Page 1 of 49 2012-05-12 Doc. M-III / Tier 2, Sec. 5, Point 9 – Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)



M-430686-01-4

Page 2 of 49 **Bayer CropScience** BAYER 2012-05-12 Doc. M-III /Tier 2, Sec. 5, Point 9 - Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

<text>

Page 3 of 49 2012-05-12 Doc. M-III /Tier 2, Sec. 5, Point 9 – Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)



| IIIA1 9.4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Long-term PECs values (from 7-100 days after last application)21                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| IIIA1 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Predicted Environmental Concentrations in Soil (PECs) for Relevant                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Endpoints for PEC <sub>soil</sub>                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PEC <sub>soil</sub> for iprovalicarb metabolites                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PEC <sub>soil</sub> for folpet metabolites                                                  |
| IIIA1 9.5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Initial PECs values                                                                         |
| IIIA1 9.5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Short-term PECs values (1-4 days after last application)                                    |
| IIIA1 9.5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Long-term PECs values (from 7-100 days after last application)                              |
| IIIA1 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Predicted Environmental Concentrations in Ground Water (PECgw)                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Endpoints for PEC <sub>gw</sub>                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Iprovalicarbo                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PECgw modelling approach 27                                                                 |
| IIIA1 9.6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Active substance 2                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |
| . (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Parc gw tor iprovancaro                                                                     |
| í de la companya de | PEGew for Colpet                                                                            |
| IIIA1 9.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Relevant metabolites                                                                        |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PEOgw for iprovalicar metabolites                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PEC for for the metabolites 34                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             |
| IIIA1 9.6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Information on impaction water treatment procedures                                         |
| IIIÂÎ 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Predicted Epsironmental Concentrations in Surface Water (PECsw)<br>for the Active Substance |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Summary of fate and behaviour of iprovalicarb in water                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Summary of fate and behaviour of folpet in water                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PEC <sub>sw</sub> calculations                                                              |
| $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Endpoints for PEC <sub>sw</sub>                                                             |

|                   | PEC <sub>sw</sub> modelling approach                                                      |
|-------------------|-------------------------------------------------------------------------------------------|
|                   | PEC <sub>sw</sub> for iprovalicarb                                                        |
|                   | PEC <sub>sw</sub> for folpet                                                              |
| IIIA1 9.7.1       | Initial PECsw value for static water bodies                                               |
| IIIA1 9.7.2       | Initial PECsw value for slow moving water bodies                                          |
| IIIA1 9.7.3       | Short-term PECsw values for static water bodies (1-4 days after last of 42 application)   |
| IIIA1 9.7.4       | Short-term PECsw values for slow moving water bodies (P-4 days after<br>last application) |
| IIIA1 9.7.5       | Long-term PECsw values for static water bodies (7-92 days after last<br>application)      |
| IIIA1 9.7.6       | Long-term PECsw values for slow moving water bodies (7-42 days after<br>last application) |
| IIIA1 9.8         | Predicted Environmental Concentrations in Surface Water (PECsw)<br>for Metabolites        |
|                   | EU endpoints for PEC. 43                                                                  |
| \$ <sup>(</sup>   | PEC sw for iprovalicarb metabolites                                                       |
| O<br>. Ø          | PEG for folpet metabolites 47                                                             |
| IIIA1 9.8.1       | Initial PECsov value for static water bodies                                              |
| IIIA1 9.8.2       | Initial PECsw value for slow moving water bodies                                          |
| IIIA1 9.8.3       | Shore term PECsw values for static water bodies 1-4 days after last<br>application)       |
| IIIA1 9.8.4       | Short-term QECsw values for slow moving water bodies 1-4 days after<br>last application   |
| مي<br>IIIA1 9.8.5 | Long-term PECswevalues for static water bodies 7-42 days after last                       |
|                   | Application                                                                               |
|                   | Hast application)                                                                         |
| IIKA 9.8.7        | Additional field testing                                                                  |
| IIIA19.9          | Fate and Behaviour in Air48                                                               |

- **IIIA1 9.10**



**IIIA19** FATE AND BEHAVIOUR IN THE ENVIRONMENT

### **Regulatory background**

(Submission for Annex I renewal)

This document summarises predicted environmental concentrations for the product 'Iprovalicate + Folpet - WG 65.3' containing the active substances iprovalicarb and folpet for the application of the product according to the use pattern provided in Table 9-1.

