

OWNERSHIP STATEMENT

This document, the data contained in it and copyright therein are owned by Bayer CropScience. This document, the data contained in it and copyright therein are owned by Bayer CropScience. No part of the document or any information contained therein may be disclosed to any third party without the prior written authorisation of Bayer CropScience.

proprietary data submitted for the purpose of the assessment undertaken by the regulatory authority. Other registration authorities should not growth and the set of the state authority. Other registration authorities should not grant, amend, or renew registration on the From Bayer CropScience for
 From other applicants once the period of data protection has expired to the period of the pe basis of the summaries and evaluation of inpublished proprietary data contained in this document unless they have received the data on which the summaries and evaluation are based,

Page 4 of 148 2013-12-04

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Table of Contents

	Table of Contents	î 🔈
	s s s s s s s s s s s s s s s s s s s	geo
CA 8	ECOTOXICOLOGICAL STUDIES ON THE ACTIVE SUBSTANCE	Ç y
CA 8.1	Effects on birds and other terrestrial vertebrates	9
CA 8.1.1	Effects on Birds	
CA 8.1.1.1	Acute oral toxicity to birds	, 9 a
CA 8.1.1.2	Short-term dietary toxicity to birds	9 🔊
CA 8.1.1.3	Sub-chronic and reproductive toxicity to birds	95
CA 8.1.2	Effects on terrestrial vertebrates other than birds	10
CA 8.1.2.1	Acute oral toxicity to mammats	10
CA 8.1.2.2	Long-term and reproduction toxicity to mammals	10
CA 8.1.3	Effects of active substance Dioconcentration in prey of birds and mammals	12
CA 8.1.4	Effects on terrestrial Arertebrate Addlife (birds, mammals, reputes a	nd
	amphibians)	13
CA 8.1.5	Endocrine disrupting properties.	17
CA 8.2	Effects on aquatic organisms	18
CA 8.2.1	Acute toxicity to tish management of the second sec	20
CA 8.2.2	Long-term and chromie toxicity to fish.	24
CA 8.2.2.1	Fish early life stage toxistry test	24
CA 8.2.2.2	Fish full life cycle test	24
CA 8.2.2.3	Bioconcentration in fish.	24
CA 8.2.3	Endoctine disrupting properties	24
CA 8.2.4	Acute toxicity to aquatie invertebrates	25
CA 8.2.4.1	Acute toxicity to Daphnia magna Q	25
CA 8.2.4.2	Acute toxicity to an additional aquatic invertebrate species	44
CA 8.2.5 🛣	Long term and chronic foxicity to aquatic invertebrates	44
CA 8.2.5.1	Reproductive and development toxicity to Daphria magna	44
CA 8.2.52	Reproductive and development poxicity to an additional aquatic invertebra	ate
K-Y	species	44
CA 8.2.5.3	Development and emergence in Chronomus species	44
CA 8.2.5.4	Sediment dwesting organisms	45
CA 8.2.6	ZEffects on algal growth QQ.	46
CA 8.2.6.1	Effects on growth of green abgae	47
CA 8.2.6	Effects on growth of an additional algal species	56
CA 8.2	Effects on aquatic macrophytes	60
CA &2.8	Further testing on aquatic organisms	60
CA 8.3	Effect of arthropods	77
CA 8.3.1	Effects on bees	77
CA 8.3.1.1	A cute toxicity to bees a	78
CA 8.3.1	Acute of toxicity .	78
CA 8.3 1.2	Acute Conta toxicity	81
CA 83.1.2 6	Chronic toxicity to bees	81
CA-8-3.1.2	Effects on honeybee development and other honeybee life stages	82
CA 8.3.14	Sub-lethal effects	84
CA 8.	Effects on non-target arthropods other than bees	84
CA 8.3.2.1	Effects on Aphidius rhopalosiphi	84
CA 8.3 2 2	Effects on Typhlades more available for the second se	84
	F)	<i>.</i>

CA 8.4 CA 8.4.1 Effects on non-target soil meso and macrofauna (other than earthworms) 1130 CA 8.4.2 main of the second of the seco plants ... plants ... plants ... spis (flora and fau. or sewage treatments or sewage treatments or sewage treatments or of the or CA 8.4.2.1 Species level testing...... And and and a service of the service Effects on soil nitrogen transformation CA 8.5 ŗ Effects on terrestrial non-target higher plants

BAYER Bayer CropScience

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

CA 8 ECOTOXICOLOGICAL STUDIES ON THE ACTIVE SUBSTANCE

Data on the ecotoxicological data of trifloxystrobin and its major metabolites had been submitted within the EU Dossier (Baseline Dossier), which resulted in the Annex inclusion under Directive 91/414/EEC in 2003. In the Supplemental Dossier for renewal of approval of trifloxystrobin presented, here only those ecotoxicological studies are described which had not been submitted within the Baseline Dossier. The codes and structures of trifloxystrobin and its metabolites are presented in Table 8 – 1.

Table 8 - 1: List of codes and structures

CA 8.1 Effects on birds and other terrestrial vertebrates

CA 8.1.1 Effects on Birds

CA 8.1.1.1 Acute oral toxicity to birds

For information on studies already evaluated during the first EU review of trifloxy strobin please refer to corresponding section in the Baseline Dossie provided by Bayer CropScience and n the Monograph.

The following endpoint from a study evaluated during the first EU roview (SANCO)43392000 Final) is used in the risk assessment:

	\sim	~ 1	~ "	1
Table & 1 1 1- 1. Avian acute arel	tovicity	of wifle	vvotrohir	
Table 0.1.1.1- 1. Avial acute 01 al	tuxicity gata	AI N IIIO	ASSU UDI	1

Test substance	Exposure	Species S Endpoint Reference
trifloxystrobin	Acute risk assessment	Bobwhite quail LD_{50} $mg a.s. 100 bw KcA 8.1.1.1/01$
	La	

CA 8.1.1.2 Short-term dietary toxicity to birds

For information on studies already evaluated during the first EU review of trifloxystrobin, please refer to corresponding section in the Baseline Dossier provided by Bayer CropScience and in the Monograph. No new studies have been performed but the calculation of the achieved daily dietary dose in these studies has been performed in M-469005-09-1 (KCA 8.1.1.2/03)

Table 84, 1.2- 1: Daily thetary dose in avian short teon dietary toxicity studies with trifloxystrobin

Test substance	< Exposure	Species (🖌 🗳 Éndpoint	Reference
			>1568 (nom.)	, 1995
		Bobwhite quail	$LDD_{50} > 1396 \text{ (meas.)}$	<u>M-032010-01-1</u>
	Short-term		mg a.s./kg bw/d	KCA 8.1.1.2/01
trifloxystrobya	dietary		>1486 (nom.)	, 1995
		Mallard duck	$LDD_{50} > 1443 \text{ (meas.)}$	<u>M-032012-01-1</u>
la l	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		mg a.s./kg bw/d	KCA 8.1.1.2/02
<i>"</i>				

CA 8.1.1.3 Sub-chronic and reproductive toxicity to birds

For information on studies already evaluated during the first EU review of trifloxystrobin, please refer to corresponding section in the Baseline Dossier provided by Bayer CropScience and in the Monograph

The following endpoint from a study evaluated during the first EU review (SANCO/4339/2000-Final) is used in the risk assessment:

Table 8.1.1.3-1: Avian long-term toxicity of trifloxystrobin

Test substance	Exposure	Species	Endpoint	Reference
trifloxystrobin	Reproductive risk assessment	Bobwhite quail	NOEL $\geq 32^{a}$ mg a.s./kg by	M-03201 201-2 KCA 8.1.1.3/01

^a Dose calculation from 320 ppm with conversion factor 0.1 according to EFSA GD (2009) section 3.1

CA 8.1.2 Effects on terrestrial vertebrates other than

CA 8.1.2.1 Acute oral toxicity to manymals Ò

For information on studies already evaluated during the first EU Eview of trifloxystrobin, please rater to corresponding section in the Baselfare Dossier provided Bayer CropScience and in the Monograph.

The following endpoint from a studyevaluated during the 9/2000-Final) is used in the risk assessment:

Table 10.1.2.1- 1: Acute oral texicity data for mammals exposed to trifloxystrobin

Test substance	Exposure	Species/Origin	Éndpomt	Reference
Trifloxystrobin	Acute risk assessment	Rato LDS	>5000 5 mg.a.s./kg bw	, 1994 <u>M-039034-01-1</u> KCA 5.2.1/01
			/ L _ O	

CA 8.1.2.2 Long-term and reproduction toxicity to mammals

For information on studies already evaluated during the first EU review of trifloxystrobin, please refer to corresponding section in the Baseline Dossier provided by Bayer CropScience.

An additional statement is submitted within this Supplemental Dossier for renewal of approval of trifloxystrobin. Assumptory of the statement discussing the long-term endpoint for mammals in the risk assessment is given below

Table 8.1.2.2- 1: Mammals long term toxicity of trifloxystrobin

Test substance	F yposur ^A	species 🖉	∼Ç″Endpoint		Reference
Test substance	Exposite	🔍 🖉 origin 🔪	🎾 [mg a.s./kg bw/	/d]	
ÿ	, O'	ŒFSA GD O	ADI	0.8	List of endpoints
, Ø		Screening level	NOAEL	9.8	EU-review report (2003)
Triflourstant	Long-term	FSAGD	NOAEL	~	List of endpoints
THIOXYSTOOM		Tier 1 level	2-gen repro	2.3	EU-review report (2003)
	gassessituein	ĴĒFSA GĎ	BMD ₅	no n	KCA 8 1 2 2 / 01
2 2		[®] Tier 2 level	pup weight	58.5	KCA 8.1.2.2 / 01

Document MCA: Section	8 Ecotoxicological studies
Trifloxystrobin	_

Report:	KCA 8.1.2.2/01;	K, M &	L, 2013	
Title:	Trifloxystrobin: Toxicity	endpoint for the Wild Mam	mal Chronic/Reprod	luctive Risk
	Assessment		~ .	ST OF
Report No.:	EnSa-13-0869		A C	
Document No:	M-468788-01-1		°	
Guidelines:	EFSA GD 2009		1	
Deviations:	None	Ś	L.	
GLP:	no	No and a second		
		Ś	0 [×] ×	

The toxicity endpoint that has been adopted by the EU for the wild mammal risk assessment for trifloxystrobin is not unequivocally reported in the official List of Endpoints (SANCO/4339/2000-Final, 2003) where both the NOAEL of a 90 day subchronic feeding study in rats is included as a 'short-term' endpoint (100 ppm, equivalent to 64 mc/kg by/day) and the no-observed effect concentration (NOEC) for reproductive forciety in the 2-generation reproduction study is given as >1500 ppm in this endpoint list. Additionally some authorities flave also considered the overall NOAEL established in this reproduction toxicity as being directly relevant for the wild mammal risk assessment (50 ppm, equivalent to 2/3 mg/kg bw/day).

According to the EFSA GD (2009) the focus of the longterm risk assessment for wild mammals is on a reproductive endpoint.

Therefore a comprehensive evaluation has been conducted to analyze the toxicological studies available for triflox strobin with regard to the relevance of findings for the wild mammal reproductive risk assessment. Especially information from the rat reproduction study and the rat and rabbit developmental toxicit studies are to be considered. Additionally effects on adult body weight have been evaluated in studies that include exposure and assessment approaches similar to the conditions in the 90-d rat study.

Retardation of body weight development was the primary toxic effect of trifloxystrobin in adult rats. A similar finding was obtained in mice and rabbits but at higher dose levels. Most obviously, lower body weights were causally related to fewer food, intake fates but not to direct systemic toxicity of trifloxystrobin. There was no evidence of a terarogenic effect in developmental toxicity studies in rats or rabbits. In the rat 2-generation reproduction study reproductive performance of parent animals and viability of pups were not adversely affected by prifloxystrobin up to highest dose tested (1500 ppm). Only lower pup weights seen at feed concernations >750 ppm during and at the end of the lactation phase (21-d) were considered to be of possible ecotoxicological relevance, although at later life stages no correlations were evidence to lower survival rates or impaired reproductive performance.

The benchmark dose for lower 21-d pup weights was calculated to be 38.3 mg/kg bw/day at an effect level of 5% (BMDs). This value is considered to be protective also for potential effects on parental bodyweight, and is proposed as an appropriately conservative endpoint for trifloxystrobin wild mammal chronic and reproductive risk assessment.

~Ő

Ũ

CA 8.1.3 Effects of active substance bioconcentration in prey of birds and mammals

d. k of s. gaie chose. ation. e) is above there is more defines. is above there is a bove there is a Substances with a high bioaccumulation potential could theoretically bear a risk of secondary And the opening of th and the provide of the openant of th poisoning for birds if feeding on contaminated prey like fish or earthworms. For organic chemicals, a As the log P_{ow} of the active substance trifloxystrobin (but not for its metabolites) is above the Figgers (>3), evaluation of secondary poisoning is needed. See MCD point 10.1 by the second second

Effects on terrestrial vertebrate wildlife (birds, mammals, reptiles CA 8.1.4 amphibians)

Since trifloxystrobin is of low toxicity in birds and laboratory rodents, no risk for reptile amphibians is to be expected.

Results from literature review

Report:

Title: Source: DOI No: Document No: Guidelines: GLP:

KCA 8.1.4/01; and . (2010) Ô Acute toxicity of fungicide formulations to anophibians at enorronmentally relevant concentrations Environmental Toxicology 10.1002/ete.297 M-400506-01-1 None No ry information (EF 2):209 Classification: b) supplementar

EXECUTIVE SUMMARX

The present study provides toxibity rates to amphibiants at short-term (72 h). Moreality was the selected endpoint. Stratego, as a product containing the active substances triftoxystrobin and propiconazole, killed 40% of exposed tadpoles of average at the corn label rate, but only 7% of the juveniles. In the maximum label the for field corn (880 sul/ha), and the 0.10% label rate (Low), toxicity was significantly lower than at the highest concentration level (10x field rate) tested.

MATERIAL AND METHODS A A A A
A. Matecial
<u>1. Test material</u> $(\gamma + \gamma + \gamma) = (\gamma + \gamma) + ($
Togvitem, Stratego
Active substance (sor Tritloxystropin (+propiconazole)
Chenneal state and description: Not reported
Source of test item: QU.S. EPA Reg 264-779, Bayer CropScience
Batchrumber Norreported
Puscity: Not reported
Storage conditions: Not reported
Water solubility: Not reported
2. Test solutions
Vetecle/solvent: Formulations were mixed in reagent water similar to
\mathcal{L} \mathcal{D} \mathcal{D} \mathcal{D} labeling instructions
3. Test organismus)
Species: Juvenile Bufo cognatus
S Common name: Great Plains toads
Source of test species: wild caught near wetlands in western Texas in July and held unti
\circlearrowright September when experiments began. To obtain tadpoles, five
unrelated wild-caught B. cognatus males and five females were

paired and induced to breed by injecting 20jxg LHRHa/10g body

weight into the dorsal lymph sacs 4. Culture conditions of test organism(s) Culture medium: Aquaria (~400 cm² floor surface area) with 1 cm of sterilized soil $26 \pm 1^{\circ}C$ Temperature: Photoperiod: 13:11 h light:dark Not reported Light intensity: Between 7.0 and 72 pH: above 5.5 mg/L^e Oxygen saturation: Juvenile toads were fed 0.625 cm (0.25 inch/crickos dusted Food and feeding regime: Miner-All (Sticky Tongue Parms) ad libitum. 2 month between caught of species and test star Acclimatisation prior to testing: was observe Oin the bolding facility Observations during acclimatisation: natural mortality (-**B.** Study design and methods 1. Test procedure Laboratory, Tadpoles were of dold at the start of the toxicity test Test system Test concentration(s): maximum label rate for field orn (880 ml/has, 0.10x label rate (QQ)Ĭ. ⊗yLow),⊘and @0x label rate (High). 1.1 and 11µg trifloxystrobin/cm2). Øontrol(s)́: exposed to the chemical vehicle only (water) Number of reploates: 3=3 (see header of figure 1 in the paper) Laboratory-reared tacpoles were placed in the same type of aquaria Test conditions: as above but with to cm of carbonfiltered water immediately after theroughly mixing in 1 ml of speay mix 20 tadpoles in 6 L). er Fed a max of commer dal rabbit chow and Tetra Min[®] ding%/Tadpoles w (Tetra) di@n rene@al: 1%one item application: Aonce a the beginning of tes application st churation? [°]72 h dpoints: mortalit and fukey's multiple range test 2. Measurement Vater/mediummarameters: Water quality was tested within tadpole toxicity tests at the beginning and of experiments. Dissolved oxygen was always above 5 mg/L, and pH was maintained between 7.0 and 7.2. Concentration of each fungicide active ingredient was measured within the spray mix used for juveniles and within the water used or tadgole testing at the beginning and end of the test. 3. Sampling Sampling frequency: cheeked every 12 h r≹/storage of samples: Not reported uideline/protocol: None Method: gas chromatography (GC) / mass spectrometry (Agilent 5975c). Concentrations were determined using liquid-liquid solvent extraction. Pre-treatment of samples: For juvenile studies, 1 ml of spray mix was extracted with 10 ml pesticide hexane (Burdick and Jackson). For the tadpole

studies, 50 ml of water from the tadpole tanks was extracted with

 $(F_{3,8} = 26.1; p \bigcirc 0.001)$ and juveniles (F_{3,8} = 135.7; p < 0.001) cm. 10 ml of hexane. Extraction efficiencies for the tadpole technique Conduction: Quantitation ion for Trifloxystrobin 116 Reference item: Not reported Limit of detection: Not reported Limit of quantification: Not reported

RESULTS

1. Biological findings:

Stratego was toxic to tadpoles ($F_{3,8} = 26.1$; p 60.00 and inventes (F Stratego was toxic to tadpoles ($F_{3,8} = 26.1$; p 60.00) and juveniles ($F_{3,8} = 135.7$ sp < 0.001). Stratego killed 100 and 90% of the tadpoles and juveniles respectively exposed to the highest concentration evaluated (10 x the application rate). In maximum label rate for field corn (880 ml/ha) and the 0,10 x 1907 * label rate (Low), toxicity was lower (Figure 1). Õ

Figure 1: Mean (± standard error) percent mortality of Bufo cognatus the poles (Å) and juveniles (B) 72 h after a single exposure to either, Headline, Stratego, or Quil Jungiside at one of three concentrations. Fungicide concentrations were maximum label rate for corn (Medie 0.10x label rate (Loss), and 10x label rate (High). Control animals were exposed to an equivalent volume of chemical vehicle (water). Each treatment consisted of three replicates (n) 20 tadpoles and n = 9-10 privenites per replicate). Asterisk (*) indicates significantly (p < 0.05) different from control and among concentrations within a specified fungicide.

RESULTS SUMMARY

Stratego killed 100% and 90% of the tadpoles and juveniles, respectively, exposed to the dighest concentration evaluated (10 x the application rate) and 40% of exposed tadpoles on average at the com label rate, but only 7% of the juveniles. Toxicity increased with the applied concentration rate

Effects on terrestrial life-stages of amphibians **Comment by the Notifier**

et al. (2010), see KCA 8.1.4/01, published experiments where wild caugh Great Plains to ad (Bufo cognatus) have been exposed to direct overspray of Angicide formulations, one of which was Stratego® containing trifloxystrobin and propiconazole. The test rates were 0.11 phys 0.11 1.1 plus 1.1 and 11 plus 11 µg trifloxystrobin plus propiconazole/cm? The predium dest rate refers to the rate recommended according to good agric utural practice. The prostalives at the low and the medium rate did not differ significantly from the control The high rate (corresponding to 10 times field rate) led to 90% mortality.

The exposure scenario used in these experiments for be degarded as unrealistic worst case for the following reasons:

- 1. The experimental set-up @lass tanks with a 1cm layer of soft did not provide any shelter that would have mitigated the exposure
- 2. The test organisms were juvenile toads. The surface:volume ratio is larger in small specimens compared to adult individuals from the same species Thus, small organisms receive more test substance per bodyweight than large ones.
- 3. Activity patterns of amphibians in on-grop areas only partly overlap with the time of the application of pesticides, because:
 - Agricultural fields are not suitable habitats for amphibians (soil moisture, availability _ũya. of food, opportunities for shelter)
 - b. Migrating amphibians, that are passing open areas, are mostly active at night or during rainfall Application of plant protection products mostly take place during day-time under dry weather conditions

therefore, the information is classified as b) supplementary information (EFSA Journal 2011; 9(2);2092) Therefore these effect data on terrestral life stages of amphibians published by see KCA 8.1.4/01, and presented there as supplemental data and are not used for a risk assessment. Moreover, the results indicate that the field rate of Stratego® has no significant effects on terrestrial life stages of amphibians.

Therefore, 2011; 9(2)

CA 8.1.5 Endocrine disrupting properties

Wild Mammals

Effects of trifloxystrobin on mammals were studied in 90-d, chronic, and reproductive studies in vats, 90-d and chronic studies in mice, 90-d and 1-year studies in dogs, and in prenatal development studies in rats and rabbits.

In these apical toxicological studies no evidence of any endocrine effect was seen. Therefore, based on a complete toxicological data set, there is no evidence of an endocrine potential.

Ň

Birds

The population relevant effects of triflexystrobin on birds were studied in reproductive toxicit/studies with bobwhite quail and mallard ducks. There were no effects on reproductive parameters up to and including the respective highest tested dietary concentration of 320 mg/kg feed in guail and 500 mg/kg feed in guail and 500 mg/kg

feed in mallard. Based on the absence of any indication of relevant effects it can be concluded that thifloxystrobin is not a (potential) endocrine disruption properties is warranted.

CA 8.2 **Effects on aquatic organisms**

In order to complete the aquatic risk assessment and to address new data requirements according to Regulation (EC) No 1107/2009, additional studies were performed. In addition, tests on marine species and test with metabolites, which were no data requirement according to the old regulation and hence were not evaluated during the first EU review of this compound, will be summarized.

For studies submitted during the frame of the first AnnexI inclusion please refer to the corresponding section in the Baseline Dossier provided by Bayer CropScience and in the Monograph.

Q,

The degradation pathways in soil and water and sediment and given in the two hours below for further details refer to Section 7: "Fate and be haviour in the environment"

ó Metabolite CGA 381318 (ZZ) is found as a metabolite in soil solely under photolytic conditions max. 6.2% AR, see MCA Section 7.1.1). The compound was synthesized by photoisomerization and ester cleavage of the active substance, however the compound is not stable. All attempts to isolate the free acid failed, only the sodium salt wild be isolated. Isomerization to the more stable ZE isomer takes place very rapidly, not only under influence of light, but also under already and acidic conditions. This isomerization to the more stable isomers will also take place under the conditions of the aquatic studies, where mild acidic conditions and light are present. Thus the aquatic toxicity of CGA 381318 (ZZ) is covered by the corresponding EF (CGA 321113) and ZE (CGA 373466) isomers,

As can be seen in the following tables, all metabolities are clearly less toxic compared to the parent, with the lowes Patio being 32-fold tess taxic than the parent (for Daphnia magna and CGA 357276), and the highest ratio 5000 for all metabolites with endpoints ≥ 100 mg/L.

tables, all metabolities are clear. 32-fold oss task that the parent (for. 3000 for all metabolities with endpoints 2 100 100 for all metabolities with endpoints 2

CA 8.2.1

For studies already evaluated during the first EU review of trifloxystrobin, please refer to corresponding section in the Baseline Dossier provided by Bayer CropScience and the Monograph.

The endpoints from the following table have been evaluated during the first EU review (SANCO/A339/2000-Final) and are used in the risk assessment. An additional repeated peak exposure study with the formulation and the most sensitive fish species (rainbow trout) and life stage (alevin stage larvae) under lab conditions covers both, acute and chronic effects of Trifloxystrobin, and thus is

also used to derive	the acute endpoint (& Sommer, 2002, <u>M</u>	<u>-056670-01-1</u> , KCP
Table 8.2.1- 1: Acute to	exicity to fish exposed to trifl	oxystrobin and its metabolites 瘚	
Test substance	Test species	Endpoint	Reference
Trifloxystrobin	Fish, acute Oncorhynchus mykiss	LC ₅₀ 0.015 mg as./L	M-092048-07-1 KCA 8.2.1701
CGA 357261	Fish, acute Oncorhynchus mykiss	4.C ₅₀ 0.9 mg p.m./L	(1997) (<u>M-022074-0671</u> (KCA 8.2.) (1997) (1
CGA 321113	Fish, acute <i>Oncorhynchus mykiss</i>	LC ₅₀ >> 106 mg p.m./L	(1996) M-032076-01 KCA 8.2.1/14
CGA 373466	Fish, acute Oncorhynchus mythiss	∑ LC‰	(1997)。 <u>A-0320 8-01-</u> KCA 8.2.1/1
NOA 413161	Fish, acote Oncorhynchus mylyss	LCG 2100 mg p.m.de	(†)98) <u>N©033964-01-1</u> SCA & 2.1/17
NOA 413163	Fish, acute Oneophynchus mykiss	LC 50 CO (norm)	(1998) <u>M&033967-01-1</u> K&A 8.2.1/18
CGA 107170	Fish, acuto Oncochynchus mykiss	LC50 13.6 mg p.m./L	(1997) M-032079-01-1 KCA 8.2.1/16
		G N O Y	

An additional acute fish study has been performed for the pertabolite CGA 357262 and is submitted within this Supplemental Dossfer for renewal of approval of triflogystroph. A study summary is given below. LL CONTRACTOR ≪° O N , C

Table 8.2.7- 2: Additional active fish study of trifloxystrobin metabolites according to new data

Test substance 🍣	Test species	Endpoint	Reference
CGA 357362	Fish, acute Groothung hus mokiss	∠C50 > 10.1 mg a.s./L	(2012) EBTFL017 <u>M-430569-01-1</u> KCA 8.2.1/22

Metabolite CGA 357262

Metabolite CC	<u>FA 357262</u>
Report:	KCA 8.2.1/22; 2012
Title:	Acute toxicity of BCSBJ39463 (tech.) to fish (<i>Oncorhynchus mykiss</i>) Sunder static conditions (limit test)
Report No.:	EBTFL017
Document No:	<u>M-430569-01-1</u>
Guidelines:	EPA-FIFRA § 72-1/SEP-EPA-540/9-85-006 (1982/1985) OPPTS 850.1075 (Public Draft, 1996) Council Regulation (EC) No 440/2008 C.1 (2008) OECD Guideline No. 203 (1992) 12 Nousan Notification No. 8147 (2000)
Deviations:	None O O A A A A
GLP:	Yes (certified laboratory)

Objective:

/ L sas performed in order to demonstrate that the A limit test at 10.1 (10.0) mg test item concentration which kills 50 percent of the fish (969-LC50) exceeds the limit test concentration of 10.1 (10.0) mg (a.s.). The limit test concentration was chosen based on a non-SLP range-finder test (10.0 mg / L).

Materials and Methods:

Test item: BCSBJ39463 (COA 357262, metaborite of triflox9strobit), analyzed content of active substance: 99.4% w/w; specified by batch code AE \$344146-01-01; Origin batch number: SES 10487-2-1; tox no. 09326 00 (AZ 17373).

Test organisme Rainbow trout (On Orhynchus mykiss), mean body length 4.4 cm, mean body weight 0.9 g. The boomass loading for this test was 0.68 g fish? L test medium.

Thirty fish were exposed in a limit test for 96 h under stark test conditions to a nominal concentration of 10.1 (10.0) mg test item (a.s.) (L against a control (dilution water) and a solvent control (DMF) with further 30 fish

During the test, fish were examine after four hours and then daily for mortalities and signs of poisoning. Within the study the pH-value, the oxygen saturation level and the temperature were measured with commercial measurement devices, daily. Dissolved oxygen concentrations ranged from 78 to 88% oxygen saturation the pH values ranged from 6.7 to 7.1 and the water temperature ranged from 12.0°C to 12.5°C in all aquara over the whole testing period. The photoperiod was 16 hours of light and 8 hours dark.

After 4, 24, 48, 272 and 96 hours of exposure the fish were inspected for the number of deaths, toxic symptoms of abnownalities. The mortality (%) after 24, 48, 72 and 96 hours of exposure was calculated in each treatment group. In all groups, the concentrations of the test substance were measured at the same four time-points.

The endpoints were expressed in terms of nominal and mean measured concentrations.

Dates of experimental work: October 24 to March 12, 2012

Bayer CropScience

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Results:

Validity criteria:

Validity Criteria	Recommended	Obtained
Mortality in the control	≤ 10%	0%
Constant water quality and environmental conditions during the test	Yes 🖉	Yes
Concentration of dissolved oxygen	≥60%	78 - 88%
		<u> </u>

All validity criteria for the study were met.

Analytical results:

-The analytical determination of BCSBJ39463 (CGA 357262) (in water by PPLC & UV) revealed recoveries of 526% on day 0, 57.3% on day 2 and 52.8% on day 4 of nombral test concentration of 10.0 mg a.s. / L. The results of day 2 and day 4 represent the solubility of approximately 5 to 6 mg / L under exposure conditions. The arithmetic mean was 5.5 kmg / D. The recoveres observed on day 0 exceed by far the nominal concentration? The reason for these values which are far above the expectations is that the nominal concentration exceeds the water solubility limit. This might have led to inhomogeneities within the water samples O

Therefore, in the present study, the measured concentrations were used to evaluate the test results.

Biological results:

test level the following All surviving fish showed at this nptoms after 96 hours:

- fish remained for unusually fong periods on the bottom of the aquarium laid on their sides of backs turned dark in coloration

- Open mouth
- showed labored respirati

ts nor any mortality in the control and solvent control group. eftec There were neither any sub-lethal

LC50 values for rainbow trout exposed to BCSBJ39462 (CGA 357262) technical based on nominal and mean measured concentrations

-			. "	
	Test substance:			BCSBJ39463 (CGA 357262)
	Test object:		\$	Rainbow trout (Oncorhynchus mykiss)
	Exposure:		1	96 hours, static test design (limit)
Ľ	£ 50 964 (95% C.I.):	\$ ~\$	>	> 10.1 (5.51) mg (mean measured) test item / L
		y		

Conclusions:

The LC_{50}^{\bigcirc} (96h) of BCSBJ39463 (CGA 357262) to Rainbow trout (*Oncorhynchus mykiss*) in a static 96-hour-test was determined to be > 10.1 (5.51) mg nominal (mean measured) / L.

CA 8.2.2 Long-term and chronic toxicity to fish

For information on studies already evaluated during the first EU review of triffexystrobin, ple to corresponding section in the Baseline Dossier provided by Bayer CropScience and Monograph.

The endpoints from the following table have been evaluated during the (SANCO/4339/2000-Final) and are used in the risk assessment. An additional repeated peak expo study with the formulation and the most sensitive this species (rambow trout) and life stage, (aleve stage larvae) under lab conditions is used to derive the chronic endpoint

2002, M-056670-01-1, KCP 10.2.3/02).

Table 8.2.2-1: Chronic fish toxicity of trifloxystrobin and its metabolity

Test substance	Test species &		Endpoint	L.	W Reference
Trifloxystrobin	Fish chronic Oncorhynchus phykiss	NOEC 6	0.0079 mg a.s.		M-0%2080-02-1 KCA 8.2.2.2/01
Trifloxystrobin	Fish chronic Gncorhynchus Gnykiss	NOEC	3 x 0.9253 mg	a.s./k,?	© & & (2002) <u>M-</u> 056670-01-1, KCP 10.2.3/02
CGA 321113	Fish Chronic S Oncork Mchuz mykiss	NOEC	$0 \ge 100 \text{ mg p.m.}$	Ĺ	(1999) <u>M-070819-01-1</u> KCA 8.2.2.1/01
CA 8.2.2.1 Fish e	early life stage toxicity te		^o y		
See point 8.2.2. No ad	ditional studies were perform	ned	ŝ		
, SY			~		

CA 8.2. Fish ear

%Fish Orll life CA 8.2.2.2

Ö

were See point 8₄2 . No additional studies

CA & 2.2.3 Biggoncentration in fis

dditional studies wer See point 8.2.2 erformed.

Endocrine Asrupting properties CA 8.2

The anatic profile of Triffoxystrobin is characterized by fast degradation in natural water and thus lack of choonic exposure.

Population relevant effects of Trifloxystrobin on fish were studied in a flow-through early life-stage test (ELS) with rainbow trout. The lowest NOEC of 7.7 µg/L was found for the parameters survival

and hatching success, with no effects on weight or length. This chronic NOEC is very close to the acute LC50 of 15 µg/L for rainbow trout, also determined under flow-through conditions. An outdoor repeated peak exposure pond study with fish (bluegill sunfish) showed no effect on survival, fish length and fish weight up to the highest tested concentration of 2.3 µg/L and a repeated peak exposure laboratory ELS with rainbow trout showed no effects up to 23.5 µg/L and with a well

wi systrokin is Sh. Based on the absence of any indication of relevant effects it can be concluded that friflog S to Esh. not a (potential) endocrine disrupter.

tentfal of Tos No further testing is indicated to evaluate the endogrine disrupter po

Acute toxicity to aquatic invertebrates CA 8.2.4

as sublethal effects at the highest concentration of 38 μ g/L_{2/8}

CA 8.2.4.1 Acute toxicity to Daphnia magna For information on studies already evaluated during the first EU review of triflery strobin, please refer to corresponding section in the Territe Day The following endpoints from studies evaluated during the first EU review of trifletystroppin, please refer to corresponding section in the daseline Dostier provided by Boyer GropSeinec and in the Monograph. The following endpoints from studies evaluated during the first EU review (SANCO/339/2000-Final) are used in the risk assessment:

Increase in the second		(1997) [©]
Daphnia magna	EC ₅₀ 0.016 mg a.s.	963542 <u>M-032085-01</u> KC\$ 8.2.4 02
Invertebrate, acute Daphnia magna	E C 70 1.4 mg/p.m./L	(1995) (4929) (<u>M-02090-09-1</u> KQ 8.2.61/04
Invertebrate, acute Daphnia magna	$EC_{50} > 100 \text{ mg p.m./L}$	(1996) (1996) (19953569) (1996
Invertebrate, acuto	EC ₅₀ > 100 ang p.@7L	(1997) 649359 <u>M.032092591-1</u> KCA 8.2Q.1/06
Invertebrate, acute Daphnia magna	5C ₅₀ 5 > 100 mg pm./L	G 528/14 M-033972-01-1 &CA 8.2.4.1/08
Anvertorate, acute	EC_{50} > 100 (nonco	(1998) G 529 14 <u>M-033975-01-1</u> KCA 8.2.4.1/09
Invertebrate, asute	\$ \$\conv_2 C_{50} \conv_2 22\conv_2 mg p\u00e9\u00e9\u00e9\u00e9 \$\conv_2 \u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9 \$\conv_2 \u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9\u00e9 \$\u00e9\u00e	(1997) 649236 <u>M-032096-01-1</u> KCA 8.2.4.1/07
	Invertebrate, acute Daphnia magna Invertebrate, acute Daphnia magna Invertebrate, acute Daphnia magna Invertebrate, acute Daphnia magna Invertebrate, acute Daphnia magna	Invertebrate, acute Daphnia magna EC ₅₀ I.4 mcp.m./L EC ₅₀ Invertebrate, acute Daphnia magna EC ₅₀ Invertebrate, acute

 Table 8.2.4.1- 1: Acute toxicity to Daphnia magna exposed to trifloxystrobin and its metabolites

Additional acute studies on Daphnia magna have been performed for several metabolites of trifloxystrobin and are submitted within this Supplemental Dossier for renewal of approval of trifloxystrobin. Study summaries are given below.

10 0.2.1.1 2. Multio		,	
Test substance	Test species	Endpoint	Reference 🥾
CGA 357262	Invertebrate, acute Daphnia magna	EC ₅₀ 3.6 mg p.m./L	(2012) EBTFL019 <u>M-431690-01</u> KCA\$2.4.4
CGA 357276	Invertebrate, acute Daphnia magna	EC ₅₀ 0.51 mg p.m./L	(2012) EBTF 20195 M-483856-00-1 K CA 8.2.451/17
NOA 409480	Invertebrate, acute Daphnia magna	QC ₅₀ 2.25 mg p.mol	EBTFX201 M-4 <u>\$2300-0}1</u> KCA 8.2,41/18
2-Hydroxymethyl- benzonitrile ^a	Invertebrat Cacute Daphniomagnus	EC ₅₀ 9.9 mag p.mc/	(2012) EBTEX197 © <u>M-442300-01-1</u> K&A 8.244.1/19
Hydroxymethylbenzo	nitrile is present on a tant	omere equilibrium with & Benzo	foran-1(3H)-imine, for

Table 8.2.4.1-2: Additional studies for acute toxicity to Daphnia magna

further details please refer to the study report (

Metabolite CGA 35 (20**1**2 **Report:** toxicity of BCS-BJ39463 (techt) to the waterflee Daphing magna in a static laboratory Title: test system O Report No: EBOTFLOI® Document No: Guidelines. OECD Guidenne 202 US. EPA Pesticide Assessment Guidelines, Subdivision E, § 72-2 (1982) EC Regulation No 440 2008, Nethod O.2 (2008) OPPTS Guidenne 85001010, modified (1996) JMAFF 12 Wousan No.

Deviations: GLP:

Objective:

The study was performed, to detect possible effects of the test item on mobility of Daphnia magna Sposure in a static laboratory test system, expressed as EC_{50} for 48 hours caused by of immobilisation Ò

Materials and methods:

None

Yes (certified

Test frem: #CS-B/09463 (CGA 357262), batch SES 10487-2-1, (BCS-batch code: AE 1344146-01-01), purity 99.4% w/w (TOX 09326-00).

Daphnia magna (1st instars < 24 h old, 6 x 5 animals per concentration) were exposed in a static test system for 48 hours to nominal concentrations of 0, 0.625, 1.25, 2.50, 5.00 and 10.00 mg pure

metabolite/L (corresponding to mean-measured concentrations of 0.577, 1.37, 2.24, 3.99 and 6.27 mg pure metabolite / L) and a solvent control without feeding. item

The content of BCS-BJ39463 in exposure media was measured for verification of the text concentrations at start and end of the exposure period.

