

Bayer CropScience

Document MCP: Section 8 Residues in or on treated products, food and feed FSN+IDF OD 45 (22.5+22.5)

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CropScience.

The summaries and evaluations contained in this document are based on unpublished propositions data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration evaluation of unpublished proprietary data contained in this document unless they have received the data on which the summaries and evaluation the based either From Bayer CropScience; or
 From other applicants once the period of dataprotection has expired.

Document MCP: Section 8 Residues in or on treated products, food and feed FSN+IDF OD 45 (22.5+22.5)

	Version history	Å D
Date	Data points containing amendments or additions ¹	Document identifier of version number
	<i>▶</i> ∧	
¹ Amendments or revise an Assessr	raditions are presented using the approach offlined in SAN nent Report.	O/10180 Chapter 4: How to

Document MCP: Section 8 Residues in or on treated products, food and feed FSN+IDF OD 45 (22.5+22.5)

CP 8 RESIDUES IN OR ON TREATED PRODUCTS, FOOD OR FEED

CP 8 RESIDUES IN OR ON TREATED PRODUCTS, FOOD OR FEED In this summary no new studies/information is provided that is not already included in the active substance dossier. A brief summary of the key data has been provided below for completeness

Stability of residues

Stability of residues during storage of samples

In the original Annex II dossier, the storage stability of foramsulfuron was described for form matrices (forage, stover and grain). The results of the respective studies indicated that the compound is stable in deep-frozen samples over periods of 468 days, 20 odays and 243 days in corn grain, over and forage, respectively. The analytes were found to be stable upon deep freeze storage for the durations studied. Since Annex I inclusion, a new study has been generated with longer storage periods covered (minimum of 616 days). Table 8-1 shows the maximum storage stability periods assessed.

Table 8- 1:	Summary of stor	age sta	bility	f før	imsulfi	iron an	d me	tabolite	AE,I	153745	in
	maize matrices		, C	K,		*	Ň	Ĩ	Ş	\bigcirc	

. 1

Analytes	Plant matrix	[©] Stability	Storage conditions	Reference
Foramsulfuron and AE F153745	Corn, Grain Corn Corage Corn, Stover,	Up to 866 days Up to 616 days Op to 620 days	-00° to -20 °C	₩CA 6.1 ₩238787-01-1

All the maximum storage periods of samples are covered by the storage stability data.

Table 8-2:	Maximu	n storage period of samples from supervised field the	rials
Compound	Crop	Sample material (days)	Reference
Foramsuffuron		Green material 596 616	
and	Maize	\sim Restor plane \sim 477 \sim 620	M_238787_01_1
AE F153745		Ear Image: Constraint of the second sec	WI-230707-01-1
~Q	Ŭ,		

Stability of residues in sample extracts

The storage stability of pesticide residues in sample extracts is generally checked during the development of the applicable analytical residue methods. Moreover, the relevant information on the stability in the final or any fritermediate step can be derived from the fortification experiments performed during method validation. If the recoveries in the fortified samples are within the acceptable range of 70 - \$10%, stability is considered as sufficiently proven. Additionally every analytical batch does contain at least one concurrent recovery which is handled and stored in parallel to the residue samples. So the acceptability of the concurrent recoveries demonstrates the stability of the samples doring the work ap procedure.

During the development of the enforcement method 01360 (KCA 4.2 /20; M-455564-01-1) for the determination of amidosulfuron, metsulfuron-methyl, iodosulfuron-methyl-sodium, mesosulfuronmethyl and foramsulfuron in samples from plant origin by HPLC-MS/MS, the stability in final plant extracts was checked for the tested sample materials over a period of 16 to 43 days. The results suggest that samples should be analysed as soon as possible after preparation, because not all analytes Bayer CropScience

Document MCP: Section 8 Residues in or on treated products, food and feed FSN+IDF OD 45 (22.5+22.5)

are stable in final plant extracts. This is not surprising when considering the hydrolytical data of sulfonylureas.

Stability was also tested during the Independent Lab Validation (KCA 4.2/21; M-470160-014) after storage of the final samples in the dark at a temperature between $2 - 8^{\circ}$ C over three to thirteen days. The following tables show the measurements comparing initial day of analysis and analysis after storage of the final samples in the dark at a temperature between $2 - 8^{\circ}$ C over the given periods of Calibration was conducted with freshly prepared matrix standards at initial analysis and for analysis after storage. Significant deviations between initial and te-analysis were observed especially for the matrices lemon fruit and oilseed rape. Therefore the analysis of the samples has to be conducted within 1 day.