This document summarises predicted environmental concentrations for the active substance proval warb contained in the product 'Iprovalicarb + Folpet - WG (5.3' for the application of the product according @ the use pattern provided in Table 9-1. For the 3<sup>rd</sup> patty active substance folpet, produced from ) Bayer Cropscience AG has the right of reference to files, data

which were submitted in the EU for the support of studies, summaries and assessments owned by the registration of the active substance folpet and the representative formulation Folpan 80 WDG. Therefore, no predicted environmental concentrations of folges are submitted here. For details please refer Formulants The formulants of a preparation would not be expected to influence the environmental behaviour of an

active substance (except inspecial formulation to be such as slow refease formulations). The effects of the formulants are limited to short term processes such as the formation of stable spray dispersions, sprayability and permeation into target organisms while the impact on tong-term processes such as degradation and distribution is negligible. As this formulation is not a slow release formulation the results of environmental fate studies performed with the active substance are thosyalid also for the formulation.

# Intended application pattern 🖄

Ő The formulation is intended for use as a fungicide for vines. The critical use pattern for this formulation is

The formulation is intended for use as a fungicide for vine. The critical use pattern for this formulation is summarised as follow. Detailed use patterns for different countries can be found in document D-2, which is enclosed with this submission of the critical use pattern for this formulation is enclosed with this submission of the critical use pattern for this formulation is enclosed with this submission of the critical use pattern for this formulation is enclosed with this submission of the critical use pattern for this formulation is enclosed with this submission of the critical use pattern for this formulation is enclosed with this submission of the critical use pattern for this formulation is enclosed with this submission of the critical use patterns in the critical use patterns in

# Table 9-1:Comparison to the actual application use pattern and the calculated use pattern for<br/>PEC calculations

| Сгор       | Timing of<br>application<br>[BBCH] | Number of applications | Application<br>interval<br>[days] | Maximum ap<br>individual<br>[kg a.<br>Inrovalicarb | plication rate,<br>treatment<br>.s./ma] |          |
|------------|------------------------------------|------------------------|-----------------------------------|----------------------------------------------------|-----------------------------------------|----------|
| CAD        |                                    |                        |                                   |                                                    |                                         |          |
| GAP:       |                                    |                        |                                   | K Y                                                |                                         | , P K    |
| vines      | 16 – 75                            | 1 - 4                  | 10 - 14 🖒                         | 0.216                                              | 1.3512                                  |          |
|            | 16 - 61                            | 1 - 4                  | 10 - 14                           | 0.162                                              | 1.9134~0                                |          |
|            | 15 - 85                            | 1 - 4                  | 10 - 12                           | 0,150                                              | × 0.940 ×                               |          |
| PECs:      |                                    |                        |                                   |                                                    |                                         |          |
| vines      | 15 - 85                            | 4                      | ¶©‴10                             | 2 kg                                               |                                         |          |
| a) Bayer ( | CropScience AG                     | is using a risk e      | kvelope approach                  | of the risk assessme                               | ent of 😡 🍾                              | <u> </u> |
| represe    | ntative formulat                   | ion. Within the        | Done of Whis supp                 | ementar dossier un                                 | to Applications a                       | it «     |

representative formulation. Within the wore of this supplementaty dossier up to Applications at 1.35 kg/ha folpet are proposed as a safe use in grapes. This is much below the critical GAP that the currently defends in this crop in the EU, where 10 applications of up to 1.6 kg/ha have been approved, with all other parameters such as interval between applications or pre-harvest interval being identical or very similar. Therefore, Bay CropScience AG considers it justified to the to tobe the data swned by the parameters appropriate. A tolpet-specific risk assessment is not considered necessary to defend the Antex I listing of interval case.

# Compounds addressed in this document Iprovalicarb

In addition to the active substance, the following metabolites were addressed in this document as they were considered important due to the amounts in which they were found during the course of environmental fate studies or due to their specific properties. Study authors sometimes have used different names of short codes for the active substances and degradation products. In this summary, a single name for each substance is always used.