After 24 and 48 hours, the behaviour of the water fleas was visually evaluated by coupring mobile daphnids, defined as animals with swimming movements within approx. 15 seconds after gentle agitation of the test vessel. Additionally, all visible features of the test iem in water is well i possible signs on sublethal affected daphnids had to be recorded.

Adequate sensitivity of the used test-organisms was verified by simultaneous testing of appropriate aqueous solutions of the reference-substance poter the state of the second se aqueous solutions of the reference-substance potassium dichromate.

Dates of experimental work:

Results:

Analytical findings:

SBJ39463 in the freshly prepared The actually dissolved and analytically determined amounts of BC test solutions at test initiation ranged between \$5.6% and 126% (mean: 108%) Othe aspired nominal test concentrations.

The corresponding concentrations of the aged test solutions at the end of the A8 hours exposure period ranged between 39.7% and 92,0% (mean: 65 1%) of frominal

No contaminations of BCS-BB9463 were detected in samples from untreated water control.

Due to the limited solubility of BCS-\$J39463 (tech.) under test conditions, the measured test concentrations at the end of the 48 hours exposure interval partially cell below 80% of nominal. Therefore all reported results were based or mean measured concentrations

Biological findings

behaviour occurred in the untreated control within 48 hours of No immobilities or exposure.

¥		o' n'	Oř			
Nomin al test	Mean measured	Exposed	JU II	nmobiliseo	d daphnic	ls
concentration	test concentration	daptinids	مَحْ 🖉	ł h.	48	h.
(mg p̃.m./L)	(mg.p.m./L)	(=1 00%)	» n	%	n	%
Control	Control	Q 30 ^Q	0	0.0	0	0.0
Solvent control *)	Solvent control	30	0	0.0	0	0.0
0.625	∆ °0.5720° , S	30	0	0.0	0	0.0
1.25	Y 1.57	Ø 30	1	3.3	0	0.0
2.50	2.24 ×	30	2	6.7	12	40.0
5.00	3.99	30	2	6.7	20	66.7
10.00	6.2	30	5	16.7	17	56.7

Toxicity of BCS-BJ39463 to Daphnia magna

p.m. > pure metabolite

*) DMF (QQ mL/L dimethylformamide)

Conclusions:

Based on mean-measured concentrations of BCS-BJ39463 (tech.), the following EC₅₀ values for immobilisation after 24 and 48 hours of static exposure were assessed:

		(PA	A	X
Probit analysis for data obtained after	EC50 mg pure metabolite / L (mean measured)	lox 95% cl mg pure metabolite / Q (mean measured)	upper 95% cl mg pure metabolitey L (mean measured)	
24 hours	13.1	an.d.	° Ån.d.∢	L
18 hours	3.6			Q_{J}^{ν}

Metabolite CGA 357276

21110415		10.	1	a.Y	11.4.	v V	0 II.u.v	
48 hours		3.	6		2.9 🥎	<u> </u>	<u>~~4</u>	
n.d.: not determine	d due to	mathematica	al reasons &					
Metabolite CGA	35727	<u>6</u>						
Report:	KCA 8	3.2.4 .1 \$7;		(20	12	Î de	í de s	, S
Title:	Acute to	oxicity of BC	S-AB39835	(tech.) to t	he water the	a <i>Daphnia</i>	magna in a s	static laboratory
	test syst	ena O	N.	Ø', ''	۶ ۱	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Report No:	EBIFX	1495 ₄	9	y A	Ĩ,	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
Document No:	<u>M-4338</u>	<u>56-01</u>	ĝ Õ	s,	, O' 🐇	° la	, 0 ^y	
Guidelines:	OECD	Guidoline 20	¥(2004)	~~ ~	у O'	Ň	L.Y	
	US. EP	APesticide	Assessment (Juidelines,	Subdayisio	n E, § 72-2	2 (1982)	
	ÉÉC Re	Quilation No	440 //2 008,^ %	lethod 0.2	(20,008)		7	
	OPPTS	Guideline 85	\$Q,1010, mo	lified (1990	$5)^{\sim}$	s s		
8	JMAFF	12 Dousan	Do. 81\$\$7 (20	00	ý s ^y	<i>a</i>		
Deviations:	None	N G	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, 0	KŰ		
GLP:	Yes (ce	tified labora	tor	y io		Ø		
Ê.S		. 8	S.	Ő,	Ĵ, o	4		

Objective:

Rect possible offects of the test item on mobility of Daphnia magna The study was performed, Static labor for test system, expressed as EC50 for caused by 48 hours of in immobilisation.

Materials and methods:

Test item: BCS-AB39835 CGÅ 357276 metabolite of trifloxystrobin), origin batch no.: BCOO 6204-3-3 (BCS-batch@ode: BCS-A\$398352PU-04), purity: 97.8% w/w (AZ 16891).

Daphnia magna (1st instars 24 Hold, 6 x 5 animals per concentration) were exposed in a static test system for 48 hours to nominal concentrations of 0, 0.10, 0.17, 0.31, 0.56 and 1.00 mg pure metabolite/L (corresponding @ mean-measured concentrations of 0, 99.8, 172, 304, 520 and 954 µg pure metabolite / L) without feeding.

The content of BCS-AB99835 in exposure media was measured for verification of the test item concentrations at start and end of the exposure period.

After 24 and 48 hours, the behaviour of the water fleas was visually evaluated by counting mobile daphnids, defined as animals with swimming movements within approx. 15 seconds after gentle

agitation of the test vessel. Additionally, all visible features of the test item in water as well as possible signs on sublethal affected daphnids had to be recorded.

 signs on subletnal attected daphnids had to be recorded.

 Adequate sensitivity of the used test-organisms was verified by simultaneous testing of appropriate aqueous solutions of the reference-substance potassium dichromate.

 Dates of experimental work:
 October 03, 2011 to February 15, 2012

 Results:
 Analytical findings:

Analytical findings:

AB39835 (QGA 357276) in the The actually dissolved and analytically determined amounts of BGS freshly prepared test solutions at test initiation ranged between 104% and 110% (mean: 107%) of the ai aspired nominal test concentrations.

the 48 hours exposure period The corresponding concentrations of the aged fest solutions at the end of ranged between 78% and 96% (mean \$8%) of nominal.

No contaminations of BCS-AB39855 (CCA 357276) were detected or samples from untreated water ° control.

since the measured content of BCS-AB39835 (CGA 357276) in one test solution fell below 80% of nominal at the end of the 48 hours exposure interval, all reported results were based on mean measured concentrations

Biological findings:

in the untreated control within 48 hours of n behaviour No immobilities hen exposure. Ô

Nominal test	Meanmeasured	Exposed	in (nmobilised	d daphnids	5
concentration	test concentration	daphnids	^م 24	_h.	48	h.
(mg p.m./L) 🖏	(the provide the second	(=1,00%)	n (0 °%	n	%
Control _	O ^Y Control . C	. 00 .	\circ 0 \circ	0.0	0	0.0
Solvent control *)	^O Solvent control	30	í Ø	0.0	0	0.0
0.10	99.8	300		0.0	0	0.0
0.1	~~ 17Q		مَ ^ج ي 0	0.0	0	0.0
0.31	S <u>3</u> 04 S	30 %	0 4	0.0	5	16.7
~ 0 .56	\$\$20 ×	Q 30 °	3	10.0	15	50.0
1.00	954	30	26	86.7	30	100

Toxicity of BCS-AB39835 (CGA 357276) to Daphinia magna;

p.m. = pure metabolite { p.m. – pure metapolite (0.1 pc/L dimethylformamide)

Conclusions:

Based on mean-measured concentrations of BCS-AB39835 (CGA 357276), the following EC₅₀ for immobilisation after 24 and 48 hours of static exposure were assessed:

Statistical results of probit analysis conducted for determination of EC50 values:

Probit analysis for data obtained after	EC50 μg pure metabolite / L (mean measured)	low 095% cl μg pure netabolite / μ (ntean measured) Ο	μg pure n (means	r 95% cl netabolite OL measured	
24 hours	718	642 O	, ° do	802 🖉 🖒	
48 hours	514	409		6476	a di

Metabolite NOA 409480

Metabolite NO	$A 409480 \qquad \qquad$
_	
Report:	KCA 8.2.4.1/18;
Title:	Acute toxicity of BCS-CR74871 (tech.) to the water flea Daphnia magna in a static Jaboratory
	test system
Report No:	EBTFX201 C C C C C
Document No:	<u>M-432300-QJ</u>
Guidelines:	OECD Guideline 202 (2004)
	U.S. EPA Pesticide Assessment Guidelines, Subdivision E, § 729 (1982)
	EEC Regulation No 440/2008 Method C.2 (2008)
	OPPLS Guideline $\$$ 0.1010, modified (1996) \bigcirc \checkmark
	JMQAFF 12 Nousaa No. 8147 (2000) $\mathcal{T}_{\mathcal{A}}$
Deviations:	Sone of the
GLP:	OYes (certified aboratory) Y i y v y
Å	

Objective:

The study was performed, to detect possible effects of the test dem on mobility of Daphnia magna in δ staffer laboratory test system, expressed as EC₅₀ for caused by 48 hours exposure immobilisation.

Materials and methods: 0

Test item: BCS-CR74871 (NQ3409489, metabolite of trifloxystrobin), origin batch no.: BCOO 6263-3-4, (BCS-batch code, BCS-CR74871-01-07), punty: 98.7% w/w (AZ 17177 / TOX09206-00).

Daplinta magna (1 instars 24 Vold, & 5 animals per concentration) were exposed in a static test system for 48 hours to nominal concentrations of 0, 0.625, 1.25, 2.50, 5.00 and 10.00 mg pure metabolite/L (corresponding to mean-measured concentrations of 0.660, 1.33, 2.41, 3.90, 6.83 mg pure metabolite / L) without feeding.

The conton of BCS-CR7487 in exposure media was measured for verification of the test item concentrations at start and end of the exposure period.

After 24 and 48 hours, the behaviour of the water fleas was visually evaluated by counting mobile daphnids defined as animals with swimming movements within approx. 15 seconds after gentle agitation of the test vessel. Additionally, all visible features of the test item in water as well as possible signs on sublethal affected daphnids had to be recorded.

Adequate sensitivity of the used test-organisms was verified by simultaneous testing of appropriate aqueous solutions of the reference-substance potassium dichromate.

Dates of experimental work:

October 10, 2011 to March 05, 2012

Results:

Analytical findings:

The accompanying chemical analysis of BCS-CK 4871 (NOA409480) in Freshly prepared test solutions revealed measured concentrations between 108% and 29% (mean: 102%) opnominal. The corresponding concentrations in the aged test solutions at the end of the 48 hours exposure period ranged between 106% and 37% (mean: 91%)@f nonfinal. No contaminations of BCS-CR74871 (NOA409480) were detected in samples from untreated water control.

Due to the limited solubility of BCS-QR748% (NQA409480) under test conditions, the measured test concentrations at the end of the 48 hours exposure interval partially fell below \$0% of nominal. Therefore all reported results were based on mean measured concentrations

Biological findings:

No immobilities or other effects on behaviour occurred in the untreated ntrof within 48 hours of exposure.

0		í M		L . V	
Nominal test	Mean measured	Exposed	🗸 Ammobilise	d daphnid	8
concentration	Diest concentration	daphnids	∕∑24 h. ^O	48	h.
(mg p,m/L)	(mg p.m(JL)	(=100%)	n Ø %	n	%
Control	Comrol 🖗	<u>3</u> 0		0	0.0
Solvent control *)	Solvent control	<u>Å</u> 30 Å		0	0.0
0.625	0,660	30	0.0	0	0.0
1.25 👰	A.33 & 1	r -20	A 13.3	4	13.3
2.50	2.4 ° ° °	Q0	0^{*} 6 $^{\circ}$ 20.0	16	53.3
5.00	3,96	Q ⁹ 30 Q	63.3	27	90.0
10.00	6.83	3 Q	28 93.3	30	100

Toxicity of BCS-CR74871 NOA299480 to Daphnia magna:

Conclusions:

Based on mean-measured concentrations of BCS-CR74871 (NOA409480), the following EC₅₀ falues of for immobilisation after 24 and 48 hours of static exposure were assessed:

Statistical results of probit analysis conducted for determination of EC50 values:

Probit analysis for data obtained after	EC50 mg pure metabolite / L (mean measured)	lower 95% cl mg pure metabolite / Q (mean measured)	upper 95% cl mg pure m@abolite L (mean measured)	
24 hours	3.20	2.74	° 3.74 C	L
48 hours	2.25	🖉 1.97 📏 🔍 🖉	2.50	

Metabolites 2-Hydroxymethylbenzon trile 2-Benzofuran-1(31)-imine (tautomeric mixtur

Report: KCA 8.2.4.1/19;

Y

laboratory

Title: Acute toxicity @BCS-AR14212+ BCS*CR34\$32 (tech.) to the water the *Ddrahnia magna* in a static laboratory test system of the static laboratory test system of test system of

OECD Guideline 202 (2004) U.S. EPA Prencide Assessment Guidelines, Subdivision E. 572-2 (1982) ECC Regulation No. 440/2008, Method C & (2008) OPPTS Guideline 850.1010, modified (1996)

Deviations: GLP:

Objective:

The study was performed to detect possible effects of the rest item on mobility of *Daphnia magna* caused by 48 bours of exposure the a static laboratory test system, expressed as EC_{50} for immobilisations

Material and methods;

Test item: BCS-AR04212 + BCS-CR34332 (2 Hydroxymethylbenzonitrile + 2-Benzofuran-1(3H)imine, metabolites of trifloxystrobin), origin batch no.: BCOO 6206-4-2 (BCS-Batch code: BCS-AR14212-01-010, content: 31,8% w/& BCS5AR14212, 63.8% w/w BCS-CR34532 (AZ16949).

Daphnia maçõa (14) Testars 24 h old, 6 x 5 animals per concentration) were exposed in a static test system for 48 hours to nominal concentrations of 2.50, 5.00, 10.00, 20.00 and 40.00 mg pure metabolites/L (corresponding to mean-measured concentrations of 0.832, 1.66, 3.33, 6.65 and 13.3 mg BCS-AR142/2²/L) orthour feeding. A water and solvent control group were run in parallel.

The test item is a tautomeric mixture of BCS-AR14212 (2-(hydroxymethyl)benzonitrile) and BCS-CR34532 (2-benzofuran-1(3H)-imine), and each tautomer can be formed from the other in aqueous solution with an equilibrium ratio of ca. 1:2. Therefore analysis was performed for 2-(hydroxymethyl)benzonitrile and results are expressed as initial measured concentrations of the whole

mixture (assuming a ratio of 1:2).

The content of BCS-AR14212 + BCS-CR34532 in exposure media was measured for verification of the test item concentrations at start and end of the exposure period.

After 24 and 48 hours, the behaviour of the water fleas was visually evaluated by counting mobile daphnids, defined as animals with swimming movements within approx. 15 seconds after sentle agitation of the test vessel. Additionally, all visible features of the test item in water as well as possible signs on sublethal affected daphnids had to be recorded.

Adequate sensitivity of the used test-organisms was verified by simultaneous testing of appropriate aqueous solutions of the reference-substance potassium dichromate Dates of experimental work: October 04, 2011 to April 18, 2012 Results: Analytical findings:

The accompanying chemical analysis of BCS-AR14212 in reshly prepared test solutions revealed measured concentrations between 93% and 97% (mean 95% of norminal The corresponding concentrations in the aged test solutions at the end of the 48 hour exposure period,

based on analytics for 2-(hydroxymethyl)benzontrile and expressed as the mixture (assuming a ratio of 1:2, as above), ranged between 8% and 21% (mean: 15%) of nominal Because of the continuous equilibration between the two fautomeric compounds in the lest and also during malysis, the endpoints are based on initial preasured values, and reflect the toxicity of the toxicon fix mixture including any further degradation products that may have formed during the test. 4

were detected in samples from the untreated water and solvent No contaminations of BCS -AR142122 control.

Biological findings: of exposure. control within 48 bours

Nominal test	initial measured	Exposed	Exposed 📈 Immobilised daphnids			s
concentration	test concentration	daphnids	ູ້ 2	4 h.	48	h.
(mg p.m./L) 🛛) (mg p.m./l)	(~100)	n	%	n	%
Control	Control	× 20°	0	0.0	0	0.0
Solvent control	Solven control	~Q\$0	0	0.0	0	0.0
2.5 0 *	2.25	<i>Q</i> 30	0	0.0	0	0.0
5.0	66 _√ ≈	Q 30	0	0.0	2	6.67
	9.69	30	5	16.5	12	40.0
20.0 K	19:00	30	27	90.0	29	96.7
40.0	37.6	30	30	100	30	100

Toxicity of BCS-AR14212 10 Daphinia magna

p.mk = purc metabolite

*) DME (0.1 mL/L dimethylformamide)

Conclusions:

Based on initial measured test concentrations, the following EC₅₀ values for immobilisation after 24 for and 48 hours of static exposure were assessed: Statistical results of probit analysis conducted for determination of EC₅₀ values:

Probit analysis for data obtained after	EC50 mg pure metabolite / L (mean measured)	lox 95% cl mg pure metabolite / Q (mean measured)	upper 98% cl mg pure metaboliter L (mean measured)	
24 hours	12.95	11.40 🖓	° 14.71 4	L
48 hours	9.90	8.48 N 🔊	ý ¥1.5 N ^O Q	

Results from literature review

Results from literatu	re review
Report:	KIIA 8.2.4.1420; , S.; ,
Title:	Acute Toxicity of pyraclostrobin an trifloxy strobin to Hyalella azteoa
Source:	Environmental Toxicology and Chemistry Volume 32, Issue 7, pp 1516, 1525
DOI No:	10.1002 ptc.2228
Document No:	M-462365-01 W N N N N
Guidelines:	None O Start and the start
GLP:	No A S A A A A A A A A A A A A A A A A A
Classification:	by supplementary information (IPSA Journal 2011;9(24;2092)

EXECUTIVE SLOWINARY

To investigate functicide toxicity, Hyalella, azteca amphipods was exposed to the fungicide formulation, Stratego, and its active ingredient trifloxysterion. Water-only exposures resulted in a lethal correction 2004 µg/Dvalues for the form Qation. These values were below concentrations that could occur following spray drift over embedded croptand wetlands. When fungicides were added to overlying water of sediment-water microcosms, toxicity was reduced by 160% for Stratego, compared with water-only exposites, based of the total anount offungicide added to the systems. In addition, when fungicide was added to sediment prior to the addition of water, the reduction in toxicity was even greater, with no toxicity occurring at environmentally relevant levels. Differences in toxicity among exposure groups were explained by dissipation from water as toxicity values based on measured water concentrations were within 20% between all systems. The present study reinforces previous studies, that Stratego, is toxic to bontarget aquatic organisms. However, the presence of sediment is likely to ameliorate some toxicity of fungicide formulations, especially if spraying occurs prior to wethind inundation.

MATERIAL AND METHODS 1. Testmaterial

Test item: Stratego Active substance(s): trifloxystrobin

B 1. Test procedure

Microcosm toxicity tests

Test system:	Microcosm exposures were conducted in glass jars containing 800 mL dechlorinated water and 100 g of sediment.
Test concentration(s):	293 μg/L, 103 μg/L, 39 μg/L, 14 μg/Land 6 μg/L
Control(s):	yes
Number of replicates:	Six replicates
Test conditions:	Light cycle was kept at 16:8 hight:dark, and water quality were taken every 24 h for the duration of the experiments.
Feeding:	Organisms were fed daily by adding 1.0 mL of 1800 mg/L stock of solution of pround Tetramin fish food into each experimental unit for all experiments.
Medium renewal:	n/a q
Frequency of test item application:	$n/a \leftarrow g^{\circ} \rightarrow \downarrow^{\circ} \rightarrow \downarrow^{\circ} \leftarrow g^{\circ} \rightarrow \downarrow^{\circ} \rightarrow \to^{\circ} $
Test duration:	7 d L L R R R R A
Endpoints:	LOSO, LOND Y A A A A A
Statistics:	MBM SPSS Statistics Data Editor
B 2. Measurements during the test	
Water/medium parameters:	Dissolved oxygen concentrations ranged from 3.2 mg/L to 9.0
	mg/L,@emperature avoraged 23°C (+0 1°C) Cand pH ranged from
B 3. Sampling	
Sampling frequency:	ara or in the second
Transport/storage of samples:	n/a a a a a a a a a a a a a a a a a a a
<u>C 1. Test procedure</u> <u>C 1. Test system</u> :	Microcosm functicide fate tests
Test concentration():	water concentration of 300 μ g/L (assuming full water incorrection) or a sediment concentration of 2300 μ g/kg
Sontrol(S	(assuming complete & dsorption to the sediment)
Number of replicates:	bree replicates
Endpoint?	n/a J J J J J J J J J J J J J J J J J J J
Statistics:	NDM SP35 Statistics Data Editor
4. Chemical analysis	
Method:	GC-NS
Pre-treatment of samples.	n/a n/a
Becovery:	n/a n/a
Lunit of quantification:	n/a
RESULTS	

<u>1. Validity criteria:</u> No validity criteria defined.

Stratego or trifloxystrobin for \Im concentrations and a contrat. The face actuality of taken place. Each treatment consisted of 4 replicates (n \Im 4). Gategorical letters represent statistical differences between concentrations and

<u>3. Biological findings:</u> Exposure to Stratego formulation and triffoxystropin resulted on LOECs of 37 μ g/L (p < 0.001); however, there was no significant difference between the 2 treatments (p = 0.271; Figure 1). This is

Table 1. The median lethal concentration (LC₅₀) and 10% lethal concentration (LC₁₀) values for *Hyalella Arteca* comparing toxicity of Trifloxystrobin and formulation for water-only exposures with 95% confidence intervals shown^a

Fungicide treatment	Concentrations based on total added to the		96-h average	vater concentrations
	system (nominal)		(measured)	
	LC ₅₀ (µg/L)	$LC_{10} (\mu g/L)$	LC ₅₀ (µg/L	LÇ ₁₀ (µg/L)
Trifloxystrobin	29.9 (21.0-43.8)	15.0 (6.7-21.34)	24.7 (17, 437.9)	10.9 (5.50 7.8)
Stratego	25.8 (22.7-29.3)	15.6 (12.2-18.2)	20.4 (18.6-22.5)	\$14.2 (fr.3-16 fr ()

^aBecause most of the toxicity occurred within 96 h, measured concentrations are based on the first 96h, while final mortality assessment was at 168 h.

Table 2. The median lethal concentration (LC₅₀) and 10% ethal concentration (LC₁₀) values for *Hyalella azteca* in sediment-water microcosms comparing fungicide formulation application to vater versus sediment with 95% confidence intervals shown^a

Fungicide treatment	Concentrations based on total added to the 96-h vaverage water concentrations
	system (nominal)
	LC_{50} (µg/L) \mathcal{L}
Stratego water	43.1 (36.0-51.8) (13.8 (1.1-17) (16.8 (1.2-25)) (4.0 (1.447.0)
overspray	
Stratego sediment	284 (166 456) () 284 (150-56.4) 14 × 8 (11 × 32.7) 2.6 (1.5-3.8)
overspray	

^aMortality was assessed after 168 h, Headline sedimene treated microcosms and not have significant enough mortality to determine lethal concentration values.

Trifloxystrobin rapidly dissipated from the water following application of Stratego to the overlying water within the microcosms. Trifloxystrobin concentrations across all treatment concentrations were 73% (+/- 11%) of that expected based on full water incorporation at the initial time point (4 h) during microcosm toxicity tests (Figure 2). Water concentrations continue to decline throughout the test with 25% ($\frac{14}{2}$ 2%) remaining after 96 h and 13% ($\frac{2}{2}$ 3%) after 168 h (Figure 2). Only the highest application of Stratego to the sediment was significantly more toxic as compared to controls. No statistical differences in mortality were observed between controls and microcosms receiving sediment treated with Stratego (p = 1.60) with the exception of the highest treatment concentration (p < 0.001;

Figure 2. Mean (+/- standard deviation) shown for water concentrations of trifloxystrobin across all 5 treatment concentrations in sediment and water microcosm toxicity tests following the application of Stratego, to sinher overlying water or sediment. Water concentrations are expressed as percentage of full water incorporation assuming complete water partitioning of the total amount of fungicide applied to the system. First-order exponential decay curves are fitted through the data to provide a visualization of bow water concentrations varied during microcosm toxicity tests.

concentrations and a control. Formulations were applied to rediment treated microeosms 24 h prior to water addition. Formulations were applied to water treated microcosms following the addition of H. azteca. Each 6). Sategorical letters represent statistical differences between treatment consisted of 6 replicates (n = concentrations and/or treatments p

RESULTS SUMMARY

Trifloxystrobin has an LC_{so} of 24.7 µg/L and Stratego has an DC_{50} of 4.2 µg/L based on 96-h average water concentrations. The LGs of stratego based on 26-h average water concentrations, water overspras was 16.3 µg/L and ased on sediment overspras 17.8 µg/L.

A

Comment by the otifier

The publication is well documented how over the Study Brot performed according to a Guideline and jorormation is classified as b) supplementary is not used for risk assessment. Therefore othe information (EFSA Journal 2017;9(2),2092

Report:

É

Report:	KCA\$.2.4.1(21), H.; ,W.; ,G.,L.(2009)
Title:	Toxetty of soybear oust fungicides to freshwater algae and Daphnia magna.
Source:	Ecotoxicology, Volume 18, Issue 4, p. 440-446
DOI No	DOI 10 9007/s10646-009-0298-1
Document No:	M-459B34-01-1
Guidelines:	none
GLIN: S	No
Classification:	b) supplementary information (EFSA Journal 2011;9(2):2092)

EXECUTIVE SUMMARY

Soybeans are intensively grown over large swaths of land in the Midwestern S. Introduction of the pathogenic fungus responsible for Soybean Rust (Phakopsora pachyrhizi) will likely fesult in a significant increase in the environmental load of strobilurin and conazole fungicides. The toxicity of trifloxystrobin was determined to the unicellular algae, Pseudokirchneriella subcapitata and the

aquatic invertebrate, Daphnia magna. For Algae the endpoints were determined as IC₅₀ (7) h) = ¹/₂0 µg/L and IC₁₀ (72 h) = 5.7 µ/L. For Daphnia the endpoint were determined as: LC₅₀ (48 h) = 740 µg/L LC₁₀ (48 h) = 380 µg/L; LC₅₀ (96 h) = 530 µg/L and LC₁₀ (96 h) = 290 µg/L. **MATERIAL AND METHODS A. Material** <u>1. Test material</u> Test item: trifloxystroBin Active substanes(s): n^A Chemical state and description: n^A Source offerst item? AccuStandard, Inoc New Baven, CT, USA) Batch number: ro Purity: pl/a Storage conditions: n^A Wateryolubility: n/a 2. Test solutions Whicle/Solvent: No Solvent used Source of vehicle/solvent: n^A Method of preparation; n/a 3. Test organism(s) 3. Test organism(s) Pseydokirchnoriella sybcapitata ecies: mmon namer Green algae Aroling Biological Supplies (Burlington, NC) Source of lest species: Daphilla magna Species: Common name, Water flea 🐇 Southe of test species: Aquatic Bosystems Inc. (Fort Collins, CO, USA) 4. Ctilture conditions of the okirchneriella subcapitata Culture medîtan: standard medium, as proposed by the United States Environmental Protection Agency (USEPA) (2002) °25 +/- 1°C Temperature Ph@operiod: n/a Light intensity: 4000 lux pH: n/a Oxygen saturation: n/a Food and feeding regime: n/a Acclimatisation prior to testing: n/a Observations during acclimatisation: n/a

Method:	n/a		
Pre-treatment of samples:	n/a		
Conduction:	n/a	~	
Reference item:	n/a	S	
Recovery:	n/a	"O" 4	
Limit of detection:	n/a	× T	
Limit of quantification:	n/a	Â,	
RESULTS	4O ^Y	Å.	
1. Validity criteria:			
No validity criteria defined.		O X O	
	Ö Ö X		
2. Biological findings:	A		
Algae were exposed for 72 hours to trip	doxystrobin, the IC50	was calculated to b	$\swarrow 120 \ \mu g/L, the 1C_{10}$
was calculated to be 5.7 μ g/L (Table $b^{0.1}$.			
Lov A		~ ~ ~	£ .9
Table 1: Summary of median (IC50) and to	mth permentile (C10) i	anibition concentratio	nis (µg/l) of
Pseudokirchneriella subcapitata after 72 h	<u>t d' S jû</u>) _{&}
Trifloxystrobin Endpoint			\bigcirc^{\prime}
IC ₅₀	U IC100		, Ôg
Tavisity and sints were asleylated has do	5 (3.4-8)		y Yang and to the
95% confidence interval of each estimato	on nominal concentration	ons. values in parent	lesis correspond to the
The median and Dh percentile mortal	rates for each exp	osure period and fur	ngicide are shown in
Table 2. The LG after 48 h was calcula	ted to be 740 μg/L af	ter % h the LC ₅₀ was	s 530 μg/L.
Table 2: Summary of median (LC3) and t	onth percentile (LC1@	lethal concentrations	(µg/L) of <i>Daphnia</i>
Trifloxystropin		~	
	948 h 2 2	72 h	96 h
LC ₅₀ 7504700-849 ~	740(640-890)	690 (610-810)	530 (470-610)
LC ₁₀ 658 (530 660)	380 (300 440)	360 (290-420)	290 (230-330)
Toxicity endpoints were calculated based of	n nominal concentration	ons. Values in parenth	esis correspond to the
95% confidence interval of cach estimate			
RESULTS SUMMARY			
Daphnia:	Š 39'		
$LC_{50} (48 h) = 740 \mu g/L$	A A		
$LC_{10} (48 h) = 80 \mu g A$	~~~		
LC ₅₀ (96 h) \$530 ug/L \$ 40 ~)		
$LC_{10} (96 f) = 290 \mu g/L^{\odot}$			

Comment by the Notifier The publication is well documented study without analytics and is not used for risk assessment. Therefore, the information is classified as b) supplementary information (EFSA Journal 2011;9(2):2092).

CA 8.2.4.2 Acute toxicity to an additional aquatic invertebrate species

No acute studies on an additional aquatic invertebrate species are required since trifloxystrobin is not an insecticide and does not show an insecticidal mode of action. However, for a formation of studies already evaluated during the first EU review of trifloxystrobin, please refer to forresponding section in the Baseline Dossier provided by Bayer CropScience and in the Monograph

CA 8.2.5 Long-term and chronic toxicity to aquatic invertebrates

CA 8.2.5.1 Reproductive and development toxicity to Daphpia magna

For information on studies already evaluated during the first EV review of trifloxystrobin please refer to corresponding section in the Baseline Dossier provided by Bayer CropScience and in the Monograph.

The following endpoint from a study evaluated during the first EU review (SANCO/4339/2000) Final) is used in the risk assessment:

Test substance	Lest species	Encooint S	Ķ Reference
			et al.
Tuiflourstachin	🕵 Invertebrate, chronic	NOTCO 0 20276 2 1	(1997)
Trinoxystroom	💙 Daphnia magna 🔊		M 022007 01 1
			KCA 8.2.5.1/01
J.			(1998)
CGA 321118	VInvertebrate, chronic >	NOF® Wmg.pm/I	1117-CG
	Daphnia magna		<u>M-056619-01-1</u>
			KCA 8.2.5.1/02
Č)			

Table 8.2.5.1- 1: Long-term toxicity to Daphnia magna exposed for trifle wstrobin and is metabolite

CA 8.2.5.2 Reproductive and Development toxicity to an additional aquatic invertebrate species

No chronic studies of an actitional aquatic invertebrate species are required since trifloxystrobin is not an insecticide and downot show an obsecticadal mode of action.

CA & 2.5.3 Development and emergence in Chironomus species

No acute study on the development and entergence in Chironomus species was provided during the evaluation of the first EU review of this compound. However, the chronic toxicity was addressed. For information please, refer to corresponding section in the Baseline Dossier provided by Bayer CropScience and in the Monograph.

The following endpoint from a study evaluated during the first EU review (SANCO/4339/2000-Final) is used in the risk assessment:

Test substance	Test species	Enc	lpoint 🔬	Reference
Trifloxystrobin	Chironomid, chronic Chironomus riparius	NOEC 0	0.200 mg a.s./L	983812 <u>M. 93988</u> <u>M. 939888</u> <u>M. 93988</u> <u>M. 939888</u> <u>M. 9398888</u> <u>M. 9398888</u> <u>M. 939888888</u> <u>M. 93988888888888888888888888888888888888</u>
CGA 321113	Chironomid, chronic Chironomus riparius	NOEC 2	5 @g p.m./L	(1998) 9838) <u>M@3399()1-1</u> KCA 8.2-5.3/02
9 7 5 4 . C. J.	\$.0*			
8.2.5.4 Sedin	nent dwelling organisms		A. S.	
point 8.2.5.1. No a	additional studies شرقت pers	ormed of		
				Ê, B
				×
		y or 4		0 %
				9
Ő		¥.27.0	0' 4'	
S.		ja s	Ű, S	
8			() ()	
, Q		Ĩ.	K) K)	
Ê ^Ş ,		8 2 . O	Ý	
^Q`		Y & SY		
		Ô ^v Ô ^v		
4				
		, T		
s S				
(Y				
Å . A				
Y 4 Y	() N			

CA 8.2.6 Effects on algal growth

For information on studies already evaluated during the first EU review of this compound, please refer to corresponding section in the Baseline Dossier provided by Bayer CopScience and in the Monograph.

The following endpoint from a study evaluated during the first EU review (SANCO/4399/2000-Final) is used in the risk assessment: Table 8.2.8- 1: Toxicity to algal species exposed to triffoxystrobin and its metabolite

Test substance	Test species	- Badpoin 🖉	Réference
Trifloxystrobin	Algae, growth inhibition	©E _b C ₅₀ 0.0053 ma a.s.// E _r Cy 0.016 mg a.s./L	943533 943533 M-032698-01-4 KCA\$2.6.1.01
CGA 357261	Algae, growth mhibition Desmodesmu Subspicatus	E _b C ₃ transpirate E _c S 2.0 mgp.m./L	\$49315 \$405 \$405 \$405 \$405 \$405 \$405 \$405 \$40
CGA 321113	Algae Growth Phibition Pseudokirchnerietta subcapitata	$E_{\rm L}C_{\rm S0}$ = 100 mg p.m./ E ₁ C ₅₀ = 200 mg p.m./	(1996) (1996)
CGA 373466	Algaç growth inhibition	$E_b C_{50}$ $E_b C_{50}$ $= 100 \text{ mg p.m}$	(1997) 649372 L <u>M-032653-01-1</u> KCA 8.2.6.1/05
NOA 413661	Algae, growth inhibition Poudoki@hnertella subcapitata	$E_{6,50}$ 100 mg p.m./ E_{50} $0 > 100 \text{ mg p.m./}$	L G 528 17 L <u>M-033979-01-1</u> KCA 8.2.6.1 /07
NOA 413163	Algae growth inhibition Pseudoktwchnemella supcapitato	E_bC_{50} \rightarrow 100 mg p.m.// E_AC_{50} \rightarrow 100 mg p.m.//	L G 529 17 L <u>M-033983-01-1</u> KCA 8.2.6.1/08
CGA 10%70	Algae, growth inhibition	E _b C ₅₀ 30.9 mg p.m./L F _C C ₅₀ 42.2 mg p.m./L	(1997) 649258 <u>M-032659-01-1</u> KCA 8.2.6.1/06

			· · ()
T 11 0 0 0 1 T ''			
I Ghia X / X_ I · I aviat	v to glagi checiec (avnosed to tritmovust	rahin and life metabolita
$1 \text{avic} 0.2.0^{-1} 1.1 \text{valcu}$	v to arear species v		

Test substa	nce	Test species	Endpoint	Reference	Ŋ,
Tig	1.	Algae, growth inhibition Navicula pelliculosa (freshwater diatom)	$\begin{array}{ccc} E_b C_{50} & 0.0944 \text{ mg a.s./L} \\ E_r C_{50} & > 1.0 \text{ mg a.s./L} \end{array}$	et al. (2006) M-060371-01@1 200976 KCA 8.2262/02	,
Trifloxystro	odin	Algae, growth inhibition Anabaena flos-aquae (blue-green bacterium)	$ \begin{array}{c} E_b C_{50} & \bigcirc > 0.13 \text{ mg as }/L \\ E_r C_{50} & \bigcirc > 0.13 \text{ mg as }/L \\ \end{array} $	et.a \$2001\$ <u>M-0\$\$531-61,1</u> 110409 KCA 8.23.2/03	¢ }
CGA 3572	62	Algae, growth inhibition Pseudokirchneriella subcapitata	\mathcal{A}	(2012) EBTOL018 M-429959-01-1 &CA 8.2.6.1/11	
CGA 3572	.76	Algae, growth inhibition Pseudokirchnerieta subcapitata	∠ → E _r C ₅₀ → 5,88 mg h,m./L → → 2, 4 → 4 → 4 → 4 → 7 → 7 → 7 → 7 → 7 → 7 →	(2012) EBTFX196 <u>M-434282-01-1</u> &CA 8(2.6.1/10	
NOA 4094	80	Algae, growth inhibition Pseudokir Aneriella subcapitata	ErCap >588 mcp.m./L	2013) EBJFL032 246727 <u>P-01-1</u> KCA § 2.6.1/13	
2-Hydroxyme benzonitril	ethyl- le ^a	Algae, growtk inhibition Psoudokirchnerielfa subcapitata	G ErC ₅₀ 33.2 mgcp ³ m./L ₅ G	(2012) EBTFL008 (M-441244-01-1 KCA 8 2 6 1/14	

Table 8.2.8- 2: Additional studies on toxicity to algal species exposed to trifloxystrobin and its metaboliteo

.ibriun. ^a 2-Hydroxymethylbenzonitrile is present in a tautomeric oquilibrium with 2-Benzofuran-1(3H)-imine, for further details please refer to the study report.