Studies on metabolism in plants or livestock

Metabolism in plants

Metabolism of foramsulfuron was investigated for fotiar application on cereals (maize) using Cphenyl and ¹⁴C-pyrimidine labelled forarbsulfuron. The characteristics of these studies are sumparised in Table 8-3.

Group	Crop	Label		Applicati	ôn a	nd sampling do	etails &	Reference
		position 🛪	Method,	Rate y 1	No 🎢	» Sampling 🔌	Romarks	
			F of G ^(a)	(kg	L			
			$ \Rightarrow $	a.s.sna)	$\upsilon^{'}$	Ő ^v «		
Cereals	Maize		Folkar	0.06	1 👷	<u>Immaure</u>	✓ Foramsulfuron	KCA
		Shenyl	(BBCH ~	> (1N)	2	<u>plant:</u>	formulated with	6.2.1/01
	<i>p</i>	Š (0'	_}¶-31) ^{(b} ₩)	0:24	$\langle \rangle$	0, 44, 27, 42	satener isoxadifen	M-185906-
	~ 0		× &	(4N) (, a	Forage:	$\swarrow^{\mathbb{V}}$ ethyl (1:1)	01
	õ			× . Q	Ĺ		p	
	QŰ ,	.0 .	19 A		O ³	Stover and		
Ŕ		l õ a		L C	ÿ	S 77		
K	8			~`~ <u></u>				
		~0 ^{1,≇} C- √		P′″	×	Immature		
	(pyrimidyl	N N	L.O	O	plant:		
	<i>a</i> .		S d	N A	1	40 , 14, 42		
	~0					Porage:		
	.1	õ			\mathbb{Q}^{0}	o <i>J</i> Stover and		
	6	, O	ð ú		Ĵ	orain.		
	8		*~	\$\$`.~Q ^{\$}		106		
		NY A						

Table 8-3: Summary of plant metabolism studies

(a): Outdoor/field application (G) or glasshouse protected indoor application (G) (b): F or G not stated

It was concluded that the submitted studies give sufficient information to propose a definition of the residue for the system of the plant materials, as for an ultranslated studies as for an ultranslated studies of the system of the system

Metabolism m livestock

No animal metabolism data was required at the time of the original EU dossier submission.

Poultry

Although not required, the RMS Finland recommended including the poultry study in the AIR3 submission. This allows the study to be peer reviewed and thus covered in case triggered by any future

Bayer CropScience

Document MCP: Section 8 Residues in or on treated products, food and feed FSN+IDF OD 45 (22.5+22.5)

uses of foramsulfuron. It has already been evaluated by RMS Germany in 2012 and it has been reported in the Reasoned Opinion on the review of the existing maximum residue levels (MRLs for foramsulfuron according to Article 12 of Regulation (EC)No 396/2005 (EFSA Journal 2012;10(11):2962).

The present study was designed to investigate the distribution, magnitude and nature of the AE F130360 residues in the edible tissues and eggs of a laying hen following oral administration. Metabolism study in poultry showed that foramsulfur was rapidly absorbed and excreted radioactivity in major organs was very low.

The characteristics of the study are reported in Tabl

1 able 8-4	: Summary	01 availabl	e metadon	sm study in pourtry 20 2 2 20 20 20 20 20 20 20 20 20 20 20
Group	Species	Label position	No of animal	Application details Rate (mg/kg bw Duration per Hay) (days) Commodity
Laying poultry	Hens	14C- phenyl	600	0.75* L4 Eggs Twice daily After sacrifice
* Dos	e correspond	ling to 10 mg	g/kg DM fe	

Ruminant

The ruminant metabolism study has already been evaluated by RMS Germany in 2012 and it has been reported in the reasoned opinion on the review of the existing maximum residue levels (MRLs) for foramsulfuron according to Article 12 sof Regulation (EC)No 396/2005 (EFSA Journal 2012;10(11):2962).

The present study was designed to investigate the distribution, elipsination, magnitude and nature of the AE F130360 residues in the edible tissues and milk of a dairy cow following oral administration. Metabolism study in ruminants showed that for msulfaron was rapidly absorbed and excreted and radioactivity in major organs was yery low. N.

s.