# Bayer CropScience

Doc. M-III /Tier 2, Sec. 5, Point 9 – Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 *(Submission for Annex I renewal)* 

| Compound                              | Chemical structure                                                                                                                                                                                                                                                                               | Explanation for                                                                                      | Considered for                                                                     |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| (Codes)                               |                                                                                                                                                                                                                                                                                                  | consideration                                                                                        |                                                                                    |
| Iprovalicarb<br>(SZX 0722)            | $\begin{array}{c c} & H_3C \\ CH_3 & O \\ \downarrow & \downarrow \\ \end{array} \xrightarrow{ \begin{array}{c} H_3C \\ H_3 \\ H_3 \\ \end{array}} \xrightarrow{ \begin{array}{c} CH_3 \\ H_3 \\ CH_3 \\ H_3 \\ \end{array}} \xrightarrow{ \begin{array}{c} CH_3 \\ CH_3 \\ H_3 \\ \end{array}}$ | active substance                                                                                     | PEC See                                                                            |
|                                       | $\begin{array}{c c} H_{3}C & O & N \\ H_{3}C & O & CH_{3} \end{array}$                                                                                                                                                                                                                           |                                                                                                      |                                                                                    |
| SZX 0722-<br>carboxylic acid<br>(M03) | $H_{3}C \xrightarrow{H_{3}C} CH_{3} \xrightarrow{H_{3}C} OH$                                                                                                                                                                                                                                     | occurrence in<br>- aerobic soil (10%) @                                                              | PECsoit<br>PECson PECson<br>PECson PECson                                          |
| PMPA<br>(M10)                         |                                                                                                                                                                                                                                                                                                  | occurrence in<br>- Aerobic Goil (> 10%)<br>- watet/sediment study<br>(>40% in water and<br>sediment) | PEC soil<br>PEC sw<br>PEC sw & CEC sed                                             |
| N-acetyl-PMPA<br>(M15)                |                                                                                                                                                                                                                                                                                                  | of currende in 5<br>- anaerobic sold (> 10%)<br>- water/sechinent stody<br>- 10% in water            | PEO <sub>soil</sub><br>PEC <sub>gw</sub><br>PEC <sub>sw</sub> & PEC <sub>sed</sub> |
|                                       |                                                                                                                                                                                                                                                                                                  |                                                                                                      |                                                                                    |

| <b>Table 9- 2:</b> | Active substance and | metabolites addressed | in this document |
|--------------------|----------------------|-----------------------|------------------|
|                    |                      |                       |                  |

# Folpet

The representative formulation in the application for Andex I Renewal of iprovalicarb is a combination with folget, which – from a Bayer perspective is a 3° party substance, procured from Seven CropScience AG has the right of reference of files, data studies, summaries and assessments owned by which were submitted in the EU for the support of the registration of the active substance folget and the representative formulation Folgan 80 WDG. The right to references of Bayer CropScience AG extends to all EC countries a separate Letter of Access is included in this supplementary dossier (M-428625-0)(-1).

Bayer CropScience AG is using orisk envelope approach for the risk assessment of the representative formulation. Within the scope of this supplementary dossier, up to 4 applications at 1.35 kg/ha folpet are proposed as a safe use in grapes. This is much below the critical GAP that **set of** currently defends in this crop in the EU, where 10 applications of to 1.6 kg/ha have been approved, with all other parameters such as interval between applications or pre-harvest interval being identical or very similar. Therefore, Boyer CropScience AG considers it justified to refer to folpet data owned by **set of** wherever appropriate A fotpet-specific risk assessment is not considered necessary to defend the Annex I listing of iprovalitarb.

# IIIA1 2 Rate of Degradation in Soil

Specific studies on the preparation have not been performed. The results of laboratory studies performed

with the active substance iprovalicarb as provided in the Annex IIA in the context of Section 5, Point 7 submitted within the EU Basic Dossier 1998 and the Annex I Renewal Dossier 2012 are also applicable for the preparation. A short summary of the data is given in the subsections below. For the 3<sup>rd</sup> parts active Bayer CropScoonce AG substance folpet, produced from

whichwere has the right of reference to files, data, studies, summaries and assessments owned by submitted in the EU for the support of the registration of the active substance folpet and the representative formulation Folpan 80 WDG. Therefore, no summary data of folpet are submitted here. For details please refer to the statement mentioned at page 9.

# Aerobic degradation of the preparation in soil 2 **IIIA1 9.1.1**

Specific studies on the preparation have not been performed. The results of laboratory studies performed with the active substance iprovalicarb as provider in the ... Annex IIA in the context of Section 5, Potor 7 submitted within the EU Basic Dossier 1998 and the Annex I Renewal Dossier 2012 are also applicable for the preparation. A short summary of the data is given in the subsections below. A short summary of the data is given in the subsection below. For the 3<sup>rd</sup> party substance folpet, poduced from ) Bayer

CropScience AG has the right reference to Mes, data, studies, summaries and sessments owned by which were submitted in the EU for the support of the registration of the active substance folpet and the representative formulation Folpan 80 WDG. Therefore, no summary data of folpet are submitted here. For details please refer to the statement mentioned a page of

