

This document, the data contained in it and copyright therein are owned by Bayer CropScience, No and and a second part of the document or any information contained therein may be disclosed to any third part

<text><text><text><text> The summaries and evaluations contained in this document are based on upublished proprietary submitted for the purpose of the assessment undertaken by the regulatory authory. Other spectration authorities should not grant, amend, or renew a registration on the basis of the summaries and evaluation and on the purpose of the assessment undertaken by the regulatory authory. Other spectration authorities should not grant, amend, or renew a registration on the basis of the summaries and evaluation are fased, either the summaries are evaluation are fased, either the summaries and evaluation are fased are the summaries and evaluation are fased are the summaries and evaluatin are fased are the summaries and evaluation are fased The summaries and evaluations contained in this document are based on uppublished proprietary

July 2014

Version history

Date	Data points containing amendments or additions ¹	Document identifier or version
'Note how	the amendments or additions are represented (italics/chour he amendments or additions are represen	etc) et in the second s

Table of contents

CA 7	FATE AND BEHAVIOUR IN THE ENVIRONMENT
CA 7.1	Fate and behaviour in soil
CA 7.1.1	Route of degradation in soil
CA 7.1.1.1	Aerobic degradation
CA 7.1.1.2	Anaerobic degradation
CA 7.1.1.3	Soil photolysis
CA 7.1.2	Rate of degradation in soil
CA 7.1.2.1	Laboratory studies
CA 7.1.2.1.1	Aerobic degradation of the active substance
CA 7.1.2.1.2	Aerobic degradation of metabolites greak down and reaction products. 46
CA 7.1.2.1.3	Anaerobic degradation of the active substance
CA 7.1.2.1.4	Anaerobic degradation of metabolites, breakdown and reaction products . 69
CA 7.1.2.2	Field Studies
CA 7.1.2.2.1	Soil dissipation studies
CA 7.1.2.2.2	Soil accumulation studies
CA 7.1.3	Adsorption and desorption in soil
CA 7.1.3.1	Adsgraption Adsgraption 80
CA 7.1.3.1.1	Adsorption and desorption of the active substance
CA 7.1.3.1.2 📎	Adsorption and desorption of metabolites, breakdown and reaction
	products
CA 7.1.3.2	Aged sorption 91
CA 7.1.4 [°]	Mobility in soil 2
CA 7.1.4.1	Column leaching studies 2
CA 7.1.4.1.1	Column leaching of the active substance
CA 7.1.4.1.2	Column leaching of metabolites, breakdown and reaction products
CA 7.1.4.2	Lysindeter studies
CA 7.1.4.3	Field leaching studies
CA 7.2	Pate and behaviour in water and sediment
CA 7.2.1	Route and rate of degradation in aquatic systems (chemical and photochemical degradation)
CA 7.2 1.1	Hydrolytic degradation
CA 2, 2.1.2	Direct photochemical degradation
CA 7.2.	Indirect photochemical degradation99
CA 7.2.2	Route and rate of biological degradation in aquatic systems

CA 7.2.2.1	"Ready biodegradability"101
CA 7.2.2.2	Aerobic mineralisation in surface water101
CA 7.2.2.3	Water/sediment studies
CA 7.2.2.4	Irradiated water/sediment study
CA 7.2.3	Degradation in the saturated zone
CA 7.3	Fate and behaviour in air
CA 7.3.1	Route and rate of degradation in ai
CA 7.3.2	Transport via air
CA 7.3.3	Local and global effects
CA 7.4	Definition of the residue
CA 7.4.1	Definition of the residue for risk assessment
CA 7.4.2	Definition of the residue for monitoring
CA 7.5	Monitoring data
ŝ	
G	
Ŷ	
<u>Ö</u>	
~	
k O	
U	

CA 7 FATE AND BEHAVIOUR IN THE ENVIRONMENT

Data on the fate and behaviour of propoxycarbazone-sodium (MKH 6561) in soil, water, sediment and air were submitted within the EU Dossier (Baseline Dossier), which resulted in the Annex I inclusion under Directive 91/414/EEC in 2003. In this Supplemental Dossier for renewal of approval of propoxycarbazone-sodium only those environmental fate studies are described in CA 7.1 to CA 7.5, which were not submitted within the Baseline Dossier. However, for a better understanding of the behaviour of propoxy-carbazone-sodium in the environment, short summaries including the results of all environmental fate studies are given additionally in the summary in CA 7.1.1, CA 7.1.2, CA 7.1.3, CA 7.1.4, CA 7.2, CA 7.2.2, and CA 7.3.

The studies concerning the fate and behaviour of propoxycarbazone-sochum in soil, water, seminent, and air were conducted using two different radiolabel positions, [¹⁴C-pheryl] and [¹⁴C-mazolinone], as well as unlabelled propoxycarbazone-sodium. These radiolabel positions are sufficient to define the routes of degradation of propoxycarbazone-sodium. The structure of propoxycarbazone-sodium and the positions of the two radiolabels are as follows:

The results of the studies are summarised in the following points CA 1.1 to @A 7.5. The proposed degradation pathways in soil, water and sediment are given in Figure 7.1-1 and Figure 7.2-1, respectively.

In addition, studies have been performed with radiolabelled and unlabelled major degradation products. In the original study reports the authors may have used different trames or codes for degradation products of propoxycarbazone-sodium. In this section, a single mine or a single code is used for each degradation product. A full list containing structural formula, various names short forms, codes and occurrences of degradation product as provided as Document No.

CA 7.1 Fate and behaviour in soil of

Propoxycarbazone-sodium is moderately fast to slowly degraded in soil under aerobic and anaerobic conditions to the final degradation product GO₂ and the major metabolites MKH 6561-sulfonamide methyl ester - M05, MKH 6561-saccharin - M07, MKH 6561-4-hydroxy-saccharin - M08, MKH 6561-N-methyl propoxy triazolinone amide - M09, MKH 6561-M-methyl propoxy triazolinone - M10, and MKH 6561-4-methoxy saccharif - M11. Furthermore, non-extractable residues were formed depending on the soil type investigated. In the presence of light, propoxycarbazone-sodium is degraded to a certain extend to minor amounts of metabolites. However, photodegradation on soil is not to be expected the major route for dissipation of the compound from the environment. More details for the route and rates of degradation of propoxycarbazone-sodium and its major degradation products in soil are given in CA 7.1.1 and CA 7.1.2, respectively.

1.1 Route of degradation in soil

The route of aerobic soil degradation of propoxycarbazone-sodium was investigated in four soil degradation studies under laboratory conditions. Propoxycarbazone-sodium was applied as test substance

The mineralisation of phenyl-labelled propoxycarbazone-sodium ranged from 13.9 to 41.9% during the first 123 days of incubation (approximate study duration according to OECD test guideline 307) and reached maximum amounts of 21.7 to 49.0% afterwards (179-361 days). For triazolinone-labelled propoxycarbazone-sodium mineralisation ranged from 1.6 to 10.5% during the first 120 days and eached maximum amounts of 2.6 to 13.0% afterwards (174-365 days).

The corresponding amounts of non-extractable residues for the phenyl-label ranged from 8.2 © 33.3% during the first 123 days and from 8.2 to 28.3% afterwards (179-361 days). For the triazolino ne-label the amounts of non-extractable residues ranged from 11.5 © 64.9% during the first 120 days and from 17.9 to 65.7% afterwards (174-365 days).

Five major metabolites were identified in these studies: M05 (max. 20.9% at day 6), M07 (max. 20.7% at day 14), M08 (max. 21.9% at day 180¹), M09 (max. 13.2% at day 25.3) and M10 (max. 55.2% at day 182). Furthermore, some minor degradation products were observed that did not occur 10% of applied radioactivity (AR) at any sampling point or 5% AR on two consecutive sampling points in any of the studies (e.g. MKH 6561-carboxylic acid - M04, MKH 6561-sulfonamile acid, M06)

Based on these studies, it is proposed that propoxycarbazone sodium is degraded in first steps via cleavage of the ester bond yielding MKH 6560-carboxylic acid (M04) and/or cleavage of the triazolino ne amide bond resulting in MKH 6561-sulfonamide methyl ester (M05) for the part of the molecule containing the phenyl-moiety or MKH 6561-N methyl propoxy triazolinone amide (M09) and MKH 6561-N-methyl propoxy triazolinone (M10) for the part of the molecule containing the triazolinone-moiety. M09 is further degraded to M10 and M05 a well as M04 are further degraded to MKH 6561-sulfonamide acid (M06) followed by the formation of MKH 6561-saccharin (M07) and oxidation to MKH 6561-4-hydroxy saccharin (M08). The proposed pathway, evaluated and accepted the Annex I inclusion, assumed a retransformation of M68 to M07 (not shown in the pathway figure below), which is seen as questionable based on new results and docussed in defail below.

A new anaerobic soil degradation study was performed (refer to A 7.1@.2/01), which was requested by France to support propoxycarbazone-sodium autumn use and which was not submitted and evaluated during the Aprnex I inclusion. In the aerobic incubation phase of this study (14 days), non-extractable residues (NER) in soil inferease from 1.2 / 1.3% ARGio 20.5/ 22.5% AR (triazolinone-label / phenyllabel). The level of NOR remained at about this level during the entire anaerobic incubation period (maximum 25.5% AR). During the aerotaic phase the maximum amounts of ¹⁴CO₂ were 7.6% AR (triazolinone label) and 13.3% AR (phenyl-label). ¹⁴GD₂ formation was very low (0.3% AR) during the anaerobic incubation phase. Formation of other volatile radioactivity was insignificant during the entire study period. Within the aerobic phase of the study (14 days) the amount of propoxycarbazone-sodium decreased rapidly from 95.3 / 96. Ale to 43 2/ 42,8% AR for the triazolinone- and the phenyl-label, respectively. During the following an aerobic incubation period a further decrease was observed to about 15.3 / 15.1% AR (triazolinone label phen - label) until the end of the study. In addition, three metabolites known from former acrobic studies QM10, M07 and M08) and one new metabolite (MKH 6561-4-methoxy sacchafth - MAT) were found with maximum occurrences of 54.1% AR, 35.5% AR, 15.5% AR and 178% AR, respectively. Due to the fact that the conditions in this study were not strictly apperobic, it cannot definitely be concluded that M11 is solely formed in anaerobic environments. With the results of this study and the occurrence of M11 as a new metabolite the possible retransformation of M08 to M07 as assumed in the pathway, evaluated and accepted during the Annex I inclusion, is seen as apestionable. It cannot be excluded that in the former studies M07 and M11 were detected as particular polarity of M07 and 1011.

¹ In the first EU review report the maximum occurrence of metabolite M08 was given with 19.5% at day 36.

Therefore, aerobic transformation of M08 and the occurrence of its possible transformation products M07 and M11 were investigated in a new degradation study (refer to CA 7.1.1.1/09). In this study M11 was detected in individual samples with amounts of 4.5 and 5.5% AR, respectively. The presence of M11 was qualitatively confirmed by specific LC-MS/MS analysis. No further metabolites (including M07) were detected. The degradation pathway of propoxycarbazone-sodium in soil will therefore be revised: the retransformation M08 to M07 will be neglected and the new metabolite M11 will be included and newly addressed as relevant soil degradation product in this Supplemental Dossier. The presence of pathway is shown in Figure 7.1-1.

Propoxycarbazone-sodium degraded in the soil photolysis studies under light influence to a certain extent during 18 days of incubation from 88.8 / 91.7% AR to 70.27 50.6 % AR for the phenyl and the triazolinone-label, respectively. During the incubation period 5 / 9% AR (phenyl- / triazolinone-label) was degraded to CO₂. Two major soil metabolites could be observed, M05 and M10 with maximum of the occurrences of 9.7% AR at day 11 and 8.6% AR at day 18, respectively. Furthermore, a series of minor metabolites was detected for both labels, whereof only M07 could be identified (max, 4.7% AR at day 18). However, it is not to be expected that photodegradation is a major route for dissipation of the compound from the environment.

Tab	ole 7.1-1 Ov	erview of the laborato	ry aerob	ic route	of degrad	ation studie	5				,	ð			le °	
			Appli-		Duration		S	oil characteristi	ŞÊ)		ð	Major metabolites of max AR				J.
I	Reference	Guideline(s)	cation rate (µg/g)	Temp (°C)	of test (days)	Moisture (%WHC)	Soil origin	Soiltype	рН	0 <u>6</u> °)	M05	M07	01008	MOS	[≫] M10	M11
KCA 7 1 1 1/01	et al. 1999	EPA Ref: Subdivision N, 162-1	0.0311)	20	361	104.9 ²⁾		loany sand	D 6.43)	© [©] 28 [°] 1	e ^{tot}	C 1.4 C	293.8 293.8	Lerre	ф - -	-
KCA 7.1.1.1/02	et al. 1999	EPA Ref: Subdivision N, 162-1	0.035 ⁴⁾	20	365	75 ²⁾ P		C Coamy said	6.8 ³⁾	0.86 C	nd.l	j.t.®	L'IC	5 13.2	17.6 ⁴⁾ / 33.1 ⁵⁾	-
A /03	at		0.0931)	20	184	40-45		silt 1	2.3.C.C	2.62	20.9	26. 7	19.5°	-	-	-
KC/ 1.1.1	al., 1999	SETAC-Europe (1995) Offical Journal of the	0.0931)	20	183	\$ 40-45		Joamy sand	6.4	0.1.80	101.9	1850	21.9	-	-	-
7		European Communities	0.0931)	C20	\ O ^{Ĵ[84} 、	40-45	O BBA 2.2	loamy sand	¢ 6.3	2048	4.6	2.0	1.8	-	-	-
A 1/04		EPA Ref: Subdivision N, 162-1	20 39 95%	301.0	182 ^{°C}	4548		Silt Silt	11.25	2.6D ²	-	-	-	0.8	32.0	-
KC. 7.1.1.	et al., 1999	OECD Proposal (1997)	0.0956)	20°°	182	45-480		🖉 loamy sand	6.4	1.80	-	-	-	0.8	43.9	-
,			0.095	20	J182	0 \$ 5-48	BBA 2.2	loanny sand	\$ 6.3	2.48	-	-	-	8.0	55.2	-
M08		,	\$°	al V		,	Out of	Mr. Rr.								
60		OECD 307 (2002)	0.250 ¹ C	\$ 20		051.25	O ^{TL} LUFACE	Koamy sand	5.5	1.77	-	n.d.	applied	-	-	4.57)
CA 1.1.1/	, 2013	Commission Refective 2004/73/EC. Method	0.2501)	200°	× 100	. 40,98	UFA 2.3	sandy loam	6.8	0.94	-	n.d.	applied	-	-	5.4 ⁸⁾
Ľ		\$C.23	0.250	20,0	120	48,975	LUBA 6S	clay	7.1	1.64	-	n.d.	applied	-	-	n.d.
1) [2) a 3) p 4) 4 5) 4 6) [1) [phenyl-UL- ¹⁴ C] label 2) at 1/3 bar 3) pH in H ₂ O 4) After extraction with formic acid, OH 5) After extraction with phosphore acid. 6) [triazolinone-3- ¹⁴ C] label 6) [triazolinone-3- ¹⁴ C] label 6) The t															
	The second secon	The start	* DON	<u> </u>												
		Č,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~													

CA 7.1.1.1 Aerobic degradation

The route of aerobic soil degradation of propoxycarbazone-sodium was investigated in four soil degradation studies and was evaluated during the Annex I inclusion using two radiolabel positions [phenyl-U-¹⁴C] and [triazolinone-3-¹⁴C], and was accepted by the European Commission (SANCO/4067/2001-Final, 30 September 2003).

Annex point	Author(s)	Year	Edition No.
KCA 7.1.1.1/01	et al.	چ 1999 کې	M-012902-01-1
KCA 7.1.1.1/02	et al.	بر» 1999 م	M-012867-01 4
KCA 7.1.1.1/03	et al.	199 9 g°	√ M-@12912-01-1 √
KCA 7.1.1.1/04	et al.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	M-012933-02

For information on studies already evaluated during the first EU review of propoxycarbazon sodium, please refer to corresponding section in the Baseline Dossier provided by behalf of Bayer CropScience and in the Monograph.

Four aerobic degradation rate studies of the metabolites in soil (KCA 61.1.1/05 – 08) evaluated during Annex I inclusion are discussed in detail in CA 7.1.2 (KCA 75, 2.1.2/01-04) in this Supplemental Dossier for the renewal of approval.

One additional study has been performed to further elucidate the transformation of M08 and is submitted within this Supplemental Dossier for the renewal of approval. The aerobic transformation of metabolite M08 and the occurrence of its possible transformation products M07 and M11 were investigated in this new degradation study using one radiolabel [phenyd U-14C]. The study was used to further elucidate the degradation pathway of the parent compound propoxy arbazone-sodium. A summary of the route of degradation of propoxy carbazone-sodium in cA 7.1.1 and Figure 7.1-1.

Co	
Report: 🔊	7; ;2013;M-474@25-01
Title:	Serobiotransformation of MKA 6561 Hereby saccharin in soil [OECD 307]
Report No:	57043AV73 & 5 1 4 5
Document No:	N-474425-07-1 N 0 0
Guidelines:	GLP compliant study based on the Commission Directive 2004/73/EC, Method C.23,
01	Serobie and Amaerobie Transformation in Soil (EEC Publication No. L 152, 2004);
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	O OECD Guideline for Testing of Chemicals No. 307: Aerobic and Anaerobic
2	Transformation in Soil, Mopted April 24, 2002
Deviations	ngene d' d' d'
GLP/GEP:	$\gamma es$ $\gamma es$ $\gamma$ $\gamma$ $\gamma$
Ly L	
<b>Executive Sum</b>	pary a g a g
Ś	
· · · · · · · · · · · · · · · · · · ·	

The present laboratory study investigated the degradation of ¹⁴C-labelled MKH 6561-4-hydroxysaccharin (M08) in three different soil types under aerobic conditions at  $20\pm2$  °C for a period of 120 days. The used wils were a loamy sand (LUFA 2.2, pH 5.5, organic carbon of 1.77%), a sandy loam (LUFA 2.3, pD 6.8, organic carbon of 0.94%) and a clay soil (LUFA 6S, pH 7.1, organic carbon of 1.64%). The test item was applied at a nominal treatment rate of about 250 µg/kg soil (equivalent to the 1.2 fold PEC of the parent compound propoxycarbazone-sodium) to allow for technical feasibility (detection of two transformation products). The soil moisture was maintained between 47 and 51% of the soils' respective maximum water holding capacity for the duration of the study.

The test item MKH 6561-4-hydroxy-saccharin (M08) was extracted with acetonitrile and HCl whereas MKH 6561-saccharin (M07) and MKH 6561-methoxy-saccharin (M11) were extracted with acetonitrile and CaCl2 containing NH4OH. Quantification of the parent compound and establishing a complete mass balance was accomplished for the acidic extract only, whereas quantification of occurring transformation products was accomplished only for the alkaline extracts by HPLC coupled with radiodetection. Overall extraction efficiencies were considered linear for all three chemical structures from nominal treatment rate down to the 5%-level, however extraction recoveries tell below 90% with increasing clay content of the soil in case of the parent compound.

MKH 6561-4-hydroxy-saccharin was subjected to a varying extent of complete degradation in the three soil types under aerobic conditions. Fastest decline occurred in LUFA 2.2 (loany sand) with high mineralisation rates of over 45%. In the other two soil types, decline of MKH 6561-4 pydroxy-saccharin was slower. Decline seemed to be slower with increasing clay content and corresponded to the overall amount of CO2 developed. With sandy beam LUFA 2.3/26% CO2 were detected and only 4% with the clay soil LUFA 6S. Formation of votable organic compounds was ress significant, with an overall formation of less than an average of 0.3%. After extracting the soil considerable amounts of non-extractable residues (NER) remained. The pattern of formation of NFR was similar in the two soil types LUFA 2.2 and 2.3. Immediately after application NFR were low and steadily increased on the end of the incubation period of 120 days. Amounts ranged from 37% in LUFA 2.2 to 54% in LUFA 2.3. In case of the clay LUFA 6S amounts of NFR were higher with 32% immediately after application. The trend of increase however was simplar, accounting for 55% after 120 days.

Screening for the two transformation products of interest by HPLC coupled with radiodetection confirmed the presence of MKH 6561 methoxy-saccharin (MP1) in low amounts (£ 5%). MKH 6561-saccharin (M07) was not detected using HPLC coupled with radiodetection. The presence of MKH 6561-methoxy-saccharin as well as the absence of MKH 6561-saccharin were confirmed by specific LC-MS/MS, too.

× Å.	
	MATERIALS AND METHODS
S O S	
A. MATERIALS	
1. Test materia 🧬 🐇 🖉	¹⁴ C-MKH 6961-4 bydrox9-saceharin (M08)
(ractiolabelled) 🐥 🙏	
Chemical Name 5	[phenyl ² UL- ⁶ C] BCS-AG78922
	referred to as ¹⁴ C MKH 6361-4-hydroxy-saccharin based on
G A S	the structure provided on the Certificate of Analysis
Description: O C	Solid colour was determined upon preparation of the stock
	solution. The resulting stock solution was clear and colourless.
	The test nem was off-white to grey-pinkish.
Satisfiple-ID:	KML 95194
Vrigin-ID: V T	KM2 9246
Specific Activity:	4.43 MBq/mg (equivalent to 119.73 μCi/mg)
Radiochemical Purity	× 98%
Chemical Privity: 🖉 🔬	>~\$\$
Date of Certificate of	May 23, 2012
Analyson and a	
Storage:	In original container, $< -20$ °C, in the dark and the absence of
× 20×	moisture
Expiry Date:	Not applicable; the amount of total radioactivity was
	determined by LSC and absence of degradation products was
	verified by HPLC coupled with UV- and radiodetection.

**Bayer CropScience AG** 

July 2014

Propoxycarbazone-sodium

_

Stability of test compound:	Stability of the concentrated extracts (only 5%-level) was assessed after 28 days storage time by HPLC coupled with radiodetection and no loss was observed.
2. Test material (non-labelled)	MKH 6561-4-hydroxy-saccharin (M08)
Chemical Name:	4-Hydroxy-1,2-benzisothiazol-3(2H)-one 1,1-dioxid
Description:	Solid powder, light beige
Batch #:	AE 1364277-01-01 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Origin Batch #:	BCOO 6427-19 \$ 20 5 40
CAS No.:	80563-77-5
Customer Order No.:	09339-00
Purity:	99.5%
Storage:	At +10 to +30°C under dark and dry conditions $2^{\circ}$
Expiry Date:	November 16, 2013
Stability of test compound:	
3. Reference material	MIXH 656 - sacebarin (\$107)
(non-labelled)	
Chemical Name:	1,2-Benzis@hiazol-3(2H)-one, 1,1-dioxide
Description:	Solid crystals, M-white 5
Batch #:	4 AE F15973790 1899 0002 $3$
Origin Batch .	M09402
CAS No.:	(8,1-07-2) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 ) (1
Purity: Or of the	99.9 ^m
Date of Analysis: 🖉 🛒	May 29, 2009
Storage:	$5 \pm 5$ °C, under dark and dry conditions
Expiry Date 🖓 🧳 🖓	May 29, 2016
Stability of test compound:	Storage stability after 3 days was investigated for
	concentrated (5%-level) and untreated soil extracts (nominal treatment level) by specific LC-MS/MS-analysis. A minor
	decrease in concentration down to 82% of initially analysed
	concentration was observed only in absence of organic
	losswas abserved.
4. Reference material	MK 56561-methoxy-saccharin (M11)
(non Jabelled)	
Chemical Name:	4-Methoxy-1,2-benzothiazol-3(2H)-one 1,1-dioxide
Description:	Powder, light yellow
Batch #:	BCS-AG71018-01-01
Grigin Batch #:	BCOO 6413-13-5
Customer Order No.:	TOX-No: 09341-01

Purity:	99.7%
Date of Analysis:	June 19, 2012
Storage:	At +10 to + 30 °C, under dark and dry conditions $\swarrow$
Expiry Date:	June 19, 2013
Stability of test compound:	Storage stability after 53 days was investigated for of concentrated (5%-level) and untreated soil extracts
	(nominal treatment level) by specific LC-MS/MS-

V

#### 5. Soils

Three different soils (refer to Table 7.1-4) were used for the study. The soils were passed phrough a 2 mm sieve prior to use to ensure uniform particle size. Soils were stored at room temperature (approx 20°C) in the dark for less than 3 months until use The soil was pre-incodated for a period of 19 dags in case of untreated control samples and 20 days in case of treated soil samples before the test started.

Table 7.1-4   Soil physicochemical	properties		
Soil	LUFA 2.3		LUFA 65
Location			
Country	Germany Germany	German D	Gertmany
Batch	[♥] € F2.21992	F2\$1912	652012
Soil type ¹⁾	Loany sand	Sandy loana	[©] [∗] Clay
Sand (%)		63.125.0	24.5 ±3.5
Silt (%)	j 13.8€ ² .7 € ^y	28.4±4.5 ×	35.0 ± 2.9
Clay (%)	\$ \$ \$ ± 1.2\$	$5 \pm 0$	$40.5\pm2.1$
Organic carbon (%)	×1.77 ±€0,20 .~ 9	Q 0.94 ¥ 0.10	$1.64\pm0.12$
pH (0.01 @Cl ₂ )	5.50±0.2 √ ·	$5.8 \pm 0.2^{\circ}$	$7.1\pm0.1$
CEC (meq/100 😰 👋 🦉		010.9 ± 1.1	$27.2 \pm 1.4$
Moisture (g/100g)	41.8 ± 3.0	37.3 ± 1.8	$40.5\pm1.8$
Cmic of Corg (%) at test start	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>گ</u> لا 1.7	1.9
C _{mic} of C _{org} (%) at test end		1.5	1.6
1) According to USDA			

Table 7.1-4 Soil physicochemical properties

# B.

### 1. Experimental conditions

The test systems were maintained in the dark or diffuse light at a temperature of  $20 \pm 2^{\circ}$ C in an air-conditioned room.

500 nd biometer-typ flasks equipped with traps housing 4 M liquid NaOH to absorb CO2, polyarethane foans to absorb volatile organic compounds, and activated charcoal as a safety trap to absorb any further volatile degradation products were used as test systems. Additional External traps housing 10 mL ethylenglycol and 10 mL 4 M NaOH were attached to the incubation Rask. Aerobic incubation conditions were monitored once a week in the control vessels of all three soils. Active ventilation of the incubation vessels was not necessary as the wygen content did not fall below 3% absolute from the nominal value of approximately 21%. Three soils representing a range of relevant soils were used: a loamy sand (LUFA 2.2, pH 5.5, organic carbon of 1.77%), a sandy loam (LUFA 2.3, pH 6.8, organic carbon of 0.94%) and a clay soil (LUFA 6S, pH 7.1, organic carbon of 1.64%). The soils were freshly collected from

the field, sieved through a 2 mm sieve and pre-incubated for a period of 19 days in case untreated control samples and 20 days in case of treated soil samples at temperature and moisture conditions approximating those of the test.

The treatment rate was based on the highest recommended single field use rate for the parent compound propoxycarbazone-sodium which is 70 g/ha, equivalent to 190 µg/kg dry soil. To allow for technical feasibility (detection of the two potentially occurring transformation products at 5-10 %-level), a conservative estimate of 250 µg/kg dry soil was chosen. The test item was applied solely as ¹⁴C-labelled material; no mixing with unlabelled material was performed. The stock solution of ¹⁴C-labelled test item was prepared in ethanol. The stock solution obtained was analysed by LSC to determine the exact activity of the stock solution. Determination of the test item by HPLC coupled with UV-detection was accomplished after preparation of the stock solutions. As values obtained agreed with the value based on liquid scintillation counting and no significant amounts of contaminant were observed, it was considered valid to determine the concentration at later stages of the study based on liquid scintillation counting only.

The test item was added to the soil using quartz sand as a carrier. A corresponding amount of an ethanol stock solution of the ¹⁴C4 labelled test item was added to the quartz sand and the solvent was evaporated overnight in a funce cupboard in the dark. The quartz sand was then added to the soil followed by thoroughly mixing. The added amount of quartz sand was below 1%.

For each soil four control samples were prepared which were also treated with quartz sand after evaporation of the corresponding amount of ethapol.

For each soil two sterils controls were prepared. The soil was heated for 15 mm to 121°C in total four times (wet sterilization using an autochave).

About 70 g of the treated soil (wet weight basis) was placed into each incubation flask. Each sampling point was measured in dupped on the four untreated control samples per soil approximately 150 govere filled in identical incubation flasks.

The soil mosture was adjusted to and maintained at  $A^{\prime\prime}$  to 51% of the soils' respective maximum water holding capacity during the incubation period. Water losses were compendented by addition of vater (Sterile tiltered tap water).

The experiment was terminated after a maximum of 120 days. Untreated control samples were taken after 122 days.

2. Sampling

At least diplicate incubation flasks were sampled and sacrificed at day 2, 6, 13, 21, 43, 63, 91 and 120 for all soils.

For soil sampling a day 0 the first aliquer was taken immediately after end of mixing the test item, the second after half of the incubation flesks had been filled, and the third at the end of the entire application process to verify uniform distribution of the test item in the soil.

For the determination of the test incm content in the soil approximately 10 g aliquots of soil  $\sqrt[6]{}$  were taken from from from the source of soil  $\sqrt[6]{}$ 

The NaOH and ethylene glycol in the additional external traps, the polyurethane foam, and the activated charcoal were not changed until sampling of the entire incubation flask at the respective sampling date. The NaOH from the inner traps was sampled at the actual sampling points; however they were also changed prior to the actual sampling time point to ensure adequate trapping capacity at day 28, 56 and 85. In case of control samples, exchange of inner NaOH was done at day 29, 57 and 86.

### 3. Description of analytical procedures

Different soil extraction procedures were established for the parent compound MKH 6561-4hydroxy-saccharin (M08) and the two transformation products M07 and M11, due to low extractability of the parent compound from loamy sand LUFA 2.2 with alkaline extraction mixtures. Thus, for removal of the parent compound M08 a mixture of acetonitrile and 0.1 M HCl (50/50 v/v) was chosen and the metabolites M07 and M11 were extracted using a mixture of acetonitrile and 50 mM CaCl₂ containing 10 mM NH₄OH (50/50 v/v). As a consequence of the two different extraction liquids, two separate aliquots of approximately 10 g were taken?

July 2014

out of each incubation vessel. In case of the acidic mixture, extraction was accomplished mixed times, in case of the alkaline mixture, extraction was accomplished four times. Extraction time was for each step 20 min on a reciprocal shaker, preceded by 10 min utrasonic treatment. Phase separation was accomplished by centrifugation, supernatants of the individual extraction steps were combined and the final volume adjusted to 50 mL using the respective extragion liquid. In case of the two reference items (alkaline extracts), extracts were neutralised by addition of 6.25 µL formic acid. Concentrated extracts were filtered through 0.2 µnocellulos acetate filters and untreated soil extracts through 0.45 µm PTDE syringe filters prior to S analysis. For concentration of the respective soil extracts the organic solvent was removed at @ reduced atmospheric pressure (50 mbar) at #0°C (vacuum concentrator). In case the final volume was below 2 mL, the final volume was adjusted to 5 mL using the aqueous phase of ×, the respective extraction mixture. « î All soil extracts were analysed by LSC (TRFCARB 2906 R, Perkin Elmer) for total radioactivity. Further analysis was accomplished by calibration against either labelled test tem (HPLC coupled with radiodetection), unlabelled test item (determination of active ingredient by HPLC coupled with UV-depection or untabelled reference item (LCMS/MS). In HPLC the identity of the test item and the two transformation products was confirmed by comparison of the retention time with a mixture of unabelle Compounds Quantification was accomplished by external calibration using #C-MKH 6564Q4-hydroxy-saccharthy. Quantification of occurring transformation products was not accomplished by external calibration but based on the percentage of integrated area of the chromatogram related to total extractable radioactivity in the respective soil extract Resolution of three signals of interest was accomplished by arjection of a mixture containing MKH 6561-4-hydroxy-saccharin, MKH 6561-methoxy saccharin, and MKF 656 saccharin. In Gase deterioration of analytical performance was observed a new analytical column had to be used to ensure satisfactory separation of the three chemical structures. K) Only in two samples an additional signal was detected by HPLC coupled with radiodetection apart from the parent compound. These samples were qualitatively analysed by specific LC-MS/MS (Agilent 1200 and APD 3200) to verify the presence or absence of the chemical structures.  $\bigcirc$ The following LOD values were detected? HPL& coupled with ¹⁴C-dection 8.64 µg/L or @8 µg/kg (M08) HPLC coupled with UV detection: 4622 µgr (M08) EC-MS/MS: 406 μg/L or 0.32 μg/4g (MØ) and 0.05 μg/L or 0.24 μg/kg (M11) With the linear extraction pattern considered linear over the entire concentration range, the Quantification  $\mu$  mit (LOQ) was the determined to be 12.5  $\mu$ g/kg (equivalent 5% of nominal treatment rate) for each of the three compounds. The radioactivity of ¹⁴ CO² and other abelled volatiles was determined using liquid scintillation counter (LSC) Non extractable appoints of radioactivity in the soil samples were determined by combustion of the solid matter using a sample oxidizer (Oxidizer 307, Perkin Elmer) after drying and homogenisation in a ball mill. During combustion  $^{14}CO_2$  was trapped in a solvent (Carbosorb) and was then analysed using LSC. The pH was determined according to DIN 19684 (CaCl₂). Dry soil weight and water content were determined gravimetrically according to DIN 19683. The microbial biomass was determined according to the DIN guideline 14240. The soil was supplemented with glucose and the respiration rates of the soil microflora were measured.

ð

#### **II. RESULTS AND DISCUSSION**

#### DATA A.

А.	DAT	A		_ 0
Table	7.1-5	Mass balance and quantification of test item (M08)	) in LUFA 2.2 soil with a ⁻	treatment rate of O
		250.5 µg/kg soil at 20°C based on acidic extraction	ۍ ۲	
				r (0)

Incubation	¹⁴ C-activity in soil	NER ¹⁾	VOC ²⁾	CO2	total	conc. of M08	mean conc. of	mean M108	
time	extracts (% AR)	(% AR)	(% AR)	(% AR)	(% AR)	μg/kg)	M408 (µrg/kg) ≙	• nominal v (%)	Q)
(d)		1	Method: LSC	, Q ⁴		Method	: APLC compl adiodetection	ed with	б ^у ́
0	89	6	n.a.	õn.a.	95	254 Q	, Ó ¹ (c,		ĺ
0	90	6	n.a. 🔬	× n.a. ∘	2 ⁹⁷	2 <b>00</b>	گ ² 17 ∜	J\$7	
0	91	7	n.a. O	Ka.	<u>لَّ 98</u>	2 ⁰² 04 ô		A	
2	77	18	e h		<u></u>	150			
2	80	21		Ý.	× 104 ×	191		A CONTRACTOR	
6	66	19	5 0 ( )	<u> </u>	× 93	Û 128	An O	پ ۵ 53	
6	66	22 🖉		7	2 ⁹⁵	130			
13	53	20	× 0 0	Â,	0 ⁷ 94	0718 of		47	
13	54	×28 (k)	\$\$	× ¹⁴	<u>~</u> 25` ~	\$ 117 ₆	00	.,	
21	43	\$ 29 O´	6 K	23	<u> </u>	<u> </u>	V 78	31	
21	49	E.	0 0 Š	~ ⁹ 2 .	<u>) 97</u>	85 5	, 10	51	
43	25	⁰³⁷		\$ 33 \$V	94 (	∫ 44⊊	50	20	
43	J. F.	38		,3 <b>9</b>	\$ 94 <del>\</del>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	50	20	
63	×° ¹⁸	38	× 200×	× ³⁹	<u>z</u> si	[≪] 28	28	11	
63	1907	≪ 39		375	0 _{95 v}	18	20		
91	15			4 ²	y 96	29	22	9	
91	14%	35		× 42 × ×	<u>^</u> ~91	16		Í	
120	, P	37		46	95	31	31	13	
120	12	, <del>S</del>		\$47 \$	ž 95	32	51	15	_
120 ³⁾	چ 87 <i>0</i> ر	0 ¹²	nya.	У n.a	99	196	187	74	
1203)	85	12	F n.a.	n,a.	96	178	107	, ,	
1) Non-expractable residues 2) Volatile organic components 3) Sterile control									
italics: values det	ermined were belo	bw the smallest	spandard of 0.5	ppb, thus values	were excluded	1			
<i>a</i>	ó sì		i "Si						
Ś			~Q~						
Ś	2 A								
	Ŭ Ĝ j	× Y							
	42	5							
<u> </u>									

Table 7.1-6	Mass balance and quantification of test item (M08) in LUFA 2.3 soil with a treatment rate of
	250.6 μg/kg soil at 20°C based on acidic extraction

Incubation time	¹⁴ C-activity in soil extracts (% AR)	NER ¹⁾ (% AR)	VOC ²⁾ (% AR)	CO2 (% AR)	total (% AR)	conc. of M08 (µg/kg) _{&amp;}	mean conc. of M08 (µg/kg)	mean, M(& nominal
(d)		1	Method: LSC		<b>`</b> ,	Method re	: HPLC coup adiodetection	led with
0	96	4	n.a.	n.a.	100	276	.~~	
0	97	4	n.a.	n.a.	101	۲۵۷ ک ^۲ 214		880
0	95	4	n.a.	n.a.	100 Ô	229		S (
2	95	5	0	<u> </u>	10Q	ی ²³⁹ ک	,	
2	93	6	0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Q [°] 219 [°] ♥		
6	91	8	0 🐇	R.	^{رمی} 100	<b>49</b> 1	ິ``ຈ ້າຄາ	*©* 4 80
6	92	8	01	$\sqrt[\infty]{1}$	101	© 213		
13	86	11	<u> </u>		ð-99 á	200 ³	× 21¥	4884
13	87	5			y 950°	218		0
21	87	7	) of	× 3 V	29 ⁹ a	1875	\$178. V	71
21	79	12			5 ⁹⁴ 5 ⁰	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		/1
43	72	Ŷ,	$\sim 0_{\odot}$	MO A	<u> 9</u> 6, v	© 161 °	965	66
43	82	\$ ¹⁵ °	J.	€¥ 3 °C	101	× 170°		00
63	62 %	୬ [°] 20	^Q 0 ^S	L d'	G 95	≪)756 ~	158	63
63	59	O ²² K		×14 ×	6	≤ 159 ² >	150	0.5
91	55	L 29 5	200	16	©102	107	105	42
91	247	2\$\$ [×] {		<u> </u>	5 880'	\$103	105	72
120	Ô 34 S	053 C		¢ 27 ¢	Å ^{¶4} @	, 59	62	25
120	34	, 56,9	A0 8	20	0 1150	64	02	25
120 ³	83	j joj ć	🖗 n.a. 🔬	O ⁿ .a.	× <u>,</u> 0 [×]	161	170	67
120 ³⁾	<u></u>	1 × 8 ×	, Qa. 🔬	n.ak	A 96	179	170	07
<ol> <li>Non-extract</li> <li>Volatile org</li> <li>Sterile contract</li> <li>n.a. not applicable</li> </ol>	able residues				ý			

July	2014
------	------

Table 7.1-7	Mass balance and quantification of test item (M08) in LUFA 6S soil with a treatment rate of
	250.5 μg/kg soil at 20°C based on acidic extraction

Incubation time (d)	¹⁴ C-activity in soil extracts (% AR)	NER ¹⁾ (% AR)	VOC ²⁾ (% AR) Method: LSC	CO2 (% AR)	total (% AR)	conc. of M08 (μg/kg) Method	mean conc. of M08 (µg/kg)	mean, M(& notifinal (%) gd with
0	62	30	na	na	92	2 T <b>4</b> 6		
0	69	30	n.a.	n.a.	92 98	a 190	×169 ^	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0	65	35	n.a.	n.a.	100 .0	170		
2	57	33	0	10	91Q	°149 🗸		2°, °
2	57	32	0	Q 0		V 144	Å ³⁴⁶	5854
6	54	42	0 🐇		م چ 97 ک	×148 <		
6	39	61	01		100	80 80 V		46 .
13	57	48	Å, v		A106	,1 <b>0</b>	L 159	
13	57	46				A64		0
21	51	53	) <b>6</b> 5	°∼>°1 √°	A195 A	^م 143 ⁵	J 125 W	50
21	43	41			\$ 85 L	~ ⁹⁷		50
43	55			<u>Ôź</u> Ę		ر 139 ^(C)	935	54
43	36	<u>کې 56</u>	J.	ý 2 O	· 94	× 121	Q ISS	
63	57 7	¥ 44	0 5	Å.	\$`103 [`]	×) ⁷ 61 ~	155	62
63	55	Ô ⁴ 7 K			10 ⁴	√ 148 %		
91	40	L 53 5	20 ~		© 105	128	131	52
91	Č ³	55y (		<u> </u>		J ¹³⁴	_	
120	ିତ 49 <i>-</i> ଙ୍	×055 C			ð ⁸⁰⁸ (	/ 118	112	45
120	47	, 5 <u>5</u> , 3		r 40°	© 107 °	106		
120 ³	66		© [∞] n.a. ∖	j∑n.a. √	100 [″]	150	143	57
120 ³⁾	(4) ²	<i>√</i> 33 <i>√</i>	🔍 😡 á. 🐇	ງ″n.aky	<b>9</b> 7 هم	136		

Non-extractable residues
 Volatile organic compounds

Sterile control

n.a. not applicable

MKH 6561-saccharin (M07) was not detected in my of the soil extracts by HPLC coupled with radiodetection after an alkaline soft extraction (ACN-50 mM CaCl₂ with 10 mM NH₄OH (50/50 v/v)), whereas MKH 6561-methoxy-saccharin (M11) was detected in individual samples of LUFA 2.2 taken after 6 days (4, % AR) and of LUFA 2.3 taken after 13 days (5.4% AR). In extracts of LUFA 6S none of the transformation products was detected. The presence of MKH 6561-methoxy-saccharin (M11) as well as the absence of MKH 6564-saccharin (M07) were confirmed by specific LC-MS/MS, too.

# B. MASSBALANCE

Complete ¹⁴C-mass balance was established based on extracts obtained with acetonitrile and 0.0M HCl (extraction for the test item) and corresponding non-extractable residues. The atkaline extraction using acetonitrile with 50 mM CaCl₂ and 10 mM NH₄OH served only for screening for transformation products.

Mass balances ranged from 93 to 101%, 95 to 115% and 90 to 108% for LUFA 2.2, LUFA 2.3 and LUFA 6S, respectively.

The mass balance for the sterile control samples accounted for 95% to 99% after 120 days.

### C. BOUND AND EXTRACTABLE RESIDUES

In all three soils the formation of soil bound residues was observed after extraction with acetonitrile-0.1 M HCl (50/50 v/v). Immediately after application non-extractable residues were low and steadily increased until the end of the incubation period of 120 days. Amounts ranged from 37% in LUFA 2.2 to 54% in LUFA 2.3. In case of the clay LUFA 6S amounts of NER were higher with 32% immediately after application. The trend of increase however was similar, accounting for 55% after 120 days. Attempts during preliminary experiments to improve extraction recoveries from the heavy clay soil were not satisfactory.