Study summaries en below

Metabolite CG

KCA 8.2% **Report:**

¢2012) Pseudokirchnoriella subcapitora growth inhibition test with BCS-BJ39463 – limit test Title: EBTFL018 Rep. No: Document No: 00000 Guidelines: ØECD Guideline 201 2006 Deviations: Joné certified laboratory GLP:

Objectives

The objective of this 72 hour growth inhibition test is, to verify the assumption that the test item will cause no adverse effects on the growth of the green alga Pseudokirchneriella subcapitata.

Materials and Methods:

Test material: BCS - BJ39463 (CGA 357262, metabolite of trifloxystrobin), analysed pur 99.4 % w/w was tested, specified by origin batch no.: SES 10487-2-1, certificate no.: AZ customer order no.: TOX09326-00 and LIMS no.: 1114276. Pseudokirchneriella subcapitata were exposed in a chronic multi-generation test for 72 hours ander static exposure conditions to the geometric mean measured concentration of 2.65 mg BCS metabolite (p.m.)/L in comparison to a water and a solven control [100 µLo DMF Dimethylformamide (including the appropriate concentration of the test item) #1100 mL medium was added to all concentration levels and the solvent confect]. The test system consisted of six replicate vessels per test level and control. The initial cell pumber was 10,000 cells/mL. Growth inhibition was calculated using algae biomass percolumo The Surrogale for biomass was geld density (used as response parameter). The pH values ranged from 7.2 to 8.2 in the controls and the incubation temperature ranges from 21.5°C to 22.5°C (measured in an additional incubated glass vessel) over the whole period of testing at a continuous illumination of 7256 kix. d in all tratment groups and in Quantitative amounts of BCS - BJ39463 (CGA 357262) the control on day 0 and day 3 of the exposure period. October 07 Dates of experimental work: **Results:** Validity of the sta Validity Criteria: Obtained in this study? Biomass increased in the control by more than 16-fold within the evaluation Increase of biomass: period. 21 \bigcirc \bigcirc Mean percent coefficient of variation of sectional growth rates from day 0-1, day Sectional control rates: 1-2, and day 2 in the control did no exceed 35% Control replicate rates: Percent coefficient of variation of the average growth rate in each control replicate did not exceed 7%

In conclusion, it can be stated that the test conditions met all validity criteria given by the mentioned guideline.

Strain material of defined ensitivity was used, as shown by reference substance testing with 3,5dichlorophenol or potassion dichromate. Reference tests are conducted event driven (*i.e. in case of receiving new prains introduction of new test conditions, apparatus, etc.*). These tests are documented and archived together with strain protocols.

Analytica results:

<u>Analyticar results.</u>

The analytical finding of test item in the treatment level on day 0 and 3 was 26.7 and 26.3% of nominal, respectively. The test was performed using a limit concentration of nominally 10.0 mg

p.m./L. The results of the accompanying chemical analysis revealed a geometric mean measured concentration of 2.65 mg p.m./L. This concentration represents the saturation concentration. (Sater 2010) solubility of the test item under exposure conditions). All results are based on geometric mean measured test concentrations of the test item.

			-0	
Effect of BCS-B139463	(CCA 357262) on Fr	eshwater Algae (Psa	udakirchneriella subc	anitata a no
growth inhibition test	(CGN 057202) 01111			
Geom. mean measured	Cell number	(0-72h)-average	Inhibition of average	
concentration	after 72 h	specific growth	specific growth rate	
[mg p.m./L]	(means) per mL	rates [days-1]		
Control	751980	1.440 。	V . V- V	
Solvent control	767460	1.447		
Pooled controls	759720	1.4443	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
2.65	598130	A \$63 ~	\$.5	
test initiation with 10,00	0 cells/mL 🔍			
	<u>"</u> Uʻ		y _v o' _x u' (
No morphological cha	nge in algae was ob	served in any test c	concentration.	
Conclusions				V X.

Conclusions:

A 72-hour growth inhibition test conducted with BC $A_{2}^{o}35726\overline{2}$, metabolite of trifloxystrobin) on algae (P. subcapitata) under static exposure conditions revealed the following results: **K**

tric mean measured concentration). $E_r C_{50} (0 - 72)$ (based

Metabolite GA

Report:

(**20**12) Breudokirchnerella subrapitata growth inhibition test with BCS-AB39835 Title: Rep. No: Document No? OECD Guidelin Guidelines: Deviations None YesCertified GLP:

Objectives:

K)

to determine the influence of the test item on exponentially growing The aim of the study was Pseudokirchnerielta subcapitata expressed as NOEC, LOEC and ECx for growth rate of algal biomass (cells per volume).

Materials and Methods:

Test material: BCS-AB39835 (CGA 357276, metabolite of trifloxystrobin) analysed purity: w/w was tested, specified by origin batch no.: BCOO 6204-3-3, certificate no AZ 16891 appli no.: 1026832.

Pseudokirchneriella subcapitata were exposed in a chronic multi-generation test for \$ daysounder static exposure conditions to the geometric mean measured concentration of 0.381, 0.999, 3.03, and 5.88 mg pure metabolite (p.m.)/L in comparison to water and a solvent control 110 DL DMP Dimethylformamide (including the appropriate concentration of the test item) #1100 mL patrient medium was added to all concentration levels and the solvent control]. The test system consisted of three replicate vessels per test level and six replicate vessels per confiel. The initial cell number was 10,000 cells/mL.

Growth inhibition was calculated using algae biomass per colume. The surrogate for biomass was gelt density (used as response parameter).

The pH values ranged from 7.8 to 8.2 in the controls and the incubation temperature ranges from 19.8°C to 23.6°C (measured in an additional incubated glass vessel) over the whole period of testing at a continuous illumination of 7767 tix.

A continuous multilitation of 7/6/Aux. Quantitative amounts of BCS-AB39835 were measured in AP treatment groups and in the control on day 0 and day 3 of the exposure period. Dates of experimental work: April 19 201 to May 03 2012

Validity Criteria: 🛷	Obtained in this study: S
Increase of biomass:	Biomass increased in the control by nore than 6-fold within the evaluation
Ÿ	period C C C
Sectional control rates	Mean percent coefficient of variation of sectional growth rates from day 0-1, day
	1-2, and day 2x3 in the control did not exceed 35%
Control replicate rates:	Percent coefficient of variation of the average growth rate in each control
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	replicate did not exceed 2%
4	

In conclusion, it can be stated that the test conditions met all validity criteria given by the mentioned guideline.

Strain material of defined sensitivity was used, as shown by reference substance testing with 3,5dichlorophenel or petassium dichromat Reference tests are conducted event driven (i.e. in case of receiving frew grains introduction of new test conditions, apparatus, etc.). These tests are documented and archived together with strain protocols.

# Vicab

The analytical findings of BCS-AB39835 (CGA 357276) in the treatment levels found on day 0 were 9% to 78% of nominal (average 43%). On day 3 analytical findings of 15% to 87% of nominal (average 56%) were found. The low recoveries were observed especially in the two highest test



concentrations as they obviously exceeded the water solubility of the test item under exposure conditions. Therefore all results are based on geometric mean measured test concentrations. metabolite.

#### **Biological results:**

Effort of DCS A D20925	(CC & 257276) on E	roshwatan Algaa (Da	W Windokinolo wiella sube	
growth inhibition test	(CGA 337270) 011 F1			
Geom. mean measured	Cell number	(0-72h)average	Inhibition of average	
concentration	after 72 h	specific growth	specific growth rate	
[mg p.m./L]	(means) per mL	rates [days ⁱ ]		
Control	739 000		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A A co
Solvent control	762 000	A 10442 V	QQ	
Pooled controls	751 000	² ~1.438~√		~ . [~] . [~]
0.381	689 000 🖉	°≫ 1.410° √	× _0″1.9 _ *	
0.999	564 000 🔗	K 1.243 V	6.6° S	
3.03	619 000	o 1.373 🔍		
3.87	532 000 0	¢1.324℃	<u>9.9</u>	
5.88	481@000 . 🖑	0 1.28	Q10.8 ° >	₽ <i>‱</i>

test initiation with 10,000 cells/m

No morphological changer in algae was observed concentration

#### **Conclusions:**

-5.88 mp p.m.C and the (0 - 72h)-NOE_rC isThe (0 - 72h)-E 0.381 mg p

Ő

# **Report:**

Metabolite NO

(2013) CA\$.2.6.1013

oratory

OFCD Guideline

Ĩ

certified lab

None

Title: dokir@neriella subcapitata - Growth inhibition test with BCS-CR74871 FR

Rep. No: Document Guidelines: Deviations:

GLP:

Objective

was to determine the influence of the test item on exponentially growing The aim of the study *Pseudokirchropiella subcapitata* expressed as NOEC, LOEC and EC_x for growth rate of algal biomass (cells per volume). Å



#### **Materials and Methods:**

Test material: BCS-CR74871 (NOA 409480, metabolite of trifloxystrobin) analysed purity: w/w was tested, specified by origin batch no.: BCOO 6263-3-4, TOX-no.:09206-021 and LIVIS 1312765.

Pseudokirchneriella subcapitata (freshwater microalgae, formerly known as Selengstrum capricornutum) were exposed in a chronic multi-generation test for 2 days under static exposure conditions to the geometric mean measured concentration of 1.06, 2, 92, 3.65, 10.5 and 10.0 mg pure metabolite (p.m.)/L equivalent to 0.960, 3.07, 9.80 31.3 and 100 mg p.m./L in comparison to control. Dimethylformamid (DMF) was used as solvent in the Sudy, 100 µL DMF (including the appropriate concentration of the test item) / 1000mL nutrient mediun was added to all concentration levels and the solvent control.

The test system consisted of three replicate vessels per test level and signeplicate vessels per control. The initial cell number was 10,000 cells/mD. Õ

Growth inhibition was calculated using age biomass per volume. The sufrogate for biomass was cell density (used as response parameter)

The pH values ranged from 7.9 to 8.2 in the controls and the incubation temperature ranged from 22.4°C to 22.9°C (measured in an additional incubated glass vessely over the whole period of testing at a continuous illumination of 663 lux.

Quantitative amounts of BCS-CR 4871 sere measured in all treatment groups and in the control on 31,2013 to July 30 2013 day 0 and day 3 of the exposure period.

Dates of experimental work: Results:

Validity of the

Validity Çriteria:	Obtained in this study:
Increase of biomass: 🔊	Blomassing rease in the control by more than 16-fold within the evaluation
	speriod y y y
Sectional control rates:	Mean percent coefficient of variation of sectional growth rates from day 0-1, day
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1-2, and day 2-3 in the control did not exceed 35%
Control replacate rates:	Percent coefficient of variation of the average growth rate in each control
, U	replicate did not exected 7%

In conclusion, it can be stated that the test conditions met all validity criteria given by the mentioned guideline.

Strain material of defined sensitivity was used, as shown by reference substance testing with potassium dichromate. Reference tests are conducted event driven (i.e. in case of receiving new strains, introduction of new test conditions, apparatus, etc.). These tests are documented and archived together with strain protocols.

Analytical results:

The analytical and biological findings demonstrate that the solubility of the test item exceed the highest test concentrations. The observed growth inhibition values for the highest four test item concentrations vary between 43.4 and 55.3 %. Based on the analytical findings it can be assumed that the water solubility of the test item under exposure conditions is between 2.5 and 7.2 tog/L. If the highest test item concentrations, higher values were determined at day 3 but undissolved test item at the surface of the test medium and precipitations were diready observed. The water solubility for the test item in deionized water was determined to be 26 mg/L. Based on the biological findings, the measured test concentrations for statistical evaluation. The results are given as geometric mean measured concentrations of the test item in the test medium.

Biological results:

Effect of BCS-CR74871 (NOA 409480) on Freshwater Algae (*PseudokirChneriella subcupitata*) in a 72 fr growth inhibition test

Geom. mean measured	Cell number	(0-72h)-average	hyhibition of a	verage
concentration	after 72 h	specific growth	pecific grow	th rate
[mg p.m./L]	(means) per mL	rates [days ⁻¹]	Ş [%]	
Pooled controls	≪9 34 000	\$\$ <u>1</u> .512		là l
1.06	õ 643 õ	Ø.387	~\$2	
2.02	× 127 000 ♥	\$ 0.843 x	¥4.3 🔬	
3.65	K 151 0000	0 0.856	× 43,4	
10.5	9121 QUY	a 6,830 V	0 45)ř	L.
10.0	76 00 00 ,∽S	0.67.6	55.3 🖉	7,,
to at initiation mith the				<u> </u>

test initiation with 19,000 cells/mIc

KČA

No morphological change in algae was observed in any test concentration.

Conclusions:

The (0 - 72h)- E_rC_3 for BCS-CR74871 (POA 409480) is > 3.75 mg p.m./L and the (0 - 72h)-NOE_rC is <1.06 mg p.m./L

Metabolites 2-Hydroxymetholbenzonitrile + 2-Benzofuran-1(3H)-imine (tautomeric mixture)

Report:

82.6.1/14, (2012)

Title: *Pseudokirchneviella subcapităta* growth inhibition test with BCS-AR14212 + BCS-CR34532 Rep. No: EBTEL008 Document No: M244123-01-1 Guidelines DecDouideline 201 (2006) Deviations: None GLP Yos (certified laboratory)

Objectives:

The aim of the study was to determine the influence of the test item on exponentially growin *Pseudokirchneriella subcapitata* expressed as NOEC, LOEC and EC_x for growth rate of algal from (cells per volume).

Materials and Methods:

Test material: BCS-AR14212 + BCS-CR34532 (2-Hydroxymethylbenzonitrile + 2-Benzof@an-16 imine, metabolites of trifloxystrobin) technical, analysed content; BCS-AR14212: 31.0% BCS-CR34532: 63.8 % w/w % was tested, specified by origin bach no BCQO 620674-2, certificate no.: AZ16949 and LIMS no.: 1029419.

Pseudokirchneriella subcapitata (freshwater microalgae formerly ~known as Selenastrum capricornutum) were exposed in a chronic multigeneration test for & days under static exposure conditions to nominal concentrations of 0,960, 3:07, 9,80, 31.3 and 100 mg pure metabolite (p.m.) in comparison to a water and a solvent control 100 GL DNF = Dimethylformanide Lincluding the appropriate concentration of the test frem) \$1000 mL nutrient modium fras added to \$1 concentration levels and the solvent control].

The test system consisted of three replicate versels per test lev vessels per control. and six ceplicate The initial cell number was 10,000 cells/m40

Growth inhibition was calculated osing atgae biomass per volume. The surrogate for biomass was cell density (used as response parameter).

The pH values ranged from 7.8 to 8.3 in the controls and the incubation femperature ranged from 19.8°C to 23.6°C (neasured in an additional incubated glass yessel) over the whole period of testing at a continuous illumination of 7767 lux.

Quantitative appounts of BCS-AR 14212 were measured in all reatment groups and in the control on day 0 and day 3 of the exposure

Vorte November 18 2019 to April 19,2012 Dates of experimental

Results:

Validity of the

1	
Validity Conteria:	Obtained in this study:
Increase of biomass:	Biomass increased in the control by more than 16-fold within the evaluation
	period. N Q N
Sectional control rates:	Mean percent coefficient of variation of sectional growth rates from day 0-1, day
A A	1-2 and day 2-3 in the control did not exceed 35%
Control replicate rates.	Percent coefficient of variation of the average growth rate in each control
Ű Ś	replicate did not exceed 7%
	Á Á

In coorclusion, it can be stated that the test conditions met all validity criteria given by the mentioned guideline

Strain material of defined sensitivity was used, as shown by reference substance testing with 3,5dichlorophenol or potassium dichromate. Reference tests are conducted event driven (i.e. in case of

receiving new strains, introduction of new test conditions, apparatus, etc.). These tests are documented and archived together with strain protocols.

Analytical results:

The analytical findings of BCS-AR 14212 in the treatment levels found on day 0 were 92% to 1 of nominal. In the lowest test concentration only 67 % of nominal were found. On day 3 analytical findings of 10 % of nominal or lower were found. The low analytical recovery at this concentration has no impact on the outcome of the study as the NQEC is above this concentration. Given that the toxicity cannot be attributed to any of the compounds but to the metabolite maxture as a whole, results are based on nominal test concentrations of the test item, and a straight of the test item and test item and the test item and t æ

Effect of BCS-AR 14212 on Freshwate	er Algae	e (Pseud	dokirchne	riella	subéapit	<i>ata</i>) In	a 724h	growth	inhibition
test	Ĵ.	K.Y	2	\sim	*	L.	Ũ	Â,	Õ

	Č.			_ (1)
Geom. mean measured	Cell number	(0-72h)≁average	Inhibition of average	la l
concentration	after 720	specific growth	specific growth rate	õ v
[mg p.m./L]	(means) per mk	rates [days-1]		₽` «.
Control	\$ \$9 000 €	1.434 ^{°0°}	<u> </u>) O
Solvent control	762 000	Ĉ ^V 1.442 🔗	~~~~~~Q	Ĉo
Pooled controls	<u>,</u> 751900 s	1,438		K)
0.960	851 000	A.481 0 6	-3.0	
3.07	580 000	1.400		
9.80	4412000	C 1.259	124	
31.3	55,000 2	~0.569 <u></u> ~	L60.4 C	
100 0	√ 3 8000	<u></u> ∕0.440 × ~	69.4]

test initiation with 10,000 cells mL

any test concentration. No morphological change

Conclusions:

The (0 - 72h) \mathcal{C}_{50} for BCSC CP34532 (tech.) is 33.2 mg test item/L (95 % CI: 25.6 Q_{μ} is 5.33 mg/est item/L (95 % CI: 2.56 – 8.28 mg test item/L) -43.7 mg test item/L, the 0 and the (20° 72h) - NORC is 3.07 mg cest item/l

N N	
Results literature reva	
Report:	KCA 83.6.1/15 ; ; ; ; (2009)
Title:	Toxicity of soybean rust fungicides to freshwater algae and Daphnia magna.
Sourcey 0 2	Ecotoxicology, Volume 18, Issue 4, p. 440-446
DOM No:	DØI 10.1007/s10646-009-0298-1
Document No:	M-459634-01-1
Guidelines:	none
GLP:	No
Classification:	b) supplementary information (EFSA Journal 2011;9(2):2092)

RESULTS SUMMARY

Algae: IC_{50} (72 h) = 120 µg/L IC_{10} (72 h) = 5.7 μ/L

For summary details please refer to KCA 8.2.4.1/21

Comment by the Notifier

Se' is not used for fisk assessment. additional algar species The publication is well documented study without analytics and Journal Therefore, the information is classified was 2011;9(2):2092).

CA 8.2.6.2 Effects on growth of

Trifloxystrobin

Report:	KCA 8.2.6.2/02; (2004)
Title:	Toxicity of Triflox strobin Technical to the Freshwater Datom Navicula pelliculosa.
Rep. No:	200976
Document No:	<u>M-069371-0691</u>
Guidelines:	FIERA Guideline 3-2 ~ ~ ~ ~ ~
	OPPTS Quideline 850.5400 x x x x
~0	OECD Guideline 20 K
Deviations: O	Noge w a construction of the
GLP:	Yes (certified laboratory)
je g	

Objectives:

wagto determine the toxicity of trifloxystrobin to the freshwater diatom The objective of this study (Navicula pelliculosa) Qurin pour exposure period.

Materials And Methods

Test material: Trifloxystrobin K-973), specified by reference no.: FL-950834, CAS no.: 141517-21-7. Navieula pelliculosa were exposed in a chronic multi-generation test for 96 hours under static exposure conditions to forming concentration of 1, 10, 100 and 1000 µg a.s./L in comparison to a water and a solvent control (Dimethylformanide)

The test system consisted of two replicate vessels per test level and control. The initial cell number was 10,000 cells mL. Ĉ

The response parameters used in this study were cell density (standing crop), cumulative biomass, and growth rate The variable used to calculate the response parameters was cell density based on daily celf counts

Inhibition values were calculated for each treatment group as the percent reduction in cell density, cumulative biomass and growth rate relative to the pooled control replicates.

The pH values ranged from 7.3 to 8.5 for all test levels during the exposure period. Ter	nperature	;
ranged from 24.3°C to 25.5°C over the whole period of testing at light intensity of 4300 lux.		S

Dates of experimental work: February 10 2003 to February 14 2003

Results:

Dates of experimental	work: February 10 2003 to February 14 2003
Results:	
Validity of the study:	
Validity Criteria:	Obtained in this study:
Increase of biomass:	Biomass increased in the control by more than 16-fold within the evaluation
	period. Ly go to Ly go to Ly
Sectional control rates:	Mean percent coefficient of variation of sectional growth rates from day 0-1, day
	1-2, day 2-3 and day 3-4 in the control did not exceed 35%
Control replicate rates:	Percent coefficient of variation of the average growth rate in each control
	replicate did not exceed 7% 2 2 2 2 2 2

Analytical results:

The measured concentrations of trifloxystropin on Day 0 were 1.60, 119, 86, and 828 µg a.s./L for the 1, 10, 100, and 1000 µg/L momination concentrations, respectively. The µg a st/L test concentration was below the limit of quantitation and therefore the measured concentration is not reliable. The Day 0 measured concentrations represented approximately 837 to 107% (excluding the 1 µg a.s./L test concentration) of the nominal tens concentrations. The measured concentrations of trifloxystrobin on Day 4 were 4.36, 45.3, and 704 µg a.s./L for the 10, 100 and 0000 fg/L nominal concentrations, respectively. This represents a Day 4 measured concentration range of approximately 44 to 70% as compared to nominal concentrations. Due to Day or results, there was no analysis done on the 1 µg a.s./L test concentration from Day 4. No undissolved test substance was visually observed in the test vessels throughout the test period. Since the test material was not stable in the test system, and the 1 µg a.s./L test concentration was below the limit of quantitation, all subsequent observations will refer to nominal conceptrations of the test solutions

Effect of trifloxystrobin	on freshŵæter	diatom (N	avicula Velliculoso	a) in a 96 h growth	inhibition test
~ ~ ~	- NZ		·	/ 8	

· · · · · · · · · · · · · · · · · · ·				
Nominal Concentration ?	y (0-72h)-average	Inhibition of average	(0-96h)-average	Inhibition of average
ي [µg a.s./L]	specific growth	specific growth rate	specific growth rates	specific growth rate
N N	ates [days ⁻¹]	(72h) [%]	[days ⁻¹]	(96h) [%]
Control 🔊	0.072671	- X	0.054746	-
Solvent control	\$\$\$720 \$3	- ¥	0.053881	-
1.0	£.069409* £	4	0.054751	-1
1000	0.064974*	10	0.053208	2
	0.009680*	18	0.054900	-1
×1000	0,027097*	63	0.050743*	7

* Statistically significant from control (Dunnett's one-tailed test; $p \le 0.05$)

No physical abnormalities were observed in the controls or treatment groups during the study.

KCA 8.2.6.2/03;

M-088531-01-1

110409

(Anabaena flos-aquae)

Trifloxystrobin (CGA-279,202):

U.S. EPA OPPTS Number 800.

Yes (certified laboratory)

EU Directive 9269/EEC, Method C.3

Conclusions:

Based on 96-hour regression calculations, cumulative biomass is the most sensitive endpoint to exposure to trifloxystrobin. The 96-hour EC_{50} and EC_{25} values for cumulative biomage were 94.4 µg a.s./L and 6.6 µg a.s./L, respectively. The 96-hour EC₅₀ value for growth rate was >100 µg a.s./L. The LOEC for the study was 10.0 µg a.s./L and the NOEC was 1 µg a S/L based on 96-hour cumulative biomass. The 96-hour toxic threshold effect concentration (TEC mean of the NOEC and LOEC) is $3.2 \mu g a.s./L$.

A 96-Høgr

Report:

Title:

Rep. No: Document No: Guidelines:

Deviations: GLP:

low Toxicity Test with the preshwater Algo The objective of this study was bo determine the topicity of trifloxystrobin to the freshwater alga (Anabaena flos-aguae) during a 96-hour exposure period.

Materials and Methods:

Test materral: Trifloxystrobin (K-962 Canalysed purity: 975 was tested, specified by reference no.: S96 1885, CAS no.: 141 517-21-7.

no.: S96-1885, CAS no.: 141517-21-7. Anabaena flos-aquae were exposed in a chronic multi-generation test for 96 hours under static exposure conditions to day Omeasured concentration of 0.0057, 0.012, 0.031, 0.061 and 0.13 mg a.s./L in comparison to a water and a solvent control (Dimethylformamide, the solvent concentration in the treatment and solved control groups was 0.1 mt/L).

The test system consisted of three replicate vessels per test level and control. The initial cell number was 10,000 cells/mEC

Inhibition values were calculated for each treatment group as the percent reduction in cell density, area under the growth curve and growth rate relative to the pooled control replicates.

The pH values ranged from 7.1 to 7.2 at test initiation and ranged from 7.7 to 7.8 at test termination. Temperature ranged from 23.0% to 242°C over the whole period of testing at light intensity ranging from 1949 to 2320 lux

Dates of experimental work: October 19 2001 to October 24 2001

Bayer CropScience

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Results:

Validity of the study:

		ð	
Validity Criteria:	Obtained in this study:		
Increase of biomass:	Biomass increased in the control by more than	16-fold within	the evaluation
	period.	S. T	
Sectional control rates:	Mean percent coefficient of variation of sectional	prowth rates fro	m day 🕅 1, da 🖉 🕺 🦉
	1-2, day 2-3 and day 3-4 in the control did not exce	ed 35% 🖉	
Control replicate rates:	Percent coefficient of variation of the average	growth rate in	n each control
	replicate did not exceed 7%	, Ç	

Analytical results: Nominal concentrations selected for use in this study were 0.01, 0.04, 0.04, 0.04, 0.08 and 0.16 mg at Samples collected at the beginning of the test had measured concentrations of 0.0057 0.012 0.031, 0.061 and 0.13 mg a.s./L, representing 57, 59, 79, 78 and 84% of mominal concentrations, respectively. The recoveries in the two lower test concentrations fell below 70% of nominal concentrations. However, the low recoveries apthose concentrations are not critical due to the lack of effects in the higher test concentrations which had recoveries of >70%. Samples collected at test termination ranged from 64 to 69%. Due to the decline in the yest substance concentration during the test, the results of the study were based on Day & measured concentrations

Effect of trifloxystretin on freshwater algae (Anabaena fos-aques) in a 96 h growth inhibition test

\sim				
Day 0 measured	(0-72h) average	Inhibition of average	0-96h)-average	Inhibition of average
concentration	speofic growth	specific growth rate	specific growth rates	specific growth rate
[mg a.s./L]	rates [days ⁻¹]	~(72h) [%)	[days ⁻¹]	(96h) [%]
Control	\$00437 × ~ ~		0.0473	-
Solvent control	90.041a 🛇		0 0489	-
Pooled controls	0.0425 🔬	S &	0.0481	-
0.0057	0.0412	₩ ^{2.8} 0 ×	0.0468	2.5
0.012	to 0432 a		0.0489	-1.8
0.031 🖉 🔊	0.04 4 5°, C	0 [°] 50° °°	0.0461	4.0
0.061 🔊 🔍	0,04021	× 20.66 ~	0.0490	-2.0
0.13	0.0457 9	<u>گ</u> -7.8 [©]	0.0484	-0.68

After 72 and 96 hours of exposure, there were no apparent treatment-related effects upon growth at any of the concentrations rested. After % hours of exposure, there were no noticeable changes in cell shape, size or color in any of the treatment and solvent control group when compared to the negative control replicates. In addition, there were no evidence of aggregations or flocculation of cells, nor were there evidence of agal cells adhering to the test chambers in any of the control or treatment groups during the test or at test termination.

Conclusions:

The 72 and 96-hour EC_{50} , E_bC_{50} and E_rC_{50} values, based on cell density, area under the growth curve and growth rate, respectively, for Anabaena flos-aquae exposed to trifloxystrobin were

Å

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

>0.13 mg a.s./L, the highest measured concentration tested. The 72 and 96-hour NOAEC for each growth parameter was 0.13 mg a.s./L.

CA 8.2.7 Effects on aquatic macrophytes

For information on studies already evaluated during the first EU review of this compound, pleas to corresponding section in the Baseline Dossier provided by Rayer Crops Gence and jn, Monograph.

The following endpoint from a study evaluated during the first EU (SANCQ/Q339/2000-Figal is used in the risk assessment:

Table 8.2.7-1: Toxicity to aquatic macrophyte	s exposed to trifl	loxystrobin and i	its metabolite 🔬
---	--------------------	-------------------	------------------

Test substance	Test species 🔬		Endpoint 🔪	Reference
Trifloxystrobin	Aquatic plants, gowth Lemna gibba	EC40 (frond num	$\gamma \rightarrow \gamma \rightarrow$	et a? (1996) 571-C6 <u>M-032662-01-1</u> KCA 8.2.7/01

For information on stories abready evaluated during the first EUPeview of this compound, please refer to corresponding section in the Baseline Dossier provided by Bayer, CropScience and in the

Additional statements are submitted within this Supplemental Dossier for renewal of

Laring the dist EUCer are Dossier provided by a summaries are given below. A summaries are gi

0

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Test species	Test system	Endpoint	Reference
	Aquatic vertebrate, acute Xenopus laevis	LC ₅₀ 0.0386 mg a.s./L	et al. (2011) EBTFY003 (2010) M-358069-01-1 KCA 8.2(27)13 (2010)
	Lentic freshwater community- mesocosm (WG 50)	NOEAEC 4 x 0.0120 mg 4 s./L NOEC* 4 x 0.0037 mg a.s./L LOEC 4 x 0.0067 mg a.s./L	et al. (2005) HBC/BT 040 M5067205-01-1 QCA 8.2.8/09
Trifloxystrobin	Expert statement EAC of trifloxystrobin	EAS 0.0007 mg a.S./L	& & & & & & & & & & & & & & & & & & &
	Fish, acuto Gasterosteus aculeanus three-spined stickleback Analopical report to <u>M2030536-01-1</u> (microcosm)	CLC ₅₀ C ON OF The a.s. C	(2001) DØM 21026 A1-050563-01-1 KCA 8.2.8/16 (1997) 43/274 M-049272-01-1 KCA 8.2.8/17

Table 8.2.8- 1: Additional studies on othe	r aquatic species	s exposed to	trifloxystrobin
--	-------------------	--------------	-----------------

*The outdoor experimental poind study can be used for the ecological risk assessment of the test compound to invertebrates, algae and macrophytes. Effect class χ (slight effects) was observed only in the endpoint categories 'Micro-Crustacea' and 'Phytoplankton'. The responses in 'Micro-Crustacea' concerned a slight reduction in population densities of *Daphnia Jongispina*, while the responses in Phytoplankton concerned a limited increase in one algal species (most probably an indirect effect). In all other organisms no effects occurred Thus the mesocosm NOEC is used to derive the RAC of 3.7 µg/L.

2 A	
Report: 🔊	KCA@8.2.8/137,, Č.Š.,, C.V.; 2011
Title:	Acute Toxicity of Trifloxystrobin Technical to Xenopus laevis Under Flow-through
L.	Conditions of a conditions of the conditions of
Report No.:	EBTFY003 C C
Document No.: 🌾	<u>M-358069-001</u> S Q
Guidelines:	Novformational guideline exists for this test protocol. Methodologies from USEPA,
A.	OPPTS Quideline 850.1075 (1996), USEPA-FIFRA, 40 CFR, Part 158, Guideline No. 72-1
	(1982) and OECD Guideline 203 (2004) were considered in the development of this protocol
Deviations: 65	Noter 2
GLP	Yes (certified laboratory)
õ	

Page 62 of 148 2013-12-04

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Objective:

The objective of this study was to evaluate the toxicity of trifloxystrobin to *Xenopus laevis*. The study was designed as a flow-through experiment for 48 hours.

Materials and Methods:

Test item: trifloxystrobin, batch No.: TR605092, purity 99,5%.

Xenopus laevis tadpoles were exposed under flow-through conditions to determine the 48 Abur Lo The following nominal (mean measured) concentrations were included in the study: control (solvent control (<LOQ), 9.38 (8.39), 18.8 (15.7), \$7.5 (27.9), 70,0 (53.5) and 150 (118) µg a.s There were three replicates of 10 tadpoles in the control and each toxicant levely Water temperature was 22.0 - 22.4 °C and pHz8.1 to 8.2 during the test, the photoperiod was 16 hours of light and 8 hours dark. Light intensity was 632 to 995 fux and the dissolved wxyget range was 7.4 to 8.0 mg/L.

Dates of experimental work: September 18 to September 20, 2009 **Results:** Validity criteria

Validity Criteria 🔊 🗸 👋 Recommended 🖉 Obtained in
by guideline this study
Mortality during domestication period
Mortality of control group 2 2 2 4 4 5 5%
Dissolved oxygen 3 3 3 3 3 3 3 3 3 3
pH value during the test A C C C C $S.1 - 8.2$
<u>Analytical results</u> : <u>Analytical results</u> : <u>Analytical results</u> : <u>Analytical results</u> : <u>Analytical results</u> are based on mean
measured test conceptrations.

Biological results:						
Mean Measured Concentration (µg a.s./L)	Ηοι	ır 4	24 H	lour	48 I	Hour A f
	Dead	Obs	Dead	Obs	Dead	Óbs 🔍 🖓 🎽
Control	0	30 N	0	30 N	<u> </u>	5 ³ 30 № ³ 0
Solvent Control	0	30 N	0	30 N 🦹	۷ 0 ×	36 N
8.39	0	30 N	0 🗇	30 N 0	0 0	
15.7	0	30 N	04	30	0	2 30 X 40°
27.9	0	30 N	<u>je</u>	34QN	° 🔶 🗸	30 N
53.5	20	8 AS,Q; 2 OB,Q			<u></u>	
118	30	(D - E z		ð tið "	, <u>-</u> , _
Q = Quiescent, AS = Dead = Cumulative OB = On Bottom, N = No observation Note: There were 3	At Surface number of deac = Normal s taken 0 organisms pro	esent in each te	st concentration	at the star of t	he test	
Acute toxicity to Xe	enopus laevises	posed to triffio	xystrobin (48 h			
Test substance	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Trif	loxystrobin		
Test object	<u> </u>	V Q Ö	Xen	opus Laevis 🔬	, O	
Exposure		S Q	48_bo ur	r, flow-thr@igh	n ≪ ^r	
LC50 48 hours (95%	€.I.) Ô ~ _ ~		→ 38,6,27.9 <u>,</u>	âad 53.5≸µg a,	QL.	
LOEC			53.	5 μg/a, s./L 🐇	Ÿ	
NOEC	\$ ~		<u>م</u> ي چې29.	7 pg a.s./L		
Conclusion: Based on the results presented above, the $48h$ -LC ₅₀ is determined to be $38.6 \ \mu g \ a.s./L.$						
Report: A	60° 6° 80 8 2 8/14			A · 2002		
Title: Refined Risk Assessment on the Effects of Trifloxystrobin on the Aquatic Freshwater						
Rep. No: Not given \mathcal{O}^{\vee} \mathcal{O}^{\vee} Document No: \mathcal{O}^{\vee} \mathcal{O}^{\vee}						
Guidelines: O I	Expert evaluation	on based on HA	RAP and CLAS	SSIC		
Deviations for applicable of $\sqrt{2}$						
GLP: Chot applicable						

Report:	KCA 8.2.8/15; , T.C.M., (2002)		a s
Title:	Assessment of the aquatic risks of the fungicide trift pond study and laboratory tests with aquatic species	loxystrobin on basi	s of an experimental
Rep. No:	HBF/BT 04		
Document No:	M-076994-01-1	O,	
Guidelines:	Expert evaluation based on HARAP and CLASSIC	A	
Deviations: GLP:	not applicable (Statement)		

Conclusion:

The RAC for trifloxystrobin can be established at 0.003

- based on: 2 dave) days), combined with negligible • short environmental persistence of tritloxystrybin (\$T50, toxicity of the degradation products of trifloxy stroban (c.f. Table 0.2.j), Meaving high potential for recovery already in the short-term and no chronic concern
- rather small species sensitivity differences demonstrated within the group of fish or aquatic invertebrates and reduced need for an interspecties extrapolation factor
- small acute-to-chronic ratio, with reduced extrapolation factor to the nogeffect concerdration range
- reduced risk to aquatic invertebrates and algor demonstrated in outdoor mesocosm study (KIIIA1 10.2.3/01) under realistic exposure and effect conditions, resulting in no weed for lab-to field extrapolation factor for aquatio invertebrates & algoe
- reduced risk to figh demonstrated in an indoor higher tier early life stage study with the most sensitive life stage of the most sensitive fish species and under realistic exposure conditions (KIIIA1 10.2.5.2/01) and no need for lab-to field extrapolation factor for this
- consistence of HOS values with results of higher ther studies (KHIA1 10.2.3/02 & 03) and thus confirmation of the NOEC of 0.9037 mg/L from higher tier studies.

Summary:

The outdoor experimental pond study car be used for the ecological risk assessment of the test compound to invertebrates, algae and macrophyses. Effect class 2 (slight effects) was observed only in the endpoint categories 'Micro-Crustacea' and 'Phytoplankton'. The responses in 'Micro-Crustacea' concerned a slight reduction in population densities of Daphnia longispina, while the responses in Phytoplankton concerned fimited increase in one algal species (most probably an indirect effect). In all other organisms, no effects occurred. Thus the mesocosm NOEC is used to derive the RAC of 3.7 $\mu g/L.$

risk soft triffox ystrobin in freshwater ecosystems of the agricultural landscape the EAC • To address could also be set at 6.9 µg s.s./L., since in the experimental ponds four times treated with this conceptration only a few populations (Daphnia longispina, Calanoidae, Cryptomonas, Navicula) showed a possible freatment related response, and all these responses were confined in magnitude and duration

• The calculated HC₅ values on basis of acute static tests with invertebrates (HC₅ = 8.3 μ g a.s./L) or invertebrates and algae (HC₅ = 4.7 μ g a.s./L) are in line with the EAC of 6.7 μ g a.s./L derived from the experimental pond study.

