td></loo*<>	
Mean concentration (mg/L)	5.70	3.81	2.42	1.18	1,54	0.05*	0,03**	
% of initial concentration	100	66.9	42.4	20.7	\$27.0	0.9	0.9	
* LOQ = 0.1 mg/L					Ũ		Y O	¢۵
** Value of half of LOQ			s,	Ő	¥ .	v s		Š
			Ű,	<u>A</u>				
Table 7.2.2.2.4. Distur		f h h .		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Å.		

Table 7.2.2.3- 24:	Biotransformation of	f phosphotôje	acid in	sedimen
	20 °C	, "	. 0	_"O"

20 C			×	Q.	2 2		Ŵ	, C	\sim	*
Compound		4	0 ×	Sam	pling int	Grval ((ð 3y)	° '	\$	
Phosphorous acid	0	N.	28		73	4	, A	20	Į (×150 Ø
Replicate A (mg/L)	-		×1,49	, O'	्र 4 .36	, Ő	×70.	73	2	0.7
Replicate B (mg/L)	-	69 4	1.52		1.15	Ŷ.	Û 0.			0.73
Mean concentration (mg/L)	2.0		1.51		1,26	Ő	ř 🚯	14 S	, N	0.75
% of initial concentration	100	× P	79 .3	ŐŽ.	\$2.8	5	~ ⁰ 36	5.8		37.5
		2	0	6	A	R.	•	Ô,	×	

C. Mass balance

No full mass balances were determined due to the non-labelled tes

Residues in water and extractable residues in sediment; D.

In **the sediment** systems, total vecovered phosphonic acid in the water phase decreased from 100% at da zero 6 0.7% at the last sampling interval (day 76). The total recovered residues in the sediment decreased from 100% by day zero to 34.5% after 150 days of incubation.

systems, total recovered phosphonic acid in the water phase decreased from In 100% at day zero to 0.9% of ter 29 days of in abation. Total recovered residues in the sediment decreased from 100% by day zero to 37 .5% after 150 days of incubation.

E. Volatibisation

No volatile products were determined due to the use of hon-labelled test substance.

F. Fransformation of test substance

Phosphonic acid undergoes bacteria-mediated oxidation to phosphate as demonstrated in various publications. Athough the study design was altered by application of exaggerated levels of phosphonic acid, this was not documented by correspondingly higher phosphate levels determined in sediment samples. This result can be explained by the fact that the phosphonic acid transformed can be taken up directly as a nutrient by microbes thus being not detectable in the free form as phosphate in the samples

G. Degradation kinetics:

The evaluation of degradation kinetics from the water and the sediment was performed by use of the software ModelManager (Environmental Kinetics, Version 1.1). The data were kinetically evaluated by use of the simple first order (SFO) model. The results of the kinetic evaluation are provided in Table 7.2.2.3-25.

The dissipation half-life of phosphonic acid from water was estimated to 9.2 days for system and 3.3 days for system and 11 days for system. The corresponding values of the DTA were 31 days for system and 11 days for system. The dissipation half-life of phosphonic acid from sediment was estimated to 105 days for system and 98 days for system and 10 days for system. The corresponding values of the DTA.

were 349 days for system

and 327 days for system

Degradation kinetics was also evaluated in a separate report to derive input parameters for modeling purposes in environmental exposure assessments. These results are presented under KQA 7.2.2.3/05, .

Table 7.2.2.3-25: Kinetic evaluation of the dissipation of phosphonic acid from water and sediment after incubation at 20 °C

	1					
System	Matrix	Label	[©] Kinetič model	∞. ?DT50.O	C DT96	$\sqrt{r^2}$
~ 5 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		position		(days)	(days)	°~7
	Water phase 🖉	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	SFO	<u> </u>) di 🏷	0.982
	Sediment 🕷	× 4-	SFO SFO	چې105 🤿	ن 349 گ	0.902
	Water phase	0 ⁷ - 2	SFO .	3.3~		0.916
	Sediment	A - 2	SFQ Y	<u>98</u> 3	307	0.969

Best fits according to the oriteria set are marked bold.

W. Conclusion

Once applied to water surfaces phosphonic acid is fapidly eliminated from the water phase presumably via sorption processes to the sediment. The processes are paralleled by a microbial oxidation to result in formation of phosphate taken up a mutrient. Following sorption to sediment the transformation to phosphate proceeded more slowly.

The data were evaluated by use of the simple first order (SFO) kinetic model to result in half-lives for the dissipation from water of 9 2 days (and 3.3 days ().

For the dissipation from sediment, the corresponding half lives were 105 days for the sandy system

Data for the dissipation of phosphonic acid from sediment should be regarded as worst case since samples had to be clearly overdosed for analytical reasons. The conversion of phosphonates to form phosphate as nutrient is expected to be significantly faster at the lower concentrations in aquatic systems of the environment.

Request from the RMS:

Please note that the design of the study by and and (2005) is not suitable for the derivation of degradation data in the whole water/sediment system. No reliable degradation data usable in FOCUS modelling can be derived from this study.

Resp	oonse from BCS:
The	study by; 2005; M-251520-01-1 (KCA 7.2.2.3/04) deviated from
stanc	lards in water/sediment testing regarding two aspects:
<mark>(a)</mark>	Concentrations of phosphonic acid in the sediment have not been determined following
	incubation in the initial phase of the study, while Study while Study while Study while Study Study Study Study
(b)	Degradation tests performed for phosphonic acid separately in isolated sediments after initial
	incubation are not a standard procedure in water/sediment testing.
	Nevertheless, the study is able to clearly show that phosphonic acid dissipated factor $DT_{ab} = 3.3$
	and 9.2 days) from the water to the sediment. For degradation in sediment incubated separately,
	a DT ₅₀ of \sim 100 days was determined. As a conservative interpretation, the sequent phase was \sim
	demonstrated to be the main compartment for degradation of phosphonic acid in the O
	water/sediment system and the corresponding OT ₅₀ value for be used for surface water risk
	assessment.
	Dissipation from water in terms of the DT3 was shown to be significantly faster than DTs for
	degradation in the sediment. The degradation in sediment thus allows also for a good estimate for
	the degradation in total systems. The degradation rate for the water phase is uncertain, however, it
	does not play a significant role due to fast transport to sediment. Overall, the study results can be
	summarised as follows: Phosphonic acid is transported from the water phase to the sediment
	where it declines with a DT_{50} of ~100 days. The transport from water to sediment can be
	described by TOXSWA without the necessity of special input parameters.
-	
Repo	$\mathbf{KCA} = \frac{1}{2} 1$
1 itle:	Kinetic evaluation of an aetopic aduatic metapolisia study of phosphorous acid
Reno	rt No · MYEF-10/303
Docu	ment No.: $\sqrt{M-369224-01}$ $\sqrt{M-369224-01}$
Guid	eline(s): S Guidance Document on Estimating Persistence and Degradation Kinetics from
	Environmental Face Studies on Pesticide On EU Registration. Report of the FOCUS
	Work Group on Degradation Kapetics EC Dogument Reference Sanco/10058/2005
a	wersion 2.0, 2006
Guid	eline deviation(s) and a second se
GLP	$/\text{GEP:}$ no $(\mathcal{G}, \mathcal{G}, \mathcal{G})$ $(\mathcal{G}, \mathcal{G})$
_	
Exec	cutive Summary
The	kinetics of dissipation of phosphonic acid from water and sediment was evaluated from data of
tests	performed in two water/sediment systems with non-labelled test substance (KCA 7.2.2.3/04).

The kinetic evaluation followed FOCUS guidance to derive values for the dissipation each in water and sedimentofrom best fits to measured data for use as modelling endpoints in aquatic exposure assessments. Analysis was performed for fosetyl-aluminium at Level I with results summarised in Table 7.22.3-26 and Table 7.2.3-24.

SFO kinetics was applied to all datasets as the best fit. Ø

0

The kinetic evaluation for the dissipation of phosphonic acid from water resulted in a geometric mean value for the Dis T_{50} of 5.5 days (see Table 2.2.3-26). For the dissipation from sediment a geometric mean value for the DisT₅₀ of 101.6 days was derived (see Table 7.2.2.3-27). \$1

- 17**2,2.3-26** - 17**2,2.3-26** - 17 Õ Modelling Indpoint: Values of the DisT50 from water for phosphonic acid according to Table 7 KOCUS Vevel I

System	DT ₅₀ (days)	DT ₉₀ (days)
	9.2	30.6
	3.3	10.9
Geometric mean	5.5	
Table 7.2.2.3- 27:	Modelling endpoint: Values of the DisT50 from sediment for phosphonic acid	
--------------------	--	
	according to FOCUS Level I	

System	DT ₅₀ (days)	DT ₉₀ (days)
	105.0	349
	98.4	327 🔊
Geometric mean	101.6	A
	<i>R</i>	s de la companya de l

I. Material and Methods

4 conductor a jr The kinetic evaluation was based on data of water sediment stray KCA 7.2,23/04 conducted with non-labelled phosphonic acid in two contrasting Water/sediment systems (sandy loan and their associated water at 20 °C in the dark for a maximum of and silt loam 76 days for the dissipation from water and 150 days for the dissipation from sediment. Time zero residues for phosphonic acid had been reported and were set to 100% Following the recommended procedure for determining modelling and persistence endpoints, [FQCUS 2006], all datasets were evaluated using SFO kinetics with free optimisation of parameters.

The determinations of the kinetic values followed the recommendations of FOCUS guidance FOCUS, 2006] to derive DT_{50} values for use as model input. The kinetic evaluation were performed according to the respective decision flox charts for the determination of togger and modelling endpoints for parent (Level P-1) [FOCUS, 2006]

The identification of the most appropriate kinetic model for the description of experimental data according to FOCUS was mainly based on the three priterin of visual assessment of fits of calculated transformation curves to experimental data, the value of error of Chi-square (χ^2) test and a single-sided significance t-test.

Within the current valuation, the single first-order (SFO) kipetic model was applied to all data sets. The kinetic evaluations and the statistical calculations were performed with the software KinGUI (version 1.1).

Ø. Results and Discossion

The kinetic evaluation of the data was performed according to FOCUS Level I to result in dissipation kinetics from the water phase and the sediment for phosphonic acid. No evaluations according to Level II were performed. SFQ kinetics was applied to all datasets thus to serve as best-fit to derive modelling inputs.

For phosphonic acid, values of the DTF in water according to SFO kinetics were summarized in Table 7.2.2.3- ∞ . The corresponding values of the DT₅₀ in sediment were summarized in Table 7.2.2.3-29.

Table 7.2.2.3- 28:	DT50-Values (0)	r phospi	honic acid in	water as	modelling input	according to FOO	CUS
, O`	Level I (SEO)		²			0	

Sediment system // Clabel	(days)	DT90 (days)	Chi ² (%)	t-test	VA ^{a)}
	9.2	30.6	7.49	0.00024	n. r.
	3.3	10.9	20.85	0.008	n. r.
Geometric mean	5.5				

Study KC 7.2.2.3/04

a) V_{A} isual assessment: + = good, o = moderate, - = poor

n.r. = not reported

, K

Bayer – Crop Science Division

Document MCA – Section 7: Fate and behaviour in the environment Fosetyl

Table 7.2.2.3- 29:	DT50-values for phosphonic acid in sediment as modelling input according to FOCUS
	Level I (SFO)

Sediment system	Lahel	DT-	DTag	Chi ²	t_test	V A a)
Seument system	position	(davs)	(davs)	(%)	t-test	
	-	105	349	9.71	020096	P.A.
	-	98.4	327	5.36	0,0016	«n. r.
Geometric mean		101.6			-4	
Study KCA 7.2.2.3/04	$\perp = a a a d a = n$	noderate — no	or s	S.	C v	
n.r. = not reported	- goou, o - n	ioderate, - – po		Ô	í "S	
1			r V	Ŗ	Ű	J N O
			Ű.	Å	, ° [*]	
		III. Co	nelusion			
The kinetic modelling eva	aluations for	· phosphonic	acid followin	the SFO	model resulted	invaccentable
fits.		r		di la composición de la composicinde de la composición de la composición de la compo		
The kinetic evaluation re-	esulted in ge	eometric mea	n DT 50- Valu	es of 5.50	ays for the dis	sipation from
water and of 101.6 days f	or the dissip	ation from s	diment.	~ A	\$. · ·	
The results can therefore	be used as in	put paramet	ers in environ	nmental ris	k assessments	
	L.					, Q
	Q,					×
<u>Study summaries of ex</u>	<u>isting studi</u>	<u>es and still</u>	ications on	water/sed	ibrent Audies	<u>of the active</u>
<u>substance:</u>		× 22			~~ O'	
F - 11						
Following another reques	t by the RIV	IS office a straight of the st	ment was up	date of by in	eursion of sum	maries for the
inclusion of footyl mid	s and public		and hang	aluated du	ning the proces	EU approval
renewal process		91/414/LEX			evance for the	LO appioval
rene war process.		$\mathcal{L}^{*} \sim$			Ø	
Č N	Ś 🧐 🖗				A. A	
Report: O S K	CA7.2.2.9	01		4.8	<mark>.</mark>	<u>.</u>
6 ¹	986; M\$59	703-01-1	T.		<mark>></mark>	×
Title:	etermination	the biodeg	adabilty os	et 🕅 Al in w	vater / sediment s	ystems
Report Kor				\sim		
Document No.:	A. 59703-01	<mark>l-1</mark> 0		ð.		
Guideline(s):	Dutch CO, Se	carch G.2.0				
CLP/CEP.	one Strate		Ŝ [®] Ĝ			
Executive Summary	° "S		, Ç			
The biogransformation	of ^C Cl-fos	etyl-A was	Studied in	'non-pollu	ted' water/sedi	ment systems
'ditch' and the 'pollyted	stems	Kronnine Rin	". The test y	was perfor	med in the darl	c at 20 °C for
96 days in maximum and	Sat a test c	oncentration	of 1.0 mg a.	s./L. For a	ssessment of c	arbon dioxide
evolution additional test	systems wer	2 investigated	d at 0.3 mg a.	s./L.		
A.			Ŭ			
Material balances for the	chich syster	ns sanged fro	om of 95 to 1	02% AR v	vith an exception	n for samples
incubated for 28 days (36% AR) an	d 42 days (79 <mark>% AR).</mark> Fo	or the Kro	omme Rijn sys	tems material
balances were from 94 to	106% AR.					
	N ^V					
The formation of carbon	dioxide was	s 38% AR (d	litch systems) and 17%	AR (Kromme	Rijn systems)
each after 42 days of incu	ibation.					
	1.0 07				40.1	1 (1. 1

Residues in water decreased from 97% AR by day zero to 41% AR after 42 days of incubation (ditch systems) and from 93% AR (day zero) to 80% AR after 42 days for Kromme Rijn test systems.