The characteristics of the study are reported in Table 8- 5 21 Õ

Table 8-5: Summary of available metabolism study in lactating ruminant

	Q		<u>v</u>	炭 Appticati	onceletails	Sample d	etails
Group	~Species	Label position	No of C	Rate (mg/kg bvô sper day)	Duration (days)	Commodity	Time
Lastatis	54	Q Q				Milk and blood	Twice daily
Lacialing	Cow	¹⁴ C-		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	7	Urine and feaces	Daily
	COW	phenyl 🗞		J. 109	/	Tissues	After
8							sacrifice

* Dose corresponding to 16 mg/kg OM feed

The results indicate that DE F130360 is poorly absorbed and is largely eliminated as unchanged parent compound in the faeces. This compound is either cleared rapidly or undergoes little systemic distribution since the concentrations of tissue residues in the edible tissues were all low.

Based on these findings, EFSA concluded that the parent compound is a valid indicator in livestock, except in milk and kidney, where metabolite AE 153745 seems more appropriate. However, given the low dietary burdens calculated in the frame of the EFSA review, the relevant residue definition in products of animal origin is proposed as foramsulfuron, both for enforcement and risk assessment.

Document MCP: Section 8 Residues in or on treated products, food and feed FSN+IDF OD 45 (22.5+22.5)

No additional metabolism studies were performed on pig.

Residue trials (supervised field trials)

Maize

Foramsulfuron (AE F130360) is an herbicidal active substance. In the Annex II dossier submitted in 2000 for Annex I inclusion, the use of the compound was supported in corn for the same formulation Equip OD.

No new studies have since been conducted with for amsulfuron sontaining formulations European corn, which is the "safe use" crop supported in the AIR3 process.

Table 8- 6: Comparison of intended and critical El

1	ov comparison or m					
Crop	Type of GAP	Number of ^Q	Application	baterval	Growth stage	🏒 PHI 🛛 。
		applications	, mate per	Detween	🚕 atlastí 🏑	(days)
		\$U" .	Treatment	application	🏈 application 🛇	<u>A</u>
	PROFile EU N		y 60@g/ha 🔪 🖓		₽ B®CH 18	- 10
Maiza	PROFile EU S		∭g/ha	ý - v	BBCH 8	-
Maize	EU (DAR)	L 1 0	°≫∕60 g/ha⁄″	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	یک BBC∯ 16	-
	Intended EU N and S		💪 60 🛃 ha 🏅	p, o, (BBCH 18~	-
			r S O			
Origina	1 II dossier		·U:	OV B	\smile \circ	

Original II dossier

To clarify the residue behavior of foramsulfuron in com, a total of vereconducted in corn trial with different formulations C

0

Corn kernels do not contain residues of foram salfuron at or above the limit of quantification of 0.01 mg/kg after use as herbicide at a rate of 2 times so or 6@g/ha. Also no residues of the metabolite AE F153745 are found in corn kernels at harvest

No additional residue trials were performed on form since the Annex I inclusion.

There are two key use patterns for the formulation Equip OD (FFN+IDF OD 45). The first consists of a single application at a maximum rate of approx. 2.6 per hectare at growth stage 12-18. The second consists of split application, two applications at a max rate of 1L per application between BBCH 12-18 with an interval of 7-18 days. The critical GAP is defined as the single application at approx. 2.6L per hectare (highlighted in grey in the table);

Table 807: Use pattern GAPs for the spray application of foramsulfuron containing formulations on corn in Europe (Northern and Southern regions)

Crep	Region	Application 0	May a.s.rate of	Max number	PHI	Remark
V	~	timing 🖒	application	of	(days)	
	¢.			applications		
Corn	N-EU	BBCH_€2-18 ≪	∮ 60 g/ĥa (1)	1	-	Single application of
	SÉU ≼		∞69 g/ha (2)			Equip OD at a
	ar s	\mathcal{O}	v			maximum product
	9 D					rate of 2.6 L/ha
Corn	N-QU	©BBCH€)2-18	30 g/ha (1)	2	-	Split application of
A Straight	S-EU (di si	30 g/ha (2)			Equip OD.

Note: (1) Foramsulfuron (2) isoxadifen

We wish to support a use where the final application could be latest at a growth stage of BBCH 18 although some residue trials were performed at BBCH 16-17. Nevertheless, it should be noted that

because the application is made very early in the growing season and the trials presented in the original dossier have much higher (one and a half or double) application rates, they cover the dase supported in this dossier. Besides, no measurable residues of foramsulfuron could be found in any treated sample material under worst case application scenario than the intended GAP with FFN+IDF OD 45 product. Therefore, the trials already presented are deemed sufficient to cover the dase of data product.