• Of the several taxa of fish species tested in the laboratory, Rainbow trout is the most sensitive to trifloxystrobin. In addition, the acute toxicity tests with Rainbow trout and the long-term, indioor microcosm study with a sensitive stage of Rainbow trout indicate that a repeated application of trifloxystrobin does not result in a lower toxicity value. Simulating more or less realistic field conditions, a long-term NOEC of 25.3 µg a.s./L was observed for the sensitive early life stage of Rainbow trout in indoor microcosms three times treated with the formplated product Consequently an adequate assessment of risks of trifloxystrobin to fistion basis of gatic 96-h laboratory tests with fish seems possible.

• Using LC₅₀ and NOEC values of 96-h static tests with eight species of fish, a HC₅ of 11.0 for a.s. on basis of LC50 data, and an HC5 of 7.1 µg a.s./Lon basis of NQEC data can be calculated • When adopting the RAC of 3.7 µg a.s./L@derived_from the experimental pool study, effects of repeated application of the fungicide on invertebrates and algae of freshwater ecosystems in the agricultural landscape will be negligible.

Report: Title:

ACA 8.2.8/16; DOM 21026 M-050563 01-1 Largely following OECD Guidenne No 2002 Report No .: Document No.: Guidelines: Deviations: GLP:

Objective: 🛸

An orientating non-CLP test with three concentrations (0.02, 0.04 and 0.08 µg a.s./L) was performed in order to determine the concentration which kills 50 percent of the fish (96h-LC50)

Materials and Methods:

O 5619-000 Test item: Flint (Prifloxystrobin (Tox

Test organism: Three-spined sticeleback Gasterostens aculeatus).

Ten fish per concentration (so, in the highest concentration) were exposed for 96 h under static test conditions to nominal concentrations (expressed as a.s.) of 0.02, 0.04 and 0.08 µg a.s./L against a control (dilution water).

During the test dish were examined daily for mortalities and signs of poisoning. Within the study the pH-value, the oxygen saturation level, and the temperature were measured with commercial measurement devices, dany. Dissolved oxygen concentrations was > 60%, the pH values ranged from 7.1 to 74 and the water temperature was within 12±1°C over the whole testing period. The photoperiod was 16 bours of light and 8 hours dark.

Fish were inspected dails for the number of deaths, toxic symptoms or abnormalities. The mortality (%) atte 24, 48, 72 and 96 hours of exposure was calculated in each treatment group. The concentration of the test substance was not measured.

The endpoints were expressed in terms of nominal concentrations.

Dates of experimental work: March 29	, 2001 to April 1,	2001	٨	
Results:			\$ 4	Ŭ ,
Validity criteria:			A S ^S .	
Validity Criteria	Recommended	Obtaine		
Mortality in the control	$\leq 10\%$	0%		8 4 ⁰
Constant water quality and environmental conditions during the test	Yes	Yes		
Concentration of dissolved oxygen	<u>د کې 60% کې ۵</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		, S
All validity criteria for the study were met.				
Biological results:	4 . 9 . 9			
All six fish in the highest test concentration	tion died after 72	h, whereas in th	ne other concentrat	tions and
control no fish died or showed any sympto	oms within the 96	h vest period.	ř 80 %	
There were neither any sub-lethal effects	for any mortality	in the control an	nd solvents control g	group.
LC50 values for rainbow trout exposed to F	lintwG5@based	n nominal conce	ntrations	
Test stance:		Trifloxystrob	in WG50	
Test object:	Three-spi	ned stickleback	Sasterosteus aculeati	us)
OExposure:	🖉 🦉 96 kours, stati	c test désign (thre	e concentrations + cc	ontrol))
		0.4057 mg	a.s./L	
Conclusions:				
The LC ₅₀ (96h) Flint WG5 To Three	e-spined stickleba	🔆 (Gasterosteu	<i>s aculeatus</i>) in a s	static 96-
hour-test was determined to be 0.05 mg	a&?/L. ૽ૼ	ž		
Ç				

Report:	KCA 8.2.8/17; 1997
Title:	Assessment Of The Potential Biological Effects Of CGA-279202 Exposures On Aquatic
	Ecosystems As Measured In An Outdoor Fiberglass Tank System
Report No.:	43274
Document No.:	M-049272-01-1
Guidelines:	EPA Guideline No. 72-7(a)
Deviations:	Protocol section 4.4.1 (Application Methodology) does not indicate how samples taken were to be preserved. Samples were shipped to ABC on dry ice. The application solutions were stored frozen at -20 °C resulting in absorbed phase samples that were frozen while the dissolved phase samples (50 methanol 00 water) remained a liquid. Protocol section 4.5.1 (Collection Of Water Residue For Analysis) states that water samples are to be received frozen at the analytical laboratory few water samples were received thawed but cold or partially frozen Impact on this study would be minor as the samples were cold or only partially thawed when received
GLP:	Yes

Water and hydrosoil samples were collected to verify application loading and betermine dissipation rates of CGA-279202. Water samples were collected before hydrosoft samples to prevent contamination of water samples with sediment stirred up by hydrosoil sample collection. Two 500-mL water samples were collected from composite samples taken from each control tank. Spiking solution was added to each sample in the field by dispensing the contents of a premeasured vial into the sample container. The vial was also added to the sample.

Extraction of analytes from the water matrix is accomplished by three Hquid-liquid partitions against hexane. The combined hexane extracts are reduced to dryness by vacuum rotary evaporation. The dried extract is then dissolved by separate additions of FmL of acetomitrile and 1 mL of 2% acetic acid (aqueous) protal final volume is 2.0 mL]. Samples are reacy for injection onto the HPLC system for quantitation of CGA-279202 and CGA-320113.

Extraction of analytes from the hydrosoil matrix is accomplished by shaking for two, 10 minute periods with 90% acetonitrile (ACN). 10% water. Solids are separated from the liquid extract by centrifugation. The extraction solvent is reduced to approximately 3-5 mL using vacuum rotary evaporation. The extract is then partitioned three times against hexane. The combined hexane extracts are reduced to dryness by vacuum totary evaporation. The extract is then dissolved by separate additions of 1.0 mL of acetonitrile and 10 mL of 2% acetic acid (aqueous). Samples are ready for injection onto the HPLC system for quantitation of CGA-279202 and CGA-321113.

HPLC analysis for water and hydrosoft was performed on a column switching UV system. The limit of detection (LOD) and limit of quantitation (LOQ) for the two compounds in water were 0.05 ppb and 0.10 ppb, respectively. The initial valuated LOD and LOQ for CGA-279202 and CGA-321113 in hydrosoft were 0.5 and 1.0 ppb, respectively. Seasonal biological growth produced chromatographic interferences that forced an increase of the LOD and LOQ values for analysis of CGA-279202 in hydrosoil wathout the silica column cleanup and for the analysis of CGA-321113 in water. The LOQ for CGA-321113 in water increased to 10 ppb while the LOQ for CGA-321113 in water increased to 2.5 ppb.

Results from lite	rature review		
Report:	KCA 8.2.8/19:		
	11011 01210, 199	(2012)	
Title:	Acute toxicity of the	ree strobilurin fungicide formulations and their active ingredients to	
	tadpoles		7.
Source:	Ecotoxicology (2012	2) 21:1458–1464 🕅 🖉 🖉 🦿 🎸	J
DOI No:	10.1007/s10646-012	2-0899-y & O ^V & O ^V & O ^V	
Document No:	M-464220-01-1		
Guidelines:	None		
GLP: Classification	No b) gunnlamentame in	formation (EES/2 Lours 201120/2) 2000 0 20 20	
Classification:	b) supplementary in		
EXECUTIVE S	UMMARY		
This study repo	orts the acute toxicity	of the active ingredients and formulation of the fungicide	
Stratego, using I	Bufo cognatus tadpoles	exposed to four concentrations and a control? The fungicide,	
including AIs a	nd formulation, demo	nstrates toxicity to tadpoles Swith Stratego causing 100 %	
mortality at the l	highest concentrations.	960 and 500 kg/L). Overall toxicity was comparable between	
Als and formula	tion for all concentration	ons. Results suggest the Air are responsible for most mortality	
for Stratego	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
ioi suutego.	Ŷ Ő		
MATERIAL AN	ND METHOPS		
······································			
A. Material			
<u>1. Test material</u>	,5°,0°, °°, ×		
. 0	C Test item:	Stratego Fungicide	
ð	Active substance(s):	Frifloxyzirobin Opropieonazolo)	
Chemi	cal state and description:	Not reported O'	
	Source of test item.	EPA Reg. No. 264 79, Bayer Crop Science	
	Batch number:	Not reported	
	S S Rorrity:	Not reported	
	Storage conditions.	Not ported	
Ø	Water solubility:	Not reported a	
2. Test solutions			
Å	Vehicle	Formation colutions were created by diluting formulations with	
		detonized water	
×	Method of preparation:	Fungicides were applied to experimental aquaria by adding 0.5 ml	
		Sof the appropriate solution. Acetone (0.5 ml) was also added to	
Q		forstpulation treatments and the control.	
<u>3. Test organista</u>			
	Species:	Bufo cognatus	
Ű (Common name:	Great Plains toads	
D' D'	Source of test species:	captured in central Oklahoma in May and June 2011 during and	
		atter rain events and housed in our in-house animal facility	
4 Culture Condit	ions of test organism(s)		
C ^o ^v	Culture medium:	Tanks consisted of standard 9.5 L glass aquaria and contained 6 L	
\lor		dechlorinated water. All tanks were washed 29 with acetone and	

rinsed 39 with water prior to the start of the experiment.

BAYER Bayer CropScience

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Temperature:	$25 \pm 2 ^{\circ}\mathrm{C}$
Photoperiod:	Constant at a 13:11 h light dark cycle
Light intensity:	Not reported
pH:	Not reported
Oxygen saturation:	above 5.4 mg/L
Food and feeding regime:	fed a mix of commercial rabbit food and TetraMin® (Petra)
Acclimatisation prior to testing:	Seven haphazardly selected tadpoles from each pair were placed
	into each aquation (21 tadpores per tank) and allowed to
	acclimate for 24 h prior to the eginning of the toxicity test.
Observations during acclimatisation:	Not reported
B. Study design and methods	
1. Test procedure	
Test system:	Tadpoles were obtained from three adely toad pairings induced to
	breed by injecting luternizing hormone-releasing hormone analog
	(LHRHa) at 20 µg DHRHall 0 g body mas into the dorsal lymph
	S385 ~ J ~ J ~ J ~ J
Test concentration (s) :	Environmental concentration: Hug/L Test chamber
	concentrations 500, 260, 50 and 15 0g/L
Control(s):	Water control
Number of replicates:	replicated 39 (n $@$ 3; 75 experimental units)
Test conditions:	38 L of deckhorinated water with a piece of nylon mesh to aid in
	oviposition Adults were removed after oviposition and aeration
	added to the aquadra. Tadpoles were lead mix of commercial rabbit
Eeding	federaria of commenced rational and Tetra Min [®] (Tetra)
Medium renewali	Note the second se
Erequency of the item application:	Once at start
	Martality and detend as the failure to may after contle probing
	$\hat{\mathbf{W}}$ with a glass role $\hat{\mathbf{W}}$
Softistics	ANQ A and Tukey multiple range test
2 Measurements during the test	
Water medium parameters:	Not reported
3 Sampling	
<u>Sampling</u>	chefted every 2 h for the first 12 h and then every 12 h through 96
	a solution of the first 12 if and then every 12 if through 90
Transport/storage of samples:	Tadpates surviving to the end of the study were euthanized using
	0.5% tricaine methanesulfonate (MS-222).
4. Chemical advissis	
Guideline/protocok	protocols approved by Oklahoma State University Institutional
	Animal Care and Use Committee
X X A X Method:	Analysis was performed using gas chromatography/mass
	spectrometry (GC/MS)
Pre-treatment of samples:	A 100 ml sample was taken from two of the three replicates
Č ^O	(n = 2) for the concentrations analyzed and passed through a 1,000
~	mg C8 AccuBond® SPE cartridge (Agilent Technologies, Santa
	Clara, CA, USA). Cartridges were conditioned with methanol and distilled water and samples avtracted at a rate of 2.5 ml/minute
	distinct water and samples extracted at a rate of ~3.3 mil/millute.

Percent mortality (Mean ± SE)

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Figure 1. Mean (±SE) percent mortality of B. cognitus tadpoles exposed to formulations and the AIs of Stratego at four concentrations pluga control. Stratego contain two AIs. Control animals were exposed to solvent carrier used for Al treatments (acetone). Each treatment consisted of three replicates (n = 3). Lower case letters above barsandicates ignificant differences between the concentrations and/or chemical treatment (P < 0.05)

Stratego formulation and AIs reatments resulted in significant mortality ($P \le 0.0012$), although there were to differences between formulation and AI at any concentration.

The 72h-L@50-value was 104.1 µg/L for the Stratego formulation and 100.3 for the Stratego active ingredie@s trifloxystrobin and propiconazole.

Document MCA: Section 8 Ecotoxicological studies
Trifloxystrobin

following exposure to <i>B. cognatus</i> tadpoles					
		Average %	recovery (standar	d deviation	
Fungicide chemical	72h-LC ₅₀	High (3h)	High (96h)	Low (3h)	Low (96h)
	[µg/L]			10°	
Stratego AIs	100.3			N.	
Trifloxystrobin		75 (4)	- 0	76,(4)	(1)
Stratego formulation	104.1		S.	R je	
Trifloxystrobin		68 (4)	A A	68 (1)	10(4)
		ĺ			

Table 1: Estimates of median lethal concentrations (72 h- LC50) of fungicide formulations and AI a

RESULTS SUMMARY

The fungicide, including AIs and formulation, demonstrates toxicity to tadpoles, with Stratego causing 100 % mortality at the highest concentrations (160 and 500µg/L). At lowe Concentrations, mortality was significantly lower. The 72h-L& value was 104.1 µg/L for the Stratego formulation and 100.3 µg/L for the Stratego active ingredients triflox ystrobin and propieonazole.

Comment by the Notifier

The effect of the fungicide formulation Stratego & containing trifloxystrobin and propinconazole on tadpoles of the Great Plains toad (Bufo cognitus) has been Published by **O**t al. (2010), see KCA 8.1.4/01, and set al. (2012) see K@A 8.2.8/18. Concentrations of 740 µg trifloxystrobin/L plus 740 µg propincon 201e/L caused 100% mortality of the tadpoles after 72 hours, whereas the mortality levels at 74 plus 94 µg/L and 7.4 plus 7.4 µg/L did not significantly differ from the control mortality. et al. (2012) reported 72-h LC50-levels of 100 µg/Loand 104.1 µg/L for Stratego® and the mixture of rifloxystrobin, plus propinconazole, respectively, Although no results have been obtained with triffoxystrobin alone, it can be concluded, that Bufa cognatis-tadpoles are not more sensitive to trifloxystrobin than fish (acute LCS-figures range from 15 to $\frac{500 \ \mu g}{L}$).

The effects on *Buffy cognatus*-tappoles are not fised in the rick assessment for the following reasons:

- 1. The results indicate, that the adpoles are not more sensitive than fish
- 2. The experiments have been conducted with mixtures of trifloxystrobin and propinconazole or a formulation containing these two active ingredients.

The acute risk assessment for fish covers the potential risk to larval stages of amphibians as well. The et al. (2012), see KCA 8. 4/01, and et al. (2012), see KCA 8.2.8/19, are papers by presented here & supplemental information

the information is classified as b) supplementary information (EFSA Journal Therefore, 2011;9(2):2092

Report:	KIIA 8.2.8/20; , C.M.; , P.M.; , R.C.; , R.C.; , K.C.;
Title:	Toxicity of the fungicide trifloxystrobin on tadpoles and its effect on fish tadpole
Source:	Chemosphere, Volume 87, Issue 11, p. 1348-1354
DOI No:	doi:10.1016/j.chemosphere.2012.02.026
Document No:	M-459339-01-1
Guidelines:	None O A A A
GLP:	No V O O V V
Classification:	b) supplementary information (EFSA Journal 2011; 92):2092)

EXECUTIVE SUMMARY

Contamination of aquatic systems is a major environmental stress that can interfere with predator prey interactions, altering prey or predator behavior ditterentially. Toxicity parameters of the Aungicide trifloxystrobin (TFS) were determined and its effects on predation rate, using a fish predator *Synbranchus marmoratus*) and four animan tadpole species as prey (*Rhinetta aremarum*, *Physalaemus santafecinus, Leptodactylus latrans*, and *Elachistocleis bicolor*) were examined. TFS was not equally toxic to the four tadpole species, *E. bicolor* being the most sensitive species, followed by *P. santafecinus*, *R. arenarum*, and *L. latrans*. Predation rates were evaluated using different treatments that combined predator and prey exposed of not to this fungicide. TFS would alter the outcome of eel-tadpole interaction by reducing prey movements; thus, prey detection would decrease and therefore tadpole survival would increase. In addition, eels presed selectively upon non-exposed tadpoles avoiding the exposed ones almost all throughout the period evaluated.

Predation rate differences in behavior. The mechanism that would explain TFS-induced reduction in predation rates demains unclear; however, what is clear is that sublethal TFS concentrations have the potential to alter prev behavior, thereby indirectly altering predator-prev interactions. In addition, it was considered that predator prev relationships are measurable responses of toxicant exposure and provide ecological insight into now contaminants modify predator prev interactions.

MATERIAL AND METHOD

A. Material		
1. Test material		
, The second sec	, C Tost item.	Flin Fin WG (Wettable Granular) formulation (commercial
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	A A	
NY NY		20% a Sof trifloxystrobin)
<i>a</i>	∧ Active substance(s)	(E,E)(methoxyimino-{2-[1-(3-trifluoromethyl-phenyl)-
L.	1 Q 39	ethyldeneaminooxymethyl] phenyl}-acetic acid methyl ester (50%
Q'		<i>&amp;r.</i> of trifloxystrobin)
Chemical	state and description:	Not reported
	Source of test item:	Bayer CropScience A.G., Argentina
	Batch number:	Not reported
L'S Q	Purity:	Not reported
	Storage conditions:	Not reported
õ	Water solubility:	Not reported
2. Test solutions		
	Vehicle/solvent:	Wettable granular








# Bayer CropScience

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Control(s):	Yes, subsample (n = 24 eels and n = 120 tadpoles of each species) was assigned to the 'water exposure' treatment. In the 'TFS exposure' treatment.
Number of replicates:	No replicates, subsample of eels (n = 24) and tadpoles ( $y = 120$ ) of each species) were randomly assigned to the 'TFS exposure' treatment.
Test conditions:	1 L of test solution at 25 +/- 1 °C and 12 h light: 12 h dark
Feeding:	none a a a a a a a a a a a a a a a a a a a
Medium renewal:	n/a a a a a a a a a a a a a a a a a a a
Frequency of test item application:	n/a de de contra de la contra d
Test duration:	6 h before the start of the testing phase Q
Endpoints:	n/a of the of the states of th
Statistics:	ANOVA OF LY AY AY AY AY
	Testing phase: Predator prey experiment O' 2"
Test system:	predation rate of eels (b) on tanpoles $\mathbb{Q}$ ) exposed to TFS (+) and
	not exposed OFS (-) asing Our treatments (1) neither eas nor
, O ×	tacpoiles were exposed (E, 1), (2) both sels and tadpoles were
Q, I I I I I I I I I I I I I I I I I I I	$\approx \exp \operatorname{osc}(E, T)$ and $\mathbb{R}^{2}$ , $T$ , $\operatorname{osc}(T)$ , $\mathbb{R}^{2}$
Test concentration(s)	
Entrol(s)?	
Number of replicates:	peplicates and a start of
Test conditions:	experiments were conducted in a temperature-
	controlled bom, with light/dark cycles that reflected natural day
Feeding:	$g_{n/a}$
Medium tenewal:	n/a in it is in the second sec
Frequence of test item opplication:	
Test ducation:	24 h 27 6 2
Endpoints	instantaneous mortality rate of prey
Ky . Statistics:	ANOVA, Dunnett's tes, Dunnett's and Tukey's HSD tests;
	Student's t-test Kolmogrov-Smirnov and Levene tests
RESULTS Q Q Q A	
<u>1. Validity criteria:</u>	
No validary criteria defined.	
2. Biological findings:	× O [×]
In toxicity tests, mortality of adpoles of	occurred within the first 24 h of exposure. LC50 values at 24 h
ranged from 9.1 to 0.26 mg/L, and a	Relysis of variance on LC ₅₀ values of TFS tadpoles showed
significant variations anong species (Ta	ible 1).
Ĉ	



Table 1: Summary of median lethal concentrations (LC₅₀), lowest-observed-effect concentrations (LOEC), and no-observed-effect concentrations (NOEC) (mg/L) of TFS on anuran tadpoles after 24-h exposure.

,		NODO	
Species	$LC_{50}$	NOEC	LOEC
Rhinella arenarum	0.22 (0.19–0.25) ^{ac}	0.096	0.125
Physalaemus santafecinus	0.14 (0.12–0.16) ^{ab}	0.096	0.125
Elachistocleis bicolor	0.10 (0.09–0.11) ^b	0.077	0.096
Leptodactylus latrans	0.26 (0.23–0.28)°	0.180	

Toxicity endpoints were calculated based on nominal concentrations. Values in parentpesis correspond to the SSK confidence interval of each estimate. Different letters (a, b, c) indicate significant differences in LC50 among ANOVA with post-hoc Dunnett's test; p < 0.05).

#### Exposure phase

No mortality occurred in tadpoles or eels during 6th exposure to EOEC of No signs of reduced swimming performance or altered behavior were observed in tadpoles or eels after 6-h exposure.

At each of these times, predation rate were highest in the control treatment (E. T-) and lowest in the treatment in which tadpoles and eets were simultaneously exposed to FFS (FF, T+) Fig. 1 shows the effect, pooled on all species, of subtethat TFS exposure on protation rate

C Non-exposed tadpoles (T-) of all species were captured at a higher rate than exposed ones (T+) at 1, 6 and 18 h, whereas at 24 h no differences in predation rates were found between T+ and T-. Similarly, the same trend was observed for eele exposed (E) and not exposed (E-), where E- consumed more tadpoles of all species than E^O+ at 56 an CA8 h, whereas at 24 h no differences in predation rates were found between E Kand E

### RESULTS SOMMARY «

Ś In the active toxicity test significant vortations among spectres occurred. LC50 values at 24 h ranged from 0 \$ to 0.26 mg/L@No montality occurred during the exposure phase of 6 h. At each of these times, predation rates were highest in the confol treatment (E-, T) and lowest in the treatment in which tadpoles and eels were simultaneously exposed to TFS (E+OT+). Non-exposed tadpoles of all species were captured at a higher rate that exposed ones. Similarly, the same trend was observed for eels exposed and not exposed, wher bot exposed eets concurred more tadpoles of all species than exposed eels.

#### Comment by the Notifier

nerefore, the information is classified as b) supplementary information (EFSA Journal 2011;9(2):2(92). The publication is well documented study without analytics and is not used for risk assessment. Therefore, 2011;9(2)



#### **CA 8.3** Effect on arthropods

#### CA 8.3.1 **Effects on bees**

For information on studies already evaluated during the first EU review of this compound, please refor to corresponding section in the Baseline Dossier provided by Bayer GropScience and Monograph.

The following study, which was evaluated during the first EU review SANCO/4 considered, amongst other studies, in the risk assessment:

1º

Table 8.3.1-1: Acute toxicity to	) honey bees	exposed for	trifloxystrøbin
----------------------------------	--------------	-------------	-----------------

Test substance	Test species	Endroint 7 7 Reference
Trifloxystrobin	Honey bee, acute Apis melifera	oral 48 h $D_{50} > 200 \mu g  \text{os./bee}$ contact 48 h $LD_{50} > 200 \mu g  \text{os./bee}$ M-032568-01  org $KCA_8.3.1, kT/01$

Additional studies on bees have been performed and are submitted within this Supplemental Dossier for renewal of approval of trifloxystrobio. A further laboratory study on active oral and contact toxicity to honey bees has been performed with technical fulloxystrobin according to ourrent guidelines and requirements. Ŵ

In addition, a chronic 10 day adult feeding smit test was conducted with Trichoxystrobin WG 50. Moreover, in order to investigate the intrinsic properties of trifloxystrobin on inpinature honey bee live stages, a honey bee prood feeding study has been performed with Triflexystrobin WG 50.

The respective stady summaries are presented below

0 Table 8.3.1-2: Additional studies on honey beesexposed to trifloxystropin

Test substance	CTest species	Tridpoint Trid	Reference
Trifloxystrobin, tech.	Honoy bee Scute	bral 48 $MLC_{50}$ > 110 μg a.s./bee contact 48 h LC > 100 μg a.s./bee	(2012) 67571035 <u>M-431911-01-1</u> KCA 8.3.1.1.1/04
Trifloxystrobin WG 70	Honey Gee, 10 d chronio adult feedme study Apis melifera	$LC_{50} > 120 \text{ mg a.s./kg}$ NOEC $\geq 120 \text{ mg a.s./kg}$	(2013) S13-00149 <u>M-468755-01-1</u> KCA 8.3.1.2/01
Triffoxystrobin WG 50	Honey See brood feeding (Oomen et al., 1992)	No adverse effects on bee colonies or bee brood development	(2012) 64821031 <u>M-438966-01-1</u> KCA 8.3.1.3/01



#### CA 8.3.1.1 Acute toxicity to bees

#### CA 8.3.1.1.1 Acute oral toxicity

#### **Report:**

Title:

Report No: Document No: Guidelines: Deviations: GLP:

 A & 3.3.1.1.1/04;
 (2012)

 Effects of trifloxystrobin tech. (Acute Contact and Oral) on Honey Bees (Apis mellifera L 3 in the Laboratory

 67571035

 M-431911-01-1

 OECD Guideline 213 and 214 (1998)

 None

 Yes (certified laboratory)

 His study was to determine the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and oral toxicity of triflet with the acute contact and toxicity of the acute with the acute contact and toxicity of the acute with t

**Objective:** The purpose of this study was to determine the adute contact and oral toxicity of trifloxystrobin tech. Mortality of the bees was used as the oxic endpoint. Subjectial effects, were also assessed. as changes in behaviour,

#### **Materials and Methods:**

Test item: Trifloxystrobin tech. (Grigin Batch No.: EDEL006101, Customer Order No.: TOX 09277-00, Specification No.: 302000007792; LINS 1087837; Article No. 05579724, Purity: No/: 99.1% w/w analytical) 0

Test organism: Hong bee (Apis mellifered).), febrale worker bees, obtained from a healthy and queenright colony, bred i IBACON, collected on the morning of ase.

Under laboratory conditions, Apis mellifera (50 worker, bees per dose, 40 individuals in 5 replicates per test item dose level, controls and reference item doses) were experied for 48 hours to a single dose of 100.0 µg a.s. per bee by topical application (contact limi@test) and to a single dose of 110.0 µg a.s. per bee by feeding (or limit dest; value based on the actual intake of the test item).

#### Oral toxicity stud

Appropriate appounts of triflexy strobin tech dilutons in acetone were mixed with syrup (ready-to-use syrup, sugar component: 20% sucrose, 31% glacose 39% fructose) in order to achieve the required test conceptrations in a final dilution of 50% syrup solution (50% syrup, 40% water and 5% acetone (w/w)). For the solvent control and the reference item, a final dilution of 50 % syrup solution (45% water, 50% syrup and 5% aceton or water (w/w)) was used whereas the water control consisted of a 50 % aqueous syrup solution (50 % water and 50 % syrup (w/w)).

The treated food was offered in syringes, which were weighed before and after introduction into the cages (duration of uptake was 2 hours minutes for the test item treatments). After a maximum of 2 hours 50 minutes, the uptake was complete and the syringes were removed, weighed and replaced by ones containing fresh, untreated food.

The prean target done levels (e.g. 100 µg a.s./bee nominal) would have been obtained if 20 mg/bee of the treated food was ingested. In practice, higher (or lower) dose levels were obtained as the bees had a higher or lower uptake of the test solutions than the nominal 20 mg/bee.

The test was conducted in darkness, temperature was 25°C and humidity between 59 and 86%.



Biological observations including mortality and behavioural changes were recorded at 4, 24 and 48 hours after dosing. Results are based on measured concentrations of the a.s. per bee.

#### Contact toxicity study

A single 5  $\mu$ L droplet of trifloxystrobin tech. in an appropriate carrier (acetone) was placed of the dorsal bee thorax.

For the control, one 5  $\mu$ L droplet of tap water containing 0.5% Adhäsit¹ and pure acetorie, respectively, was used. The reference item was also applied in 5  $\mu$ L (ap water (dimethoate made up in acetone).

A 5  $\mu$ L droplet was chosen in deviation to the efficience recommendation of a 1  $\mu$ D droplet, since a higher volume ensured a more reliable dispersion of the test item.

The test was conducted in darkness, temperature was 25°C and humidity between, 59 and 86%. Biological observations, including mortality and behavioural changes were recorded at 4, 24 and 48 hours after application. Results are based on nominal concentrations of the product per bee.

#### **Results:**

The results can be considered as valid, as all validity criteria of the test vore medicontrol mortality is < 10% in the oral and in the contact test,  $LD_{50}$  (24 h) of the text standard in the oral test equals 0.11 µg a.s./bee, the  $LD_{50}$  (24 h) of the toxic standard in the contact test equals 0.17 µg/bee. A summary of effects of the test item on mortality and behavioural abnormalities of the bees is given below for both tests:

ð	S afte	r 4 hours	6 after	24 bours	after	48 hours
dosąg© [µg ą cybee]	mortality	Behavioural ( abnotinalities	mortality	behavioural abnormalities	mortality	behavioural abnormalities
	mean %	Inean 6	mean %	Amean %	mean %	mean %
test item 100.0				0.0	0.0	0.0
water 🔊	Č 2.0		2.0 ×	0.0	2.0	0.0
solvent	0.0		<u>_</u> &.6	0.0	0.0	0.0
reference item			,			
<b>√</b> 0.30	10.6	26.Q ~	98.0	2.0	100.0	0.0
0.20	4.0	Ø.0 Å	70.0	12.0	88.0	0.0
0.15	A0.0	€ ³ 0.0	20.0	2.0	36.0	0.0
0.10		5 0.0 D	8.0	0.0	12.0	0.0

## Table: Mortality and behavioural abnormalities of the bees in the contact toxicity test

results are averages from five replicates (ten bees each) per dosage / control water = CO₂ water treated control softvent = CO₂/solvent control

¹ The Adhäsit was used to improve the adhesion of the droplet on the bee body. Adhäsit is non-toxic to honey bees.

-				-		je i na se
aangumad	afte	r 4 hours	after	24 hours	after	48 hours of
dosage	mortality	behavioural abnormalities	mortality	behavioural abnormalities	nortality	behavioural abnormalities
	mean %	mean %	mean %	mean %	📡 mean %	6 ⁵⁷ means % (2)
test item 110.0	0.0	0.0	0.0	0.0	0.0	
water	0.0	0.0	0,0	0.0	Ċ,	
solvent	0.0	0.0	0.0	0.0	Q0.0 0	© 0.0
reference item		Ś	s o°		Ø, Ø	
0.21	44.0	24.0 C	28.0		1000.0	<u>40</u> .0
0.14	8.0	26.0	\$2.0~	2.0	86.0	
0.08	0.0	140	$\begin{array}{c} & 6.0 \end{array}$		× 60	× 8
0.06	0.0	<u>(</u> ).0 ()	× <del>2</del> .0 ×		§4.0	0.0
results are average	s from five re	nlicenes (ten bees	each) ner dos	age Scontrol	O N	_ *©

#### Mortality and behavioural abnormalities of the bees in the oral toxicity test

results are averages from fiv water = water control

solvent = solvent control

#### **Observations:**

## Contact toxicity test:

At the end of the contact toxicity test (48 hours after application), there was no mortality at 100.0 µg a.s./bee In the water control group 2% mortality, and in the solvent control group no mortality occurred, respectively. No induced behavioural effects were observed at any time. , , ,

## Oral toxicity test:

In the stal toxicity test, the maximum nominal test level of tritloxystrobin tech. (i.e. 100 µg a.s./bee) In the organ toxicity test, the maximum normanal test level of tratfoxystrobin tech. (i.e. 100 µg a.s./bee) corresponded to an actual intake of 10.0 µg a.s./bee. This dose level led to no mortality after 48 hours. No mortality occurred in the solvent control group and in the water control group, respectively.

Test Item	Trifloxyst	robin tech.		
Test object of or	Apis mellifera			
Application rate (µg a.s./bee)	100.0	110.0		
S C S	contact	oral		
e positive p	(solution in acetone)	(sugar/acetone solution)		
LD ₅₀ µg product/bee	> 100.0	> 110.0		



The toxicity of trifloxystrobin tech. was tested in both, an acute contact and an acute oral toxicity test on honey bees.

The LD₅₀ (48 h) value was > 100.0  $\mu$ g a.s./bee in the contact toxicity test. The LD₅₀ (48 h) value was  $> 110.0 \ \mu g$  a.s./bee in the oral toxicity test.

### CA 8.3.1.1.2 Acute contact toxicity

See point 8.3.1.1.1 above.

#### CA 8.3.1.2 Chronic toxicity to bees

A 10 day chronic oral toxicity study was conducted trifloxystrobin is only very slightly soluble in water.

<b>Report:</b>	KCA 8.3.1.2/01; 2013) 7 7 5 5 6 9
Title:	Trifloxystrokin WG 50 W - Assessment of Chronic Effects to the Honeybee, Apis
	mellifera L, in a LO Days Continuous Laboratory Feeding Limit Test
Report No:	S13-001499 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Document No:	<u>M-468755-044</u> O 4 0 4 2 0
Guidelines:	No agreed and ring pested grideline available
Deviations:	Not applicable of the second
GLP:	Tyres (certified pooratory) is in the second s

#### **Objective:**

To investigate the potential Chronic effects of triffoxystobin on the honey bee, Apis mellifera L., in a 10 days cominuous feeding test in the laboratory and investigate whether the LC50-/NOEC- value is greater than the tested concentration.

#### Materials and Methods:

Over a period of 10 days, honey bees were exposed to 50 % (w/v) aqueous sucrose application (feeding) solution, containing nonmally 20 mg a.s./kg of the test item Trifloxystrobin WG 50 W by continuous and ad libitum feeding. The control group was exposed for the same period of time under identical exposure conditions to untreated 50% (wv) aqueous sucrose application (feeding) solution. Mortality, sub-lethal effects and behavioural observations were assessed every day throughout the 10 days continuous exposure period, Furthermore, the daily food uptake was determined.

Dates of experimental work: May 31, 2013 – July 09, 2013

#### Results

After do day of continuous exposure, mortality at the test item treatment level of 120 mg a.s./kg of Transvysterio WG 50 W was not statistically significantly different when compared to the control group. The cumulative control mortality was 0.0 %, as determined at the final evaluation after 10 days. The cumulative mortality at the treatment level of 120 mg a.s./kg Trifloxystrobin WG 50 W was 1.0 % at the final assessment. At 120 mg a.s./kg Trifloxystrobin WG 50 W, no remarkable sub-lethal effects



or behavioural abnormalities were observed throughout the entire observation period of 10 days. After 10 days of continuous exposure, by considering the actual food consumption of the honey bees, the accumulated nominal intake of the test item Trifloxystrobin WG 50 W at the treatment level of 120 mg a.s./kg was 49.44  $\mu$ g a.s./bee, the corresponding average daily dose was therefore 4.9  $\mu$ g a.s./bee.

The overall mean daily consumption of the application (feeding) solution (i.e. the average value over 10 days) in the test item treatment group was not statistically significantly different (lower) when compared to the untreated control group (41.2 mg/bec at 120 mg a C/kg, compared to 42.9 mg/bec in the control group). The mean daily consumption of the aqueous sucrose application (feeding) solution was not statistically significantly different (lower) between the control group and the test item treatment group throughout the entire testing period (day-by-day comparison) except for the 9th day of exposure.

#### **Conclusions:**

It can be concluded that the continuous *and libitum* feeding of boney bees in the laboratory over a period of 10 consecutive days with the test item Trifloxystrobin W@50 W at the freatment level of 120 mg a.s./kg caused no adverse effect regarding morality sub-lethal effects and behaviour.

The overall mean daily construction of application (feeding) solution (i.e. the average value over 10 days) in the test item treatment group was not statistically significantly different when compared to the untreated control group. Further, on every single day during the 10 day continuous exposure period the mean food consumption per bee was not statistically significantly different. (ower) in the test item treatment group compared to the control group escept for the 9th day of exposure.

As the overall much daily food uptake in the test item treatment group was not significantly lower compared to the control group, it can be concluded that there was no repellent effect of the test item at the treatment level of 120 mg a.s./kg.

The NOEC for mortality was determined at the end of the test period to be 120 mg a.s./kg (nominal). The LQs was determined to be >120 mg a.s./kg (nominal).

# CA 8.3.1.3 @Effects on boneybee development and other honeybee life stages

#### Report:

Title:

#### 

6482103[°]

None

Jomen et al.

es (certified Jaboratory)

Store on the Effects of Trifloxystrobin WG 50 W on Honey Bee Brood (Apis mellifera L.) -Brood feeding test - Q

Report No: Document No: Guidelines: Deviations GLP:

# Objective:

The purpose of this study was to investigate the effect of the test item Trifloxystrobin WG 50 W to honey bee brood when exposed by oral ingestion.



#### **Materials and Methods:**

Trifloxystrobin WG 50 W: trifloxystrobin (CGA 279202): 49.8 % w/w (analytical); Bach EDFL011509; Sample Description: TOX 09344-00; Material No.: 05584493; Specification 10200007798 - 02.