The pattern of extractable radioactivity observed was comparable for all three soil types.

Extraction of the soil for MKH 6561-4-Kydoxy-saccharm using ACN-0.1 MACI (30/50 v/v): Extractable activity decreased from 90% to 13%, from 96% to 34% and from 65% to 48% at test end after 120 days for soils LUFA 2.2, CUFA 2.3 and EUFA 6S, respectively. Extractable radioactivity followed a clear trend of decline over time with highest amounts of extractable radioactivity found in the clay soft at the end of the incubation period.

Extraction of the soil for MKP 6561 successful and MKH 6561 methoxs successful using ACN-50 mM CaCl₂ with 10 mM NH 40H (50/50 v/v):  $\sim$ 

Extraction was accomplished for soil samples from day 2 unfit day 020. The extractable activity was lower compared to the ¹⁴C-activity obtained for the activite extraction, starting with 16%, 65%, and 47% for LUFA 2.2, 2.3 and 6S, respectively. However, the alkaline extraction mixture was shown to remove both transformation products at a satisfactory rate from soil, hence subjected to analysis by HPLC coupled with adiodetection. Extractable radioactivity followed a similar trend of decline towards the end of the study with 0%, 17% and 34% in soil extracts of LUFA 2.2, 2, and 6S respectively.

Sterile controls were analysed after extraction with actionitate and 0.1 M HCl. Non-specific LSC analysis of extractable radioactivity and combustion of non-extractable residues confirmed no loss of radioactivity over the incubation period of 120 days. Extractable radioactivity accounted for 86% (LUFA 2.2 and 2.3) and 65% (LUFA 6S). Non-extractable residues accounted for 9% to 34% at test end.

### D VOLATILISATION

¹⁴C-MKH 6561 A hydroxy-saecharin was mineralised to a different extent in the three soil types. Maximum mineralisation rates were 45.4% at day 120 in LUFA 2.2, 26.4% after 120 days in LUFA 2.3 and 1.1% after 129 days in LUFA 6S.

The formation of volatife organic transformation products was negligible under aerobic incubation conditions in the three sold types. Overall maximum amounts ranged from 0.1% in LUFA 6S to 0.3% in LUFA 2.2.

# E. TRANSFORMATION OF PARENT COMPOUND

In all soils, the extractable radioactivity and extractable test item decreased steadily over the duration of the study. The decline observed was consistent with a decline of extractable total radioactivity analysed by LSC, although total extractable radioactivity was higher compared to extractable test item. This was attributed to the possibility that radioactivity could potentially be associated to extractable soil humic matter which is not detected as a distinct signal by HPLC coupled with radioactection.

The test item MKH 6561-4-hydroxy-saccharin disappeared fast from all soil extracts over time. The fastest decline was observed in loamy sand LUFA 2.2 where after 120 days 13% were

detected, whereas 25% and 45% were still found in case of LUFA 2.3 and LUFA 6S (soil C-clay).

MKH 6561-saccharin (M07) was not detected in any of the soil extracts by HPLC coupled with radiodetection, whereas MKH 6561-methoxy-saccharin (M11) was detected in individual samples of LUFA 2.2 taken after 6 days (4.5% AR) and of LUFA 2.3 taken after 13 days (8.4% AR). In extracts of LUFA 6S none of the transformation products were detected. The presence of MKH 6561-methoxy-saccharin (M11) as well as the absence of MKH 6561-saccharin (M07) were confirmed by specific LC-MS/MS, too.

Detailed values obtained for each sampling point can be found in Table 7.1-5 to Table 7.1

In sterile soil, overall amounts of non-extractable residues werein a similar range of the amounts observed in active soil immediately after application. As overall mass-balance do not were point to any important loss of ¹⁴C by the formation of volatiles and/or ¹⁴CO₂, it was concluded that non-extractable residues were formed by identical abiotic process which lead to MER in the treated soil after application or by minor residual biotic activity, which may not have been completely suppressed despite extensive wet serilisation.

# THI. CONCLESIONS

MKH 6561-4-hydroxy-saccharin (M08) degraded under aerobic conditions in all three soils types investigated. The parent compound exhibited slight mineralisation to CO₂ in the clay soil MUFA 6S whereas high mineralisation rates of 45% and 26% were observed in loamy sand EUFA 2.2 and sandy loam LUFA 2.3. Disappearance did not seen to be strictly correlated to the highest microbial activity (C_{mic}). Abiotic parameters, such as for example the clay content, seened to have an impact on the mineralisation and transformation rate. No persistent degradation products were observed. In case of two single samples the transformation product MKD 6561 methoxy-saccharin (M11) was observed with 4.5% AR and 5.4% AR after 6 days and 13 days, respectively. The presence of MKH 6561methoxy-saccharin (M11) was qualitatively confirmed by specific LC-MS/MS-analysis. MKH 6561saccharin (M07) as not detected at all.

A kinetic evaluation following current FOCUS guidance was conducted and is summarised in CA 7.1.2.1.2/10.

### CA 7.1.1.2 Anaerobic degradation

An anaerobic soil degradation study was performed using two radiolabel positions, [phenyl-U-¹⁴C] and [triazolinone Q⁻¹⁴C], which was requested by France to support propoxycarbazone-sodium autumn use and which was not submitted and evaluated during the Annex I inclusion. The study is submitted within the Supplemental Dossier for the propoxycarbazone-sodium renewal of approval. A study



Report:	o; ;2010;M-378046-01
Title:	[Triazolinone-3-14C]- and [phenyl-UL-14C]propoxycarbazone-sodium: Anaerobic sojl
	metabolism 🖉 👌
Report No:	MEF-09/221
Document No:	M-378046-01-1
Guidelines:	OECD 307; EU 95/36/EC amended 91/414; US EPA, Subdivision N, Paragraph 102-2
Deviations:	none O N
GLP/GEP:	yes A S S

#### **Executive Summary**

The present laboratory study investigated the route and rate of degradation of the herbicide  $0^{\circ}$  propoxy carbazone-sodium in one European soil upder initially aerobic and the panaerobic flooded  $0^{\circ}$  conditions. The test was performed in the dark at about 20°C using static-type incubation test systems. The used soil was a loam originating from **Sector Proposed** (14°C) and [phenyl-UL-¹⁴C) propose 4a, pH 6.7 in CaCl₂, 2.5% organic carbon). The test items [triazo inone  $2^{-14}$ C] and [phenyl-UL-¹⁴C) propose carbazone-sodium (named label A and B trespectively) were applied to soil and nominal treatment rate of about 19 µg/100 g dry soil. Assuming a homogeneous distribution in the 2.5 cm topsoil layer this rate was equivalent to the intended field application rate of 70 g/ha.

Following application of the test items to soil, the samples were incubated under aerobic conditions in the dark at about 20°C and 55% of the maximum water holding capacity for 14 days. Then, the soil samples were flooded with oxygen-depleted, de-ionised water (capiton layer above soil level) and set under an atmosphere of nitrogen. The water logged samples were maintained under anaerobic conditions for 150 days. At the respective sampling intervals, the soil was extracted three times at room temperature with aqueous organic solvent (aceronitrile/water (1/1, v/v) containing 0.025% aqueous NH₃ (ambient organic extract)) and by a pierowaye extraction step at about 70°C (aggressive extract). Ambient organic and aggressive extracts were kept separate for the determination of the radioactivity content by liquid semtillation counting a well as for the individual profiling of components by reversed phase MPLC with radiodetection. The soil extracts were separated by decanting prior to soil extraction. The water phase was analysed directly (without a concentration step). Characterisation and identification of propoxycarbazone-soditim and its metabolites were achieved by HPLC confirming as well as by spectroscopic methods (HPLC-MS, HPLC-MS/MS and accurate mass determination)

Mean material balances ranged from 95.1 to 97.5% AR for tabel A and from 90.8 to 97.7% AR for label B. During the aerobic phase, the maximum amount of  $^{14}CO_2$  was 7.6% of the applied radioactivity (AR) for label A and 13.3% of the AR for label B. Formation of volatile radioactivity during the anaerobic phase was posignificant (ap 0.3%AR carbon dioxide, 0.0% AR organic volatiles). In the aerobic incubation phase, non-extractable residues (NER) in soil increased from 1.2 / 1.3% of the AR to 20.5 / 22.5% of the AR babel A label B, mean). The level of NER stayed at about this level also during the anaerobic (flooded incubation period (maximum 25.5% of the AR). Following

level also during the anagyobic (flooded) incubation period (maximum 25.5% of the AR). Following fractionation of soil organic matter about 1/3 of the RA each was attributed to the humic acid fraction, the fulvic acid fraction, and the humin substance fraction, respectively.

Within the aerobic phase of the study (14 days) the amount of the test item propoxycarbazone-sodium in the entrie test systems decreased rapidly from 95.3 / 96.1% of the AR to 43.2 / 42.8% of the AR for label AVB, respectively. During the following anaerobic incubation period (i.e. flooded state) a further decrease was observed to about 15.3 / 15.1% AR until the end of the study (label A / B).

Four main metabolites were formed during the study, N-methyl propoxy triazolinone (up to 54.1% AR), saccharin (up to 35.5% AR), 4-hydroxy saccharin (up to 15.7% AR) and 4-methoxy saccharin (up to 17.1% AR). All metabolites were known from former soil, except 4-methoxy saccharin. 4-Methoxy saccharin occurred first at DAT-21 (DASF-7) in the anaerobic part of the study with a

percentage in the entire system of 5.5% of the AR, increased to 17.1% of the AR at DAT-28 and decreased to 12.2% of the AR at DAT-55. However, during the period of occurrence, the system showed no strictly anaerobic conditions, thus 4-methoxy saccharin is not safe to say an anaerobic metabolite of propoxycarbazone-sodium. The total unidentified RA in the entire systems reached values not higher than 4.6% of the AR for both labels. Abeld A I. MATERIALS AND METHODS A. MATERIALS 1. Test material [triazolinone-3 oropoxycarbazone-sodium@ (radiolabelled) Batch #: KATH 6 Reference Synthesis #:

poxycarbazone

**Chemical Purity:** Common Name:

CAS No.:

Specific Activity:

Radiochemical Purity:

Stability of test compound?

181274-15wagyerified in the stock solution by The radiochemical purity HPLC In addition, the test new was identified within the study in the stock solution by HPLC-MS, HPLC-MS2MS (ESI positive and ESI pegative and accurate mass determination (FT-Orbitrap-

one-sodium (Label B) 2. Test materi (radiolabelle Batch # Reference Synthe Specific Activi Radiochemical Chemical P Common Name arbazone-sodium No : Stability of test pound The radiochemical purity was verified in the stock solution by HPLC. In addition, the test item was identified within the study in the stock solution by HPLC-MS, HPLC-MS/MS (ESI positive and EST negative) and accurate mass determination (FT-Orbitrap-MS), ~Õ MKH 6561 3. Reference (non-labelled) Common Nar Propoxycarbazone-sodium Solid Description: Batch #: A0298618

**Expiry Date:** May 5, 2014 if stored at -15°C Saccharin 4. Reference material (non-labelled) Chemical Name: 1,2-Benzisothiazol-2(2H)-one 1,1-dioxide Description: Solid (white crystals) AE F159737 00 1B99 0002 (certificate ID: AZ 1588) Batch #: CAS No.: 81-07-2 **Expiry Date:** May 29, 2016 if stored at +5 ne 1, Edioxide AZQ3382) 4-Hydroxy saccharin 5. Reference material (non-labelled) Chemical Name: 4-Hydrox nzisothia Solid (beige powder) Description: Batch #: 13647] 72PU+018(certificat Expiry Date: 2010 if stored at 6. Reference material fethoxy saccharin (non-labelled) Chemical Name: ot available Description: Solid (white powder) Sample ID: serial no.: 1. CAS No.: Expiry Date 5°A anuary N-methyl propoxy riazolonone @ 7. Reference mater (non-abelled) Chemical Name 1ethyl-5-propoxy-2,4 -dihydro-3H-1,2,4-triazol-3-one Déscription (certificate ID: AZ 14042) Batch #: Expiry Date: 0 CAS 8. Sø One soil (refer to Table 7.1-8) was used for the study. The freshly collected soil was passed throu 2 min sieve, mixed thoroaghly for optimal back homogeneity and pre-equilibrated at 20°C for a period of 6 days One soil (refer to Table 7.1-8) was used for the study. The freshly collected soil was passed through a

July	2014
------	------



### B. STUDY DESIGN

### 1. Experimental conditions

The study was performed in static incubation test systems using glass Erlenmeyer flasks of 300 mL volume. The test systems were maintained in the dark at a temperature of  $20 \pm 2^{\circ}$ C in an incubation chamber  $20 \pm 2^{\circ}$ C in

A loam soil was chosen as a representative agricultural soil of European origin (

the field, sieved through a 2 min sieve.

The soft moisture was adjusted to and maintained at 55% maximum water holding capacity during the aerobic incubation period. The amount of radiolabeled propoxycarbazone-sodium for the treatment of the test systems in the study was based on the highest recommended single abeld use rate of 70 g/ha. Therefore, a non-ral amount of about 19 µg propoxycarbazone-

Propoxycarbazone sodium per kg of dry soil. Soil treatment with the two test items was carried out by means of application solutions which contained the test items in a mixture of methanol and water 4/1; vy). Treatment was made as small droplets applied directly onto the soil surface using a micropipette Biomass and anaerobic bacteria determination test systems were either left intreated (untreated soil) or dosed with test item-free application solvent (application solvent controls).

After application, the test systems were fitted with trap attachments containing soda lime and a polyurethane (PU) foam plug as trapping media for carbon dioxide and organic volatile compounds, respectively. Aerobic conditions were maintained by passive diffusion of atmospheric oxygen. After 14 days of aerobic incubation, the trap attachments were removed and the soil of each flask was flooded with about 150 mL of oxygen-depleted de-ionized water leading to a water layer of approx. 3 cm above soil. The flasks were then equipped with

sealable double-valve glass stoppers and connected to plastic gas sampling bags which had been flushed with nitrogen gas. The valves were set to connect flask headspace and gas sampling bag, but closing the system from the outer atmosphere. To ensure maintenance of fully oxygen-free conditions, the test systems were placed in box within the incubation chamber which was flooded first with argon and then with nitrogen. The test systems were incubated under anaerobic conditions for 150 days.

#### 2. Sampling

Duplicate test flasks incubated under aerobic conditions were collected for analysis at 0, 3 and 14 days after treatment (DAT). Each two flasks incubated under anaerobic conditions were collected for analysis at days 14, 21, 28, 35, 55, 76, 104, 134 and 164, corresponding to 0, 7, 14, 21, 41, 62, 90, 120 and 150 days after soit flooding (DASF). Soil samples were immediately extracted and soil extracts and occanted water layers were subjected to a first chromatography profiling usually within one day. No storage stability experiments were therefore conducted Samples were stored in a freezer (\$10°C) in the dark. Test systems used for microbial biomass determinations were sampled at DAT 0 and DAT-14. Test systems used for anaerobic bacteria determinations were sampled at study end (DAT 164).

### 3. Description of analytical procedures

After collection of the respective test systems from the incubation chamber during the aerobic incubation phase, flask and volatile traps were separated. The soil was extracted three times at room temperature with 80 mL aqueous organic solvent (acetonurile/water (1/1, v/v) containing 0.025% aqueous NH₃ (ambient organic extract)) and by a microwave extraction step at about 70°C using the same extraction solvent (aggressive extract). Ambient and aggressive extracts were analysed separately for radioactivity by liquid scintiblation counting (LSC) and they were kept separate for individued profilling of components by reversed phase HPLC with radiodetection (primary chromatographic method). Prior to HPLC analysis, sample extracts were concentrated.

The ratioactivity trapped in the PCF foan plugs was extracted with 50 mL ethyl acetate by sonication and the extracted radioactivity was determined LSC. Radioactivity absorbed by soda lime (i.e.  $\frac{1}{2}CO_2$ ) was liberated using 18% aqueous HCI, trapped in scintillation cocktail and measured by LSC as well. The portion of non-extractable radioactivity in soil was determined by combistion of air dried soil samples. The resulting ¹⁴C-CO₂ was trapped in scintillation cocktail and analysed by LSC.

During the anaryobic study phase, the collected test systems were connected to a volatile combistion oven unit. Using nitrogen, volatiles present in the headspace and gas sampling bag were slowly purged over a sodarime trap for absorption of ¹⁴CO₂ and through a catalytic oven for oxidative combustion of organic volatiles with the subsequent trapping of ¹⁴CO₂ for LSC analysis. Next, the test flasks were opened and the oxygen content and pH value of the water

I layer as well as the redox potential of the water and soil layer were immediately determined by electrode measurements. Thereafter, from each flask an aliquot of 30 mL of the water layer was removed to which 1 mL of 1 Maqueous NaOH was added. The sample was mixed and subjected to analysts of carbon dioxide content by adding aqueous HCl. Carbon dioxide was liberated from the soda time and the water layer analogously as described for the soda lime in the trap attachments used in the anaerobic phase. The rest of the water layers were separated from the soil fayers by careful decanting and centrifuged (about 10 min at ca. 5000 g). Soil extraction and analysis was performed in the same manner as described for the aerobic incubation phase. Radioactivity in the water layer was determined by LSC and the water layer

was analysed by HPLC with radiodetection without a concentration step.

The limit of detection (LOD) of the primary chromatographic method was determined for a single peak in a soil sample as 1.02% of the AR. The limit of quantification (LOQ) was calculated by multiplication of the LOD with a factor of 3 (LOQ = 3% AR). The results of the

primary chromatographic method were confirmed for representative extracts using HPTLC as confirmatory method.

The determination of the microbial biomass during the aerobic phase was determined based on de la constante de la constant the method of substrate-induced initial respiratory response and the determination of anaerobic bacteria present in the soil during the anaerobic incubation phase was based on a plate count assay for colony forming units.

G

#### **II. RESULTS AND DISCUSSION**

The study was performed under the required temperature conditions with a mean temperature of s onwarus. The pH values decreased quickly from DASF-0 to DASF 7 from 7.9 to values of around pH 7 and increased again until study end to values around pH 7.6. The oxygen content in the water layer decreased during the study from 3.51 mg/L to about 0.85 mg/L for laber A text-system and a study of a system and the system a and more as a man study end to value strouth of 11 19. The oxygen content in the study from 3.51 mg/L to about 0.84 mg/L for label B testsystems, demonstrating the phift to man erobic conditions. All sediments were flushed with argon on 2009-06.55 (DQf-3.5-2) DASF-21) intensively for about 10 minutes in order to maintain an aerobic conditions. The soil was viable throughout the study.

July 2014

July 2014

#### DATA A.

#### Table 7.1-9 Biotransformation of [triazolinone-3-14C]propoxycarbazone-sodium in entire System (all @,^° values expressed as % of applied radioactivity)

Days after Soil Flooding         N/A         0         7         14         21         20         55         70         104           Days after Soil Flooding         N/A         0         7         14         21         41         62         90           Propoxycarbazone- sodium         1         96.5         87.7         44.4         43.5         33.9         29.8         29.6         23.0         20.5         12.5           Propoxycarbazone- sodium         2         94.1         87.7         42.0         41.5         36.1         31.2         27.2         20.2         20.1         42.3           Mean         95.3         87.7         43.2         42.5         35.9         30.5         28.40         23.1         20.3         12.4           Mean         95.3         87.7         43.2         42.5         35.9         30.5         28.40         23.1         20.3         12.4           Mean         0.0         6.5         21.7         25.4         42.7         37.8         30.1         42.8         43.9         53.6           Mean         0.9         6.7         22.4         £5.7         36.3         39.4         42.9         43.6<	9.1 9.3 9.3 53.7 54.5 54.5 754.5 0.0 0.0 62.9 764.0	<b>15.0</b> <b>15.0</b> <b>15.0</b> <b>15.0</b> <b>15.0</b> <b>3.5.3</b> <b>45.3</b> <b>45.4</b> <b>43.2</b> <b>45.4</b> <b>44.5</b> <b>5.2</b> <b>4.6</b> <b>63.4</b>
Propoxycarbazone- sodium         1         96.5         87.7         44.4         43.5         33.9         29.8         29.6         23.0         20.5         12.5           Propoxycarbazone- sodium         2         94.1         87.7         42.0         41.5         36.1         31.2         27.2         23.2         20.1         42.3           Mean         95.3         87.7         43.2         42.5         35.9         30.5         28.4         23.1         20.3         12.4           N-methyl propoxy triazolinone         1         0.0         6.5         21.7         25.4         62.7         37.8         30.4         42.8         43.9         53.6           Mean         0.9         6.7         22.4         25.7         37.8         30.4         42.8         43.9         53.6           Mean         0.9         6.7         22.4         25.7         32.3         34.8         39.7         43.1         43.3         52.9           Mean         0.9         6.7         22.4         25.7         32.5         36.3         39.4         42.9         43.6         53.0           Mean         0.9         0.0         1.7         0.0 <t< th=""><th>9.1 9.2 9.3 9.3 53.7 54.5 54.5 54.5 54.5 0.0 0.0 0.0 62.9</th><th><b>3</b> √15.0 15% √43.3 √43.3 √43.3 √44.5 5.2 √40 √44.5 5.2 √40 √44.6 63.4</th></t<>	9.1 9.2 9.3 9.3 53.7 54.5 54.5 54.5 54.5 0.0 0.0 0.0 62.9	<b>3</b> √15.0 15% √43.3 √43.3 √43.3 √44.5 5.2 √40 √44.5 5.2 √40 √44.6 63.4
Propoxycarbazone- sodium       1       90.5       87.7       44.4       43.5       53.9       29.6       23.0       20.5       12.5         2       94.1       87.7       42.0       41.5       36.1       31.2       27.2       23.2       20.1       42.3         Mean       95.3       87.7       43.2       42.5       35.9       30.5       28.4       23.1       20.3       12.4         N-methyl propoxy triazolinone       1       0.0       6.5       21.7       25.4       42.7       37.8       30.1       42.8       43.9       53.6         Mean       0.9       6.7       22.4       28.7       37.8       30.1       42.8       43.9       53.6         Mean       0.9       6.7       22.4       28.7       32.5       36.3       39.4       42.9       43.6       53.0         Mean       0.9       6.7       22.4       28.7       32.5       36.3       39.4       42.9       43.6       53.0         Mean       0.0       0.0       1.7       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0	9.9 9.9 9.3 53.7 54/5 54/5 54.1 0.0 9.0 0.0 62.9	1546 43.8 44.5 5.2 4.6 63.4
sodium         2         94.1         87.7         42.0         41.5         96.1         91.2         27.2         20.2         20.1         43.3           Mean         95.3         87.7         43.2         42.5         35.9         30.5         28.4         23.1         20.3         12.4           N-methyl propoxy triazolinone         1         0.0         6.5         21.7         25.4         82.7         37.8         30.1         42.8         43.9         53.6           Mean         0.9         6.7         22.4         28.7         32.5         36.3         39.4         42.8         43.9         53.6           Mean         0.9         6.7         22.4         28.7         32.5         36.3         39.4         42.9         43.6         53.0           Mean         0.9         6.7         22.4         28.7         32.5         36.3         39.4         42.9         43.6         53.0           Mean         0.9         6.7         22.4         28.7         32.5         36.3         39.4         42.9         43.6         53.0           Mean         0.0         0.0         1.7         0.0         0.0         0.0	<b>53</b> 7 <b>54</b> 7 <b>54</b> 7 <b>54</b> 7 <b>6</b> 2 <b>7</b> <b>6</b> 2 <b>7</b> <b>6</b> 2 <b>7</b> <b>6</b> 4.0	<b>44.5</b> <b>5.2</b> <b>4.6</b> <b>63.4</b>
N-methyl propoxy triazolinone         1         0.0         6.5         21.7         25.4         \$2.7         37.8         301         42.8         430         53.6           N-methyl propoxy triazolinone         2         1.8         7.0         23.1         26.0         32.3         34.8         \$9.7         43.1         43.3         \$52.9           Mean         0.9         6.7         22.4         28.7         36.3         39.4         42.9         43.6         53.0         \$53.0         \$63.7         39.4         42.9         43.6         53.0         \$63.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0         \$60.0 <td>53.2 54.5 54.1 0.0 0.0 0.0 62.9 64.0</td> <td>43.2 46.8 44.5 5.2 4,0 7 4.6 63.4</td>	53.2 54.5 54.1 0.0 0.0 0.0 62.9 64.0	43.2 46.8 44.5 5.2 4,0 7 4.6 63.4
N-methyl propoxy triazolinone         2         1.8         7.0         23.1         26.0         32.3         34.8         39.7         43.1         43.3         52.9           Mean         0.9         6.7         22.4         25.7         32.5         36.3         39.4         42.9         43.6         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         53.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0 </th <td>54/5 54/5 0.0 0.0 0.0 0.0 629 629</td> <td>468 44.5 5.2 4.6 63.4</td>	54/5 54/5 0.0 0.0 0.0 0.0 629 629	468 44.5 5.2 4.6 63.4
Image: second	<b>54.1</b> 0.0 <b>9</b> .0 <b>0.0</b> 62.9 <b>6</b> 4.0	<b>44.5</b> 5.2 <b>4.6</b> 63.4
I         0.0         0.0         1.7         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0	0.0 0.0 0.0 62 62 64.0	5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2
Total Unidentified Radioactivity         2         0.0         0.0         1.5         0.6         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0	<b>0.0</b> 62.9 64.0	⁴ / ₂ .0 ⁷ ∕ <b>4.6</b> 63.4
Mean         0.0         0.0         1.6         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0 <td>0.0 629 64.0</td> <td>[≫] <b>4.6</b> 63.4</td>	0.0 629 64.0	[≫] <b>4.6</b> 63.4
1         96.6         94.6         67.8         68.9         66.6         77.7         68.7         765.7         64.9         65.5           Total Extractable Residues           2         95.9         44.6         6606         682         68.4         65.9         66.8         66.3         65.3         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2         65.2 <td< th=""><td>62.9 64.0</td><td>63.4</td></td<>	62.9 64.0	63.4
Total Extractable Residues         2         95.9         \$4.6         6606         683         68.4         65.9         66.3         65.3         65.2	64.0	
	·	65.4
Mean 96.3 94.4 67.2 38.6 67.5 66.8 67.8 66.0 65.1 65.3	63.4	64.4
1 1 7 7.7 7.8 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7	7.7	7.6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7.7	7.6
Mean N/A 0.0 7.6 7.6 7.6 7.6 7.6 5.6 7.7	7.7	7.6
Volatile Organics	0.0	0.0
(total aerobic + $2 + N/A = 0.0$ $0.0 + 0.0$ $0.0 + 0.0$ $0.0 + 0.0$ $0.0 + 0.0$ $0.0 + 0.0$ $0.0 + 0.0$	0.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0	0.0
Non-Extractable	25.8	25.7
Residues 2 1.4 1.8 20.6 19.5 20.5 22.3 22.0 20.2 23.1 23.9	25.2	25.3
Moan 0.2 1.8 20.5 19.3 20.5 21.60 21.7 21.4 23.8 24.2	25.5	25.5
97.7 96.2 95.7 96.8 95.1 96.1 97.7 96.0 97.1 97.7	96.2	96.7
Material Balance $2-5$ 968 968 95. 96.7 95.3 96.7 95.9 96.6 94.1 96.1 96.8	96.9	98.3
Atean (97.5 95.5 95.4 304 95.9 96.0 97.2 95.1 96.6 97.2	96.6	97.5

July	2014
------	------

Table 7.1-10	) Biotransformation of [phenyl-UL- ¹⁴ C]propoxycarbazone-sodium in entire system (all values	
	expressed as % of applied radioactivity)	

Days after Treatment		0	3	14	14	21	28	35	55	76	104	134	164	1
Days after Soil Flooding			N/A		0	7	14	21	41	62	90	120 K	©150 ₄	Ô,
	1	96.5	85.8	42.1	46.4	34.1	32.0	27.1	22.7	×21.3	20.4	150	14.0	ľ
Propoxycarbazone-	2	95.8	92.7	43.5	45.0	33.9	28.0	26.9	22.5	18.4	17.0	År6.2 ⊾	Q6.3	1
sourum	Mean	96.1	89.2	42.8	45.7	34.0	30.0	27.0	226	19.9	18	15,9	15.10	2
	1	0.0	0.0	10.5	15.3	13. <i>C</i> /	7.5	10.2	Ç10.3	11.3	8.9		145	
4-Hydroxy Saccharin	2	0.0	0.0	11.4	15.6	11.8	9.9	8.AQ	9.5	10.3	7.9 🌋	910.0	¢16.0	Ś
	Mean	0.0	0.0	10.9	15.5	Å2.7	8.7	<b>\$9.3</b>	9.9	108	8.4	9,0	15,2	ļ
	1	0.0	5.4	3.6	200	7.0	6,1	14.5	15.8	Q30.3	33.6	37.0	Å.1	]
Saccharin	2	0.0	4.8	4.3	0.0	8.9	48	ų A	12.5	320	35 A	34.∤	26.6	
	Mean	0.0	5.1	4.0 C	0.0	7.9	5.5	A2.9	<b>9</b> 7.6	<b>M</b> .4	34.5	35.5	26.4	
	1	0.0	0.0	J.	20	5.2	16.1	8. <u>K</u>	13.7	0.0	0.0 4	\$0.0	Ø0.0	
4-Methoxy Saccharin	2	0.0	0.0	¥0.0	y0.0	Q5.8 .	48.0	B.5	10?7	<u>0</u> 00	0.0	0.0	0.0	
	Mean	0.0	00	0.0	0.0	5.5	17.10	10.8	ر 12.2 د	<b>©0.0</b>	<b>£0.0</b>	0.0	0.0	
	1	0.0	Q0.0	0.0	0.0	A.8	<u>k</u>	0.0	000	0.0	0.0	0.0	3.4	
Total Unidentified Radioactivity	2	0.00	0.0%	o.0 (	) 0.0	\$ ^{2.0}	Ø0.0	Q0.0	9.0	SC O	\$0.0	0.0	2.3	
	Mean	×9.0	<b>&amp;0.0</b>	Ô.V	909	1,9	0.0	0.0	0.0 0	0.0	0.0	0.0	2.9	
	1 💦	96.5	0 _{92.2 (}	\$6.9	<b>G</b> 61.7	61.6	61.6	<u>59</u> .9	62,5	62%9	62.8	62.1	58.0	
Total Extractable Residues	Z	95.8	970	59.Õ	60.6	62.3	0.8 [%]	√60.2 _¢	62.4	\$2.5	60.5	60.2	61.3	
	Mean	96.1	94.8	<b>\$8</b> .0	<u>¢</u> ].2	65.9	61.2	60.D	62.4	62.7	61.7	61.2	59.7	
		N/Å	0.0 %	¹ 3.1 [∧]	y 13.5 %	13.8	<b>\$</b> 3.6	<b>3</b> .6	3.5	13.5	13.5	13.5	13.5	
anaerobic)	ð.	N/Á	Qa	1366	1348	13-8,	13.5	13.5	13.5	13.5	13.5	13.5	13.5	
	Mean [°]	[©] N/A ∉	0.0	13.3	≈43.7	<b>J3</b> .8	13.5	13,5	13.5	13.5	13.5	13.5	13.5	
VolatileOrganics	10°	NA	0.00	0.0	0.0	0.0~	0.0	×0.0	0.0	0.0	0.0	0.0	0.0	
(total aerobic +	×,	°~})√A	<u>49.0</u>		6,0	0.0	0,0%	0.0	0.0	0.0	0.0	0.0	0.0	
	Mean	N/A	× 0.0 ×	0.0	<b>~0.0</b>	<b>O</b> 0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
New Feet and D	Å,	Ď	P	24.0/	21	19.0	21.7	21.0	19.5	19.0	16.3	20.1	22.6	
Residues	02	Ď1.1 ∧	¥1.9	A.0	Ž¥.6	<b>38</b> .6	21.4	20.9	19.5	19.6	14.9	20.5	20.5	
<u> </u>	Mean	1.3	1.8	22.5	21.7	, 18.8	21.5	21.0	19.5	19.3	15.6	20.3	21.5	
	Å,	98.0	~94.7	94,0	.90 ⁷	94.3	96.9	94.5	95.6	95.5	92.7	95.7	94.1	
Material Balance	^V 2	⁹ 96.9	,100.1 <i>.</i>	©93.7 ¢	<b>\$96.0</b>	94.7	95.7	94.6	95.3	95.6	88.9	94.4	95.3	
	Mean	97,4	97 <b>@</b>	93.9	96.6	94.5	96.3	94.6	95.4	95.6	90.8	95.0	94.7	
Ő	À	Ő	Ś	×										

В.

MASS BALANCE Nean material balances ranged from 95.1 to 97.5% AR for label A and from 90.8 to 97.4% AR for label B. The complete material balance found at all sampling intervals demonstrated that no significant portion of radioactivity dissipated from the flasks or was lost during processing. Ŀ, <del>بر</del> م

### C. BOUND AND EXTRACTABLE RESIDUES

The total extractable residues (soil extracts and water layer) for label A / B, respectively, decreased with incubation time from 96.3 / 96.1% AR at DAT-0 to 58.0 / 67.2% AR at DAT-14 and then stayed at about this level until the end of the study.

In the aerobic incubation phase, non-extractable residues in soil increased from 1.2 / 1.3% of the AR to 20.5 / 22.5% of the AR (label A / label B). NER then stayed at about this level throughout the anaerobic (flooded) incubation period with a maximum of 25.5% of the AR (label A, DAT-134 and DAT-164). NER chemical characterisation of the non-extractable residues was performed by organic matter fractionation after disintegration under excessive alkaline conditions. About 1/3 of the RA each was attributed the humic acid fraction, the fully acid fraction and the humin substance fraction.

#### **D** VOLATILISATION

During the aerobic phase the maximum amount of ¹⁴CSF was 7,6% of the AB for label A and 13.3% of the AR for label B. Formation of volatile radioactivity during the anaerobic incubation phase was insignificant (up 0.3%AR carbon dioxide 0.0%AR organic volatile).

### E. TRANSFORMATION OF PARENT COMPOUND

Within the aerobic phase of the study (14 days) the amount of the test item propoxycarbazonesodium in the entire test systems accreased rapidly from 95.3 96.1% of the AR to 43.2 / 42.8%of the AR for label A / B@respectively. During the following anaerobic incubation period (i.e. flooded state) a further decrease was observed to about 15.9 / 15.4% AR until the end of the study (label A / B).

The amount of the main metabolite N-methyl propose triazolinone (label) metabolite) in the entire system increased steadily from DAT-0 to DAT-134 from 0.9% of the AR to 54.1% of the AR and dropped then to 445% of the AR antil study termination.

The amount of the main metabolite 4-hydroxy saccharm (label B metabolite) in the entire system vos 10.0% of the AR at DATO14, increased to 15.5% of the AR immediately after soil flooding (= DASF-0) and stayed then in the range of 8.400 15.2% of the AR until study end.

The amount of the main metabolite saccharin (Jabel B metabolite) in the entire system increased from DAT-3 to DAT-104 from 5.1% of the AR to 35.5% of the AR and dropped then to 26.4% of the AR until study termination.

The main metabolite 4-methoxy saccharin (label B metabolite) occurred first at DAT-21 (DASF-7) in the anaerobic part of the study with a percentage in the entire system of 5.5% of the AR increased to 07.1% of the AR towards DAT-28 and decreased then to 12.2% of the AR at DAT-55 and further to 00% AR at DAT-76@However, during the period of occurrence, the system showed no strictly anaerobic conditions, thus 4-methoxy saccharin is not safe to say an anaerobic metabolite of propexycarbazone sodium. The total unidentified RA in the entire systems reached values not higher than 46% of the AR for both labels.

# HI. CONCLUSIONS

In the soil **accord** 4a, the amounts of propoxycarbazone-sodium declined rapidly during the aerobic phase (14 days) and within the first two weeks of the anaerobic phase to about 30% of the AR. As soon as the transition of the system to reducing conditions was more or less completed the degradation of residual propoxycarbazone-sodium was slowed down.

Four main metabolites were formed during the study, N-methyl propoxy triazolinone, saccharin, 4hydroxy saccharin and 4-methoxy saccharin. All metabolites were known from former soil metabolism studies (refer to CA 7.1.1.1), except 4-methoxy saccharin. 4-Methoxy saccharin occurred

first at DAT-21 (DASF-7) in the anaerobic part of the study with a percentage in the entire system of 5.5% of the AR, increased to 17.1% of the AR at DAT-28 and decreased then to 12.2% of the AR at DAT-55 and further to 0.0% AR at DAT-76. However, during the period of occurrence the system showed no strictly anaerobic conditions, thus 4-methoxy saccharin is not safe to say an anaerobic of metabolite of propovycarbazone-sodium metabolite of propoxycarbazone-sodium.

Volatiles, i.e. CO₂, were formed in the aerobic phase up to 13.3% of the AR. The portion of nonextractable residues reached levels of up to about 25.5% of the AR. About 1/3 of the RA each was attributed to the humic acid fraction, the fulvic acid fraction and the humin substance for the

The part concerning the kinetic evaluation following current FOCUS guidance is summarised in CA 7.1.2.1.3/01 and also discussed in CA 7.1.2.1.4/01.

#### CA 7.1.1.3 Soil photolysis

The route of degradation of propoxycarbazone sodium in sou under photosytic conditions in the laboratory was investigated in two soil photolytic studies and was evaluated during the Annex inclusion using two radiolabel positions, [phenyley-14 Ch and [triazolinone-3 C], and was accepted by the European Commission (SANCO/4067/2001, Final 30 September 2003)

			SU.
Annex point	Apthor(s)	Xear of S	Édițien No.
KCA 7.1.1.3/01	, B. affel	5 © 19995 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	[©] M-& 2271-02-1
KCA 7.1.1.3/02	B. and HE	1999 2 Dended 2002	M-012267-02-1
$\sim$			$\gamma$

For information on studies alread val are during the first we review of propoxycarbazone-sodium, please refer to corresponding section in the Raseline Dossier provided by

the supplement of proposition of pro No additional studies are submitted within this supplementat Dossier for propoxycarbazone-sodium renewal of approval. A detailed oversew of the soil photolysis studies is shown in Table 7.1-3. A summary of the overall route of degradation of propoxycarbazone-sodium in soil is given in CA 7.1.1

### CA 7.1.2 Rate of degradation in soil

The aerobic soil degradation of propoxycarbazone-sodium was investigated in four soil degradation studies under laboratory conditions including eight independent data sets. Propoxycarbazone-sodium was applied as test substance using [phenyl-U-¹⁴C]- and [triazolinone-3-¹⁴C]propoxycarbazone-sodium. Additional studies in which the soil metabolites were applied as test substance were conducted for M05, M07, M08, M09, M10 and M11, respectively. Revised rates of degradation for propoxycarbazone-sodium and its major metabolites in soil under laboratory conditions were calculated (CA 7.1.2.1.2/10) according to current FOCUS kinetics guidance (2006², 2011³) in order to derive kinetic parameters suitable for environmental risk assessment and modelling purposes.

The newly calculated  $\text{DegT}_{50}$  values used for modelling purpose and trigger evaluation (best-fit) as well as formation fractions for major degradation products are summarised in the tables below  $\mathcal{A}$ 

		Persistence	e endpoints	Ŵ	Modelling endpoints Q							
	DegT	50 (d)	DegT	`∰(d) (Q)	Non-norma	lised DegT50	Normalised DegT50 (d)					
	Range	Geomean (n)	Range 🐧	Geomean (n)	Range	Geomean (n)	Range	Geomean (n)				
MKH6561 ¹⁾	7.2 - 215.5	42.7 (8)	28.0 - 7\$5,8	151.2 (8)	7.8 215.5	44.1	4.9 - 179.	22,5 (8)				
M05	2.8 - 17.4	5.5 (6)	9.3 - 57.8	× 19.6 (@	28 - 17.4	5,6%(6)	× 1.8 – ¥4/.5	4.3 (6)				
M07	4.6 - 39.8	16.1 (3)	15.2Q132.2	53.2 (3)	A.4 - 39.8	(J5.9 (3)	2.8 33.2	11.6 (3)				
M08	8.5->1000	145.0 ²⁾ (7)	150.9 - >1000	$4842^{(2)}(7)$	J ² 32.3∕→996.7 ·	112.3	29 312.9	84.2 (5)				
M09	13.4 - 385.7	62.7 (4)	283.3 - 21000	Ø51.2 ²⁾	853 - 385.30	145@(4)	Q1.1−2312	108.0 (4)				
M10	5.9 - 275.4	80.0 (7)	405,1 15.0	© 542.8 (S)	<u>8</u> .8 - 1402	108.5 (5)	43.2 &109.3	81.2 (5)				
M11	5.4 - 26.2	12.2 (4)	18.0 - 87.	40.5 (4)	⁵ 5.4 <u>26.2</u>	Q12.2 (4)	$4.6^{\circ}20.8$	9.1 (4)				

Table 7.1-11 Persistence and modelling endpoints for propoxycarbazone-sodium and its soil metabolites

1) MKH6561 = propoxycarbazone-sodium (

2) values >1000 d set as 1000 d for geomean calculation

### Table 7.1-12 Overview of formation fractions of M05 M07, M08, M09, M10 and M11

	Formatio persistence	n fraction () e endpoints ()	Formation	n fraction endpoints
	Arithmetic mean	Worst case	Arithmetic mean	Worst case
MKH6561 ¹ M05	$0.8 \mathcal{P}(n = 3)$		0.87 (n = 3)	1.00
M05 👸 M07	©00 (n <u>⇒</u> 2)	A.00	1.00 (n = 2)	1.00
$M02 \rightarrow M08$		~ 1.00C	0.52 (n = 3)	1.00
$M10 \rightarrow M11$			_2)	_2)
$MKH6561^{1} \rightarrow M_{\bullet} $	Q22 (n = 2)	Ø.22 A	0.22 (n = 2)	0.22
$MKH6561^{1} \rightarrow \textcircled{0}10 \qquad \swarrow$	0.60 (p 4) V	0.73	0.69 (n = 3)	0.78
$M09 \rightarrow M10$	0.740n = 40	<u> </u>	0.82 (n = 2)	0.84

1) MKH6561 = propoxycarbazone-so@m 🖉

2) Formation fractions could not be stimated

A new anaerobic soil degradation study was performed which was requested by France to support propoxycarbazone-sodium autumin use and which was not submitted and evaluated during the Annex I inclusion. The calculated DegT, value of propoxycarbazone-sodium in the entire system for the anaerobic phase was 45 dors for the triacolinone-label and 39 days for the phenyl-label. The corresponding DegT₉₀ values are 766 and  $\times 1000$  days, respectively. The anaerobic degradation rate was calculated directly within the day.

- ² FOCUS (2006): Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration. Report of the Work Group on Degradation Kinetics of FOCUS. EC Document Reference SANCO/10058/2005 version 2.0, June 2006.
- ³ FOCUS (2011): Generic Guidance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration, version 1.0.