Residues extractable from sediments were very low to amount to 3% AR in maximum at any sampling interval for both test systems. Non-extractable residues were 18% AR (ditch) and 7% AR (Kromme Rijn) each after 35 days of incubation.

The amounts of fosetyl-Al and its degradation products were not determined.

Fosetyl-Al was bio-degraded in the two water/sediment systems 'ditch' and Kromme Rijn under , A conditions of the test.

Delft. A sediment sample from the top 5 cm of the bottom of the same ditch was also taken. A second sediment sample was taken from the river "Kromme Rijn" hear Odijk. The TNO ditch is not polluted with biocides and other organic compounds, whereas the "Kromme Rijn" must be considered to be polluted. The sediment samples over allowed to settle in vessels at the laboratory. The supernatant was drawn off and the content of dry colids of the sediment was determined. The pH of the water was 7.5. R

The inhibition of microbial respiration by fosetyl-APwas rested in a BOD-test. Neither the value of BOD₅ nor that of BOD₂₁ was affected by a concentration of 2 mg fosetyl-Al/L. It was therefore concluded that concentrations of 0.3 and 0 mg of fosetyl-Al could be used in the biodegradability test without risk of biodegradation being inhibited by the test compound.

× i

L,

Ô

Ŵ

A

Ĩ **STODY DESIG**

1. Experimental Conditions

V2 The test system for degradation in water/sediment under aerobic conditions consisted of 500 mL cylindrical flagks closed with crew caps containing a carbon dioxide trap. One system contained both water and sequent from a ditch which for many years has not been contaminated with biocides (nonpolluted system) and one system contained non-contaminated water plus sediment from "Kromme Rijn" which has for many years been in contact with biocides (polluted system).

Contra la 67 L)

For preparation of the test systems, 100 mL of ditch water was placed in each flask, together with a sufficient@mount of wet sediment to give a 1% content of dry solids.

ĉ

The test concentration was 1.0 mg of labelled and	unlabelled	fosetyl-A1	per litre	For ass	essme	ent of
carbon dioxide evolution test systems were addition	nally applie	d with 0.3	mg fosetv	l-Al ne	r litre	The
amount of radiolabelled compound was 195 Bg pe	r flask Th	e test item	(labelled	and no	n_lahe	alled)
was added to the flasks from an aqueous solution	$\frac{100 \mu L}{100 \mu L}$	The pH of	the water	was ch	neckee	Sin a S
parallel experiment was run without radioactive l	abel To n	revent lac	c of exve	en the	aiou	n the
reaction vessels was regularly refreshed					⁰	Ô
reaction vessels was regularly remeshed.			Ĩ		× ,	Ş
The test was performed under aerobic conditions in	the laborat	tory in the	dark at 20	°C for	96%	vs at
maximum			J		No al	
	G	Ĩ				Ô, O
2 Sampling	\$	Ŗ	, Q		۲ ۲	
Dunlicate samples were processed and analysed ($\frac{14}{2}$	1 2 35	and 420Ha	vs afte	r treat	ment
(DAT)	4 , 7 , 17 , 2				i wyai	Line ury
	í A	y . Oʻ	~~ \	0.	ĝ _	Q ^ú
In addition carbon dioxide evolution was monito	rad by the	lacing the	Scintilbar		s from	h the
carbon dioxide trans of eight flasks with fresh ones	after 7014	$\frac{100000}{2000}$	$^{\circ}$ 40° 80°	$\frac{100}{2}$ and $\frac{100}{2}$	6 Agys	and
by determining the transed radioactivity A			, 1 2, 09, 02	0		
by determining the trapped factoractivity.	\sim \sim	A	. Ő ^v «,	40	,	× ×
The nH measurements were carried out on DAT-0	28 and 6	<mark>o</mark> 0 ×		× ×	AS O	
The primeasurements were carried out on Deri-0, *				Ĩ	in the second se	
3 A polytical Propoduras		y ôv		Ş 4	S J	
The amount of ¹⁴ CO ₂ formed by biodegradation	atornia	d by liquid	Cintillati		ting (
after addition of methanol and crintil tion liquid			Semilar		ung (LSC
arter addition of methanor and semitimation addite.			Ĉo	O		
Water and sediment were senerated by confifu	or and	the radio	activity 3	n the	water	was
determined by LSC					water	was
	× ~ (× 4				
The solids were entracted with 15 ml northing		nitrile Ome	thanol an	d wate	r and	the
radioactivity of the bree extracts was determined				u wan		
	N 5	J' N	ÿ			
Non-extractable residues (NER) in the extracted	solid same	Nes were	determined	l after	0 14	and
35 days by combustion/LSC	Solde Sulle		determine		0, 11	und
	, ^{vo}	<u></u>				
A A A A A A A A A A A A A A A A A A A	ND MACU					
In the polluted and non-pollute & steps the OH re	mainedscor	istant un to	$\frac{1}{100}$ day 62 of	the te	st at7 (6 and
7 3 respectively 7 0 & 0 &	× ~	istuitt up to	aug 02 01		<i></i>	o unu
	- Of					
	ð					
	ý –		14			
Table 7.2.2.3-30: Formation of 14C-carbon droxides	ollowing ap	plication of	[¹⁴ C]-foset	yl-Al to	<mark>) two</mark>	
water/sediment systems at 20. V a	nd at two te	st concentr	ations			
System A Lest A S	Inc	ubation tin	ne (days)			
Concentration 7	14 21	20 25	42 40	<u>(0</u>	01	04
		<u>20</u> <u>33</u>	4 2 4 9	00	<mark>02</mark>	20
	<mark>12</mark> 17	<mark>22</mark> 27	<mark>31</mark> 34	<mark>41</mark>	<mark>48</mark>	<mark>53</mark>
	15 <mark>22</mark>	<mark>29</mark> 35	<mark>40</mark> 44	<mark>53</mark>	<mark>62</mark>	<mark>67</mark>
	7 <u>9</u>	<u>11</u> <u>13</u>	14 <u>16</u>	<mark>19</mark>	<mark>23</mark>	<mark>26</mark>
	8 11	<mark>15</mark> 17	20 21	<mark>25</mark>	<mark>28</mark>	<mark>31</mark>
All varues expressed as percentage of total applied radiola	abel					

Ĉ

Transformation of [¹⁴C]-fosetyl-Al in a ditch water/sediment systems at 20 °C at a test Table 7.2.2.3- 31: concentration of 1 mg/L

Component	Incubation time (days)								
	<mark>0</mark>	<mark>7</mark>	<mark>14</mark>	<mark>21</mark>	<mark>28</mark>	<mark>35</mark>	<mark>42</mark>		
Carbon Dioxide	-	<mark>7</mark>	<mark>13</mark>	<mark>25</mark>	<mark>29</mark>	<mark>32</mark>	38		
Water phase	<mark>97</mark>	<mark>87</mark>	<mark>76</mark>	<mark>70</mark>	<mark>55</mark>	<mark>50</mark>	A		
Sediment extract	1	1	2	<mark>3</mark>	2	2	<u> </u>		
NER	1	-	<mark>11</mark>	-	æ. <mark>-</mark>	ې <mark>18</mark>	₽" -		
Total Recovery	<mark>99</mark>	<mark>95</mark>	<mark>102</mark>	<mark>98</mark>	2 <mark>86</mark>	102	<mark>79</mark>		
All values expressed	as percent	age of tota	l applied	radiolabe	[®]	- Q			

Table 7.2.2.3- 32: Transformation of [¹⁴C]-fosetyl- (A) in 20 °C at a test concentration of a mg/L n

Table 7 7 7 3_ 31+	Transform	nation of	[¹⁴ C]_fose	tyl_Al in	a ditch w	ater/sedi	ment syst	ams at 20 °C at a test
1 abic 7.2.2.5- 51.	concentra	tion of 1	mg/L	tyi-Ai iii		ater/seur	ment syst	
			Incuba	ation time	<mark>e (days)</mark>			
Component	<mark>0</mark>	<mark>7</mark>	<mark>14</mark>	<mark>21</mark>	<mark>28</mark>	<mark>35</mark>	<mark>42</mark>	
Carbon Dioxide	-	<mark>7</mark>	<mark>13</mark>	<mark>25</mark>	<mark>29</mark>	<mark>32</mark>	38 ⁰	
Water phase	<mark>97</mark>	<mark>87</mark>	<mark>76</mark>	<mark>70</mark>	<mark>55</mark>	<mark>50</mark>	A	
Sediment extract	1	1	<mark>2</mark>	<mark>3</mark>	2	2	<u> -</u>	
NER	1		<mark>11</mark>			18 (,∜″ <mark>-</mark>	
Total Recovery	<mark>99</mark>	<mark>95</mark>	<mark>102</mark>	<mark>98</mark>	2 <mark>86</mark>	102	× <mark>79</mark>	
All values expressed	d as percenta	ige of tota	al applied i	radiolabel	¥	R		
				, Ô	/	Á		
Table 7.2.2.3- 32:	Transform	nation of	[¹⁴ C]-fose	tyl-Al in		ý	ater/sedi	ment systems at
	<mark>20 °C at a</mark>	test conc	entration	of I mg/	L _v		<u>_</u> 0	
			Incub	ation ton	e (days)		Ô Â	Y C A
Component	<mark>0</mark>	<mark>7</mark>	<mark>14</mark>	21	28 ·		² 42	
Carbon Dioxide	_	5		<mark>9</mark>	14	15	Ő <mark>ľ7</mark>	
Water phase	<mark>93</mark>	<mark>91</mark>	6, <mark>87</mark> . ×	86 @	<mark>∦_84</mark> ∕	683	× 80 ×	
Sediment extract	0	1	R 16 Y		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	× 1 .(j <mark>-</mark> Ø	
NER	1	- 2	6	°∼ <mark>∕</mark>	K) - ~	7		
Total Recovery	<mark>94</mark>	<mark>97</mark> 2	2 <mark>101</mark>	_{ති} <mark>96</mark>		106	9 7	

All values expressed as percentage of totak applied adiolated

B. MATERIAL BALANCE

Material balances for ditch test systems were from 95 to 102% AR with an exception to be made for samples incubated for 28 days (86% AR) and 42 days (79% AR), respectively For the Kromme Rijn systems material balances were from 94 to 106% AR.

W

C. RESIDUES IN WATER

Residues in water decreased from 97% AR at day zero to 41% AR after 42 days for the ditch systems and from 93% AR by day zero to 80% AR after 42 days in Kromme Rain systems. Ô C

D. EXTRACTABLE AND SON-EXTRACTABLE RESIDUES

Residues extractable from sectionents were very log to amount to 3% AR in maximum at any sampling interval for both tesosystems. Non-extractable residues increased from 1% AR by day zero to 18% AR (ditch) and 7% AR (Kromme Rin) after 35 days of incubation.

E. VOLATOLES C

Formation of carbon diox de was 7% AB (dit d) and % AR () after 7 days to 38% AR (ditch) and 17% AR (after day

CO₂evolution test

The formation of carbon dioxide in ditch test systems was 53% AR by day 96 at a test concentration of 0.3 mg a.s/L. Formation of @arbons dioxide was 67% AR after 96 days at a test concentration of 1 mg a.s./L.

test systems formation of carbon dioxide was 26% AR after 96 days at For the 0.3 mg x x L and 31% AR at P mg/L at the same time. 67 X)

J. FRANSFORMATION OF TEST SUBSTANCE

The distribution of radioactivity in the water phase and sediment extracts into transformation products was not investigated.