Trifloxystrobin WG 50 W mixed in ready-to-use sugar syrup was fed to bee colonies and mortality of adult bees, pupae and larvae observed at test end (21 days after test indiation). The mixing ratio was 0.151 g Trifloxystrobin WG 50 W (= 0.75 g trifloxystrobin) in OL sugar symp. Also bee proof development (eggs, young and old larvae) was recorded at test mitiation and after 6, 10, 16 and days. As control pure sugar syrup (30% sucrose 1% glucose, 39% file tose) was used. 3.6 g/L source Insegar (25% fenoxycarb, 0.75 g fenoxycarb/IQ was used as reference substance. Bee colonies were free flying in natural field conditions, with access to patural food sources, but due

to the season, there were no main flowering be Dowering weeds in the ctive crops surrounding area. 

#### Dates of experimental work: Jul

#### **Results:**

	Test item A Lest object Exposure A A	Honey bees (A	ifloxystrobin WG Apis mellifera L.), a treated sugar so	50 W complete colonies lution
		Control	Test item	Reference item
	A C Gggs A A	\$15.6 °	ي 40.4 n.s.	99.8*
Termination rate [%]	S Agoung Lawae	364	24.9 n.s.	99.9*
	) jor old larvae jor jor	7.9	3.6 n.s.	74.8*
Mean brood ternsin	ation rate ov Wall stages [%] V	° 186	23.0 n.s.	91.5*
Mean mortality of worker	pre-application phase	æ.6	2.7 n.s.	3.0 n.s.
bees/colony/day during ²⁾	duing entire post application	14.2	6.9 n.s.	22.1 n.s.
Mean roortality of	pre-application phase	0.0	0.0 n.s.	0.0 n.s.
pupse/colony/day during ³⁾	duning entine post application	0.5	0.6 n.s.	1.0 n.s.

Effect of Trifloxystrobin W@ 50 W m hone

1) mean termination rate of 3 coloures per treatment group

2) mean number of dead honeybers per day and colony found in dead bee traps

3) mean number of dead pupaeper day and colony found in dead bee traps

Statistics: 12. = no@statistically significant compared to the control;* = statistically significant compared to the control; n.d. = not determined Student test of Mann-Whitney U-test,  $\alpha = 0.05$ , pairwise comparison, two-sided (before application), onesided greater (after application)

There was no statistically significant difference in the termination rate of eggs, young larvae and old larvae in the test item treatment group when compared to the values of the control group. Adult bee mortality in the test item treatment group was not statistically significantly different when compared to



the control group. No statistically significant effects of the test item on honey bee pupae observed.

#### **Conclusion:**

Overall, it can be concluded according to the results of this study that Triffexystrobin WG 50 % does neither adversely affect honey bee colonies nor bee brood development

#### CA 8.3.1.4 **Sub-lethal effects**

sub-lethal effects" in honey bees. There is no particular study design / test guideling to assess her-tier dudy, The-lethal effects, if sceurring, However, in each laboratory study as well as in are described and reported.

# Effects on non-target arthropods ther than bees CA 8.3.2

For studies already evaluated during the first PU review of this compound, please refer to corresponding section in the Monograph and in the Basenne Dossier provided by Bayer CropScience. Studies on non-target sithropods have been performed with the performance formulation Trifloxystrobin WG 50 and additional formulations needed for the risk assessment. A list of these studies is presented in MCP; nne@point@0

## **r**hopatosiphi CA 8.3.2.1 Effec

Please refer to point 8

#### Effects on Typhlodromus py CA 8.3.2.2

In the first Annex Lasting process, non-target arthropod data for two formulations of trifloxystrobin have been submitted and evaluated. The formulation FS EC 125 (Twist) is no longer supported, but the new available non-targer arthropod data for this formulation are provided as supportive

information in this Supplemental Dossier



Table 8.3.2.2- 1	: Addition	al studies on No	on-target arth	ropods for trifloxys	strobin	an [°]
Test species,		<b>Tested Formu</b>	lation, study	Ecotoxicological H	Endpoint	. 4
Dossier-file-No	•,	type, exposure	2		~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
reference						<u> </u>
Trifloxystrobin	EC 125					× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Typhlodromus p	yri	TFS EC 125			1	5 5 B
<u>M-078388-01-1</u>		Extended lab.,	exposure on	<i>~</i>	N N	y x x
Rep.No: B105T	PE	detached cowpo	ea leaves	Corr. Mortality [	Effect on Re	production [%]
, 20	003	4.7	g a.s./ha			
KCA 8.3.2.2/06		22.4	g a.s./ha		-1	
		106	g a.s./ha	35 Q	o' A A	
		250	g a.s./ha			
A: A pagative	a valua i	JUU ndiantas a hia	g a.s./na*	tich not Sin the	tratter ant about	in the control
A. A liegative	e value li	indicates a mg				
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, w Q,		
Report:	KCA 8.	3.2.2/06;	, 2		> . Ô [°] «,	
Title:	An exten	ded laboratory	ose-response s	tudy to evaluate the	effects of Thilloxy	strobin FC 125
	on surviv	val and reprodu	ction of the p	redaccouls mite Typ	hlôdromų pyri S	heuten (Acari:
	Phytoseii	idae) on compea	leanges 🥎	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		L.
Report No:	B105TPI	e 🍳	Ø Ø	à sì sõ		
Document No:	<u>M-07838</u>	<u>8-01-1</u>			or so «	1
Guidelines:	6	et al. (2000)				
	Candolfi	etal. (200h)		O Y		
Deviations:	None	× 4				
GLP:	Yes (okut	ified to rator	Ő Å			
GLI.			a, \$	N O C		
		4 5	, Ç ^o		v v	
Objective:	S,	O', xà v' x		X Q A		

This extended boratory study is designed to evaluate the effects of Trifloxystrobin EC 125, applied to the underside of detacted cowpea leaves, of survival and reproduction of the predaceous mite Typhlodromus pyri Scheuten (Acari: Phytoseildae). Ŕ

Materials and Methods:

Test item: Trifloxystrobin EC 125 (active ingredient CGA 279202, purity/content: 126.26 g/l, Sample no.: TOX06005,01, An. no: 00-05564566, Batch od.: P002003) was tested.

Ő

The test item was applied of the underside of cowpeadeaves at rates of 4.7, 22.4, 106, 250 and 500 g a.s./ha and the effects were compared to a water treated control. A toxic reference (a.s.: dimethoate) applied at 1920 mg test item/ha was included to indicate the relative susceptibility of the test organisms and the test system.

Typhlodromus pyri Scheuten was exposed in groups of 10 per unit to dry residues within 1.5 hours after application. There were 10 units for the water control, 6 units for each Trifloxystrobin EC 125 treatment and 6 units for the toxic reference.

Mortality was assessed after a day exposure period. The toxic reference treatment was stopped after mortality assessments.

All surviving individuals of the deionised water control group and all Trifloxystrobin EC 125 rates were transferred to untreated open glass arenas, because corrected mortality in these rates was <50%. Reproduction for these treatments was determined during 7-days in total (3 consecutive assessments at 2-3 day intervals).

Ľ

ð

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Dates of experimental work: November 13 to November 27, 2002

Results:					~		
Validity Criteria		Reco the	mmended by e guideline	0	btained in this study		
Mortality in water control	$\leq 20\%$ by 13%						
Corrected mortality reference	item $>50\%$ $\%$ $\%$ $\%$						
Mean reproduction in water co	ontrol $\geq 4 \stackrel{\circ}{\rightarrow} \qquad \stackrel{\circ}{\sim} \stackrel{\circ}{\sim} 6.4 \stackrel{\circ}{\circ} \stackrel{\circ}{\sim} \stackrel{\circ}{\sim} \stackrel{\circ}{\sim} \stackrel{\circ}{\sim} \stackrel{\circ}{\circ} \stackrel{\circ}{\circ} \stackrel{\circ}{\sim} \stackrel{\circ}{\sim} \stackrel{\circ}{\circ} \circ$						
All validity criteria for the solution Mortality and reproduction	All validity criteria for the study were met						
Test item	Ő		. Triflox	ystr@	þin EG125 🖉		
Test organism	Q	 &	© Typh	lođro	omu©pyri Č		
Exposure	7 days on	the und	erside of cowpe	a lea	ves in glass/pletigl	ass mortality units	
Nominal application volume		U.C.	êr o i	2001		2	
°~/	A Mort	ality aft	er 7 days [%]	, ,	Reproduction	ggs/female/7 days]	
control		, 1	3 5 5	Ó	× , ~ 6	.4	
Treatment	, Correct	eo mort	ality after 7 day	QU Q	Reproduction in o	eggs/female/7 days ve to control in%)	
4.70	0 %	w	$\sqrt{p} = 0.593$	la se	5.4 (15%)	P = 0.102	
22.4 ²	چ ک چ ک	A	Ŷ P =∕0.805	0	∞.3 (-13%)	P = 0.358	
106	3£	Ŷ <u>Ű</u>	R ≠ <0.001	*	5.2 (19%)	P = 0.159	
250	× × 15	Ô	P = 0.064	S.	5.8 (10%)	P = 0.545	
500 5 ³⁷ A	363	Ĵ "	P = 0.00	<i>*</i>	4.7 (27%)	P = 0.047 *	
Reference item (1920 mg dio ethoat@ha)	C AN		Q = <0.901	*	Not as	ssessed	

ER50: > 500 g a.s./ha

* Statistically significantly different from deponised water control. Statistical analysis: mortality data with Fisher's Exact Test and reproduction that with ANOV A/Fisher's Least Significant Difference Test

Ŵ.

Low control mortality and high reproductive performance in the control treatment indicated that test animals were in good condition. Mortality in the toxic reference, showed that test animals were sufficiently sensitive and that potential adverse effects of exposure to test item residues could be detected with the set-up used in this experiment.

After 7 day of exposure to Trifloxystrobin EC 125 at rates equivalent to 106 and 500 g a.s./ha, survival of *Typhlodromus pyri* was statistically significantly reduced compared to the water control. Exposure to a rate equivalent to the 4.7, 22.4 and 250 g a.s./ha had no significant effect on survival.

Reproduction of *T. pyri* on untreated glass plates of Trifloxystrobin EC 125 at a rate equivalent to 500 g a.s./ha was statistically significantly reduced (27%) compared to reproduction in the water

control. Exposure to rates equivalent to 4.7, 22.4, 106 and 250 g a.s./ha had no significant effect on reproduction.

Conclusion:

The LR₅₀ and ER₅₀ were estimated to be > 500 g a.s./ha.

Effects on non-target soil meso- and macrofacha CA 8.4

CA 8.4.1 Earthworm, sub-lethal effects For information on studies already evaluated during the first EU review of this composind, please refer by Bayer GropScience and in the to corresponding section in the Baselino Doster provided by Bayer GropScience and in the Monograph. In order to address new data requirements according to Regulation (EC) So 1107/2009, several additional studies on chronic exposure to earthworm have been performed and are subpitted within the Baseline Dossier or this Supplemental Dossier. to corresponding section in the Baseline Dossfer provided by

i requirer is supplemental D is the second s

Table 8.4.1- 1: E	cotoxicological endpo	ints – additional ea tes	rthworm reproduction	studies with active
Test item	Test species, test design	Ecotoxicolo	ogical endpoint	Reference
Trifloxystrobin (tech.)	<i>Eisenia fetida</i> reproduction 56 d, mixed	NOEC 7 NOECcorr. 3	7 mg a.s./kg dws 8.5 mg a.s./kg dws a	2009) LRT-Rg-R-5609 M-300077-07-1 KGA 8.4.1703
CGA 357261	<i>Eisenia fetida</i> reproduction 56 d, mixed	NOEC → ≥	≥100 mg kg dws	0012) kra-R9-R-110711 M-428262-92-1 K&A 8.4.1/04
CGA 321113	<i>Eisenia fetida</i> reproduction 56 d, sprayed	NOEC 2 2	2.32 mg/kg Ows b	(1999) 1047.266.630 <u>Mc033992201-1</u> OCA 8.401/01
CGA 321113	Eisenia fetida reproduction 56 d, mixed	VOEC → 2 VOEC → 2 VOEC	2100 mg/kg dws-	(2013) Krateg-R-149/13 Material Krateg-R-149/13 Material Krateg-R-149/13 Material Krateg-R-149/13 Material Krateg-R-149/13
CGA 373466	Eisenia fetidă reproduction 56 d, mixed	NOEC &	100 mg/kg dws	(2011) LRT-Rg-R-114/11 <u>M414741-01-1</u> KCA 8.4.1/06
CGA 381318°	Ersenia fetida reproduction 56 d@nixed		100 mg/kg dws	(2013) Kra/Rg-R-150/13 <u>M-466037-02-1</u> KCA 8.4.1/07
NOA 413161	Elsenia feuda reproduction & 56 dOmixed	NOEC A A	91.80 gradies	(2011) LRT-Rg-R-116/11 <u>M-416856-01-1</u> KCA 8.4.1/08
NOA 13163	Eisenia Setida reproduction 564, mixed		2100 mg/kg dws	& (2012) EBTFN011 <u>M-445494-01-1</u> KCA 8.4.1/09
CGA 3572%	Eisenin Jetida repoduction 50'd, mtod		50 mg/kg dws	(2012) kra-Rg-R-115/12 <u>M-437130-01-1</u> KCA 8.4.1/10
NGA 409480	Eisenia Jetida, reproduction So d, mixed	NOFC 2	2100 mg/kg dws	(2012) kra-Rg-R-106/11 <u>M-424075-01-1</u> KCA 8.4.1/11

 $\frac{|KCA 8.4.1/11|}{|W|}$ dws = dry weight soil; a.s, = active substance; prod. = product; corr. = corrected **Bold values:** adjoints used for risk assessment ^a adjusted by a factor of 2 to address the log P_{ow} > 2 ^b study we repeated with higher (100 mg/kg) concentration (see <u>M-464328-01-1</u>, KCA 8.4.1/05). The new value is used for the risk assessment ^c Test substance: CGA 381318, sodium salt

Report:	KCA 8.4.1/03; 2009)		a s.
Title:	Trifloxystrobin (technical): Effects	on survival, growth	and reproduction	on the earthworm
	Eisenia fetida tested in artificial soil	with 5% peat		ST O
Report No:	EBTFL006		Ĩ,	Ű,
Document No:	<u>M-350077-01-1</u>		F.	
Guidelines:	OECD-Guideline No. 222 (2004)		4	64 25 B
	ISO 11268-2 (1998)	<i>≿</i> ∧	st a start and a start	
Deviations:	None	- A	Ũ	
GLP:	Yes (certified laboratory)	Å	Ó ^s d	

Objectives:

The purpose of this study was to assess the sublethal effects of prifloxy strobin technical on reproduction, mortality and growth of the earthworm *Eisenia fetula* during an exposure in an artificial soil with 5 different test concentrations.

Materials and Methods:

Test material: Trifloxystrobin (technicat), Specification No (102000007702; Article Nov 05579724; Batch Code: AE C642802-01-03; Origin Batch No. (R605092; Certificate-No. AZ 15656; content of a.s. (analysed): 99.5% (w/w).

Adult earthworms (*Eisenia fetida*, about 6 months old, 8×10 animals for the control group and 4×10 animals per test concentration of the meatment group) were exposed in an artificial soil (with 5% peat content) to the nominal test concentration of 4, 7, 12, 20 and 34 mg test items kg soil dry weight.

Toxic standard: 1.25, 2.5, 5.0 mg Carbendazim (360 g a.s, L)/ kg dry weight soil.; control: quartz sand.

Artificial soil composition was 73.82% quartz sand, 20% kaofin clay, 5% sphagnum peat and 0.18% CaCO₃. The vessels were kept in a temperature controlled room at 20 ± 2 °C under a 16-hour light to 8-hour clarkness photoperiod and a light intensity at light period between approximately 400 – 800 Lux. Earthworms were fed with dried animal manage.

The test item was prixed into the soil. After 28 days the number of surviving animals and their weight alteration was determined. They were then removed from the artificial soil. After further 28 days, the number of offspring was determined.

Dates of experim	ental	work?		Janu	ary 23 to	o March	26, 20	09
	2	Â	~~~~"					

	/
Resu	lts:

A

Validity Criteria 🙏 🖉 🗸	Recommended	Obtained
Adult mortality	$\leq 10\%$	0%
Number of juveniles per replicate	≥ 30	280
Coefficient of variation of reproduction	≤ 30%	14.3%

All validity criteria for the study were met

Effects on mortality, growth and reproduction of the earthworms

To verify the sensitivity of the test system, the reference item Derosal flüssig (Carbendazim, 360 g/L) is routinely tested at concentrations of 1.25, 2.5 and 5.0 mg product/kg soil dry weight. In the most recent toxic standard study with the reference test item mixed into the artificial soil, was performed from January to April 2008. No mortality of the adult earthworms was observed 28 days after application. No statistically significant different values for the biomass relative to the control were observed at the lowest test concentration of 1.25 mg a.s./kg dry weight artificial soil. The change of body weight of the adult earthworms of the test concentrations of 2.5 and 5.0 mg a dry weight soil was statistically significant reduced in comparison to the control (results of a Durnett multiple t-test, two sided, $\alpha = 0.05$).

The number of juveniles per test vessel of the test concentrations of 1225, 2.5 and 50 mg/a.s./kg/dry weight soil was statistically significant reduced to the control results of a Williams multiple sequential t-test, one-sided smaller, $\alpha = 0.05$. sequentlial t-test, one-sided smaller, $\alpha = 0.05$.

ystem was senstrive to the reference dest The results of the reference test item indicated that they item.

Test item	Triflexystrobun technical
Test object	Eisenia fetida 🖉 🔿
Exposure	Artoricial soil and the solution
	Adult mortality A Biomass change K Reproduction
	[ng test it m /kg dws]
LOEC	$\sqrt{2}$
NOEC	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
~	

		ju Ko			,	
	N N	& triflox	ystrøbin techni	ical		
	Å,	, ⁽¹⁾ ⁽¹⁾ ⁽¹⁾ ⁽¹⁾	ga.s. /kg dws]			
	Control			ر ک ^۲ /12	20	34
0		S o Mor	tality of adult of	orms after 4 w	reeks	
Mortality [%]		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		0	0	0
Ą	ې پې (د)	ange in Hesh y	Biomass Eight after 4 we	s change eks relative to ir	nitial fresh weig	ht)
Mean \pm SD [%]	$+16.8 \pm 4.9$	$+224 \pm 3.3$	$\pm 239 \pm 2.2$	$+22.4\pm10.1$	$+21.3\pm7.2$	$+21.7 \pm 2.7$
₹ A		Number of suv	endes per survi	ving adult wor	n after 8 weeks	5
Mean± SD	28.0 ± 4.0	26.5±3.6 ~	31.1 ± 1.8	24.3 ± 1.8	24.4 ± 2.5	24.2 ± 0.4
		Number	of juveniles per	r replicate after	· 8 weeks	
Mean± SD	280.0± 4 0.1 (5258.0 ± 46.2	311.0±18.1	242.8±18.4	244.3±25.3	241.8 ± 3.9
		Repi	oduction comp	ared to control	[%]	
% to control *	- 4	92.1 n.s.	111.1 n.s.	86.7 s.	87.2 s.	86.3 s.

* Statistical comparison of mean reproduction per test vessel:

Result of a Williams Multiple Sequential t-test, one-sided smaller, $\alpha = 0.05$

n.s.: mean value not statistically significant different compared to the control ($p \ge 0.05$)

s.: mean value statistically significantly different compared to the control (p < 0.05)

Bayer CropScience

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

No mortality of adult earthworms was observed after 28 days of exposure at the control group and at any test item concentration (just one worm died in one test vessel of the lowest concentration). No statistically significant different values for the growth relative to the control were observed at all tested concentrations of 4, 7, 12, 20 and 34 mg test item/kg dry weight artificial soil. Statistically significant different values for the number of juveniles per test vessel velative control were observed at the test concentrations of 12, 20 and 34 mg test item/kg dro soil.

Conclusions:

weight artificial Overall, it is concluded, that the NOEC for this study is 7 mg triffoxystrobin soil. The overall LOEC is determined to be 12 mg trifloxy trobin kg dry weight artificial soil

NOEC related to reproduction: 7 mg test iten rkg dry weight artifical soil LOEC related to reproduction: 12 ng test them/kg dry

Metabolite CGA 357261

Report: Title:

Report No: Document No: (Guidelines: Deviations GLP:

Ô

Objectives:

Ň

was to assess the subjecthal effects of CGA357261 (metabolite of The purpose of this story trifloxystration) on reproduction, mortality and growth of the earthworm Eisenia fetida during an exposure in an artificial soil with 5 different test oncentrations.

Materials and Methods:

Test material: Frifloxistrobie-CGA) 57261 (Batch code: AE 1393224-PU-01; Material: AE 1393224, pure substance; Origin Bach No.; SES 0350-10-1; purity 99.4% w/w).

Adult earth worms' (*Eisenia fet da*, about 5 months old, 8×10 animals for the control group and 4×10 animals per test concentration of the treatment group) were exposed in an artificial soil (with 5% peat content) to the normal test concentrations of 10, 17, 31, 56 and 100 mg test item/kg soil dry weight.

Toxic standard: 1.25, 2.5, 5.0 mg Carbendazim (360 g a.s./L)/ kg dry weight soil.; control: quartz sand.

Artificial soil composition was 73.82% quartz sand, 20% kaolin clay, 5% sphagnum peat and 0.18% CaCO₃. The vessels were kept in a temperature-controlled room at 20 ± 2 °C under a 16-hour light to

8-hour darkness photoperiod and a light intensity at light period between approximately $400 \circ$ 800 Lux. Earthworms were fed with dried animal manure.

The test item was mixed into the soil. After 28 days the number of surviving animals and their weight alteration was determined. They were then removed from the artificial soil. After further 28 days, the number of offspring was determined.