Livestock Feeding Studies

Dietary burden calculation

Foramsulfuron is authorized on corn which might be red to livestock. The median and maximum dietary burdens were therefore calculated for different groups of livestock using the OECD model.

Table 8-8: Input values for the dietary bureen calculation

I ubie o of input (unues i	or the aretar	J Sai aon a		- U (N)			e -
Commodity				Dietary bui	rden,		Ĩ
		🖉 Input v	alte (mg/kg		🥎 Çə mme	ht o	No.
Risk assessment residue de	efinition: fora	ímsulfuron_	Ş Z			, Q	
Maize silage	Ŕ,	6 G	0.05		Highest re	sidue	
Maize grain	2°. 2°,		\$01 J		Modian re	zidue	
				A			

Table 8-11: Results of the dietary burgen calculation according to OECD model

Residue level in total feed dry	🗸 Revidue intake
🔬 🖇 matter (😡 /kg) 🥎	🗶 🛛 🖍 🕵 🖉 🌜 🐛 🌾 🌾 🌾 🗐
Cattle – beef	O 4 0.002
Cattle – dairy $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	0.003
Sheep – rams/ewes $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	
Sheep - lambs \mathcal{O}	0.002
Swine – breeding of Ki a ways of O	0.001
Swine – fynishing 🔬 🖉 💭 🖉 🖉	× 0
Poultry tooiler	0.001
Poultry layer in the second se	0.001
Poultry - turkey S A S A B 006 A	0

The calculated dietary burdens for different groups of twestock do not exceed the trigger value of 0.004 mg/kg fw/day

Use of for amsulfuron in maize according to the recommended GAP is not likely to result in significant residues (i.e. > 0.1 mg/kg) in any of these commodities. Furthermore livestock metabolism studies showed that for amsulfuron do not accumulate in eggs, milk or edible tissues. Therefore, no livestock feeding studies to investigate the residue levels of for amsulfuron in food of animal origin are required.

The nature and magnitude of for ansulturon residues in commodities of animal origin has been evaluated by EFSA. A casoned Opinion on the review of the existing maximum residue levels (MRLs) or for ansulturon was published in EFSA Journal 2012; 10(11):2962. It was concluded that no livestock for ding study is needed.

Studies of Industrial Processing and/or Household Preparation

Quantifiable residues of foramsulfuron are not expected in maize grains and as the chronic exposure does not exceed 10 % of the ADI, there is no need to investigate the effect of industrial and/or household processing.

Ş, C

Document MCP: Section 8 Residues in or on treated products, food and feed FSN+IDF OD 45 (22.5+22.5)

Studies for Residues in Representative Succeeding Crops

Nature of residues

All data submitted for metabolism in plants and succeeding/rotational crops were considered to be acceptable during the EU review. In the Inclusion Directive and the Review Report there were on areas of potential concern highlighted for plant metabolism.

Nevertheless, a confined rotational crop study was submitted in the original EU dossier

Table 8-12:	: Summary o	of available r	metabolism studies in rotational crops 🚽 🖉 🖉
			Application and sampling details 👋 🔎 🥻
Crop group	Сгор	Label position	Method F or G ^(a) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A)
Root and tuber vegetables	Radish	¹⁴ C-phenyl	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Pulses and oilseeds	Soya bean	or ¹⁴ C- pyrimidyl	Soil, G_{1} 0.060
Cereals	Wheat	Q,	59 ^(c) , 119, 269 (nr 2)
Nr: not rep	orted	v	

(a): outdoor/field application (G) or glasshouse/protected/indoor application (G) \sim

(b): 0.06 kg/ha after 119 days of ageing and 0.09 kg/ha after 30 and 269 days of ageing

(c): wheat and radishes planted after 30 days were replanted after 59 days doe to phytotoxic effects of the soil residues

A reasoned Opinion the review of the existing maximum residue levels (MRLs) for foramsulfuron was published in FSA dournal 2012, 10(14):2962 It was concluded that maize may be grown in rotation but, according to the soil degradation studies evaluated in the tramework of the peer review, DT₉₀ values of forangulfuron are an expected to be lower than \$1 days which is far below the trigger value of 100 days. According to the European guidelines on rotational crops, further investigation of residues in these crops are not expected. Considering the low levels of residues found in Queceeting copps, EFSA concluded that a specific

residue definition for rotational crops is not required.