III. CONCLUSIONS

Fosetyl-Al was bio-dea	graded in the two wa	ater/sediment system	ns 'ditch' and	unde othe 📎
conditions of the test.				
Owing to a number	of gaps in design	and reporting the	study was recorde	d as sumlemental
information.	or gaps in design	and reporting the	Study was regarde	
		Ĉŝ	Š	
Report:	KCA 7.2.2.3/02	<mark>,,</mark>	;	; 1998,
Title	M-226/81-02-1	um Degrad Oon in Tw	o war/Sediment SQt	
Report No.:	C012742	and begineen and the two		
Document No.:	<mark>M-226781-02-1</mark>			
Guideline(s):	BBA: part IV section	n 5-K december 1990	EU (ZEC): Orrective	95/36/2C annex 1
Guideline deviation(s):	section 7,2,1	1 × 0		or or si
GLP/GEP:	yes 🕺		× A.Ô [×] «	
	Ĩ			
Executive Summary				
The bio-transformation	n of [1-ethyl ⁴ C]-f	osetyl-Al was studie	d'in two differing	Me water-sediment
Systems Record on a single may	and at 20 %	In the dark for 100	days in maximum.	are sarformed at an
actual initial test conce	infution of about 7 i	$\frac{1}{100}$ $\frac{1}$		
	b O S			Ż
For the sandy loam sy	stem () the mean material	balances of two rep	licates ranged from
94.9 to 102.8% AR with	for the exception for	one sampling interva	al 88.9% AR, day 7)	
For the clay loam so	iem (entropy), the me	an material balance	s of two replicates ra	anged from 90.3 to
104.5% AR again with	the exception for bi	ne sampling interval	(89.2%) AR@day 2).	
A full material balance		inspect for the predo		npies.
For	ems total@radioacti	vity in water decre		AR by day zero to
0.3% AR after 100 day	vs of incubation of or	r systems the	corresponding value	es were 104.4% AR
by day & ro and 0.3%	AR after 100 days.			
Total radioactivity of the second sec	actable from sedim	ent deoreased from	6% AR after 0.25 da	<mark>ays to 0.7% AR (</mark>
) and from	42% All (day 0.2)	5) to 1.0% AR () each by the end	<mark>l of the study after</mark>
100 days.		Î, Î		
Non avtractable radio	activity in Sadimon	t we a 0.0% A D by	day zara ta pagle	at 20 00/ AD after
14 days and to decreas	activity in securities	1 Was 0.0 W AK UY	systems In	at 20.0% AN alter
were 0.0% AR (day z_{e}	to) peaked at 24 09	AR after 30 days to	o decrease to 20.8%	AR after 100 days
Maximum formation	of C-carbon dio	de was 75.9% AR f	or syst	ems after 100 days
and 71.9% AR for	systems after	61 days of incubation	on. Formation of oth	ner organic volatile
components was neglig	gible (0.1% AR).	-Qí		
		,		
Ethanol was found as a	a transformation pro	oduct amounting to 6	5.0% AR in maximur	n by day 2 in water
ot system	ns and to 2.5% AR i	in the sediment by d	ay 1. The same meta	bolite was found in
systems to and	ount to 16.0% AR	in maximum in the	e water (day 2) and	to 4.2% AR in the
not excepting 4 1% Al	R (d 0.3% AP (ation of a minor tran	stormation product
not exceeding 4.1% Al	<mark>× (</mark> and	10.5 / 0 AIC (at any sampling inter	val.
The half-life for the	dissipation of fose	tyl-Al from the w	ater was reported to	43 and 33 days

(Timme/Frehse and KIM approach, systems) and to 4.5 and 3.4 days (Timme/Frehse and

UK. Water and associated sediment were collected for each system from the same area. Prior to collection of samples the temperature and oxygen saturation of system from the same area. Prior to collection of samples the temperature and oxygen saturation of system from the same area. Prior to collection of samples the temperature and oxygen saturation of system from the same area. Prior to collection of samples the temperature and oxygen saturation of system from the same area. Prior to collection of samples the temperature and oxygen saturation of system from the same area. Prior to collection of samples the temperature and oxygen saturation of system from the same area. Prior to collection of samples the temperature and oxygen saturation of system and sediment was sieved to ≤ 0.2 mm and ≤ 2 mm, respectively. The characteristics of sediment and water were summarized in Table 7.2.2.3 and the same area. The characteristics of sediment and water were summarized in Table 7.2.2.3 and the same area. The characteristics of sediment and water were summarized in Table 7.2.2.3 and the same area. The characteristics of sediment and water were summarized in Table 7.2.2.3 and the same area. The characteristics of sediment and water were summarized in Table 7.2.2.3 and the same area. The characteristics of the characteristics

Parameter	System 🖉 🖉
Water/Sediment System Designation	
Geographic Location	
City	
Country	
Properties of Water	
Temperature (°C) ¹	<u>19.2</u> O ^N <u>15.9</u> O ^N C ^N
pH ¹	
Redox Potential (mV) ¹	
Oxygen Saturation (%) ¹	
Total Organic Carbon (TOC) [mg/L]	
Total Phosphorous (TOC) [mg/L]	
Properties of Sediment	
Textural Class (USDA)	Sandy loan O Clay to am
Sand [%] [50 μ m – 2 mm] (%)	\mathcal{A}^{2} \mathcal{A}^{2} \mathcal{A}^{3} \mathcal{A}^{3} \mathcal{A}^{3} \mathcal{A}^{3} \mathcal{A}^{3} \mathcal{A}^{3} \mathcal{A}^{3}
Silt [%] $[2 \ \mu m - 50^{\circ} \mu m]$ (%)	
$\frac{\text{Clay}[\%]}{[< 2 \mu\text{m}](\%)} \ll C^{*}$	
pH (0.01 M CaCl ₂)	
Organic Carbon (%)	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$
Cation Exchange Capacity (mco/100 g)	5 ³ 55.5 0° 4 15.3
Microbial biomass (fig microbial Cag)	
U A A A A A A A A A A A A A A A A A A A	

Table 7.2.2.3-33: Physico-chemical properties of test water/sediment systems

¹ determined at sampling site ammediately poor to sample collection

ő

B. STUDY DESIGN >>

1. Experimental Conditions

The tests were performed in individual cylindrical flasks per sample each filled with sediment to a depth of two to 2.5 cm. Associated waters were added to each test vessel to result in a depth of 6 cm above the sediment zone. Each of the flow-through test vessels was attached to traps for volatile components formed, i.e. 2 M aqueous potassium hydroxide for ¹⁴C-carbon dioxide and a trap with Tenax [®] polymer plus polecular sieve for other volatiles.

Ľ,

K.,

 \bigcirc

Š

Based on a single maximum treatment fate of 20 kg a.s./ha in the field this resulted in an actual initial test concentration of about 7 mg/L in the water phase of samples. Each sample was dosed by applying an aqueous solution of 1^{14} C sost Al drop wise onto the water surface of each test vessel.

Non-sterile Suntreated samples, were prepared in parallel for each water/sediment system for monitoring of metrobial biomass in the sediment phase by day zero and at the end of the incubation period so a set of the sediment phase by day zero and at the end of the incubation

The water/sequences may be were incubated under flow-through conditions in the dark at 20 ± 2 °C for 100 days in maximum.

Ċ

2. Sampling

Duplicate samples of each water/sediment system were removed for analysis after zero, 0.25, 1, 2, 7, 14, 30, 61 and 100 days of incubation.

3. Analytical Procedures

At each sampling interval the pH, redox potential and oxygen saturation was determined for the water phase and the sediment.

Water and sediment were separated by decantation. The sediment was extracted three times successively with 0.1 M aqueous sulphuric acid at ambient temperature for 30 minutes with each extraction step followed by centrifugation. For later time point samples an additional sonication, step of 15 minutes was added after the third extraction.

Radioactivity in water and sediment extracts was determined by lightid scintillation counting (LSC). Water and sediment extracts were analysed by GPLC/¹⁴C-radio-detection. Sediment extracts were concentrated prior to analysis. Owing to the low total radioactivity water and sediment extracts of day 30 were profiled by fraction collection followed by HPLC.

Selected samples of water (0, 2 and 14 days, both systems) and obsediment extract (day one system) were analysed by negative ion electrospray mass spectrometry mass spectrometry mass spectrometry (GC-MS), positive ion electron impact mass spectrometry (GC-MS) and the use of authentic reference substances including ¹⁴C-ethanol.

Extracted sediment was air-dried prior to quantification of appn-extractable radioactivity (NER) via combustion/LSC. NER were further characterised by organic matter fractionation of samples of day 61 of each of the two water/sediment systems.

Radioactivity in traps was determined by CSC. Hentity of ¹⁴C-carbon dioxide was confirmed by coprecipitation as barium carbonate.

4. Determination of degradation kinetics

Dissipation rates from the water phase and degradation rates for the total systems of fosetyl-Al were calculated by use of the approaches of Timme and Prehse software not specified) and the program KIM, version 1.9 (Thomae).

 \bigcirc

. RESULTANDOISCUSSION

A. DATA

A. Dask A Measurements of the redex potential in water and sediment and the oxygen content in the water indicated aerobic conditions for both water/sediment systems during incubation (see Table 7.2.2.3-34 and Table 7.2.2.3-35)

The pH in water of the systems ranged from approx. 7.7 to 8.3 in the course of the incubation The corresponding tage was approx. 8.200 8.5 for system

The results of microbian biomass determination indicated that biological activity of the test systems was given.

Following incubation the results of aerobic or potransformation of [1-14C]fosetyl-Al in water/sediment systems

Table 7.2.2.3- 34:	Measurements system	of oxygen satu	ration, pH and redox	potential in the	°
<mark>Sampling</mark>		<mark>Water</mark>		Sediment	
interval (day)	Oxygen saturation (%)	рН	Redox E _h (mV)	Redox E _h (m))	
<mark>0.25*</mark>	<mark>72</mark>	<mark>7.69</mark>	<mark>327</mark>	<u></u> -295	
<mark>1*</mark>	<mark>78</mark>	<mark>7.90</mark>	173	^م ر <mark>-292</mark>	
<mark>2*</mark>	<mark>75</mark>	<mark>7.83</mark>	161	<u>-250</u>	
<mark>7*</mark>	<mark>78</mark>	<mark>7.84</mark>	2 63	Q -230 0 Å	$\mathcal{V} \sim \mathcal{A}$
<mark>14*</mark>	<mark>70</mark>	<mark>7.91</mark>	<u>م کی 240</u>	- <u>15</u> Q	
<mark>30*</mark>	<mark>76</mark>	<mark>8.47</mark>	A <u>146</u> Q	∧° <mark>187</mark> ∠	Ŭ "O
<mark>61*</mark>	<mark>53</mark>	<mark>7.99</mark>	0 ⁰ 164 ~	. 0 [°] -223 0 [°]	b Ú
100*	<mark>68</mark>	8.31 _{(a}	223 °	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 . S
Maximum**	<mark>79</mark>	8.59	6, <mark>329</mark> 4	-150	4
Minimum**	<mark>48</mark>	7.64 ₄	× 144 0	<mark>~ -299</mark>	
Average	<mark>71</mark>	7.99		A A232	S Q
$E_h = Redox potent$ (E_{obs}) as measured	ial referring to t with reference ele	he hydrogen sta ctroge (Ag/Ag	ndard electrode, cons	string of redox potential ked value of \$97 my for	

E_h = Redox potential referring to the hydrogen standard electrode, consisting of redox potential (E_{obs}) as measured with reference electrode (Ag/AgCl) and by adding a fixed value of 007 mV for the potential of the reference electrode (P_{ref}) used, i.e. $E_b = E_{obs} + E_{ref} E_{obs}$

Table 7.2.2.3-35: Measurements of oxygen saturation, per and redox potential in the <mark>system</mark>

			à a ^ .//	
Sampling	N A	Water		Sediptent
<mark>interval</mark>	<mark>Øxygen</mark> 🖓 🏾	[©] γ ⁰ γ ⁰	🖉 Redox Eh 🚿	الله Redox Eh
<mark>(day)</mark>	saturation	ã O	S (mV)	O ^v ∧ <mark>{mV)</mark>
	<u> </u>			
<mark>0.25*</mark>) ² , <mark>72</mark> , ²	8.15 ×	ັ້ <mark>305</mark> ັ້ 🖉	
1* 0	2 ⁷⁵	8.38°	<u>↓</u> <mark>↓50</mark>	^{~~} -244
<mark>2*</mark> O*	74 ×	8.39 💊	<u>م محمد محمد محمد محمد محمد محمد محمد مح</u>	,© <mark>-228</mark>
<mark>7*</mark>	- <mark>78</mark> %	<mark>8.25</mark> 🖒	⁰ 239 ₀ , 0	× -220
	2 <mark>63</mark>	8.24	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<mark>-116</mark>
S0*	° <mark>75</mark> °	∕, [°] <mark>8.4.7</mark> , ° °	× 1 <mark>128</mark> ×	<mark>-123</mark>
<mark>61*</mark>	_⊘″ <mark>58</mark> √°_∢	ջ <mark>ՁԶ</mark> Ճ	ງ໌ <mark>_%159</mark> Ä	<mark>-180</mark>
<mark>100*</mark>	2 2 <mark>3</mark> 2	<mark>%.25</mark>	25 b	<mark>-209</mark>
Maximum**	َ ⁽² 79 کَکْ	8.48 ×	5 <mark>305</mark>	<mark>-260</mark>
Minimum**	ک <mark>56</mark>	°∕√ <mark>8.08</mark> °	الم محمد محمد محمد محمد محمد محمد محمد مح	<mark>-111</mark>
Average [°]	70 ~	× <mark>828</mark>) <mark>216</mark>	<mark>-192</mark>

E_n = Reder potential referring to the hodrogen standard electrode, consisting of redox potential (Eobs) as measured with reference electrode (AgAgCl) and by adding a fixed value of +197 mV for (E_{obs}) as measured with reference electrode (E_{ref}) (Bed, i.e. $E_h = E_{obs} + E_{ref}$. E_{obs}