# Iprovalicarb

The degradation behaviour of iprovadicarb under laboratory conditions, in the dark, has been studied in a number of different soils at temperatures \$\$20 Cand with one soil under 10°C. From the studies on the route of degradation is soil, it can be concluded that iprovalicarb was thoroughly degraded on soil under derobic conditions to the find degradation product CO<sub>2</sub>. Three metabolites were identified in the soil along with the parent compound and <sup>14</sup>CO2. The major metabolites (> 10% of the applied radioactivity (AR)) were SZX 0722-carboxyl@acid (M03) and PMPA (M10). Terephthalic acid (M23) was found as migor metabolite Unextractable residues reached 29.5 to 33.9% of AR at study end (valine-label, day 210 and up to 27.9% of AR and 31.5% of AR (phenyl label, day 100 / day 365). Iprovalicarb was metabolised to the endpoint  $O_2$  via two routes. In one route the breakdown of the molecule started with the cleavage of the apoide bond between the L valine and PMPA moieties. This led to the main metabolite PMPA (Mhy). The other route proceeded via oxidation of the methyl group on the phenyl ring to a carboxylic group (SZX 0722 Carboxylic acid (M03)) and further oxidation. The degradation pathway is given in Figure 9.1.0-1.

It can be conduded from the study concerning the photodegradation of iprovalicarb on soil surfaces that photodegradation will not significantly contribute to the degradation of iprovalicarb. A total of five degradation products including CO<sub>2</sub> were detected in the soil extracts. Two of these degradates were identified as SZX 0522-carboxylic acid (M03) and PMPA (M10). All individual degradates accounted for less than 5% of the applied radioactivity in the irradiated samples, with CO<sub>2</sub> representing 2.8% of AR following the irradiation period. The breakdown of iprovalicarb proceeded oxidation of the 4-methyl group to SZX 0722-carboxylic acid, cleavage of the amide bond to PMPA and ring cleavage followed by

### formation of CO<sub>2</sub>.

The degradation behaviour of iprovalicarb in soil under aerobic conditions was determined in laboratory studies using two different radiolabels, different soil types and different temperatures (20°C and 10°C). To derive kinetic parameters suitable for modelling purpose and environmental risk assessments a katetic evaluation of these data was performed according to FOCUS kinetics (FOCUS, 2006<sup>1</sup>), for the patent compound the major soil metabolites. A summary of these data is given in Table 9.1.1-4. For **iprovalicarb** the non-normalised  $DT_{50 \text{ mod}}$  for <u>modelling purpose</u> were in the range of 1.99 to 68.56 days and the normalised  $DT_{50 \text{ mod}}$  in the range of  $c_1$ .77 to 68.56 days (geom. mean 6.78 days). For  $c_1$  persistence trigger evaluation (non-normalised) the  $DT_{50 \text{ mitial}}$  were in the range of 1.99 to 18.00 days and the  $DT_{90 \text{ initial}}$  in the range of 6.62 to 252.12 days.

For SZX 072-carboxylic acid (*M03*) the non-normalised DT  $_{50 \text{ mod}}$  for <u>modelling purpose</u> were in the range of 0.56 to 1.852 days and the normalised DT  $_{50 \text{ mod}}$  in the range of 0.45 to 1.852 days (geom. mean. 0.97 days). For <u>persistence trigger evaluation</u> (non-hormalised) the DT  $_{50 \text{ initial}}$  were in the range of 0.58 to 1.97 days and the DT  $_{90 \text{ initial}}$  in the range of 0.53 days (geom. mean.

For **PMPA** (*M10*) the non-normalised  $DT_{50 \text{ mod}}$  for <u>modelling purpose</u> were in the range of 44.28 to 187.33 days and the normalised  $DT_{50 \text{ mod}}$  in the range of 39.39 to 187.4 days (geom. mean \$1.08 days). For <u>persistence trigger evaluation</u> (non-normalised) the  $DT_{50 \text{ mod}}$  were in the range of 44.28 to 239.32 days and the  $DT_{90 \text{ initia}}$  or the range of 147.1 to 759.0 days

For **N-acetyl-PMPA** (*M10*) the non-normalised  $DT_{50 \text{ mod}}$  for <u>modelling purpose</u> were in the range of 0.422 to 0.929 days and the normalised  $DT_{50 \text{ mod}}$  in the range of 0.424 to 0.935 days (geom. mean 0.72 days). For <u>persistence trigger-evaluation</u> (non-normalised) the DT<sub>90 initial</sub> were in the range of 9.0 to 22.3 hours (0.4 to 0.9 days) and the DT<sub>90 initial</sub> to the range of 9.0 to 74.1 hours (10 to 3.4 days).