The anaerobic degradation rates of the four major metabolites observed in the study (M07, M08, M10 and M11) were not calculated, because no reasonable evaluation was possible, despite a long anaerobic incubation phase. The metabolites M07, M08 and M10 were also observed as major metabolites in aerobic soil metabolism studies (KCA 7.1.1.1.1/01 - 04) and a kinetic evaluation of their aerobic degradation  $\mathbb{Q}^{2}$ behaviour was conducted (CA 7.1.2.1.2/10) based on the studies performed with the parent compound 0 propoxycarbazone-sodium (KCA 7.1.2.1.1/01 – 04) as well as based on studies performed with the metabolites themselves (KCA 7.1.2.1.2/01, 02, 04 and CA 7.1.2.1.2/08). For MLOTHE corresponding  $DegT_{50}$  value can be estimated to be < 30 days. This estimated degradation rate is in the range of the calculated DegT₅₀ values of the aerobic degradation study of M11 (CA 7.1.2, 2/09) with lost-fit alu between 5 and 26 days (CA 7.1.2.1.2/10).

The required field studies were performed with unlabelled propoxycarbazone-sodium on seven EUSri sites (5 in Northern and 2 in Southern Europe). The best-fit half-lives calculated in the study KCA 7.1.2.2.1/01 were in the range from 7 to 21 days. The range of DT walues as calculated to be between 22 and 101 days. A new kinetic evaluation of the field data was conducted according to the current EFSA guidance for evaluation field disspation rudies (2010) for modelling purpose. The resulting normalised DegT50 matrix values for propoxycarbacone-soldium ranged from 34 to 10 days. In addition the results of the seven trials clearly demonstrate that the translocation of traces of propoxycarbazone-sodium and M07 into deeper soil layers than 20-30 cm can be excluded down to a concentration of 1 µg/kg corresponding to less than 2% of the initial concentration of the applied propoxycarbazone-sodium. The transforation of traces of M05, M06 and M10 into deeper soildayers than 10-20 cm, as well as the translocation of traces of M09 and M080nto deeper sol layers than 0-10 cm can be excluded down to a concentration of k µg/kg orresponding to less than 2% of the initial concentration of the propoxycarbazone-sodium, M04 could not be detected in any soil layer.

In summary propoxycarbazone-sodium was moderately fast to slowly degraded in soil under aerobic and anaerobic conditions in the laboratory as well as under field conditions. The kinete models and revised DegT50 values of proposed carbadone-sodium and its major degradation products in soil are summarised in



⁴ EFSA (2010): Guidance for evaluating laboratory and field dissipation studies to obtain  $DegT_{50}$  values of plant protection products in soil. EFSA Journal 8(12):1936, 1-67.

Propoxycarbazone-sodium

Page 34 of 122

July 2014

Table 7.1-13

				Appli-		Duration			Soil characte	ristics	G Persistence endpoints ¹				Modelling endpoints ¹⁾		
	R	eference	Guideline(s)	cation rate (μg/g)	Temp (°C)	of test (days)	Moisture (%WHC)	Soil origin	Soil type	pH *	(%)	Kinetic model	Deg 7 50 (days)	DegT90 (days)	Kinetic	Non normalised DegT50 (d)	Normalised DegT50 (d) (20°C, pF2)
	KCA 7.1.2.1.1/01	al. 1999	EPA Ref: Subdivision N, 162-1	0.0312)	20	361	104.9 ³⁾		Er Kanry sand	6.4 ⁴		FOMÓ	70.2°		SF85	Centra 75.57e	57.3
	KCA 7.1.2.1.1/02	al. 1999	EPA Ref: Subdivision N, 162-1	0.035 ⁵⁾	20	365	2953) ED		loanny sand	20.44)	6)861 11 11 11 11 11 11 11 11 11 11 11 11 1	SECK J	OID 101.*C ADCEDIC	07 33500	SFO .	101.1	60.7
	3		SETAC- Europe (1995)	0.093 ²⁾	200	CULICIO 184 0	40-450		silt's	7.2	2.62	DFOP 2	07.2 :	28.0	SFO	7.8	4.9
	KCA .1.2.1.1/0	et al., 1999	Journal of the European Communities	0.1098	20	183 K	40-45 ^f	E. C. L.	loanay	6.40 ⁵	1.80	C ^D SFO	©≝ \$ 45.7	151.8	SFO	45.7	38.1
	L		No L172, 95/36/EC EPA Ref:	0.093 ²⁾	65 BO		40 40 1	BBA 2.2	loamy U	, where	2.48	SFO	215.5	715.8	SFO	215.5	179.7
	4		Subdivision N, 162-1 OECD	0.095 ⁵⁾	20		45- <b>3</b> 80 ^{°°}		* 30H	13 ² e	2.62	DFOP	18.1	67.4	SFO	19.6	12.3
	KCA .1.2.1.1/0	et al., 1999	Guidekines for the Testing of	0.095 ⁵⁾			43,48		loamy Sand	6.4	1.80	DFOP	15.0	52.6	SFO	15.3	12.7
	L		Chemical, Proposal (1997)	\$ <b>6</b> :095 ⁵⁾	28.	182 ¹	AS 48	BBA 2.2	loamy sand	6.3	2.48	SFO	81.9	272.0	SFO	81.9	68.3
_	1) Calc 2) [phe	ulated according	to current FOCU	IS kinebics gui	danc Gr	efer to CA 7.1?	2.1.1/05		4) pH in H 5) [triazoli	20 none-3- ¹⁴	C] label						
	3) at 1/	/3 bar	TV. ODE	201 ⁴	no ^{yi}	ye ye	P.H.		Studies sha	aded in gre	ey have bee	en reviewed a	s part of the f	irst EU reviev	w of propox	ycarbazone-sod	ium.
		Ć		J. R.	<i>v</i>												

Propoxycarbazone-sodium

Page 35 of 122

Table 7.1-14         Overview of the laboratory aerobic rate of degradati						degradation	on studies for the metabolite M05						<u> </u>			
					Duration			Soil chara	cteristics	, p¢	Persiste	nce endp	omts ¹⁾	Mo	deffing endp	ointes1)
Reference		Guideline(s)	Applied (µg/g)	Temp (°C)	of test (days)	Moisture (%WHC)	Soil origin	Soil type	pH &	€ ^C OC (%)	Kinetic model	DegT50 (days)	DegT90 (days)	Kinesic	Non normalised DegT ₅₀ (d)	Normalised DegT50 (d) (20°C, pF2)
KCA 7.1.2.1.1/01	et al. 1999	EPA Ref: Subdivision N, 162-1	parent 0.031	20	361	104.9 ²⁾	2º ^x O ^x	toamy sand	- - - - - - - - - - - - - - - - - - -	8 ° J.2 CO.81 CO.81		2.2.2.2 2.11		SEOP	cents setore	2.3
\$0/11717 1721 et al., 1999		SETAC-Europe (1995) Offical Journal of the European Communities No L172, 95/36/EC EPA Ref: Subdivision N, 162-1 OECD Guidelines for the Testing of Chemical, Proposal (1997)		20	184	290-45 C		Bilt Disilt	37.2	ALL FOT	2010 2010 2010 2010	C DEC	1400°	SFO ⁶⁾	2.8	1.8
	et al., 1999		parent 0.093	280 \$	2110 1831 0 21001	40-43 Chi		loandy Jand	6.4 0 ¹⁰¹	1.80 \$ * ¹⁰	SF&O	17.4 ⁵	57.8	SFO ⁶⁾	17.4	14.5
K			L'r.	20 \$ 5 UD	5 ^{e⁰184}	01 40-45 1001	E QL BBA 2:07 QL	loamy sand	6.3 WILCI		1997 B)	_ 8)	_ 8)	_ 8)	_ 8)	_ 8)
/07		OECD 307 (2002)		2005	PY 9100	50:00 ^{DD}	LEFA 2.2	loa@y & sand	J.S.C.C	1.87	FOMC	5.9	30.1	SFO	6.4	5.8
7.1.2.1.2	2012,	Commission Directive 2004/73/FC	M05 0.25	20		52.05 [°]	LUFA 2.3	sandy loam	6.8	0.94	SFO	8.4	27.9	SFO	8.4	6.8
CA		Method C.23, 2004	re ¹	20 J	37	53,105	LUPA 6S	,≫ clay	7.1	1.64	SFO	3.8	12.6	SFO	3.8	2.6
1) 2) 3) 4) 5)	Calculated acco at 1/3 bar pH in H ₂ O Pathway fit (pa Pathway fit (pa	rent: FONC; M05, M rent: FONC; M05, M rent: SFO; M05, SPC	Skinetics	guidance ( 2000 C	reference CA 7.1	2 ^{12/10}		<ul><li>6) Pathw</li><li>7) Pathw</li><li>8) Pathw</li><li>Studies sh</li></ul>	vay fit (par vay fit (par vay fit not aded in gr	ent: DFOP; M0 ent: SFO; M05, acceptable, decl ey have been re	5, M07, M08 M07, M08: line fit not po viewed as par	: SFO; with SFO, witho ssible t of the firs	hout M11) ut M11) st EU revie	w of propox	ycarbazone-soc	lium.

Propoxycarbazone-sodium

July 2014

Table 7.1-15	Overview of the	ne laborat	tory aer	obic rate of	degradation	n studies for	• the metab	olite M07	1			ð		e o e	
		Soil char	Soil chara	cteristics	DC	Persist	ence end	points ¹⁾	Mo	Modelling endpoints1)					
Reference	Guideline(s)	Applied (µg/g)	Temp (°C)	Duration of test (days)	Moisture (%WHC)	Soil origin	Soil type	PHY	OC (%)	Kinetic model	DegT50 (days)	DegT90 (days)	Kinestic model	Non nôr prálised Deg T50 (d)	Normalised DegT50 (d) (20°C, pF2)
FCA FCA al. 152.1.1/01 FCA FCA FCA FCA FCA FCA FCA FCA FCA FCA	EPA Ref: Subdivision N, 162-1	parent 0.031	20	361	104.9 ²⁾		Jeany Sand		5 ⁴⁷ 081	L'ICI	。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- ⁴⁾ ~			_ 4)
	SETAC-Europe (1995) Offical Journal		20	184	40-45 *		silt'	7.2 j	2.62 *	SFO ⁵⁾	31.6 C	15.2	SFØS ^C	۶ ^۳ 4.4	2.8
KCA 7.1.2.1.1/03 et al., 160	Communities No L172, 95/36/EC EPA Ref: Subdivision N,	parent 0.093	20	1830 ^{tt}	10-45 20-45		loam	or the state	20. 2 ¹ 80 ² 0	SFOR	39.80	132.2 0	SFO ⁶⁾	39.8	33.2
	162-1 OECD, Proposal (1997)	(D)	\$ 20 ⁰	and to		2 BBA 2.2	Beamy sand	) ^{JL} 6.3 x	202.48 EDI	\$ - 7) \$ - 7)	0 ^{ft 7)} 3	_ 7)	_ 7)	_ 7)	_ 7)
KCA 7.1.2.1.2/01 *	SETAC-Europe (1995) Offical Journal of the European Communities No	M07 0.043	2005 GULD	124 SY	THE 1003		loamy and	R LOAL X	0.47 [°]	SFO	22.7	75.4	SFO	22.7	16.7
	L172, 95/36/EC EPA Ref:	29 21	20 ⁰⁵	123000	40-30		a Seilt	J.83)	2.62	- ⁹⁾	- ⁹⁾	- ⁹⁾	- ⁹⁾	_ 9)	- ⁹⁾
KCA 1.2.1.2/0 *	Subdivision N 162-1 OECD	M08 0.046- 0.049	20	1231 ¹	40-00 ¹		loamy a sand	7.0 ³⁾	1.80	- ⁹⁾	- ⁹⁾	_ 9)	- ⁹⁾	_ 9)	_ 9)
· 1999	Proposal (1997)	-C 1		123	100255		loamy sand	6.4 ³⁾	0.47	- ⁹⁾	- ⁹⁾	- 9)	- ⁹⁾	- ⁹⁾	_ 9)
<ol> <li>Calculated accord</li> <li>at 1/3 bar</li> <li>pH in H2O</li> <li>Not detected in re</li> <li>Pathway fit (pare</li> </ol>	ling to current FOG elevant uniounts (al	VS kinetics	guidance ( w(QOD) O; withou	TMIT)	12(2)10) *		<ul> <li>7) Pathway f</li> <li>8) OC was n</li> <li>9) M07 was unusual at the kinetic</li> </ul>	it not accepta ot given in the detected in the due to the evaluation.	able; decline t ne original stu ne original stu likelihood of	fit not possi dy report an dy, but sind analytical o	ble nd was then the form confusion v	efore calcu ation of M( vith M11, th	lated as OC 07 from M0 he values w	C(%) = OM(%) 8 seems chemic vere not conside	) / 1.724. cally red for
o) Patnway fit (page		, MUS: SFO	, without y	vIII) V			Studies shaded	i in grey have	e been review	ed as part o	of the first f	20 review (	or propoxyc	arbazone-sodiu	m.
July 2014

Tabl	able 7.1-16 Overview of the laboratory aerobic rate of degradation studies for the metabolite M08									ð		e °				
					Destin		S	Soil character	istics	DÇ.	Persist	ence end	points ¹⁾	Mo	odefling endp	onges ¹⁾
R	eference	Guideline(s)	Applied (µg/g)	Temp (°C)	of test (days)	Moisture (%WHC)	Soil origin	Soil type	<b>B</b>	OC (%)	Kinetic model	DegT50 (days)	DegT90 (days)	Kinestic model	Non nôrmalised DegT50 (d)	Normalised DegT50 (d) (20°C, pF2)
KCA 7.1.2.1.1/01	et al. 1999	EPA Ref: Subdivision N, 162-1	parent 0.031	20	361	104.92)		۵ ^۴ معمل المعمل ا معمل المعمل ال		- 19.81	SF64	°>1000	₹ >1000Ç	COL NDJ	CCT-5) EOTE	_ 5)
		SETAC-Europe (1995) Offical Journal of the		20	184	40-45		silt silt	7.2	2.62		432.9 ⁰	>1000	SFO7	\$ 496.7	312.9
KCA .2.1.1/03	et al.,	European Communities No L172, 95/36/EC	parent 0.093	20	183	40-45 ¹⁴		Joamy sand	6.4	0.¥.80	2.8F07)	75.0 C	249 đ	SFO ⁷⁾	75.0	62.5
7.1	1999	EPA Ref: Subdiv. N, 162-1 OECD, Proposal		20	100-884 T	240245	BBA 2.2	Joamy sand	6.3 ~	2 ^{52.48}	OCHIN	UIRER	- 804	- ⁸⁾	_ 8)	_ 8)
CA 7.1.2.1.2/0	& , ,	EC Comission Directive	M076	20 7		2100 ²⁾		loamy'sand	6.43 ³	0.47%) 5.47%	\$ _ 10)	0- ¹ 10)	_ 10)	_ 10)	_ 10)	_ 10)
/02	&	95/36/EC, 1995 EPA Ref: Subdivision N 162-1	M08	205		40-501		NA NA	7.8 ³⁾	2.62 [°]	SFO	167.2	555.4	SFO	167.2	105.3
KCA 2.1.2	;	SETAC, 1995	0.046-	5 ⁰ 20	\$123	40-50		loamy sand	7.03	1.80	FOMC	328.6	>1000	- ¹⁰⁾	- 10)	- 10)
7.1.	1999	4	- Gaes	COPT	CURREL'	El MOST		Noamy sand	\$6.4 ³ )	0.47	<b>-</b> ¹⁰⁾	- 10)	- ¹⁰⁾	- 10)	- ¹⁰⁾	- ¹⁰⁾
80		OECD 307 (2002)		200	1205	51.23	LUFA02.2	loamy sand	5.5	1.77	FOMC	8.5	152.9	DFOP	32.311)	29.511)
CA 1.2.1.2/	2013	Commission Directive 2004/73/EC, Method	M08 0.25	20 «	2 ³³¹ 120	\$49.78 \$	LUFA 23	sandy loam	6.8	0.94	SFO	88.8	294.8	SFO	88.8	69.7
7.		C.23, 2004	1	all de	120	1897	A 6S	clay	7.1	1.64	- ¹⁰⁾	- ¹⁰⁾	- ¹⁰⁾	- ¹⁰⁾	- 10)	- 10)
1) C 2) at 3) p 4) P 5) k 6) P	alculated accord t 1/3 bar H in H ₂ O athway fit (pare -rate not signific athway fit (pare	ling to current FOORS nt: FOMC; M05, POR: son, decline front poss nt: DFOP, M05, M07 CO	kinetics gu SFO) Sible Sible Sible SFO:	idance (ref	ğυτο CA 7.1	2 ^{42/10}	<ul> <li>7) Pathway fii</li> <li>8) Pathway fii</li> <li>9) OC was no</li> <li>10) No accepta</li> <li>11) calculated i</li> <li>Studies shaded</li> </ul>	t (parent: SFO; 1 t not acceptable; t given in the or ble fit from slower k-ra in grey have bee	M05, M07, decline fit iginal study ate en reviewed	M08: SFO not possibl y report and l as part of	, without M le l was theref the first EU	int) fore calcula review of	ted as OC ( propoxycar	%) = OM ( rbazone-soc	%) / 1.724. lium.	

_

July 2014

Table 7.1-17 (	Overview of the la	boratory	aerobi	e rate of d	egradation s	tudies for the	e metabolit	te M09				<u> </u>		e all	0
				Derection		So	il character	istics	D,Ĉ	Persist	tence end	points ¹⁾	Μ	odelfing endp	oint
Reference	Guideline(s)	Applied (µg/g)	Temp (°C)	of test (days)	Moisture (%WHC)	Soil origin	Soil type	<b>B</b>	OC (%)	Kinetic model	DegT ₅₀ (days)	DegT90 (days)	Kinefic	Non normalised Deg T ₅₀ (d)	Normalised DegT ₅₀ (d) (20°C, pF2)
et 211.1/02 et al. 1999	EPA Ref: Subdivision N, 162-1	parent 0.035	20	365	75 ²⁾		Ioamy x sand	6.4 ³⁾	5 0 3 6 0 0 0 0	SFO ^Q	3850 ⁵	>1000 ·	COLUMN COLUMN	2 ⁴ 385.3 e.t. ⁰ 2 ^e	, 231.2
	SETAC-Europe (1995)		20	182	45-48C			67 <u>7</u> 37	2.62 g	N - 0 1 - 0	10 - ⁰ 11		-6D	- ⁶⁾	_ 6)
et al., 1999	the European Communities No L172, 95/36/EC EPA Ref: Subdivision	parent 0.095	20		45-48 DI		ioamy sand √	6.4	2 ² -1-80			0 ¹ ¹ - 6)	NRGT	<b>-</b> ⁶⁾	_ 6)
	N, 162-1 OECD, Prop. (1997)	o Dilê		0 ¹ 182 * 0	2 45-48 5	O ^W BBA 2.20	loamy sand	6.3 K	) D2.48	&FO ³	853	283.3	SFO ⁵⁾	85.3	71.1
	SETAC-Europe (1995)	<u>بر</u>	200	120 t	\$ 40-50 \$		J.D.C.	7.8 ³⁾ ℃	2.62	DFOP	35.1	325.8	DFOP	125.27)	84.9 ⁷⁾
//03	Offical Journal of the European	م م	20	𝑘 ^𝑘 120	40-50		loams sand	7.0 ³	D 1.8	FOMC	13.4	>1000	DFOP	108.57)	97.4 ⁷⁾
KCA 7.1.2.1.2	Communities No L172, 95/36/EC EPA Rec Subdivision N, 162-1	0.042 to 0.045	0¥ 300	CUIRE 120 C		, Set 1	loamy Sand	6.4 ³⁾	0.47	_ 8)	_ 8)	_ 8)	_ 8)	_ 8)	_ 8)
	(1997)	* D'A	20\$	12005		, Set 2	loamy sand	6.43)	0.47	_ 8)	- 8)	- ⁸⁾	- ⁸⁾	_ 8)	- 8)
<ol> <li>Calculated accordination</li> <li>at 1/3 bar</li> <li>pH in H₂O</li> <li>Pathway fit (parenting)</li> <li>Pathway fit without</li> </ol>	ng to current FOCUSE SFOCUS9 and Mr03 MT0 (parent and Mr03 MT0 (parent and Mr03	inetics guide SFO) SFO) SFOOD	hce (refe	2000 7.1.2, 2000 2000 2000 2000 2000 2000 2000 2	42990) 	6) 7) 8) Stu	M09 not det Calculated f No acceptab dies shaded in	ected in r rom slow le fit n grey ha	relevant arr ver k-rate o ve been rev	ounts abov f DFOP mo viewed as p	e LOD del art of the f	irst EU revi	ew of propo	oxycarbazone-so	odium.
(	Ĵ	W L													

Propoxycarbazone-sodium

Page 39 of 122

_

Table	e 7.1-18	Overview of t	he labora	tory aei	obic rate o	f degradat	ion studies for	the metabol	ite M10				6		C	0
					Drugtion		Se	oil characteri	stics	DC	Persis	tence end	pomts ¹⁾	Mo	delfing endp	oins
Re	eference	Guideline(s)	Applied (µg/g)	Temp (°C)	of test (days)	Moisture (%WHC)	Soil origin	Soil type	B.C.H.	OC (%)	Kinetic model	DegT50 (days)	DegT90 (days)	Kinetic	Non normalised Deg T50 (d)	Normalised DegT ₅₀ (d) (20°C, pF2)
KCA 7.1.2.1.1/02	et al., 1999	EPA Ref: Subdivision N, 162-1	parent 0.035	20	365	75 ²⁾		toalny sand	\$ 6.4 ³⁾	E 1086	SECO	° 2754 D	915.0 «	21125) COI	10 ¹⁰ -5) 60 ¹⁰	- ⁵⁾
		SETAC-Europe (1995) Offical Journal of		20	182	45-48		silt silt		0-2.62	SFO ⁶⁾	12 <b>2</b> .0	405.4 ^{°C}	SFQ	122.0	76.8
KCA 7.1.2.1.1/04	et al., 1999	the European Communities No L172, 95/36/EC EPA Ref:	parent 0.095	20	182	°≱\$-48		loamy sand	6.4 J.	1.80	CSFO ⁶⁾	CD1.1	433.9	SFOO °	131.1	109.3
F. 1999		Subdivision N, 162-1 OECD, Prop. (1997)		20 3.C	C ^{UIDEL}	0 ¹⁶	BBA 2010	loanty sand	6.3	2.48 2.48		CUIME	5. ^{\$7)}	- ⁷⁾	_ 7)	_ 7)
		SETAC-Europe (1995)	TDÌ	20	120 ×	€ 40-50 §		10 Joint	0.83)	2:62	SEOS	140.2	465.8	SFO	140.2	95.1
3A 1.2/03	&	Offical Journal of	M09	20	C 120	40-50		loamy	7.0 ³⁾	1.8	SFO	134.7	447.6	SFO	114.2	102.5
KC 7.1.2.1	, 1999	Communities No	0.042 to 0.045	(30) II	H H D	+1000 C	, Set 10	Doamy sand	6.4 ³⁾	0.47	_ 8)	- 8)	_ 8)	_ 8)	_ ⁸⁾	- ⁸⁾
		EPA Ref: Subdivision N,	04 01	200	12000le	1003	, Set 2	Namy sand	<b>6</b> .4 ³	0.47	DFOP ⁹⁾	5.9	n.a. ¹⁰⁾	<b>-</b> ¹¹⁾	<b>-</b> ¹¹⁾	- 11)
KCA 7.1.2.1.2/03	& , 1999	OECR Proposal (1997)	M10 0.037	120	20012			مرا toamy sand	6.4 ³⁾	0.47 ¹²⁾	FOMC	42.9	760.0	SFO	58.8	43.2
1) Ca 2) at	alculated accore 1/3 bar	ding to current FO	CLOS Kinetics	s guidance	(refer t CA 7	.1.2.1.2.40)	(1) No (1) No (1) No (1) No	acceptable fit acceptable fit,	for M10 (bu decline fit i	ut formation not possible	n fraction c e (only 2 da	ould be obt ata points at	ained from fter maxim	pathway fit 1m)	i)	
3) pH 4) Pa	I in H ₂ O thway fit (pare	nt:SFO V99 and 1	MARSEO	me	ç	2001	9) De 10) DT	cline fit	FOCUS D	egKin Tool	:>1000 d	1		,		
- <u>5)</u> No	o significant k-	rate, decline fit for	A110 not par	Gble	athurur fit)	-Q ¹	11)_N 12) 00	o acceptable fit	in the origi	inal study r	enort and v	vas therefor	e calculate	t as OC (%)	= OM(%) / 1	724
0) D						·	Studies	shaded in grey	have been	reviewed a	s part of th	e first EU r	eview of pr	opoxycarba	zone-sodium.	
		Co».	·Or· · ·	CH-									_ <b>_</b>			

July 2014

Table 7.	.1-19	Overview of th	e labora	tory aero	obic rate of	degradatio	on studies for	the metabolit	e M11				, d			0
						Derection	5	Soil characteris	tics	D.C	Persist	ence end	points ¹⁾	M	odelfing endp	oints
Refer	rence	Guideline(s)	Applied (µg/g)	Temp (°C)	Moisture (%WHC)	of test (days)	Soil origin	Soil type	<b>J</b> ĮQ	OC (%)	Kinetic	DegT50 (days)	DegT90 (days)	Kinetic	Non normatised Deg T 50 (d)	Normalised DegT ₅₀ (d) (20°C, pF2)
KCA 7.1.2.1.1/01	et 1. 1999	EPA Ref: Subdivision N, 162-1	parent 0.031	20	104.9 ²⁾	361	P ^{rop} e	Ioamy sard	6.4 ³⁾ (	5 U.Q.L 5 0.81 0.81 0 2 Q.L				0102 -4)07 5		_ 4)
/03		SETAC-Europe (1995) Offical Journal of		20	40-45	184		as silt	C 7.2	3*62	FOMC	7.2 (	24.1	FOMC ⁵⁾	7.36)	4.66)
al.	et ., 1999	the European Communities No L172, 95/36/EC EPA Ref: Subdiv.	parent 0.093	20		OIB31		Joamy sand S	6.4 6.4	2 4.80	LOOUIN	CUIRCI	بلا - ⁷⁾ ن		_ 7)	_ 7)
KC		N, 162-1 OECD, Proposal (1997)	a DĴ	\$ 20 ⁰	3.19045 C	₹184 \$	50BA 2.2	loamy smith	6.3 ×	2.48	\$-7)	0 [£]	_ 7)	_ 7)	_ 7)	_ 7)
1.2/09		OECD 307 (2002)	. Pr	20	e 52.43	© ² ©120	چ <b>I</b> @FA 2.2	loamy safet	5.5 _C	5 1.77	OSFO P	5.4	18.0	SFO	5.4	5.0
7.1.2.	2013	Directive	M11 0.25	63010	50.47	1200-1	LOFA 2.3	Sandy loam	6.8	<b>6</b> .94	SFO	26.2	87.1	SFO	26.2	20.8
CA		2004/73/EC, Method C.23, 2004	ye 1		49.940	12005	LUFASS	Clay	Ø.1	1.64	SFO	21.5	71.3	SFO	21.5	14.1
<ol> <li>Calcul</li> <li>at 1/3</li> <li>pH in</li> <li>M07 /</li> <li>Declir</li> <li>DT₅₀ c</li> <li>Pathw</li> <li>Studies sha</li> </ol>	lated accord bar H ₂ O / M11 not do ne fit using calculated fi vay fit not ac aded in grey	ling to current FQC etected in relevant ar residues of "M07" fr rom DT ₉₀ of FOMC in cceptable for M11, d y have been reviewed	wounts om origina model: DT cenne fit n d as part of cenne fit n d as part of cenne fit n	guidance ( 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +	refecto CA 7.1	20240) 20240) 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 20	ted an	ja vilono								

Page 41 of 122

July 2014

Table 7.1-20

Overview of the laboratory anaerobic rate of degradation study for the active substance propoxycarbazone-sodium

	_		Application	Temp	Duration		Soil chara	acteristies	-×.	J. Orte	Persistence engro	oints ¹⁾
	Keference	Guideline(s)	rate (µg/g)	(°C)	of test (days)	Soil origin	Soil type	₽₩		Kinetic model	DegT50	DegT ₉₀ (days)
CA71213/01	O. 2010	OECD 307, 2002 Commission Directive 95/36/EC amending Council Directive 91/414/EEC, 1995 US EPA Pesticide Assessment Guidelines, Subdivision N, Environmental Fate, Section § 162-2	0.19	20	150 (anaerobic)) & Dec & Dec & Dec & Dec			ectual ectual urds.Par uratory		FOME OT THE	$ \begin{array}{c} \begin{array}{c} & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	769 ²⁾ / > 1000 ³⁾
1) 2) 3)	Calculated accord [triazolinone-3- ¹⁴ , [phenyl –UL- ¹⁴ C]	ling to current FOCUS kinetics C] label   label	guidance within the second sec	Besstudy (1	States	NJ/01) OWDEr OWDEr	× ~ * *	e ^{pt} d	0.00 J.OC J.I.M.	jt ^e	\$\$~	
		ŢĹĹĬ		×0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		t ^{ior} of	E E E E	\$ OT			
			guid je	joht	TRAN E	ilet'r and	U.S. T.B.C.T.	the th	I A A A A A A A A A A A A A A A A A A A			
		Ray De	60 ²⁷	MC i C	ation, tat	LOID EDE	2 Jate					
		J.V.	nie si	ol - e¥	2 ¹⁰ , 5 ⁵ 10 ⁷	a and	1					
		* Dermore '	I OLDET CL	e Pé	C ^{III.} Dite	U.S.						
	Ê	MEEGNES C	MONE 2	p ^e P	<u>}</u>							
		C - A	♥									

Overview of the field dissipation studies for the active substance propoxycarbazone-sodium

July 2014

Table 7.1-21

			Pag	e 42 of 122
	<u> </u>	»	<u>e</u> °	
al ⁴	Persister	nce endpoints	Moden	oints ²⁾
 A CONTRACT	Kinetic	DT® DT®	Kinetic	DegT50

	т	Dofouonaas	Cuidalina(a)	Appli- cation	Duration	Site country		Chara	acteristi	cs upper	soil lyye	» r	Å	Persiste	nce endp	ointse	Mod endp	oints ²⁾
	ſ	xerer ences	Guidennie(s)	rate (g/ha)	(days)	Site, country	Soil type	Sand (%)	Silt (%)	Chay (%)	OC (%)	pН	<b>p</b> (j),k ³ (g/cm ³ )	Kinetic model ²⁾	DT (days)	DT90 (days)	Kinetic model	DegT50 <i>matrix</i>
				100	281	(UK)	sandy clay loam	52.8	19.2	3050 °	1.40	7.39	B38	- L BK C	2030	67.4	SFO ⁴⁾	9.6
				100	280	(Southern France)	silt loam	28.7	34. <b>5</b>	16.8	Ĉ 0.60	J. J. ŠT	1.52		21.2	070.5	OTHS 5)	10.8
	1/01		Commission	100	285	(Northern France)	silt Qam	23,6	60.6K	C 11.8	ð:07	5.48	1.43	Sqrt 1 st	×2.7	69.0	- 6	<b>-</b> ⁶⁾
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										3.4								
	KCA 7	amended 2001	BBA Guideline IV-4.1 (1986)	100	271	(Öermany) a	Silt loam	8.2	Ø3.3	1895 V	0.89	8.47	UL BELL	AL SHOT	1200	39.8	SFO ⁴⁾	4.8
				100	35900	Southern Franco	Seilt loam	N 13.8	C74.2	12:0	0.80	9.40 9.40	3.443 ¹¹⁵	Sout B	O [™] 9.1	100.8	_ 6	_ 6)
				100	284 🔗	Contraction of the second seco	sandy loam	371.6	132	13.2	0.69	J. 0.77	1.50	Sqrt 1 st	4.9	54.2	- 6	<b>-</b> ⁶⁾
	1)	After Timme and Calculated accord Calculated with a Data points befor Breakpoint was fi No acceptable fit ies shaded in grey	Frehse using best fit ling to current FOCU continuous pedotran e cumulative rainfall ixed to the time when the been reviewed the been reviewed the been reviewed	option (refe S kinetics a sfer function reached 10 r rain function as part of th	r to KCA 7.1. nd EFSA and n (Bo)On et al man were excl mand for p control of the ne first EN CO har for the first	22,1/01) Tance (refer to CA 7.1. 1999) uided bhase (kerwi) was used the of proposycarbaz 	2.2.102) Jiôr DegT500 piôr DegT500 piôr DegT500	termination of the second seco	UISE VIOI	ate t	)£ , ,),100 , 1 ,							
			CO». o		<i>₩</i>									]				

# CA 7.1.2.1 Laboratory studies

The aerobic degradation rates of propoxycarbazone-sodium and its major degradation products in soil were performed using both radiolabel positions, [phenyl-U-¹⁴C] and [triazolinone-3-¹⁴C], as well as unlabelled compounds. The studies have been performed in different soils in the dark in the laboratory at a temperature of 20 °C at different soil moistures.

A new kinetic evaluation of the degradation behaviour of propoxycarbazone-sodium and its metabolites in soil has been performed according to current FOCUS kinetics guidance to derive kinetic parameters suitable for modelling purpose and environmental risk assessment. The evaluation was based on residue data from 11 independent aerobic soil degradation studies, including 26 independent data sets. Propoxycarbazone-sodium was applied as test substance, on eight of these data sets. Additional studies in which the metabolites were applied as test substance were conducted for M05, M07, M08, M09 and M10 and M11, respectively.

The kinetic models and DegT₅₀ values used for modelling purpose and trigger evaluation (best-fit) as well as formation fractions for major degradation products are summarised in (A 7.1.2).

In addition a new anaerobic soil degradation study was performed ( $C_{A}$  7.1.62/01) submitted in this Supplemental Dossier for the propoxycarbazone-sodium renewal of approval using two different radiolabel positions, [phenyl-U-¹⁴C] and [trazolinone-3,¹⁴C]. In order to derive DegT₅₀ and DegT₉₇ values as trigger endpoints, the degradation behaviour of propoxycarbazone odium in the entire systems during the anaerobic phase of the study was evaluated according to the current FQCUS guidance document on degradation kinetics. The evaluation was performed within the study. The results of the kinetic evaluation are summarised in Table 7.1-20.

# CA 7.1.2.1.1 Aerobic degradation of the active substance

The degradation rate of propoxycarbazone-sodium in soil under aerobic conditions in the dark in the laboratory was investigated in four soil degradation addies and was evaluated during the Annex I inclusion using two radiolabel positions, [plenyl-15⁴C] and [triazolinone-3-¹⁴C], and was accepted by the European Commission (SANCO/4067/2001-Final, 30 September 2008).

Annex pount	Author(s)	<b>Year</b>	Edition No.
KCA 7.1.2.1.1/01 also fred under KCA 7.1.1.1/01			M-012902-01-1
KCA 7.1.2.1.1/02 also filed under KCA 7.1.1.102		1999	M-012867-01-1
KCA 7.1,2.1.1/03 also filed under KCA 9.1.1.1/03	et al	20 1999	M-012912-01-1
KCA 7.1.2.1.1/04 also filed under KCA 7.1.1.1/04	et al.	1999	M-012933-02-1

For information on studies aready evaluated during the first EU review of propoxycarbazone-sodium, please refer to conversion on the Baseline Dossier provided by **Section 1** on behalf of Bayer CropScience and in the Monograph.

No additional studies are submitted within this Supplemental Dossier for propoxycarbazone-sodium renewal of approval. However, updated kinetic evaluations of the degradation behaviour of propoxycarbazone-sodium in soil under aerobic conditions in the dark in the laboratory have been performed according to current FOCUS kinetics guidance to derive kinetic parameters suitable for modelling purpose and environmental risk assessment and is summarised in CA 7.1.2.1.1/05. A summary of the degradation rates of propoxycarbazone-sodium and its major degradation products in soil in the laboratory is given in CA 7.1.2.

•;	;2014;M-487131-01	
Kinetic modelling analysis of the degrada	tion behaviour of propoxyca	urbazone-sodition and
its major soil metabolites from aerobic la	boratory soil degradationstu	dies
358525-1	- S	
M-487131-01-1	103	
not applicable	1	
not applicable	× s	
no	<u> </u>	
	•; Kinetic modelling analysis of the degrada its major soil metabolites from aerobic lat 358525-1 M-487131-01-1 not applicable not applicable no	<ul> <li>; 2014;M-487131-01</li> <li>Kinetic modelling analysis of the degradation behaviour of propoxyca its major soil metabolites from aerobic laboratory soil degradation stu 358525-1</li> <li>M-487131-01-1</li> <li>not applicable</li> <li>no</li> </ul>

## **Executive Summary**

The aim of this evaluation was to conduct a kinetic modelling analysis for propoxycarbazone-sodium and its major soil metabolites from laboratory soil degradation studies in order to derive

- persistence endpoints that can be used for simple  $PEC_{soil}$  calculations and as a trigger for highertier environmental fate studies and  $\sqrt{2}$
- tier environmental fate studies and so reduced modelling endpoints for use in environmental fate models for calculation of predicted environmental concentrations (REC).

M

Only the results for propoxycarbazone-sodium are described here.

Propoxycarbazone-sodium was applied as test substance in four studies (eight of the evaluated soils) using - [phenyl-U-14C]propoxycarbazone-sodium:

- et al., 1999; CA 7.1.2.1.¢01 and KCA(7.1.1.1/01
  - et al., 1999; CCA 7,1.2.1. 603 and KCAO. 1.1 9,03
- [triazolinone-3-140]prop0xycarbazone_sodium
- et al, 1999, KCA 01.2,19/02 and KCA 7.1.1/4/02
  - et al., 1999; K&A 7.1.2.1.1/04 and K&A 7.1.1/04

Persistence endpoints ould be obtained out of all 8 independent data sets for propoxycarbazone-sodium with DegT₅₀ and DegT₉₀ values ranged from 7.2 to 215.5 day and from 28.0 to 715.8 days, respectively. The normalised modelling endpoints could be obtained for 8 out of 8 independent data sets for propoxycarbazone-sodium and vere given with DegT₅₀ values from 4.9 to 179.7 days.



The evaluation followed the recommendations of the FOCUS working group on degradation kinetics FOCUS, 2006 & 2011). All datasets were initially evaluated by comparing single first-order (SFO) and first-order multi-compartment (FOMC) kinetic models. Bi-phasic kinetics such as double first-order in parallel (DFOP) and/or hockey-stick (HS) models were also considered, where appropriate. Degradation rates of the compounds to be used as possistence endpoints were evaluated using best-fit kinetics. A set of different rules of acceptance were followed for determining modelling endpoints since the models usually rely on SFO kinetics to describe degradation rates in soil. The modelling endpoints were corrected to the reference soft moisture content at field capacity (pF2). A correction to the reference temperature (20°C) was not necessary because all studies were conducted at 20°C.

The procedures recommended by FOCUS (2006, 2011) were followed with an assessment of the goodness-of-fit based on visual and statistical evaluations. Residue data were adjusted for the kinetic modelling as follows:

- The parent value at time 0 was set to the value of the total mass balance at this time point.

- Values between LOQ and LOD were set to the measured value. Values below LOD were replaced by half the LOD. If the concentrations of the applied substance in soil decline to values below LOD, the curve was cut off after the first value below LOD, unless detections above LOQ were made later in the experiment.
- Sampling points for which the overall recovery was < 90% or > 110% AR for labelled studies and < 70% or > 110% AR for unlabelled studies were excluded following recommendations of ECD 307 (2002)⁵.

The kinetic analysis of the parent compound was conducted using the software package KinGUI (version 2.2012.320.1629) for parameter fitting (**1999**) et al., 2007 Schmitt et al. 2011⁷). Optimisations were carried out for the initial soil residue (M₀), degradation rate constants (k) (g) or breakpoint (t₀) depending (on the kinetic model. The parameters are optimised by minimising the sum of squared differences between measured and calculated data using Iteratively Reweighted Least Square (IRLS) routines. The error tolerance and the number of iterations were set to the default values of 1×10⁻³ and 10, respectively. The initial estimates for the parameters were calculated as proposed in **1000** & **1000** (2006)⁸. Data were not weighted and the initial concentration was not constrained if any of the fifs.

# II. RESULTS AND DISCUSSION

Summaries of the obtained parent persistence and modelling endpoints for proportional provided in Table 7.1-22.

		°≫″ ₄ [	<b>A</b>	ersistence end	oints 🔊		Modelling endp	oints
Study	Soil 🐇	Temp (°O	Aødel	DegTa	DegT900 (d)	Mødel	Non- normalised DegT50 (d)	Normalised DegT ₅₀ (d) (20°C, pF2)
	S.	O >>P	ropowyc	arbazone-sodi	um (MaxH656			
et al. (1999) KCA 7.1.2.1.1/01		20 R	©МС ⊈	70.20	~277.2 \$	SFO	75.5	57.3
et al (1999) C KCA 7.1.2.1.1/02			SEO		35.8 J	SFO	101.1	60.7
et al.		20 01	DFO₽	<b>\$</b> .2	28.0	SFO	7.8	4.9
(1999)		20	SFO	_≪A5.7	191.8	SFO	45.7	38.1
KCA 7.1.2.1.1/03	BBA 2.2	200	<b>\$F</b> 0	[™] 215.5 [™]	@15.8	SFO	215.5	179.7
			ðfop^	L LAN	<b>→</b> 67.4	SFO	19.6	12.3
et al. (1999) KCA 7.1.2.14504			DF <b>ØP</b>	~15.0 ~	52.6	SFO	15.3	12.7
	BBA 2	<u>3</u> 0 [×] ~	SFO 🧳	S 8.09	272.0	SFO	81.9	68.3
	ж,	S S	Ą	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8		8	8
•		Mir Mir	nippum	7.2	28.0		7.8	4.9
	× 1°	″ Maŷ	imum		715.8		215.5	179.7
		Geometric	e mean	42.7	151.2		44.1	32.5
Ĵ,		O`X	Ŷ					

## Table 7.1-22 Persistence and modelling endpoints of property carbazone, sodium

⁵ OECD (2002) Guideline for the Testing of Chemicals. Aerobic and anaerobic transformation in soil. OECD 307.
 ⁶ Schäfer, D., Mikolasch, M., Rainbird, P., Harvey, B. (2007): KinGUI: A new kinetic software tool for evaluations according to FOCUS Degradation Kinetics. In: Del Re, A.A.M. et al. (Eds.): Proceedings of the XIII Symposium

on Pestivide Chemistry, Piacenza, 2007, p. 916-923.

- ⁷ Schmitt, W., Gao, Z., Meyer, H. (2011): KinGUI2, version 2.2012.320.1629. Bayer CropScience AG.
- ⁸ Schäfer, D. & Mikolasch, B. (2006): Kinetic Evaluation with MATLAB: Introduction to the Use of KINGUI Version 1.1. Bayer CropScience AG.