Table 7.2.2.3- 36:	Degradation	ation of [¹⁴ C]-fosetyl-Al in water/sediment system under aerobic										
	conditions at	<mark>20 °C</mark>									a	
		Mean				Incubat	tion tim	e (days)	2		Å,
Compound	Source	<mark>SD</mark>	<mark>0</mark>	<mark>0.25</mark>	1	<mark>2</mark>	<mark>7</mark>	14	<mark>30</mark>	61 0	<mark>100</mark>	05
	Wedee	Mean	102.8	<mark>92.0</mark>	<mark>78.5</mark>	<mark>65.2</mark>	<mark>27.6</mark>	80	<mark>0.9</mark>	n.a.	, <mark>¤Qa.</mark>	
	water	SD ¹	-	-	-	-	- 4	-	-	§ - Å	9 -	Ô
Fosetyl-Al	Calingant	Mean	<mark>n.d.</mark>	<mark>0.5</mark>	<mark>Q_6</mark>	<mark>0.6</mark>	<mark>0,2</mark>	<mark>n.d.</mark>	0 <u>.</u> 2×	n.å.	n.a.	0
	Sealment	SD ¹	-	-	T -	-	, <mark>a</mark> r	-	Ö	, C	, [©]	Ľ
	Entire System		102.8	<mark>92.5</mark>	<mark>79.1</mark>	65.8	D <mark>27.9</mark>	<mark>9.0</mark> ۲	(<mark>1.0</mark>	n.a.	S <mark>ň.a.</mark> (, O″
	Water	<mark>Mean</mark>	<mark>n.d.</mark>	<u>A</u>	<mark>3.8</mark>	6:0	<mark>4,2</mark> °	1.2	0.5	້ <mark>n.a</mark> ເບັ	n.a.®	V
	w ater	SD ¹	- 4	80 <mark>-</mark>	-	→	, O <mark>ř</mark>	2 <mark>21</mark>		j Ö <mark>ş</mark>	2 0 2	
Ethanol	Sediment	<mark>Mean</mark>	n. ¢	2.0	° <mark>2.5</mark>	° <mark>1.9</mark> ≪	∫ ⁷ <mark>0.8</mark> _≪	9 <mark>0.1</mark>	0.4 >>	y <mark>n.a.</mark> ۱	Ø <mark>n.a.</mark>	
		SD ¹	, O		l D	4 0		-0			- 0	
	Entire System	~	<mark>n.d.</mark> %	2.6	<mark>6.3</mark>	7 <u>79</u>	<mark>5.0</mark>	_ <mark>€,4</mark>	0 <mark>.9</mark>	A.	Ra.	
	Water	Mean	n.d.	n.d	n.d.	n.d.	🖉 <mark>n.d.</mark> 🗞	<mark>n.d.</mark>	LOR	j <mark>n.a.</mark> 🔺	n.a.	
		SDQ	(¹			¹	, North Contraction of the second sec			<mark>-</mark> 0	-	
Metabolite A	Sediment	Mean	<mark>©n.d.</mark>	[™] [™] [™]	[≪] <mark>3.7</mark>	3 .3	2 <mark>.5</mark>	2 <mark>21</mark>		n.a.	<mark>n.a.</mark>	
		SD ¹	<mark>-</mark> Ø	- Õ	í <mark>-</mark> Ó) <mark>-</mark> 2	P <mark>-</mark> %	p <mark>-</mark> . c		▼ <mark>-</mark>	-	
	Entire System	? ~	n.d.	401	3(7	373 ×	2,5	2.P	<mark>0.5</mark> %	<mark>n.a.</mark>	<mark>n.a.</mark>	
	Water	Mean	02.8	\$ <mark>92.6</mark>	<mark>82.3</mark>	° <mark>™.2</mark>	° <mark>3,1.8</mark>	<mark>\$0.3</mark>	<mark>1.4</mark>	<mark>0.5</mark>	<mark>0.3</mark>	
	N alco	^O SD ⊘	±1,3	±2,4	<u>±0.4</u>	∖ <mark>±1.</mark> k	∕ <mark>*±0.3</mark> ≪	≫ <mark>±0.6</mark> ×	≨ <mark>±0.1</mark>	±0.0	<mark>±0.0</mark>	
Total Extractable	Settment	Mean	Ŏ	~ <mark>6,6</mark>	. <mark>60</mark>	5 47,	<mark>3.6</mark>	<mark>2.Ø</mark> S	<mark>1.0</mark>	<mark>0.9</mark>	<mark>0.7</mark>	
Residues	Scamen	<u>SD</u>	z	\$ <mark>≇0.1</mark>	≰ <mark>≠0.2</mark>	<mark>≗0.5</mark>	<mark>⊕0.0</mark>	<mark>€0.0</mark>	<mark>±0.0</mark>	<mark>±0.1</mark>	<mark>±0.0</mark>	
	Pintire System	Mean S	102.8	<mark>99.2</mark>)	<mark>89.0</mark>	77.0	<mark>35.4</mark> @	, <mark>12.5</mark>	<mark>2.4</mark>	<mark>1.4</mark>	<mark>1.0</mark>	
		, <mark>SD</mark>	<mark>₽\⁄.3</mark>	<mark>#2.5</mark>	±692	±1,6	±Q.3	<mark>±0.6</mark>	<u>±0.1</u>	<u>±0.1</u>	<mark>±0.0</mark>	
¹⁴ C-Carbon dio®rde	e and other O	Mean §	n.a.	6 <mark>0.2</mark>	© <mark>2.3</mark>	6 <mark>8.4</mark>	<mark>30.6</mark>	<mark>53.5</mark>	<mark>68.4</mark>	<mark>71.4</mark>	<mark>75.9</mark>	
volatiles	*0* ·©	ହି <mark>SD</mark> ୁ ୁ	Š	±0.0	<mark>±0.0</mark>	<u>±0.3</u>	<mark>⊿±0.7</mark>	<mark>±0.7</mark>	<mark>±0.4</mark>	<mark>±2.4</mark>	<mark>±0.1</mark>	
Non-Extractable R	esidue	Mean	0.0	2 ,4		1 <u>4.</u> 6	<mark>22.9</mark>	<mark>28.8</mark>	<mark>27.3</mark>	<mark>23.6</mark>	<mark>19.4</mark>	
Ton Execution IC		SD 6	Ç <mark>≇0.0</mark> %	<mark>, ⊭0.1</mark>	<u>±0.3</u>	° <mark>≱0.1</mark>	<u>±0.2</u>	<mark>±0.3</mark>	<mark>±0.5</mark>	<u>±0.4</u>	<mark>±0.3</mark>	
Total Recovery	J 4 1	^{(SMean})	102 8	101&	98,2	ິ <mark>97.9</mark>	<mark>88.9</mark>	<mark>94.9</mark>	<mark>98.1</mark>	<mark>96.4</mark>	<mark>96.3</mark>	
		Σ. S. D.	s <mark>≠1.3</mark>	<mark>#2₀.6</mark>	±0,2	<mark>±1.8</mark>	<u>±0.2</u>	<u>±0.4</u>	± 0.0	<u>±2.7</u>	<u>±0.4</u>	

Table 7.2.2.3- 37:	Degradation	of [¹⁴ C]-fo	Table 7.2.2.3- 37: Degradation of [¹⁴ C]-fosetyl-Al in water/sediment system under aerobic						under a	<mark>erobic</mark>		
	<mark>conditions at</mark>	20 °C									a	
		<mark>Mean</mark>				Incubat	tion tim	e (days)			
Compound	Source	<mark>SD</mark>	<mark>0</mark>	<mark>0.25</mark>	1	<mark>2</mark>	<mark>7</mark>	14	<mark>30</mark>	61 Ô	<mark>100</mark>	0°
	337	Mean	<mark>104.4</mark>	<mark>91.8</mark>	<mark>70.5</mark>	<mark>54.8</mark>	<mark>18.9</mark>	43	<mark>0.4</mark>	n.a.	_s ng.	
	Water	SD ⁻¹	-				-	<u> </u>	-	S - *	Ç ⁷ -	Ô
Fosetyl-Al	Sadimont	<mark>Mean</mark>	<mark>n.d.</mark>	<mark>n.d.</mark>	n _e d.	<mark>n.d.</mark>	n.d.	n.d.	0.1×	n.å.	n.a	ý
	Seatment	SD ¹	-	-	V	-		-	Ô		×,	Ś
E	Entire System		<mark>104.4</mark>	<mark>91.8</mark>	∉ <mark>70.5</mark>	<mark>54.8</mark>	0 <mark>18.9</mark>	<mark>4.5</mark>	الا <mark>0.5</mark>	n.a.	S <mark>h.a.</mark> ç	°,
	Water	<mark>Mean</mark>	<mark>n.d.</mark>	1.3	<mark>10.7</mark>	16.Q	<mark>15,4</mark> °	3.2	0.5	<mark>n.a.</mark> Û	n.a.®	ŗ
	water	SD ⁻¹		¢ [°]	-	\sim	, <mark>O</mark>	<mark>-</mark> Y		A	"¢"	
<mark>Ethanol</mark>	Sediment	Mean	n.d%	<mark>4.2</mark> Ø	° <mark>n.d.</mark> 🐔	≽ <mark>3.2</mark> ≰	⊌ <mark>2.5</mark>	n.d.	0 <mark>0.9</mark> %	y <mark>n.a.</mark> s	⊘ <mark>ň.a.</mark>	-
	Seament	SD ¹		Ł	Û	<u> </u>	- <mark>-~</mark> 0	<mark>-</mark> 0	{	-A	<mark>-</mark> °	
E	Intire System		n.d.	9 .5	10.7	<u>19%2</u>	<u>47.9</u>		1.3	A.	12a.	
	Water	Mean 🔗	n.d	n.d.	n.d.	n.d.	∀ <mark>n.d.</mark> ¥	y <mark>n.d.</mark>	SLOD	<mark>ا n.a.</mark> م	N <mark>h.a.</mark>	-
		SDQ	K.									-
Metabolite A	Sediment	Mean	Ø ĭ.d.	M.d.	n.d.	<mark>n∕d.</mark>	A.	ur.el.		na.	n.a.	-
		<mark>SD '</mark> Q	- 0) <mark>-</mark> 4	۲ <mark>-</mark> ک	P -		¥ <mark>-</mark>	-	
E	Intire System	ž °~	n.d.	n.02.	n.đ	n.	n.d.	n.d.O	0.3	n.a.	n.a.	
	Water		0 <u>0</u> 04.4	~ <mark>93.1</mark>	<mark>&1.2</mark>	70.8	34:4	\$ <mark>927</mark>	0.8	0.5	0.3	
		SD &	±5.10	<u>+2.2</u>	<u>+2.1</u>	∖s <mark>±1.1</mark> ≪	≽ <mark>±0.2</mark> ⊀	<u>≇0.2</u>	<u>∞±0.0</u>	± 0.0	± 0.0	
Total Extractable	Sediment S	,≫ <mark>Meann</mark> ‰rth	⊖ [°]		3.⊕ 	<u>392</u>	2.5	$\frac{2.50}{2}$	1.2	$\frac{1.3}{1.3}$	1.0	
Kesidues -				5 <mark>¥1.2</mark>	× 0./	± 0.3	$\frac{200}{200}$	#0.1	± 0.2	± 0.1	± 0.1	
, j	ntire System	SD SD	104.4	9/.@Ç	84.6	/4.0 1 0	30.8 10	10.2	$\frac{2.1}{10.1}$	1.8	1.3	
							± 4 €3	±0.5	± 0.1	$\frac{\pm 0.1}{71.0}$	± 0.1	
volatiles	and other		Mana. S			0 ^{9+.0} ⊥0.5 %		$\frac{37.4}{\pm 1.5}$	09.3 ⊥1.4	$\frac{71.9}{\pm 0.2}$	$\frac{70.3}{\pm 0.7}$	
			_ <u>−0.0</u> ″(r <u>=0.5</u>	$\frac{\pm 0.3}{10}$	× <u>±0.3</u>	$\frac{\pm 1.3}{22.7}$	$\frac{\pm 1.4}{24.0}$	$\frac{\pm 0.3}{22.5}$	$\frac{\pm 0.7}{20.9}$		
Non-Extractable Res	idues 🔊						10.9	<u>22.7</u>	<u>24.0</u> ±0.0	22.3	$\frac{20.8}{\pm 1.2}$	
	Ó Ý				10.3		± 0.3	± 0.0	± 0.9	± 0.7	± 1.2	
		· · M/ pon // /				XU /	u /		<u></u>			

All values expressed as percentages of total applied ratioactivity SD = standard deviation; n.d. hot detected; .a.: not analyzed ¹ One replicate sample analysed and taken as mean thus resulting in no SD.

Ą, Ö

B. MATERIAL BALANCE

systems the total recovery of radioactivity in the individual test vessels ranged For the from 95.3 to 104.4% AR with an exception for samples of day 7 (replicate 1: 88.7% AR, replicate 2: 89.1% AR). Since the date for the total radioactivity in the water phase and the sediment were consistent, this lack in material balance is regarded to have no significant impact on the overall No. outcome of the study.

systems the total recovery of radioactivity in the individual test vessels ranged from For the 90.6 to 109 AR with exceptions for samples of day 7 (i.e. 86.7% AR for one replicate) and of dax 14 (89.9% AR for one replicate). Again, the data for the total radioactivity in the water phase and the sediment were consistent thus the lack in material balance not to have a significant impact on the overall outcome of the study.