Magnitude of residues

Metabolism stody or Potational crops has shown that no relevant residues at or above the LOQ of 0.01 mg/kg are expected in Succeeding crops. Specific plant-back restrictions related to the use of foramsulfuron are therefore not required.

Proposed Residue Definition and Maximum Residue Levels

Proposed residue definition

Table 8- 93: Residue defi	nitions		<i>N</i>	
	Definition	Conversion factor for	🔗 Sour	ce 🔊
		enforcement to risk		
		assessment	<u>/ `~~</u>	
Plant residue definition for monitoring	Foramsulfuron		EU regulation	¥49/2068
Plant residue definition	Foromsulfuron			
for risk assessment	Forailisulturoli			
Animal residue	D			
definition for	Foramsulfuron		$\sqrt{2}$ 2072.104	1.2962
monitoring	×			1).270
Animal residue			EPSX in	
definition for risk	Foramsulfu ro n 👡 🤇		2012:10(1	10-2062
assessment			2012,10(1	19.2902
Other residue				Viournal
definitions (in processed	Not required /		201280(1	1 2062
commodities,)				1, 1, 2, 202
	N A V			1

Proposed maximum residue levels (MRLs)

As no residues above the analytical limit of quantification were detectable in any of the trials, a maximum residue level (MRL) of 0.00 mg/kg expressed as parent substance was proposed for foramsulfuron. This value was based on the evaluation of data packages submitted with the original Annex II dossier.

- Contraction of the second se

Table 8- 104: Proposed Maximum Residue Level?

1 1010 0	10.011.00				/
	Commodity	🖉 Existing	EU MRL (mg/	kg) 🖉	Reference
	Marze graff		\$9.01 S	O K	Regulation (EC) No 149/2008 (29 January 2008)
ľ					

a.

According to the EFSA review, WRLs and risk assessment values for the relevant commodities in ruminants can be stablished at the LOQ level (0.00 mg/kg). For poultry and pigs, MRLs are not required because they are not expected to be exposed to significant levels of foramsulfuron residues.

Table 8- 115

1

Commodity	Reference
Maize g_{a} M	
Bovine meat, fat, lives kidney	
Sheep meat, fat, liver, kidney $\sqrt{2}$ $\sqrt{2}$ $\sqrt{0.01*}$	EFSA Journal 2012; 10(11):2962
Goat meat, fat, liver, kidney	
Cattle, sheep, goat milk \circ \mathcal{Q}' \mathcal{Q}' \mathcal{Q}' 0.01*	

* indicates that the MRL is set at the limit of analytical quantification

(a) Tentative MRC to be confirmed by a confirmatory method for enforcement in maize grain and forage (method \$1360 presented in KCA Section 4)

No mport colerances have been proposed in the EU or applied for in any EU Member State.

Proposed Pre-Harvest Intervals, Re-Entry or Withholding Periods

Pre-harvest interval (in days) for each relevant crop

It is not necessary to define a pre-harvest interval. Instead, the pre-harvest interval is given by the growing period between the growth stage at treatment and harvest.

Table 8- 12: Pre-harvest interval by crop

Crop (intended GAP)	PHI (days) or latest applicatio	n growi	r stage	BBCH	/ _@
Maize (1 x 60 g a.s./ha)	ál a	BBCH 1	8 🐒	2	Â,	Ő,
	<u> </u>	al -		\mathcal{Q}	O'	×./

<u>Re-entry period (in days) for livestock, to areas to be grazed</u> Foramsulfuron is not intended for use in areas where livestock animals may be grazed. Therefore no re-entry period needs to be proposed.

Re-entry period for man to crops, buildings or spaces treated

Please refer to KCP 7.5 part of Mammahan Toxicology Section. For ansultarion is intended for use in maize. Re-entry in treated fields is generally not necessary. Therefore no re-entry period needs to be proposed for European product labels

Withholding period (in days) for animal geedingstuffs

Due to the time between last treatment and harvest, as defined by the GAPs, it is not necessary to set a withholding period for use of treated plants as animal feedingstuff. Residues of foramsulfuron in corn grain were found to be below the mit of quantification (< 0.01 mg/kg) at harvest. Residues were also found to be below the limit of quantification (< 0.05 mg/kg) in green plants which might be used for silage. Due to the recommended application of products containing foramsulfuron, the withholding period is covered by the vegetation period of the properties of the products of the products of the products of the period of the period.