## **III. CONCLUSIONS**

The best-fit  $DegT_{50}$  and  $DegT_{90}$  values ranged from 7.2 to 215.5 days and from 28.0 to 715.8 days respectively. The normalised modelling endpoints were given with  $DegT_{50}$  values from 4.9 to 170% day

# CA 7.1.2.1.2 Aerobic degradation of metabolites, breakdown and reaction products

The degradation rates of the major degradation products M07, M08, M09 and M10 in soil under aerobic conditions in the dark in the laboratory were evaluated during the Annex I inclusion using two ratiolabet, positions, [phenyl-U-¹⁴C] for M07 and M08 as well as triazolinone Q-¹⁴C] for M09 and M10, and were accepted by the European Commission (SANCO/4667/2001-Final, 30 September 2003) For a further major degradation product M05 only pathway studies were evaluated during the Annex I inclusion.

	O*		y _n o ay	
Annex point	Author(s)	🖉 🗴 Year 🖓	Applied	C Edition No.
KCA 7.1.2.1.2/01 also filed under KCA 7.1.1.1/05				<b>M</b> -006647-01-1
KCA 7.1.2.1.2/02 also filed under KCA 7.1.1.1/06		199 <b>0</b>	5 M108 5	M-012923-01-1
KCA 7.1.2.1.2/03 also filed under KCA 7.1.1.1/07				M-012887-01-1
KCA 7.1.2.1.2/04 also filed under KCA 7.1.1.1/08		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, Mg10	M-006638-01-1

For information on studies already evaluated during the first EU Peview of propoxycarbazone-sodium, please refer to corresponding section in the Baseline Dossier provided by the first EU Peview of propoxycarbazone-sodium, of Bayer CropScience and in the Monograph

C

Two kinetic reports (KCA 7.1.2.10/05 and KCA07.1.2.02/06) evaluated during the Annex I inclusion are not considered relevant for this supplemental Dossiec for the renewal of approval and are replaced by a new kinetic evaluation CA 7.12.1.240 according to current FOCUS guidance.

Three additional studies are submitted within this Supplemental Dossier for the propoxycarbazone-sodium renewal of approval. The test items were unlabelled M05 (CA 7.1.2.1.2/07), [phenyl-U-¹⁴C] labelled M08 (CA 7.4.2.1.2/08) and mlabelled M04 (CA 7.1.2.1.2/09). During the Annex I inclusion calculated halflives for M05 were accepted that seemed to be artificial, due to conservative decline fit evaluation. Therefore, an additional laboratory aerobic sold degradation study of metabolite M05 was performed to refine risk assessment endpoints. In addition, one of the calculated DT₅₀ values for M08 was not representative evaluated in the first EU review, probably due to low microbial biomass in soil. Therefore, a new aerobic soil degradation of M08 was performed to refine risk assessment endpoints. Furthermore, the aerobic transformation of M08 and the formation of the possible transformation products M07 and M11 were investigated in this new degradation study. The study was used to further elucidate the degradation fathway of the parent compound propoxycarbazone-sodium (refer to CA 7.1.1.1). The presence of M11 was confirmed and the new metabolite M11 was included into the pathway (refer to Figure 7.4/1) and newly addressed.

Furthermore, a new kinetic evaluation of the degradation behaviour of major degradation products in soil under aerobic conditions in the dark in the laboratory was performed according to current FOCUS kinetics guidance to derive kinetic parameters suitable for modelling purpose and environmental risk assessment. The study is summarised in CA 7.1.2.1.2/10. A summary of the degradation rates of the major degradation products in soil in the laboratory is given in CA 7.1.2.

		O*	
Report:	y; ;2013;M-474425-01		4 4
Title:	Aerobic transformation of MKH 6561-4-hydroxy-sacchar	in in soil [OECD ;	307]
Report No:	70434173	A.C	
Document No:	M-474425-01-1	,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Guidelines:	GLP compliant study based on the Commission Direct	tive 2004/73/ <b>E</b> Č, M	Method C.23,
	Aerobic and Anaerobic Transformation in Soil (EBC 1	Publication, No. L	£052, 2004); / O [♥]
	OECD Guideline for Testing of Coemicals No. 307: Ac	erobic and Anaer	whic ^o
	Transformation in Soil, adopted April 24, 2002		4
Deviations:	none		
GLP/GEP:	yes ( ) y	10 D' >	

## **Executive Summary**

A.

The present laboratory study investigated the degradation of MKH 6561-suffonamide (M05) in three different soil types under aerobic and somi-static incubation conditions at  $30 \pm 2$  °C for a maximum period of 91 days. The used soils were a loamy sand (LUFA 2.2, pH 5.5) organic carbon of 1.87%), a sandy loam (LUFA 2.3, pH 6.8, organic carbon of 0.94%) and a clay soil (EUFA 68, pH).1, organic carbon of 1.64%). The test item was applied at a nominal treatment rate of about 250 µg/kg dry soil. This worst case scenario (1.3 fold recommended field use rate of patent propoxycarbazone-sodium) was chosen to overcome matrix effects during MS analysis. The soil moisture was maintained between 49 and 55% of the soils' respective maximum water holding capacity for the duration of the study.

For all three soils, a mixture of methanol and pure water (50/50 v/v) with 0.1% acetic acid was chosen as extraction mixture. For tified samples spanning a concentration range from nominal treatment rate to the 5%-level, confirmed linear extraction recoveries for all three soils.

The test item disappeared rather fast from the soil stracts in case of the clay (LUFA 6S), the amount of the test item declined below 10% abeady after 14 days of incubation. In case of loamy sand (LUFA 2.2) and sandy loam (LUFA 2.3) the test item declined below 10% of applied amount after 37 days.

J A A	MATERIALS AND METHODS
MATEROALS C	
1. Test material $^{\circ}$ $^{\circ}$	MARI 6562-sulforamide (M05)
(nor radiolabellad	
	y Q' Q'
Chemical Name 🖉 🌧 🔪 🖗	Metleyl 2-sulfamoylbenzoate
Description:	Solid. while
Batch #:	AE F078550-01-01
Origin Britch #	BGOO 5771-1-1
CASSIO.: 2	57683-71-3
Purity: Or A S	99.4%
	<i></i>
& Storage.	At $+10$ to $+30^{\circ}$ C under dark and dry conditions
$E_{\mathbf{X}} \stackrel{\sim}{\to} \mathbf{D}_{\mathbf{Y}}$ Date:	March 14, 2013

Stability of test compound:

Analysis of stored soil extracts obtained from fortified samples confirmed sufficient storage stability over a period of 49 and 50 days. The concentration of test item in the extracts analysed after 49 and 50 days was 90% to 107% related to the concentration determined immediately after preparation.

## 2. Soils

Three different soils (refer to Table 7.1-23) were used for the study. The soils were freshly oflected the field and were passed through a 2 mm sieve prior to use to ensure uniform particle size. Soils were stored at room temperature (approx. 20°C) in the dark for tess than 3 months until use. The sort was peincubated for a period of 18 days at temperature and moisture conditions approximating those of the test

, ¢

Table 7.1-23 Soil physicochemical p	roperties		
Soil	LUFA 2.2		~
Location			
Country	Germany	Germány S	Germany
Batch	@F2.21912 @	5 F201912	\$
Soil type ¹⁾	O Loamy sand	Sandy loann	C Chay
Sand (%)	~ \$0.6 ± 266	63.704.4	
Silt (%)	12.6±1.7	296 ± 3.8	<i>§</i> 36.8 ± 2.0
Clay (%)	60 ± 1.3		
Organic carbon (%)		0.94¥0.10	$1.64 \pm 0.12$
pH (0.01 CaCl ₂ )	5.5 ±0.2		$7.1 \pm 0.1$
CEC (meq/100 g)	$3$ $9$ $\pm 0.7$	0 10.7 ± 1.4	$23.7\pm7.0$
Moisture (g/100g)	44.4×6.0 ×		$38.9\pm4.6$
Cmic of Cor (%) at 45st star	O' \$1.5 0		2.5
Cmic of Grg (%) at test end		Ø .4	2.4
1) According to USDA			

#### B. **STUDY DE**

# 1. Experimental conditions

The test systems were maintained a the dark or fiffuse light at a temperature of  $20 \pm 2^{\circ}$ C in an air-conditioned room.

250 mL wide neck bottles with their ad loosely positioned on top to allow permanent air exchange *were used as test systems. Aerobio incubation conditions were maintained by a permanent passive air exchange with ambienwair.

Three sous representing a range of relevant soil properties were used: a loamy sand (LUFA 2.2, pH 5.5 Organic carbon of 1.87%), @ sandy loam (LUFA 2.3, pH 6.8, organic carbon of 0.94%) and a clay soil (UFA S, pHS.1, organic carbon of 1.64%). The soils were freshly collected from the field, sieved through a 20nm sieve and pre-incubated for a period of 18 days at temperature and moisture conditions approximating those of the test.

The soil moisture was adjusted to and maintained at 48.52 to 54.66% of the soils' respective maximum water holding capacity during the incubation period. Water losses were compensated by addition of water (sterile filtered tap water).

The treatment rate based on the highest recommended single field use rate of the parent propoxycarbazone-sodium of 70 g/ha would be 190 µg/kg dry soil. To overcome matrix effects

during MS-analysis despite matrix adapted analysis, a conservative application rate of 250 µg/kg dry soil was chosen. The test item was added to the soil using quartz sand as a carrier. A corresponding amount of an acetone stock solution of the test item was added to the quartz sand and the solvent was evaporated overnight at room temperature. The quartz sand was then added to the soil followed by 5 min mixing using an electrical hand-mixer. After application, about 63-85 so of the soil (wet weight basis equivalent to 52-69 g dry weight) was placed into each incubation flask. Each sampling point was measured in duplicate. For the four untreated control samples for soil approximately 150 g were filled in identical incubation flasks.

For each soil two sterile controls were prepared which were sampled together with the last soil samples. The soil was heated for 15 min to 121°C on three consecutive days (wet sterilisation using an autoclave).

The experiment was terminated after a maximum of 91 days, because the concentration of the term was  $\leq 3\%$  of applied amount in all soils  $\cancel{3}$ 

## 2. Sampling

At least duplicate incubation flasks were sampled and sacrificed a days 1,2, 4, 7,9, 14 and 37 for all soils. For LUFA 2.2 and 2.3 an additional sampling point at day 91 was investigated. For the determination of the test item content in the soil approximately 10 galiquots of soil were taken from each sample. The first alignet was taken immediately after the end of mixing the test item, the second after half of the incubation flasks had been filled, and the third at the end of the entire application process to verify uniform distribution of the ost item in the soil.

## 3. Description of analytical procedures

In all cases the extraction liquid was methanol-water 50/50 v/s containing 0.1% acetic acid. Acidic conditions were chosen to avoid saponification of the ester group. In all cases extracts were filtered over disposable 0.45 µm PTFE syringe filter

The soil aliques were treated for 10 min in an ultrasonic bath, followed by vigorous shaking on a reciprocal shaker. The soil was extracted 3 times with 45 mL of the above described mixture. Phase separation was accomplished by centrifugation (3000 rpm; 40 min; 4 °C) and supernatants from the three extraction steps were combined and the final volume adjusted to 50 mL using the extraction mixture.

The following some extracts were concentrated by rotary evaporation as overall concentrations of the test item fell below 10% nominate

LUFA 2.2: From day 37 orwards and sterile controls

LUFA 2.3: From day 37 Snwards and Sterile controls

LUFA 65: From day Jonwards

8 mL soil extract were evaporated to dryness and re-dissolved in 2 mL extraction liquid. Resulting concentration factor was 4. Depending on the overall amount required, 20 mL were reduced to a final volume of 5 mL and 40 mL to a final colume of 10 mL. Fortified samples spanning a concentration range from nominal reatment rate to the 5%-level confirmed linear extraction

^{7} recoveries for all three softs. However, recoveries of the 5%-level were slightly below the required 70% limit for soil LUF 2.2  $\sqrt{2}$ 

All soil extracts were analysed undiluted, but filtered over 0.45  $\mu$ m disposable PTFE-syringe filters

Att soil extracts obtained were quantitatively analysed by test item specific LC-MS/MS (Agilent 200 and API 3200, Eluent: HPLC grade water with 5 mM ammonia acetate and pure ACN with 5 mM ammonia acetate).

The mean LOD of 0.61  $\mu$ g/L equivalent to 3.053  $\mu$ g/kg of soil is equivalent to 1.2% of the average nominal treatment rate.

Inc pri was determined according to DIN 19684 (CaCl₂).
 The microbial biomass was determined according to the DIN guideline 14240. The soil was supplemented with glucose and the respiration rates of the soil microflora were measured.
 II. RESULTS AND DISCUSSION
 ATA
 1-24 Quantification of test item (M05) in LUFA 2.2 soil with a mominal treatment was soil at 20°C

#### DATA A.

		¥		a,	- N 7	5.4
Table 7.1-24	Quantification of test item (M05) in	n LUFA 2.2 soil '	with a pominal to	eatment ra	teðf 254.	δμg/kg)
	soil at 20°C	a. Y	L	õ '	Q. 0*	

<b></b>				
Incubation time (d)	Concentration of M05 (µg/kg)	(%)	mean conc. of M05 (ug/kg)	mean MDS ش nominal س (%)
0	245	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
0	234	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$		
0	238	94 2 94		
1	203	× 80° ~		
1		\$ \$ 08 \$ A		
2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 70 ×	Ø 187 Ö	74
2		0 7 7 8 ¹		/ -
4	× 150	59 SV *	150	59
4	× ³ ¹⁴⁹ × ⁰	597 0		
7	<u>, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		40
7 8	~ ~ ~ ~ ~	¥ 43,5 ⁴ Ø		10
9 %	Q 0 78 0 K	St St	<i>©</i> 82	32
9 0		³ ⁰ ³³ ³	~~~ *	
<b>£</b> Ç″	69 k		69	27
14		\$\$ \$\$27 \$\$"		
37	A 246 X X	6 °C'	15	6
37			-	-
91	TO A Q		4	2
910 "				
<u>91¹⁾</u>		84	218	87
1) Sterils central @		91		
1) Sterile control	A' Q' J' Q'			
	St. St.			
Č ^O ^v				

Table 7.1-25	Quantification of test item (M05) in LUFA 2.3 soil with a nominal treatment rate of 257.2 µg/kg
	soil at 20°C

Incubation time (d)	Concentration of M05 (µg/kg)	M05 nominal (%)	mean conc. of M05 (μg/kg)	mean M05 nominat
0	233	91	ð	
0	246	95	Ŵ	92
0	234	91	× ×	
1	194	760		76
1	200	78		
2	192	<u> </u>		
2	198	Q ⁰ 77 ~		
4	185	ζ <u>φ[°]72 δ ζ</u>	187.5	
4	189	× 730 0°	Storing of	à s
7	118 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
7	131	y 0 51 y C		
9			N 2 3 5	× 38
9	988	Q Q 38 6 4		
14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		\$ 74 O	29
14		\$ 80 ×		
37			22	9
37			S S	
91				3
91				
911)			<i>©</i> 17	7
91 ¹ )				

Incubation time (d)	Concentration of M05 (µg/kg)	M05 nominal (%)	mean conc. of M05 (μg/kg)	mean M05 nomin <b>a</b> t
0	238	91	Ś	
0	249	95	206	90
0	222	85		
1	189	769	Û 170 Û	
1	151	58		
2	148	56 Q		
2	173	Q 66 ~		
4	130	چ ⁶ ⁵⁰ ک		
4	129	× 490 0 ⁷		
7	49			
7	61			
9	44 LOV V			15
9	36%	\$ \$14 \$ s		
14	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 9 4 R		0
14	164	2 0 ×		8
37	°∼y n.d. Q	S A n.a. S		
37	Sn.d. O	n'ay of	n.a	n.a.
441)		N N15 0		1.4
44 ¹⁾	\$ ³² \$	× 2× 13,5° Q		14
1) Sterile control		XI A. AV		

#### Quantification of test item (M05) in LUFA 6S soil with a nominal treatment rate of 261.9 µg/kg Table 7.1-26 soil at 20°C

n.d. not detectable, vane below LOI n.a. not applicable

#### B. MASS BAL

The test item spectric method (KC-MS/MS) yorlded acovery rates of 94%, 92%, 90% of applied amount at test start for the soils LUF  $\times 2.2$ , 2/3 and 6S, respectively. Removal of the test item at test start confirmed validity of the study as recovery rates fell in the required range of 70 – 110% nominal. Recovery rates at later stages could not be given due to the use of unlabelled test item. However, fortified samples over a concentration range from nominal treatment rate to the 5%-level confirmed linear extraction recoveries for all three soils. Only for LUFA 2.2 recoveries of the 5%level were slightly below the required 70% limit.

#### BOUND AND EXTRACTABLE RESIDUES С.

Bound and extractable residues could not be measured due to the use of unlabelled test item.

#### **VOLAFILISAŤIO**Ř D

Voloilisation could not be measured due to the use of unlabelled test item.

#### E. **TRANSFORMATION OF PARENT COMPOUND**

The test item concentrations constantly decreased in the soil extracts.

In case of the clay (LUFA 6S), the amount of the test item declined below 10% already after *W* 14 days of incubation. In case of loamy sand (LUFA 2.2) and sandy loam (LUFA 2.3) the tespitems declined below 10% of applied amount after 37 days. The incubation of the treated soils was stopped after 91 days in case of LUFA 2.2 and 2.3 and after 37 days in case of LUFA 63.

No test item was any longer detectable at the end of the incubation period in case of KDFA neither by direct analysis of the soil extracts nor after concentration of the soil extracts. In case LUFA 2.2 and 2.3, 2% and 3% of applied amount were detected after 91 days, respectively.

Detailed values obtained for each sampling point can be found in Table 7.1-24 to Table 7.1-24

In sterile controls 87% and 7% of applied amount were detected after 91 days in case of LUFA and 2.3, respectively. In case of LUFA 6S, 14% of applied amountwas measure Dafter 44 day of incubation. The low recoveries in case of the clay soils (LUFA 2,3 and 68) might point to a certain abiotic decay, however, considering the logh recovery in case of LUFA 2.2, it was considered likely that wet sterilisation of the clay soil types was not complete A mainly biotic decay was also supported by the fact that fastest deckine of WKH 6561-solfonamide (M65) was observed in clay, the soil with the highest biological activity after disturbing the soil matrix by the application process. L, 

Screening for transformation products was not conducted

It was found that MKH 656Y-sulfonamide (M05) degrades rapidly under accobic conditions in all three soils types investigated. Kastest degradation was observed in clay. As the extraction from soil matrix was satisfactory linear from nominal treatment rate to at least the 5%-level, that was considered valid for the calculation of disappearance times. Ľ

A kinetic evaluation following current FOCUS guidance was conducted and is summarised in CA 7.1.2.1.2/10. The best-fit Deg 150 and Deg T values ranged from 3.8 to &4 days and from 12.6 to 30.1 days, respectively. The normalised modelling endpoints were given with DegT₅₀ values from 2.6 to 6.8 days. An overall summary of the degradation rates of the major degradation products in soil in the laborator is given in CA 7.1.2

Report:	;2012;M-47@18-01
Title:	Accobic transformation of MKH 6561-surronamide in soil [OECD 307]
Report No:	00414163 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Document No; "	M-470418-061 Q Q
Guidelines:	Commission Directive 2004/73/EC, Method C.23, Aerobic and Anaerobic
L.	Transformation in Soil (EEC Publication No. L 152, 2004); OECD Guideline for
×,	Festing of Chemicals to . 307 Aerobic and Anaerobic Transformation in Soil,
	adopted Apřil 24, 2002
Deviations:	none a a a
GLP/GEP:	Mes N S Q

This study is completely summarised in CA 7.1.1.1/09. A kinetic evaluation following current FOCUS guidance was conducted and is commarised in CA 7.1.2.1.2/10. The best-fit DegT₅₀ and DegT₉₀ values ranged from 8.556 88, days and from 152.9 to 294.8 days, respectively. The normalised modelling endpoints were giverowith DegT₅₀ values from 29.5 to 69.7 days. An overall summary of the degradation rates of the diajor degradation products in soil in the laboratory is given in CA 7.1.2.

Purity: Storage:

Expir Stabi

July 2014

Report:	ö:	2013;M-474427-0	1
Title:	Aerobic transformation of MKH	6561-4-methoxy	
Report No:	70469173	J	
Document No:	M-474427-01-1		
Guidelines:	Commission Directive 2004/73	/EC, Method C.2	23, Aerobic and Anaerobic 🔗 🛷
	Transformation in Soil (EEC I	Publication No. L	L 152, 2004); OECD Guideling for 6
	<b>Testing of Chemicals No. 307:</b>	Aerobic and Ana	aerobic Transformation in Soil, 🖉
	adopted April 24, 2002		A. 57 29 . 4
Deviations:	none	<i>i</i> ≥ _A	
GLP/GEP:	yes	<u> </u>	$-\tilde{\mathcal{Q}}$
		× 1	
<b>Executive Summa</b>	ary	Ĵ,ÛY	
	0		
The present labora	tory investigated the degradation	of MKH 656124	1-methoxy-saccharin in three different
soil types under ae	robic conditions at $20 \pm 2^{\circ}$ C for a	perfod of 120 d	laws in the dark of under diffuse light.
The used soils wer	e a loamy sand (LUFA 2.2, $p_{1}^{*}$ 5.	5 Organic carbo	m of 129%), ar and loam (AUFA.
2.3. pH 6.8. organi	c carbon of 0.94%) and a eavy sof	CULLER 6S. n	7.1, organic carbor of 1.64%). The
soil moisture was r	maintained between 47 and 53%	of the soils' cosp	ective maximum water holding
capacity for the du	ration of the study.		
The test item was a	applied at a nominal treatment rate	e/of 250/µg/kg/d	try soft. This worst case scenario (1.3
fold recommended	field use rate of parent proposed	arbazone-sødfun	m) @as chosen to overcome matrix
effects during MS-	analysis. For all three soils, an ex	traction solvent	consisting of acctonizile and 50 mM
CaCl ₂ with 10 mM	$1 \text{ NH}_4\text{OH} (50/50, \text{v/v})$ was chosen	and all soil exte	acts optained were quantitatively
analysed by test ite	m specific LC-MS/MS.		
The test item disan	meared rather fast from the set	tracts The amo	unts declined them 98% at day 0 to
0.5% at day 37 in t	the logarity sand (LUFA 2 2) from	03% at day 040	$\sqrt{2\%}$ at day $\sqrt{27}$ in the sandy loam
(LUFA 2 3) and fr	om $\hbar 06\%$ at day $\theta 000.05\%$ at day	77 in the clay (I	LUFQ (6S) $f$ (fter 120 days of
incubation 0.3-2%	at the initially applied amount of	f testitem was d	lefected inthe soil extracts
Ő			
O*	🖉 🗸 k MATERIAL	SAND METHO	OBS
		Å * °	× · · · · · · · · · · · · · · · · · · ·
A. MAMERIA			<i>y</i>
1. Test materi	al 🌮 🔗 Mik H 6564-4	4-methoxy-saccl	harin
(non-radiola	Belled & &		
Chemical	ame; V V A-methoxy,	,2-benzothiazol	l-3(2H)-one 1,1-dioxide
Description:	🏹 🏑 Light yellow	v powder	
Bated#:	Q & BCS-AG710	¥\$-01-01	
Origin Batch		-13-5	

99.7%  $3^{\circ}$ At +10 to +30°C, under dark and dry conditions

June 19, 2013

Est compound

Storage stability after 53 days was investigated for concentrated (5%-level) and untreated soil extracts (nominal treatment level) by specific LC-MS/MS-analysis and no loss was observed.

2. Soils Three different soils (refer to Table 7.1-27) were used for the study. The soils were freshly collected from the field and were passed through a 2 mm sieve prior to use to ensure uniform particle size. Soils were stored at room temperature (approx. 20°C) in the dark for less than 3 months until use. The soil was preincubated for a period of 24 days in case of untreated control samples and 25 days in case of treated soil samples at temperature and moisture conditions approximating those of the test.

Table 7.1-27 Soil physicochemical p	oroperties		
Soil	LUFA 2.2	LUFA 2.3	LUE®6S
Location			
Country	Germany	Germany	Germany &
Batch	F2.21912	F2.319	E F6S2012
Soil type ¹⁾	Loamy sand	Sand	L Q Clay S &
Sand (%)	78.9 ± 3.5		£ 24.5 ±3.5 £
Silt (%)	$13.8 \pm 2.7\%$	28.4 24.5	35.0±2.9
Clay (%)	7.3 ± 2	8.5 ± 1.7	40.5 ± 2.1
Organic carbon (%)	1.74±0.20	Ø94±0.10	0 1.64 0.12 y
pH (0.01 CaCl ₂ )	5.5±0.2	6.840.2	$\sqrt[4]{7.1\pm0}$
CEC (meq/100 g)	0.5 10.4 ± 0.5 5		27.2 ± 1.4
Moisture (g/100g)	41.8 ± 3.0	37.3 4.8 2	40.5 ± 1.8
Cmic of Corg (%) at test start	1.60° (S		2.6
C _{mic} of C _{org} (%) at test end	& 2 ²⁷ 4		6.7
1) According to USDA			

# B. STUDY DESIGN

## 1. Experimental Conditions

Wide neck bottles with their lid loosely positioned on op to allow permanent air exchange were used as test systems. No further traps were fitted. The test systems were incubated in the dark or in diffuse light at a temperature of  $20 \pm 2^{\circ}$ C in an air conditioned com. Aerobic incubation conditions were maintained by a permanent passive air exchange with the surrounding atmosphere.

Three soils representing a range of relevant soil properties were used: a loamy sand (LUFA 2.2, pH 5.5, organic carbon of \$77%); a sandy loam (LUFA 2.3, pH 6.8, organic carbon of 0.94%) and a clay soil (LUFA 6S, pH 7.1, organic carbon of 1.64%). The soils were freshly collected from the field (storage period shorter than 3 months) sieved through a 2 mm sieve and pre-incubated for a period of 24 days (untreated control samples) and 25 days (treated soil samples) at temperature and moisture conditions approximating those of the test.

The soil moisture was adjusted prior to application and it was maintained at 46.6 to 53.4% of the soils' respective maximum water holding capacity during the entire incubation period. Water Mosses were compensated by the addition of water (sterile filtered tap water).

The treatment rate based on the highest recommended single field use rate of the parent propoxy carbazone-sodium of 70 g/ha would be 190 µg/kg dry soil. To overcome matrix effects durine MS-analysis despite matrix adapted analysis, a conservative application rate of 250 µg/kg dry soil was chosen. The jest item was added to the soil using quartz sand as a carrier. An appropriate amount of an ethanol stock solution of the test item was added to the quartz sand and the solvent was evaporated overnight at room temperature. The quartz sand was then added to the soil followed by 54 minutes of mixing. After application, about 65-80 g of the soil (wet weight basis equivalent to 53-67 g dry weight) was placed into each incubation flask. Each sampling point was measured in duplicate. For the four untreated control samples per soil (applied analogously with the stock solution solvent ethanol, used for microbial biomass determinations) approximately 150-155 g wet weight soil were filled in identical incubation flasks.

Furthermore, for each soil two sterile controls were prepared which were sampled together with the last soil samples taken. For sterilisation, the soil was heated for 15 min to 121°C on three consecutive days (wet sterilisation using an autoclave). For application of these samples, the ethanol stock solution was diluted by a factor of 10 to obtain an application solution which was directly applied to the sterilised soil samples. 

The experiment was terminated after 120 days of incubation.

## 2. Sampling

To verify an uniform distribution of the test item in the soil, a 10 granquot of soil was taken from each application batch three times: immediately after the end of mixing the test item, when the second after half of the incubation flasks had been filled and at the end of the entire application process. Furthermore, at least duplicate incubation flasks were sampled at days 1, 2,3, 6,9, 14, 37, 77 and 120 for all soils. At day 37, sub-samples of approximately 10, were taken out of the test unit with the remaining soil being further incubated until the next sampling point at day \$7. The total amount remaining in the test unit was \$50 g dry sojk

Sterile samples were collected at DAT-120. Untreated control samples used for rhicrobial biomass determinations were sampled at DAT-49 and DAT-122. The soil aliques used to determine the microbial biomass prior to test start and at DAT V were taken out of the large soil batches adjusted to approx. 50% of the maximum water holding capacity and after the solvent application, °

# 3. Description of analytical procedures

respectively. Description of analytical procedures In all cases the extraction liquid consisted of acetonitrile and 50, mM CaCl₂ with 10 mM NH₄OH (50/50 w/w) 10 mJ with 10 mM NH₄OH (50/50, v/v). 10 mL of this prixture were added to approximately 10 g of soil. The samples were treated for 10 min man ultrasonic bath, followed by vigorous shaking on an overhead shaker. The soil was extracted 4 times. Phase separation was accomplished by centrifugation (3000 rpm; 10 min; 4 °C) and supernatants from the three extraction steps were decanted and combined. The final volume was adjusted to 50 m using the extraction mixture.

The following soil extracts originating from the degradation study were concentrated by rotary evaporation as overall concertrations of the test it on fell below 10% nominal:

LUFA 2.2: From day 37 onwards control vest module and end sterile controls

LUFA 2.3: From day 77 onwards, control test end, and sterile controls

LAJFA 6S: Front day 70 onwards, control test end, and sterile controls

20 mL of the respective extract was concentrated by removal of the organic phase at 25 mbar and 40°C by rotary evaporator. The residual volume was cocorded.

Untreated soil extracts were filtered through 0.2 µm PTFE-syringe filters, concentrated soil extracts after temoval of the organic solvent - were filtered through 0.2 µm cellulose acetate syringe filters.

All soil extracts obtained were quantitatively analysed by test item specific LC-MS/MS (Agilent 1,200 and APJ 200, Eluent: PPLC grade water with 0.1% formic acid and pure methanol

 $\chi$  containing 0.1% for this action. Reference solutions spanning a concentration range from 1  $\mu$ g/L to 100 mg/L were prepared by appropriate dilution using respective soil control matrix. The soil control matrix was obtained by extraction of the untreated control samples.

Validation of the apalytical methodology including verification of extractability of the test item from soil matrix as well as stability of the test item in soil extracts was accomplished as part of IBACONStudy 7043473 (CA 7.1.2.1.2/08). Linearity of calibration curves for untreated and concentrated soil control matrix was at least 0.9974 (r) during the main test.

The limit of detection and quantification was also determined as part of IBACON Study 70434173  $(\sqrt{2}^{7}, 1.2, 1.2/08)$  as accounted for: LOD = 0.24 µg/kg for untreated soil extracts (0.06 µg/kg for concentrated extracts) and LOQ =  $12.5 \,\mu g/kg$  as determined by fortified samples.

The pH was determined according to DIN 19684 (CaCl₂).

The microbial biomass was determined according to the DIN guideline 14240. The soil was supplemented with glucose and the respiration rates of the soil microflora were measured.

### **II. RESULTS AND DISCUSSION**

#### DATA A.

		II. RESULTS ANI	DISCUSSION	~	
A.	DATA			J.	
Table	7.1-28	Quantification of MKH 6561-4-methoxy-s 252.36 μg/kg soil at 20°C	accharin in LUFA	2.2 soil with a tra	earment cate of

Incubation time (d)	Concentration of MKH 6561-4-methoxy- saccharin (μg/kg)	MKH 6561-4-methoxy- saccharin recovery (%)	Mean epsc. of MKH 6561(4-methoxy- Gaccharin (μg/gg)	Mean NKH 6561-4-0 methoxy-sacharin recovery g%)
0	244	& 97 ° °		
0	248	0 ⁹⁸ × 0		
0	251	×7 299 ~~	× A S .	
1	232	<u>۵</u> ۵ ۵ ۵ ۵ ۵ ۵		
1	231	°		
2	218 Q	\$6 D	\$ 5 1,217 5	× × ×
2	216 🥥 💡	× ⁰ 86 8 4		× ⁸⁰
3	188 🖑 🌾	OF TAS OF		© 76
3	1.97	\$ \$ ⁷⁸ 4		4 70
6	×113 ×			12
6	<u>0</u> 102 S			72
9		× × 29 × ×		30
9	0 0 77 0 0	<u> 20 3 X 3 3 3 3 3 3 3 3 5 5 5 5 5 5 5 5 5 5</u>		
14		A NO O		16
14				
37 ***		S N W		0.5
37		× (0.4 ² ) O	- }	0.0
77			0 ²⁾	0 1 ²⁾
77 ~~				0.1
120	\$ ^{1²)}	$0.4^{2}$	12)	0.32)
120		\$~ Q.39″	1	0.5
120 ¹⁾	206 27	\$\$2 \$\$2	205	82
1201)	205	¥ 2 82	205	02

Table 7.1-29Quantification of MKH 6561-4-methoxy-saccharin in LUFA 2.3 soil with a treatment rate of<br/>249.82 μg/kg soil at 20°C

Incubation time (d)	Concentration of MKH 6561-4-methoxy- saccharin (μg/kg)	MKH 6561-4-methoxy- saccharin recovery (%)	Mean conc. of MKH 6561-4-methoxy- saccharin (μg/kg)	Mean MKH 6561 ₆ 4- methoxy-saccharin recovers
0	245	98	, A	~~ <u>`</u> ~~
0	251	101	246	5 98 T . O
0	240	96 _(Č)		
1	245	98 🚿		
1	241	96		
2	237	95		
2	246	99°°°		
3	235	0 ⁹ 94 0 [°] 6		
3	243	A 970 ~		
6	223	\$9 0 ×		
6	208	& & 83.		
9	213	85 ×	2 0712. 0 (	الله الله الله الله الله الله الله الله
9	211	x 784 5		& 05
14	189 🖉 🕵	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 74
14	1820 O´	S St L		
37	105	<u>6 6 42 0 0</u>	106 ×	42
37	107 ° °			
77	S O N		Q 5, S	2
77				
120		A	», ~ 4	2
120				
1204			240	96
$\frac{120^{1}}{1}$ Sterile control		× 0 ⁹⁹ 0'	<u>,</u>	

Table 7.1-30	Quantification of MKH 6561-4-methoxy-saccharin in LUFA 6S soil with a treatment rate of
	250.58 μg/kg soil at 20°C

Incubation time (d)	Concentration of MKH 6561-4-methoxy- saccharin (µg/kg)	MKH 6561-4-methoxy- saccharin recovery (%)	Mean conc. of MKH 6561-4-methoxy- saccharin (µg/kg)	Mean MKH 6561-4- methoxy-saccharin recovers
0	228	91	. S	4 <u>,</u> 4
0	302	120	266	\$ 106 V
0	268	107		
1	211	84 🚿	Q15	
1	219	87		
2	220	88		
2	229	91 °		
3	207			A A co
3	205	82 82 V		
6	191	$\sqrt[6]{6}$		
6	204			
9	167	67 67	Q170 0	
9	192	L 076 J		× 12
14	157 🖉	² 63 ²	A TAO	© *~ 64
14	$162$ $0^{\vee}$			2 UT
37	× 79 ÷	<u>5</u> 31 <u>5</u> ,0	× 46 %	30
37	\$ 72 ° \$		O O A	50
77	S & N	- 0.4 ² ) , O		02)
77				0 '
120				2
120				۷.
120	253		265	106
1201)	276	NY OHI ON	203	100
1) Sterile control			<u></u>	

2) Values detected below lower calibration standard

à

# B. MASS BALANCE

The dosage of the test item was verified by analysing 3 aliquots of the treated soil taken immediately after application (immediately after end of mixing the test item, after half of the incubation flask had been folded and at the end of the entire application process) and homogenous distribution could be confirmed. Recovery rates determined at test start (DAT-0) were  $98 \pm 1\%$ ,  $98 \pm 2\%$  and  $100 \pm 15\%$  for soils LUFA 2.2, 2.3 and 6S, respectively. Recovery rates at later stages could not be given due to the use of unlabelled test item. As extraction from soil matrix was satisfactory mear from nominal treatment rate to at least the 5%-level (refer to IBACON Study 70434173 CA 74, 2.1, 208), data was considered valid for calculation of disappearance times.

C. **BOUND AND EXTRACTABLE RESIDUES** 

Bound and extractable residues were not measured due to the use of unlabelled test item.

## **D VOLATILISATION**

Volatilisation was not measured due to the use of unlabelled test item.

## E. TRANSFORMATION OF PARENT COMPOUND

The test item concentrations constantly decreased in the soil extracts.

In case of the loamy sand (LUFA 2.2), overall test item concentrations fell below 10% after 37 days of incubation. In case of the sandy loam (LUFA 2.3) and the clay (LUFA 6S) concentrations fell the below 10% at DAT-77. The incubation of the treated soils was stopped after 120 days.

The test item amounts declined from 98% at day 0 to 0.5% at day 0.7 in the loaney sand (LUFA 2.2), from 98% at day 0 to 2% at day 77 in the sandy loan (LUFA 2.3) and from 106% at day 0 to 0% at day 77 in the clay (LUFA 6S). After 120 days of incubation, 03-2% of the faitially applied test item was detected in the soil extracts.

Detailed values obtained for each sampling point can be found in Table 7.1-26 to Table 7.1-30. In sterile controls 82% to 106% of the applied test item was detected after 120 days, hence no significant abiotic decay contributed to the decay observed in the biologically active sets.

# JII. CONCLOSION

It was found that MKH 6561-4-methoxy-sacebarin disappeared rather fast from the soil extracts. Fastest degradation was observed in the loanty sand, Results obtained confirmed that MKH 6561-4-methoxy-sacebarin was mainly subjected to a biological degradation under aerobic conditions at ambient temperature.

A kinetic evaluation following current FOCUS guidance was conducted and is summarised in CA 7.1.2.1.2/10. The best fit Deg T₅₀ and Deg  $F_{90}$  values ranged from 5.4 to 26.2 days and from 18.0 to 87.1 days, respectively. The normalised modelling endpoints were even with Deg T₅₀ values from 5.0 to 20.8 days. An overall summar of the degradation rates of the major degradation products in soil in the laboratory is given in CA 7.1.2.



The aim of this evaluation was to conduct a kinetic modelling analysis for propoxycarbazone-sodium and its major soil metabolites from laboratory soil degradation studies in order to derive

- persistence endpoints that can be used for simple PEC_{soil} calculations and as a trigger for highertier environmental fate studies and
- modelling endpoints for use in environmental fate models for calculation of predicted environmental concentrations (PEC).

Only the results for the metabolites of propoxycarbazone-sodium are described here.

The evaluation was based on residue data from 11 independent aerobic soil degradation studies, including 26 independent data sets. Propoxycarbazone-sodium was applied as test substance in four Oldies eight of the evaluated soils) using

- [phenyl-U-¹⁴C]propoxycarbazone-sodium: et al., 1999a - KCA 7.1.2.1.1/01 and KCA 7.1.1.1/01 et al., 1999a - KCA 7.1.2.1.1/03 and KCA 7.1.1.1
- [triazolinone-3-14C]propoxycarbazone-sodium@
  - et al., 1999b KCA 7.1.2.1.1/02 and KCA 7.1.1 et al., 1999b - KCA 7.1.2.1.1/44 and KCA KI.1.1/64

were applied as test substance were conducted for Additional studies in which the major soil metabolites

- M05 , 2012 - CA 7.1.2.1.2/97),
- Я**999.-ЖСА**Т.1.2.1 M07 ( & 2/01 and KCA 1999 - KČA 7.1.2.1.2/02 and KC
- M08 & 2013 - CA 7.1.2.1.2/08 and GA 7.121.1/09
- M09 ( ₩1/07), 1999 - KCA 7.1 and K x
- M10 ( 1999 - KGA 7.1.2.1.2/04/02 and K 1/08) and &
- 2013b @A 7.1 2.1.2 M11

An overview of the obtained persistence and modelling endpoints for the major soil metabolites of propoxycarbazone-sodium: M05, M07, M08, M09 M10 and M11 is provided below. L Ŵ

Table 7.1-31	Persistence and m	odelling endpoints	for the soil'r	netabolites of pro	poxycarbazone-sodium

	ð í	🛇 Persistence	endpoints/	% 2	Modelling endpoints					
	م ک DegT	50 ( <b>d</b> )	DegT		Non-norma	hised DegT ₅₀ 1)	Normalised (20°C	DegT ₅₀ (d) , pF2)		
li l	Range	(eomean ()	Range	Geomran (n)	<b>Fan</b>	Geomean (n)	Range	Geomean (n)		
M05	2.8-17.4	5.5(6)	<b>\$9.3 - 57.8</b>	19.6 (6)	2.84 17.4	5.6 (6)	1.8 - 14.5	4.3 (6)		
M07	4.6 - 39.8	16.1 (3)	15.2-132.2	\$ 53.3 (3°)	<b>≪4</b> .4 – 39.8	15.9 (3)	2.8 - 33.2	11.6 (3)		
M08	8.5->1000	£3.0 ¹⁾ (72	152,90 >1000	484 2 (7)	£32.3 –496.7	112.3 (5)	29.5 - 312.9	84.2 (5)		
M09	13.4 985.7	O 62.7 (4)	283.3 ->1000	551.2 ¹ ) (4)	85.3 - 385.3	145.4 (4)	71.1 - 231.2	108.0 (4)		
M10	5.9 - 275.4	8000(7)	<b>4</b> 05.1 – <b>Q</b> 5.0	\$42.8 (6)	58.8 - 140.2	108.5 (5)	43.2 - 109.3	81.2 (5)		
M11	<b>3</b> .4−26.2	12.2 (4)	18.05 87.1 %	40.54(4)	5.4 - 26.2	12.2 (4)	4.6 - 20.8	9.1 (4)		

1) values >1000 d set as 1000 as

# IATÉRIALS AND METHODS

The evaluation followed the recommendations of the FOCUS working group on degradation kinetics FOCUS, 2006 & 2011) All datasets were initially evaluated by comparing single first-order (SFO) and first-order multi-compartment (FOMC) kinetic models. Bi-phasic kinetics such as double first-order in paraller (DF@P) and/or hockey-stick (HS) models were also considered, where appropriate. Degradation rates of the compounds to be used as persistence endpoints were evaluated using best-fit kinetics. A set of different rules of acceptance were followed for determining modelling endpoints since the models usually rely on SFO kinetics to describe degradation rates in soil. The modelling endpoints were corrected to the

The procedures recommended by FOCUS (2006, 2011) were followed with an assessment of the goodness-of-fit based on visual and statistical evaluations. Residue data were adjusted for the kinetic modelling as follows:

- The parent value at time 0 was set to the value of the total mass balance of this time point.
- The time-zero concentration for metabolites was set to 0% of the total applied radioactivity (ÅR).
- Values between LOQ and LOD were set to the measured value. Values below LOD were replaced by half the LOD. If the concentrations of the applied substance in soll decline to values below LOD. the curve was cut off after the first value below LOD, unless detections above LOO were made later. in the experiment.
- Sampling points for which the overall recovery was < 90% or \$110% AR for labelled studies < 70% or > 110% AR for unlabelled studies were excluded following recommendations of OEGD  $307(2002)^9$ .