C. DISTRIBUTION OF RESIDUES IN WAT	ER AND SEDIME	NT	
In systems, total ¹⁴ C-residues in y	water decreased fro	m 102.8% AR	by day zero to
0.3% AR after 100 days of incubation. For	systems, the corresp	onding values v	vere 104.4% 🖉 🏷
by day zero to 0.3% AR after 100 days.			
Radioactive residues extractable from sediment de	ecreased from 6.6%	AR after 0.25 d	ays to 9,7% AR
after 100 days of incubation for systems	and from 4.	2% AR (day 0.1	25) to 1.0% AR
after 100 days for systems.		A	
Extractable radioactive residues in total system de	ecrease@from 102.8	AR by day	ero to 1.0% AR
after 100 days of incubation in system	and from 104	4% AR (day Ze	ro) to 1.3% AR
after 100 days in systems.		6° 49° 4	
Non-extractable radioactive residues (NER) were	0.0% AR by day z	ero, peaked al	28.8% AR Atter
14 days to decrease to 19.4% AR after 100 days i	n system	. ¶n	systems, NER
were 0.0% AR (day zero), peaked at 24.0% AR aft	er@0 days to decrea	se 🕼 20.8% AR	after 100 days.
NER were associated with humic acids (approx.	to 10% AR) and h	umins (approx	10 to ar 6% AR
while being little being associated with fill ic acid	$\frac{1}{20}$ (approx 1 $\frac{1}{20}$ 3% A	<mark>K).</mark> "Oʻ	
E. VOLATILES			
Barium carbonate co-precipitation confirmed that	the predominant p	ortion of radioa	activity (≥ 98%)
collected in the traps was carbon dioxed. Other	volatile radioactivi	ty was detected	to a negligible
extent. Maximum formation of 14C when diaui forma 7	5 00/ AD for		A strang 100 days
and 71.0% A.P. for attactions attact 6 I days of	5.9% AR IOR	system	s after 100 days
alid 71.978 AK IOI			
F TRANSFORMATION OF TEST SUBSTA	NCE NO 4		
Fosetyl-Al was transformed by microbial@nduced	ester hydrolysis to	ts metabolites	phosphonic acid
and ethanol. Formation of ethanol was rapid	to be rapidly prine	eraliged in the	following thus
underlining its transient character. Values of ethe	anol were 7.9% AR		and 19.2% AR
() in maximum eaclo after two days of	inculation. Other	metabolites we	ere observed at
insignificant level (max. of 4.1% AR for United	wn metabolite A	after 0.25 days	<mark>in </mark>
systems) in all samples. This indicated again the	transient character o	f ¹⁴ C-containing	g residues in the
transformation of fose of Al ander conditions of w	ater/sectiment testing	<mark>5.</mark>	
		1 1 1 1 1	1.0.11
values of fosety al extractable from sediment w	vere at trace level for	or both test syst	tems and for all
sampling intervals (i.e. maximum of 90.0% Ark by	grays grand 2 for	Sy	stems, 0.1% AK
alter 30 days on systems), 'y 'y 'y	ð		
For the total systems values of foset@ -Al decreas	seef from 102.8% AI	R by day zero to	o 1.0% AR after
30 days m and from 104 4% AR (day	\tilde{z} zero) to 0.5% AR a	fter 30 days in	systems
			<u>, , , , , , , , , , , , , , , , , , , </u>
F. DEGRADATION RINE CICS			
The evaluation of degradation kinetics in the wat	er phase and the to	tal water/sedime	ent systems was
performed by use of the approach by Timme and	Frehse and the softw	ware KIM (Tho	mae) each using
the simple first order (SFO) kinetic model. The res	ults were summarize	ed in Table 7.2.2	<mark>3- 38.</mark>
*			

Table 7.2.2.3- 38:Degradation kinetics of fosetyl-Al in two water/sediment systems under aerobic
conditions at 20 °C

Compartment	Program		System		System &
	(model)	DT ₅₀ (days)	DT ₉₀ (days)	DT ₅₀ (days)	DT ₉₀ (gays)
Water Dhage	Timme-Frehse (SFO)	<mark>4.3</mark>	<mark>14.2</mark>	3,&	1 <u>2.5</u>
water Phase	KIM (SFO)	<mark>3.3</mark>	<mark>13.8</mark>	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	10.3°
Total System	Timme-Frehse (SFO)	<mark>4.5</mark>	<mark>14.8</mark>	<u>3.9</u>	12 % 🖏
1 Otal System	KIM (SFO)	<mark>3.4</mark>	<mark>≥ 13.9</mark>	2.1	<u>, 10,3</u>

The degradation times for the total systems were almost identical to that for the corresponding vater of phase since fosetyl-Al was rapidly broken down in the sediment as it transforred from the water of Owing to the fast degradation no reliable value for the DT_{50} value was estimated for the sediment.

III. CONCLASSIO

Fosetyl-Al was rapidly degraded under conditions of water/sediment testing. Degradation of Posetyl-Al was found to proceed by mineralization of the ethyl carbon moiety to result predominantly in carbon dioxide formation. Ethanol was observed as a major intermediate, but pansient product of biotransformation.

The study was designed, conducted and reported according to an important predecessor guideline thus following in its essential parts and fulfilling the actual guideline requirements of DECD 308. A new study would therefore not contribute to a better understanding of the behaviour of fosetyl-Al residues in the aquatic environment.

CA 7.2.2.4 Irradiated water/sediment study

This point is regarded as a new optional data requirement in the EU. The degradation of fosetylaluminum (fosetyl-Al) is well understood under standard conditions of water/sediment testing. In view of the overall united potential of the active substance and its residues for photolytic degradation (see KCA 7.2.1.2/01 and KCA 7.2.1.2/02) the conduct of an irradiated water/sediment study is not regarded to result in a significantly better understanding of the behaviour of fosetyl-Al and its residues in the advatic environment.

An irradiated water sediment study was therefore not performed or regarded as necessary.

CA 7.2.3 Degradation in the saturated cone

This data requirement had been addressed under Point 7.2.1.4 of the Dossier submitted and evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC as published in the corresponding DAR of RMS France and its Final Adderdum (September 2005).

The evaluation revealed that the results of risk assessment in groundwater demonstrated no significant risk for a contamination of sub-soils or the saturated zone by fosetyl-aluminium and its metabolites, when applied according to good agricultural practice.

Therefore the separate investigations on the degradation in the saturated zone are not regarded as necessary.

CA 7.3	Fate and behaviour in air
CA 7.3.1	Route and rate of degradation in air
Report: Title: Report No.: Document No.: Guideline(s): Guideline deviation(s GLP/GEP: This data requirement the Annex I inclusi of RMS France and The estimation had Atkinson (KCA 7.3) The evaluation revo the atmosphere, fos long-range transpot hydroxyl radicals. The value for the va under Point 2.3.1 c Directive 91/414/R the substance being	KCA 7.3.1/01 Fosetyl-aluminium: Estimation of the rate of photochemical transformation in the atmosphere under tropospheric conditions. R0026666 M-163113-01-1 OECD: No.61, (1992) none yes ent had been addressed under Point 7:2.2 of the Dossier submitted and evaluated for on of fosetyl under Directive 91/41/4/EFC as published in the corresponding DAR its Final Addendum (September 2005). been performed according to the OECD Monograph 61 reflecting the approach by 1/01). ealed a half-life of 0.96 days (23 daylight hours). Due to the tapid degradation in setyl-aluminium (tostetyl-Al) would not remain stable and thus not be available for rt resulting from its susceptibility for reactions with photo-chemically produced apoar pressure of tosetyl Al had been determined to < 10 ⁻⁷ . Peat 25 °C as submitted of the Dossier submitted and evaluated for the Amex I inclusion of fosetyl under EC. Also in yiew of its ready solubility in water the value underlined the nature of a salt dissolving spontaneously into ions in contact with water.
By formation of nor	novolatife solids aluminium ions cappiot exist in a free form in air.
In view of its fast of not pose a risk for a	legradation in soff and water being a teady biodegradable compound ethanol does

<u>Study summaries of existing studies and publications on route of degradation in air:</u>

Following a request by the RMS, the photo-chemical life time of fosetyl-Al was re-calculated according to the method of Atkinson by use of the software AOPwin (study KCA 7.3.1/02). The data according to study KCA 7.3.1/01 were therefore regarded as outdated with no use in risk assessment for air. Consequently, there was no summary in detail in this document.