Dates	of	experimental	work:
-------	----	--------------	-------

	ĈĄ	
June 22 to	o August 29,	2011

Results:

	~~~~	
Validity Criteria	Recommended	SObtained of States States
Adult mortality		
Number of juveniles per replicate		3 190 8 $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$
Coefficient of variation of reproduction		
All validity criteria for the study were met		

To verify the sensitivity of the test system, the reference item Derosal flüssig (Carbendazim, 360 g/L) is routinely tested at concentrations of 125 and 5.0 mg product/kg soil dry weight

In the most recent toxic standard study with the reference dest item mixed into the artificial soil, was performed from January 31, 2011 to April 05, 2011 No mortality of the adult earthworms was observed 28 days after application. The change of body weight of the adult earthworms of the test concentrations of 2.5 and 5.0 mg as./kg dry weight soil was statistically significant reduced in comparison to the coptrol.

The number of juveniles per text vesser of all dest concentrations were statistically significant reduced in comparison to the control. The BC50 for reproduction was calculated to be 1.66 mg a.s./kg dry weight with 95% confidence limits between  $1.62^{\times}$  1.69 mg a k kg dry weight artifical soil.

The results of the reference test indicated that the test system was sensitive to the reference test item.

Test item 🔍		CGA357261	
Test/object		🖓 🛛 Eisenia fetida	
Exposure		Artificial soil	
	Adult mortality Q	Biomass change	Reproduction
		[mg test item /kg dws]	
LOEC	\$` .∞100 ~Q`	>100	>100
NOEC OF OF	© ≈≥100	≥100	≥100

#### Effects on mortality, growth and reproduction of the carthworms

		[mg t	CGA357261 test item /kg dw	s]				
	Control	10	17	31	56		r	
		Mor	tality of adult w	vorms after 4 w	<b>veêks</b>		2	
Mortality [%]	0	0	0				Ø	
	(c)	Biomass change (change in fresh weight after weeks relative to initial fresh weight						
Mean ± SD [%]	$+87.6 \pm 10.48$	+77.08 ± 7.12	+74.66 2 7.31	+85.31 ¥ 4.32	°+79,82 ± 7.58	+79\$\$4± \$5.76		
	Number of juventles per surviving adult worm after 8 weeks a							
Mean± SD	$19.1 \pm 2.5$	23.2 ± 7.8	18.8 4.0	₽ 18,70€ 1.3 ℃	18.5 4 3.5	19 <b>5 *</b> 2.8 °		
	Number of juveniles per replicate after 8 weeks							
Mean± SD	190.8±25.4	231.8±07.7	K√187.5≰40.1	√187.0⊕13.4	184.5035.1			
		Reproduction compared to control [%]						
% to control	_	a. 1215	98.2	98.6	≥ <u>960</u> ∕	101.6		

No statistically significant differences between the control and test item were calculated for biomass and reproduction (Williams Multiple Sequential t-test, p > 0.05, one-sided smaller)

No statistically significant different value for the growth clative to the control was observed at the tested concentrations of 10, 10, 31, 56 and 100 mg test item/kg dy weight artificial soil.

No mortality of addit earthworm was observed after 38 day of exposure at the control group and at any test item concentration including the highest test concentration of 100 mg test item/kg dry weight artificial soil to this stordy.

No statistically significant different values for the nonber of juveniles per test vessel relative to the control were observed at the test concentration of 100 mg test item kg dry weight artificial soil.

S

#### **Conclusions:**

Overall, it is conclude what the NOFC for Wis study is greater than or equal 100 mg Trifloxystrobin -CGA357261 Rg dry Weigh Oartificial soil The Werall & OEC is determined to be greater than 100 mg Trifloxystrobin - CGA357261/kg dry weight artificial soil.

Therefore, based on the statistical significance NOEC related to reproduction; 2100 mg test Rem/kg dry weight artificial soil LOEC related to reproduction >100 mg test item/kg dry weight artificial soil



#### Metabolite CGA 321113

Metabolite CC	<u>FA 321113</u>
Report:	KCA 8.4.1/05; , MA., 2013
Title:	Trifloxystrobin-CGA 321113 (BCS-AL58660): Effects on survival, growth and reproduction of the earthworm <i>Eisenia fetida</i> tested in artificial soil
Report No:	kra/Rg-R-149/13
Document No:	<u>M-464328-01-1</u>
Guidelines:	OECD-Guideline No. 222 (2004)
Deviations:	None
GLP:	Yes (certified laboratory)
<b>Objectives:</b>	

The purpose of this study was to assess the sublether effects of CGA 321110 (metabolite of trifloxystrobin) on reproduction, mortality and growth of the earthworm Eisenia fetida during an exposure in an artificial soil with one test concentrations.

#### **Materials and Methods:**

Ő

**Results:** 

Test item: Trifloxystrobin-CG @ 321 143 (BCS-AL 58660); (Customer Order No. Tox No: 09586-00; Batch code: AE 1344138-01-02, Origin Batch No.; BCOQ 6132-3-9; Material: AE 1344138, technical; purity 98.4%w/w).

Adult earthworms (Eisenia fettela, about 11 months old, & 10 animals for the control group and treatment group) were expresed in an artificial soil (with 10% pear content) to the nominal test concentration of 100 mg test item bg soil dry weight

Toxic standard: 0.25, 25, 5.0 mg carbendazim (360 g as./L)/ kg dry weight soil.; control: quartz sand.

Artificial soil composition was 68.5% quartz sand, 20% kaolin clay, 10% sphagnum peat and 0.5% CaCO₃. The vessels were kept in a temperature-controlled from at  $20 \pm 2$  °C under a 16-hour light to 8-hour darkness photoperiod and a light intensity at light period between approximately 400 -800 Lux. Earthwoods were fed with dried animal manure.

The test item was mixed into the soil@After 8 days the number of surviving animals and their weight alteration was determined. They were then removed from the artificial soil. After further 28 days, the number of offspring was determined.

	, a_	″~		
Dates of experimental	work:	an a	March Py to	May 21, 2013
	~Q*'	°~		5
V	- Cor	Ĉ, ^v	× _0″	

Validity Critoria 🖉 🖉 🧹 🦧	Recommended	Obtained
Adult montality	≤10%	0%
Number of inveniles per replicate	≥ 30	232, 249, 246, 312, 293, 282, 252, 305
Coefficient of variation of reproduction	≤ 30%	11.2%

All validity criteria for the study were met



To verify the sensitivity of the test system, the reference item Derosal flüssig (Carbendazim, 360 g/L) is routinely tested at concentrations of 1.25, 2.5 and 5.0 mg product/kg soil dry weight. was® In the most recent toxic standard study with the reference test item mixed into the artificial soil, performed from September 21, 2012 to November 28, 2012 (Study No.: Rg-KRef 19/12; Report No. kra-Rg-R-Ref 19/12; NON-GLP). No mortality of the adult earthworms was observed 28 days after application. The change of body weight of the adult earthworms of the test concentration of 5.0 a.s./kg dry weight soil was statistically significant reduced in comparison to the control. The number of juveniles per test vessel in the two highest test conceptrations of 25 and 50 mg 45 dry weight artificial soil were statistically significant reduced in comparison to the control. The E for reproduction was calculated to be 3.54 mg as % g dry weight. Cordidence imits 95% could not be calculated.

was sensitive to the reference test The results of the reference test item indicated that the item.

on
on
on
nt)

#### Effects on mortality, growth and reproduction of the earthwor

^a No statistical significance compared to the control (Student-t-test, p > 0.05, two-sided)

^b No statistical significance compared to the control (Student-t-test, p > 0.05, one-sided smaller)

No statistically significant different value for the growth relative to the control was observed at the tested concentration of 100 mg test item/kg dry weight artificial soil.

No mortality of adult earthworms was observed after 28 days of exposure at the control group and at the treatment group.



No statistically significant different values for the number of juveniles per test vessel relative to the control were observed at the test concentrations of 100 mg test item/kg dry weight artificial soil.

#### **Conclusions:**

 Conclusions:

 Overall, it is concluded, that the NOEC for this study is greater than or equal 100 mg Trifloxystobin – CGA 321113/kg dry weight artificial soil. The overall LOEC is determined to be greater than 100 mg Trifloxystrobin – CGA 321113/kg dry weight artificial soil.

 Therefore, based on the statistical significance:

 NOEC related to reproduction: ≥100 mg test item/kg dry weight artificial soil

 LOEC related to reproduction: >100 mg test item/kg dry weight artificial soil

 Metabolite CGA 373466

D-Guideline 11,268-2 (199)

Report:	KCA 8.4.1/06;	, Th., 201	10 4			0
Title:	Trifloxystrobin – CGA earthworn Eisenia fet	.373466: Effect	ts on sorvival, tificial soil wi	growth and	d reproduction	on the
Report No:	LRT-Rg-R-114-1	b O		K (		

Document No: Guidelines:

Deviations: GLP:

#### **Objectives**:

The purpose of this study was to assess the sublethal effects of CGA373466 (metabolite of trifloxystrobin) on reproduction, mortality and growth of the earthworm Eisenia fetida during an exposure in an artificial soil at one test concentration (Limit test).

## Materials and Methods:

CGA373466: (Oggin Batch No.: M18457; Batch Code: AE 1344148 Test material: Trifloxystrobin -00 1/B960001; Material No. AE 1344140, content of a.s. (analysed): 96.3% w/w).

Adult earthworms (*Eisenia fetta*, about 5 months old,  $8 \times 10$  animals for the control group and  $8 \times 10$ animals for the treatment group) were exposed in an artificial soil (with 5% peat content) to the nominal test concentration of 100 mg test item/kg soil dry weight.

Toxic standard 2.25, 2.5, 5.6 mg Carbendazim (360 g a.s./L)/ kg dry weight soil.; control: quartz sand. 📈

Artificial soil composition was 73.83% quartz sand, 20% kaolin clay, 5% sphagnum peat and 0.17% Ca $O_{3,5}$  The vessels were kept in a temperature-controlled room at 20 ± 2 °C under a 16-hour light to 8-hour darkness photoperiod and a light intensity at light period between approximately 400 -800 Lux. Earthworms were fed with dried animal manure.



The test item was mixed into the soil. After 28 days the number of surviving animals and their weight alteration was determined. They were then removed from the artificial soil. After further 28 days, the number of offspring was determined.

Dates of experimental work:	March 21 to May 20, 2011		
Results:	( () ()		
Validity Criteria	Recommended	Obtained	
Adult mortality	$\leq 10\%$		
Number of juveniles per replicate	[∞] 30 °°	2 <b>4</b> 2 <b>4</b> (1772-296)	
Coefficient of variation of reproduction	$\leq 30\%$	15.2%	
All validity criteria for the study were met	Ů LA JU		

To verify the sensitivity of the test system, the reference item Derosa Oflüssig (Carbondazini, 360 g/L) is routinely tested at concentrations of 1,25 and 5.0 mg product/kg soil droweight

In the most recent toxic standard study with the reference test item mixed into the adificial soil, was performed from January 31, 2015 to April 05 2011 No mortality of the adult earthworms was observed 28 days after application.

The change of body weight of the adult earthworms of the test concentrations of 2.5 and 5.0 mg a.s./kg dry weight soil was datistically significant reduced in comparison to the control.

The number of juveniles per test vessel of all test concentrations were statistically significant reduced in comparison the control. The Confor reproduction was calculated to be 1.66 mg a.s./kg dry weight with 95% confidence limits between 1.62 1.69 mg a.9 kg dry weight artifical soil.

The results of the reference test item indicated that the test system was sensitive to the reference test item. 🖏

Enects on mortanty, growin and seproduction of the cartinochis				
	<u>`</u> ````````````````````````````````	<u>×                                     </u>	<u> </u>	
Test item 🔊	Ŭ o		SGA373466	
Test object	Õ		S Essenia fetida	
Exposure	Ô	NO N	″ _∿ ≪Artificial soil	
le la	A A	dult mortality 🖉	Biomass change	Reproduction
, K			mg test item /kg dws]	
LOÉC	ð	~~~ 00 ~~ C	>100	>100
NOEC		£y≥100@	≥100	≥100



Control     100       Mortality of adult worms after 4 weeks       Mortality [%]       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0		CGA373466 [mg test item /kg dws]				
Mortality of adult worms after 4 weeksMortality [%]000Biomass change (change in fresh weight after 4 weeks relative to initial fresh weight)Mean $\pm$ SD [%] $\pm 44.6 \pm 4.5$ Mumber of juvenile per surviving adult worm after 8 weeksMean $\pm$ SD $24.1 \pm 3.7$ Mean $\pm$ SD $24.1 \pm 3.7$ Mean $\pm$ SD $240.6 \pm 36.6$ Provide the state of		Control				
Mortality [%]00Biomass change (change in fresh weight after 4 weeks relative to initial fresh weight)Mean $\pm$ SD [%] $\pm 44.6 \pm 4.5$ Mean $\pm$ SD [%] $\pm 44.6 \pm 4.5$ Number of juveniles per surviving adult worm after 8 weeksMean $\pm$ SD $24.1 \pm 3.7$ Mean $\pm$ SD $24.1 \pm 3.7$ Mean $\pm$ SD $240.6 \pm 36.6$ Control $240.6 \pm 36.6$ Mean $\pm$ SD $240.6 \pm 36.6$ Mean $\pm$ SDMean $\pm$ SD		Mortality of adult v	worms after 4 weeks			
Biomass change (change in fresh weight after 4 weeks relative to initial fresh weight)         Mean ± SD [%]       +44.6 ± 4.5       +41.1 ± 0.1         Number of juveniles per surviving adult worm after 8 weeks       +41.1 ± 0.1         Mean± SD       24.1 ± 3.7       44.9 ± 30         Mean± SD       24.0 ± 36.6       248.6 ± 228         Mean± SD       240.6 ± 36.6       36.6       36.6	Mortality [%]	0				
Mean ± SD [%]       +44.6 ± 4.5       +41.1 ± 0.1         Number of juveniles per surviving adult worm after 8 weeks       49.9 ± 30         Mean± SD       24.1 ± 3.7       44.9 ± 30         Number of juveniles per replicate after 8 weeks       49.3 ± 30         Mean± SD       240.6 ± 36.6       248.6 ± 29.8         Mean± SD       240.6 ± 36.6       493.3		Biomas	s change Q V V			
Mean $\pm$ SD [%]+44.6 $\pm$ 4.5 $\checkmark$ +41.1 $\pm$ 7.1Number of juveniles per surviving adult worm after 8 weeksMean $\pm$ SD24.1 $\pm$ 3.7Mean $\pm$ SD24.0 $\pm$ 36.6Mean $\pm$ SD240.6 $\pm$ 36.6<		(change in fresh weight after A we	eks relative to initial fresh weight a start weight a start weight weight weight a start weight weig			
Number of juveniles/per surviving adult worm after 8 weeks         Mean± SD       24.1 ± 3.7         Number of juveniles       for replicate after 8 weeks         Mean± SD       240.6 ± 36.6         Mean± SD       240.6 ± 36.6         Reproduction compared to control       93.3	Mean ± SD [%]	+44.6 ± 4.5				
Mean± SD $24.1 \pm 3.7$ $41.9 \pm 3.0$ Number of juveniles per replicate after 8 weeks $41.9 \pm 3.0$ Mean± SD $240.6 \pm 36.6$ $48.6 \pm 29.8$ Mean± SD $240.6 \pm 36.6$ $48.6 \pm 29.8$ Mean± SD $240.6 \pm 36.6$ $493.3$		Number of invenile oner surviving adult worm after 8 weeks				
Mean± SD $24.1 \pm 3.7$ $3.7$ $3.9 \pm 30$ Number of juveniles per replicate after 8 weeks $3.6$ $240.6 \pm 36.6$ $248.6 \pm 29.8$ Mean± SD $240.6 \pm 36.6$ $248.6 \pm 29.8$ $3.6$ Mean± SD $240.6 \pm 36.6$ $3.6$ $248.6 \pm 29.8$ $3.6$ Mean± SD $240.6 \pm 36.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ Mean± SD $240.6 \pm 36.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ Mean± SD $240.6 \pm 36.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$ $3.6$						
Number of juveniles per replicate after 8 weeks       Mean± SD     240.6 ± 36.6       Production compared to control [%]       % to control	Mean± SD	24.1 ± 3.7 0 0 24.1	24.9 ± 30			
Number of juveniles per replicate after 8 weeks       Mean± SD       240.6 ± 36.6       Reproduction compared to control [%]       % to control						
Mean± SD         240.6 ± 36.6         248.6 ± 29.8         4           Reproduction compared to control         93.3         9		Number of juveniles per	r repfiçate after 8 weeks			
% to control	Mean± SD	240,5 ± 36.6 7	248 6 ± 29 8 ×			
% to control						
% to control		New Reproduction compared to control [%]				
% to control $2$	0/ / / 1					
	% to control		$1 \sim 0^{-} = 0^{+} 3.3 \sim \infty^{-}$			

reproduction (Student-t-test, p > 005, onesided smaller)

During the first 28 days of exposure, go reduced food consumption of the adult bould be observed. No mortality of adult earthworms was observed after 28 days of exposure at the control group and at the test concentration 100 mg test nem kg dry weight ortificial soil 4

No statistically significant different value for the growth relative to the control was observed at the tested concentration 100 mg test item/kg dry weight artificial soil.

tested concentration 100 mg test item/kg dry weight artificial soil. No statistically significant effect on the number of juvergiles compared to the control group was recorded at 100 mg te

#### Conclusions:

Overall, it is concluded, that the NOEC for this study s greater than or equal 100 mg Trifloxystrobin – CGA373466/kg dry weight artificial soil. The overal LOEC is determined to be greater than 100 mg Trifloxystrobin - CGA\$73466 kg dry weight artificial soil.

Therefore, based on the statistical significance NOEC related to reproducting  $2 \ge 100$  mg test item/kg dry weight artificial soil LOEC related to reproduction: >100 mg/test item/kg dry weight artificial soil
*****



#### Metabolite CGA 381318

Metabolite CC	<u>FA 381318</u>
Report:	KCA 8.4.1/07; , M.A., 2013
Title:	Trifloxystrobin – CGA 381318 (BCS-CU98569): Effects on survival growth and reproduction on the earthworm <i>Eisenia fetida</i> tested in artificial soft
Report No:	kra/Rg-R-150/13
Document No:	<u>M-466037-01-1</u>
Guidelines:	OECD-Guideline No. 222 (2004)
Deviations:	None A Q A A O O
GLP:	Yes (certified laboratory)
<b></b>	

#### **Objectives:**

The purpose of this study was to assess the sublethal effects of CGAC381318 (metabolite of trifloxystrobin) on reproduction, mortality and growth of the earthworm, Eisenta fetida during an exposure in an artificial soil at one testconcentration (Limit test

#### **Materials and Methods:**

Test material: Trifloxystroph – CGA 381318, sodium sale (BCS-CU98569, Chemical name: sodium (Z)-(methoxyimino)-(2-{1-(Z)-[3-(trifluoromethyl)phenyl]ethylideneaminooxy-

methyl}phenyl)acetate), Batch code: BCS-CU98569-PUOI; Origin Batch No.: SES 11821-2-2; Material: BCS-CU98569, pure substance; purity 9400%w/w).

Adult earthworms Disenia fetida about 11 months old, 8 & 10 animals for the control group and treatment group) were Rposed in an artificial soil (with 10% peat content) to the nominal test concentration of 100 new test item/kg soil dry weight.

Toxic standard: 1.25, 2.5, 5.0 mg Carbendazin (360 g a.s. P)/ kg dry weight soil.; control: quartz sand.

Artificial soil composition was 69% quartz sand, 20% kaolin clay, 10% sphagnum peat and 1% CaCO₃. The vessel Qwere kept in a temperature controlled room at  $20 \pm 2$  °C under a 16-hour light to 8-hour darkness photoperiod and a light intensity at light period between approximately 400 -800 Lux. Earthworms were fed with dried mimal manured

The test item was mixed into the soil. After 28 days the number of surviving animals and their weight alteration was determined. They were then removed from the artificial soil. After further 28 days, the

# Bayer CropScience

#### Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

#### **Results:**

Validity Criteria	Recommended	Obtained	
Adult mortality	≤ 10%	0%	
Number of juveniles per replicate	≥ 30	232, 249, 246, 312, 293, 282, 252, <b>305</b>	
Coefficient of variation of reproduction	≤ 30% <b></b>		
	Å	08	

All validity criteria for the study were met

To verify the sensitivity of the test system, the reference item Derocal flüssig (Carbendazim, 360 g/L) is routinely tested at concentrations of 1.25, 2.9 and 9.0 mg product/kg soft dry weight. In the most recent toxic standard study with the reference test item mixed into the artificial soil @as performed from September 21 to November 28, 2012. No mortality of the adult earthworns was observed 28 days after application.

The change of body weight of the adult earthworms of the test concentrations of 50 mg a.s./kg dry weight soil was statistically significant reduced in comparison to the control.

The number of juveniles per test vessel of the two highest test concentrations of 2.5 and 5.0 mg a.s./kg dry weight artificial soil were statistically significant reduced in comparison to the control. The  $EC_{50}$  for reproduction was calculated to be 3.34 mg a.s./kg dry weight. The 95% confidence limits could not be determined.

The results of the reference test item.  $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4}$   $3^{4$ 

CC	A 381318, sodium salt	
	🔍 Eisenia ferida	
<u>~ . 0' . '</u>	Appificial soil	
mortality 🦉	Biomass change	Reproduction
	ng test item /kg dws]	
100 ~ ~	) <u>100</u>	>100
100 Q _	© ≥100	≥100
	, K	
	¹	
7 0° 7	4	
7 Q 39		
, ~Q		
	mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortality Mortal	CGA 381348, sodium salt Eisema fetica Attificial soil mortality Bromass change (rag test item /kg dws) 100 100 100 100 100 100 100 10

# Effects on mortality, growth and reproduction of the earthworms

# **Bayer CropScience**

#### **Document MCA: Section 8 Ecotoxicological studies** Trifloxystrobin

	CGA 381318, sodium salı [mg test item /kg dws]	t		
	Control	108		
	Mortality of adult v	vorms after 4 weeks		
Mortality [%]	0		N N N N	
	Biomass change * Q Q Q L			
	(change in fresh weight after 4 we	eks relative to initial fresh	weight)	
Mean $\pm$ SD [%]	$+36.68 \pm 11.68$	$Q^{v}$ $\pm 46.32 \pm 3.52$		
	Number of juveniles per	replicate after 8 weeks **		
Mean± SD	371.4 ± 30 2 0 1	2994.1 ± 31.9		
	Reproduction comp	pared to control [%]		
% to control		× × × 08.4 ×		

* no statistical significance compared to the control (Student t-test) two-stated, approx 0.05 ** no statistical significance compared to the control (Student test, one-sided smaller,

After 28 days of exposure no forms died in the control group and no mortality was observed in the treatment group. treatment group. S

Statistically significant different values of the wowth relative to the control were to observed.

No statistically significant different values for the sumber of juveniles per test vessel relative to the control were observed at the test concentrations of 100 mg pure metabolite/kg dry weight artificial soil.

## Conclusions:

Conclusions: O of the effects observed on growth and reproduction, it is concluded, that the NOEC for the study is  $\geq 100$  mg pure metabolite/kg dry weight indetermined to be 100 mg pure metabolite/kg dry weight artificial soil. Thus, the overall LOEC artificial soil.

Therefore, based on the statistical significance:

Therefore, based on the statistical significance: NOEC related to reproduction: 2100 mg test item/kg dry weight artificial soil LOEC related to reproduction? >100 mg test item/kg dry weight artificial soil



#### Metabolite NOA 413161

Report:	KCA 8.4.1/08; <b>10.1</b> , Th., 2011	
Title:	Trifloxystrobin – NOA 413161: Effects on survival, growth and reproduction on the contract of	
Report No:	LRT-Rg-R-116/11	
Document No:	<u>M-416856-01-1</u>	_
Guidelines:	OECD-Guideline No. 222 (2004)	Ş Ş
Deviations:	None	
GLP:	Yes (certified laboratory)	

#### **Objectives:**

The purpose of this study was to assess the sublethal effects of NOA 41316 $^{\circ}$  (metabolite of trifloxystrobin) on reproduction, mortality and growth of the earthworm *Eisenta fetida* during an exposure in an artificial soil at one test concentration (Limit test).

#### Materials and Methods:

Test material: Trifloxystrobid – NOA 413161 (Origin Bach No.: MD9118% Batch Code: AE 1344143 00 1C92 0001; Material No. AE 1344143; content of a.s. (analysed): 91.8% w/w).

Adult earthworms (*Eisenid Jetida*, about 5 months old,  $8 \times 10$  animals for the control group and  $8 \times 10$  animals for the treatment group) were exposed in an artificial soil (with 5% peat content) to the nominal test concentration of 100 mg test item/kg soil dxy weight.

Toxic standard: 1,25, 2.5, 5.0 mg Carbendazim (360 g a.s. L)/ kg dry weight soil.; control: quartz sand.

Artificial soil composition was 73.82% quartz sand, 20% kaofin clay, 5% sphagnum peat and 0.18% CaCO₃. The vessels were kept in a temperature controlled room at  $20 \pm 2$  °C under a 16-hour light to 8-hour darkness photoperiod and a flight intensity at 11ght period between approximately 400 – 800 Lux. Earthworms were fied with dried animal manure.

The test item was prixed into the soil. After 28 days the number of surviving animals and their weight alteration was determined. They were then removed from the artificial soil. After further 28 days, the number of offspring was determined.

Dates of experi	mentalwo	rk	Matel	/ 121.10	, Mav 20.	2011
	~~	A &	1			

*	
Results	:

. 1

	A A	
Validity Criteria	Recommended	Obtained
Adult mortality	$\leq 10\%$	0%
Number of juvoules per replicate	≥ 30	241 (177 – 296)
Coefficient of variation of reproduction	≤ 30%	15.2%

All validity criteria for the study were met



To verify the sensitivity of the test system, the reference item Derosal flüssig (Carbendazim, 360 g/L) is routinely tested at concentrations of 1.25 and 5.0 mg product/kg soil dry weight. In the most recent toxic standard study with the reference test item mixed into the artificial soil, was performed from January 31, 2011 to April 05, 2011. No mortality of the adult earthworms was observed 28 days after application. The change of body weight of the adult earthworney of the test concentrations of 2.5 and 5.0 mg a.s./kg dry weight soil was statistically significant reduced comparison to the control.

The number of juveniles per test vessel of all test concentrations were statistically significant reduced in comparison to the control. The EC50 for reproduction was calculated to be 1.66 mg a.C/kg weight with 95% confidence limits between 1.62% 1.69 mg a.s. 4 g dry weight artifical soil. The results of the reference test item indicated that the 'test system was sensitive to the reference test item.

#### Effects on mortality, growth and reproduction of the earthworst

Test item		413161 25 5 6 0					
Test object	Eiseni	a fetida					
Exposure	Artific	cial soil 4 a a a a a a a a a a a a a a a a a a					
•	Adout mortality Biomas	s change Reproduction					
	K & fing test ite	em /kg/dws					
LOEC	0 >000 ~ ~ ~ >:						
NOEC	100 $100$ $100$ $100$	LOP					
	NQA413161 https://www.item./kg.dws/						
Control of the 100							
Mortality of adult worms after 4 weeks							
Mortality [%]		0					
Biomass change Changean fresh weight after 4 weeks relative to initial fresh weight)							
Mean ± SD [%]	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	+43.5 ± 5.5					
Sumber of juveniles per surviving adult worm after 8 weeks							
Mean≰ SD 💦	24.1 <b>@</b> 3.7 ~	$21.9 \pm 3.1$					
Number of juveniles per replicate after 8 weeks							
Mean± SD	240.6±36.6	$219.4 \pm 30.9$					
	Reproduction com	pared to control [%]					
% to control		91.2					
No statistically significat	It differences between the control and te	st item were calculated for biomass and					
reproduction Student	test $\dot{w} > 0.05$ one-sided smaller)	repreduction $f$ tudent tests $r > 0.05$ one sided smaller)					

During the first 28 days of exposure, no reduced food consumption of the adults could be observed.



No statistically significant different value for the growth relative to the control was observed at the tested concentration 100 mg test item/kg dry weight artificial soil. No mortality of adult earthworms was observed after 28 days of exposure at the control group and at the test concentration 100 mg test item/kg dry weight artificial soil. No statistically significant effect on the number of juveniles compared, to the control gr recorded at 100 mg test item/kg soil d.w. riflowys. reater than k soil of the solution ral soil of the solution the soil of the solution the solution of the solution the solution of the solution the solution of the solution of the solution the solution of the solu **Conclusions:** Overall, it is concluded, that the NOEC for this source is greater than or equal 100 mg Triflogystroken NOA 413161/kg dry weight artificial soil. The overall LOEC's determined to be greater than 100 mg Trifloxystrobin - NOA 413161/kg dry weight artificial soil Therefore, based on the statistical significance: NOEC related to reproduction: ≥100 mg test item/kg dr LOEC related to reproduction: >100 mg test item/kg Metabolite NOA 413163 2012 **Report:** Torloxystebin-NOA413163 (BCS-AL58659): Beproduction toxicity to the earthworm *Eisenia fetida* in artificial soil test Title: Fisenia fetida in artificial soil test Report No: EBTEN011 Document No Guidelines Deviations: GLP:

#### **Objectives:**

The purpose of this study was assess the sublethat effects of Trifloxystrobin-NOA413163 (BCS-AL58659 metabolite of trifloxystrobin) or reproduction, mortality and growth of the earthworm Eisenia fetida during an exposure in an artificial soil (limit test).

## Materials and Methods:

Test material Triffoxystronin-NOA413463 (BCS-AL58659); (Batch code: AE 1344149 00 1B98 0001; Origin Batch No. 18477; Material: AE 1344149; purity: 99.2%).

Adult eachworns (*Eisenia feida*, more than 2 months old,  $8 \times 10$  animals for the control group and  $8 \times 10$  animals for the treatment group) were exposed in an artificial soil (with 10% peat content) to the nominal test concentration of 100 mg test item/kg soil dry weight.

Toxic standard: 0.32, 1.00 and 3.2 mg Carbendazim / kg dry weight soil; control: quartz sand.

Artificial soil composition was 69.6% quartz sand, 20% kaolin clay, 10% sphagnum peat and 0.4% CaCO₃. The vessels were kept in a temperature-controlled room at  $20 \pm 2$  °C under a 16-hour





light to 8-hour darkness photoperiod and a light intensity at light period between approximately 4000-800 Lux. Earthworms were fed with dried animal manure.

The test item was mixed into the soil. After 28 days the number of surviving animals and the weight alteration was determined. They were then removed from the artificial soil. After further 28 days, the number of offspring was determined. A.

number of offspring was determined.	
Dates of experimental work:	August 30 to October 25, 2012
Results:	
Validity Criteria	Recommended Obtained
Adult mortality	
Number of juveniles per replicate	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Coefficient of variation of reproduction	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $
All validity criteria for the study were met	

To verify the sensitivity of the test system, the reference item Derosal (active substance: Carbendazim) is routinely tested at concentrations of 0, 32, 1.0 and 3.2 mg product/kg soil dry weight.

In the most recent toxic standard study with the reference fest item mixed into the artificial soil, was performed from June 27 to Angust \$6, 2012.  $\bigcirc$ 

The NOEC_{Reproduction} was determined as 0.32 mg/kg solv (dw) and accordingly the LOEC_{Reproduction} was determined as 10 mg/kg soil (dw), These observed effects are within the range expected from the guideline (1-5 mg Carbendazim/kg soil (dw)) and hence acceptable sensitivity of the test system is assured.

Effects on mortality, growth and reproduction of the earthworms					
Test item		NOA43163			
Test object		🗢 Eise <b>ria</b> fetida			
Exposure		Artificial soil			
A 4 4	Adult mortalio	Biomass change	Reproduction		
		[mg test item /kg dws]			
LOEC 🖉 🛸	$\sim$	>100	>100		
NOEÇ		≥100	≥100		
A A					
	× Z				
	~				
Cĩ					



	NOA413163 [mg test item /kg dws]	e° &		
		<u> </u>		
	Control			
	Mortality of adult v	vorms after 4 weeks		
Mortality [%]	0			
	Biomáss change 🖉 🖉 🖉			
	(fresh weight after 4 weeks re	elative to initial fresh weight) Q d &		
Mean [%]	135.9			
	Number of juveniles per	r replicate after 8 yeeks		
Mean± SD	409.0 ± 38 8 0 3	385.3±58.5 4		
	Reproduction comp	pared to control [%		
% to control		14 0 ⁴ 194.2 17 10 18		

No statistically significant differences between the control and test iten for biomass and reproduction (Student-t-test, p > 0.05, gne-sided smaller)

After 28 days of exposure not worms died in the control group and 3 test item concentration. Ś 8% mortality was observed at the Statistical analysis showed no significant difference concerning biomass development of individual adults over 28 days (Student rest, 2 sided;  $p \le 0.05$ ) and concerning the number of juveniles after 56 days (Student-t test sided; p (0,05) between the and the only concentration of the test item patrol tested.

#### Conclusions;

Overall, it's concluded that the NOEC for this study is greater than or equal 100 mg Trifloxystrobin – NOA413163/kg dry weight artificial soil. The overall LOEC is determined to be greater than 100 mg NOA413163/kg dry weight attificiabsoil. Trifloxystrobin -

Therefore, based on the statistical significance: * NOEC related to reproduction: 300 mg/test item/kg/ry weight artificial soil

NOEC related to reproduction. St 00 mg test item/kg dry weight artificial soil LOEC related to reproduction >100 mg test item/kg dry weight artificial soil



Ľ

**Document MCA: Section 8 Ecotoxicological studies** Trifloxystrobin

#### Metabolite CGA 357276

Report:	KCA 8.4.1/10; , MA., 2012
Title:	Trifloxystrobin-CGA357276 (BCS-AB39835): Effects on survival, growth and reproduction on the earthworm <i>Eisenia fetida</i> tested in artificial soil
Report No:	kra-Rg-R-115/12
Document No:	<u>M-437130-01-1</u>
Guidelines:	OECD-Guideline No. 222 (2004)
Deviations:	None
GLP:	Yes (certified laboratory)
Objectives	

The purpose of this study was to assess the sublet al effects of CGA357270 (metabolite of trifloxystrobin) on reproduction, mortality and growth of the earthworm Eiserna fetida during an The Burn and Schifferent test exposure in an artificial soil with one test concentration in the concentrations in the 2nd run.

#### **Materials and Methods:**

Test material: Trifloxystrobin-CQA35727 (BQS-AB39835), Batch codes BCS-AB39835-PU-01; Origin Batch No: BCOO 6204-3-9, Material: BCS-AB3983, pure substance, purity 97.8%w/w).

Adult earthworms (Eisenia fetteda) were exposed in an artificial soil (with 5%) peat content) to the nominal test concentrations of 100 brg test item/ se dry vieight soil in the 1st test run and 9, 16, 28, 50 and 90 mg test item kg dry weight artificial soil in the 2nd test run. In the 1st test run 8 x 10 animals, approximately 5 months old, for the control as well as for the treatment group were used. In the 2nd test run 8 x 10 anomals for the control group and 4 x 10 anomals per test concentration of the treatment groups, approximately 6 months old, were used

25, 5 mg Carbendazim (360 g 35./L) Kg dry weight soil.; control: quartz Toxic standard: 1.25 sand.

Artificial soil composition was 3.82% quart sand, 20% kaolin clay, 5% sphagnum peat and 0.18% CaCO₃. The vessels were kept in a temperature-controlled room at  $20 \pm 2$  °C under a 16-hour light to 8-hour darkaess phôtoperiod and a light intensity at light period between approximately 400 -800 Lux. Earthworms were fed with dried animal makure.

In both test runs, the test item was mixed into the soil. After 28 days the number of surviving animals and their weight alteration was determined. They were then removed from the artificial soil. After further 28 days, the number of offspring was determined.

Dates of work: 1st run: March 21 to May 20, 2011 run: September 30, 2011 to November 11, 2011

# **Bayer CropScience**

#### **Document MCA: Section 8 Ecotoxicological studies** Trifloxystrobin

#### **Results:**

Results:				° r
Validity Criteria	Recommended	Obtained		
		1 st run	2 nd test	
Adult mortality	≤ 10%	0%	1.25%	
Number of juveniles per replicate	$\geq 30$	> 240.6	244.3	
Coefficient of variation of reproduction	$\leq 30\%$	15.2%	12.1% x	
All validity criteria for the study were met				

To verify the sensitivity of the test system, the reference item Derosal flüssig (Carbendazim, 360 g/L) is routinely tested at concentrations of 1.25 and 5.0 mg product/kgsoil dy weight. In the most recent toxic standard study with the reference test item mixed into the artificial soil was performed from February 24 to May 02, 2012. No mortality of the adult carthworms was observed 28 days after application. The change of body weight of the adult earthworns of the test concentrations of 2.5 and 5.0 mg a.s./kg dry weight soil was statistically significant reduced in comparison to the Ņ control.

The number of juveniles per test vessel of all test concentrations owere statistically significant reduced in comparison to the control. The EC50 for reproduction was calculated to be 2219 mg a.s./kg dry weight artificial soil. Confidence limits (95%) sould for be calculated. S

The results of the reference test item indicated that the test system was sensitive to the reference test item.

# Effects on mortality, growth and reproduction of the earthvorms

Test item 🖉	X X A C	©GA357276	
Test object >		Eisenta fetida y	
Exposure	<u>¢,0                                    </u>	<u>°</u> Artificial soft	
Ń	Adult mortalit	Biomass change	Reproduction
<u> </u>		🖉 [mg 📽st item, /kg dws]	
LOEC	Q \$\$>1000 x	<u>~</u> .90	50
NOEC	<u>¶*_či ≥</u> 1,0,9*0`	~″00	90
(~ ī			


#### CGA357276 [mg test item /kg dws] 100 Control Mortality of adult works after 4 weeks Mortality [%] 0 ∛0 **Biomass** change (change in fresh weight after freeks relative to initial fresh weight) Mean ± SD [%] $+44.6 \pm 4.5$ +3% $\pm 7.7$ Number of juveniles per surgiving adult worm after 8 weeks Mean± SD $24.1 \pm 3.7$ Number of juveniles per replicate after 8 weeks $Mean \pm SD$ 240.6336.6 Reproduction compared to control % to control 6

#### 1st run: Effects on mortality, growth and reproduction of the earthworms

* statistical significance compared to the contrart (Williams Multiple Sequential 1-test one-sided smaller,  $\alpha = 0.05$ )

2 nd run: Effects on mortality, growth and reproduction of the eardsworms						
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CGA357276	N R X	Ş	
- Ô			test item /kg d	ws] 💍 🖉		
	Control	2 9 9 9 P		28 ⁰	50	90
× ¥	29 . 4 ⁷	Nor	tality of achult	worms after 4 v	weeks	
Mortality [%]	Q 1.25			0	0	0
~Q ⁰		nange in fresh v	Bioma veight after b w	Ss change eeks relative to i	nitial fresh wei	ght)
Mean ± SD+%]	$+65.48 \pm 8.39$	₹ 6 5.40 ± 9 .39	88.14 ± 4.80	$+72.52 \pm 2.57$	$+65.33\pm11.1$	$+63.35\pm8.21$
		Number of juy	eniles per surv	viving adult wor	m after 8 weel	KS
Meant SD	24.8 ± 3.9	≥~23.6±2Q	4 .7 ± 1.1	23.8 ± 3.1	22.3 ± 2.3	20.4 ± 1.7
Aumber of juveniles per replicate after 8 weeks						
Mean± SD	244.3±29	236.3±28	247.0±10.6	237.8±31.0	223.3±23.4	203.8 * ± 16.8
Reproduction compared to control [%]						
% to control		96.7	101.1	97.3	91.4	83.4
* statistical signif	icance compare	d to the control	(Williams Mul	tiple Sequential	t-test, one-sided	l smaller,
α ≝Ø 05) .∞ [™]						

After 28 days of exposure, no mortality was observed at any test item concentration and at the control group of the 1st run. In the 2nd run just one worm died in the control group.

Statistically significant different values for the growth relative to the control were observed only at the 1st run (100 mg test item/kg dry weight soil). In all tested concentrations of the 2nd run, no statistically significant different values for the growth relative to the control were observed. In the 1st run, statistically significant different values for the number of joveniles per test vessel relative to the control were observed at the test concentration of 100 mg test item/kg dryovt. artificial soil. No statistically significant different values for the number of juveniles per test vessel relative to the control were observed in the 2nd run at the test concentrations of 92/16, 28 and 50 mg test iten % kg dry weight artificial soil. Statistically significant different values for the number of juveniles per tes vessel relative to the control were observed at the highest test concentration of 90 mg test item weight artificial soil.

Conclusions:

Overall, based on the biological and statistical significance of the effects observed on growth@ind reproduction, it is concluded, that the NOEC for this study is 50 mg GA35 7276/kg dry Weight artificial soil. Thus, the overall LOE s determined to be 90 mg EGA 645g dry veight artificial 3372 soil.

Therefore, based on the statistical significance NOEC related to reproduction 50 mg/test item/kg dry werght artificial soil LOEC related to reproduction: 90 mg test item/kg dry weight artificial soil

Metabolite NO

KC 8.4.101; M, A., 2012 Trifloxystrobin-NOA409480 (BC CR74871): Effects on survival, growth and reproduction **Report:** Title: nnioxystrobin-) vo A409480 (BCS-CR/4%/1): Effects of on the earthworm *Eisenta fetida* tested in artificial soil kra-Ro-R-10011 DECD-Guideline No. 227 (2004) ISO 10268-2 (998) Report No Document No: Guidelines: Deviations:

GLP:

Objectives:

Objectives: The purpose of this story was to assess the sublethal effects of NOA409480 (metabolite of trifloxystrobin) on reproduction, montality and growth of the earthworm Eisenia fetida during an