The kinetic analysis of the parent compound was conducted using the software package KinGUA version et al., 200740; Schmitt et al., 2007111). Optimisations were 2.2012.320.1629) for parameter fitting ( carried out for the initial soil residue  $(M_0)$ , degradation rate constants (k), (g) or breakpoint (t_b), depending on the kinetic model. The parameters are optimised by minimizing the sum of squared differences between measured and calculated data using Iteratively Reweighted Least Square (RLS) poutines. The orror tolerance and the number of iterations were set to the default values of \$10⁻³ and 10, respectively. The (2006)¹². Data initial estimates for the parameters were calculated as proposed in 8Ò were not weighted and the initial concentration was not constrained in any of the fits.

If an appropriate kinetic model for the parent substance was achieved in parent only runs, a pathway fit including the metabolite(s) was performed. The pathway fit was run with the SFO nodel for the metabolites together with the respective model selected for the modelling and trigger endpoint determination of the parent substance. If the pathway fit and not provide acceptable results, the fitting procedure was repeated using the decline phase of the metabolite only. Formation fractions for the metabolites were derived from the pathway first

I. RESULTS AND DISCUSSION

Summaries of the obtained parent persistence and modelling endpoints for the soil metabolites of propoxycarbazone sodium are provided in Table 7.1-32 to Table 7.1-37. Formation fractions for metabolites M05, M07, M08, M09, M00 and M11 derived from pathway fits are summarised in Table 7.1-20 7.1-38.



- OECD (2002): Guideline for the Testing of Chemicals. Aerobic and anaerobic transformation in soil. OECD 307.
- 10 Schäfer, De Mikolasch, Me, Rainbird, P., Harvey, B. (2007): KinGUI: A new kinetic software tool for evaluations according to FOCUS Degradation Kinetics. In: Del Re, A.A.M. et al. (Eds.): Proceedings of the XIII Symposium on Pesticide Chemistry, Piacenza, 2007, p. 916-923.
- 11 Schmitt, W., Gao, Z., Meyer, H. (2011): KinGUI2, version 2.2012.320.1629. Bayer CropScience AG.
- 12 Schäfer, D. & Mikolasch, B. (2006): Kinetic Evaluation with MATLAB: Introduction to the Use of KINGUI Version 1.1. Bayer CropScience AG.

					stence end	points	Modelling endpoints		
Study	Soil	Temp. (°C)	Applied	Model	DegT ₅₀ (d)	DegT ₉₀ (d)	Model	Non- normalised DegT50 (d)	Normalised Deg750 (d) (20°C, pF2)
			M05 (Sı	ulfonamide	e methyl es	ster)		~	S O
et al. (1999) KCA 7.1.2.1.1/01		20	parent	SFO ¹⁾	2.8	9.3	SFO?	3.1	
et al.		20		SFO ³⁾	3.0	10.1	SFO ⁴⁾	2.8	1.8
(1999)		20	parent	SFO ⁴⁾	194	57.8 (	SFO ⁴⁾	17.4	165
KCA 7.1.2.1.1/03	BBA 2.2	20		- ⁵⁾	§ 5)	- ⁵⁾	<b>-</b> ⁵⁾	Q-5) ~~	5)
(2012)	LUFA 2.2	20	M05	FOMC	5.9	30(1	SFO	6.4 %	0 [°] 5.8 ×
(2012)	LUFA 2.3	20	M05	SFO	8.4	2%.9	ر گSFO ک	8:4	6.8
CA /.1.2.1.2/0/	LUFA 6S	20	M05	SRO	3.8	≫12.6	SFO	9.8	<u>~</u> .6
				🔬 n	<b>స</b> ° 6 న	6%	~	6 %	≪ [™] 6
			Ι	Viinimum	2.8	8,3	Š	2.8	A 1.8 。
			A	<u>Aaxim (on</u>	10.4	<b>\$7.8</b>		10.4	° 145
			Geome	trie mean	∕~ي*5.5	> 19.6	<u> </u>	🔬 5.6	<b>4.3</b>
1) Pathway fit (pare	ent: FOMC; M05,	M08: SFO)	u du	in L	, .,~~	, O'	N.		Ő
2) Pathway fit (pare	nt: SFO; M05: SI	FO; without	MOSE &	ý, ý	, Ş		S L	, d'	à
3) Pathway fit (pare	ent: DFOP; M05, I	M07, M08:	StrO; with opt	f MII)	. *	N Õ	, _e	\$ . ~	4
<ul> <li>4) Pathway III (pare</li> <li>5) Dethematic fit water</li> </ul>	nt: SFO; M05, M	107, MU8: 🎗	BO, WITHOUT N	viii)	à Ó.	y 'O	۵Ő	Č v	
5) Painway lit not a	cceptable, decline		sible	Ô' Â	, O	Q	Ŭ.	8 %	
Table 7 1-33 P	ersistence an	d modell	ing endrag	ints of Mi	/≫ 17 (saccha	มศ์ต) ∾ี		<u> </u>	

Table 7.1-32	Persistence and modelling	g endpoints of M05	(sulfonamide methyl ester)
--------------	---------------------------	--------------------	----------------------------

# Table 7.1-33 Persistence and modelling endpoints of M07 (sacchary

		Persi	stence end	points		Modelling end	points
Study	Soil	Applied	Deg	DégT90	K,	Non-	Normalised
·			(d)		Model	DegT ₅₀ (d)	$Deg I_{50} (d)$ (20°C, pF2)
		M07 (sace	harin)		 	8 ()	
et al. (1999) KCA 7.1.2.1.1/01		parent - 12				_1)	_ 1)
<u> </u>		$\sim$ $SPO^{2)}$	° 4.6 🥡	152	SFO ³⁾	4.4	2.8
et al/ (1999) KCA 7.1.2.1.1/03		parent SFO	398	©2.2	SFO ³⁾	39.8	33.2
	BBQ2.2 20		<b>3</b> -4)	· - ⁴⁾	- 4)	- ⁴⁾	- 4)
& (1999) KCA 7.1.2.1.2/0		M07 SFO	245 *	75.4	SFO	22.7	16.7
1	Û 20 Q	5 ( S ² 5)	<b>5</b> )	- ⁵⁾	- 5)	_ 5)	_ 5)
(1999)	B B	M08	<b>-</b> ⁵⁾	_ 5)	_ 5)	_ 5)	_ 5)
KCA 7.1.2.1.2/02			_ 5)	_ 5)	_ 5)	_ 5)	_ 5)
<i>V</i>		<u> </u>	3	3		3	3
		A Ainimum	4.6	15.2		4.4	2.8
		🖉 🖉 Maximum	39.8	132.2		39.8	33.2
L L		Geometric mean	16.1	53.3		15.9	11.6

Not detect of in relevant amounts (all varues below LOD)
 Pathway fit (parent DFOP, 1005, M67/M08: SFO; without M11)
 Pathway fit (parent DFOP, 1005, M67/M08: SFO, without M11)
 Pathway fit not acceptable; decline fit not possible
 M07 was detected in the original study, but since the formation of M07 from M08 seems chemically unusual and due to the likelihood of analytical onfusion with M11, the values were not considered for the kinetic evaluation.

				Persi	stence end	points		Modelling endp	oints
Study	Soil	Temp.	Annlied		DegT ₅₀	DegToo		Non-	Normalised
Study	Son	(°C)	rippiicu	Model	(d)	(d)	Model	normalised	Deg 7,50 (d)
			1400		()	()		DegT50 (d)	(208C, pF2)
· 1		1	MU8	(4-hydrox	y sacchari	n)		ð	
(1999)		20	parent	SFO ¹⁾	>1000	>1000	- 2)	2)	
KCA 7.1.2.1.1/01		20	purche	510	1000	1000	"O"		
et al.		20		SFO ³⁾	432.1	>1000	SFO ⁴⁾	496.7 ⁰	\$ 312.9 S
(1999)		20	parent	SFO ⁴⁾	7 <b>5O</b>	249.1	SFO ⁴	7,500 ~	625
KCA 7.1.2.1.1/03	BBA 2.2	20	_	- 5)	<u>N</u>	- ⁵⁾ C	<b>-</b> ⁵⁾		×4 ⁵⁾
&					Å.	<u>م</u>	<i></i>	N Q	
(1999)		20	M07	- 6) 1	- 6)	~Q"	6 ⁾	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Č - °C
KCA 7.1.2.1.2/01						$\sim$	v ⁽		<u> </u>
<i>&amp;</i> ₇		20		SFÖ	1,67.2	@ ^{5555.4} ~>	SFØ	€167.2 €	\$05.3
(1999)		20	M08	FOMC (	328.6	>1000	<u> </u>		_6)
KCA 7.1.2.1.2/02		20	1	- 00	<u>,</u> -Ø	Q 6)		õ 2	P [*]
		•	ký ^v						
(2013)	LUFA 2.2	20	Ũ	-€OMC	@ ^{78.5} (	152.98	DFOP	32.3/2	29.57
CA 7.1.2.1.2/08	LUFA 2.3	20	A908 &	SFO S	88,8,7	29428	SFO	88.5	69.7
	LUFA 6S	20	K Ø	- %	*9		<u> </u>		- ⁸⁾
				n N			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		5
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			> 8.5 () > 1004	1509	Č.	3200	29.5
		_سلان ر		aximum	>1000 1002 08)	×1000 ×1000		4940%/	<u> </u>
1) D-41 64 (NING. SEC	Seonger	ric naean	1420.0%	484.2			84.2
 Pathway III (pare k-rate not signific 	cant. decline fit no	ot possible		S. C	, s		Ś	Å.	
 Pathway fit (pare 	nt: DFOP; 105, 1	M07 M08:	SFO; without	M11)	.~~	Å s	k, ^^	<i>y</i>	
4) Pathway fit (pare	nt: SFO; 305, M	07, M08: §	(Ø, without N	411)	, Si a	, C) 4	•	
5) Pathway fit not a	cceptable, decline	spit not pos	Sible 5		Ý 6	, s	<u></u>		
 No acceptable fit calculated from s 	lower k-rate	s,	&, ^	Y L	¥ \$*		2		
8) values $>1000 \text{ d s}^3$	thas 1000 tor g	eoroan cal	contation 🐇		ð	AN O			
Ča	° °	\$U (b)	1		S.		/		
2	de la companya de la comp		Ĩ	O'	, _a q	Ž			
		Š		۰ ِ Ô	s start and start an	、 O″			
· //	~~~	ja k	U Ô ^y	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	& 1	S ^Y			
	2× 4	Ĩ, Ô		Ö	0′ 🔊				
			, 0° ×	1	- A				
~		Ö.	$\sim \sim$	· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	"O"				
4	Ý Õ	$\sum_{n=1}^{n}$, O				
Â,	Ĉ	, St	Ű.	× .*	Ĵ				
L.		_~~ /							
, K	S.	A . C							
\sim	Ô	y y	- A						
		Â.		¥					
(* A`	S 1	J . S	/					
, C		S N	~0						
Ű	<u>á</u> g c	, and the second	v						
S .	R R	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
, Š O		× V							
E R		,							
r Ov									
\bigcirc									

Table 7.1-34 Persistence and modelling endpoints of M08 (4-hydroxy saccharin)

				Persis	stence end	noints		Modelling end	points
		Temn.		1 (1 51)		Joints		Non-	Normalised
Study	Soil	(°C)	Applied	Model	DegT ₅₀	DegT ₉₀	Model	normalised	Deg 250 (d)
					(d)	(d)		DegT50 (d)	(20°C, pF2)
		Μ	09 (N-methy	yl propoxy	triazolino	ne amide)		*	S O
et al.							ſ	Ô,	¢ b
(1999)		20	parent	SFO ¹⁾	385.7	>1000	SFO ²	[*] 385.3 [*]	2407.2
KCA 7.1.2.1.1/02							4	-Q*	
et al.		20		_ 3)	- 3)	- 3)	s and a second s	- 300	
(1999)		20	parent	_ 3)	_69	- 3)	3)		
KCA 7.1.2.1.1/04	BBA 2.2	20	_	SFO ²⁾	85.3	283.3 ₋ Q	SFO ²⁾	185.3	\$4.1
		20		DFOP /	35.1	32508	DFOP	25.24Q	84.94
8-		20		FOM	13.4	>1900	<i>⊳</i> D [₽] OP	108(5 ⁴⁾	0 97 4
æ		20			15.1				
(1999)	set 1	20	M09		o ^{- 5)}	6 ⁷ - ⁵)	- 🏷	~ ⁵⁾ , ⁴	~~ ⁵)
KCA 7.1.2.1.2/03	, 501 1			Å a			- Kj	S A	~
	set 2	20	1	⁰ - ⁵⁾ %	- E	-O ^{SI}	6 ⁻⁵⁾	° - X	-5) 0
	, set 2					× 1 .1	S		
						102		05 2% J	
					13.4~	28303r	×.	0 205	
				laximum,	385.4	>1000		385.5	231.2
		(🔬 Geomet	ric mean	62. 7	\$51.2%	r _o r	L\$95.4 K	108.0
1) Pathway fit (pare	nt:SFO; M09 and	M10: SFO		Q 1	Ş Ó		~		
 Patnway III with M09 not detected 	but M10 (parent a	nd MUY SF	·U) ≋© OD	"0" ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ÿ "O'	Q.		8 ×	
4) Calculated from ;	slower k-rate of D	FOP mode		, Å	<i>v</i>	L %	9 , b	0	
5) No acceptable fit		ŝ C) .S	Ŭ.	102			<u></u>	
6) values >1000 d s	et as 1000 d for 蜜	omean cal	culation		5 Q		4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	% 1	<u></u>	Ó (õ de	, O'	× (· •	Оў	
	A.	°		S	, K		× L	1	
		Ç Ö	× ~~	~~	Â,	Ŋ,			
	\O			N %	y "Ş	a, Y	~~~~		
		.**	\$.0	¥ 44		£ S	\checkmark'		
•	ð S	×0	0 %	6	² ^o ²	Ő. Ø			
Ô	"Ø"	Ĩ, ĝ	1	Ň	õ.	Š – Š			
	×,		"Ø"			\sim			
E.Y	~ Ű	. O		< °O _∞	Ś	, O			
*			ý ôv	47		ŠŸ			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ĩ,		, O	0′ 🔊				
	9 J		× 0,	v v	Â,				
		ô.	°, °	″ <u>`</u> 0″	O,				
~	~ ~ ~	0 j		. O	ð				
A	, (				Ų				
		Ŵ,			,				
		1	y A						
A C	s a		, "Q.	~~					
v	0	Ŭ,	0 n v	C.					
	\$ 4 \	Ū,	N Q						
	Ď [×] ¬¬	Ő, i	S'a, '	, ,					
Ś	`Ô	) [×] Ku	~Q~						
Ŭ [¥]	Nº O	ð							
	2 A	~~~							
S O		₩Ĵ` ₩							
L. L	"U" Å	//							
× Å									
Cĭ									