Report: KCA 73.102 2016; M-53106-01-1 Report No: Ensa-16-0145 Document No: M-553106-01-1 Guideline(s): Regulation 1107/2009 of the knopean Parliament and 61 the formed as of October, 21, 2009 concerning the plant projection/forduction in the markets Commission Regulation.285.2013 of Mac0 01, 2013, setting only he data Trequirements for active silostands, in scordance with degulation 1107/2009 of the knopean Parliament and of the Couplet as good concerning the placing of plant professioning/ducts on the market Guideline deviation(s): no BLP/GEP: no Policy opean ACIPWINE (v1.199), based on the approach by Ackingson However, this agreed standard for the estimation of the plato-first formation and Firit in air. As a surrogate, the estimation of the Plato-first formation and Firit in air. As a surrogate, the estimation of the plato-first formation and Firit in air. As a surrogate, the estimation of the plato-first stromation and co-workers, the half-life in air. As a surrogate, the estimation of the first costants, for the atmost stromation and co-workers, the half-life in on a 12 hour day/ing ht period. Purport Purport and PWINPMINPINPINPINPINPINPINPINPINPINPINPINPINPI		
Title Fosetyl-AL (Calculation of the chemical lifetime in the troposphere: Report No: Ensa-16-0345 Document No: M-553106-01-1 Guideline(s): Regulation 1107/2009 of the Enropean Parliament and 50 the Commission Regulation, 287/2013 of Maith OL 2013, setting of the Commission Regulation, 287/2013 of Maith OL 2013, setting of the Commission Regulation, 287/2013 of Maith OL 2013, setting 1107/2009 of the European Parliament and of the Compiler as of October, 21, 2009 concerning the plant projection projection as of October, 21, 2009 concerning, the European Parliament and of the Compiler as of October, 21, 2009 concerning, the European Parliament and of the Compiler as of October, 21, 2009 concerning, the European Parliament and of the compiler with Key Laboraton, 1107/2009 of the European Parliament and of the Compiler as of October, 21, 2009 concerning, the European Parliament and of the Compiler with Key Laboraton, 1107/2009 of the European Parliament and of the Compiler as of October, 21, 2009 concerning, the European Parliament and of the Compiler and State and The Parliament and of the Compiler and State and The Parliament and State and Parliament and State and Parliament and	Report:	KCA 7.3.1/02
Report No.: Ensal-16-0345 Document No.: M.S.: M.	Title:	Fosetyl-Al: Calculation of the chemical lifetime in the troposphere
Document No. Guideline(s): MetS3106-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS3006-01-1 Guideline(s): MetS300	Report No.:	EnSa-16-0345
Guideline(s): Regulation 1107/2009 of the Jegropean Parliament and of the Scouncet so of October, 21, 2009 concerning the plaging of plant projection products on the financets Commission Regulation 283/2013 of MacR 01.2013, setting of the data requirements for active distances, in accordance with Regulation 1107/2009 of the European Parliament and of the Council as of October 21, 2009 concerning the placing of plant professionardoducts in the market none Executive Summary Following the request, attempts were (made, to espinate the half-life ray fosself-A) in air by the computer program AOPWINE(v1.99), based on the approach by Atkinson However, this agreed standard for the estimation of photochemical transformation in air did not accept salts, in particular aluminian, as fiput for clacutition of the photo-transformation in air did not accept salts, in particular aluminian, as fiput for clacutition of the photo-transformation in air did not accept salts, in particular aluminian, as fiput for clacutition of the photo-transformation fair in 0.55 days. The estimation was based on altivatival radial concentration of 5 x 10 ⁴ molecules/cm ² and for a 12 hour day/night period. Based off a structure activity/selationship (SAR) developed by Atkinson and co-workers, the half-life time of monoethyl, phosphonate (Sostyl') in air was assessed by the computer program AOPWIN TM (version 1.92, Syntause, Researd). CgR constants for the atmospheric gas-phase reaction between photochemically produced diversity and class and organic chemical swere estimated by the program. The Softway? lagited said organic chemical swere estimated by the program. The Softway? In affect and you was provided to consequently be depined for the constants stimated by the program were then used to consequently be depined for the constants stimated by the program were then used to consequently be depined for the constants stimated by the program were then used to consequently be depined for the constants as mantenes for the calculation. An estimat	Document No.:	M-553106-01-1
 21, 2009 concerning the playing of plant projection/products on the markets commission Regulation, 283: 2013 of Markin Di 2013, setting of plane data requirements for active glostanges, in accordance with Regulation 1107/2009 of the European Parliament and of the Council as of 00 condemine, the placing of plant projection products on the market. Guideline deviation(s): none Boother Structure Structure and the playing of plant projection of the photo-field structure and any structure and any structure activity of the photo-hemical transformation in article and any structure activity of the photo-hemical transformation and for a 12 hour day, in the computer program AOPWINR/5V 1.99). based on the approach by Atkingson. However, this agreed standard for the estimation of the photo-field structure and any activity of the photohemical transformation in article and indicated structure activity of the photohemical transformation and for a 12 hour day, in a brit of the photohemical transformation and for a 12 hour day/night period. Based any a structure activity delationship (SAR) developed by Atkinson and co-workers, the half-life time of monothy photohemical transformation and for a 12 hour day/night period. Based any a structure activity delationship (SAR) developed by Atkinson and co-workers, the half-life time of monothy phosphorate (fosety) in alf was assessed by the computer program AOPWINT^M (version 19.2, Sydeuse, Research Cagio). Refer constants, for the atmospheric gas-phase reaction between photohemically profile and order and order and organic chemicals were estimated by the program. The following formation of the photohemical transformation. An estimate fog the maximum half-life if the air due to indirect photoreaction-oxidation could consequently be derived from the endicentarial reaction patterners for the calculation. An estimate fog the maximum half-life if the air due to indirect photoreaction-oxi	Guideline(s):	Regulation 1107/2009 of the European Parliament and of the Council as of Oetober,
Commission Kegulation, 28/2015 of Magn 01, 2013, spenn output each placing of plant profestion products on the markets in a constraint of the Coupin as of October21, 2009 condemine, the placing of plant profestion products on the markets in the markets Guideline deviation(s): none Executive Summary Following the request, attempts were made to estimate the half-life of Tosent-A1 in air by the computer program AOPWINEV(v1.99), based on the approach by Atkinson However, this agreed standard for the estimation of photochemical transformation in air did not accept salts, in particular aluministic, as input top-categories of the photo-Histiformation and E-life in air. As a surrogate, the estimation of the photochemical transformation in air of 0.55 days. The estimation was based on a bit of the photochemical transformation and the in a structure assure and the photochemical transformation in a of 0.55 days. The estimation was based on a bit of the photochemical transformation and the in a structure assure as based on a bit of the photochemical transformation and the in a structure corresponding monorthyl, phosthonac, a fosetal) to fosult in a 915 m fair of 0.55 days. The estimation was based on a bit of the photochemical transformation and co-workers, the half-life time of monoethyl phosthorate (Society) in a five as a spessed by the computer program AOPWIN TM (version 1.92, Syndruse, Research Capit). Rate constants for the atmospheric gas-phase reaction between photochemically produced advictory radicals and organic chemicals were estimated by the program. The Softward also destimates for the air due to indirect photoreaction-oxidation could calculate atmospheric comparing and organic deprived by the program were then used to calculate atmospheric comparing of the potential reaction partners for the calculation. An estimated atmospheric comparing and organic deprived phylliphylliphylliphylliphylliphylliphylliphylliphylliphylliphylliphylliphylliphylliphylliphylliphylliphylliphylliphyliphy		21, 2009 concerning the placing of plant protection products on the market
The offward of the set of the se		Commission Regulation 283/2013 of March 01, 2013, setting out the data
Guideline deviation(s): none Guideline deviation(s): none Following the request, attempts were made to estimate the half-life of fosent/-Al in air by the computer program AOPWIN™ (v 1.92), based on the appoach by Atkinson. However, this agreed standard for the estimation of the poto-thisformation in air did not accept salts, in particular aluminition, as input for calculation of the photo-thisformation balf-life in air. As a surrogate, the estimation of the photo-themical transformation in air of 0.55 days. The estimation was based on entrydrawin radial encentration of 2.5 x 10° molecules/cm³ and for a 12 hour day/night period. Based area structure-activity plationship (SAR) developed by Atkinson and co-workers, the half-life time of monoethyl phosphorate (fosetyl) to result, in a 0T _{s0} for a 12 hour day/night period. Mercinal and/Methods Based area structure-activity plationship (SAR) developed by Atkinson and co-workers, the half-life time of monoethyl phosphorate (fosetyl) in a if was assessed by the computer program AOPWIN TM (version 1.92, Sydruse Research Ceffs). Rate constants, for the atmospheric gas-phase reaction between photochemically profiled day down radicals and organic chemicals were estimated by the program. The foftwage also distingtion of the potonal statistical and organic action partner calculation. An estimate for the maximus of the potonal statistical by the constants for the calculation. An estimate of the maximus of the potonal statistical by the following formula: The foftwage also distructure and an estimated atmospheric constantiation of the hydroxyl radicals by the following formula. The 1 a 1/Kan were constantion of th		requirements for active substances, in accordance with Regulation 110//2009 of the
Guideline deviation(s) once Guideline deviation(s) no EXPCGEP: no Executive Summary Following the request, attempts were made to estimate the harf-life of fosen1-AI in air by the computer program AOPWINT(v 1.92), based on the approach by Atkinson. However, this agreed standard for the estimation of the photo-transformation in air did not accept salts, in particular aluminitian, as figure for calculation of the photo-transformation in air did not accept salts, in particular aluminitian, as figure for calculation of the photo-transformation in air of 0.55 days. The estimation was based on shydrosyl radical concentration of 5.5 x 10° molecules/cm³ and for a 12 hour day/night period.		European Parliament and of the Council as of October 21, 2009 concerning the
Guideme deviations) mode GLP/GEP: no Executive Summary Following the request, attempts were made to estimate the half-life of foset/1-Al inf air by the computer program AOPWINE (v 1.92), based on the approach by Atkinson. However, this agreed standard for the estimation of the photo-thansformation in air did not accept salts, in particular aluminian, as fight for cluckture of the photo-thansformation half-life in air. As a surrogate, the estimation of the photochemical transformation fails in a mage provided for the corresponding monorthyl, phosphorate (fosety) to fosult in a DT ion fir air of 0.55 days. The estimation was based on a hydroxyl radical concentration of a 5 x 10 ^o molecules/cm ² and for a 12 hour day/night period. Executive advisoryl radical concentration of a 5 x 10 ^o molecules/cm ² and for a 12 hour day/night period. Executive advisoryl radical shows a spessed by the computer program AOPWIN TM (version 1.92, Syndruse, Research Ceff). Rate constants for the atmospheric gas-phase reaction between photochemically produced, windrowyl radicals and organic chemicals were estimated by the program. The Software also estimates the fate constant for the gas-phase reaction between ozone and olefinic/acetylenic companies, the fate constant for the gas-phase reaction between ozone and olefinic/acetylenic concentrations of the potential reaction partners for the calculation. An estimate for the maximum half-life for the air due to indirect photoreaction-oxidation could consequently be devised from the oncentration of the hydroxyl radicals by the following formula: Tr ₂ = ln 2 / Kon x concentration of OH radicals) Avalue of 1.5 x 10 ^o OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12 Hours-day-time concentration (12 hours period as an average daylight time for a whole year).	Cuidaling deviation(a):	placing of plant projection products on the market
 Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethy program AOPWINE (1997) in agricular and provide the assessed by the computer program AOPWINE (1997). Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethyl phosphorate (1998). Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethyl phosphorate (1998). Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethyl phosphorate (1998). Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethyl phosphorate (1998). Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethyl phosphorate (1998). Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethyl phosphorate (1998). Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethyl phosphorate (1998). Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethyl phosphorate (1998). Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethyl phosphorate (1998). Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethyl phosphorate (1998). Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethyl phosphorate (1998). Based and structure activity pelationship (SAR) developed by Akkinson and co-workers, the half-life time of monethyl phosphorate (1998). Based and structure activity activity activity activity an	CL D/CED.	
Executive Summary Following the request, attempts were made to estimate the half-life of fosent-Al in air by the computer program AOPWINNG (* 1.92), based on the approach by Atkinson. However, this agreed standard for the estimation of photochemical transformation in air did not accept salts, in particular aluminian, as input for calculation of the photo-transformation in air did not accept salts, in particular aluminian, as input for calculation of the photo-transformation in air did not accept salts, in particular aluminian, as input for calculation of the photo-transformation in air did not accept corresponding monorthyl, phosphorate, Closectif) to fresult, in a DT_{16} in air of 0.55 days. The estimation was based on anydroxyl radical concentration of $5.5 \times 10^{\circ}$ molecules/cm ³ and for a 12 hour day/night period. LAtaterial and Methods Based and structure activity delationship (SAR) developed by Atkinson and co-workers, the half-life time of monoethyl phosphorate (Dosetyl) in air/was assessed by the computer program AOPWIN TM (version 1.92, Syncuse, Research Ceipf). Pate constants for the atmospheric gas-phase reaction between photochemically produced dydroxyl radicals and organic chemicals were estimated by the program. The software also ostimates the fate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds. The rate constant for the gas-phase reaction between ozone and olefinic acetylenic compounds. The rate constant for the gas-phase reaction-between ozone and astimated atmospheric, half-byds (of organic chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximutin half-life if the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{12} = \ln 2 / M_{011} \times concentration of OH radicals)$ Maximutin chemical life-times in air is calculated similarly, using the	GLF/GEF;	
Following the request, attempts were made to estimate the half-life to fosetyl-A1 in air by the computer program AOPWINTS (v 1.92), based on the approach by Atkinson. However, this agreed standard for the estimation of photochemical transformation in air did not accept salts, in particular aluminism, as mult for calculation of the photo-fransformation in air did not accept salts, in particular aluminism, as mult for calculation of the photo-fransformation in air of 0.55 days. The estimation was based on afhydroxyl radical concentration of $2.5 \times 10^{\circ}$ molecules/cm ³ and for a 12 hour day/night period. Example: The estimation of the photochemical transformation for a molecules/cm ³ and for a 12 hour day/night period. Example: The estimation of the photochemical transformation and co-workers, the half-life time of monoethyl phosphonate (fosetyl) in air was spessed by the computer program AOPWIN TM (version 1.92, Syficus, Rescardin Corr). Rate constants for the atmospheric gas-phase reaction between photochemically produced by the region spanse reaction between options, the rafe constant for the gas-phase reaction between core and olefinic/acgf/lefic constants of the program were then used to calculate datmospheric half-life if or the radical source of the program were then used to calculate datmospheric half-life if the air due to indirect photoreaction-oxidation could consequently be derived from the off-life if the her droxyl radicals by the following formula: $T_{1/2} = \ln 2/(K_{0.01} \times concentration of OH radicals)$ Maximum chequical life-time in air is calculated similarly, using the below formula: $\tau = 14/(K_{0.01} \times concentration of OH radicals)$ A value of 1.5 x 10° OH radicals/m ² is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	Executive Summary	
Following the request, attempts were made to explanate the natrifie of possible AI in all by the computer program AOPWINE (v 19), based on the approach by Atkinson. However, this agreed standard for the estimation of photochemical transformation half-life in air. As a surrogate, the estimation of the photochemical transformation half-life in air. As a surrogate, the estimation of the photochemical transformation half-life in air. As a surrogate, the estimation of the photochemical transformation half-life in air. As a surrogate, the estimation of the photochemical transformation half-life in air. As a surrogate, the estimation of the photochemical transformation half-life in air of 0.55 days. The estimation was based on a hydroxyl radical concentration of 5.5 x 10° molecules/cm ³ and for a 12 hour day/night period. LAMaterial and Methods Based are structure activity elationship (SAR) developed by Atkinson and co-workers, the half-life time of monochhyl phosphonate (fosetyf) in air was assessed by the computer program AOPWIN TM (version 1.92, Sydicuse Research Cop). Rate constants for the atmospheric gas-phase reaction between photochemically profineed field only organic chemicals were estimated by the program. The fortware also estimates the faite constants for the agr-phase reaction between ozone and olelinic/acetylenic computed, but explicitly organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. AGPWINT ^M required just the chemical structure and an estimated atmospheric half-life if with a air due to indirect photoreaction-oxidation could consequently be derived from the eonemetation at the developmentation and the potential reaction partners for the calculation. An estimated for the eonemetation of the hydroxyl radicals by the following formula: T ₁₂ = ln 2 / Kon x concentrations of DH radicals). As a suproval to form the eonemetation of the hydroxyl radicals by the following formula: T ₁₂ = ln 2 / Kon x concentration of OH radicals). A value of 1.5 x 10° OH	Executive Summary	the set of
computer program AOP WIN 4(V 1.59), based on the approach by AKRIDSON. However, this agreed standard for the estimation of the photochemical transformation in air did not accept salts, in particular aluminium, as input to calculation of the photochemical transformation in air did not accept salts, in particular aluminium, as input to calculation of the photochemical transformation in air of 0.55 days. The estimation was based on anydroxyl radical concentration of 5.5 x 10° molecules/cm ³ and for a 12 hour day/night period LAMaterial and Methods Based of a structure potivity estimation (SAR) developed by Atkinson and co-workers, the half-life time of monoethyl phosphonate (Josevyl) in air was assessed by the computer program AOPWIN TM (version 1.92, Synacuse, Research Corp.). Rate constants for the atmospheric gas-phase reaction between photochemically produced gydroxyl radicals and organic chemicals were estimated by the program. The fortware also estimates the rate constants stimated by the program were then used to calculate atmospheric, half-lives to organic compounds based upon average atmospheric concentrations of hydroxyl radicals and organic compounds based upon average atmospheric concentrations of hydroxyl radicals and organic to program set calculation. An estimate for the maximum half-life iff the air due to indirect photoreaction-oxidation could consequently be derived from the eoncentration of the hydroxyl radicals by the following formula: T ₁₂ = ln 2 / (Kon x concentration of OH radicals) Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1.2$ (Kon x concentration of OH radicals) A value of 1.5 x 10° OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	Following the request,	attempts were made to estimate the nan-file of tosetyl-Al in air by the
However, this agreed standard for the estimation of photochemical transformation in air did not accept salts, in particular aluminium, as input for calculation of the photo-transformation half-life in air. As a surrogate, the estimation of the photochemical transformation rate in air was provided for the corresponding monochyl, phosphonate (Piosety) to fesult, in a DT ₅₀ fir air of 0.55 days. The estimation was based on a hydroxyl radical concentration of 5 x W molecules/cm ³ and for a 12 hour day/night period? Based on a structure activity celationship (SAR) developed by Atkinson and co-workers, the half-life time of monochyl, phosphonate (Sosety) in air was assessed by the computer program AOPWIN TM (version 1.92, Synauce Research Capit). Rate constants for the atmospheric gas-phase reaction between photochemically profileed, bydroxyl radicals and/or gain chemicals were estimated by the program. The foftware also estimates the rate constants for the gas-phase reaction between ozone and olefinic/acctylenic compounds, the rate constant for the gas-phase reaction between photochemical y profileed, bydroxyl radicals and/organic chemicals were estimated by the program. The foftware also estimates the rate constant for the gas-phase reaction between ozone and olefinic/acctylenic compounds, the rate constant for the gas-phase reaction between ozone and olefinic/acctylenic compounds, the rate constant for the gas-phase reaction between ozone and olefinic/acctylenic compounds. The rate constant for the hydroxyl radicals and ozone: $x_{112} = \ln 2 / K_{011} x_{012} + \ln 2 / K_{011} x_{012} + \ln 2 / K_{011} x_{012} + \ln 2 / K_{011} + \pi 4 + \pi$	computer program AOF	(will (v 1.94), based on the approach by Atkinson.