Materials and Methods:

Test material: Trifloxystrobin-NOA409480; (TOX No. 09206-00; Batch code: BCS-CR74871-07-01 Origin Batch No. BCOO 6263-3-4; Material: BCS-CR74871; purity: 98.7%-area), Adult earthworms (*Eisenia fetida*, about 5 months old, 8×10 animals for the control group and 8 $\times 10$ animals for the treatment group) were exposed in an artificial soil (with 5% peat content). nominal test concentration of 100 mg test item/kg soil dry, weight. Toxic standard: 1.25, 2.5, 5.0 mg Carbendazim (360 ga.s./L)/ kg dg weight soil; control: qua sand.

Artificial soil composition was 73.82% quartz sand 20% kaolin day, 5% sphagnum peat and 0.18% CaCO₃. The vessels were kept in a temperature controlled room at 20^{16} °C under 2^{16} hour light to 8-hour darkness photoperiod and a light intensity at light period between approximately 400 -× 800 Lux. Earthworms were fed with dried animal manure.

The test item was mixed into the soil. After 28 days the number of surviving mimals and their weight alteration was determined. They were then removed from the artificial soil, After further 28 days, the number of offspring was determined

Dates of experimental work:

number of offspring was determined
Dates of experimental work:
Results:
Validity Criteria
Adult mortality $\sqrt[3]{2}$
Number of juveniles per replicate 2 2 30 2 104.9 $(100 - 245)$
Coefficient of variation of reproduction 38% of 14.0%
All validity criteria for the study for met

To verify the sensitivity of the test system, the reference item Derosal flüssig (Carbendazim, 360 g/L) is routinely tested at concentrations of 1.25 and 5.0 mg product/kg soil dry weight.

In the most recent to set standard study with the reference test item mixed into the artificial soil, was performed from January 1, 201 to April 3, 2019. No mortality of the adult earthworms was observed 28 days after application. The change of body weight of the adult earthworms of the test concentrations of 25 and 5.0 mg/a.s./kg dry weight soil was statistically significant reduced in comparison to the control

The number of juveniles per test vester of all test concentrations were statistically significant reduced in comparison to the control. The EC50 for reproduction was calculated to be 1.66 mg a.s./kg dry weight with 95% confidence limus between 1.62 – 1.69 mg a.s./kg dry weight artifical soil.

The results of the reference test item indicated that the test system was sensitive to the reference test item.

Effects on mortality, gro	owth and reproduction of the earthworms	a° 🛸		
Test item	NOA409480			
Test object	Eisenia fetida 🔊 🔊			
Exposure	Artificial soil	Ô		
•	Adult mortality Biomass change Reproduction	G ^r		
	[mg test item /kg dws]	, ¹ (b)		
LOEC	>100 >100 >100 >100 >100	×,		
NOEC	≥ 100 ≥ 100 ≥ 100 ≥ 100	ŵ,		
	NOA409480 [mg test item/kg dws]	U ^y		
	Control Control Control	Ő,		
	Mortality of adult warms after 4 weeks	¥ 1		
Mortality [%]				
	Biomass change (change in fresh weight after 4 weeks relative to instral fresh weight)			
Mean ± SD [%]	-3.9 ± 4.8 0° -3.9 ± 9.0 -3.9 ± 4.8			
	Number of prveniles per surviving adult worm after 8 meeks			
Mean± SD	19.5 ± 2.7 0.7 48.6 ± 2.0			
	Number of juveniles per replicate after 8 weeks			
Mean± SD	1940 ± 274 , $\sqrt{2}$ 1866 ± 22.0			
	Reproduction compared to control [%]			
% to control				

No statistically significant differences between the Control and testetem were calculated for biomass and reproduction (Student-t-test, p > 05, one sided smaller \$ 0

No statistically significant different value for the growth relative to the control was observed at the tested concentration 000 mg test item/kg dry weight artificial soil.

À

After 28 days of exposure no worms died in the control group and 1.3% mortality was observed at any test item concentration.

No statistically significant different values for the number of juveniles per test vessel relative to the

Conclusions:

NOA409480/kg dry weight artificial soil. The overall LOEC is determined to be greater than 100 mg Trifloxystrobin – NOA409480/kg dry weight artificial soil.

Therefore, based on the statistical significance:

NOEC related to reproduction: ≥ 100 mg test item/kg drwweight artificial soil LOEC related to reproduction: >100 mg test item/kg dry weight artificial soil

Effects on non-target soil meso and macrofauna (other than earthworms) CA 8.4.2

For information on studies already evaluated during the first EUGeview of this compoind, please refer to corresponding section in the Baseline Dossier provided Bay CropScience and in the h Monograph.

The following endpoints from studies evaluated during the first 2900-Final) are used in the risk assessment:

Test item	Test species,	Ecotoxicological endpoint 2 2	Reference
CGA 321113	Folsomia candida reproduction O 28 tl, mixed	NOEC 316 mg/kg dwc	& (2002) <u>M-030523-01-1</u> KCA 8.4.2.1 /01
NOA 413166	Folsomia candida reproduction 28 c. mixed	NOEC 7 9.18 mg/gg dws	& (2002) <u>M-090863-02-1</u> KCA 8.4.2.1 /02

Table 8.4.2- 1: Effects on non-target soil meso- and macrofauna other than earthy orms

Bold values: endpoints used for risk assessment a corrected by factor of 2 due to lipophilic substance

Studies with springtails (Folsomia candida) and soil partes (Hypoaspis aculeifer) were performed with trifloxystorin WG 50 formulation and most of the major soil degradation products. The corresponding summaries are provided below, under point 8.4.2.1. For some of these metabolites studies with Folsoma and Plypospis are not considered necessary as justified in the text below.

John Stranger

Page 114 of 148

For the **metabolite CGA 381318** (*ZZ*) no studies with Folsomia and Hypoaspis are considered necessary, since Folsomia and Hypoaspis studies, which have been performed with the structurally very similar parent compound trifloxystrobin, with the *EE*-isomer (CGA 321113) and the *ZE*-isomer (CGA 373466), did not show any toxicity to either Hypoaspis or Folsomia (all NOEC values > 100 mg metabolite/kg soil). Also the chronic earthworm study did not indicate any toxicity of this metabolite (NOEC value > 100 mg metabolite/kg soil). Furthermore, CGA 381318 has a maximum occurrence in

soil of only 6.2%. Therefore, the risk from the metabolite CGA 381318 to soil macro organisms is S. considered to be low.

Studies with Folsomia and Hypoaspis have been not conducted with the metabolite NOA 409480 2isomer), since the structural similar precursor metabolite CGA 373466 and the Existence (CGA 357276) of the metabolite NOA 409480 did not indicate to be toxic to these soil macro organisms, and also the chronic earthworm study did not indicate any toxicity of this metabolite (NOEC value > 100 mg metabolite/kg soil). Therefore, the risk from the metabolite NOA 409480 soil macro organisms is considered to be low.

For metabolite NOA 413163 (EE) a study has been conducted with Folsonfia. Testing Hypoaspis was not considered to be required since the precursor metabolity CGA373466 did not show any toxicity to either Folsomia or Hypoaspis, and also the ZE-Bomer, NOA 413161) of SOA 413163 showed no toxicity to Hypoaspis. Furthermore, the maximum occurrence of the metabolite NOA 413168 was The following studies are included in this Supplemental Dossier: only 6.0% and the metabolite showed a low toxicity to both Folsomia and earthwornes (NOEC > 100 mg metabolite/kg soil). Therefore, ht can be concluded that the risk from the metabolite NOA 413163

Table 8.4.2- 2: Eco subst	otoxicological endpoin tance and its metaboli	ts – Collembola and soil mites reproduct	ion studies with active
Test item	Test species, test design	Ecotoxicological endpoint	Reference
Collembola, reprod	uction		
TFS WG 50	<i>Folsomia candida</i> reproduction 28 d, mixed	NOEC ≥1000 mg prod.kg dws 498 mg a.s./kg dws NOEC _{corr.} ≥249 mg a.s./kg dws ^a	(20,5) (ERM-QOLL-12) (M-415/46-0,5) (KCA8.4.2,903)
CGA 357261	<i>Folsomia candida</i> reproduction 28 d, mixed	NOEC Solution of the second s	(2040) FRM-coll-150-22 M-443697-04-1 KCA 8.4.2 1/05
CGA 373466	Folsomia candida reproduction 28 d, mixed	NOEC 2100 mg/kg dws 5 √ 5 5 5	(2012) FRM-Coll-P46/12 M/440109-01-1 ACA 8,422.1/08
NOA 413163	Folsomia candida reproducțien 28 d, mixed	NOEC ² ² / ₂ / ₂ ≥100 mg/kg dws	(2013) EBTFN012 <u>M-444419-01-1</u> KCA 8.4.2.1/11
CGA 357276	Folsomia Candida poproduction 28 d. rhixed.	NOEC 5 5 5 100 mg/kg ∰vs 4	(2012) FRM-Coll-145/12 <u>M-441251-01-1</u> KCA 8.4.2.1/12
Soil mites, reprodu	ction y		
TFS WG 58	Hypoaspis active reproduction 14 d. mixed	NOE \hat{c} $\geq 1000 \text{ mg prod./kg dws}$ $\geq 498 \text{ mg } a_{32}/\text{kg dws}$ NOEC cor \hat{c} $\approx 249 \text{ mg a.s./kg dws}^{a}$	(2012) KRA-HR-76/12 <u>M-443226-01-1</u> KCA 8.4.2.1/04
CGA 357261	Hypoaspis appleifer reproduction 160, mixed	NOÉC ≥€00 mg/kg dws	(2012) kra-HR-80/12 <u>M-443311-01-1</u> KCA 8.4.2.1/06
CGA 321 03	Hypodspis dealeifer reproduction Hd, mixed	S NGC ≥ ≥100 mg/kg dws	(2012) kra-HR-75/12 <u>M-443145-01-1</u> KCA 8.4.2.1/07
CGA 373466	Hyptaspis aculeifer reproduction 44 d, mixed	NGEC ≥100 mg/kg dws	(2012) kra-HR-73/12 <u>M-440955-01-1</u> KCA 8.4.2.1/09
NOA 413061	Hypoaspis aculeifer reproduction A d, mixed	V NOEC ≥100 mg/kg dws	(2013) kra-HR-91/13 <u>M-455220-01-1</u> KCA 8.4.2.1/10
CGA 3 5 276	Hypoaspis aculeifer reproduction 14 d, mixed	NOEC ≥100 mg/kg dws	(2012) kra-HR-74/12 <u>M-440367-01-1</u> KCA 8.4.2.1/13

dws = dry weight Bold values: end ^a corrected by fac	t soil; a.s. = active substance; prod. = product; corr. = corrected lpoints used for risk assessment tor of 2 due to lipophilic substance (log $P_{ow} > 2$)
CA 8.4.2.1	Species level testing
Report:	KCA 8.4.2.1/03; 200,1 , 200,1
Title:	Trifloxystrobin WG 50 W: Influence on the reproduction of the collentbolan species Folsomia
Report No:	FRM-Coll-121/11
Document No:	<u>M-415346-01-1</u>
Guidelines:	OECD-Guideline No. 232 (2009)
Deviations:	None A A A
GLP:	Yes (certified laboratory
Objectives:	

The purpose of this study was to assess the effect of Trifloxystobin WG 50W on survival and reproduction of the collembolian species *Folsomia candida* daving an exposure of 28 days in an artificial soil comparing control and treatment.

Materials and Methods:

Test material: Triflexystrobin WG 50 W (analytical findings: 49.8% w/w Trifloxystrobin (CGA 279202), batch D: DFL011509, sample description. TOX 09544-00, specification no.: 10200000779802, material no.: 05584493.0

 \bigcirc

Ten collembola (9-12 days old) per replicate (8 replicates for the control group and 4 replicates for each treatment group) were exposed to control (water treated), 100, 178, 316, 562 and 1000 mg test item/kg soil dry weight (d.w.) containing 74.8% quartz sand, 20% kaolin clay, 5% sphagnum peat and 0.2% CaCO₃, at 200 \pm 2% and a photoperiod light dark \triangleq 16 h : 8 h (400-800 lux) and were fed weekly with granulated dry yeast.

Mortality and oproduction were determined after Q8 days

Toxic standard: 44, 67, 100, 150 and 225 mg boric acip/kg soil d.w..

ý, v	۰.	¢ Å	¢"		\mathcal{O}
Dates of wor	rk: 🔊	Ju	ty∕19 to∛	Nugu 🎗 🕄	1, 2011
	\swarrow'	ST N	y Q	-St	
D14	- \	<i>'0' _</i> C'	a.	A 0	

Results:	Ú ^Y	
Validity Criteria 🐥 🖉 🗸	Recommended	Obtained
Mean adult nortality of 5	≤20%	5.0% after 4 weeks
Mean number of juvenies perceplicate	≥100	1539.3
Coefficient of variation of reproduction	≤30%	7.6%

All validity criteria for the study were met

The most recent reference test (March 08, 2011) with the reference item Boric acid showed an $EC_{\frac{59}{20}}$ of 91 mg test item/kg artificial soil dry weight (95% confidence limits from 80 mg to 104 mg Sorie acid/kg artificial soil dry weight) for reproduction. The NOEC_{reproduction} was calculated to be 44 mg Boric acid/kg artificial soil dry weight and accordingly the LOEC reproduction of 67 mg Borke acid/kg ire, $\alpha = 0.05$; one sided artificial soil dry weight according Williams-Test multiple t-test procedure, α = smaller. This shows that the test organisms are sufficiently sensitive.

Effects on mortality and reproduction of Folsomia candidate

Test item	Trittoxystrobin WG 50 W 2 2 2
Test object	🏾 Folsomia capaida 👡 👘 🔨 🔬
Exposure	🕵 Agrificial soil 🖉 🏑 🖓 🌱
	Adult mortality A Reproduction
LOEC	>1000 \swarrow \sim
LC ₅₀ / EC ₅₀	
95% confidence limit	
NOEC	$\mathcal{L} \geq 1000^{\circ}$ $\mathcal{L} \sim \mathcal{L} \sim L$

	~C	NY O		~ O*	Ň
Triflox vstrobin/WG 50 W					
	Control 510	0 2 0 178	× 316 °	\$ 562 \$ The second seco	1000
Mortality of adult contembolians after 4 weeks					
Mortality [%]	O 5.0 ^O O 7.1	5 10.0	~ 10.0 [°]	7.5	7.5
Mean number of juveniles after & weeks					
Mean 🔊	1539 429	9.0	√455.30	1483.3	1602.5
SD SD	117.9 29 80.	€ 69,1×	209 1	95.1	43.3
Reproduction compared to control [%]					
% to control	ص -Õ [™] & 2.8	°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	@94.5 ^{n.s.}	96.4 ^{n.s.}	104.1 ^{n.s.}

^{n.s.} statistically not significant Bonferroni-U-test for pon-homogeneous variances, one-sided smaller, $\alpha = 0.05$) SD: standard deviation

Percent reproduction: (Rt Rc) * 100%

Rt = mean number of joveniles observed in the reated groups

Rc = mean number of juvenites observed in the control group

The test item raused 7.5 to 10.0% parental mortality in the treatment groups. 5.0% parental mortality was observed in the control \sim

No statistically significant effect on parental mortality was found for the concentration tested.

Concerning the number of ruveniles statistical analysis (Bonferroni-U test for non-homogeneous variances, one-sided smaller, $\alpha = 0.05$) revealed no significant difference between control and any treatment@roup.

Therefore the No-Observed-Effect-Concentration (NOEC) for reproduction is ≥ 1000 mg test item/kg artificial soil dry weight. The Lowest-Observed-Effect-Concentration (LOEC) for reproduction is

> 1000 mg test item/kg artificial soil dry weight. An EC₅₀ could not be calculated and is considered to be > 1000 mg test item/kg artificial soil dry weight.

Conclusions:

The test item Trifloxystrobin WG 50 showed no statistically significantly adverse effects mortality and reproduction of the collembolans Folsonia candida in artificial soil at any concentration. Ø i

Therefore, the overall No-Observed-Effect-Concentration (NOEC) was determined to $\Re \ge 1000$ mg vas determined to be (IQPEC) Was determined to be test item/kg d.w., and the Lowest-Observed-Effect-Concentration > 1000 mg test item/kg d.w.

Report: KCA 8.4.2.1/04;

Title:

montainy and reproduction on the soft inite species Trifloxystrobin WG 56 W: Influence on mortality

Hypoaspis aculeifer tested in artificial soil Report No: kra-HR-76/12 Document No: M-443226-01 Guidelines: OECD-Guideline 226 Deviations: None Yes (certified laboratory GLP

Objective:

The purpose of the study was to assess the effects of Trifloxystrobin WG 50 W on mortality and reproduction on the soil mile species Hypoaspis acule for tested during an exposure of 14 days in artificial soft comparing control and treatment

Materials and Methods:

Test item: Triflerystrobin WC 50 W (CGA 279202; Batch: EDFL011509; Sample description FAR01568-00, Materia No.: 05584493; Specification No. 102000007798-02; Purity: 49.8%w/w).

Ten adult, feralized, Gemale Hypogspis aduleifor per replicate (8 control replicates and 4 replicates for each test item concentration) were exposed to control (water treated) and treatments. Concentrations of 100, 178 316, 562 and 1000 mg test item kg dry weight soil were tested. In each test vessel 20 g dry weight artificial soil were weight in. The Hypoaspis aculeifer were of a uniform age not differing more than three days (30 days after start of egg laying). During the test, they were fed with cheese mites bred on brewer's yeas During the study a temperature of 20 ± 2 °C and light regime of 400 -800 Lux, 16 light 8 h dark was applied. The artificial soil was prepared according to the guideline with the following condituents (percentage distribution on dry weight basis): 75% fine quartz sand, 5% Sphagnung Peat, air dried and finely ground and 20% Kaolin clay.

After period of by days, the surviving adults and the living juveniles were extracted by applying a temperature gradient using a MacFadyen-apparatus. Extracted mites were collected in a fixing solution (20% Ethylene glycol, 80% deionised water; 2 g detergent/L fixing solution were added). All Hypoaspis aculeifer were counted under a binocular.

Dates of experimental work: July 23,	, 2012 to August 1	5,2012				
Results:	-					
Validity Criteria	Recommended	Obtained				
Mean adult mortality	$\leq 20\%$	1.3%				
Mean number of juveniles per replicate (with 10 collembolan introduced)	≥ 50	336.1				
Coefficient of variation calculated for the number of juveniles per replicate	$\leq 30\%$	8.00				
All validity criteria for the study were met.						
Test item	^A Trifloxystro	pin WG 50 W				
Test object	🔗 Hypoaspi	s acuteffer 🚕				
Exposure Q'	Artifi	cial soll				
mg test item/kg dry weight Ada	lit 🖉 Meaninu	mber of R	eproduction			
artificial soil	lity jevenile	stγ± SD⊘≫ (°	ϕ of control) ϕ^{v}			
	$\frac{1}{2}$					
$\begin{array}{c c} Control \\ \hline 100 \\ \hline \end{array} \qquad \begin{array}{c} & & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \qquad \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	2580	\pm 20.8 \vee	<u> </u>			
		37.0	105 9 n s			
316	Q .332.5 V	± 15.6 \bigcirc	98.9/n.s.			
562	334.6	± 25.3	\$\$.6 n.s.			
	312.5	× 34.6 ,	93.0 n.s.			
NOEC reproduction mg test pem/kg dry weight	antificial soul)		≥ 1000			
LOEC _{reproduction} (mg tegs item/kg dry weight	artificial soil)		> 1000			
n.s. = no statistically significant difference (Stur	tent-t-test, one-sided s	mæller, $\alpha = 0.05$				

Mortality:

In the control group 1 $\frac{1}{\sqrt{2}}$ of the addit Hypothesis below the allowed maximum of $\leq 20\%$ mortality.

Reproduction:

Concerning the number of juveniles statistical analysis (Student-t-test, one-sided smaller, $\alpha = 0.05$) revealed no significant difference between control and any treatment group. Therefore the No-Observed-Effect-Concentration (NOEC) for reproduction is ≥ 1000 mg test item/kg dry weight artificial soil. The Lowest Observed-Effect-Concentration (LOEC) for reproduction is > 1000 mg test item/kg dry weight artificial soil.

Conclusion

The NOEC reproduction is ≥ 1000 mg test item/kg soil d.w. and the LOEC reproduction > 1000 mg test item/kg soil d.w.

Reference test:

, kra/HR-O-11/12, February 29, 2012) with the The most recent non-GLP-test (reference item dimethoate was performed at test concentrations 1.0, 1.8, 9.2, 5.6 and 90.0 dimethoate/kg dry weight artificial soil. Dimethoate showed a LC50 of 3.894 mg a.s./kg for mortality of the actual mites according analysis using maximum likelihood regression. The reproduction of the soil mites was not significantly reduced in comparison to the control op to 3.2 mg a.s./kg dry weight artificial soil. Therefore the NOEC is calculated to be 3.2 mg a.s. Rg and accordingly the LOEC is 5.6 mg a.s./kg. Since variances of the data were even after transformation pot homogenous Welch-t test for Inhomogeneous Variances with Bonferroni-Holm Adjustment procedure, $\alpha = 0.05$, one-sided smaller was used. Dimethoate E@400EG showed a EC₅₀ of 6.62 mg a.s./kg (95%) confidence limits from 6.02 mg a.s./kg to 246954 mg a.s./kg for reproduction according Provit analysis using maximum likelihood regression. götty weight artificial Soil. This is in the recommended range of the guideline of Metabolite CGA 357261

Report:

Title:

GLP:

KCA 8:4/2.1/05: Trifloxystrobib CGA 35726 (BCCAR14200): Influence on the reproduction of the collembolan species *Folsongia candida* tested in artificial set

Report No: Document No: Guidelines:

ĉΜ. OECS-Guideline NO None Deviations: Yes (certified laboratory

FRM-Coll/150/4

Objectives:

The purpose of this study was to assess the effect of Triflexystrobin-CGA 357261 (BCS-AR14200, metabolite of griflox Strobin on survivation of the collembolan species Folsomia candida during an exposure of 28 days in an artificial foil comparing control and treatment.

Materials and Methods:

Test material: Triffoxystrobin-CGA 57261 (BCS-AR14200), analytical findings: 99.4% w/w AE 1393224, origin batch no. SES 10350-10-1, certificate no.: AZ 17556, batch code: AE 1393224-PU-01, material: AE 1393224, pure substance.

Ten collembola (9-12 days old) per replicate (8 replicates for the control group and 8 replicates for each treathent goup) were posed to control (water treated) and 100 mg test item/kg artificial soil dry wsight (dw.) containing 75% quartz sand, 20% kaolin clay, 5% sphagnum peat and CaCO₃, at 20.0 2°C and a photoperiod: light : dark = 16 h : 8 h (400-800 lux) and were fed weekly with granulated dry yeast.

Mortality and reproduction were determined after 28 days.

Toxic standard: 44, 67, 100, 150 and 225 mg boric acid/kg soil d.w..

Dates of experimental work:

September 10 to October 18, 2012

Results:

Validity Criteria	Recommended	Obtained 🔊	
Mean adult mortality	≤20%	12.5% after 4 weeks	
Mean number of juveniles per replicate	≥100	1.089	
Coefficient of variation of reproduction	$\leq 30\%$	Q 8.8% °	
All validity criteria for the study were met			

The most recent reference test (May 25, 2012) with the reference item Boric acid showed an EC5000f 116 mg test item/kg artificial soil dry weight (95% confidence limits from 98 mg to 137 mg Boric acid/kg artificial soil dry weight) for oproduction. The NOECrep Juction was calculated to be 67 mg Boric acid/kg artificial soil dry weight and accordingly the LOFC represention is 100 ng Boric acid/kg artificial soil dry weight according Williams-Test multiple Ftest Focedure, a 0.05 one-sided smaller. This shows that the test organisms are sufficiently sensitive

Effects on mortality and reproduction of *Polsomic candida*

Bayer CropScience

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

	CGA 357261 [mg test item /kg dws]		
	Control	100	
	Mortality of adult colle	mbolans after 4 weeks	
Mortality [%]	12.5	<u> </u>	
	Mean number of juv	eniles after 4 week	
Mean	1188.8	1224.1° °	
SD	104.2	90.3 O	
	Reproduction compa	ared to compol [%)	
% to control	4	0103.00 ⁰	
^{n.s.} statistically not signif	icant (Student's-t test, one-side	d smaller, α = 0.05) A	
SD: standard deviation	× .' ×		

SD: standard deviation

Percent reproduction: (Rt/Rc) * 100%

Rt = mean number of juveniles observed in the weated groups

Rc = mean number of juveniles observed in the control group Ô

The test item caused 12.5% parental mortality at the test concentration of 100 mg test item/kg d.w.. 11.3% parental mortality was observed in the control. Ô

No statistically significant effect on parental portality was found for the concentration tested.

Concerning the number of jugeniles statistical analysis (Student's-t test, one-sided smaller, $\alpha = 0.05$) revealed no significant difference between control and the treatment group.

Therefore the No Dbser (ed-Effect-Concentration (NDEC) for reproduction is ≥ 100 mg test item/kg artificial soil do weight. The Lowest-Observed Effect Concentration (LOEC) for reproduction is > 100 mg test item/kg@rtificial soil dry weight. An EC, Fould not be calculated and is considered to be > 100 mg tošt item/kg artificial soil droweight

Conclusions:

The test item Tarloxystrobine GA 35726 (BCS-AR14200) showed no statistically significantly adverse effect fon adoit mortality and reproduction of the collembolans Folsomia candida in artificial soil at the test concentration of 100 mg test itempkg applicial soil.

Therefore the overall No-Observed Effect Concentration (NOEC) was determined to be $\geq 100 \text{ mg}$ test item/kg d.w., and the Lowest-Observed-Effect-Concentration (LOEC) was determined to be

Report:	KCA 8.4.2.1/06; M.A., 2012		a second
Title:	Trifloxystrobin- CGA 357261 (BCS-AR14200): Influen	nce on mortality	and reproduction of
	the soil mite species Hypoaspis aculeifer tested in artific	ial soil 🔬	8 V
Report No:	kra-HR-80/12	A CONTRACTOR	
Document No:	<u>M-443311-01-1</u>	O ^y	
Guidelines:	OECD-Guideline 226 (2008)	A	
Deviations:	Exposition to the test item: 15 days (instead of 4 days)	L.	
GLP	Yes (certified laboratory)	, OU'	

Objective:

The purpose of the study was to assess the effects of Trifloxystrobin CGA 33726 (BCS AR14200 metabolite of trifloxystrobin) on mortality and reproduction on the sail mite species Hypeaspis aculeifer tested during an exposure of 15 days in artificial soil comparing control and treatment.

Materials and Methods:

Test item: Trifloxystrobin-CGA 3572 (BCS-AR1 200) (Certificate NG?: AZ 57556; Batch-code: AE 1393224-PU-01; Origin Batch No SES 10350-10-1; Purity AF 1393224: 99 W/w.

Ten adult, fertilized, female Hypoaspis aculeifer per replicate (8 replicates for each application rate) were exposed to control (water treated) and 100 mg test item/ kg dry syeight soil. In each test vessel 20 g dry weight artificial soil weighed in The Hypoaspis acuteifer were of uniform age not differing more than three days (30 days after start of egg laying). During the test, they were fed with cheese mites bred on brewer's yeast. During the soldy a comperature of 20 ± 2 , C and light regime of 400 - 800 Lux, 16 & light : 8 h dark was applied. The artificial soil was prepared according to the guideline with the following constituents (percentage distribution on dry weight basis): 75% fine quartz sand, 5% Sphagnum peat, air dried and finely ground and 20% Kaolin clay.

After a period of 150 days, the surviving adults and the living Juveniles were extracted by applying a temperatury gradient using a MaeFadyon-apparatus, Extracted mites were collected in a fixing solution (20% Arylene glycol 80% deionised water; D'g detergent fixing solution were added). All Hypoaspis aculeifer were counter under a binocular. X

Dates of experimentation work September 4, 2062 to October 11, 2012

Results:

0,1	, Q			No.	
Validity Criteria			Recon	mended	Obtained
Mean adult mortality			Q X	20%	8.8%
Mean number of juv (with 10 collembolar	eniles per i n i <u>m</u> troduce	replicate @		2 50	357.1
Coefficient of variati number of juveniles	on calcula per replica	ted for the		30%	16.6%
		-0			

All vandity criteria for the study were met.

Effect of trifloxystrobin-	CGA 357261 o	n <i>Hvnoasnis ac</i> i	<i>uleifer</i> in a 15-da	v reproduction study
Enter of thinky stroom	001100/2010	In Hypothespite act	<i>moyer</i> in a re au	y reproduction study

Test item	trifloxystı	obin- CGA 357261 (BC	CS-AR14200)	
Test object		Hypoaspis aculeifer	~	ð. '°
Exposure		Artificial soil		
mg test item/kg dry weight	Adult	Mean number of	Reproduction	
artificial soil	mortality	juveniles ± SD	(% of control)	64 °S' 6
	(%)	~	K, A	
Control	8.8	357.1 59.2	÷ -	
100	3.8	411.8 ¥ 37.4	Q 115 n.s. 🖉	
NOEC _{reproduction} (mg test item/kg	g dry weight artifi	icial soil)	$\swarrow \geq 100$	Q O K
LOEC _{reproduction} (mg test item/kg	g dry weight artifi	cial soil)	لي ≥100 <i>لح</i>	
n.s. = no statistically significant d	ifference (Student-t	-test, one-sided smaller, a =	= 0.0 50 × × × × × ×) o ú
		4 9° 5°		
				L A .º
	کے	, The second sec		
<u>Mortality:</u>	×.		A Ô'.	
In the control group 8.8% of	f the adult <i>Hypo</i>	aspis acutaifer died wi	high is below the al	lowed maximum

Mortality:

which is below the allowed maximum In the control group 8.8% of the adult Hypogspis acuteifer died of $\leq 20\%$ mortality. The LC₅₀ could not be calculated and is considered to be 100 mg test item/kg dry weight artificial soil.

Reproduction:

Concerning the number of juvenites statistical analysi \mathcal{G} (Student-t-test, one sided amaller, $\alpha = 0.05$) revealed no significant difference between control and the treatment group. Therefore the No-Observed-Effect-Concentration (NQEC) for reproduction is $\geq 100^{\circ}$ mg test item kg dry weight artificial soil. The Lowest-Observed-Effect Concentration (LOEC) for reproduction is > 100 mg test item/kg dry weight artificial soil DEC 50 values could not be calculated and is considered to be > 100 mg test item/kg dry weight soi

Conclusion.

w. and the POEC_{reproduction} > 100 mg test item/kg The NOPC reproduction soil d.w.

Reference test

The most recent non-GLP test (kra/HR-O-11/12, February 29, 2012) with the reference tem dimethoate was performed at test concentrations 1.0, 1.8, 3.2, 5.6 and 10.0 mg dimethoate/kg dry weight artificial soil.

Dimethoate showed a LC of 3,894 ag a. Kg for mortality of the adult mites according Probit analysis using maximum likelihood regression.

The reproduction of the soil mites was not significantly reduced in comparison to the control up to 3.2 mg a.s./kg dry weigh artificial soil Therefore the NOEC is calculated to be 3.2 mg a.s./kg and accordingly the DOEC is 5.6 mg a.s./kg. Since variances of the data were even after transformation not homogenous Welch-trest for Inhomogeneous Variances with Bonferroni-Holm Adjustment procedure, $\alpha = 005$, one-side smaller was used. Dimethoate EC 400E G showed a EC₅₀ of 6.62 mg a.s./kg (95%) confidence limits from 6.02 mg a.s./kg to 2469.54 mg a.s./kg) for reproduction according Probit analysis using maximum likelihood regression.

This is in the recommended range of the guideline of 3.0 - 7.0 mg a.s./kg dry weight artificial soil.

Metabolite CGA 321113

Report: Title:

NCA 8.4.2.1/07; M.A., 2012 Trifloxystrobin- CGA 321113 (BCS-AL58660): Influence on mortality and reproduction on *C* the soil mite species *Hypoaspis aculeifer* tested in artificial soft kra-HR-75/12 <u>M-443145-01-1</u> OECD-Guideline 226 (2008) None Yes (certified laboratory)

Report No: Document No: Guidelines: Deviations: GLP

Objective:

The purpose of the study was to assess the effects of Friflox strobus-CGA 321 13 (BCS-AL \$8660, metabolite of trifloxystrobin) on motality and reproduction on the Soil must species Hypoaspis aculeifer tested during an exposure of 14 days in artificial soil comparing control and treatment.

Materials and Methods:

Test item: Trifloxystrobin- CGA 32111 (BCS AL58660) (FOX No. 09586-00; Batch-code: AE 1344138-01-02; Origin Batch No. BCOO 61323-9; Purity AB 1344138: 98,4% w/w).

Ten adult, fertilized, female Hypoaspis acuaifer per repleate (& replicates for each application rate) were exposed to control (water treated) and 100 mg test item/ kg droweight soil. In each test vessel 20 g dry weight achieved weighed in. The Hypocspis aculeifer were of a uniform age not differing more than three days (30 days after start of egg laying). During the test, they were fed with cheese mites bed on brewer's yeast. During the study temperature of 20 ± 2 °C and light regime of 400 – 800 Cux, 16 h light : 8 h dark was applied. The artificial soil was prepared according to the guideline with the following constituents (percentage distribution on dry weight basis): 75% fine quartz sand, 5% Splagnum peat, and dried and finely ground and 20% Kaolin clay.

After a period of 4 days, the surviving adults and the living juveniles were extracted by applying a temperature gradient using a MacFadden-apparatus Extracted mites were collected in a fixing solution (20% ethylese glycol, 80% deionised water; 2 g detergent/L fixing solution were added). All Hypoaspis aculeifer were counted under a binocular.

Dates of experimental work to August 27, 2012

Results:

	¥	
Validity Criteria	Recommended	Obtained
Mean adult nortality & 2	$\leq 20\%$	1.3%
Mean number of Juveniles persenticate (with 40 collegebolan witroduced)	≥ 50	346.8
Coefficient of variation calculated for the number of juveniles per replicate	≤ 30%	7.0%

All validity criteria for the study were met.

Bayer CropScience

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Effect of trifloxystrobin-	CGA 321113 or	n <i>Hypoaspis aculeifer</i> in a	14-day reproduction study
Enect of thirdaystroom-	0011521115 01	i nypouspis acaicijer ma	14-uay reproduction study

l rifloxystrobin			
			e s
Effect of trifloxystrobin- CGA 32	21113 on <i>Hypoas</i>	<i>vis aculeifer</i> in a 14-day	reproduction study
Test item	trifloxystr	obin- CGA 321113 (BC	CS-AL586600
Test object	·	Hypoaspis aculeifer	
Exposure		Artificial soil	
mg test item/kg dry weight	Adult	Mean number of	Reproduction
artificial soil	mortality	juvenilê9 ± SD	(# of control) $\sqrt{2}$
	(%)	- A	
Control	1.3	346.86 ± 24.26	
100	2.5	351.9 ± 29.2	101.54 n.s.
NOEC _{reproduction} (mg test item/kg d	ry weight artificia	al solor	$a^2 \geq 100^{\circ}$, a^2
LOEC _{reproduction} (mg test item/kg d	ry weight artificia	ll soll) 👘 🕺	
n.s. = no statistically significant diffe	rence (Student-t-te	st, one-sided smaller, $\alpha = 0$	(195) L (27) X
	C.A		
Mortality:	s, s		$(\mathcal{F}) = (\mathcal{O}^{*} \otimes \mathcal{O}^{*}) \otimes (\mathcal{O}^{*} \otimes \mathcal{O}^{*})$
In the control group 1.3% of the	e adult Avnoa s	Wis aculeifer died whit	ch is below the allowed maximum

Mortality:

is below the allowed maximum In the control group 1.3% of the adult gypoaspis acufeifer died of $\leq 20\%$ mortality. The LC₅₀ could not be calculated and is considered to 100 mg test item/kg dry weight artificial soil.

Reproduction:

Concerning the number of juven des statistical malysis (Student-trivest, one sided smaller, $\alpha = 0.05$) revealed no significant difference between control and the concentration of 100 mg test item/kg dry weight artificial soil Therefore the No-Qbserved Effect Concentration (NOEC) for reproduction is ≥ 100 mg test items g dry weight artificial soil. The Nowest@Dbserved-Effect-Concentration (LOEC) for reproduction is > 100 mg test item/kg dry weight artificial soil 2 C50- values could not be calculated and is considered to be 100mg tes iten//g dry weight soil

Conclusion:

soil d.w and the LOEC reproduction > 100 mg test item/kg The NOECreproductio soil d.w.

Reference test

kra/HR-O-11/12, February 29, 2012) with the The most recent non-GLD-test reference Item dimethoate was performed at test concentrations 1.0, 1.8, 3.2, 5.6 and 10.0 mg dimethoate/kg dry weight attificial soil.

Dimethoate showed a Lasso of 3.894 mg a. Kg for mortality of the adult mites according Probit analysis using maximum likelihood regression.

The reproduction of the set mites was not significantly reduced in comparison to the control up to 3.2 mg a.s. kg dry weight artificial soft. Therefore the NOEC is calculated to be 3.2 mg a.s./kg and accordingly the LOEC is 5.6 bg a.s./kg. Since variances of the data were even after transformation not homogenous Welch test for Inhomogeneous Variances with Bonferroni-Holm Adjustment procedure, $\alpha \neq 0.05$, one-sided smaller was used. Dimethoate EC 400E G showed a EC₅₀ of 6.62 mg a. s./kg (95%) confidence limits from 6.02 mg a.s./kg to 2469.54 mg a.s./kg) for reproduction according Probit analysis using maximum likelihood regression.

This is in the recommended range of the guideline of 3.0 - 7.0 mg a.s./kg dry weight artificial soil.

Metabolite CGA 373466

KCA 8.4.2.1/08; 2012 Trifloxystrobin-CGA 373466 (BCA-AL58699): Influence of the reproduction of the transformation of the transform **Report:** Title: Report No: Document No: Guidelines: Deviations: GLP:

Objectives:

Objectives: The purpose of this study was to assess the effect of Trictoxystobin-QEA 379466 (BCA-AL58690, metabolite of trifloxystrobin) on survival and reproduction of the collembolan species Folsomia candida during an exposure of 28 days of an appricial soil comparing control and greatment.

Materials and Methods:

Test material: Trifloxystrobin-CGA 373466 (ECA-AL58690) analytical findings \$7.9% w/w AE 1344148, origin batch no SES 91648-6-3, certificate no.: XZ 17621, batch code: AE 1344148-PU-01, LIMS no.: 1027123.

Ten collembola (\$12 days old) per replicate (8 replicates for the control group and 8 replicates for each treatment group) over exposed to compol (water treated) and 100 mg test item/kg soil dry weight (d.w.) containing 75% quartz sand, 20% kaolin cray, 5% sphagnum peat and CaCO₃, at $20.0 \pm 2^{\circ}$ C and a photoperiod: light : dark = 16W: 8 h/400-800 lux) and were fed weekly with granulated dry yeast. Mortality and reproduction were determined after OS days

Toxic standard: 44,07, 100, 150 and 225 mg boric acid/kg soil d.w.

Dates of experimental work ptember 10 to October 18, 2012

Results:				
Validity Criteria 🦼	9 A . 7	Recon	wnended	Obtained
Mean adult mortality			20%	12.5% after 4 weeks
Mean number of juven	iles per replicate		100	1188.8
Coefficient of variation	n of reproduction	≤	30%	8.8%
All validity criteria for	the study were m	et		

The most recent reference test (May 25, 2012) with the reference item Boric acid showed an EC₅₀ of 116 mg test item/kg artificial soil dry weight (95% confidence limits from 98 mg to 137 mg Boric acid/kg artificial soil dry weight) for reproduction. The NOEC_{reproduction} was calculated to be 67 mg

Boric acid/kg artific	ial soil dry weight and accordingly the LOEC _{reproduction} is 100 mg Boric acid/kg
artificial soil dry w	eight according Williams-Test multiple t-test procedure, $\alpha = 0.05$, one sided
smaller. This shows	that the test organisms are sufficiently sensitive.
Effects on mortality a	nd reproduction of <i>Folsomia candida</i>
Test item	CGAO 73466 5 5 6
Test object	Folsonia candida 🖉 🦿 🖓 🎝
Exposure	Artificial soil O [*] 4 6
	Adult mortality
LOEC	$\frac{\left[\cos g \text{ test item/kg dws} \right]}{100} = \frac{100}{2}$
95% confidence limit	
NOEC	
	CGA 3733466 7 7 7 7 7 8 8
	[mg test item /kg days] O O O O
	Fontrol of the first of the
	Mortality of adult collembolans after 4 weeks
Mortality [%]	$\sum_{n=1}^{\infty} \frac{\partial^2 12}{\partial x^2} \frac{\partial^2 x^2}{\partial x^2}$
	A Mean number of juvenities after 4 weeks
Mean	
SD O	S 1049 S 2 12.9 g
6	Dundation Transformer (1961
% to control	\mathcal{O}
^{n.s.} statistically not sign	ificant{Student's-t tesQone-sided smaller, α =0.05)
SD: standard deviation	
rercent reproduction: ($K_{\mu}(\mathbf{x}c) = K_{\mu}(\mathbf{y}) = K_{\mu}(\mathbf{x}c) = K_{\mu}$

Rt = mean number of jupeniles observed in the groups "

Rc = mean number of juveniles observed in the control group. The test stem caused 1.3% parental mortality at the test concentration of 100 mg test item/kg d.w.. 12.5% parental montality was observed in the control.

No statistically significant effection parental portality was found for the concentration tested.

Concerning the number of jorenile statistical analysis (Student's-t test, one-sided smaller, $\alpha = 0.05$) revealed no significant difference between control and the treatment group.

Therefore the No Observed-Effect-Concentration (NOEC) for reproduction is ≥ 100 mg test item/kg artificial soil dry weight. The Lowest-Observed-Effect-Concentration (LOEC) for reproduction is > 100 mg text items kg artificial soil dry weight. An EC₅₀ could not be calculated and is considered to be 100 mg test item/kg artificial soil dry weight.

Conclusions:

The test item Trifloxystrobin-CGA 373466 showed no statistically significantly adverse effects on a adult mortality and reproduction of the collembolans Folsomia candida in artificial soil at the test Ô concentration of 100 mg test item/kg artificial soil.

Therefore, the overall No-Observed-Effect-Concentration (NOEC) was determined to $\Delta e \ge 100 \text{ mg}_{\odot}$ test item/kg d.w., and the Lowest-Observed-Effect-Concentration (LGEC) was > 100 mg test item/kg d.w.

Report:

Report No:

Guidelines: Deviations: GLP

Title:

2012

ACA 6.4.2.1/U9; M.A., **2012** Trifloxystrobin- CGA 373466 (BCS-AL58690) Influence on dortality and reproduction on the soil mite species *Hypoaspis aculative* tested in artificial soil kra-HR-73/12 <u>M-440955-01-1</u> OECD-Guideline 22(6)2008 Exposition to the test item: 15 days (instead of 14 days) Yes (certified laboratory) Document No:

Objective:

The purpose of the study was to assess the effects of Tridoxystrobin-QA372466 (BCS-AL58690, metabolite of trifloxy strobing on mortality and perroduction on the soil mite species Hypoaspis aculeifer tested during an exposure of 15 days in artificial soil comparing control and treatment.

Materials and Methods:

Test item: Trifloxy Trobin CGA 373466 (BCS-AL58690) (Certificate No.: AZ 17621; Batch-ID: AE 1344148-PU-01; Origin Batch No SES 1 648-6-3; Purfey AE 944148: 97.9%w/w).

C

Ten adult, fertilizen female Hypoaspis Quleifer per seplicate (8 replicates for each application rate) were exposed to control (water treated) and 400 mg test icm/ kg dry weight soil. In each test vessel 20 g dry weight artificial soft were weighed in, The Hypoaspis aculeifer were of a uniform age not differing more than three days (30 days after start of egg laying). During the test, they were fed with cheese mikes bred on brewer's yeast. During the study a temperature of 20 ± 2 °C and light regime of 400 - 800 Lux, 16 h hight : 8 h dark was applied. The artificial soil was prepared according to the guideline with the following constituents (percentage distribution on dry weight basis): 75% fine quartz sand, 5% Sphagnum pear, air dried and finely ground and 20% Kaolin clay.