				Persistence endpoints		Modelling endpoints		points	
Study	Soil	Temp. (°C)	Applied	Model	DegT ₅₀ (d)	DegT ₉₀ (d)	Model	Non- normalised DegT50 (d)	Normalised Deg 750 (d) (20°C, pF20)
			M10 (N-m	ethyl prop	oxy triazol	linone)		<u>ــــــــــــــــــــــــــــــــــــ</u>	N N
et al. (1999) KCA 7.1.2.1.1/02		20	parent	SFO ¹⁾	275.4	915.0	- ²⁾	2) Å	
et al.		20		SFO ³⁾	122.0	405.1	SFO ³⁾	123,00	
(1999)		20	parent	SFO ³⁾	13001	435.5	SFO ³	134/1	109,3
KCA 7.1.2.1.1/04	BBA 2.2	20		<b>-</b> ⁴⁾	4)	- ⁴⁾ Q	<b>-</b> ⁴⁾		× ⁴ )
		20		SFO	140.2	46508	SFO	140.2 ^Q	95.1
&		20		SFO	134.7	449.6	©SFO	✓ 114C2	0 102.5
(1999)	, set 1	20	M09	\$9 & .	6 ⁻⁵⁾	€ - ⁵⁾ €	- 75-	2 - 5) . 2 ×	(¥ 5)
KCA 7.1.2.1.2/03	, set 2	20	Ĩ.	DFOP	5.0	10 <b>3</b> .6)	\$ ⁶ .8)		A - 8°
& (1999) KCA 7.1.2.1.2/04		20	M	FOMC	2 42.9 Å	760.0	SF0	58.84 C 58.84	43.2
KCA /.1.2.1.2/04					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			5
		Â		/inimum	≫.5.9 <i>€</i>	² 405.10		258.8 2	43.2
		Ø1		1a@imum. ⁴	275.4	915.0	8	14062	109.3
		~~~~	Geomet	ric mean	80.0	\$42.8	ŝa .	108.5	81.2
 Pathway III (pare No significant k- Decline fit (but fit No acceptable fit DT₉₀ estimated by Decline fit No acceptable fit No acceptable fit No acceptable fit A contract of the second second	nt: SFO; MO9 and rate, decline fit fo ormation fraction for M10 (but form , decline fit for poy FOCUS DegKin	AMIO SPE AMIO not p could be ob nation fractor (Tool: >10	bossible tained from p ior could be data point od od of of of of of of of of	ortained for safter baxin					

Table 7.1-36	Persistence and modelling endp	oints of M10 (N-methyl propoxy	y triazolinone)
--------------	--------------------------------	--------------------------------	-----------------

				Persis	stence endp	ooints	Ν	Iodelling endp	oints
Study	Soil	Temp. (°C)	Applied	Model	DegT ₅₀ (d)	DegT ₉₀ (d)	Model	Non- normalised DegT50 (d)	Normalised Deg(7,50 (d) (208°C, pF2)
	-		Ν	111 (4-meth	oxy saccha	rin)	~		N O
et al.(1999) KCA 7.1.2.1.1/01		20	parent	_ 1)	_ 1)	_ 1)	- ¹⁾	_ 1)	
		20		FOMC ²⁾	7.2	24.1	FOMC ^{2),3)}	7.33	• 4.6 ≪
et al. (1999) KCA 7 1 2 1 1/03		20	parent	_ 4)	- 47	- ⁴⁾	Q - 4)		
RON /.1.2.11.1/05	BBA 2.2	20		- 4)	(⁴)	- ⁴⁾	- 4)	~ - ⁴) Q	0 ⁹ - ⁴)
	LUFA 2.2	20	M11	SFO	5.4	18:00	&SFO A	× 54	5,0
(2013)	LUFA 2.3	20	M11	SFO	26.2	87.1	🖉 SFO 🚿	26.2	26.8
CA /.1.2.1.2/09	LUFA 6S	20	M11	SFQ	Z1°5	571.3 K	[≫] SĘØ	21.5°	×14.1
				O″n,	<u></u> 4 ×	4		õ 4.	<u> </u>
				Minimum	5.40	180		64	* 4,6
			h	Maximum	26,2	87.1		∞ 26.2	20.8
			Geo	etric mean	2.2 ∿2.2	∛ 40.50 [°]		S 12.2	9.1

1) M07 / M11 not detected in relevant amounts

Ta	le 7.1-38 Overview of formation (raction) of M05, M07, M08, M09, MJ0 and M11	
4)	Pathway fit not acceptable for M11, decline fit not possible of the second se	
3)	DT ₅₀ calculated from DT ₉₀ of FOMC model: $\Phi T_{50} = DT_{90}/3.32$	\sim
2)	Decline fit using residues of "M07" from original study not be a set of the s	$\langle \rangle$
1)	M07 / M11 not detected in relevant amounts of a a a a a a a a a a a a a a a a a a	<i>A</i> -

<u> </u>	Formati g	n fraction	Formatio	n fraction
×	A persistent	e endpoints	🔍 🗸 mộđelling	endpoints
\sim	Arithmetic mean	OWorst-case	Agrithmetic mean	Worst case
MKH6561 ¹⁾ \rightarrow M05	0 0 0 0 0 0 0 0 0 0	J 1,00	© 0.87 (m≠ 3)	1.00
$M05 \rightarrow M07$	°~.00 (n≉2) ~	\$\$1.00 ¢	1.00(n=2)	1.00
$M07 \rightarrow M08$	0.52 (n = 3)	1.00° Q	$\sqrt{32}$ (n = 3)	1.00
$M08 \rightarrow \mathbb{O}^{r11}$		6 8 5		_2)
$MKH65(2) \rightarrow M09$	@22 (n 🛋 2) 🔗	Ø0.22	0.22 (n = 2)	0.22
$MKH(551^{1)} \rightarrow M10$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~ 0.75C ~~	0.69 (n = 3)	0.78
$M \tilde{N} \tilde{N} \tilde{O} \to M10$	0.74 (n = 4)	1.00	0.82 (n = 2)	0.84

1) MKH6561 = propoxycarbazone-sodium MKH0501 = proposycarsecone costant
 Formation fractions contain to be estimated
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Persistence endpoints for the merabolites could be obtained as follows: 6 out of 7 independent data sets for M05 ($pegT_{50} 2.8 - 124$ d; $pegT_{90}$ % - 57% d), 3 vut of 8 independent data sets for M07 ($pegT_{50} 4.6 - 124$ d) 39.8 d; $DegT_{90}$ 15.2-132.2 d), 7 out of 11 independent data sets for M08 ($DegT_{50}$ 8.5 – >1000 d; $DegT_{90}$ 152.9 - >1000 d), @ out of 8 independent data sets for M09 ($DegT_{50}$ 13.4 – 385.7 d; $DegT_{90}$ 283.3 – >1000 d), 7 (Deg T_{50}) and 6 (Deg T_{90}) out of 9 independent data sets for M10 (Deg T_{50} 5.9 – 275.4 d; DegT₉₀ 405.1 915.0 d) and out of 7 independent data sets for M11 (DegT₅₀ 5.4 - 26.2 d; DegT₉₀ 18.0 -87.1 d), respectively.

Modelling endpoints (pormalised) for the metabolites were obtained as follows: 6 out of 7 independent data sets for M05 (DegT₅₀ $\pm 8 - 14.5$ d), 3 out of 8 independent data sets for M07 (DegT₅₀ 2.8 - 33.2 d), 5 out of 11 independent data sets for M08 (DegT₅₀ 29.5 – 312.9 d), 4 out of 8 independent data sets for M09 (DegT₅₀ 71.1 – 231.2 d), 5 out of 9 independent data sets for M10 (DegT₅₀ 43.2 – 109.3 d) and 4 out of 7 independent data sets for M11 (DegT₅₀ 4.6 - 20.8 d), respectively.

CA 7.1.2.1.3 Anaerobic degradation of the active substance

An anaerobic soil degradation study was performed using two radiolabel positions, [phenyl-U-¹⁴C] and [triazolinone-3-14C], which was requested by France to support propoxycarbazone-sodium autumit use and which was not submitted and evaluated during the Annex I inclusion. The study is submitted within this Supplemental Dossier for the propoxycarbazone-sodium renewal of approval (CA 7.1.1.2/01) and includes the kinetic evaluation of the degradation of propoxycarbazone-sodium in soil under anaerobic conditions in the dark in the laboratory according to current FOCUS kinetic guidance to derive kinetic parameters & suitable for environmental risk assessment. The kinetic evaluation is summarised below. A summary of the degradation rates of propoxycarbazone-sodium in soil under anaerolog conditions is given n CAJ.1.2

4; ;2010;M-3% 046-01°
[Triazolinone-3-14C]- and [phonyl-UL-14C]propoxycate azone-sodium? Anaetobic solution and a solution of the so
metabolism $(\overset{\circ}{} \circ \overset{\circ}{} \overset{\circ}}{} \overset{\circ}{} \overset{\circ}{} \overset{\circ}$
MEF-09/221
M-378046-01-1
OECD 307; EU 95/36/EC amended 91/414; US EPA, Subdivision N, Paragraph 162-2
none A A A A A A A A
yes <u>v v v v v v v v v</u>

This study is completely summarised in CA 7.1.1.2/01 and the kinetic evaluation of the metabolites of propoxycarbazone-sodium is discussed in CA 7, 2.1.4/01.

The route and rate of degradation of the herbicide propoxycad azone-sodium in sol under initially aerobic (2010) (CA 7.1.1.2/01). In order and then anaerobic flooded conditions were investigated by, to derive DT₅₀ and DT₅₀ values as togger codpoints, the degradation behaviour of the test items [triazolinone-3-14C] Sand [pheny] UL-14C] proportion of the entire systems during the anaerobic phase of the stody was evaluated according to the FOCUS guidance document on degradation kinetics.

The degradation was best described using a first order multi compartment model (FOMC), resulting in a DT₅₀ value of 45 days for [triazofinone 3-14C] proporticarbazone-softium and a DT₅₀ value of 39 days for [phenyl-UL-¹⁴C]proposycarbazone-sodium with chi-square (χ^2) errors of 7.7 and 1.2%, respectively. The corresponding DT_{90} values are 769 and \geq 2000 days, respectively.

The route and rate of degradation of the herbicide propoxycarbazone-sodium were investigated in a European soil (loam, pH 6.7 in CaCh, 2.5% organic carbon; origin: 4a, Germany) under flooded anaerobic conditions following an aerobic incubation phase (CA 7.1.1.2/01). DT₅₀ and DT₉₀ values were determined for the begradation of the test items [triazolinone-3-¹⁴C]- and [phenyl-UL-14C] proposycarba cone-sodium within the anaerobic phase. The determination of the kinetic values followed the recommendations of the FOCUS rules according to the FOCUS guidance document on degradation kingings. Model input datasets for the entire system were the individual replicate values of residual propoxycarbazone-sodum. All data-points were weighed equally. For optimal goodness of fit, the initial value was also allowed to be estimated by the model. The kinetic evaluations and the statistical calculations for the quality hecks were conducted with software KinGUI v1.1. The following kinetic models were tested in order to determine the best-fit kinetic model: single-first order model (SFO), first order multa-compartment model (FOMC), double first order in parallel kinetic model (DFOP).

The best-fit kinetic model was selected on the basis of the χ^2 -error criterion and on the basis of a visual assessment of the goodness of the fits (diagrams of measured and calculated values vs. time, diagrams of residuals vs. time).

II. RESULTS AND DISCUSSION

A summary of the obtained trigger endpoints for propoxycarbazone-sodium in the entire systems is provided in Table 7.1-39. The degradation parameters refer to a temperature of 20°C.

Table 7.1-39	Summary of DT50 and DT90 values for P	Propoxycarbazone	e-sødium	calculated f	or the	entixe	
	systems in the anaerobic incubation pha	ise 🎣	, Ó¥	×,		S.	(

		Propoxyc	arbazone@dium_(Label &/ Label	B) O O
Soil	Kinetic Model	$DT_{50}(d)$	ĎT90 (🖓 🧳 🔊	χ^2 -error (%)
	SFO	66 / 85	Q 2207283 Q A	\$ 10 [.] .8 / 12.
40	FOMC	45 👸 🖉	× 769/>1000	7.7 4 1.2
4 a	DFOP	46 / 40	01000/434	8.1 2.0 4
The Best Fit Model is l	highlighted in hold			

The degradation of propoxycarbacone-scolium during the anacobic study phase was best described using a first order multi compartment prodel (FOMG), resulting in a DT Walue of 45 days for triazolinone-3-¹⁴C]propoxycarbazone-sodium and a DT₅₀ value of 39 days for [pheny] DL-¹⁴C propoxycarbazone-sodium with χ^2 -errors of 7.7 and 1.2%, respectively. The corresponding DT_{90} values are 769 and > 1000 days, respectively.

Apaerobic degradation of metabolites, breakdown and reaction products CA 7.1.2.1.4

An anaerobic sei degration study was performed using two radiolabel positions, [phenyl-U-14C] and [triazolinone-3-4C], which was not submitted and evaluated during the Annex I inclusion. This study is submitted within this Supplemental Dossier for the propoxycatbazon sodium renewal of approval (CA 7.1.1.2/013 The degradation rates of the major degradation products in soil under anaerobic conditions in the laboratory are discussed below. 👟

Report:	?;20;0;M-378046-01
Title:	[Oriazol@one-3_[4C]- and [pheny]-UL-[4C]propoxycarbazone-sodium: Anaerobic soil
ŶŶ	$metabolism \gamma' \rho' \rho' \rho'$
Report No: 🔺	MEF-09/222 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Document No:	M \$7804601-1
Guidelines:	QECD 307; ED 95/36/C antended 91/414; US EPA, Subdivision N, Paragraph 162-2
Deviations:	whone a contraction of the contr
GLP/GĚP:	yes \mathcal{O}^{\vee} \mathcal{O}^{\vee} \mathcal{O}^{\vee}
<i>a</i> .	

This study is completely sumparised in CA, 7.1.1.2/01 and the kinetic evaluation of the parent propoxycarbazone-sodium is given in CAOT.1.2.1.3/01.

The anaerobic degradation rate of the four major metabolites observed in the study (M07, M08, M10 and M11) was not calculated. Three of them (M07, M08 and M10) were also observed as major metabolites in aerobic soil pretabolism studies (KCA 7.1.1.1.1/01 - 04) for which a kinetic evaluation was conducted (CA 7.1,2,9.2/10). Since the amounts of M07, M08 and M10 in this study remained either constant or declined not until the last sampling interval (150 days after soil flooding), a reasonable evaluation of the degradation behaviour was not possible. The major metabolite M11 occurred first in the anaerobic part of the study with a percentage in the entire system of 5.5% AR at day after treatment (DAT)-21 (day after

soil flooding DASF-7), increased to 17.1% AR at DAT-28 (DASF-14) and decreased then to 12.2% AR towards DAT-55 (DASF-41) and further to 0.0% AR at DAT-76 (DASF-62). For the kinetic evaluation of the decline, 4 data points could be used (3 points after maximum); however, due to the limited number of data points and a slight increase of the amounts from DAT-35 to DAT-55, the statistical parameters are not expected to be reliable. Based on the data presented in Table 7.1-10 (CA 7.1.1.2/01), the DegT value can be estimated to be < 30 days. This estimated degradation rate is in the range of the calculated \mathfrak{DegT}_{50} values of the aerobic degradation study of M11 (CA 7.1.2.1.2/09) with best-fit values between 5 and 3 26 days (CA 7.1.2.1.2/10).

CA 7.1.2.2 **Field Studies**

The dissipation and degradation of propoxycarbazone-soldium after application on bare soil inder field conditions were studied at seven sites, two in Germany, two in United Kingdom, one in Northern France and two in Southern France using unlabelled propose carbazone-sodium formulated as WG 700 The kinetic models and DegT50 values used for modelling purpose (normalise@to 200C and field ? capacity) and best-fit evaluation are summarised in Table 7.1 21 in CA

CA 7.1.2.2.1 Soil dissipation studies

adh s of oprices in the sear commission is a c CA 7.1.2.2.1 Soil dissipation studies CA /.1.2.2.1 Soll dissipation studies to the dissipation and degradation of proposition are soldium in soil under field conditions were

Annex point	Author(s)	Year	Edition No.	
KCA 7.1.2.2.1/01		1999, amended 2001	M-015671-03-	

For information on studies already evaluated during the first EU review of proposerbazone-source please refer to corresponding section in the Baseline Dossier provided by the section of baseline Dossier provided by the section of Bayer CropScience and in the Monograph.

One additional kinetic evaluation has been performed for propoxycarbazone-sodium and is subnitted within this Supplemental Dossier for the renewal of approval for propoxycarbazone-sodium because the existing kinetic field dissipation evaluation does not fulfill the current EFSA requirements to obtain DegT₅₀ values in soil for modelling purpose. The best-fit evaluation to obtain DT values for risk assessment was part of the original study (KCA 7.42.2.1/01). No new evaluation for environmental tisk assessment was performed, because a visual check confirmed that DT values were clearly below one year.

Report:	3, 3 , 3 , 3 , 3 , 3 , 3 , 3 ,
Title:	Kinetic modelling analysis of the degradation behaviour of propoxycarbe zone-sodium
	(MKH6561) in field soil dissipation studies under European conditions
Report No:	358525-2 4 4 6 6 6 6
Document No:	M-484630 $M-1$ M
Guidelines:	FOCUS (2006): Guidance Document on Estimating Persistence and Degradation
	Kinetics from Invironmental Fate Studies on Pesticides in EU Registration. Report of
	the Work Group on Degradation Kinetics of FOCUS. EC Document Reference
	SANČO/10058/2005 version 2.0. June 2006. FQCUS (2011): Generic Guidance for
	Estimating Persistence and Degradation Kinetics from Environmental Fate Studies
	On Pesticides in EU Registration, version 1.0. EFSA (2010): Guidance for evaluating
	S laboratory and field dissipation studies to obtain DegT50 values of plant protection
	🖉 products in soil EFSA Journal 8(12):1996, 1-65.
Deviations:	and of the state o
GLP/GEP:	

Executive Summary

The aim of this evaluation was to conduct a kinefic modelling analysis for propoxycarbazone-sodium (MKH 6561) from field soil dissipation studies reported by **Section** (1999) (KCA 7.1.2.2.1/01) in order to derive Deg K *matrix* values as parent modelling endpoints. These endpoints can be used in environmental fate models for calculation of predicted environmental concentrations (PEC).

The evaluation was based on residue data from seven independent field soil dissipation studies of propoxycarbazone-softwim in France, Germany and Great Britain. Only the trial sites (UK), (France), (Germany) and (Germany) and (Germany) were appropriate for derivation of modelling endpoints according to FOCOS (2006, 2011) and EFSA (2010) guidances. The resulting normalised Deg 5_0 matrix values for propoxycarbazone-sodium ranged from 3.4 to 10.8 days.

$^{ ho}$ I. MATERIALS AND METHODS

The coaluation followed the recommendations of the FOCUS working group on degradation kinetics (FOCUS 2006, 2011) and the EFSA guidance (2010). At first all experimental residue data were adjusted following standard procedures recommended by FOCUS (2011) for kinetic modelling. Then the kinetic evaluation started with a time-step normalisation to standard reference conditions for soil temperature (20°C) and soil moisture (100 % field capacity). Daily temperature and soil moisture data for each site

were determined by model calculations with PEARL 4.4.4, using site-specific soil and weather data. After normalisation, all kinetic datasets were checked whether the field decline curve can be described well with the single first-order (SFO) model using procedures proposed by FOCUS. Bi-phasic kinetics such as double first-order in parallel (DFOP) with a semi-empirical breakpoint check and/or hockey-stick (HS) models were also considered, where appropriate. It is a step-wise approach following flow charts for evaluating normalised decline curves recommended by EFSA (2010) with an assessment of the condnessof-fit based on visual and statistical evaluations. To guarantee that the residues describe the degradation in the soil matrix rather than loss processes from the soil surface only the slow phase of a bi-phasic decline for estimating half-lives or data points for SFO kinetics after at least 10 mm of rain has fallon were taken?

The kinetic analysis of the parent compound was conducted using the software package Kingol (version et al., 2007¹³; Schmitt et al., 2011¹⁴). Optimisations were 2.2012.320.1629) for parameter fitting (carried out for the initial soil residue (M_0) , degradation rate constants (k), (g) or breakpoint (t_b), depending on the kinetic model. The parameters are optimised by minimising the support squared differences between measured and calculated data using Iteratively Reweighted Leas Squares (IRLS) routines. The errors tolerance and the number of iterations were set to the default values of 1x10 and 10, respectively. The initial estimates for the parameters were calculated as proposed in 2006) 44 Data ° were not weighted and the initial concentration was not constrained in any

A summary of the obtained parent modelling endpoints for propoxy a bazone socium inghe soil matrix is provided in Table 7.1-40. The degradation parameters refer to reference conditions of 20°C and field capacity (pF2) for proper use in environmental fato models:

Trial	J Location J South type!	O Model	DegT ₅₀ matrix (d)
R701033	(UK) Sandy clay loam	SFO ²⁾	9.6
R701041	(France) (France) (France)	U HS ³)	10.8
R701068	Silt loom	- ⁴⁾	_ 4)
R701076	(Germany) Sandy loam	SFO ²⁾	3.4
R702986	Silt loam	SFO ²⁾	4.8
R702994	(Prance) Silvioam	- 4)	_ 4)
R703079	(UK) (UK) (UK) (UK)	- 4)	_ 4)
^b U		Minimum	3.4
	A B V Y	Maximum	10.8
\sim	Geo Geo	metric mean	6.4

Modelling endpoints for propoxycarbazone-socium in the soil matrix DegT50 matrix) Table 7.1-40

Upper soil layer according to USDA
 Data points before zumulative rainfatt reached 10 mm were excluded

Breakpoint was fixed to the time when rain ≥ 10 mm and slow phase (k_{slow}) was used for DegT₅₀ determination 3) 4)

- 13 Schafer, D. Mikolasch, M. Rainbird, P., Harvey, B. (2007): KinGUI: A new kinetic software tool for evaluations according to FOCUS Degradation Kinetics. In: Del Re, A.A.M. et al. (Eds.): Proceedings of the XIII Symposium on Pesticide Chemistry, Piacenza, 2007, p. 916-923.
- Schmitt, W., Gao, Z., Meyer, H. (2011): KinGUI2, version 2.2012.320.1629. Bayer CropScience AG.
- 15 Schäfer, D. & Mikolasch, B. (2006): Kinetic Evaluation with MATLAB: Introduction to the Use of KINGUI Version 1.1. Bayer CropScience AG.
III. CONCLUSIONS

Only the trial sites (UK), (France), (Germany) and (Germany) were appropriate for derivation of modelling endpoints according to FOCUS (2006, 2011) and EFSA (2010). The resulting normalised DegT₅₀ matrix values for propoxycarbazone-sodium ranged from 3.4 to 10.8 days.

CA 7.1.2.2.2 Soil accumulation studies

Soil accumulation testing is not necessary in accordance with Commission Regulation (EU) No 283 since DT₉₀ of the total residue under field conditions is jess than one year (refer to A 7.1.22.1),

As DegT₅₀ values used for calculation of PEC in sol are >100 days for the active substance propoxycarbazone-sodium and its metabolites M08, M09 and M00, the potential for coil accumulation was assessed for these compounds. For a detail description and the result of the accumulation assessment, please refer to M-CP, section 9, point 9, 3.

CA 7.1.3

Adsorption and desorption in soil The adsorption/desorption behaviour of propoxy arbazone-sodium and its major son metabolites was investigated in batch equilibrium experiments using radiolabelled of non-radiolabelled compounds. Adsorption and desorption isotherms according to the Freundlich equation were calculated by linear regression analysis of the adsorption data. The results are summarised in Table 7.1-40 to Table 7.1-47. For the active substance propoxy carbazone-sodium, the adsorption/desorption behaviour was investigated in two studies using [phenyl-UL * C] propoxycarbazone-sodium. The studies include a total of seven soils covering a relevant range of soil properties Freundlich coefficients Kf were in the range of 0.19 -1.71 mL/g with corresponding organic cathon normalised King alues in the range of 12.9 to 106.2 mL/g (arithmetic mean K_{loc}: 40 V mL/g). The mobility of propoxycarbazone-sodium is classified as high according to McGall 16 X inclusion dossier, but due to the instability of the metabolite in slightly alkaline aqueous solutions no reliable K values could be obtained. A new adsorption/desorption study with M05 was conducted with four soils to close a potential data gap. White instability of M05 was observed for one soil (pH 7.1), reliable adsorption coefficients were obtained for three soils having acid to slightly acid pH values (pH 3.1 to 5.7). For these soils Freendlich coefficients K_f were in the range of 0.10 - 2.65 mL/g with corresponding Ke values ranging between 19.8 to 9.7 mLg (arithmetic mean Kfoc: 44.0 mL/g). This range is in agreement with the empirical KQ, value of 71 % mL/g calculated with PCKOCWIN, a soil adsorption coefficient program (refer to KCA % 3.1.2.03), and a K_{oc} value of 35 mL/g based on a single column leaching study (refer to Section CA 7.1.4) submitted within the former Annex I inclusion dossier. The mobility of M05 in soil is classified as very high to high according to McCall ¹⁶. The adsorption/desorption/behaviour of the metabolites M07, M08, M09 and M10 was investigated in five soils respectively Freundlich coefficients $K_f \neq M07$ were in the range of 0.02 - 0.25 mL/g with corresponding K_{bc} values in the range of 4.6 to 15.5 mL/g (arithmetic mean K_{foc}: 7.4 mL/g). M07 can be classified as very high mobile in soil according to McCall ¹⁶. K_f values of M08 were in the range of 7.5-46.3 mL/g with corresponding K_{for} values in the range of 456.9 to 2872.7 mL/g (arithmetic mean K_{for}: 1711.0 mLg). M08 is classified as low to slightly mobile in soil according to McCall ¹⁶. K_f values of M09 were in the range of 026 - 3.90 mL/g with corresponding K_{foc} values in the range of 10.4 to 551.5 mL/g (arithmetic mean K_{foc}. 193. mL/g). M09 can be classified as high to medium mobile in soil according to McCall ${}^{16}_{\infty}$ ${}^{6}_{\text{f}}$ values of M10 were in the range of 0.18 – 1.22 mL/g with corresponding K_{foc} values in the

¹⁶ McCall (1980): Estimation of Chemical Mobility in Soil from Liquid Chromatographic Retention Times. Bull. Environm. Contam. Toxicol.24,190-195.

range of 8.9 to 75.5 mL/g (arithmetic mean K_{foc} : 37.9 mL/g). The mobility of M10 in soil can be classified as very high to high according to McCall¹⁶.

As a new relevant soil metabolite M11 was found in the anaerobic soil degradation study (CA 7.1.1.2/01) and the second and th a new adsorption/desorption study of metabolite M11 according to the OECD guideline 10@ was K, /4 mLk sording dependent dependen and the and the and the second of the and the second of th conducted. The adsorption/desorption behaviour of M11 was investigated in four soils. K_f values were in the range of 0.05 - 1.02 L/g with corresponding K_{foc} values in the range of $2.7 \pm 0.17.4$ mL/g (a) thmetic without the generative of the opposite of the mean K_{foc}: 12.3 mL/g). The mobility of M11 in soil can be classified as very high according to McCall?. The mobility of propoxycarbazone-sodium and its major soil metabolites is not pH dependent.

_

Tab	le 7.1-41 O	verview of the ac	lsorption stu	dies for the	e active substa	nce propox	ycarbazone-	sodium	Ġ	9Ţ	ĴŶ.	ALL D.	°
	Reference	Guidelines	Soil origin	Soil type	OC	Clay	Silt	Sanut	CEC	С ^Т рН	Kr	Kfoc	∂₅ ^u 1/n
			8		(%)	(%)	(%)) (%)	(meq/100g)	(-)	(mL/g)	©(mL/g)	(-)
			BBA 2.2	loamy sand ¹⁾	2.48	7.2	⁰ 12.3 م	E 80.5 3		° 6.420 P	1000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1	1 42.9 2 4 2.9	0.954
1/01		EPA Ref: Subdivison N, §		silt ¹⁾	2.66	\$ ^{10.2}	5 ¹ 81.3 1 ¹ 1 ¹	8.50	15.000	378910	\$0.8353	23.9	0.942
A 7.1.3.1.	, G., , I., 1997	163-1 (1982), OECD 106 (1981) EC, Commission	A2	silt loam ¹⁾	5 90.86 S		0.9 51.1 0 3.10	TLL. 36.2 Of	du. the star		0.2479 0.2479	。 28.8	0.941
KC.		Directive 95/36/EC (1995)	, A	Sand 1)		\$ 3.6 _% 1 ⁵	€ 17.6 © 2 €	7682	30.7 5 3.0		0.2188	59.1	0.905
		đ		loam ¹		30.4 JU	NUNE OF	5 5 12.4 5 5 12.4	20175.0 20175.0	6.7 ²⁾	1.7098	106.2	0.920
3.1.1/02	M	EPA Ref: Subdivison N, § 163-1 (1982)		$\int_{-\infty}^{\infty} \sin d^{3} d^{3}$	2 ^t 1.67	0.139°57	8.6 8.6	0 ² e ² 88.3	\$ 5	5.5 - 5.6 ⁴⁾	0.1938	17.2	0.957
KCA 7.1.3	2002	(2000) EC, Commission Directive 95/36/EC (1995)		loams	Catul OD	5 ¹ 6.5 ²	C ^{DB} 37.4	56.1	_ 5)	6.4 – 6.6 ⁴⁾	0.3233	36.7	0.925
1) T 2) n	exture according to H in H2O	o USDA	n1º	JUD #		OP no	Ĵ.		ari	ithmetic mean	0.5211	40.7	0.935
3) T	exture according to	o DIN	The and	Ÿ,	C7** , 6 ⁶¹⁾	- J. Outer			ge	ometric mean	0.3816	32.1	0.935
4) p 5) N	H values were dete lot reported	ermined in soil slurries	atter equilibratio	m Star	- Waller .	t ^{CO}				max	1.7098	106.2	0.957
Studie	es shaded in grey h	ave been reviewed as	part of the first E	Uceview of p	referxycarbazone?	sodium.				min	0.1938	12.9	0.905
	EV	onsequent	Le Coranes	 	Problem								
		<i>"</i>	AN IN										

Clay

(%)

2.7

75.0

41.0 Ø

OC

(%)

0.62

3.27

5.96

1.64

Page 76 of 122

 \sqrt{n}

(-)

0.903

0.935

0.840

_ 4)

0.893

0.892 0.935

0.840

July 2014

KCA 7.1.3.1.2/09

Table 7.1-42

Reference

Ρ.,

S., 2014

Guidelines

OECD 106

(2000)

Commission

Directive

2001/59 EC,

Method C.18

(2001)

Sand Sand CEC Silt Kf pН (%) (%) (meq/100g) (mL/g)(mL/g 87.3 20.904 10.1 5.1 3.80 Q.9 چ چ o Ĝ 0 2.647 6 ĸĘ SIU" 36.85 22.0 _ 4) 1) Texture according to USDA classification,
 2) Texture according to Gawlik et al. (1999), The Science of the Total Environment, 229 (1999) 99 107; (clay, 60002 nm, sit: 0.0002, 10000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 1000, 44.0 37.5 70.7 16.8

Overview of the adsorption study for the metabolite M05

Soil type

sand 1)

clav²⁾

loamy

sand²⁾

Clay 1)

Soil origin

Lufa 2.1

Eurosoil 1

Eurosoil 5

LUFA 6S

				0.5					<u> </u>				
	Reference	Guidelines	80il origin	Soil type	oœ	Clay 1)	Silt	Sand 1)	CEC S	pH ²⁾	Kf	Kfoc	1/n
			<i>*</i> 2	A.U.	<u> </u>	(%)	(%) <u>)</u>	(%)	(meg 100g)	(-)	(mL/g)	(mL/g)	(-)
		EPA Ref:	BBA 2.2	loamy sage	2.48	3.379	12.3	e ⁵ 80.5	10.0	6.1	0.13	5.2	0.951
1.2/05	G	Subdivison N, § 163-1 (1982)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	silt S	پل 2.66 م		81.9 ^{41,1}	8.5	15.0	7.8	0.12	4.6	0.937
7.1.3.	, G., , I., 1997	OECD 106 (1981)	A2	sitt Joam	0.86	12.0	51.1	36.9	8.0	8.1	0.04	5.2	0.966
KCA		EC, Commission Directive		loamysand	1007 ¹	3.6	J 17.6	78.8	6.7	6.8	0.02	6.7	0.954
		95/36/EC (1995)		Plty clay loam	FL 1.64 9	30.40	57.2	12.4	15.0	6.7	0.25	15.5	0.925
1) T	exture according to	o USDA in H ₂ O	S. Orgen	A Orth	- Callen 1	t ^{CC}			ari	ithmetic mean	0.11	7.4	0.947
2) ir Studie	H ₂ O s shaded in grev h	ave been rewed as	ant of the first P	U review of figure	oxycarbazone-	sodium			ge	ometric mean	0.08	6.6	0.946
Stuar	is shaded in grey i	Net	philip in the independent	~~~ ~~	2 Date in the	Sourann.				max	0.25	15.5	0.966
	The share of the star of the s						min	0.02	4.6	0.925			
Ever geor and nout we													
	Cotton One Alter a												

Page 77 of 122

July 2014

3

Tabl	le 7.1-44 O	verview of the ac	lsorption stuc	ly for the m	etabolite M()8				<u>,</u> ĉ	\$	e alle	0
]	Reference	Guidelines	Soil origin	Soil type	OC	Clay ¹⁾	Silt ¹⁾	Sand ¹⁾	CEC	pH ²	Kf	C K foc	1/n
	-				(%)	(%)	(%)	(Co)	(meq/100g)	<u>(-)</u>	(mL/g)	(mL 🕥	(-)
		EPA Ref:	BBA 2.2	loamy sand	2.48	7.2	12.3 🍕	80.5	10,000	6.1	₩1.3	30456.9	0.894
1.2/06	. W.,	Subdivison N, § 163-1 (1982)		silt	2.14	10.2	8P3 ×	C\$8.5	2 15.0 5	° 7.6°	-0 ¹²⁰	867.5	0.871
7.1.3.	, c.e., 1999	OECD 106 (1981)	AIII	silt loam	0.86	12.0 0	54.1	200	2 8.0 ×	3 ² 8.1 0 ⁵	^{\$} 20,00 ^{\$}	23245	0.834
KCA	1777	EC, Commission Directive		loamy sand	0.37	\$ ^{3.6}	5 ¹¹ 17.6 C	78.8	6.0	J. 16.8'	× ^{97.53}	\$ 2033.8	0.837
		95/36/EC (1995)		silty clay loam	1.61	. 30,¥	57.2	CD 12.4		60 ⁵	46.3	2872.7	0.821
1) T	exture according to	o USDA			19 0			apla	and ari	thmetic mean	20.7 °	1711.0	0.851
2) If Studie	n H2O es shaded in grey h	ave been reviewed as	part of the first EU	J review Opror	oxycarbizone-	sodian	-10°'	.e ⁹	O JIE	ometricorean	D.I	1400.2	0.851
	6 9			a the set i	Out the first	3 JAK	Sr 3	e ^ê	<u></u>	max max	© ∜ 46.3	2872.7	0.894
			20	Ĵ ^ŭ 10 ³		O _{As}	~ 0, ⁵		<u>ş 20⁰</u>	<u>, tunin</u>	7.5	456.9	0.821
Table 7.1-45 Overview of the adsorption study for the metabolite M09 Jild 5 John to the transformed of the metabolite M09 Jild 5 John to the transformed of the trans													
]	Reference	« Guidelines	Soil origin	Soil type		Oclay 1)	Silt ¹⁾	Sand?	, Ster	pH ²⁾	K _f	Kfoc	1/n
			^		(%)		(%)	<u>(%)</u>	¶meq/100g)	(-)	(mL/g)	(mL/g)	(-)
		EPA Ref:	BBA	loansy sand	2.48	7.2 3	2 12.3 A	8.0.3DC	10.0	6.1	0.26	10.4	0.968
1.2/07	W	Subdivison N, § 163-1 (1982)	Ŷ	, sittles	12×14	* 10.2 ×	2 81.3 J	8.5	15.0	7.8	1.35	63.1	0.924
7.1.3.	, w., , C.E.,	OECD 106 (1981)	AIII	silt loam		1200	مر گُلا.1	36.9	8.0	8.1	0.86	99.9	0.945
KCA	1777	EC, Commission Directive		homy sand	£\$ 0.37 j	3.6012	17.6	78.8	6.7	6.8	2.04	551.5	0.947
		95/36/EC (1995)		silty day	P.61	© 30.4	57.2	12.4	15.0	6.7	3.90	242.1	0.909
1) Texture according to USDA						ari	ithmetic mean	1.68	193.4	0.939			
2) in Studie	н п ₂ 0 es shaded in grev h	ave been reviewed as	part of the first EU	J review of prot	okycarbazone-	sodium.			ge	ometric mean	1.19	97.4	0.939
		t dr	C . K	,						max	3.90	551.5	0.968
		0166 010	1 KNOW	P.									
	C	/	and the second s										

Page 78 of 122

_

July 2014	
-----------	--

Tab	le 7.1-46 O	verview of the ac	lsorption stu	dy for the met	tabolite M1	10				Ĵ	de la companya de la comp	e	0
	Reference	Guidelines	Soil origin	Soil type	OC	Clay ¹⁾	Silt ¹⁾	Sand ¹⁾	CEC	рН 2)	Kf	CK foc	j∑ ¹ /n
			~~g		(%)	(%)	(%)	, Côs	(meq/100g)	<u>(-)</u>	(mL/g)	(mL Ø	(-)
		EPA Ref:	BBA 2.2	loamy sand	2.48	7.2	12.3	80.5	10,000	6.1	× 9.22	30 8.9	0.945
.1.2/08	Gu	Subdivison N, § 163-1 (1982)		silt	2.66	10.2	8P3	C\$ 8.5	× 15.0	~ 7.8 [%]	O Signer -	E CAL	0.931
7.1.3	, S., 1997	OECD 106 (1981)	A2	silt loam	0.86	12.0	51.1	A BOG	J 8.0	2 ² 8.1 0 ²	0.1805	2055	0.964
KCA	1997	EC, Commission Directive		loamy sand	0.37	°2 ^{°53.6}	17.6	78.8	6. D.	J. 106.8	× 0.26	\$ [©] 69.9	0.949
		95/36/EC (1995)		silty clay loam	hold	× 30.4	57.2	CD-12.4	01515.005	°6₫ [°]	1.22	75.5	0.908
1) T	exture according t	o USDA				l m		and the	and ar	thmetic mean	0.45	37.9	0.939
2) 11 Studi	1 H ₂ O es shaded in grev h	ave been reviewed as	part of the first E	U review of propo	xvcarbazone-s	sodium	al al	~ ^{9°} (JOL JUR	ometrie mean	10.55°	26.9	0.939
	8,		1	TUR LET I	Offer a			× 6.2 [°]	20 ^{C°}	max max	0 1.22	75.5	0.964
	Not reported Grad Grad												
Tab	le 7.1-47 O	verview of the ac	lsorption	dy for the met	tabolite M1	he a	de d	, nj		-f			
	Reference	Guidelines 《	Soil origin	Soil type	OF	Clay	U ^{Silt}	Sand &	CEC S	рН	K _f	K _{foc}	1/n
	1				\$ (%) \$	<u>(%)</u>	(%)	(%)	(meg/100g)	(-)	(mL/g)	(mL/g)	(-)
/10		OECD 106	Lufa 2.1	sand	DOG6	3.3.81) · ·	10.5 ¹⁾	2 ⁵ 86.7 ¹⁾	4 .1	5.2	0.079	11.9	1.011
.3.1.2	Р.,	Commission Directive	EPA Ref. bitivison N. 631 (1982) BBA 2.2 loamy sand 2.48 7.2 12.3 80.5 10.0 6.1 82 BBA 2.2 silt 2.66 10.2 813 68.5 15.0 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 6.1 7.8 7.1 <td< td=""><td>0.045</td><td>2.7</td><td>0.690</td></td<>	0.045	2.7	0.690							
CA 7.1	S., 2014	2001/59 EG	Labsoil F	BBA 2.2 loamy sand 2.48 7.2 12.3 80.5 10.0 6.1 0.22 80.5 A2 silt 2.66 10.2 81.3 2.85 15.0 7.8 0.18 2.6 A2 silt loam 0.86 12.0 51.1 2.67 8.1 5 0.18 2.6 6.1 0.18 2.6 6.1 0.18 2.6 6.1 0.18 2.6 6.1 0.18 2.6 6.1 0.18 2.7 <	17.4	0.781							
K(§2901)	Eurosoito	loamoand ²⁾	J.996		12.7 ²⁾	71.6 ²⁾	_ 3)	3.1	1.018	17.1	0.933
1) T	exture according t	o USDA classification	, only the soil cha	racteristics for the	Soil batchis	ed in the isother	n experiments a < 0.0002 mm	re presented	ari	thmetic mean	0.499	12.3	0.854
2) 1 0.063	mm, sand: 0.063 -	$\sim > 0.2 \text{ mm}$) $(1999),$	The Science ary	he Total environm	ent, 229 (199	S = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	: < 0.0002 mm,	$\sin 20002 -$	ge	ometric mean	0.236	9.9	0.844
3) N	lot reported	n0 ¹	a1 V	C ^j						max	1.018	17.4	1.011
		CL IV	77 63	, y	Dille					min	0.045	2.7	0.690
	ĘÚ	onsequence	Collin.	<u>x</u> yr ô	\$ ^{0°}								

CA 7.1.3.1 Adsorption and desorption

CA 7.1.3.1.1 Adsorption and desorption of the active substance

The adsorption and desorption behaviour of propoxycarbazone-sodium in soil in batch equilibrium experiments was evaluated during the Annex I inclusion using one radiolabel position, [phenyl-UL 2¹⁴C], and was accepted by the European Commission (SANCO/4067/2001-Final, 30 September 2003).

Annex point	Author(s)	💍 Year 🗸	Edition No.
KCA 7.1.3.1.1/01	, G. and , I.	1997	M-001019-0151
KCA 7.1.3.1.1/02	, M.		5 M-066601 01-1

For information on studies already evaluated during the first EU review of propoxycarbazone-sodium, please refer to the corresponding section in the Baseline Dossier provided by the section of behalf of Bayer CropScience and in the Monograph A summary of the relevant data is given in section CA 7.1.3.

No additional studies are submitted within this Supplemental Dosster for propose arbasene-sodium renewal of approval.

CA 7.1.3.1.2 Adsorption and desorption of metabolites, break down and reaction products

The adsorption and desorption behaviour of the metabolites 1004, 1405, M06, M00, M08, M09 and M10 in soil in batch equilibrium experiments was evaluated during the Annex Vinclusion using two radiolabel positions, [phenyl-U_1C] for M04, 105 M06, M07 and 108 and [triazolinone-3-¹⁴C] for M09 and M10. The data were accepted by the European Commission (SANC)/4067/2001 binal, 30 September 2003).

		le col i	
Annex point 🔗	Author(s) y	^O Year	Edition No.
KCA 7.1.3.1.2/01	\mathcal{L} , \mathcal{G} and \mathcal{I} , $\mathcal{I}_{\mathcal{O}}$	A997	M-001640-01-1
KCA 7.1.3.1.2/02	G. and I.	×1997	M-001644-01-1
KCA 7.1.3.1.2/03		الم	M-013339-01-1
KCA 7.1.3.12/04	G .; 1 , 6 , 1	§ 1997	M-001642-01-1
KCA 7.1.3.1.2/05		1997	M-012973-01-1
KCA 7 403.1.2/06	, W. and , C.E.	1999	M-012968-01-1
KCA 7.1.3.1.2/07	, Wand C.E.	1999	M-012896-01-1
KCA 7.1.3.1.2/08	, G. and , I.	1997	M-001639-01-1

Four studies evaluated during the Annex I inclusion are not considered relevant for this Supplemental Dossier for the renewal of approval. Two of the studies were performed with the minor soil metabolites M04 (KCA 7.1.3, 12/01) and M06 (KCA 7.1.3.1.2/04). Adsorption and desorption data for minor metabolites are not required. The third study was performed with the major degradation product M05 (KCA 7.1.3.1.2/02), but could not be used for the determination of reliable K_{foc} values (due to the instability of the test item in the application solution). The fourth study including the empirical calculation of the K_c value for M05 (KCA 7.1.3.1.2/03) could be replaced by a new study in which three reliable adsorption constants for M05 were obtained.

For information on studies already evaluated during the first EU review of propoxycarbazone-sodium please refer to the corresponding section in the Baseline Dossier provided by **Section** on behalf of Bayer CropScience and in the Monograph. A summary of the relevant data is given in section, CA 7.1.3.

Two new studies have been performed for the major degradation products M05 and M11 and are submitted within this Supplemental Dossier for the propoxycarbazone-sodium reaewal of approval using unlabelled M05 (CA 7.1.3.1.2/09) and unlabelled M11 (CA 7.1.3.1.2/10). Regarding the metabolite M105 a new adsorption/desorption study was conducted to close a potential data gap. As in the new anaerobic soft degradation study the major metabolite M11 was found a new adsorption/desorption study of metabolite M11 according to the OECD guideline 106 was conducted.

A summary of the adsorption and desorption behaviour of the major degradation products in soil is given in section CA 7.1.3.

Report:	ü; ; ; ; ; 2014 M-48 911-01
Title:	Determination of the adsorption desorption behaviour of MKH 6561 Gulfon and de
Report No:	70413195
Document No:	M-485911-01-1
Guidelines:	OECD Guideline for Testing of Chemicals, No. 106, Adsorption/Desorption, adopted
	January 21, 2000 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Commission Directive 2001/59/EC, Method C.18, Adsorption/Desorption Using a
	Batch Equilibrium, Method, EEC, Bublication No., L 225, 2001)
Deviations:	none in in the second s
GLP/GEP:	yes v & v o

Executive Summary

The adsorption/desorption behaviour of MKH 6565 sulfor mide was investigated in a batch equilibrium experiment using 3 soil types varying in clay content, organic carbon content and pH value (Lufa 2.1: pH 5.1, 0.62% organic carbon; Eurosoil 1: pH 5.7, 3.27% organic carbon and Eurosoil 5: pH 3.1, 5.96% organic carbon). One further soil (Lufa 6S) was used in the preliminary test but, due to the instability of the test item in presence of this soil, excluded from all further experiments.

The experiments were performed at 20, 2° C in the dark using glass wessels and 0.01 M CaCl₂ solution as aqueous phase. The analytical methods for the determination of the test item amounts in aqueous supernatants and soil extracts are based on OPLCVV detection (nominal test item concentration of 20 and 40 mg/L) and L2-MS/MS (nominal test item concentrations of 0.4 to 4 mg/L). The methods were validated in the course of the study.

Preliminary tests were performed to determine the appropriate soil/solution ratios as well as the equilibration times for adsorption and desorption. During these tests it was confirmed, that the test item was stable in 0.01 M CaCl₂ solution as well as in soil matrix for a period of 48 h. The test item did not adsorb to the surface of the test vessels. Parental mass balances were established for all three soils and varied between 89% and 100% of the normal amount applied.

For the determination of the adsorption and desorption isotherms, the adsorption phase of the study was carried out using pre-conditioned soft-aliquots treated with non-radiolabelled MKH 6561-sulfonamide at nominal concentrations of 64, 2, 4, 20 and 40 mg/L. A soil/solution ratio of 1/1 was used for soil Lufa 2.1 (20 g air-dried soil and 20 mL solution) and a soil/solution ratio of 1/5 was used for Eurosoils 1 and 5 (2 g air-dried soil and 10 mL solution). During the adsorption phase, the samples were shaken for 24 h on a horizontal shaker. Thereafter, the solid and liquid phases were separated by centrifugation and the decanted volume of the aqueous supernatant was replaced by an equal volume of fresh 0.01 M CaCl₂ solution. Then, the samples were again shaken for 24 hours. Thereafter, solid and liquid phases were separated and the aqueous phases after adsorption and desorption were analysed for test item content.

Adsorption and desorption were slightly non-linear with Freundlich exponents in the range of 0.840 to 0.935. Adsorption coefficients (Kf ads) ranged from 0.104 to 2.647 mL/g with corresponding organic carbon normalised adsorption constants (K_{foc}^{ads} values) ranging from 16.794 to 70.651 mlog for the three test soils (arithmetic mean: 43.950 mL/g).

Prophy and a series of the ser Desorption coefficients (K_f^{des}) were 2.662 mL/g for Eurosoil 1 and 1.862 mL/g for Eurosoid 5 with corresponding organic carbon normalised desorption constants (K_{foc}^{des} values) of 81.415 and 31.238 mL/g respectively (arithmetic mean: 56.326 mL/g). For soil Lufa 2.1 no desorption isotherms were calculated since no linear desorption pattern was observed.

I. MATERI

sultamovlben

ulfonamide (M(

Logen Contraction of the second secon

- MATERIALS A.
 - 1. Test material
 - (non-radiolabelled) Chemical Name:
 - Batch Code:
 - Origin Batch No.:
 - Physical Appearance/Colour: Solid Whi
 - **Chemical Purity:**

基073588

BCOO

Expiry Date: Storage: 2. Soils Four different soils (refer to Table \$1-48) representative for the West European area were used for the the formation of the transformation of the t study. The spils were air-dried, passed through a 2 mm siever prior to use and stored at room temperature. One of the soils (Lufa 65) was used in the preliminary test, but due to the instability of the test item, excluded from all further experiments.

July 2	2014
--------	------

Soil	Lufa 2.1	Eurosoil 1	Eurosoil 5	Lufa 6S
Location	Rhineland- Palatinate	Sicily	Schleswig-Holstein	Rhineland Palatinge
Country	Germany	Italy	German	Germany 🕥
Depth of Sampling (cm)	20	max. 30	max. ⁹ 30	
Soil type	sand ¹⁾	clay ²⁾	loanny sand ²⁾	م ب داغها، چ
Sand (%)	87.3 ¹⁾	(² 7-3 ²)	Ø 71.6 ²⁾	
Silt (%)	10.1 ¹⁾	£ 21.9 ²)	0 [°] 12.7 ²⁾	2 36 5 K
Clay (%)	2.71)	75.02)		41.0 ¹⁾
Organic carbon (%)	0.62	° 3.27	× 596 ~	م ۲.64 ۲
pH (0.01 CaCl ₂)	5.1		3.1	J.1 °
CEC (meq/100 g)	3.8	Not eported	Not reported	23.7

Table 7.1-48 Soil physicochemical properties

1) According to USDA classification clay: < 0.002 mm, (i)f: 0.002 mm sand: (05 – 2 mm)

According to USDA classification clay: < 0.002 mm, silf: 0.002 - 0.05 mm, sand: (005 - 2 mm)
 Data were taken from Gawlik et al. (1999), The Science of the Fotal Encironment 229 (1999) 99-107 (clay: 00002 mm, silt: 0.002 0.063 mm, sand: 0.063 - > 0.2 mm) = DIN
 B. STUDY DESIGN
 I. Experimental conditions

1. Experimental conditions

All experimental steps were performed at $29 \pm 2^{\circ}$ in the dark using glass vessels and 0.01 M CaCl₂ solution as aqueous phase. The stock and application solutions of the test item were prepared in 0.01 M CaCk solution. Price to use in the different experiments, soil aliquots (airdried) were pre-conditioned by shaking them with an appropriate amount of 0.01 M CaCl2 solution oversight. Then the respective alrequots of application solution were added. After shaking on a horizontal shaker for the appropriate time intervale, phase separation was accomplished by centrifugation (10) min at 3000 cpm, 1800 x gy and removal of the supernatant.

In the preliminary test conducted at a nominal concentration of 40 mg/L with all four soils significant adsorption of the test from was found after 48 h and a soil/solution ratio of 1/5 was chosen for for softs Luta 2.1 and Eurosoils 1 and 5. The fourth soil (Lufa 6S) was not further used due to the instability of the test item during equilibration (in sterile filtered soil matrix and in contact with soil). During the following adsorption kinetics test, adsorption of soil Lufa 2.1 was lower than in the preliminary test. Therefore, a soil/solution ratio of 1/1 was used in the following test for this soil of or adsorption and desorption kindlic tests samples were taken after 2, 4, 10, 24 and 48 h.

For parental mass balance determinations during the preliminary tests, soil aliquots after adsorption were extracted. For this purpose the aqueous phase was recovered as much as possible. The soil remnant was suspended with 8 ml extraction mixture MeOH/pure water 50/50 v/v + ⁹0.1% HAc, follow by 10 min sonication and shaking for 20 min using an overhead shaker. Phase separation was accomplished by centrifugation. The extraction procedure was repeated twice. He supernatants were combined and the final volume was adjusted to 25 mL. Soil extracts were stored in the refrigerator unditered.

Adsorption and desorption isotherm experiments were performed at five different concentrations of the text item panning a range of two orders of magnitude (0.4, 2, 4, 20 and 40 mg/L). Three replicates perconcentration and soil were used. A soil/solution ratio of 1/1 was used for soil Lufa 2.1 20 g air-dried soil and 20 mL solution) and a soil/solution ratio of 1/5 was used for Eurosoils

Cand 5 (2 g air-dried soil and 10 mL solution). Adsorption and desorption phases were each performed for 24 hours based on the results obtained from adsorption kinetics and desorption kinetics test.

Control samples without soil were used to determine the stability of the test item in 0.01 M CaCl₂ solution as well as in filtered soil matrix and to investigate the adsorption onto the test vessels. Furthermore, blank samples containing soil but no test item were used to investigate interferences with the soil matrix (one replicates per test).

The pH was measured in 0.01 M CaCl₂ before and after application and at each sampling point in each test.

2. Description of analytical procedures

Ouantification of MKH 6561-sulfonamide in aqueors supernatants and soil extracts was based on UPLC-UV detection (nominal test item concentrations of 20 mg/2 and 40 mg/2) and C-MS/MS (nominal test item concentration of 0.4 mg/L to A mg/L). Specificity was ensured by comparing C retention of the standard solution with the retention time of the analyte in the sample solution using UPLC-UV detection and by test item specific mass transitions and getention time in case of LC-MS/MS analysis. No interference was found.

Accuracy and precision of the method (OPLCOV) were determine ousing the control samples. Mean recovery for the test item concentration was \$1% with a relative standard deviation of 3.5% (results filed in the raw data), Both values were in the range of 90 110% (accuracy) and \leq 20% (precision), respectively. Ø

Regression coefficients (r) for the calibration curves were for the range of 9.9957 1.000 (UPLC-UV) and 0.9920-0.9999 (LCMS/MS). The limits of detection (COD) and quantification (LOQ) for UPLC-UV were 24 and 81 µg/L, respectively, corresponding to 81 and 0.4% of the lowest nominal concentration apalysed (20 mg/L). LOD and LOQ for LC, MS/MS were 0.9 and 3.0 µg/L, respectively, corresponding to 0.2 and 0.8% of the lowest nominal concentration analysed (0.4 mg/L).

A.

MASS BALCANCE In the predminary tests was demonstrated that the mlabelled test item was stable in 0.01 M CaCl2 solution as well as in contact with the three soils used to determine the adsorption and desorption isotherms. The test item did not adsorb to the surfaces of the test vessels. Recoveries in control samples (0.01 M CaCl₂ solution and filtered soll matrix) ranged from 98% to 106% of the nominal applied amount and patental mass balances in presence of soil ranged from 89% to 100% of the «,⁰ nominal applied amount. ×j'

In case of soil Lut of neither in the control soil matrix solution nor for one of the three soil/solution ratios tested a recovery $\delta t \ge 90\%$ of the applied amount could be found. Thus, soil Lufa 65 was not used in further tests

DATA B.

The adsorbed and described amounts of MKP 6561-sulfonamide at each concentration in the Proceeding and described amounts of MKM 6561-sulfonamide at each concentration in the adsorption/desorption isotherm experiments are provided in percentage of applied amount in the table below.

	% adsorbed at concentration of									
Son type	0.4 mg/L	2 mg/L	4 mg/L	20 mg/L	40 mg/I@°					
Lufa 2.1	9.2	14.1	11.3	5.8	7.07					
Eurosoil 1	34.6	21.7	38.0	27.60	26 .1 5					
Eurosoil 5	37.8	35.1	33.8	23.7	23.3					
			% desorbed							
Lufa 2.1	80.2	27.1	₹67.8	96.0	98.4 Q					
Eurosoil 1	45.2	65.8	49.1	47.8 ×	Q 558 K					
Eurosoil 5	70.7	42.3	73.1	ې 63.6 ⁴	76.7					

Table 7.1-49	Adsorbed and desorbed amounts of MKH 6561-sulfonamide

Adsorption ranged between 5.8% and 14.1% for soil Lufe 2.1, between 21.7% and 380% for Eurosoil 1 and between 23.3% and 37.8% for Eurosoil . Desorption ranged between 27.4% and . 98.4% for soil Lufa 2.1, between 45.2% and 6.8% for Eurosoil 1 and between 42.3% and 76.7% for Eurosoil 5.

Table 7.1-50 Adsorption and desorption coefficients of MKH 656 sulformani

	Adsorption	Desor	ption N
Soil Type	$\begin{array}{c c} \mathbf{K}_{\mathbf{f}}^{1} \\ (\mathbf{m}\mathbf{L}/\mathbf{g}) \end{array} \qquad $	Krioc ¹⁾ Krdesty Q 1/n (mL/g) (mL/g)	R ² K _{foc} ^{des 1)} (mL/g)
Lufa 2.1	0.104 0.903	× 16.794	
Eurosoil 1	2.310 0035 0.958	2.662 0.934	0.961 81.415
Eurosoil 5			0.891 31.238
Mean	\$\$687 0.893 0.938 V	43.950 2.262 ~0.913	0.926 56.326

For a reference concentration of 1 mg/L the unit of the Ercondlich coefficients can be expressed as mL/g
 Desorption coefficients were not calculated for soil Lufa 2.1 since to linear desorption pattern was observed

m Adsorption coefficients (Kads) ranged from 0.404 to 2.647 mJg with corresponding organic carbon normalised adsorption constants (Kro values) ranging from 16.794 to 70.651 mL/g for the three test soils (arithmetic mean: 49.950 m/g),

Ø

Ľ

Desorption coefficients (Kes) were 2.662 mL/g for Eurosoil 1 and 1.862 mL/g for Eurosoil 5 with corresponding organic carbon normalised desorption constants (K_{foc}^{des} values) of 81.415 and 31.238 mL/g, respectively (anthmetic mean 56.326 mL/g). For soil Lufa 2.1 no desorption isotherms were calculated since no linear desorption pattern was observed. Adsorption and desorption were slightly non finear with Froundlich exponents in the range of 0.840 to 0.935.

Athe pH value of the soils was measured in 0.01 M CaCl2 solution. In general, no significant differences were found before and after test item application as well as with increasing contact time during each conducted test.

111. CONCLUSIONS

Adsorption coefficients (K_f) ranged from 0.104 to 2.647 mL/g with corresponding organic carbon normalised adcorption constants (K_{foc}^{ads} values) ranging from 16.794 to 70.651 mL/g for the three test soils (arithmetic mean: 43.950 mL/g). Adsorption was slightly non-linear with Freundlich exponents in the range of 0.935.

Report:	v; ;; ;; ;2014;M-485908-01
Title:	Determination of the adsorption / desorption behaviour of MKH 6561-methoxy-saccharin
Report No:	70466195
Document No:	M-485908-01-1
Guidelines:	OECD Guideline for Testing of Chemicals, No. 106, Adsorption/Desorption, adopted
	January 21, 2000
	Commission Directive 2001/59/EC, Method C.18, Adsorption Desorption Using a 🚲
	Batch Equilibrium Method (EEC Publication No. L 225, 2001)
Deviations:	none
GLP/GEP:	yes $\sqrt{2}$ $\sqrt{2}$

Executive Summary

The adsorption/desorption behaviour of MKH 6561-methoxy-sacchain was investigated in batch equilibrium experiments using 4 soil types varying it clay content, organic carbon content and pH varie (Lufa 2.1: 2.8% clay, 0.66% organic carbon, pH 5.2, Lufa 6S: 400% clay, 1.66% organic carbon, pH 7.1, Labsoil F: 25.6% clay, 4.91% organic carbon, pH 4.4 and Eurosoil 5% 0.0% day, 5% organic carbon, pH 3.1). One further soil (Eurosoil 1) was used in the preliminary tost but excluded from all further experiments due to the low adsorption of MKH 6561-methoxy-saccharin found in this soil.

The experiments were performed at 20 ± 0^{2} C in the dark using glass, essels and 0.57 M GaCl₂ solution as aqueous phase. Quantification and characterisation of the test item were achieved using $OPLC_{UV}$ (nominal test item concentration of 2.5 mg/L) and LGMS/MS analysis (nominal test item concentration of 2.5 mg/L). Prior to analysis, samples were fatered using 0.2 μ m cellulose acetate syringe filters. The analysical methods were validated in the ourse of the study.

Preliminary tests were performed to determine the oppropriate soil/solution ratios as well as the equilibration time for adsorption. The test item did not adsorb to the surfaces of the test vessels. Recoveries in control samples (0.01 M CaCl₂ solution and soil matrix solution) ranged from 98% and 104% of the nominal applied amount except for the matrix of Eurosoil 5 for which only 73% were recovered. However, complete parental mass balances were obtained for this soil as well as for soils Lufa 2.1 and Lufa 6S. Incluse of the fourth soil, Labsoil F, mass balances were https://www.astended.com the preliminary tests. Therefore, an extended extraction procedure with four extraction steps was applied with the solid phase after the adsorption/deperption isotherm experiments. The final parental mass balance was still < 90% (76% for a soft/solution ratio of 1/1). However, the stability of the test item was shown in presence of soil matrix in the control samples (recovery of 104%) as well as by the absence of degradation products in the presence of soil (according to UPLC-UV). The lower parental mass balance might be a result of the high organic carbon content of Labsoil F, leading to an irreversible adsorption of the test item.

For the determination of the adsorption and desorption isotherms, the adsorption phase of the study was carried out using pre-conditioned soil aliques treated with hon-radiolabelled MKH 6561-methoxy-saccharin at nominal concentrations of 0.025, 0.14, 0.25 ct.4 and 2.5 mg/L (soils Lufa 2.1 and Lufa 6S) or 0.25, 1.4, 2.5 14 and 25 mg/L (Labsoil F and Eurosoil 5). A soil/solution ratio of 1/1 was used for soils Lufa 2.1, Bafa 6S and Labsoil F (20 g air-dried soil and 20 mL solution) and a soil/solution ratio of 1/2 was used for Eurosoil 5 (10 g air-dried soil and 20 mL solution). During the adsorption phase, the samples were shaken for 24 h on a horizontal shaker. Thereafter, the solid and liquid phases were separated by centrifugation and the decanted volume of the aqueous supernatant was replaced by an equal volume of fresh 0.01 M Cach₂ solution. Then, the samples were again shaken for 24 hours. Thereafter, solid and liquid phases were analysed for test item content.

Adsorption was the range of 3.8% to 11.1% for soil Lufa 2.1, 1.1% to 8.3% for soil Lufa 6S, 25.0% to 48.0% for Labsoil F and 29.3% to 35.2% for Eurosoil 5. Desorption ranged from 44.4% to 85.9% for soil Lufa 2.1, from 48.9% to 75.3% for soil Lufa 6S, from 6.3% to 24.1% for Labsoil F and from 43.0% to 75.4% for 9.2% for Soil Lufa 6S. from 6.3% to 24.1% for Labsoil F and from 43.0% to 75.4% for 9.2% for Soil Lufa 6S. from 6.3% to 24.1% for Labsoil F and from 43.0% to 75.4% for 9.2% for Soil Lufa 6S.

Adsorption isotherms could be established for all four soil types while desorption isotherms could only be established for soils Lufa 2.1, Labsoil F and Eurosoil 5 since no linear correlation was obtained in the desorption pattern of soil Lufa 6S.

di jo Adsorption coefficients (K_f) ranged from 0.045 to 1.018 mL/g with corresponding organic carbon $\overset{@}{\overset{@}}$ normalised adsorption constants (K_{foc} values) ranging from 2.715 to 17.362 mL/g (arithmetic mean 12.268 mL/g). Desorption coefficients (Kfdes) ranged from 0.309 to 1.095 mL/g with corresponding organic carbon normalised desorption constants (K_{foc}^{des} values) ranging from 17,955 to 46.88g mL/g (arithmetic mean 28.748 mL/c). The Figure 111 d (arithmetic mean: 28.748 mL/g). The Freundlich exponents (1/n) of the adsorption isotherms ranged from 0.690 to 1.011 indicating a slightly non-linear to linear adsorption behaviour. The Freundach exponents of the desorption isotherms of soils Lufa 2.1, Labsoil F and Eurosoil 5 ranged between 0.730 and 1.296 indicating a slightly non-linear to linear desorption behaviour as well.
I. MATERIALS
I. Test material MKIF 6561-Methoxy-Saccharin (M11)
Chemical Name: Preundach exponents of BCS-AG71018-0001
Origin Batch No.: BCO 6413-1325
Physical Appearance/Colour: Solid Light vellow & Chemical Purity: 99.% w/s
Expiry Date: May 22, 2014
Storage: At 40-30°C, under dark conditions 0.690 to 1.011 indicating a slightly non-linear to linear adsorption behavious. The Freundlich exponents of

Expiry Date: Storage: At 40=30°C, under dark conditions 2. Soils A total of five different soils (refer to Table 7.1-57) representative for the West-European area was used in the study. The soils were size dated the study. The soils were air-drive, passed through a 2 mm sieve prior to use and stored at room temperature. One of the boils (Eurosoil 1) was only used in the prefiminary test and excluded from all further experiments due to the low adsorption found in this soil. The investigation of the sorption behaviour in this soft was not expected to provide additional information.

Soil	Lufa 2.1 ¹⁾	Lufa 6S ¹⁾	Labsoil F ¹⁾	Eurosoil 5	Eurosoil 1	
Location	Rhineland- Palatinate	Rhineland- Palatinate		Schleswig- Holstein	Sicily	Ø,
Country	Germany	Germany	United Kingdom	Germany	L Italy	
Depth of Sampling (cm)	20	20	5-15	max. 30	C max 30	
Soil type ¹⁾	sand ²⁾	clay ²⁾	silt loam 2)	loamy sand	inglay a	
Sand (%) ¹⁾	87.3 / 86.7 ²⁾	22.2 / 24.8 2)	🖓 15.5 / 17.1 ²⁾	71.6 ³⁾	3.3.2	Ş
Silt (%) ¹⁾	10.1 / 10.5 2)	36.8 / 34.5	59.8 / 57 3 ²⁾ *	12.75)
Clay (%) ¹⁾	2.7 / 2.8 2)	41.0 / 40 2 3)	24.7 / 25.6 ²⁾		75.0 ³⁾	
Organic carbon (%)	0.62 / 0.66	1.64 / 1.66	5,40°/4.91	J 5.96		
pH (0.01 CaCl ₂)	5.1 / 5.2	Q1 / 7,10°	4.2 / 4.2	O W L	5.7	
CEC (meq/100 g)	3.8 / 4.1	23.7 28.9 ~	20.4 18.5	Net reported	Sot reported	

Table 7.1-51 Soil physicochemical properties

1) Two batches (1/2) were used for soils Lufa 2.1, Lufa 6S and Labsoil F. The second batch was used solely for the isotherm experiments
 2) According to USDA classification for soils Lufa 2, Lufa 6S and Labsoil F (clax < 0.002 mm, silt 0.002 – 0.05 mm, cmd: 0.00 2 mm),
 3) For Eurosoils 1 and 5 the data were taken from Gavlik et al (1999) the Science of the Total Environment 229 (1999) 99-107 (clay: < 0.0002 mm, silt: 0.0002 – 0.063 mm, sand: 0.063 - 302 mm)
 B. STUDY DESIGN
 I. Experimental conditions

1. Experimental conditions

All experimental steps were performed $a \sqrt{20} \pm 2\%$ in the dark using glass vessels and 0.01 M CaCl₂ solution as aqueous phase. The stock and application solutions of the test item were prepared in 0.01 M CaOl2 solution. Brior to use in the different experiments, soil aliquots (airdried) were pre-conditioned by shaking them with an appropriate amount of 0.01 M CaCl₂ solution overhight. Then, the respective aliquots of application solution were added. After shaking on a horiontal staker for the appropriate time intervals, phase separation was accomplished by centrifugation 10 min at 3000 rpm, 1800 (g) and remotal of the supernatant.

The preliminary test was conducted with concentration of 20 mg/L using a total of five soil types with varying soil colution ratios. Samples were taken after 4/6, 24 and 48 h. The first step was performed with three soils (Lufe 2.1, Eufa 6S and Eurosoil 5) but due to the low adsorption of the test item found for two of these soils (Lufa 2) and Lufa 6S), two additional soils (Labsoil F and Eurosof 1) were tested in order to provide a broader base for the determination of reliable adsorption value. Significant adsorption $\geq 20\%$ was found in one of these soils (Labsoil F), while adsorption in the other one (Eurosoil 1) was $\leq 20\%$ after 48 hours. The latter soil was excluded from all further steps since its inclusion was no expected to bring additional information. For the four remaining sorts, the following soft solution ratios were chosen for the next steps: 1:1 for soils Lufa 2.1, Lufa GS and Labson F; 1:2 for Eurosoil 5.

During the adsorption kinetics test (samples were taken after 2, 4, 10, 24 and 48 h), adsorption equilibrium was reached for all four soils after 24 h. The equilibration time for desorption was not determined separately but estimated to be within 24 hours based on the adsorption kinetics test. For parentakinass balance determinations, soil aliquots were extracted in different experimental steps. For this purpose, the aqueous phase was recovered as much as possible. In the preliminary test and the adsorption reinetics test 1, the soil remnant was suspended with 8 mL ACN/(50 mM CaCl₂ 10 mM NH OH) 50/50 v/v, followed by 10 min sonication and shaking the samples for 20 non using an overhead shaker. Phase separation was accomplished by centrifugation (10 min at 3000 rpm, 1800 x g). The extraction procedure was repeated twice. The supernatants were combined and the final volume was adjusted to 25 mL. Soil extracts were stored in the refrigerator unfiltered until analysis. Due to parental mass balances < 90% for Labsoil F, the extraction procedure was slightly modified during the adsorption kinetics tests 2 and 3 using pure water for

the first extraction step. Final investigations on the parental mass balance were conducted after the adsorption/desorption isotherm experiment after which the soil remnant was extracted with 8 mL 0.01 M CaCl₂ solution (step 1) followed by 10 min sonication and shaking the samples for 20 min using an overhead shaker. Phase separation was accomplished by centrifugation (10 min at 3000 rpm, 1800 x g). In case of steps 2 to 3 a mixture of ACN/(50 mM CaCl₂ + 10 mM NHOH) \leq 50/50 v/v was used. The supernatants were filled up to 10 mL each (not combined). Indicated soll extracts were stored in the refrigerator unfiltered until analysis by UPLCQUV.

Adsorption and desorption isotherm experiments were performed at five different concentrations of the test item spanning a range of two orders of magnitude. Regarding the test item properties and the sensitivity of the analytical method as well as the percentage of adsorbed test item found during the adsorption kinetics tests, the following concentration anges were chosen (9.025, 0.14, 0.25, 1.4 and 2.5 mg/L for soils Lufa 2.1 and Lufa 6S; 0.25, 1, 4, 2.5, 14 and 25 mg/L for Labsoil F and Eurosoil 5.

Three replicates per concentration and soil were used. A soil/solution ratio of (A was used for soils Lufa 2.1, Lufa 6S and Labsoil F (20 g air-dried soil and 20 mL solution) and a soil/solution ratio of 1/2 was used for Eurosoil 5 (100 air-dried soil and 20 mL solution). Adsorption and desorption phases were each performed for 24 hours based on the results obtained from adsorption kinetics test.

Control samples without soil were used to determine the stability of the test item in 0.01 of CaCl₂ solution and to investigate the adsorption onto the test vessels (pretiminate test and adsorption kinetics test). Furthermore, the stability of the test item was investigated in filtered soil matrix during the adsorption kinetics test. Blank samples containing soil but no test item were used to investigate interferences with the soil matrix (one replicate per test).

The pH was measured in 0.0 M CaOl₂ before and after application and at each sampling point in each test.

2. Description of agalytical procedures

Quantification of the test item was performed using UPEC-UV (nominal test item concentration of 2.5 mg/L) and LC-MS/MS analysis (nominal test item concentration of 0.025 mg/L to 2.5 mg/L). Specificity was ensured by comparing retention of the analyte in the standard solution with the retention time of the analyte in the sample solution using UPLC-UV detection and by test item specific mass transitions and retention time in case of LC-MS/MS analysis.

Accuracy and precision of the UPLCOV method were determined using the control samples (without soil) Mean recovery for the test them concentration was 98% with a relative standard deviation of 1.7% Both values were in the desired range of 90-110% (accuracy) and $\leq 20\%$ (precision), respectively

Regression coefficients (r) for the calibration cuces were in the range of 0.9983-1.0000 (UPLC-UV) and 0.9985-1.0000 (bC-MSMS). No Interferences were found in blank samples if UPLC-UX analysis was used. In case of LC SIS/MS analysis interferences were found. However, in the latter case interferences can be traced back to a carryover rather than contaminated soil.

The limits of detection (LOD) and quantification (LOQ) for UPLC-UV were 7.2 and 23.9 μ g/L, respectively, corresponding to 0.3 and 1.0 % of the lowest nominal concentration analysed (2.5 mg/L). LOD and COQ for LC-MS/MS were 0.6 and 2.0 μ g/L, respectively, corresponding to 2.4 and 8.0% of the lowest nominal concentration analysed (0.025 mg/L).

II. RESULTS AND DISCUSSION

A. MASSBALANCE

It was demonstrated that the unlabelled test item was stable in 0.01 M CaCl₂ solution and in sterile filtered (0.2 μm) soil matrix. The test item did not adsorb to the surfaces of the test vessels. Recoveries in control samples (0.01 M CaCl₂ solution and soil matrix solution) ranged from 98% and 104% of the nominal applied amount, except for the matrix of Eurosoil 5 for which only 73%

were recovered. However, complete parental mass balances were obtained for this soil as well as for soils Lufa 2.1 and Lufa 6S. In case of the fourth soil Labsoil F, mass balances were < 90% in the preliminary tests. Therefore, an extended extraction procedure was performed after the adsorption/desorption isotherm experiments using a maximum of four extraction steps. The figel parental mass balances were still < 90% (76% for a soil/solution ratio of 1/1). However, stability of the test item was shown in presence of soil matrix in the control samples (recovery of 10422) as well as by the absence of degradation products in the presence of soil. The low recovery might be result of the high organic carbon content of Labsoil F leading to an irreversible adsorption test item.

B. DATA

The adsorbed and desorbed amounts of MKH 6501-methoxy-soccharin at each concentration leve in the adsorption/desorption isotherm experiments are provided in percentage of the applied amount in the table below:

Solit forme		A % and s	sorbed at concentrati	fon of the second	L L
Son type	0.025 mg/L	-Q14 mg/1∠	🔆 0.25 mg/L 🖉	€1.4 mg€	2.5 mg/L
Lufa 2.1	8.1	× 8.3	3.8		<u>م</u> لاً 11.1
Lufa 6S	1.1	× 5.8 °	5 80 D	° 3.7 °	3.0
	0.25 mg/L	1.4 mg/L	2.5 mg/L	, 14 mg/L	25 mg/L
Labsoil F	48.0 0	O ^V 2.5 CV	36.0	\$ \$6.4	25.0
Eurosoil 5	35.2	§ 35.2	Q .Q.3 &	29,305	29.3
		% deserbed and	he respective nomina	alConcentration	
Lufa 2.1	్లస్ 85.0	44.4	N na	72.6	48.2
Lufa 6S	P.a.	0 74.0 ×	A8.9 5	71.0	75.3
Labsoil F 👸	6.3		₹ 12.9 *	20.2	24.1
Eurosoil	764	47.6	\$ \$3.0 \$	51.7	52.3
n.a.: not applicable		~ ~ ~~			

Adsorbed and desorbed amounts of MKH 6561-methoxy-saccharin Table 7.1-52

Adsorption ranged from 3,8% to 14.1% for soil Lufa 2,0, from 1.1% to 8.3% for soil Lufa 6S, from 25.0% to 48.0% for Labsoil F and from 29.3% to 35 2% for Eurosoil 5.

Desorption ranged from 44.4% to 85.9% for soil Lufa 2.1, from 48.9% to 75.3% for soil Lufa 6S, The Freundlich parameters of the adsorption desorption isotherms are presented in the table below:

~ ~ ~	Adsorption			Adsorption				Des	orption		
Soil Type	K _f ¹⁾ (mL/g)	1/n	r ²	K _{foc} ¹⁾ (mL/g)	Kf ^{des 1)} (mL/g)	1/n	R ²	K _{foc} ^{des} 1) ° (mL(g)	ð		
Lufa 2.1	0.079	1.011	0.9379	11.917	0.309	1.296	0.9634	46,886	ř		
Lufa 6S	0.045	0.690	0.8919	2.715	_ 2)	_ 2)	_ ²⁾	λy - ²⁾ , γ			
Labsoil F	0.852	0.781	0.9973	17.362	1.095	0.730	0.9951	\$ 22.603	2		
Eurosoil 5	1.018	0.933	0.9982	17.079	A.017	1.145	0.9634	گ∦.055 گ	0		
Mean	0.499	0.854	0.956	12.268	0.807	Q.057	0.97A	28.748	h		

Table 7.1-53:	Adsorption and desor	ption coefficients of MKH	6561-methoxy-saccharin
			•/

1) For a reference concentration of 1 mg/L the unit of the Freundlich coefficients can be expressed as mL/g

2) Desorption coefficients were not calculated for soil Lufa 6S since no knear desorption pattern was observed (

Adsorption coefficients (K_f) ranged from 0.045 to $1^{\circ}.018$ mL/g with corresponding organic carbon normalised adsorption constants (K_{foc} values) ranging from 2.775 to 17.362 pt /g for the four test. soils (arithmetic mean: 12.268 mL/g). The Freyndlick exporents (1/n) of the adsorption (sotherns ranged from 0.690 to 1.011 indicating a slightly non-linear to linear adsorption behaviour.

Adsorption isotherms could be established for all four soil types while desorption isotherms could only be established for soils Luf 2.1, Labsoil F and Eurosoi 5 since no linear correlation in the desorption pattern was obtained for soil Lufa 6S. Desorption coefficient (Kides) Fanged from 0.309 to 1.095 mL/g with corresponding organic carbon normalised desorption constants (K_{foc}^{des} values) ranging from 17.055 to 4688g nt /g (arithmetiomean 28.748 mL/g). The Freundlich exponents of the desorption isotherms of solls Lufa 2.1, Labsoil Fand Eurosoil Franged between 0.730 and 1.296 indicating a slightly non-linear to linear desorption behaviour.

The pH of the soils was measured in 0.06 M CaCl2 solution. In general, no Senificant differences were found before and after test item application as well as with increasing contact time during each conducted test

III?CONCLUSIONS

Adsorption coefficients (K_f) range $from 0.045 \pm 0.018$ mL/g with corresponding organic carbon normalised adsorption constants (K foc values) ranging from 2, 415 to 17.362 mL/g for the four test soils (arithmetic mean: 12.268 mL/g) The Freundlich exponents (1/n) of the adsorption isotherms ranged from 0.690 to 1.011 indicating a slightly non-linear to kinear adsorption behaviour.

CA 7.1.3.2 Aged sorption

Studies are not required under Commission Regulation (EC) No 1107/2009.

Mobility in soil CA 7.1.4

Studies on the mobility of propoxycarbazone-sodium are not required since reliable K_{foc} values for propoxycarbazone sodium and its major soil metabolites were obtained with the batch equilibrium experiments presented in section CA 7.1.3.

The mobility of aged desides of [phenyl-UL-14C]- and [triazolinone-3-14C]propoxycarbazone-sodium was investigated in soil column experiments using a loamy sand soil. Residues were aged for 29 days [phenyl-UL-14C] or 28 days [triazolinone-3-14C], applied to the soil columns and irrigated for 96 hours (equivalent to 508 mm/20 inches of rainfall). Total radioactivity in the leachates accounted for 85.8% (phenyl-label) and 89.0% AR (triazolinone-label). The distribution of aged residues in the leachates showed that