salts, in particular aluminian, as input to calculation of the photo-transformation half-life in air. As a surrogate, the estimation of the photochemical transformation fate in air was provided for the corresponding monocityl, phosphonate (fosety) to result in a DT_{50} fir air of 0.55 days. The estimation was based on afficiency (radical concentration of 5.5 x 10° molecules/cm ³ and for a 12 hour day/night period) LAternal and Methods Based after structure advitive relationship (SAR) developed by Alkinson and co-workers, the half-life time of monocityl, phosphorate (fosety) in air was assessed by the computer program AOPWIN TM (version 1.92, Syncuse Research Corp.). Rate constants for the atmospheric gas-phase reaction between photochemically produced hydroxyl radicals and organic chemicals were estimated by the program. The foftware also estimates the fate constants for the gas-phase reaction between ozone and olefinic/acetylenic compounds. The radi constants stimated by the program were then used to calculate atmospheric, half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. AD/WINT ^M required just the chemical structure and an estimated atmospheric concentration of the potential reaction partners for the calculation. An estimate for the maximum half-life if the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{12} = \ln 2 / 40_{01} \times \text{concentration of OH radicals}$ A value of 1.5 x 10° OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	However, this agreed st	andard for the estimation of photochemical transformation in air did not accept
As a surrogate, the estimation of the photochemical transformation fate in air was provided for the corresponding monethyl, phosphonate, cfosetyl ²) to fesult, in a DT_{50} m ² air of 0.55 days. The estimation was based on alrydroxyl radical concentration of $2.5 \times 10^{\circ}$ molecules/cm ³ and for a 12 hour day/night period. L'Material and Methods Based and a structure-adivity relationship (SAR) developed by Alkinson and co-workers, the half-life time of monoethyl phosphonate (Josetyl ²) in air was assessed by the computer program AOPWIN TM (version 1.92, Syncuse Research Copp.). Rate constants for the atmospheric gas-phase reaction between photochemically profileed by dialog and organic chemicals were estimated by the program. The Softward also estimates the fate constants for the aga-phase reaction between ozone and olefinic/acetylenic companies, the rate constants estimated by the program were then used to calculate atmospheric half-lifes to organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. AlPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the optimital reaction partners for the calculation. An estimate for the maximum half-life at the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $\tau_{12} = \ln 2/4c_{HI}$ sconcentration of OH radicals) Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1.4/4c_{HI}$ sconcentration (12 hours period as an average daylight time for a whole year).	salts, in particular alum	intern, as apput for calculation of the photo-transformation half-life in air.
As a surrogate, the estimation of the photochemical transformation fate in all was provided for the corresponding monocity! phosphonate (fosety!) to fesult in a DT_{30} fir air of 0.55 days. The estimation was based on a hydroxyl radical concentration of $5 \times 10^{\circ}$ molecules/cm ³ and for a 12 hour day/night period. LAMaterial and Methods Based of a structure-activity estationship (SAR) developed by Atkinson and co-workers, the half-life time of monochemically produced hydroxyl radicals of the computer program AOPWIN TM (version 1.92, Syncuse, Research Cert). Rate constants for the atmospheric gas-phase reaction between photochemically produced hydroxyl radicals and/or organic chemicals were estimated by the program. The software also estimates the fate constant for the gas-phase reaction between photochemically produced hydroxyl radicals and organic chemicals were then used to calculate atmospheric, half-lifes for organic compounds based upon average atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half-life in the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / R_{011} \times concentration of OH radicals)$ Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1.4 (k_{011} \times concentration of OH radicals)$ A value of 1.5 x 10° OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).		
corresponding monorthyl, phosphonate, (fosetyl) to fesult, in a ΘT_{50} in air of 0.55 days. The estimation was based on anydroxyl radical concentration of 3.5 x 10° molecules/cm ³ and for a 12 hour day/night period. LAMaterial and Methods Based any a structure-activity relationship (SAR) developed by Atkinson and co-workers, the half-life time of monoethyl phosphoriate (Tosetyl) in air was assessed by the computer program AOPWIN TM (version 1.92, Syrifouse, Research Coff). Rate constants, for the atmospheric gas-phase reaction between photochemically produced hydroxyl radicals and organic chemicals were estimated by the program. The Software also estimates the fate constant for the gas-phase reaction between ozone and olefinic/acetylenic comparinds, the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic comparinds, the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic comparinds, the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic comparinds, the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic contentrations of the optimial reaction partners for the calculation. An estimate for the maximum half-life in the air due to indirect photoreaction-oxidation could consequently be derived from the encentration of the hydroxyl radicals by the following formula: $T_{12} = \ln 2 / K_{001} \times concentration of OH radicals)$ Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1/(K_{001} \times concentration of OH radicals)$ A value of 1.5 x 10° OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	As a surrogate, the est	imation of the photochemical transformation tate in air was provided for the
estimation was based on a hydrowyl radical concentration of 2.5 x 10° molecules/cm³ and for a 12 hour day/night period L ₄ Material and Methods Based any a structure-activity relationship (SAR) developed by Atkinson and co-workers, the half-life time of monoethyl phosphoriate ("Bosetyle") in air was assessed by the computer program AOPWIN TM (version 1.92, Sydicuse, Research Cerp.). Rate constants for the atmospheric gas-phase reaction between photochemically produced hydroxyl radicals and organic chemicals were estimated by the program. The Software also estimates the fate constants for the gas-phase reaction between option between option of the software also estimates the fate constants estimated by the program were then used to calculate atmospheric half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and organic. ACPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half-life if the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: T _{1/2} = ln 2 / (Kent x concentration of OH radicals) A value of 1.5 x 10° OH radicals/cm³ is generally regarded a typical concentration for daylight hours as a 12 Hours-day-time concentration (12 hours period as an average daylight time for a whole year).	corresponding monget	hyl, phosphonate \mathcal{O} foset \mathcal{P}) to result, in a $\mathcal{O}T_{50}$ if air of 0.55 days. The
day/night period LAMaterial and Methods Based and structure-activity/relationship (SAR) developed by Akinson and co-workers, the half-life time of monoethyl phosphorate (fosetyl) in air was assessed by the computer program AOPWIN TM (version 1.92, Sydacuse, Research Corp.). Rate constants for the atmospheric gas-phase reaction between photochemically produced hydroxyl radicals and organic chemicals were estimated by the program. The software also estimates the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds. The rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds. The rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds, the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds, the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds, the rate constants for the calculate atmospheric concentrations of hydroxyl radicals and ozone. AOPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half-life in the air due to indirect photoreaction-oxidation could consequently, by devived from the concentration of the hydroxyl radicals by the following formula: T _{1/2} = ln 2 / (Kont x concentration of OH radicals) Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 14$ (Kont x concentration of OH radicals) A value of 1.5 x 10° OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	estimation was based or	n hydroxyl radical concentration of 5 x 10° mol@ules/cm ³ and for a 12 hour
LAMaterial and Methods Based and a structure activity relationship (SAR) developed by Atkinson and co-workers, the half-life time of monoethyl phosphorate (Jösetyl) in aif was assessed by the computer program AOPWIN TM (version 1.92, Syncuse Research Cerp.). Rôte constants for the atmospheric gas-phase reaction between photochemically produced hydroxyl radicals and organic chemicals were estimated by the program. The foftware also estimates the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds. The rate constants estimated by the program were then used to calculate atmospheric half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. A GPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half life in the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{12} = \ln 2 / (K_{0H} x concentration of OH radicals)$ Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1.4 (k_{0H} x concentration of OH radicals)$ A value of 1.5 x 10° OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	day/night period	
LAMaterial and Methods Based an a structure-activity relationship (SAR) developed by Atkinson and co-workers, the half-life time of monoethyl phosphorate (fosetyt) in all was assessed by the computer program AOPWIN TM (version 1.92, Syncuse, Research Corp.). Rate constants for the atmospheric gas-phase reaction between photochemically produced todrow radicals and organic chemicals were estimated by the program. The foftware also estimates the fate constants estimated by the program were then used to calculate atmospheric, half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and organic compounds based upon average atmospheric concentrations of hydroxyl radicals and organic. ACPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half-life in the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / (k_{OH} \times concentration of OH radicals)$ Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1.4 (k_{OH} \times concentration of OH radicals)$ A value of 1.5 x 10° OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).		
Based an a structure activity relationship (SAR) developed by Atkinson and co-workers, the half-life time of monoethyl phosphonate (Tosetvic) in air was assessed by the computer program AOPWIN TM (version 1.92, Syncuse Research Corp.). Rate constants for the atmospheric gas-phase reaction between photochemically produced bydroxyl radicals and organic chemicals were estimated by the program. The software also estimates the fate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds. The rate constants estimated by the program were then used to calculate atmospheric, half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. AOPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum halt/life if the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / (K_{0H} \times concentration of OH radicals)$ Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1$, ($k_{0H} \times concentration of OH radicals$) A value of 1.5 x 10° OH radicals/ ^{CM} is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	e ov	K LaMaterital and Methods K
Based the a structure-polivity delationship (SAR) developed by Arkinson and co-workers, the half-life time of monoethyl phosphorate (Sectyl) in air was assessed by the computer program AOPWIN TM (version 1.92, Syncuse, Research Corp.). Rate constants for the atmospheric gas-phase reaction between photochemically produced hydroxyl radicals and organic chemicals were estimated by the program. The Software also estimates the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compared the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compared the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compared the rate constant settimated by the program were then used to calculate atmospheric half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. AOPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half-life jo the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / 3000$ are some main is calculated similarly, using the below formula: $\tau = 1.4$ (k_{0H} x concentration of OH radicals) A value of 1.5 x 10° OH radicals/main is generally regarded a typical concentration for daylight hours as a 12 Hours-day-time concentration (12 hours period as an average daylight time for a whole year).		
The of monochyl phosphorate ("fosetyl) in air was assessed by the computer program AOPWIN TM (version 1.92, Sydicuse Research Copp.). Rate constants for the atmospheric gas-phase reaction between photochemically produced hydroxyl radicals and organic chemicals were estimated by the program. The software also estimates the rate constants estimated by the program were then used to calculate atmospheric, half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozore. AOPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the program is a compound based upon average atmospheric concentrations of hydroxyl radicals and ozore. AOPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the program is a compound based upon average atmospheric consequently be derived from the encentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / R_{OH} \times \text{concentration of OH radicals}$ Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1 / (k_{OH} \times \text{concentration of OH radicals})$ A value of 1.5 x 10 ⁶ OH radicals/ ^{CM - 3} is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	Based an a structure-a	vivity relationship (SAR) related by Okinson and co-workers, the half-life
the or inforced program to the program (version 1.92). Syncures Research Corp.). Rate constants for the atmospheric gas-phase reaction between photochemically produced tydroxyl radicals and organic chemicals were estimated by the program. The software also estimates the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds. The rate constant settimated by the program were then used to calculate atmospheric half-lives to organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. AOPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half-life in the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / 4K_{0H} \times concentration of OH radicals)$	time of monoethyl pho	spherate (Kesety V) in air was assessed by the computer program $AOPWIN^{TM}$
testion 1.22, 5 particult for the second of the produced by the formula: between photochemically produced by produced by a radicals and organic chemicals were estimated by the program. The Software also estimates the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds. The rate constants estimated by the program were then used to calculate atmospheric, half-loves for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. AOPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half/life if the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: T _{1/2} = ln 2 /dko _H x concentration of OH radicals) Maximum chemical life-time in air is calculated similarly, using the below formula: τ = 1 / dko _H x concentration of OH radicals) A value of 1.5 x 10° OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	(version 1.92 Swreus	e. Recearch (arr) Rate constants for the atmospheric gas-phase reaction
between photoelenhead by produced sydrovy, radicals are organic chemicals were estimated by the program. The software also estimates the rate constants estimated by the program were then used to calculate atmospheric, half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. AOPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half-life in the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / 4k_{0H} x$ concentration of OH radicals) Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1 / (k_{0H} x concentration of OH radicals)$ A value of 1.5 x 10° OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	between photochamica	by probled findrowy radicals and organic chamicals were estimated by the
 In the software also estimates the rate constant for the gas-phase reaction between ozone and olefinic/acetylenic compounds. The rate constants estimated by the program were then used to calculate atmospheric, half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl raticals and ozone. AOPWIN™ required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half/life in the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: T_{1/2} = ln 2 /40₀₁₁ x concentration of OH radicals) Maximum chemical life-time in air is calculated similarly, using the below formula: τ = 14 (k_{0H} x concentration of OH radicals) A value of 1.5 x 10⁶ OH radicals/cm³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year). 	program The & ftwo	also time to be a solution of the second sec
of entitic acquirence compounds, one rate constants estimated by the program were then used to calculate atmospheric, half-lives for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozone. A PWIN TM required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half/life in the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / 4k_{0H} x$ concentration of OH radicals) Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1 / 4k_{0H} x$ concentration of OH radicals) A value of 1.5 x 10 ⁶ OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	program. The software	also estimates the face constant for the gas-phase feaction between ozone and
calculate atmospheric, half-types for organic compounds based upon average atmospheric concentrations of hydroxyl radicals and ozore. A OPWIN TM required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half dife is the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / 4k_{0H} x$ concentration of OH radicals) Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1/4 (k_{0H} x$ concentration of OH radicals) A value of 1.5 x 10 ⁶ OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	olerinic/acetylenic con	ipounds, me rate constants estimated by the program were then used to
concentrations of hydroxyl radicals and ozore. A GP WIN TM required just the chemical structure and an estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half-life if the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / 4 R_{0H} x$ concentration of OH radicals) Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1 / 4 R_{0H} x$ concentration of OH radicals) A value of 1.5 x 10 ⁶ OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	calculate atmospheric	nait-uses for organic compounds based upon average atmospheric
estimated atmospheric concentrations of the potential reaction partners for the calculation. An estimate for the maximum half-life if the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / R_{OH} x$ concentration of OH radicals) Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1 / (k_{OH} x)$ concentration of OH radicals) A value of 1.5 x 10° OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	concentrations of hydro	xyl radicals and ozone. A gr WIN TM required just the chemical structure and an
An estimate for the maximum half-life if the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / (R_{0H} x)$ concentration of OH radicals) Maximum chertrical life-time in air is calculated similarly, using the below formula: $\tau = 1 / (R_{0H} x)$ concentration of OH radicals) A value of 1.5 x 10 ⁶ OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	estimated atmospheric of	concentrations of the potential reaction partners for the calculation.
An estimate for the maximum half life by the air due to indirect photoreaction-oxidation could consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / (R_{0H} x \text{ concentration of OH radicals})$ Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1 / (R_{0H} x \text{ concentration of OH radicals})$ A value of 1.5 x 10° OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	**	
consequently be derived from the concentration of the hydroxyl radicals by the following formula: $T_{1/2} = \ln 2 / (R_{0H} \times concentration of OH radicals)$ Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1 / (R_{0H} \times concentration of OH radicals)$ A value of 1.5 x 10 ⁶ OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	An estimate for the n	naximum half-life in the air due to indirect photoreaction-oxidation could
T _{1/2} = ln 2 / R_{OH} x concentration of OH radicals) Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1$ / (R_{OH} x concentration of OH radicals) A value of 1.5 x 10° OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	consequently be derived	from the concentration of the hydroxyl radicals by the following formula:
Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1$, (k _{0H} x concentration of OH radicals) A value of 1.5 x 10 ⁶ OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	$T_{1/2} = \ln 2 / \Re_{0H} x \cdot \Re_{0H} x$	entration of OH radicals)
Maximum chemical life-time in air is calculated similarly, using the below formula: $\tau = 1$, k_{0H} x concentration of OH radicals) A value of 1.5 x 10 ⁶ OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).		
$\tau = 1$ (k _{0H} x concentration of OH radicals) A value of 1.5 x 10 ⁶ OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	Maximum chemical life	e-time is calculated similarly, using the below formula:
A value of 1.5 x 10 ⁶ OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).	$\tau = 1$ (k _{0H} x concentration	ion of OH radicals)
A value of 1.5 x 10 ⁶ OH radicals/cm ³ is generally regarded a typical concentration for daylight hours as a 12-hours-day-time concentration (12 hours period as an average daylight time for a whole year).		
as a 12 Hours-day-time concentration (12 hours period as an average daylight time for a whole year).	A value of $1.5 \times 10^6 \text{ O}$	H radicals/cm ³ is generally regarded a typical concentration for daylight hours
	as a 12-hours-day-time	concentration (12 hours period as an average daylight time for a whole year)