After a period of 15-days, the surviving adults and the living juveniles were extracted by applying a temperature gradient using a MacFadyen-apparatus. Extracted mites were collected in a fixing solution (20% etterne advect, 80% deionised water; 2 g detergent/L fixing solution were added). All Hypodspis achieifer were counted under a binocular.

Dates of experimental work: September 14, 2012 to October 11, 2012

Results:

Results:					o »	
Validity Criteria		Recommended	Obtained			
Mean adult mortality		$\leq 20\%$	8.8%		6	
Mean number of juveniles per rep (with 10 collembolan introduced)	licate	≥ 50	357.1		, , , , , , , , , , , , , , , , , , ,	
Coefficient of variation calculated number of juveniles per replicate	l for the	≤30%	© 16.6%			
All validity criteria for the stud	All validity criteria for the study were met. A^{0}					
Effect of trifloxystrobin- CGA37	3466 on H	Iypoaspis aculetter	in a 🕽 5-day rej	production study	y*	
Test item	trifle	oxystrobin- CGA3	79466 (BCS-A	198690)	s,°	
Test object		K Hypoaspi	s aculeifer 🔬		<u>v</u>	
Exposure		Artific	ial soil 🔗		8	
mg test item/kg dry weight	Achi	lt 🔬 Mean n	umber of	Reproduction		
artificial soil	morta	lity 🏸 🛛 🖓 uvenil	Ğš±S₽0°	So of control)		
	%(%)		<u> </u>			
Control	<u> </u>	357.6	<u>+</u>) 59.2	<u> </u>		
100	∑° [°] 5y0	366.9	λ <u>≠</u> 46,¥	102.7 n.S.		
NOEC _{reproduction} (mg test item/kg	ry weight	artificial soil)	, 🖧 🏻	$\sqrt[3]{2} \ge 100$		
LOEC _{reproduction} (mg test item/kg d	ry Woright	artificial soil)	^\$			
n.s. = no statistically significant diffe	erence (Stuc	tent-t-test, one-sided	smaller, $\alpha = 0.05$			

Mortality:

In the control group 8.88 of the adult Hypocspis achiever field which is below the allowed maximum of $\leq 20\%$ mortality. The LG could not be calculated and is considered to be > 100 mg test item/kg dry weight artificial Soil

Reproduction:

<u>Reproduction:</u> Concerning the number of juverfiles statistical analysis (Student-t-test, one-sided smaller, $\alpha = 0.05$) revealed no significant difference between control and the concentration of 100 mg test item/kg dry weight artificial soil. Therefore the NovObserved-Effect-Concentration (NOEC) for reproduction is ≥ 100 mg test item/kg droweight artificial soul. The Cowest-Observed-Effect-Concentration (LOEC) for reproduction is > 100 mg test item kg dry weight artificial soil. EC50-values could not be calculated and is considered to be > 100 mg test iten kg dry weight soil.

Conclusion:

K

of mg test item/kg soil d.w. and the LOEC_{reproduction} > 100 mg test item/kg The NOEC soil d.w

Reference test:

The most recent non-GLP-test (, kra/HR-O-11/12, February 29, 2012) with the referenco[®] item dimethoate was performed at test concentrations 1.0, 1.8, 3.2, 5.6 and 10.0 mg dimethoate/kg dry weight artificial soil.

Dimethoate showed a LC₅₀ of 3.894 mg a.s./kg for mortality of the adult mites according Probit analysis using maximum likelihood regression.

The reproduction of the soil mites was not significantly reduced in comparison to the control up to 3.2 mg a.s./kg dry weight artificial soil. Therefore the NOEC is calculated to be 3.2 mg d.s./kg and accordingly the LOEC is 5.6 mg a.s./kg. Since variances of the data were even after transformation not homogenous Welch-t test for Inhomogeneous Variances with Bonferroni Holm Adjustment procedure, $\alpha = 0.05$, one-sided smaller was used. Dimethoate EC 400E G showed αEC_{50} of 6.62 mg as kg (95%) confidence limits from 6.02 mg a.s./kg to 2469.54 mg a.s./kg) for reproduction according Prob analysis using maximum likelihood regression. This is in the recommended range of the guideline of 3.0 – 7.0 mg a.s./kg dry weight artificial soil <u>Metabolite NOA 413161</u>

Report:	KCA 8.4.2.1/10; , MA., 2013 V N N N N
Title:	Trifloxystrobin- NGA 412161 (BCS-ALO8658); Difluence on nortality and reproduction on
	the soil mite species Hypsaspis aculeif dested on artificial soil O
Report No:	kra-HR-91/12 × × × × × × × ×
Document No:	<u>M-455220-01-1</u>
Guidelines:	OECD-Chrideline 226 (2008)
Deviations:	Nonex & O O O V V
GLP	Yest certified laboratory) @ 5 2 0 4

Objective:

The purpose of the study was to assess the effects of Frifloxostrobio NOA 413161 (BCS-AL58658, metabolite of trifloxystrobin) on mortality and reproduction on the soil mite species Hypoaspis aculeifer Gested during an exposure of 14 days in artificial soil comparing control and treatment.

Materials and Methods;

Test item: Trifloxystebin-NOA 493161 (BCS AL58658) (analytical findings: 91.8% w/w AE 1344143; origin batch no M19178; batch code: AF 1344143 00 1C92 0001; certificate no.: AZ Ŵ 17475). 🛋

Ten adult, fertilized, female Rypogspis acuteifer per replicate (8 replicates for the control group and 4 replicates for the treatment groups were exposed to control and treatments. Concentrations of 10, 18, 32, 56 and 100 mg pure metabolite (corresponding to 11, 20, 35, 61 and 109 mg test item/kg) per artificial soil dry weight were tested in each test vessel 20 g dry weight artificial soil were weighed in. The Hypoasors aculater were of a uniform age not differing more than three days (31 days after start of egg laying). During the test they were fed with cheese mites bred on brewer's yeast. During the study a temperature of 20 ± C and light regime of 400 – 800 Lux, 16 h light : 8 h dark was applied. The artificial soil was prepared according to the guideline with the following constituents (percentage distribution on dry weight basis): 75% fine quartz sand, 5% Sphagnum peat, air dried and finely ground and 20% Kaolin clay.

After a period of 14 days, the surviving adults and the living juveniles were extracted by applying a temperature gradient using a MacFadyen-apparatus. Extracted mites were collected in a fixing solution

(20% ethylene glycol, 80% deionised water; 2 g detergent/L fixing solution were added). All

 $\frac{1}{\sqrt{2}}$ William's-t-test, one-sided smaller, $\alpha = 0.05$) n.s. = no statistically significant difference (

Mortality:

Ŵ

aculeifer died which is below the allowed maximum In the comorol group 1.3% of of $\leq 20\%$ mortality

Reproduction:

Concerning the number of given the statistical analysis (William's-t-test, one-sided smaller, $\alpha = 0.05$) revealed no significant difference between control and any treatment group. Therefore the No-Observed \mathcal{E} if fection is ≥ 100 mg pure metabolite/kg dry weight artificial soil The Lowest-Observed-Effect-Concentration (LOEC) for reproduction is > 100 mg pure metabolite/og dry Weight artificial soil.

Conclusion:

The NOEC_{reproduction} is ≥ 100 mg pure metabolite/kg soil d.w. and the LOEC_{reproduction} > 100 mg pure

metabolite/kg soil d.w.

Reference test:

, kra/HR-O-12/13, April 08, 2013 The most recent non-GLP-test (reference item dimethoate was performed at test concentrations 1.0, k.8, 3.2, 5.6 and dimethoate/kg dry weight artificial soil. Dimethoate showed a LC₅₀ of 4.32 mg a.s./kg (95% copridence limit@from 4.31 nd mg a. s./kg) for mortality of the adult mites according Probit and sis using maximum lik regression. The reproduction of the soil mites was not significantly reduced in comparison to the control up to

3.2 mg a.s./kg dry weight artificial soil. Therefore the NOEC is calculated to be 3.2 mg a.s./kg and accordingly the LOEC is 5.6 mg a.s./kg. Since variances of the data were homogenous Williams-t test $\alpha = 0.05$, one-sided smaller was used. Dimethoate EC 400E G showed a EC of 5.67 mg as ./kg (95% confidence limits from 5.58 mg a. s./kg/to 5.79 mg ag/kg) for reproduction according Probit analysis using maximum likelihood regression. This is in the recommended range of the guideline of 3.0 - 7.0mg a.s./kg dry weight artificial soils

Metabolite NOA 413163

Report:

Title:

Tofloxystrobin-NOA413)63 (BCS-AL58659): Acute and reproduction toxicity to the collembolan species *Folsomia candida* in artificial soil

Report No: Document No: Guidelines Deviations GLP:

EB705N0120 OECD Guideline tifled laberator

Objectives:

study was to assess the effect of Trifloxystrobin-NOA413163 (BCS-AL58659, The purpose of this on survival and reproduction of the collembolan species Folsomia metabolite of trifloxystrobin) candida during an exposure of 28 days in martificial soil comparing control and treatment.

Materials and Methods

Test material: Trifloxystroble-NQA413169 (BCS-AL58659), analytical findings: 99.2% w/w, origin batch no.: NO 8477, certificate no.: AZ 7455, batch code: AE 1344149 00 1B98 0001, material: AE 1344149, pure substance

Ten collembola (9-12 days old) per replicate (8 replicates for the control group and 8 replicates for each treatment group) were exposed to control (quartz sand treated) and 100 mg test item/kg artificial soil dry weight (d.w.) containing 74% quartz sand, 20% kaolin clay, 5% sphagnum peat and < 1% CaCO $fat 20.0 \pm 2^{\circ}$ C and a photoperiod: light : dark = 16 h : 8 h (400-800 lux) and were fed weekly with granulated dry yeast.

Mortality and reproduction were determined after 28 days.

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Toxic standard: 5.6, 10.0, 17.8, 31.6, 100 and 178 mg boric acid/kg soil d.w..

Dates of work:

August 29 to September 26, 2012

Results:		4	\$ \$ \$
Validity Criteria	Recommended	Obtained	
Mean adult mortality	$\leq 20\%$	10% after 4 weeks	
Mean number of juveniles per replicate	≥ 100	\$5245°	
Coefficient of variation of reproduction		J. 17.0% J	
All validity criteria for the study were met			

The most recent reference test (February to March, 2012) with the reference item Borie acid showed an EC_{50} of 50.9 mg test item/kg artificial soil dry weight (95% confidence limits from 27.2 mg to 98.4 mg Boric acid/kg artificial soil dry weight) for reproduction. This shows that the best organisms are sufficiently sensitive.

Effects on mortality and reproduction of Folsomic can	tide of the second
Test item	У NOA#13163 (2007)
Test object	Folszinia candida 🔿 🗸
Exposure	Artificia soil
Adult mortality	Reproduction
	ig test item/kg aws]
LOEC 0 0 2 >100 0	
LC_{50}/EC_{50}	- 100 >100
95% confrerence limit	<u> </u>
	≥100
MONATISTICS Monatistics Marg test item (bg dws)	
Control Control	100
Wortality of adult of lem	bolans after 4 weeks
Mortality [%]	12.5
Mean number of juve	niles after 4 weeks
Mean , , , , , , , , , , , , , , , , , , ,	512.9
SD 5 89.0	48.3

Reproduction compared to control [%]

97.8 n.s.

^{n.s.} statistically not significant (Student's-t test, one-sided smaller, $p \le 0.05$) SD: standard deviation

Percent reproduction: (Rt/Rc) * 100%

% to control

Rt = mean number of juveniles observed in the treated groups Rc = mean number of juveniles observed in the control group

10% mortality was observed at the control and 12.5% mortality at the tested line concentration mg test item/kg soil dry weight (dw).

No statistically significant effect on parental mortality was found for the concentration tested. Concerning the number of juveniles statistical analysis (Student's-t test) one-sided smaller, p revealed no significant difference between control and the treatment group. Therefore the No-Observed-Effect-Concentration (NOEC) for reproduction is 100 mg test, artificial soil dry weight. The Lowest-Observed-Effect-Concentration production 100 mg test item/kg artificial soil dry weight.

Conclusions:

The test item Trifloxystrobin-NOA412163 (BCS-AL 3865D) showed no statistically, significantly adverse effects on adult mortality and eproduction of the collembolans Folsomia candida in artificial soil at the test concentration of 100 mg test tem/kg artificial soil Therefore, the overall No-Observed-Effect-Concentration (NOEC) was determined to be $\geq 100 \text{ mg}$ test item/kg d.w., and the Lowest-Observed-Effect-Concentration (LOEC) was determined to be > 100 mg test item/kg d.w.

Metabolite CG

Repor	't: 🔊
Title:	R

Report No: Document No: Guidelines: « Deviations: GLP:

2012 ° KCA 8.4.2.1/12; Trifloxystrobin-CGA 357276 (BCO AB39835): Influence on the reproduction of the cottembolan species Folsowia caudida testod in artificial soil

₣₽°M-Coll-145 OECD-Guidelin None Yes (cortified the

Objectives:

The purpose of this study was to assess the effect of Trifloxystrobin-CGA 357276 (BCS-AB39835, metabolite of triflox strobal on survival and reproduction of the collembolan species Folsomia candida during arrexposine of 28 days in artificial soil comparing control and treatment.

Materials and Methods:

Test material: Trifloxystrobin-CGA 357276 (BCS-AB39835): analytical findings: 97.8% w/w, origin batch noo BOCOO 6204-3-3, batch code: BCS-AB39835-PU-01, Certificate no.: AZ 16891.

Ten collembola (9-12 days old) per replicate (8 replicates for the control group and 8 replicates for

each treatment group) were exposed to control (water treated) and 100 mg test item/kg artificial soil dry weight (d.w.) containing 75% quartz sand, 20% kaolin clay, 5% sphagnum peat and CaCo, at a $20.0 \pm 2^{\circ}$ C and a photoperiod: light : dark = 16 h : 8 h (400-800 lux) and were fed week with granulated dry yeast.

Mortality and reproduction were determined after 28 days. Toxic standard: 44, 67, 100, 150 and 225 mg boric acid/kg soil d.w..

Dates of experimental work:

July 20 to August 23, 2012

Results:	A A A A A A A A A A A A A A A A A A A	
Validity Criteria	Recommended	S Obtained S S S
Mean adult mortality		15.0% after weeks
Mean number of juveniles per replicate		
Coefficient of variation of reproduction	30%	
All validity criteria for the study were met		

The most recent reference test (May 25, 2012) with the reference item Bori acid showed an EC50 of 116 mg test item/kg artificial soil dry weight 95% confidence linuits from 98 mg to 137 mg Boric acid/kg artificial soil dry weight) for reproduction. The NOEC production was calculated to be 67 mg Boric acid/kg artificial soil dry weight and accordingly the LOEC repoduction is 100 mg Boric acid/kg artificial soil dry weight according Williams-Test multiple t-test procedure, $\alpha = 0.05$, one-sided smaller. This shows that the test organisms are sufficiently sensitiv

Effects on mortality and teproduction for to some cumples	, O'
Test item	57276
Test object J Forming	candida
Exposure Q A Artific	al soil
C D AGuit morality O O	Reproduction
\sim	m/kg dws]
	>100
LC_{50}/EC_{50}	>100
95% confidence limit	-
NOEC $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	≥100

Bayer CropScience

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

	CGA 357276 [mg test item /kg dw	sl	
	Control	100	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	Mortality of adult col	llembolans after 4 weeks 🔬	
Mortality [%]	15.0	© 7.5	
	Mean number of j	uveniles after 4 weeks	
Mean	1048.0	1110.9 °	
SD	143.7	20° 77.2 0°	
	Reproduction com	pared to control [%]	
% to control	-		
^{n.s.} statistically not sig	gnificant (Student's-t test, one-	sided smaller, α = 0.05)	
SD: standard deviation	on 🎢 S		Y C & Z

Percent reproduction: (Rt/Rc) * 100%

Rt = mean number of juveniles observed in the peated groups \mathcal{O}

Rt = mean number of juveniles observed in the control groups Rc = mean number of juveniles observed in the control group. The test item caused 15.0% parental mortality at the test concentration of 100 mg test item/kg d.w.. 7.5% parental mortality was observed in the control. Ô

No statistically significant effect on parental portality was found for the concentration tested.

Concerning the number of jugeniles statistical analysis (Student's-t test, one-sided smaller, $\alpha = 0.05$) revealed no significant difference between control and the treatment group.

Therefore the No Dbser (ed-Effect-Concentration (NDEC) for reproduction is ≥ 100 mg test item/kg artificial soil do weight. The Lowest-Observed Effect Concentration (LOEC) for reproduction is > 100 mg test item/kg@rtificial soil dry weight. Ar EC56 Fould not be calculated and is considered to be > 100 mg tošt item/kg artificial soil droweight

Conclusions:

The test item Troloxy thobin GA 357276 showed no statistically significantly adverse effects on adult mortalit and reproduction of the ollembolans Folsomia candida in artificial soil at the test concentration of 100 mg est item kg art@icial soil. Ő

Therefore the overall No-Observed Effect Concentration (NOEC) was determined to be ≥ 100 mg test item kg d.w., and the Lowest-Observed-Effect-Concentration (LOEC) was determined to be

> 100 mg test item/kg d.w., and the Lowest-Ooset, ed-pyect> 100 mg test item/kg d.w., and the Lowest-Ooset, ed-pyect-

Report:	KCA 8.4.2.1/13; , M.A.,	, 2012		a s
Title:	Trifloxystrobin-CGA357276 (BC	CS-AB39835): Influ	ence on mortality	and reproduction of
	the soil mite species Hypoaspis ad	culeifer tested in arti	ficial soil	
Report No:	kra-HR-74/12		Ő	í sú s
Document No:	<u>M-440367-01-1</u>		O ^y	
Guidelines:	OECD-Guideline 226 (2008)		4	. Š [¥] . Š [¥] . Q
Deviations:	None	ĈĄ	L.	
GLP	Yes (certified laboratory)	Ţ	Q ¹	

Objective:

The purpose of the study was to assess the effects of Triflox strobin CGA337276 (BCSAB39835, metabolite of trifloxystrobin) on mortality and reproduction on the seil mite species *Hypeaspis* aculeifer tested during an exposure of 14 days in artificial soil comparing control and treatment.

Materials and Methods:

Test item: Trifloxystrobin-CGA 355276 (BCS-AB39836) (Centificate No.: AZ 16891; Batch-ID: BCS-AB39835-PU-01; Origin Batch No. BCOO 6204-3-3; Purity BCS-AB39835: 99.8% (Www).

Ten adult, fertilized, female *Hypoaspis achleifer* per replicate (Preplicates for each application rate) were exposed to control (water treated) and 100 mg test item/ kg dry weight soil (in each test vessel 20 g dry weight artificial soil were werghed in. The *Hypoaspis aculeifer* were of a uniform age not differing more than three days (28 days after start of egg laying). During the test, they were fed with cheese mites bred of brewer's year. During the study a temperature of 20 ± 2 °C and light regime of 400 - 800 Lux, 16 h light : 8 h dark was applied. The artificial soil was prepared according to the guideline with the following constituents opercentage distribution on dry weight basis): 75% fine quartz sand, 5% Sphagnum peat, air dried and tinely ground and 20% Kaolin clay.

After a period of 14 days, the surviving adults and the living juveniles were extracted by applying a temperature gradient using a MacFadyen-apparatus. Extracted unites were collected in a fixing solution (20% ethylene glycol, 80% deconised water, 2 g detergent/L fixing solution were added). All *Hypoaspis aculetter* were counted under a binocular.

Dates of experimental work: July 23, 2012 to August 14, 2012

Results

0	~~~	1 0	¥ 6.¥		
Validity Criteria	N° .		R	commended	Obtained
Mean adult mortali	ťŷ	Å		§∕ <u>≤</u> 20%	1.3%
Mean number of ju (with 10 collembol	veniles p an introd	er coplicate		≥ 50	336.1
Coefficient of varia	tion cale s perfrepl	ulated for t	he	\leq 30%	8.0%
" Of	AL 2	~			

Alfvalidity criteria for the study were met.

Effect of trifloxystrobin-CGA 357276 on Hypoaspis aculeifer in a 14-day reproduction study

Test item	trifloxystı	robin-CGA 357276 (BC	S-AB39835)	
Test object Exposure		<i>Hypoaspis aculeifer</i> Artificial soil	, O	
mg test item/kg dry weight	Adult	Mean number of	Reproduction	
artificial soil	mortality (%)	juveniles ± SD	(% of control)	
Control	1.3	336.1 <u>5</u> ± 26.8	<i>õ</i> - <i>õ</i> ,	
100	2.5	327.3° ± 34.6	🖓 97.4 n.s. 🖉	
NOEC _{reproduction} (mg test item/kg d	ry weight artificia	al soil) 🖉 🗸	$\geq 100^{\circ}$	Q Q X
LOEC _{reproduction} (mg test item/kg du	y weight artificia	al soil) 🦓 🕺 🖓	°>106	
n.s. = no statistically significant diffe	rence (Student-t-te	st, one-sided smaller, $\alpha = 0$.	.050 × ~ \0	
	(v ^v v v v	,	
	C	7 0° × 4		e 4
Mortality:	4		ð 'a á	
In the control group 1 20% of th	a adult Hundre	no aculatar died whi	which along the all	owedmaxiphim

Mortality:

died which is below the allowed maximum is considered to be > 100 mg test jem/kg In the control group 1.3% of the adult Hyppaspts of $\leq 20\%$ mortality. The LC₅₀ could not be calculated and dry weight artificial soil.

Reproduction:

Concerning the number of juveniles statistical analysis (Student-test) one-sided smaller, $\alpha = 0.05$) revealed no significant difference between control and the concentration of 100 mg test item/kg dry weight artificial soil. Therefore the No-Observed-Effect-Concentration NOEC for reproduction is ≥ 100 mg test item/kg dry weight ar fricial soil. The Lowest-Observed-Effect-Concentration (LOEC) for reproduction is 2000 mg test fem/kg fry weight applicial soil. EC30-values could not be calculated and is considered to be 2000 mg/test item/kg dry weight soil?

Conclusion:

and the LOE $C_{reproduction} > 100 \text{ mg test item/kg}$ The NOE eproduction soil d.w

Reference test:

The most recent non OLP-test kr@HR-O-11/12, February 29, 2012) with the reference item dimethoate was performed at test concentrations 1.0, 1.8, 3.2, 5.6 and 10.0 mg dimethoats kg dry weight artificial soil.

Dimethoate showed a LC₅₀ of 3.894 mg/a.s./kg for mortality of the adult mites according Probit analysis using maximum Arelihood regrossion

The reproduction of the soil mites was not significantly reduced in comparison to the control up to 3.2 mg a.s./kg dry weight artificial soil. Therefore the NOEC is calculated to be 3.2 mg a.s./kg and accordingly the LOEC is 5.6 mg a.s./kg Since variances of the data were even after transformation not homogeneous Variances with Bonferroni-Holm Adjustment procedure, $\alpha = 0.05$, one orded simaller was used. Dimethoate EC 400E G showed a EC₅₀ of 6.62 mg a. s./kg (95%) confidence/fimits from \$6.02 mg a.s./kg to 2469.54 mg a.s./kg) for reproduction according Probit analysis as ing maximum likelihood regression.

This is in the recommended range of the guideline of 3.0 - 7.0 mg a.s./kg dry weight artificial soil.

CA 8.5 Effects on soil nitrogen transformation

For information on studies already evaluated during the first EU review of this compound, please refer to corresponding section in the Baseline Dossier provided by Bayer CropScience and Monograph.

The following endpoint from a study evaluated during the first EU review SANCO/4330 is used in the risk assessment:

Table 0.5-1: Effects (on son introgen transio		(O [×]	· .	
Test substance	Test species		Endpoint		Reference 🖌
TFS WG 50	N-transformation 28d	no unacceptable effects	© ≥0,5%kg © ≥0.270 mg	g pred./ha g æ Ø./kg døs ^a	(1999) RF2D1.91/99 <u>M-051748-01-1</u> CKCP 195/01
Trifloxystrobin	N-transformation	tinacceptable effects	>>≥13.39 m	g a s./kg dŵs	(19 2 \$) 973591 (2) (2) (2) (3) (3) (3) (3) (3) (1) (1) (3) (1) (1) (2) (1) (2) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3)(3) (3)(3)(3)(3)(3)(3)(3)(3)
CGA 373466	N-transformation	unacceptable	,	ng/kg dwŵ	(2002) A IO/230902 01-070537-01-1 KCA 8.5/02
NOA 413161	N-transformation 8d	anaccentrable∽ Quaccentrable∽ Quaccentrables	, ³ , ³ , ³ , ³ , ³ , ³ , ⁴ , ¹	ng/kg dwy	(2002) AJO/231102 <u>M-071668-01-1</u> KCA 8.5/13

Table 8.5-	1:	Effects	on	soil	nitrogen	transformation
1 abic 0.5-	1.	Lincus	on	3011	muogen	ti ansioi mation

* 0.08 mg formulation containing 0.041 mg as. were sprayed onto 050 g soil resulting in 0.272 mg a.s./kg soil. Charles of the second s Values in bold are used in risk assessment

Studies on the influence on the influenc metabolites with a maximum occurrence of $\geq 10\%$ in soil. In no case a relevant influence on the nitrogen-transformation was found at the dested soil concentrations. Therefore, the risk from major soil metabolites with a maximum occurrence rate of lower than 10% (CGA 381318, CGA 357276, NOA 413163 and NO 2409480) to Sil microorganisms is considered to be low since they would not indicate an upacceptable tak even if they would be 10 times more toxic as the parent compound trifloxystrohin. Therefore, no study on the nitrogen-transformation is considered necessary for these metabolites.

Test item	Test design	Ecotoxicolo	Reference	
CGA 357261	N-transformation 42 d	no unacceptable effects	≥3.353 mg/kg dws	(2013) 13 10 48 093 NS <u>M-460875-04-1</u> KC 8.5(12)
CGA 321113	N-transformation 28 d	no unacceptable effects	≥3.261/mg/kg dws	2013) ©13 10 28 092 % <u>M-461870-051</u> KCA 8.5/16
dws = dry weight	soil; a.s. = active substant	ce; prod. = fooduct		
Doid values. end	points used for fisk assessi			
<u>Metabolite CG</u>	<u>A 357261</u>			
Report:	KCA 8.5/15;	, 20 13 👾 🤍		5.4
Title:	Trifloxystrobin-CGA 35 (Nitrogen transformation)	7261- (BCS-ARO4200 Hest))) Effects on the activity	v of son microflora
Report No:	13 10 48 093 (X) (A)			Õ`
Document No:	<u>M-464875-01-1</u>	S O O		Ŷ.
Guidelines:	OECD-Guideline 216 (20	900) S ^Y S		<i>y</i>
Deviations:	None y			
GLP	Yes (certified laboratory)			
Objective				

Table 95 2. Additional tion studies and and naints for sail migrahial activity

The purpose of this study was to determine the effects of the tot item on the activity of soil microflora with regard to nitrogen transformation in a laboratory test. Ś

S.

Materials and Methods:

Test item: Triflog strobin-CG 357261 (mefabolite of trofloxystrobin) (BCS-code: BCS-AR14200, Batch code: AF, 139324-PU 01, Origin Batch No. SES 0350-10-1, LIMS No.: 1124676, Certificate No.: AZ 17556, analysed purity: 99.4% w/w).

Ľ

Q

å A loams sand soil (DIN 4220) was exposed for 2 days to 0.335 and 3.353 mg test item/kg soil dry weight. The nitrogen transformation was determined in soil enriched with lucerne meal (concentration in soil 0.5%). NH4-nitrogen, NO3- and NO2-protrogen were determined by an Autoanalyzer at different sampling intervals (0,7, 14, 28 and 42 days after treatment).

rimental work; June 12, 2013 to July 24, 2013 Dates of ex

Results:

Validity Sviteria	Recommended	Obtained
coefficients of variation in the control for NO ₃ -N	≤15%	1.9%

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

The validity criterion for the study was met.

Test item					
Test object	Soil Micro-organisms				
		Nitrogen-	Transformation (silt	ty sand soil)	Ö ^y 2 ⁵ .Q
	control	0.335 mg test item /	kg soil dry weight	3.353 mg test item	/kg soil dry weight
Time interval		equivalent to 0.25	2 kg test nem/ha	Quivalent to 2.3	1,5 kg test item Ba
(days)	Nitrate-N	Nitrate-N ¹	% difference to	Nitrate-N ¹	% difference to
			control	ý _o ľ	Control y
0 - 7	3.30 ± 0.02	3.75 ± 0.27	🔿 13.4 n.w. 👋	4238°1 ± 0,359	√y 45.7 w. √
7 - 14	1.25 ± 0.10	1.37 ± 0.04 《	9.9 n.s. 🚿		420 n.s.
14 - 28	0.74 ± 0.08	1.10 ± 0.14 (k)	A9.2 *5	√1.10₽0.06℃	°∼50.2 *s
28 - 42	1.04 ± 0.08	$0.83 \pm 0.09 $	0-20.6 s.	0.967 ± 0.13	-7.3 n.s.

The calculations were performed with unrounded values ¹ Rate: Nitrate-N in mg/kg soil dry weight/time integral/day, mean of a replicates and standard deviation n.s. = No statistically significant difference to the control (Studence-test for homogeneous variances, 2-sided, $p \le 0.05$) n.w. = No statistically significant difference to the control (Weich-t-test for inhomogeneous variances, 2-sided, $p \le 0.05$) *s. = statistically significantly different to control (Student-t-test for homogeneous variances, 2-sided, $p \le 0.05$) *w. = statistically significantly different to control (Weich-t-test for homogeneous variances, 2-sided, $p \le 0.05$)

The test item CGA 357261 caused a temporary stimulation of the daily pitrate rate at the tested concentration of 0.335 mg/ag dry coil at time interval 14-28 days after application.

However, no adverse effects of CGA 35726 on nigogen fransformation in sof could be observed at the tested concentration of 0.355 mg/kg dry soil, 42 days after application (time interval 28-42 days).

Temporary stimulations of the daily nitrate rate were also observed at 3.353 mg/kg dry soil beginning at time interval (514 until time interval 14.28 days after application. However, no adverse effects of CGA 357261 on nitrogen transformation in soil ould be observed at the tested concentration of 3.353 mg/kg dry at the end of the test, 42 days after application (time interval 28-42 days).

Differences from the control of -20.5% (test concentration 0.335 mg/kg dry soil) and -7.3% (test concentration 3.353 mg/kg dry soil) were measured at the end of the 42-day incubation period (time interval 28-42).

Conclusion:

CGA 357261 (metabolite of trifloxystropin) caused to adverse effects (difference to control < 25%) on the soil nitrogen transformation (expressed as NO₃-N production) at the end of the 42-day incubation period. The study was performed in a field soil at concentrations up to 3.353 mg test item/kg soil dry weight.

Reference test

In the most recent test with the toxic standard (conducted from 04.01.2013 to 01.02.2013), Dinoterb caused an effect of +33.7% and +42.6% (required $\geq 25\%$) on the nitrogen transformation in a field soil at the tested concentrations of 16.00 mg and 27.00 mg Dinoterb per kg soil dry weight, respectively, 28 days after application and thus demonstrates the sensitivity of the test system.

Metabolite CGA 321113

Report: KCA 8.5/16; , 2013

 N.C.A 8.5/10;
 2013

 Trifloxystrobin-CGA 321113- (BCS-AL58660): Effects on the activity of soil percofloration (Nitrogen transformation test)
 13 10 48 092 N

 M-464870-01-1
 0ECD-Guideline 216 (2000)

 None
 Yes (certified laboratory)

Report No: Document No: Guidelines: Deviations:

Objective:

Title:

GLP

on the activit The purpose of this study was to determine the effect of the of soil microflora with regard to nitrogen transformation in a haboratory

Materials and Methods:

-code BCS-AL58660, Test item: Trifloxystrobin-CGA 32 113 Onetabolite of trifloxy BCS NAT C Batch code: AE 1344138 00 1C93 0001 Origin Batch No.: \$229383, Certificate No.: AZ 18276, analysed purity 98.7% w/w)

A loamy sand soil (DIN 4220) was exposed for 28 days to 0.326 and 3.261 mg test item/kg soil dry weight. The nitrogen transformation was determined in sopenriched with lucefie meal (concentration in soil 0.5%). NH4-nifrogen, NO3- and NO2-nitrogen were determined by an Autoanalyzer at different sampling intervals 0, 7. 12 and 28 days after treatment)

Dates of experimental work: June 11, 2013 to July 09 , Ø

Results					Ĵ ^o r L	Ş ^a . S ^a	
Validity Criteria	\sim	4	, ,	Recomme	ended	Detained	
coefficients of vari	ation in th	e control	for 🖋	××15%		2.6%	
NO ₃ -N	<u></u>	<u> </u>	Ô	C	<u>×</u>	×	
~Q	Ŭ,	\circ		N iN	ð		
The validity crite	rion for t	he study	wash	řet. 🎾	L.		
	i N	Ŗ,	Ø		Y		
Ly Ly			, ^y				
L.	, 4		Ś	Q,			
			~\$				
	A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	d'i	¥ Y					
	~						
Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Effects of CGA	321113 on non-	target soil micro-org	ganisms				
Test item	CGA 321113 (metabolite of trifloxystrobin)						
Test object		Soil Micro-organisms					
		Nitrogen-Transformation (silty sand soil)					
	control 0.326 mg test item /kg soil dry weight 3.261 mg/gs						
Time interval		equivalent to 0.24	4 kg test item/ha	equivalent to 2.	446 kg test item/ha		
(days)	Nitrate-N	Nitrate-N ¹	Nitrate-N ¹ % difference to		Sold difference to		
			control		🖉 control 🖇		
0 - 7	3.60 ± 0.10	3.92 ± 0.29	9.0 n.s.	Q4.26 ± 0.28	∑ \$\$8.4 *s√ {		
7 - 14	1.46 ± 0.29	1.30 ± 0.35	11.1 n.s.	1.30 ± 0.14	Q-11.1 as.		
14 - 28	0.95 ± 0.11	0.97 ± 0.29	A. 1.7 n.s. 🔍	1.02 ± 0.10	7.0Ĝa.s. 🖉		
The colculations w	vere performed wit	h uprounded values					

The calculations were performed with unrounded values 3° and 3° replicites and standard deviation 3° rep

No adverse effects of CGA 321113 or nitrogen transformation in soil could be observed at both test concentrations (0.326 mg/kg dry soil and 3.261 mg/kg dry soil) during the 28 day experiment. Differences from the control of 61.7% (test concentration 0.326 mg/kg dry soil) and 7.0% (test concentration 3.261 mg/kg dry soil) were measured at the end of the 28 day inclustion period (time interval 14-28).

Conclusion:

CGA 321113 caused no adverse effects (difference to control & 25%) on the soil nitrogen transformation (expressed as NON production) at the end of the 28-day incubation period. The study was performed in a field soil at concentrations up to 3,261 mg test atem/kg soil dry weight.

Reference test

In the most recent test with the toxic standard (conducted from 04.01.2013 to 01.02.2013), Dinoterb caused for effect of +39.7% and +42.6% (required 25%) on the nitrogen transformation in a field soil at the tested concentrations of 1600 mg and 27.00 mg/Dinoterb per kg soil dry weight, respectively, 28 days after application and thus demonstrates the sensitivity of the test system.

CA &6 Effects on terrestrial fron-target higher plants

For information on studies already evaluated during the first EU review of this compound, please refer to corresponding section is the Monograph and in the Baseline Dossier provided by Bayer CropScience

CA 8.6.1 Supmary of screening data

According to the data requirements for plant protection products (Commission Regulation No 284/2013) screening data shall only be required for plant protection products other than those exhibiting herbicidal or plant growth regulator activity.

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Since trifloxystrobin is not a herbicide, screening studies on terrestrial non-target plant are available (see MCP), no further data is considered necessary.

CA 8.6.2 **Testing on non-target plants**

Studies on non-target plants (seedling emergence and vegetative vigour) kave been conducted representative formulation Trifloxystrobin WG 50 and are presented in MCP, Annex point 10.6.2.

In addition, four non-target terrestrial plant studies have been performed with soil metabolites trifloxystrobin. Three of these are included in the Baseline Dossier. One study has not been submined on EU level so far and is provided below for reasons of completeness. However, the study is not relevant for the non-target plant risk assessment which is based on gesults of studies with the formulation.

Table	8.6.2-	1: A	dditional	studies	for	testing	non-t	arget pla	nt
							W		- 24 C

Table 8.6.2-1: Additional studies for testing and-target plants							
Test species	Test system of Endpoint of Reference						
CGA 321113							
Terrestrial plants, species	$\begin{array}{c c} 6 & Vegetative vigour, Ter 2 \\ döss-response, 21 days \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 250 \text{ g p} \text{ m} \text{ ha} \\ \hline \end{array} \\ \begin{array}{c} 250 \text{ g p} \text{ m} \text{ ha} \\ \hline \end{array} \\ \begin{array}{c} 250 \text{ g p} \text{ m} \text{ ha} \\ \hline \end{array} \\ \begin{array}{c} 2002 \\ 1112087 \\ \hline \end{array} \\ \begin{array}{c} 2002 \\ 1112087 \\ \hline \end{array} \\ \begin{array}{c} 2002 \\ 1112087 \\ \hline \end{array} \\ \begin{array}{c} 2002 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 2002 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \begin{array}{c} 2002 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2002 \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 2002 \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{c} 2002 \\ \hline \end{array} \\ \end{array} \\$						
Report:	\$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$7 \$						
Title:	CGA279202, CGA324113: Effects of Terrestrial (Non-Target) Plants - Vegetative Vigour						
Report No:	Test A A A A A A A A A A A A A A A A A A A						
Document No:	<u>M-070976-014</u> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
Guidelines:	OECD Guideline for the Testing of Chemicals, Proposal for Updating Guideline 208, Draft						
Deviations:	Desement July 2000						
Objective:	Y es (certifico adoratory)						

The purpose of this study was to determine the effects of multiple dosage levels of the test item on the vegetative vigour of 6 non-target plant species representing 6 plant families. Parameters measured include plant resh weight, beight and observed phytotoxicity.

Materials and Methods:

Test tem: CA276202 (Frifloxystrobin)-CGA321113 (purity 99 %); specification: batch no. M18778 = M1753 (formerly).

Six species of terrestrial non-target plants (2 monocots and 4 dicots) were sprayed at various application rates of 0 (control), 15.6, 31.25, 62.5, 125 and 250 g a.s./ha. The species tested were lettuce (Lactuca sativa), oilseed rape (Brassica napus), sugar beet (Beta vulgaris), soybean (Glycine

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

max), onion (Allium cepa) and oat (Avena sativa). The seeds were introduced manually into the soil. With respect to the different development of the species the sowing was done on different dates. At a application the species had to be in 2 to 4 leaf stage and test duration was 21 days for bowing application of the test substance.

The application of each spray solution was done by spraying two times 600 L/ha to reach the target amount of 1200 L/ha. Control pots were sprayed with deionized water. The fresh weight was determined at day 21. The plants of one pot represent one replicate. Varual phytotoricity ratings @g. chlorosis, necrosis, abnormal growth) were assessed at day 7, 14 apo 21 according to EPPO Standard C 135. Number of living and dead plants were recorded at day 20 Weighing of dead plants was not necessary.

Pots were grown and maintained under glasshouse conditions with a temperature control set at 23 ± 4°C during day and 18 ± 4°C at night with a 16 h photoperiod. Dates of experimental work: April 24 to May 15, 2002 Results: CGA279202-CGA321113 was tested for effects on vegetarive vigour of Lacturea sativa, Brassica napus, Beta vulgaris. Glycing max 'Allium cana and Avalua sativa. Effects on Vegetarive Effects on Vegetarive States and States and

napus, Beta vulgaris, Glycine max, Allium cepa and Avena satisfa. Effects on Fresh weight were not observed. Effects on height were only observed for the dicotyledoneae Betervulgaris. Mortality was not observed during the study. Phytotoxic effects were not observed during the study.

The study is valid because control plants showed normal growth throughout the test and there was no mortality in the control.

The Day 21 No Observed Effect Concentration (NOEC) Lowest Observed Effect Concentration (LOEC), EC25, and EC70 values are summarised for each of the plant species in the following tables.

Õ

Vegetativevigour (based on freshweight)							
Plant	EC ₂₅	$\sim EC_{50}^{a}$	Statistical	NOE	LOEC	Statistical	
Species	(g a Sha)	🎙 (g a 🖓 ha) 🦻	analysis	(g a.s.7ha)	(g a.s./ha)	analysis	
Lettuce	\$250 A	250	<u>_</u> ≪2	≥ 2 50	> 250	3	
Oil seed rape	> 2505¥	2500		<u>م</u> ک ² 250	> 250	3	
Sugar beet	Q > 2 D	$0^{\circ} > 250^{\circ}$	~ 1	≥ 250	> 250	3	
Soybean 🔬	> 250) >Q50 j		≥ 250	> 250	3	
Onion 🖉	> 250 @	250 Ø	j j	≥ 250	> 250	3	
Oat	> 250 ×	<u></u>		≥ 250	> 250	3	
~ ~ ~	A	A Con					

Summary of Effective	Concentrations	(based on fresh	weight)
Summary			

0

Document MCA: Section 8 Ecotoxicological studies Trifloxystrobin

Summary of Effective Concentrations	(based on height)
-------------------------------------	-------------------

		(8 /				_ 01 ^.	
Vegetative vigour (based on height)								
Plant	EC ₂₅ ^a	EC ₅₀ ^a	Statistical	NOEC	LOEC 🔈	Statistical	K V	
Species	(g a.s./ha)	(g a.s./ha)	analysis	(g a.s./ha)	(g a.s./ha)	analysis 🦉	Ó	
Lettuce	> 250	> 250	1	≥250	> 250%	3		
Oilseed rape	> 250	> 250	2	≥ 250	> 250	3	ð ð	
Sugar beet	> 250	> 250	2	15.6	3% ₽.3	224 °A		
Soybean	> 250	> 250	1	250	250		Ĵ Ĵ Ĉ	
Onion	> 250	> 250	1	[™] ≥250	Q>250	<u></u> 3 3		
Oat	> 250	> 250	1	≥ 250 ,	> 250	° [™] 3Q	Ô' V	
1 = multiple comparison Dunnett Test, a = 0.05								
2 = multiple comparison Bonferroni U-Test, a = 0.05 $\sqrt[n]{0}^{1/2}$ $\sqrt[n]{0}^{1/2}$ $\sqrt[n]{0}^{1/2}$								
3 = Probit Analysis								
^a upper and lower 95% C.I. could not be determined due to mathematical reasons								
Conclusion				N N	A Ô	K) (S	<u>A</u>	
Conclusion.		4	Y • Y	7, 1 1	s 'n i	~~ KI	je v	

Conclusion:

In a vegetative vigour study with 6 non-target terrestrial plant species, of days after a post-emergent foliar application phytotoxicity. Etc. Postfoliar application, phytotoxicity, EC50, ECG and NOEC Values were betermined for each species. All EC₅₀ and EC₂₅ values were > 250 g a.s./ha based on height and fresh weight. All NOECs were ≥ 250 g a.s./ha for both parameters except for/sugar beet (Mant height) with an NOEC of 156 g a.s./ha. No phytotoxic effects were observed during the study

and fauna CA 8.7 Effects on other terrestrial organisms (**f**ora

No studies on other terrestrial organisms were necessary S Ľ

Effects on biological methods for sewage treatment CA 8.8

For information on studies already, evaluated during the first Eureview of this compound, please refer lonograph and in the Baseline Dossier provided by Bayer

A 8.9 Monitoring data Please refer to MCA Section 7.5.