propoxycarbazone-sodium (76.5% AR phenyl- and triazolinone-label) and the metabolites M04 (3.1 – 3.6% AR), M06 (0.8% AR, phenyl-label only), M07 (4.3% AR, phenyl-label only) and M10 (7.9% AR, triazolinone-label only) have a high potential to leach through a loamy sand with very low organic carbon content. M05 and M09 were not detected in the leachates.

For the major soil metabolite M05, a soil column study was submitted within the former Annex fonclusion Dossier and an organic carbon normalised adsorption coefficient (K_{oc}) of 35 mL/g was determined in a loamy sand soil with a pH of 6.4 (measured in water). This value is consistent with the range of K_{for} values obtained in the new adsorption/desorption study in which the mobility of M05 was classified as very high to high (refer to CA 7.1.3.1.2/09).

The leaching behaviour of [phenyl-UL-¹⁴C]- and [triazoltnone-3-¹⁴C]ptopoxycarbazene-sodium (1) mixture) and its metabolites was investigated in two lysimeters for three years with two applications in a 70 WG formulation (70 g/ha, spring application in 1) and 2nd year). The annual average concentrations in leachate were 0.009, 0.004 and 0.002 μ g/L for propoxycarbazone sodium, 0.002, 0.018 and 0.007 pg/L for M10, and 0.061, 0.057 and 0.049 μ g/L for the total radioactive residue. The maximum concentrations of propoxycarbazone-sodium, M10 and the total radioactive residue were 0.02, 0.04 and 0.099 μ g/L, respectively. The European Commission concluded that under vulnerable conditions, propoxycarbazonesodium and M10 might leach into groundwater (SANCO 4067/2001-Einal, 30, September 2003). Low leaching potential of propoxycarbazone-sodium is shown by groundwater modelling study (study summaries in M-CP, section 9, point 9.2.4.1). However, the maximum 800 percentile PEC_{gw} values of the metabolites M07, M10 and M11 were above 0.1 μ g/L. Therefore a non-relevance assessment was conducted for these compounds (for details please refere to Doo N4). In concentration, metabolites M07, M10 and M11 are not considered to present a toxicological hazard and can be considered to be non-relevant.

Table 7.1-54 Overview on the mobility of propoxyca@azoneSodium and M05 in Soil

Reference	Guidelines	Label	Test conditions	Results
TOC? TOC?	BBA Guidelines Part IV,4-3 (1990), Directive 91/414/EEC, Annex 1	[triazoli- none-3- ¹⁴ C] and [phenyl- UL- ¹⁴ C]	Lysimeter study: 70 g as/ha, spring application 2 lysimeter over 3 years, single application in year and 2	Annual average concentration in leachate (µg/L), year 1, 2, 3 propoxycarbazone-sodiam: 0.009, 0.004, 0.002, M10: 0.002, 0.018, 0007, total radioactive residue: 0.061, 0.057, 0.049 Mazimum concentrations in leachate (no/L): propoxycarbazone-sodium: 0.02 Mil: 0.04 Mil: 0.04
Studies shaded ill grey llave beell	reviewed as part of			

CA 7.1.4.1 Column leaching studies

CA 7.1.4.1.1 Column leaching of the active substance

The leaching behaviour of aged foil residues of propoxycarbazone sodium in sol in the laboratory was evaluated during the Annex I inclusion using two radiolabel positions, [phenyl-U-¹⁴C] and [triazolinone-3-¹⁴C], and was accepted by the European Commission (SANCO/4067/2001-rev Final, 30 September 2003).

	· %		×
Annex point 🔏	Author(s)	gar 🌾 📈	Edition No.
KCA 7.1.4.1.1/0	, K. K., e)99 _{1, 0}	M-015843-01-1

Studies shaded in grey have been reviewed as part of the first EQ review of propoxy arbazon sodium.

For information on studies already evaluated during the first EU eview of propoxycarbazone-sodium, please refer to the corresponding section in the Baseline Dossier provided by **Section 100** on behalf of Bayer CropScience and in the Monograph A summary of the relevant data is given in section CA 7.1.4.

No additional studies are submitted within this Supplemental Dossier for the propoxycarbazone-sodium renewal of approval.

CA 7.1.4 2.2 Column leaching of metabolites, breakdown and reaction products

The leaching behaviour of the major soil metabolite M05 in soil in the laboratory was evaluated during the Annex I inclusion using the [phenyl-U-4C] the land was accepted by the European Commission (SANCO/4067/2001-rev.Final. 20 September 2003).

Annex point Annex Author (s)	Year	Edition No.
KCA 71.4.1.201 A B.A. et al.	1999	M-015802-01-1

Studies shaded in get have been reviewed as part of the first EU review of propoxycarbazone-sodium.

For information on studies already evaluated during the first EU review of propoxycarbazone-sodium, please refer to the corresponding section in the Baseline Dossier provided by the section on behalf of Bayer CropScience and in the Monograph. A summary of the relevant data is given in section

CA 7.1.4.

No additional studies are submitted within this Supplemental Dossier for the propoxycarbazone-sodium renewal of approval.

CA 7.1.4.2 Lysimeter studies

The leaching behaviour of propoxycarbazone-sodium and its degradation products in soil in lysineters were evaluated during the Annex I inclusion using two radiolabel positions, [phenyl-U-14C] and [triazolinone-3-¹⁴C], and accepted by the European Commission SANCO/406720014ev.Final, 30 September 2003).

Annex point	Author(s)	Vear Year	O Edition No.
KCA 7.1.4.2/01	, R. and , K	1999, amended 2000	₩ ² №0145¢01-02-€

Studies shaded in grey have been reviewed as part of the first EU wylew of proposyca bazone-softium.

For information on studies already evaluated during the first EQ review of propoxycarbazone-sociaum, please refer to the corresponding section in the Baseline Dossier provided by the section on behalf of Bayer CropScience and in the Monograph. A summary of the relevant data is given in section CA 7.1.4.

No additional studies are submitted within this Supplemental Dossier for the proposycarbazone-sodium renewal of approval.

CA 7.1.4.3 Field leaching studies

No study is available. Field leaching studies are not equired due to the results of a tiered leaching assessment (please refer to KCA 7. 14.3/01 03 and M-CP Section 9, point 9.2.4.1).

The potential leaching behaviour of propoxycarbazoro-sodium after repeated use over several years in soil was assessed duong the Anne I inclusion using PELMO calculations with different climatic and regional scenarios. The approach was accepted by the European commission (SANCO/4067/2001-rev.Final, 30 September 2003).

Ky'		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Annex point 🌋	nthor(s)	Year	Edition No.
KCA 7.1.4.3/01	, H. ×	چ ^۲ 1999	M-011088-01-1
KCA 7.1.4.3/02		1999	M-012021-01-1
KCA 29.4.3/03	, H. , , , , , , , , , , , , , , , , , ,	1999	M-011051-01-1

Studies shaded in grey have been reviewed as part of the first EU review of propoxycarbazone-sodium.

For information on studies already evaluated during the first EU review of propoxycarbazone-sodium, please refer to the corresponding section in the Baseline Dossier provided by **Euclidean Constant and Section** on behalf of Bayer Crop Science and in the Monogram.

The simulations showed that on all cases tested concentrations of propoxycarbazone-sodium in the leachate were be below $0.1 \mu g/L$. These studies are considered as additional information, because PELMO simulations were not according to the current FOCUS guidelines.

New PEC_g values calculated for the use in cereals in Europe by means of current FOCUS PEARL 4.4.4 and FOCUS PELMO 5.5.3 models confirm the results (for details please refer to M-CP Section 9, point 9.2.4.1). The maximum 80th percentile PEC_{gw} values of the active substance propoxycarbazone-sodium and its metabolites M05, M08 and M09 in the leachate at 1 m soil depth are below 0.1 μ g/L for all crops and scenarios. The maximum 80th percentile PECgw values of the metabolites M07, M10 and M11 were above 0.1 µg/L. Therefore, a non-relevance assessment was conducted for these compounds (please refer to Doc N4).

No additional studies are submitted within this Supplemental Dossier for the propoxycarbazone sodium renewal of approval.

CA 7.2 Fate and behaviour in water and sediment

Draw C Propoxycarbazone-sodium is slowly hydrolysed at 25°C, as relevant metabolites M05 and M20 were detected. The photolysis of propoxycarbazone-sodium in aqueous solution under environmentally relevant pH- and temperature conditions is slow. Thus it will contribute to its degradation to the environment only to a very limited extent. Major metabolites identified were M07 and M100 Propoxycarbazone-sodium was stable in microbial active surface water inder perobic conditions in the dark at 20°C under artificial conditions without my settiment. Furthermore, the degradation behaviour of propoxycarbazone-sodium in two water/sediment systems investigated under aerobic conditione showed differences in the results with respect to degradation rates and formation of metabolites. On basis of the findings in the first system propoxycarbazone-sodium can be regarded as rapidly dissipating substance which is intensively metabolised in the aquatic environment, Major metabolites identified were M04, M06 and M10. In the second system, the degradation of the parent compound was much slower and the extent of metabolite formation was much lower as compared to the first system. Major metabolites detected were M05 and M10. More details for the route and rates of degradation of propoxy carba cone-sodium and its major degradation products in water and sediment are given in CA 9.2.1 and CA 7.2.2, respectively.

Route and Fate of degradation on aquatic CA 7.2.1 systems (chemical and photochemical degradation)

The hydrolytic route and rate of degradation of propoxy arbazone-sodium were investigated in two studies under laboratory conditions using [phenyl-ULL¹⁴C]- and [triazolinone-3-¹⁴C]propoxycarbazonesodium, respectively. According to both studies, propoxycarbazore-sodium can be regarded as stable to hydrolysis at 25°C with Deg T50 values ranging from 110 F to 149.6 days at pH 4 and from 400.6 to 463.6 days for pH 7 and pH/9. The major metabolites detected at 25°C are M05 (max. 16.6% AR at pH 4) and M10 (max. 13.9% Ar at pb)4).

At an elevated temperature of 30° C proportion and a proportion of the proporti (max. 72.3% AR at pH 40 M07 max. 37.4% AR at pH 9) and M10 (max. 89.0% AR at pH 4 to pH 9). The hydrolytic degradation of the major metabolites occurring at 25°C was investigated based on the laboratory studies performed with the parent compound propoxycarbazone-sodium. For M05, the data obtained at 50°C and pH 4 were used for the evaluation and a DegT₅₀ value of 18.9 days was estimated. The corresponding DegT₂₀ value at 20°C was determined by extrapolation according to FOCUS (1997)¹⁷ as 201 days. For M10 tr was concluded that this metabolite is hydrolytically stable, based on its continuous accumulation over time?

For M07, detected at 25°C only in minor amounts, it can be concluded that it is very stable to all environmental conditions, ducto high stability in food and beverage applications where M07 is used as commercial sweetener. ۸Ő ×1

An overview of the hydrotytic rate of degradation of propoxycarbazone-sodium and its metabolites is given in Table 7,3-1.

The photolysis of propoxy arbazone-sodium in sterile buffer solutions at pH 7 was investigated using [phenyl-U6²⁴C]- and [triazolinone-3-¹⁴C]propoxycarbazone-sodium. Direct photolysis was slow with experimental DegT₅₀ values of 18.1 and 40.9 days for phenyl- and triazolinone-labels, respectively. In a

¹⁷ FOCUS (1997): Soil Persistence Models and EU Registration, EU Document No. 7617/VI/96

further study using non-radiolabelled propoxycarbazone-sodium, no photodegradation was observed. Thus photolysis will contribute to the degradation of propoxycarbazone-sodium in the environment only to a very limited extent.

Major metabolites identified were M07 (max. 22% of AR) for the phenyl-label and M10 (max. 13.6% ÅR) for the triazolinone-label. M07 degraded slowly but steadily with a DegT₅₀ value of 49 days. The metabolite M10 was not further addressed as it has no ecotoxicolgical effects and was classified as non-critical in aquatic systems (refer to M-CA, Section 8).

Table 7.2-1 Hydrolysis of propoxycarbazone-sodium and its major metabolites M05 and M10 🔗

July 20	14
---------	----

Table 7.2-2	Direct photolysis of propoxycarbazone-sodium and its major metabolite M07
-------------	---

Reference Guideline(s) Label Test conditions Temp. DegT ₅₀ Metaboli		Metabolites / Comments					
Propo	oxycarbazone	e-sodium					
KCA 7.2.1.2/01	Hellpoint- ner, E., 1997	UBA: Phototrans- formation of Chemicals in Water, Part A (1992)	none	Quantum yield was determined in water, ECETOC method, TQ Hg-lamp with Duran 50 filter for λ < 295	25°C	> 1 ydyr	No photodegradation or photopsodict observed 2
KCA 7.2.1.2/02	et al., 1999	US EPA, Subdivison N, § 161-2 (1982), Commission Directive 94/37/EC (1994)	[Phenyl -UL- ¹⁴ C]	pH 7 (0.024) phosphare buffer) sterilised Xemon lam producing artificial sublight, 19 days test peerod		A C	Relevant metabolite: M07 (max. 22% AR) Minop metabolite: M08 (max. 5.8% AR) Experimental Dev T ₅₀ is equivalent to an environmental half Ove of 40% days (40° lattinde, midsummer sunlight)
KCA 7.2.1.2/03	B., and B., and E., 1999	US EPA, Subdivison N, § 161-2 (1982), Commission Directive 94/37/EC (1994),	Tuazolis Jone-3- 14	MA 7 (0.02 M phosphate buffer) sterilized, Senon lamp producing artificial smlight 19 days test Operiod		20 00 .469 days	Relevant metabolite: Mu (max. ¥3.6% AR) Experimental DegT ₅₀ is equivalent to an environmental half-live of 94 days (40° latitude, midsummer sunlight)
M07						0 ~y , Ø	
KCA 7.2.1.2/04	, B., and , HE.,*1999	US EPA, Subdivision N, § 161-2 (1982), Commission Directive 94/37/EC	Ebenyl FEL-14CE	pH (0.02 M phosphate buffer) Sterilise Xenon lamp, producing attricial sublight (Suntest), 20 days (St period	25°C 57 57 57 57	49 days	No relevant metabolite identified (amounts 0.3 – 5.6% AR) Experimental DegT ₅₀ is equivalent to an environmental half-live of 117 days (40° latitude, midsummer sunlight)

Hydrolytic degradation CA 7.2,1

CA 7.2.1.1 Hydrolytic degradation The hydrolytic route and rate of degradation of propoxycarbazone-sodium in buffers under sterile conditions in the dark in the laboratory were evaluated during the Annex I inclusion using two radiolabel positions, [phenyl-UL-4C] and [triazonnone-3-¹⁴C]. The hydrolytic degradation of M05 and M10 was deduced from these studies in two separate reports. The studies and reports were evaluated during the Annex I inclusion and accepted by the European Commission (SANCO/4067/2001-Final, 30 September 2003). 2003). A Constant

Annex point	Author(s)	Year	Edition No.
KCA 7.2.1.1/01 also filed in KCA 2.8/01	, B. and , HE.	1999	M-013505-018
KCA 7.2.1.1/02 also filed in KCA 2.8/02	, B. and , HE.	1999	M-008682-01-7
KCA 7.2.1.1/03	, H.	چ 1999	M4014362-01-1-5
KCA 7.2.1.1/04	, B. and , HE.		M-008684-07-1

Studies shaded in grey have been reviewed as part of the first EU review of propoxycarbazone-sodium

For information on studies already evaluated during the first EU review of propoxycarbazone-sodium, please refer to the corresponding section in the Baseline Dossier provided by **European State Structure** on behalf of Bayer CropScience and in the Monograph A summary of the relevant data is given in CA 2.1

No additional studies are submitted within this Supplemental Dossier for the propoxycarbazone-sodium renewal of approval.

CA 7.2.1.2 Direct photochemical degradation

The photolytic routes and rates of degradation of propoxycarbazone-sodium and its major degradation product M07 in buffers in the laboratory were evaluated during the Annex Linclusion using two radiolabel positions, [phenyl-UL-¹⁴C] and ferrazolanone-30⁻⁴C], as well as unlabelled propox coarbazone-sodium and M07, and were accepted by the European Commission (SANCO/4067/2001-Final, 30 September 2003).

Edition No.
M-001627-01-1
M-010180-01-1
M-010186-01-1
M-012272-01-1

Studies shaded in grey have been reviewed as part of the first ER review of propoxycarbazone-sodium

For information on studies already evaluated during the first EU review of propoxycarbazone-sodium, please refer to the corresponding section in the Baseline Dossier provided by behaviored by behavi

No additional studied are submitted within this Supplemental Dossier for the propoxycarbazone-sodium renewal of approval.

CA 7.2.1.3 Indirect photochemical degradation

Studies on the indirect photochemical degradation of propoxycarbazone were not performed.

CA 7.2.2 Route and rate of biological degradation in aquatic systems

A new study on the aerobic mineralisation of propoxycarbazone-sodium in surface water was performed and is submitted within this Supplemental Dossier for the propoxycarbazone-sodium renewal of approvals. This type of study is a new data requirement according to Commission Regulation (EU) No 283/2013 and was not addressed within the former Annex I inclusion dossier.

The study was performed using [phenyl-UL-¹⁴C] and [triazolinone-3-¹⁴C] labelled propoxycarbazonesodium which was stable in the used microbial active sorface water during the 61 days of incubation. In samples of particular concentration levels a second component was observed (approx. 4% AR) which was, however, assumed to be rather an impurity than a transformation product due to its restricted occurrence. The formation of volatile transformation products (e.g. carbon droxide) was found to be negligible ($\leq 1.0\%$ AR). A kinetic analysis of the data was not performed due to the observed stability of the test item.

As the test design was artificial by using a pelagie system without sediment, worst-case conditions were tested. In the environment, translocation wito the sediment, additional biological processes plants as well as photolysis might accelerate the degradation process.

The aerobic route and rate of degradation of propoxycarbazone sodium was sodied in the water/sediment Lake. One eplicate of set h system was applied with [phenylsystems Pond and von UL-¹⁴C]propoxycarbazone-sodium and the other one with [triazohnone-3,⁷⁴C]propoxycarbazone-sodium. The results obtained for the two water/sedment systems differ with respect to the degradation rates and the formation of metabolites. A summary of the formation of metabolites is presented in Table 7.2-3. Based on the findings in the Pond system, propôxycarbazone sodium can be regarded as a rapidly dissipating substance, which is intensively metabolised in the aquatic environment. Major metabolites identified in the total systems were M04 (max. 68.5% AR), M06 (max. 19.4% AR) and M10 (max. 34.4% AR). Only a slight formation of carbon dioxide was observed with 1.6% for the triazolinonelabel and 16.4% for the pheny Plabel (single values). Non-extractable radioactivity accounted for up to 13% AR at study end (single value phenyl-labe) and triarolingne-labely. The DT₅₀ values calculated for both labels as persistence endpoints according to the current FOCUS kinetics guidance were 10.0 days for the water phase and 12, Edays for the entire system with corresponding DT₉₀ values of 33.2 and 33.4 days, respectively. The DT values for both labels as modelling endpoints were calculated to be 10.0 days for the water phase and 1.9 days day for the entire system (refer to Table 7.2-4). , Ç

In the Von **Example 1** Lake system, the degradation of the parent compound was much slower and the extent of metabolite formation was much fower as compared to the **Example** Pond test system. Major metabolites detected were M05 (max. 10/3%) and M10 (max. 6.9%). Carbon dioxide formation was low with up to 1.9% AR at study end (single value, triazolinone-label). Non-extractable radioactivity accounted for up to 18/2% AR at study end (single value, triazolinone-label). The DT₅₀ values calculated for both labels as persistence endpoints according to the current FOCUS kinetics guidance were 94.5 days for the water phase and 194.6 days for the entre system with corresponding DT₉₀ values of 378.3 and 646.3 days, respectively. The DT₅₀ values for both labels used as modelling endpoints were calculated to be 103.6 days for the water phase and 194.6 days for the entire system. For sediment, a DT₅₀ of 8.84 days could be derived for persistence and modelling endpoint.

A possible explanation for the reduced degradation observed in the Von Lake System is the low organic carbon content in combination with the low microbial activity in this system. Under field use conditions additional biological activities (plants) and the influence of light could raise the degradation rates. Therefore, the potential for persistence or accumulation of propoxycarbazone-sodium in an aquatic microbial active environment is assumed to be low.

The degradation rates of propoxycarbazone-sodium in water and sediment for modelling purpose and trigger evaluation are summarised in Table 7.2-4. The proposed pathway for the degradation of propoxycarbazone-sodium in water/sediment systems is presented in Figure 7.2-1.

For the major metabolites detected in the water/sediment systems, only a few reliable half-lives could be determined: For M04 and M10, neither M-I dissipation nor degradation endpoints could be estimated. For M05, a geometric mean DT₅₀ of 32.56 days for modelling purpose could be derived. The DT₅₀ value of M05 for trigger evaluation was calculated in all systems to be 1.06 days with a corresponding DT₉₀ of 3.52 days. The DT₅₀ of M06 in all systems was given with 29.88 days as persistence endpoint. For modelling pupose for M06, default DT₅₀ values of 1000 days need to be used for PECswar odelling at a Steps1-2. However, a geometric half-life of 172.86 days would be available for FOCUS Step model in (for more details please refer to CA 7.2.2.3/04).

Table 7.2-3	Overview of the results of the water/sediment study
-------------	---

						Maxi	imum am	iounts (% AR)																			
R	eference	Guidelines	Test Conditions	Sy	stem	M04	M05	M06 M10	Ç¥ Y																		
					Water	502	2.6	r6.2 .Q1.2																			
/01		BBA-Guidelines Part		Pond	Sediment	A19.3	0.0	3.2 13.20	?																		
2.2.3,	,	IV, 5-1 (1990),	Application Rate: 68 g/ha	Ğ	Total 🗳	68.5	2:6	19.4 34.4																			
CA 7.	K., 1998	95/36/EC (1995),	Duration: 100 days	∛Von	Water	0.1	¥.7	31.6 3.1	Ó																		
KC	SETAC (1995)		Lalas	Sectiment	• 0.0 J	7.6	0.0 3.8																				
			Q0		Total 🖉	0.1	NI.3	Q.6 0.3																			

Studies shaded in grey have been reviewed as part of the first EU keyiew of propoxycarbazone-sodium.

						<u> </u>			
					Persi	stence end at level R-1	oonts	Modelling	endpoints el P-I
R	eference	Guidelines		2 System	Moder	DT ₄₀ (days)	(days)	Model	SFO DT ₅₀ ¹⁾ (days)
				P	f ¶s	12.3	33.35	SFO	11.85
		Total	y Total system	Von	kee SFO	194.57	4646.34	SFO	194.57
_	3/04	Ĩ,		ometric Mean	Q 9.06	146.82		48.00	
2.3/04		ó jogi	Pond	SFO O	10,00	23 .22	SFO	10.00	
7.2.2	, S., 2014	FOCUS	Water Phase	Von La	KA DEOP	\$ 4 .46	€ ³ 378.28	SFO	103.56
KCA			N,Q		eometric Mean	30.73	112.10		32.18
			Pone	I SFQ	8,84	29.39	SFO	8.84	
			Sediment Phase	Von	$\frac{1}{ke} \left(\sqrt{-2} \right)$	2)	_2)	_2)	1000 ³⁾
				G C G	eometric Man	8.84	29.39		94.02

1) $DT_{xx} = DegT_{xx}$ for total system but DisT. For watch and sedurent physe. 2) not calculated due insufficient number of data points after peak. 3) FOCUS default DT_{50} for use in surface watch wodelling.

CA 7.2.2.1 "Ready biodegradability"

No study on the ready biodegradability of propolycarbazone-sodium was performed. Therefore, propolycarbazone sodium is classified as "no ready biodegradable", which is in line with the available information on the substance

CA 7.2.2 D Aprobic mineralisation in surface water

A study for the determination of the route and rate of degradation of propoxycarbazone-sodium in surface water order acrobic onditions in the dark in the laboratory has been performed and is submitted within this Supplemental Dossier for the propoxycarbazone-sodium renewal of approval using two radiolabel position, [phenyl-UL-¹⁴C] and [triazolinone-3-¹⁴C]. This type of study (OECD 309) is a new data

requirement according to Commission Regulation (EU) No 283/2013 and was not addressed within the former Annex I inclusion dossier.

zone-
0° 🔈
y O'
il 13
, \$
D D
ěd 🔬
S.
<u> </u>

Executive Summary

The present laboratory study investigated the degradation and transformation of MKH0561 (propoxycarbazone-sodium) at low concentrations in one type of surface water for 60 days under aerobic conditions in the dark at 20°C ± 2°C.

[Triazolinone-3-¹⁴C]- and [phenyl-UL-¹⁴C] Aabelled MK IT 6561 were used as text items in separate approaches. The natural surface water was taken from apond which can be classified as pelagic. 500 mL of the natural pond water were treated at hree different test concentrations (both labels, respectively): 10 µg/L, 100 µg/L and 1003 µg/L. Test vessels were incubated in the dark under aerobic conditions at a temperature of $20 \pm 2^{\circ}$ C except for 475 h during the main test during which subtly higher temperatures were observed (max. 24.7°C).

Samples were taken immediately after incubation (Qh) and 25, 40 53 and 61 days after treatment.

The test was accomplished as a batch approach for the test samples (F4 samples), meaning that at each sampling time point an aliquot of the same sample was taken while the remaining sample was further incubated.

Additionally, samples for the determination of ${}^{14}CO_2$ dissolved in water and particle adsorbed radioactivity were incubated (F a samples). These samples were taken completely at each sampling time point. Prior to sampling, each per vessel was connected to a flow through system to collect volatile transformation products. Sterile samples were also incubated.

Independent analytical methods were used: a) liquid cointillation counting (LSC) to determine the total radioactivity and b) test them specific chromatographic methods for quantification and identification of the parent test items and screening for transformation products (HPEC UV and radio detection). Additionally, the characterisation of the parent test items was confirmed by CC-MS/MS analysis.

The microbial activity of the test water was investigated by the degradation time of ¹⁴C-labelled benzoic acid and the number of the of ony forming units (CFU) at test start. Aerobic incubation conditions during the incubation period were confirmed by the oxygen content and the redox potential measured in the surface water.

For all samples of the degradation test (F_{10} , the mean total recovery was in the required range of 90% to 110% of AR (applied radioactivity). For the samples used to determine dissolved CO₂ mass balances were also sufficient, except for four individual samples for which mass balances range from 71-135%.

The formation of volatile transformation products (e.g. carbon dioxide) was found to be negligible in the course of incubation since in the trapping solutions of each concentration (I-III) and each label (phenyl, triazolinone), detected amounts were $\leq 1.0\%$ of AR (mean).

Analysis of the surface water by HPLC radio detection showed that the radioactivity in the samples could almost completely be related to the parent MKH 6561 with a percentage of \geq 96% for the triazolinone-label and \geq 5% for the phenyl-label. In addition, analysis of samples of particular concentration levels (II-triazolinone label; I-phenyl label) showed a second peak. As the peak could only be found in lower concentrations and no peak occurred in samples with the higher concentration, it was assumed that the

signal resulted from an impurity rather than from a transformation product. With a total peak area of approx. 4% in both cases, the amount of the unknown compound was not relevant.

The test indicated that propoxycarbazone-sodium (MKH 6561) was stable in the used microbial active surface water during 61 days of incubation under aerobic conditions in the dark at 20°C ± 2°C.

1. Test material	[triazolinone-3-14] propoxycarbažone-sodium
(radiolabelled)	
Sample ID:	KML 9506 4
Specific Radioactivity:	5.13 MBg (138.68 u Qi/mg) 5
Radiochemical Purity:	> 98% (HPLC radioactivity detector), > 99% TLC, scan
Chemical Purity:	
Description:	Sofid, white I is in the second secon
Storage:	In original container, - 20°C, in the darkand the absence of
	moisture of the state of the st
Expiry Date:	Not applicable; the amount of the article of the second state was determined
	HPLG counted with UV and radio detection.
2. Test material	Aphenyl-UL-14 proportycat Dazone sodium
(radiolabelled)	
Sample ID: 2 Sample Sample ID: 2 Sample ID:	KML 9507 2 2 2 2
Specific Radioactivity:	9.82 MBq/mg (103 @μCi/mg)
Radiochemical Purity;	$\geq 99\%$ (HBLC, radio detection and TLC, scan)
Chamical Purity:	\$99% S S S
Description:	Solid White & A
Storage: 6 A	In original container, 20°C, in the dark and the absence of
	\bigcirc
Expiry Date:	Not applicable; the amount of total radioactivity was determined
	HPLC coupled with UV and radio detection.
3. Test material	MKH 650
(non-labelled)	
Chemical Name	Mothyl 2-(4,5-dihydro-4-methyl-5-oxo-3-propoxy-1H-1,2,4-
	triažol-1-yl)carboxamidosulfonylbenzoate, sodium salt
Description?	Solid, off white
Batch # 0	AE 0298618 00 1B98 0001
Origin Batch #:	M28217 (used for the entire test, except for the determination of
	the concentration of the stock solution prior to application).
CAS NO.:	1812/4-13-/

	8
Purity:	98.0% w/w
Storage:	At $\pm 5^{\circ}$ C under dark and dry conditions
6	(long-term storage conditions; storage at room temperature for several days will have no impact on the stability)
Expiry Date:	September 26, 2018
4. Reference material	MKH 6561
(non-labelled)	
Chemical Name:	Methyl 2-(4,5-dihydlo-4-methyl-5 oxo-3-proposy-1H 02,4- triazol-1-yl)carbox amidosulfony Denzoate, sochum sat
Description:	Solid, white A Q ϕ ϕ λ ϕ χ
Batch #:	AE 029861801-09
Origin Batch #:	2012-000352 (solely used for the determination of the percentage of non-labellectrest item within the labelled stock solution prior to application).
CAS No.:	181274-157
Purity:	8/1% 4 5 5 to to to to to to
Storage:	At 10-30°C under dark and dry conditions
Expiry Date:	© January 24, 20145 4 2 4 2 4
5. Reference material 🗞	MKIP6561 Carboxylic acid di-softium sait (M04)
(non-labelled) 👋	
Chemical Name:	2-{[4-methyle5-oxo-3 ² prop®xy-4,5-dihydro-1H-1,2,4- %triazoi-1-yl)earbon91]sulfamoyl}benzoic acid
Description:	Solid, white is a grant
Batch #: S	BCS44F6236F-01-00
Origin Batch #:	2° BCQO 6367-31-30 2°
Chergical purity:	8.1% (96.7% Bried, sobstanec)
Storage:	At 1630°C under dark and dry conditions (desiccator)
Expiry Date:	\mathcal{Q}^{\ast} Angust 14, 2013 \mathcal{Q}
6. Reference material	
(non-fabelled) Chemical Name:	2-sulfatiovlberzoic acid
Description:	Solia, white
Batch #:	AF 1234964-01-01
Origin Batch #: A S	«ВСОО 6368-1-4
Chemical purity:	<u>×</u> 98.9%
Storage: Storage	At 10-30°C under dark and dry conditions
Expiry Date: 5	April 18, 2015
7. Reference material	MKH 6561-propoxytriazolinone (M10)
(non-labelled)	
Chemical Name:	4-methyl-5-propoxy-2,4-dihydro-3H-1,2,4-triazol-3-one

Description: Solid, white Batch #: AE 1364263-01-01 Origin Batch #: NLL 5797-6-5 99% **Purity**: MKH 6561-sulfonantide (M05) (used only for the initial determination of the chemicaband radiochemical purify of the stock solutions) Methyl 2-sulfañoylbenzoate Solid, white (according to CoA) AE F073050-01001 BCOQ 5771-421 99 4% w/w 6410-30°C under dark and dev conditions March 14, 2015 KH 6561-saccharin (referred to as M07) 2 benzisothiazol-3(2H)-one 1,1-dioxide blid, off-white 2 f159737 00 1 At 10-30°C under dark and dry conditions Storage: Expiry Date: 8. Reference material (non-labelled) Chemical Name: Description: Batch #: Origin Batch #: Chemical purity: Storage: Expiry Date: 9. Reference material (non-labelled) Chemical Name: Description: Batch #: Origin Batck Chemical **Q**99 under dark conditions Storage $+\aleph$ Expiry Date: 10. Reference material enzoic Agio ,0° (radiolabelled) Description: Lot # Specific Radioactivity Radiochemical Cheppical Expiry Date: purity: No storage. The content of the container was dissolved to prepare the stock solution at day of arrival. The stock solution was stored until use at $< -20^{\circ}$ C. Not applicable; the amount of total radioactivity was determined by LSC and absence of degradation products was verified by HPLC coupled with UV and radio detection.

11. Reference material (non-labelled)	Benzoic Acid	
Description:	Solid, Colourless.	
Batch #:	K40769036	
Chemical purity:	> 99.9%	
Storage:	At 5-30°C under dark conditions	
Expiry Date:	January 31, 2015 \overrightarrow{A} \overrightarrow{O}	
12. Surface water		
The water originated from	GmbH, Germany, At May 13, 2013 (P:55 an)	
the water was taken from a pond	system approx. 10 cm below the water suspace. The depth of	
the pond was about 1.2 m, thus the w at $4^{\circ}C + 4^{\circ}C$ in the dark for a maximum	um period of 10 days and a "pelagic". The water sample was stored	
Table 7.2-5 Characterisation of su	$\operatorname{rrface}_{\operatorname{var}}^{\operatorname{A}} \xrightarrow{\mathcal{A}}_{\operatorname{var}}^{\operatorname{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}}} \xrightarrow{\mathcal{A}} \xrightarrow{\mathcal{A}$	
Sampling point	Pond System	
Sampling date/time	Δ Δ May 13, 2003, 11:55 h Δ ×	
Sampling depth	Approx 10 cm below the water @rface	
Water temperature at sampling		
Colour / Turbidity of the water	Signally yettow and parbid	
Anions	NitriteO.d. o-Pliesphate: <0.06 mg/L ¹⁾ Orthophosphate: <0.07 mg/L ²⁾ Total photomate: <0.02 mg/L ²⁾	
Cations of the a	A A A A A A A A A A A A A A A A A A A	
TOC 🖓 🔬 🖧	The second secon	
DOG	53 mg/L	
Total nitrogen fixed		
	Cology forming units (CFU) at 20°C: 4312 CFU/mL	
	Colony forming units (CFU) at 36°C: 12 CFU/mL	
	The pH-venie, oxy een concentration, redox potential and conductivity of the water were measured prior to application and at each individual sampling.	
Further parameters determined	PH: prior to test item application 8.0-8.2	
Au the course of incubation	Oxygen concentration: 8.26 mg/mL - 10.39 mg/mL	
	Redox potential: +193 mV to +233 mV Conductivity: 134.5 µS/cm - 146.97 µS/cm	
n.d.: not detected (COD)		
 Particular samples when were set OD or LOQ were not used for result evaluations Values were between LOD and LOQ (maintained determination) 		
B. SAUD & DESIGN A		
1. *Experimental conditions		
(120 rpm) at a temperature of $20\pm2^{\circ}$ C (except for 4.75 h during which slightly higher temperatures		
were observed).		

To estimate the degradation behaviour of the test item in surface water a screening sample was prepared additionally to the test samples and incubated simultaneously. Sampling time points of the test samples (F_T, F_M) were chosen on basis of the results of the screening sample.

An estimation of the test item's solubility in different solvents (e.g. in a mixture of acetonity) (ACN) and pure water or pure and surface water solely) was done during a preliminary non-GLP phase of the study.

Prior to filling the natural water into the 5 L and 10 L glass bottles, the water was filtered through a 100 µm nylon filter to remove coarse particles.

Aliquots of the respective application or stock solutions were added to each test vessel containing 500 mL of surface water resulting in the following three nominal dest concentrations: 10 100 and 1003 μ g/L. For the application of the highest concentration, non-tabelled test frem was mixed with radiolabelled test item while only radiolabelled dest items were used for the application of the lower concentration levels: :

Samples for determination of mass balances mass balance calculation (dissolved COV) were equally prepared as the test samples, resplicing in the concentrations mentioned above. Determination of mass balance (total radioactivity in water and dispinct volatile traps) was done ° for each test item concentration.

Three necked glass bottles were used as incubation vessels. Each bottle was closed bermetically during incubation. Prior to sampling the flasks containing the ¹⁴C-labelled lest items were connected to a flow-through system A moderate stream of sterile, CO2, the air was used as carrier gas to collect ¹⁴CO₂ and other volatiles in distinct traps consisting of the following trapping solutions: A I

1) Trap content for test samples F_T (in order of connection to sample flasks): 15 mL ethylene glycol, 15 mL 0.05 M H2SO 15 mL 2 M aOH and as protection for the putp 15 mL pure water.

2) Trap content for test samples F_M (dissolved¹⁴CO₃) (in order of connection to sample flasks): 15 mL 2 M NaOL 15 mL 2 M NaOH and as protection for the purp 15 mL pure water. For examining possible abiotic degradation or other near-biological removal of the test item (e.g. hydrolysis or adsorption to the test vessel), two sterile samples wete prepared by autoclaving the test vestors (200nin, 101°C) before test item application 300 µL of the non-labelled stock solution was added to 500 mL of surface water resulting \hat{p} a concentration of $100 \mu g/L$ (concentration II). Two blank samples containing 500 mL surface water without test item application were prepared as background control to detect interfering compounds op contaminated solutions.

A reference control with the application of benzoic and was used to confirm microbial activity of the surface wate. A solvent control Or C-labelled benzoic acid and ACN) was additionally prepared to examine possible adverse effects of the solvent acetonitrile on the microbial activity of the surface water, A sterify control was also prepared to identify dissipation processes (e.g. hydrolysis, sorption) others than the preciously degradation of benzoic acid. After application of [7-¹⁴C]benzojc acid of solvent, the test vessels were connected to the flow-through system. Each sample was continuously agitated by shaking. After sampling, the flasks were closed, re-

connected and further aguated.

2. Sampling

The test was accomplished as a batch approach for the test samples (F_T samples), meaning that at each sampling time point an aliquot of the same sample was taken while the remaining sample was further incubated. Samples were taken immediately after incubation (0 h) and 25, 40, 53, 61 days after treatment (in duplicate). Additionally, samples for the determination of ${}^{14}CO_2$ dissolved $i\hat{n}$ water and particle adsorbed radioactivity were incubated (F_M samples). Those samples were taken completely at each sampling time point (in duplicate). Sampling intervals correspond to those of the F_T samples.

Aliquots of sterile controls were taken after a total incubation time of 110 days.

Aliquots of the vessels applied with [7-¹⁴C]Benzoic Acid or with [7-¹⁴C]Benzoic Acid and solvent were taken 0, 1, 2, 3 and 4 days after application. However, the NaOH trap was replaced at each sampling point of the reference/solvent control to prevent a saturation of the trap during incubation. Sterile samples were taken with the final samples of the reference/solvent control (after 4 days of incubation).

3. Description of analytical procedures

The following analytical methods were used in course of the study LSC HPL Coupled with VV and radio-detection and LC-MS/MS analysis. Mass balancing and screening for transformation products was accomplished for each sampling the point.

The methods were validated during the course of the study Specificity was ensured by comparing retention of the standard solution with the retention of the analyte in the sample solution. Characterisation was verified for the test item by LC-MS/MS analysis (test item and label specific mass transitions). Linearity was assessed by investigating the corretation between peak areas of standard solutions to their corresponding nominal concentration. The sample solution was accomplished for HPLC-UV and LC-MS/MS analysis. Regression coefficients (r^2) were used to verify linearity and were at least 0.9947/for LC MS/MS (concentration range 0.1 ($-100 \mu g/L$) and at least 0.9996 for HPLC-UV (concentration range 0.5 – 10 mg/L)

Fortified samples were prepared in surface water to assess the recuracy and precision of the method. The chosen fortification levels ranged from 1000 μ g/L (100% of sample concentration III) to 1 μ g/L (10% of samples concentration 1% of sample concentration III). Fortified surface water was analysed without further treatment by LSC (all levels) and LC-MS/MS (fortification level 1 μ g/L to 50 μ g/L). Recovery values were mostly in the desired range of 90% to 110% of the applied amount, whereas relative standard deviation values were found to be << 20% for each fortification level of 1 μ g/L was stated as limit of quantification for the analysis bolineans of LC-MS/MS. Overall, the chosen approach was considered valid over the concentration range of interest.

Screening sample.

Immediately ofter sampling aliquoto were diluted with actionitrile 1/1 v/v to stop any degradation processes and analysed for the test item and known transformation products by LC-MS/MS analysis. Sample intervals and corresponding results were sufficient for the estimation of sampling time points of the test samples.

Test samples (F_T):

Samples were connected to a flow through system prior to sampling to collect ¹⁴CO₂ and further volatile transformation products. A productate stream of CO₂ free, sterile air was used to aerate the samples overnight. At each sampling time point pH, oxygen content, redox potential and conductivity of the surface water were measured. After 5 mL of the samples were taken, the flasks were hermetically closed and agitated again until the next sampling time point. Aliquots of the samples and trap contents were analysed by LSC. Additionally, an aliquot of the samples was analysed by HPLC adio detection for test item quantification and screening of transformation products & well as by I@-MS/MS analysis.

Samples for mass batance calculation (FM):

First samples were connected to a flow through system prior to sampling to collect ¹⁴CO₂. A moderate stream of CO₂ free and sterile air was used to aerate the samples overnight. The evolved ¹⁴CO₂ was trapped and an aliquot of the samples and trapping solutions were analysed by LSC analysis prior to acidification. Second, the samples were acidified to pH 2-3 (10% HCl). The evolved ¹⁴CO₂ was trapped in separate traps. Third, an aliquot of the samples was collected after
acidification for the determination of phase distribution via separation of particulate by centrifugation. Aliquots of each sample and trap content were analysed by LSC. As the removed volume in the test samples (F_T) was < 10% (50 mL) of the total volume, no adjustment of the total volume of the F_M samples was necessary.

Sterile samples:

The sterile samples were not connected to the flow-through system. Aliquots of sterile controls were taken after a total incubation time of 110 days. Immediately after compling aliquots were diluted with acetonitrile 1/1 v/v to stop any abiotic degradation process and analysed for the test item and known transformation products by LC-MS/MS analysis. Sterility of the complex was confirmed by using a commercially available dip state kit (HycorrGK-T/HS,

, Germany) for a total count of microorganisms and to defermine the total

count of yeast and moulds.

Blank samples:

Blank samples were not connected to the flow-through system. Aliques of the blank samples were taken at each sampling time point of the test samples and analysed by PPLC radio detection.

Benzoic Acid: reference/solvent control, ster le control:

Aliquots of the samples and trap contents were analysed by LSC. Additionally, an aliquot of the samples was analysed by HPLC adio detection

The limit of detection (LOD) was determined for all analytical methods as signal noise ratio (3:1). In case of LC-MS/MS analysis, the limit of quantification (LOO) was determined as the lowest analyte concentration at which an acceptable recovery 90-110% for the non-labelled or 90-110% for the labelled analyte) with a relative standard deviation (BSD) of $\leq 20\%$ could be obtained. Fortified samples were used for LOQ determination. In case of LSC and HPLC radio detection LOQ was determined as signal/noise ratio (10:1).

For LSC, the LOD was determined to be 84 dom (equal to 4.4 Bq) with a spresponding LOQ of 280 dpm (equal to 4.7 Bq).

For HPLC with radiodetection, the following LODs were determined for the phenyl and triazolinone label, respectively: 21 and 15% AR for Concentration L2 and 2% AR for Concentration Hand 0.3 and 0.3% AR for Concentration H. The corresponding LOQs are 69 and 50% AR for Concentration II. 7 and 5% for Concentration III and 1.2 and 0.9% AR for Concentration III (Phenykand Triazolinone-label, respectively).

For LC-MS/MS the LOD and LOQ were 0.57 and 10° µg/D, respectively, for both labels.

A SII. RESULTS AND DISCUSSION

The results indicated that the test water was microbially active and that aerobic conditions were maintained throughout the entire incubation time. Sterile samples confirmed the absence of adsorption of MKH 6566 to the surface of the test vessels and any abiotic mechanisms leading to decay of MKH 6561 in the surface water. The investigation of the additional samples (F_M) showed that it can be excluded that $^{14}CO_2$ was solved in the surface water and that accorption to particles took place.

water and the water and the second se

July 2014

DATA A.

Distribution of radioactivity after application of [triazolinone-3-14C]MKH 6561 **Table 7.2-6** (mean values of duplicates)

(mean	values of duplicat	res)			e° d
Aqueous phase (%AR)					
Incubation time		Distribution ¹⁾		Volatiles	Total Recovery
[d]	% AR	MKH 6561 % Peak Area	Unknown % Peak Area (RT: 7.5 min)	(%AR)	
	Test	t samples – concentr	ration I: 10 μg/L	Ċ,	
0	100.0	100	n.a.	n.a.	
25	99.0	100	n.a. 🖓 👔	° Ala.	َ ^ن 99 کُ
40	99.7	100	n.y.	n.a.	
53	98.8	100	n.a. 🔊	n.a	× × ×
61	98.6	100 🔬	Ö n.a. 🖓 👌	6° 02°6 Ly	A 99 °
	Test	samples – concentra	ntion II: 100 µg/L_	Å,	
0	100.0		, An.a.	°≯ n.a., s	م مورد ري
25	97.1		n.a		97
40	97.0	® 96 🕅		6 ^{0.15}	ي چي 97
53	96.1				[≫] 96
61	98.5	≶96 °°	~ 40 ×	0.23	98
	Test/s	amples – concentrat	ti @ r III: 1003 μg/Ľγ [×]		
0	×100.0	\$ 100 ×	h.a. 🔊	N nav	100
25	× 99,2 ,		° n.a. √	99	99
40	98.3	Q 100 5	🛫 n.a. O	<i>√</i> 0.22	98
53	97.6 m	× 400 ×	jon.a. 🗸	0.25	98
61	≥> 95.5 %		~~ n.a ~~ ~	0.27	96

A CONSTRUCTION OF CONSTRUCTION

Table 7.2-7	Distribution of radioactivity after application of [phenyl-UL- ¹⁴ C] MKH 6561
	(mean values of duplicates)

	A	Aqueous phase (%A					
Incubation time	Distribu		bution ¹⁾	Volatiles	Total		
(d)	% AR	MKH 6561 % Peak Area	Unknown % Peak Area (RT: 8 min)	(%AR)	(CAR)		
	Tes	t samples –concentr	ation I: 10 μg/L	A.	ð <u>8</u> %		
0	100.0	96	Č 4 Å	n.a.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
25	94.7	96	V 4 Q	n.a.	\$ 95 A		
40	94.9	96	4	n.a			
53	94.2	95	5 🖓 🖉	° 879 ~	94		
61	95.4	96 🖉		0.19	2 X		
Test samples _concentration II: 100 µgT 2 2 2							
0	100.0	4 100 ×	n.ao (n.a.	م م 100 م °		
25	96.4	\$\$^100 \$	A za,a. A	0 ^{90.02}	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
40	100.5	<u></u>	, yn.a.	0.02			
53	102.1	× \$100 \$	n.ao	A 02	102		
61	97.8	100	tha.	<u>کَ</u> 0.02	^م ر 98		
	Test s	amples – concentrat	ion III 1003 ug/L	\$ \$ \$			
0	100.0	× 2100	n.a v	n.a. O	100		
25	26.9	J 100	O n.a.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	97		
40	مُ∕يُّاً00.1		n.a.		100		
53	L 1019	\$ <u>900 </u>	n.a &	×9.02	102		
61	98.8	2 100 J	S n.a.	∞0.02	99		

values represent % peacof entire chromatogram (HRLC radiodetection) 1)

n.a. not applicable, n.d.: not detected, RT: Retention Time

B. MASS BALANCE

For a samples of the degradation test (FT), the mean wial recovery was in the required range of 90% to 110% of AR (applied radioactivity). For the samples used to determine dissolved CO2 sufficient mass balances were obtained except for the following samples: (a) F_M after acidification concentration III (triazoline label) incubated for 25 d (b) F_M after acidification concentration III (triazolinome laber) incubated for 61 d (c) F_M after addification/centrifugation concentration II (triazolinene label) incobated for 25 d and (d) F_M after acidification/centrifugation concentration III (pheny label) incubated for \$1 d. The latter one showed recoveries of 86% to 116% of AR (mean). In each case one out of two replicates of the same sample was out of the required range, the second replicates showed recoveries in the range of 91% to 103% of AR which indicated a complete mass Abalance for each of the above mentioned samples. An explanation for the outliers could not be given.

However recoveries cateulated were considered acceptable and it was concluded that generally no radioactivity was lost during incubation or sample processing.

For the samples applied with benzoic acid, mass balances ranged from 66% to 72% of AR after 4 days of incubation. It was assumed that the missing radioactivity probably consisted of dissolved CO₂ in the water which escaped during sampling and LSC measurement.

С. VOLATILISATION

For the trapping solutions of each concentration (I-III) and each label (phenyl, triazolinone) recoveries were $\leq 1.0\%$ of AR (mean). Thus, the formation of volatile transformation products was found to be negligible in the course of incubation.

D. **TRANSFORMATION OF PARENT COMPOUND**

Triazolinone label

In case of concentration II a signal emerged after 40 days of incubation. The peak area of the entite chromatogram of 4.2% (mean) remained steady until the end of the study. However, the intensity of a the peaks was below the LOD, except for samples 40d-3 and 53d which were between LOD and LOQ. Thus, an unequivocal determination of the percentage of the transformation product/mpurity was not possible. The detected peak in samples of concentration II has a similar retention time as the possible aquatic transformation product M10 As the peak could of by be found in a vergelow _ concentration in samples of concentration/II after 40 to 64 days of incubation and no peak occurred in samples with the higher concentration revel JUC it was assumed that the signal resulted from an impurity rather than from a transformation product.

An entry of the transformation product/impurity vie the stock solution can be excluded as no peaks were observed in samples of concentration evels I and III. Additionally, for the samples of concentration level II taken directly after application (Vd) and after 25 days of incubation the same amount of the transformation product/impurity should have been ound compared to the following sampling time points but in those samples no peaks were observed.

The entry of an impurity is a low concentration ample could be explained regarding the sampling process. At each sampling time point, the same sample was opened and an aliquot was taken (batch method). So, if the impurity was applied at sampling day 40, the same amount (if stable) should be found at the following sampling time points. Ô **K**

For samples of concentration levels I and III to transformation product/impurity could be observed. The entire radioactivity can be assigned to the parent test item.

Phenyl label

A peak was observed in all samples of concentration level Is The mean retention time of the compound (7.1 min) did not match with the retention time of the impurity or transformation product (8.0 mun) found within the corresponding stock solution A comparison of the estimated retention times of possible transformation products showed no accordance and thus, a structure could not be stated. Ċ K, Ľ

A percentage of 4.0% area @romatogram@mean@couldbe found in samples taken after application. No trend was observed for the unknown compound (i.e. increase/decrease) in the course of incubation. The amount remained steary up to 61 days of incubation.

As the unknown compound as found only in samples of concentration level I, it was assumed that the signal resulted more likely from an impurity than from a transformation product.

The explanation of the entry of an imparity if the low concentration samples is equal to the samples with the triazolinone abelled test item. Samples were prepared in batch, meaning that only aliquots were taken from the sample at each sampling time point. So, if the impurity was introduced during application, the same anount of stable should be found at the following sampling time points.

For samples of concernation levels of and III no transformation product could be observed. The entire badioactivity can be assigned to the parent test item.

III. CONCLUSIONS

For eacl €concentration (I-III) MKH 6561 was found with a percentage of > 95% of total radioactivity within the samples. The test indicated that MKH 6561 was stable in the used microbial active surface water during 61 days of incubation under aerobic conditions in the dark at approx. 20°C.

CA 7.2.2.3 Water/sediment studies

The route and rate of degradation of propoxycarbazone-sodium in water/sediment systems under aerobic conditions were evaluated during the Annex I inclusion using two radiolabel positions, [phenyl-UL-¹⁴C] and [triazolinone-3-¹⁴C], and were accepted by the European Commission (SANCO/4067/2001-Fine) 30 September 2003).

Annex point	Author(s)	Year	Edition Not
KCA 7.2.2.3/01	, K.	1998	M-005219-01-1
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			

Studies shaded in grey have been reviewed as part of the first EU review of proportionarbazone-sodium

For information on studies already evaluated during the first EU review of propoxyearbazone-sodorm, please refer to the corresponding section in the Baseline Dossier provided by behalf of Bayer CropScience and in the Monograph A summary of the revent data is given in CA 22.

Ò

The route and rate of degradation of propoxycarbazone-sodium in vater/schiment systems under anaerobic conditions were evaluated during the Annex I and accepted by the European Commission (SANCO/4067/2001-Final, 30 September 2003), These Judies were not considered relevant for this Supplemental Dossier for the renewal or approval.

Annex point	Author(s) & & Year O Edition No.
KCA 7.2.2.3/02	E.L. et al. 7 4 3999 Mo12966-01-1
KCA 7.2.2.3/03	, E.L. et al 1990 M-012960-02-1

Studies shaded in grey have been reviewed as part of the first EU wiew of propoxy appazone-sodium.

The two studies showed that the parent compound is well degradable in the aquistic environment even under anaerobic conditions (DT_{50} , 20 d phenyl-label and 16 d trazolinone-label). The major metabolites observed were M04, M06 and M40. For further information on studies already evaluated during the first EU review of propoxycarbazone-sodium, please refer to the corresponding section in the Baseline Dossier provided by **Definition on behalf of Bayer CopScience and in the Monograph**.

An updated kinetic evaluation of the degradation behaviour of propoxycarbazone-sodium and its major degradation products in water and sediment (refer to KCA 7.2.2.3/01) was performed according to current FOCUS kinetics guidances to derive kinetic parameters outable for modelling purpose and environmental risk assessment and is submitted within this Supplemental Dossier for the propoxycarbazone-sodium renewal of approval (summary is provided below). A summary of the route and rate of degradation of propoxycarbazone-sodium in water and sediment is given in CA 7.2.2 and Table 7.2-3 and Table 7.2-4.

Report:	t;	;2014;M-4754	12-01					
Title:	Kinetic modelling analys	sis of the degradation	behaviour of pr	opoxycarbazone-	-sodium and			
	its major metabolites fro	m aerobic water-sedi	ment studies		e° 🛼			
Report No:	358525-3							
Document No:	M-475412-01-1			~	6 V			
Guidelines:	FOCUS (2006): Guidand	ce Document on Estir	nating Persisten	ce and Degradati	onKinetios			
	from Environmental Fate	from Environmental Fate Studies on Pesticides in EU Registration. Report of the Work						
	Group on Degradation K	Group on Degradation Kinetics of FOCUS. EC Document Reference SANCO/10058/2005						
	version 2.0, June 2006. I	FOCUS (2011): Gene	ric Guidance fo	r Estimating Pers	istence and			
	Degradation Kinetics fro	om Environment@Fa	te Studies on Pe	sticides in ÉU Re	gistration			
	version 1.0	·¥·	Q,					
Deviations:	none	Å	0*	× Q.				
GLP/GEP:	no		Ô ^Y .º		õ "Q"			

Executive Summary

A kinetic evaluation of a laboratory water-sediment study with two different sediment systems and with [phenyl-UL-¹⁴C]MKH 6561 and [triazolinone 3-¹⁴C]MKH 6561 being the applied substances was conducted using the fitting software KinGUI2 and according to POCUS kinetics guidance (FOCUS, 2006, 2011).

The analysis was conducted in order to derive dissipation and degradation rates of MKB 6561 and its metabolites M04 (MKH 7018), M05 (STJ/4934), 2006 (OKH 7283), and M10 (MKH 7017) in water-sediment systems for use in subsequent fisk assessments.

All datasets were initially evaluated by comparing single first-order (SFO) and first-order multicompartment (FOMC) kinetic models. Persistence endpoints were then evaluated using best-fit kinetics. A set of different rules of acceptance were followed for determining modelling endpoints to be used in FOCUS PEC_{sw} simulations. An assessment of the goodness of fit of optimised degradation and dissipation curves was used to evaluate the reliability of all parameter estimates following FOCUS kinetics guidance.

At level P-I, single first-order (SFO), double first-order in parallel (DFOP), and Hockey-Stick (HS) kinetic models were used to describe the behaviour of MKA 6560 in the water phase, sediment phase and the total system. No level P-II was calculated. Modelling indpoints at level P-d were solely derived from SFO model. The model to best describe degradation of the parent in total system was HS for system Pond and SFO for system Von the Late. Level M-I degradation was therefore based on these two best-fit models for parent, while for metabolites only SFO was tested. Level M-I dissipation endpoints were obtained from SFO

Geometric means of persistence endpoints for MK45 6561 were 49.06 days for total system and 30.73 days for the water phase. For seducent a single $DT_{50,0}$ 8.846 days could be derived for system

Geometric means of modelling endpoints for MKH 6561 were 48.00 days for total system, 32.18 days for the water phase, and 94.02 mays for sediment. The geometric mean DegT_{50,total system} of 48.00 days may be used in FOCUS STEP 3 surface water modelling, in combination with a default DT₅₀ of 1000 days for the second compartment.

For metabolites, only a few eliable half we could be estimated:

For M04 and M10 neither M-LOIssipation nor degradation endpoints could be estimated. Consequently, for PEC \times modeling, default DT₅₀ values of 1000 days need to be used.

For \$105, a geometric mean DT₅₀ of 32.56 days for FOCUS Steps1-2 modelling could be derived.

For M06 default DT₅₀ values of 1000 days need to be used for PEC_{SW} modelling at Steps1-2. However, a geometric half-life of 172.86 days would be available for FOCUS Step 3 modelling – if needed.

I. MATERIALS AND METHODS

The standard procedures recommended by FOCUS (2006, 2011) were followed to adjust the experimental residue data of the water-sediment study for the kinetic modelling. All datasets were initially evaluated by comparing single first-order (SFO) and first-order multi-compartment (FOMC) kinetic models. Persistence endpoints were then evaluated using best-fit kinetics. A set of different rules of acceptance were followed for determining modelling endpoints to be used in FOCUS PEC wisimulations. An assessment of the goodness-of-fit of optimised degradation and dissipation curves was used to evaluate the reliability of all parameter estimates following FOCUS kinetics guidance.

At Level P-I, parent data for the total system, the water phase and the sediment phase were analysed separately. Sediment data were accounted for from the maximum onwards. As a first step for all parent data sets at Level P-I, the fit of SFO kinetic model was tested for the applied substance. For persistence (best-fit) endpoints the SFO model was compared to the FOMC model. In cases, where SFO was not appropriate as best-fit model, DFOP and HS were tested as further bi-phasic models. For modelling endpoints, in cases where SFO was not appropriate, the decision whether to test only HS and DFOP model (> 10% AR) or additionally FOMC (< 10% AR) as bi-phasic models depended on the amount of residures in the respective compartment (water, sediment, total system) at the end of the experimental phase. No Level P-II was calculated. At Level M-I, both persistence and modeling endpoints were estimated using a one compartmental approach. Data for the total system, the water phase and the sediment phase were analysed separately. All metabolite data sets were evaluated from peak concentration phase were based on the previously optimised parent only fit.

The kinetic analysis was conducted using the software package KinG \mathcal{O} (version 2.2012.320.1629) for parameter fitting (et al., 2007¹⁸; Schmitt et al. 2011¹⁰). Optimisations were carried out for the initial soil residue (M₀), degradation rate constants (A), (g) or breakpoint (t₆), depending on the kinetic model. The parameter are optimised by minimising the sum of squared differences between measured and calculated data using Horatively Reweighted Least Square (IRLS) routines. The error tolerance and the number of iterations were set to the default values of 1x10⁻³ and 10, respectively. The initial estimates for the parameters were calculated as proposed in **Default** (a) (2006)²⁰. Data were not weighted and the initial concentration was not constrained in any of the fits.

RESULTS AND DISCUSSION

At level P-I, single first-order (SFO), double first-order in parallel (DFOP), and Hockey-Stick (HS) kinetic models were used to describe the behaviour of MKH 6561 in the water phase, sediment phase and the total system. No level P-II was calculated. Modelling endpoints at level P-I were solely derived from SFO model. The model to best describe degradation of the parent in total system was HS for system Pond and SFO for system Von Lake. Level M-I degradation was therefore based on these two best-fit models for parent, while for metabolites only SFO was tested. Level M-I dissipation endpoints were obtained from SFO.

Summaries of the obtained endpoints for MKH 6561 and its metabolites are provided in Table 7.2-8 to Table 7.2-14. For MO4 and 110, no persistence endpoints at all could be estimated. Respective tables are missing.

¹⁸ Schäfer, Mikolasch, M., Rainbird, P., Harvey, B. (2007): KinGUI: A new kinetic software tool for evaluations according to FOCUS

Degradation Kinetics. In: Del Re, A.A.M. et al. (Eds.): Proceedings of the XIII Symposium on Pesticide Chemistry, Piacenza, 2007, p. 916-923. ¹⁹ Schmitt, W., Gao, Z., Meyer, H. (2011): KinGUI2, version 2.2012.320.1629. Bayer CropScience AG.

²⁰ Schäfer, D. & Mikolasch, B. (2006): Kinetic Evaluation with MATLAB: Introduction to the Use of KINGUI Version 1.1. Bayer CropScience AG.

	Persistence endpoints at level P-I			Modelling endpoints at level P-I			
	Model	DT ₅₀ 1) [days]	DT90 ¹⁾ [days]	Model	SFO DTS [days]		
	Total system (both labels)			<u> </u>	je s		
Pond	HS	12.37	33.35	SFOO	11.85		
Von	SFO	194.57	646.34	STO	0 19467		
Geo	metric mean	49.06	14682		× 48.00 \$		
		Water phase	(both labels)	Q, Q			
Pond	SFO	10.00	33.22	SFO O			
Von Lake	DFOP	94.46	378.28	SFO Q	103.56		
Geo	metric mean	30.73	112.10	17 0 8	₹₩32.18		
	Sediment phase (both labels)						
Pond	SFO	8484	29,39	O _{SFO}	S 8:84		
Von	_2)		~ ²⁾	20° ×	10003		
Geo	metric mean	8.84	در 29. 3 9 ً		S 9402		

Persistence and modelling endpoints for MKH 6561 **Table 7.2-8**

1) $DT_{xx} = DegT_{xx}$ for total system but $DisT_{xx}$ for water and semigrant 12) not calculated due to insufficient number of data points after peak. Modelling endpoints for M04 (MKR 7018) 3) FOCUS default DT₅₀ for use in surface water modelling

Table 7.2-9

System	FOCTOS Step	Days]	Kin Kin	Devel and Type
Pond	STER	الم من المركز	0.4	Default DT50
Von Labe C	STBP 1 🐇	<u>, 1090</u>		Default DT ₅₀
	Geometric mean	600 × 1000		
Pond	STEP 2			Default DT ₅₀
Von Lake	' <u>Ş</u> TEP 2 🖉		\sim	Default DT50
D D, P	eometric mean	() () () () () () () () () () () () () (<u> </u>	
Pond v	STER *		0	Default DT50
Von Läne	STOP 3	<u>1000</u>		Default DT ₅₀
Ô [♥] G	eometric mean	0 ⁷ . 0 [°] 1000 0 [°]		

1) DT_{xx} = DegTxx for total system by DisT_{xx} forwater and sediment phase of the system by DisT_x f

Syste	n	Model	DT ₅₀ 1) [days]	DT ₉₀ 1) [days]	Type of Endpoint
			Total system	(both labels)	
	Pond	SFO	1.06	3.52	M.J. system decline
Von	Lake	-	-	-	- 4 Q
			Water phase	(both labels)	
	Pond	SFO	1.06	3.52	M-I, water decline, Q [*]
Von	Lake	-	-		
			Sediment phas	e (beth labels)	
	Pond	SFO	1.06	3.52	M-L System decline
Von	Lake	-	- @	- ~	
DTxx = DegTxx : able 7.2-11	for total system b Modelling e	endpoints for	r MQ5 (STJ 49.	has ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
Syster	n	FOCUS	SQP	⟨ P T ₅₀ ¹⁾ ⟨♥ [days]	Kinetic Lever and Type
	Pond	STEP		4.06 5	MQ, system decline, SFO
Von	Lake	TEP	15 0	\$7000 0°	
		Geometr	ic mean	32.56 C	
	Pond	STEP	2 5 0	1.06	MA, system decline, SFO
Von	Lake	TEP STEP	2 2	() 1000 S	Default DT50
		Geometr	ic mean	32.56	
	Pond	STOP	3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1000	Default DT ₅₀
Von	Late	O' STÉP	3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>~1000 ~ (</u>	Default DT50
	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	Geometr	ič mean 🔪 📈	<u>َ 1000, جُنَّ</u>	
Table 7.2-12	Persistence	endpoints for	or Mes (MKH	57 283) 57	
Syster		Model		DTG? [starys]	Type of Endpoint
* 	Q U	$\frac{2}{2}$	Total system	(both labels)	
	Pond	SFO	JF 29.884	K)	M-I, system degradation
Von	Lake N	\rightarrow		-	-
<u>&</u>			Water phase	(both labels)	
	Pond	<u> </u>	° 29.88		M-I, system degradation
Von	Läke 1	<u> </u>		-	-
	× × ·		Settiment phas	e (both labels)	· · · · · ·
	Pond 🖓 👌	j SEQ	29.88		M-I, system degradation
Von	Dake A		-	-	-
DTxx = DegTxx	or total system b	net DisTxx for w	ater and sediment p	hase.	

Table 7.2-10Persistence endpoints for M05 (STJ 4934)

July	2014
------	------

System	FOCUS Step	DT ₅₀ ¹⁾ [days]	Kinetic Level and Type				
Pond	STEP 1	1000	Default DT ₅₀				
Von	STEP 1	1000	Default DT50				
	Geometric mean	1000					
Pond	STEP 2	1000	Default DT ₅₈				
Von	STEP 2	1000	$Default DQ_0$				
	Geometric mean	1000					
Pond	STEP 3	Water: 1000 Sectiment: 1000	Q Default DT 2 4 4				
Von Lake	STEP 3	Vater: 29.88 Sediment: 1000	M-10 system degradation, SFO-SFO-SEO				
Geometric mean Sediment 172-86 Sediment 1000							
1) $DT_{xx} = DegTxx$ for total system by	It DisT _{xx} for water and sedimen	tsphase.					

Table 7.2-13Modelling endpoints for M06 (MKH 7283)

	ſ	Ó				
Table 7.2-14	Modelling endpoints for	110 (МКН	7917)	, d	J.	Ì

System	FOCUS Step	ADT 50 ¹⁾	Rinetic Level and Type		
Pond	STEP1	1000	Defaul DT50		
Von	STEP 1 ST	° 1000	Defigult DT50		
Geometric mean 1000 V 20					
Pond	STEF 2	1000	Sy Default DT50		
Von Lake 🖉	SPEP 2	D000	Default DT ₅₀		
Ceometric mean > 1000					
Pood	STEP 3 CO	x 1000 x	Default DT ₅₀		
Von Lake	STEP 3 STEP 3		Default DT ₅₀		
	Ceometric mean	1000			

1) $DT_{xx} = D_{xx} for total system out Dis <math>D$ for water and sedment place.

Modelling endpoints at level P-I were solely derived from SFO model. No level P-II was calculated. The model to best describe degradation of the parent in total system was HS for system **Control** Pond and SFO for system Von **Control** Lake, Level M-I degradation was therefore based on these two best-fit models for parent, while for metabolites only SFO was tested. Level M-I dissipation endpoints were obtained from SFO.

Geometric means of persistence endpoints for MKH 6561 were 49.06 days for total system and 30.73 days for the water phase. For sedment, a single DT_{50} of 8.84 days could be derived for system **EXAMPLE** Pond. Geometric means of modelling endpoints for MKH 6561 were 48.00 days for total system, 32.18 days for the water phase, and 92.02 days for sediment. The geometric mean DegT_{50,total system} of 48.00 days may be used in FOCLS STEP 3 surface water modelling, in combination with a default DT_{50} of 1000 days for the second compartment.

For metabolites, only a few reliable half-lives could be estimated:

For M04 and M10, neither M-I dissipation nor degradation endpoints could be estimated. Consequently, for PEC_{sw} modelling, default DT₅₀ values of 1000 days need to be used.

For M05, a geometric mean DT₅₀ of 32.56 days for FOCUS Steps1-2 modelling could be derived.

For M06, default DT₅₀ values of 1000 days need to be used for PEC_{sw} modelling at Steps1-2. However, a geometric half-life of 172.86 days would be available for FOCUS Step 3 modelling – if needed.

CA 7.2.2.4 Irradiated water/sediment study

This type of study is not required since it is not needed as a higher tier option.

Degradation in the saturated zone CA 7.2.3

This type of study is not required since it is not needed as a higher tier op

Fate and behaviour in air $\overset{\&}{\bigcirc}$ CA 7.3

ver, a hPa at 20°C) and low Propoxycarbazone-sodium has a very low vapour prossure Constant (< 1 x 10⁻¹ Pa m³ mol⁻¹). Therefore, a significant volation of propoxycerbazone-sodium is , , , not expected.

The volatilisation of propoxycarbazone-sodium was investigated under field conditions using phenyl-UL-¹⁴C]propoxycarbazone-sodium formulated as WG70 an Papplicit at a rate of 90 g/ha Under the weather conditions typical for a spring application it was demonstrated that possibility is significant loss of radioactivity is expected for propoxycarbazone-sodium and its degradation products.

The calculated half-life of propoxycarbazone-sodium is 4.5 hours according to the prodel of Atkinson. This corresponds to a chemical difetimean air of 6.5 hours. Therefore, an accumulation of propoxycarbazone-sodium in the air and a contamination by wet or dry deposition are not expected.

CA 7.3.1 Route and rate of degradation in air

The study on gapour pressure and genry's Law constant the field experiment to determine volatilisation of propoxycarbazone-sodium as well as the calculation of the chemical lifetime were evaluated during the Annex I inclusion and accepted by the European Commission (SANCO/4067/2001-Final, 30 September 2003).