II. Results and Discussion

However, AOPwin as the agreed standard for the estimation of photochemical transformation imair did not accept salts, in particular aluminium, as input for calculation of the photo-transformation halflife in air.

A half-life time (T_{1/2}) of 0.55 days was therefore calculated for 'fosety' based on a typical atmospheric hydroxyl radical concentration of 1.5×10^6 OH radicals/cm³. The corresponding chemical lifetime (τ) of 'fosetyl' in the troposphere was 0.79 days.

Table 7.3.1-1: Half-life and chemical lifetime of fosetyl in air (AOPVIN, v. 1.92)

		~		\sim	\sim	
Daylight hours	<mark>(hours/day)</mark>	A C	<u>.</u>		, N	õ.
OH concentration	(radicals/cm ³)	6 I	<mark>1.5[°]x 10</mark> €	Ŵ.	Å ko	
OH rate constant	(cm ³ x molecule ⁻¹ x s ⁻¹)	2	19,4543°x,10 ⁻¹²	» ×		~~~~
Half-life $(T_{1/2})$ due to	(hours)		ି <mark>6,598</mark>		°~	st, "
reaction with OH	<mark>(days)</mark>		6.55	O.	L A	1
Chemical lifetime due to	(hours)	o v	- Q ⁺		0' 🦉	," ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
reaction with OH	(days)		🏷 <mark>0.79</mark> 🔪 🔬	0° 🔬		£G ⁴
		<i>a</i> . <i>A</i>		1 🔿	st n	A P

'Fosetyl' can be considered susceptible for reactions with photochemically generated hydroxyl radicals to contribute significantly to the overall degradation of the substance in the atmosphere. ð, 6

Further mechanisms of degradation Such as e.g. Feaction with other radios species, gas-phase photolysis, or hydrolysis, at not considered in the employed model calculation, but may also contribute to the overall atmospheric elimination of 'fosetyl' from the atmosphere

A half-life time (Top) of \$55 days was ealculated for foset i thus being considered susceptible for reactions with photochemically generated hydroxyl radicals. These potentially contribute significantly to the overall Degradation of the substance in the atmosphere. In result, the compound cannot be transported in gaseons phase over, long distances and cannot accumulate in the atmosphere.

Transport via air 🛇

Being a new potential requirement this had not been addressed in the Dossier submitted and evaluated for the Annex I inclusion of fosetyl under Directive 91/414 EEC. \sim Õ

Å

° In view of values for vapour pressure measure the ing below the triggers of 10⁻⁴ Pa for soil and 10⁻⁵ Pa for plant no study on transport of the active substance fosetyl-aluminium via air is regarded as necessar.

(M The combination of low half-life in the atmosphere (0.96 days) with a very low vapour pressure indicating non-volatility. Value for the Henry constant (< 3.2×10^{-1} Consequents, fosetyl-aluennium is clearly not subject to transport via air. $(< 10^{-7} \text{ Pa})$ results in a very low value for the Henry constant (< 3.2 x $10^{-10} \text{ Pa x m}^3 \text{ x mole}^{-1}$ at 20°C),

CA 7.3.3 Local and global effects

Being a new potential requirement this had not been addressed in the Dossier submitted and evaluated for the Annex I inclusion of fosetyl under Directive 91/414/EEC.

Fosetyl-aluminium (fosetyl-Al) is applied to a limited number of crops. Following application residues are rapidly degraded. In combination with no potential for volatility these aspects indicate that residues are not present under outdoor conditions to form a risk for the environment short form of long-term to set effects at local or global level.

The potential for local effects from use of fosetyl Al has been considered in risk assessments performed following its use under field conditions in particular by considering factors like spray drift. The combination of exposure assessments with potential effects measured in soil and surface water do thus cover the environmental compartments of interest. In contrast and since there is no aerial application envisaged, air is not a compartment regarded to be major compartment of potential for fosetyl-Al occurrence following its intended use in the field.

The setting of global effects like contributions to global warming potential (GWP), ozone depleting potential (OPD), photochemical ozono creation potential (POCP) would require a high probability for the molecule assessed to evaporate and thus occur in the gas phase. This probability can be expressed by the volatility in terms of the vapour pressure and the Henry constant. The very low potential of fosetyl-Al residues to occur in the atmosphere has been addressed before to Section CA 7.3.2.

Any accumulation in the troposphere would require high volumes of tosetyl-Al applied and a significant volatility combined with persistence in the gas phase. The latter characteristic has been addressed in Section CA 7.3 to result in no long-term persistence of fosetyl-Al residues in the atmosphere.

An acidification potential (AP) would require the generation of acidifying gases like sulfur dioxide or nitrogen oxides in a free form. In comparison to ubiquitous occurring nutrients such as fertilizers the contribution from use as a plant protection agent to the overall cutrophication potential (EP) is expected to be low in particular when comparing seasonal application rates of phosphorous compounds applied as nutrients

There were no indications that the degradation of Posetyl-Al residues in the environment via biological of physico-chemical processes would result in products that have a potential for acidification or eutrophication of the environment. Even when this would be the case and to set a potential effect this would require amounts of fostiyl-At applied in the field being several orders of magnitude higher in comparison to the low seasonal application rates and from use in registered crops.

CA 7.4

Definition of the residue

CAJ.4.1 Definition of the res

Definition of the residuce for risk assessment

The route and rate of degradation of fosetyl-aluminium (fosetyl-Al) had been investigated after application of radiolabeled (osetyl-Al to various soil, groundwater and surface water test systems in the laboratory. Following the observation of metabolites and transformation products above the trigger values set in the relevant tests, these are potential residues to occur in the environment thus to be considered in the corresponding environmental risk assessments.

C.

Q

Document MCA - Section 7: Fate and behaviour in the environment Fosetvl

Residue definition for soil:

Besides the parent compound fosetyl-Al, the metabolite phosphonic acid had been considered in the existing environmental risk assessments due to its estimated occurrence at more than 10% of AR in aerobic soil degradation tests.

Although formally triggered, metabolite ethanol was not included additionally to the compounds addressed in existing environmental risk assessments. This considered that chanol showed clearly transient character in aerobic soil degradation and its nature being formed and clearly to undergo ready biodegradation by microbes.

Residue definition for groundwater:

The risk assessment for groundwater includes by default the components defined assessment in soil, i.e. the active substance fosetyl-Aland the metabolite phosphonic acid.

Residue definition for surface water and sediment

The risk assessment for surface water includes by gefault the aetive substance fosety-Al and the compounds defined for risk assessment in soil and groundwater. δ Apart from soil, ethanol was formed at >10% ARGunder the conditions of water/sedment testing as a transient metabolite. The reasons to exclude this compound from aquatic risk assessment were the same as given under the residue definition for soil. Phosphonic acid is defined as residue in seriment based on its occurrence >0% As in sediment of water/sediment tests.

No specific metabolites were observed in sterile buffer hydrolysis sterile buffer hydrolysis sterile buffer hydrolysis or in tests on aerobic mineralisation beyond the triggers, set for definition as posidue for risk assessment.

Residue definition for air

Fosetyl-Al is defined as the residue for air.

CA 7.4.2 Definition of the residue for monitoring

Following risk Assessments @ soil, @round ater and sugace water according to the GAP defined, the environmental safety of all components under assessment could be demonstrated according to the requirements set.

It is therefore justified to define the parent compound fosetyl-aluminium (fosetyl-Al) and phosphonic acid as the relevant residue for monitoring in soil, groundwater and surface water.

Fosetyl-Al is defined as the sesidue for au, white phosphonic acid is defined as the residue for sediment.

CA 7.5

Monitoring data

No tormal monitoring program was required to address this point for fosetyl-aluminium (fosetyl-Al) or its major residue phosphonic and in soil and water in the EU.

Moreover, there are no published data from formal monitoring programs outside Bayer CropScience available that would indicate a specific geoncern or findings of residues of fosetyl-Al or phosphonic acid in remote environmental areas not being subject to the intended use.

E ST ST ST ST

List of metabolites observed in environmental fate testing

In the original study reports on biotic or abiotic transformation of fosetyl-aluminium the metabelites or are denominated by different synonyms. In order to present a common system of nomenclature for the evaluation in the dossier a list of metabolites observed in environmental fate testing is included.

		· · · · · · · · · · · · · · · · · · ·	
	Report name	Molecular formala	Occurrence
	Structure	molar mass 🔊	
	IUPAC name	Other names	
	CAS name	codes &	
	[CAS registry number]	L. C.	S Q S Y
2.5	Fogetal eluminium (nevent substance)	Q° è°	
a.s.			
		$C_6 H_{08} P_3 O_7 AI_7$	Parent substance used
		354.1 g/mol	as test material in all
			Basic reports
	$ H / \chi^{OC_2H_5} \sqrt{3} \sqrt{3} \sqrt{3}$		
	Aluminium tris-O-ethylphosphonate (IUPAC)	Fosety-aluminium	
	Ethyl hydrogen phosphonat@aluminiumgalt		ê x
	(IUPAC)	Le 7470	
	Phosphonic acid monoephyl ester, aluminium salt	1 57/0792	
	(3:1) (CAS)	$\begin{bmatrix} L3/48703 & & \\ DD 275458 & & \\ & & & \\ \end{bmatrix}$	Ø
	CAS no: 39148-2428	DDA 005206	
	CAS 110. 37140-24-8	RRA 093200	6
		A = E052616	ŧ [*]
		$\begin{array}{c} \text{AE } FU3301 & \begin{array}{c} & & \\ & $	
	S O Y V Y	BUS-AG14223	
		BC 5-A 249808	
M01	Ethand S O S S		
		$C_{27}H_6O$	Soil, aerobic
	H ₃ C [™] OH@.	A6.07 2 mol	Water/sediment
	Ethyl alachol than (1) IIIA()	Ether of	
	Ethanol (CAS)	Ethanoi	
		ð	
	CAS no: $64-17-20^{\circ}$		
		·	
	A = O' S' A' S' U'		
Å			
4			
	Y G A Y		
	Y O O X		
Ű,			

	Report name	Molecular formula	Occurrence
	Structure	molar mass	0
	IUPAC name	Other names /	
	CAS name	codes	
	[CAS registry number]		
M02	Phosphonic acid	l d'	
	0	$H_3 O_3 P$	Soil, aerobic
	<u> </u>	81.99 g/mol	Water/Sediment
	Р_ОН «		
	ÓH 🔍	Ő¥	
	Phosphonic acid (IUPAC)	Phosphonic acid	
	Phosphonic acid (CAS)	Phosphorous acid	
	CAS no: 13598-36-2	R£ 37934	
	1 m .	RP 037934	OY DY AY
		RPA0591409	
		AF 0540099	
		BCS-AT2787	
	Salt forms:	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	Disodium dioxido-oxoph@sphativim (II@AC)	Deodium	Ded as test item or
	Phosphonic acid sodium salt (1:2) (ISAS)	nhosnhonate	reference to represent
	Disodium phosphorete		metabolite
	Disodium phosphit	$\prod_{n=1}^{n} \log_2 O_3 \mathbf{F}^{\mathbf{y}} = \mathbf{V}^{\mathbf{y}}$	phosphorous acid
	CAS and 12700 to 5	1225.96%g/mol	ornder pH conditions
	CAS no: 13/08/85-5 10 5 15		of the environment
	Pentahydrafe:	Pentahydrate:	
	Disodian dioxido-oxophosphanium pentalydrate	H Na $_{2}$ O $_{3}$ P x 5 H ₂ O	
	(IUPAC) " R A A A	216.02 g/mol	
	Phosphonic acid disodium salt	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	pentahydrate(GAS)	LS747565	
	Disodium physphonate pertrahydrate	RPA Code: None	
	CAS no: 13517-25-2 & 0 2	Æ 0618179	
		BCS-AX98334	
	Directassium dio Edo-oxonhosphanium III PAC)	Dipotassium	Used as test item or
	Phosphonic and notassium self (1-28 (CAS)	phosphonate	reference to represent
Å	Dinotassium phosphonate	$H K_2 O_3 P$	metabolite
	Dipotassium phosphonais V	158.17 g/mol	phosphorous acid
	Dipotassion phosphile γ Q'	LS 731384	under pH conditions
	UAS NOT 13492#20-63 ~~ @	RPA Code: None	of the environment
		AE 0690030	
		BCS-AY41587	
Ľ,			