Waiting period between ast application and sowing or planting the crops to be protected

Foramsulfuron is intended for use in corn. Treatment takes place post-emergence. Due to the selectivity of the herbicide, the crops to be protected are sufficiently resistant to its activity. Therefore no waiting period needs to be proposed

Replanting tests with poplication on bare soil have shown that the effects are few, and also acceptable, when corn is planted 2 to 3 weeks after opplication. Even in emergency cases corn will not be sown less than 3 weeks after a previous treatment 3 herefore no waiting period needs to be proposed for emergency replanting.

Waiting period between application and bandling treated product

Handling of treated crops is generally pot required before harvest, which is always done mechanically. Thus, there is no need to define a waiting period between application and handling the treated corn commodities. It is covered by the vegetation period of the crop.

Waiting period between last application and sowing or planting succeeding crops

No measurable residues are expected in succeeding crops. Therefore there is no need to define a waiting period before sowing or planting succeeding crops.

Estimation of Exposure Through Diet and Other Means

TMDV calculations

In order to evaluate the potential chronic exposure to foramsulfuron residues through the diet, the Theoretical Maximum Dietary Intakes (TMDI) was estimated using the EFSA PRIMo model (revision 2). For the evaluation of the chronic exposure the model uses 5 WHO diets relevant to the EU and 22 national diets from 13 different EU Member States.

According to Article 12 of Regulation (EC) No 396/2005, the European Food Safety Authority (EFSA) has reviewed the Maximum Residue Levels (MRLs) currently established at European Level for the pesticide active substance foramsulfuron. A reasoned Opinion on the review of the existing maximum residue levels (MRLs) for foramsulfuron was published in FSA Journa 2012; 10(11):2962. EFSA concluded that the use of foramsulfuron on maize grain and on maize forage some uncertainties remain due to the data gaps identified (confirmatory method required for enforcement of residues in maize grains and forage), but considering a tentative MRL in the exposure calculation did

not indicate a risk to consumers.		
TMDI calculation was	performed using the M	ARLs given in the following table.
Table 8- 13: Input val	lues used for TMDI c	alculation of for an a sulfur on \mathcal{Q} , \mathcal{O} , \mathcal{O}
Commodity		Chronic ristrassessment @ &
	Input value (mg/kg)	Component of the MRL
Maize grain	0.01*	Median residue (tentative)
Maat of muninents	0.01*	
Meat of ruminants	0.01*	y Median residue y Ersa Journal 201
Fat of ruminants	0.01*	Median yesidue 2 210(110):2962 O
Liver of ruminants	0.01*0	Median residue
Kidney of ruminants	0.00*	Median residue O O S
Milk of ruminants	0.01*	Median residue 4
(a) confirmatory me	ethod reasoned s	

The highest TMDI calculated for toramsulfuron sepresented less than 0.1% of the ADI, which denotes considerable margins of safety.

NEDI calculations

Not required.

NESTI calculations

NESTI calculations No relevant, as no ASID was set for foramsulfuron

Consumer risk assessment conclusion

The proposed uses of forament for the proposed uses of forament for the proposed uses of forament for the proposed uses of the proposed consumer.

Summary and Evaluation of Residue Behaviour for for amsulfuron

The toxicological profile of forantsalfuron was evaluated at EU level, which resulted in the proposal of an ADI of 0.5 mg/kg.bo/day.that was considered in the frame of this evaluation. An ARfD was not deemed necessary.

Primary crop metabolism of active substance was sufficiently investigated to define residue for enforcement and risk assessment in crops under consideration.

Regarding the magnitude of residues in those crops, a sufficient number of residue trials are available to support all the intended GAPs in southern Europe. These data allowed to estimate the expected residue concentrations in the relevant plant commodities, and to confirm that no MRL exceedance will result from intended uses.

Astresidues of active substance do not exceed the trigger value of 0.1 mg/kg in treated crops, and the overall optionic exposure did not exceed 10% of the ADI, there is no need to investigate the effect of industrial and/or household processing.

Bayer CropScience Document MCP: Section 8 Residues in or on treated products, food and feed FSN+IDF OD 45 (22.5+22.5)

Residues in succeeding crops have been sufficiently investigated; it is very unlikely that residues will

Considering dietary burden and based on the intended uses, no significant modification of the intake was calculated for livestock. MRLs in commodities of animal origin (000 mm/l)

A DOMAGE AND A DATE OF A D