	`````````````````````````````````	
Annex point Author(s)	Year	Edition No.
KCA 7.3.1/01 also filed in KCA 2.1/01 KCA 2.12/01; KCA 2.2/01, KCA 2.3/04 KCA 2.7/01, KCA 2.6/04; KCA 2.7/01, KCA 2.8/06	× 1996	M-001575-01-1
KCA 7.3.1402	1998	M-005214-01-1
KCA 7, 51/03 ( , E.	1996	M-001629-01-1

For information on studies already evaluated during the first EU review of propoxycarbazone-sodium, please refer to the corresponding section in the Baseline Dossier provided by behalf of Bayer CropScience and in the Monograconstantph. A summary of the relevant data is given in section CA 7.3

### CA 7.3.2 Transport via air

The transport via air of propoxycarbazone-sodium was not studied since its vapour pressure is below the trigger value of  $10^{-5}$  Pa.

### CA 7.3.3 Local and global effects

As propoxycarbazone-sodium is not applied in high volumes, local and global effects are not expected

### CA 7.4 Definition of the residue

For the renewal of approval of propoxycarbazone-sodium new data on metabolism in soil are available while the data basis for water/sediment systems remained the same. The new soil sudies have revealed one new metabolite (M11). Accordingly, the residue definition for risk assessment remains the same only that in addition the new metabolite M11 has to be considered in soil, water and sediment. Ecotoxic logical studies have confirmed that the major metabolite have only low risk in all advatic and soil dwelling test organisms. However, propoxycarbazone-sodium is ecotoxic logically relevant in aquatic and terrestrial plants, due to its herbicidal effects. Nevertheless, the absence of any critical toxicity of propoxycarbazone-sodium and its toxicologically relevant metabolites was confirmed. Therefore, no residue relevant for monitoring neither propoxycarbazone-sodium and relevant for motion of the major metabolites is defined.

## CA 7.4.1 Definition of the residue for risk assessment

In summary, the proposed residue definitions relevant for rick assessment for each compartment are the following. Details are listed below.

Compartment	Residue Definition
Soil	proposycarbasone-sodium, M05, 2007, M08, M09, M40, M11
Groundwater	same as soil of the of
Surface water	same as sold plus M04, M06 ~ ~ ~ ~
Sediment	same as surface water 2 2 2 2
Air 🔊	not repevanto O´ &´ &` O &`
Ô	

Soil

In the first EU review port five major metabolites M05, M07, M08, M09 and M10 with an occurrence > 10% AR in soil were defined. Other minor degradation products were observed that did not occur > 10% AR at any sampling point of > 5% AR on two consecutive sampling points in any of the studies. For the renewal of approval of propoxycarba one-sodium in a new anaerobic soil degradation study three metabolites known from former studies (M10, M07, M08) and one new metabolite (M11) were found with occurrences of > 10% AR

The proposed residue definitions relevant for risk assessment for soil are the following:

	Maximum occurrence (%)	Reference
propox carbazone-sochum	perent a	
M05 & X	J20.9~Q	KCA 7.1.1.1/03
MO NO N	26.7	KCA 7.1.1.1/03
N108 2 1 ~~	21.9	KCA 7.1.1.1/03
M09	13.2	KCA 7.1.1.1/02
MIC	55.2	KCA 7.1.1.1/04
MÔM	17.1	KCA 7.1.1.2/01

### Groundwater

Groundwater leaching of propoxycarbazone-sodium cannot be excluded due to its classification as highly mobile in soil. In addition, the mobility of its relevant metabolites M05, M07, M10 and M11 were classified as very high. M09 was classified as highly mobile and M08 has a low mobility. Based on the results of aged residue leaching, propoxycarbazone-sodium and M10 might leach into groundwate.

The proposed residue definitions relevant for risk assessment for groundwater are the following

propoxycarbazone-sodium (parent) Metabolites: M05, M07, M08, M09, M10 and M11

### Surface Water and Sediment

Regarding the surface water compartment the entry of compounds via spray drift, runoff and drainage into the water body is possible. The major degradation products in the hydrolysis study were M05 and M10 (at 25°C). In the aqueous photolytic degradation study M40 and in addition M07 were detected as major metabolites.

The major metabolites detected in the original aerobic water/sediment study were M04, M06 and M10 in the pond system and M05 and M10 in the lake system. The anaerobic water/sediment study evaluated during the Annex Linclusion reported three metabolites, M04, M06 and M10.

The proposed residue definition relevant for risk assessment for surface water and sediment are the following:

	Maximum occurrence (%)	Reference
propoxycarbazon	partent , , ,	
M04	30.2 (morer) 🗸 🖉	KCA 7.2.2.3/01
	19.3 (sediment)	KC477.2.2.5/01
M05 🔗 🕎	3. (water)	KCA 7.2.2.3/01
	7.9 (sedingent)	<b>R</b> CA 7-2.2.3/01
	16.6 (hydrolyšis)	KCA 7.2.1.1/01
M06~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	16.2(water)	K 7.2.2.3/01
	3.2 (sediment) $\bigcirc^{\vee}$ $\checkmark$	KOCA 7.2.2.3/01
M07	🕸 (phototysis) 🎾 🌾 👔	KCA 7.2.1.2/02
M10 🔊 🗸	21.2 (water) @ O	KCA 7.2.2.3/01
	13.2 (sediment)	KCA 7.2.2.3/01
	1309 (hydrolysis)	KCA 7.2.1.1/02
	13.6 (photolysis) 📎	KCA 7.2.1.2/03
4 O' ~O		

In addition all major soil metabolites (M05, M07, M08, M09, M10 and M11) have to be addressed, due to possible runoff and dramage scenarios.

Therefore, the following compounds have to be considered for surface water and sediment compartment: propoxycarbazone-sodium (parent)

Metabolitest M04, M05, M06, M07, M08, M09, M10 and M11

### <u>Air</u>

Propoxycatbazon sodium shows low volatilisation and fast degradation in the air. Therefore, no significant occurrence of propoxycarbazone-sodium in the air is expected. No degradation products were identified for the air compartment.

The proposed residue definition relevant for risk assessment for air is the following: not relevant

#### CA 7.4.2 Definition of the residue for monitoring

and the second s Ecotoxicological studies have confirmed the non-relevance of all major metabolites. However, propoxycarbazone-sodium is ecotoxicologically relevant in aquatic and terrestrial plants due to its herbicidal effects. Furthermore, toxicological testings of propoxycarbazone and its toxicoglogically relevant metabolites confirmed the absence of any critical toxicity of propoxycarbazone-sodium and its of metabolites M04, M08, M09, M10 and M11. Therefore, no residue relevant framewith its of the solution Autor to be and the second to be and to be and the second to be and the second to be and the propoxycarbazone-sodium nor any of the major metabolites is defined.

Monitoring data for propoxycarbazone-sodium are not available and not required.