 
 Table 9.1.1-1:
 Summary of DT-3 values of iprovalicarb and metabolities in morobic soil studies evaluated for modeling purpose and trigger evaluation according to FOCUS kinetics (FOCUS, 2006)

| Compound         |                | Difference<br>Difference<br>(bours) | lling purpose<br>ØT50 mod<br>[days] | range for trigger<br>evaluation<br>DT50 initial |
|------------------|----------------|-------------------------------------|-------------------------------------|-------------------------------------------------|
| Iprovalicarb     |                | 1.9876                              | 68.56 1.77 – 68.6                   | 1.99 – 18.0 days                                |
| SZX 0722-carboxy | pic acid (M03) | ∞ ್ 0,56−1                          | .892 0.45 - 1.85                    | 0.58 – 1.97 days                                |
| PMPA (M10)       | ŐY A           |                                     | 87.33 39.39 – 187.3                 | 44.28 –239.32 days                              |
| N-acetyl-PMPQ (A | M15\$          | 10.1-22.30 0.422                    | 0.929 0.42 - 0.93                   | 9.0 - 22.3 hours                                |
| .4               | Or a           |                                     |                                     |                                                 |

The rate of degradation of iprovalicarb irradiated with artificial light was investigated in a <u>soil photolysis</u> study. It can be concluded that photodegradation will not significantly contribute to the degradation of the parent compound. The  $DT_{50}$  was 62 days

Jucgit ... Ji 50 stas 62 day.

<sup>&</sup>lt;sup>1</sup> FOCUS (2006): Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides in EU Registration.

Report of the FOCUS Work Group on Degradation Kinetics, EC Document Reference SANCO/10058/2005, v.2.0, June 2006

#### Figure 9.1.1-1: Proposed metabolic pathway of iprovalicarb in soil under aerobic conditions



# Bayer CropScience

(Submission for Annex I renewal)

#### Folpet

For the 3<sup>rd</sup> party active substance folpet, produced from

all of the second secon Baver CropScience AG has the right of reference to files, data, studies, summaries and assessments owned by which were submitted in the EU for the support of the registration of the active substance folpet and the representative formulation Folpan 80 WDG. Therefore, no summary data of folpet are submitted here. For details please refer to the statement mentioned at page 9.

#### Anaerobic degradation of the preparation in soil **IIIA1 9.1.2**

### **Iprovalicarb**

The anaerobic biotransformation of iprovalicarly has been studied in a silt soil in the dark at 20°C. During the first phase of the study, the soil was maintained under scrobic Conditions for three days. Afterwards the samples were flooded with water and maintained under an erobic conditions. Iprovalicarb degraded to two major degradates. One major degradato, PMPA (M/Q), was formed under aerobic conditions and increased under analyobic conditions. During the maerobic phase, N-acetyl-PMPA (M15) was also formed as major degradate. SZX 0722-aminoacetonitele (M30), way formed later in the study under anaerobic conditions as a minor degradate, Unextractable residues reached 39.8% by the end of the study. Additional CQ2 and vetatile organic compounds were produced allow levels throughout the anaerobic phase of the study ( $\leq 40\%$ ). A degradation oathway is shown in Figure 9.1.2-1.

The degradation of iprovalicate is well described assuming SFO decay (DT<sub>50 modelling</sub> = 30.8 days). The metabolites PMPA (M10) and N-acetyl-PMPA (M15) were fitted together with the parent compound, to describe best its total degradation pathways, PMPA (\$110) shows wiry good to reasonable fits, assuming SFO decay (DIG) for modelling purpose: 28% days) and DFOP decay (DT<sub>50</sub> for persistence endpoints: 43.1 days). N-acety PMPA (M15) shows very good to reasonable fits, assuming SFO decay (DT50 for modelling purpose: 76.2 days) and DEOP decay (DT<sub>50</sub> for persistence endpoints: 105.7 days). (Table \$1.2-1).

| Table 9.1.2- 1: | Laboratory  | anaerobi | c sốil/] | DegT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | values | of iprovalicarb | and metal | bolites for modelli | ng or |
|-----------------|-------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|-----------|---------------------|-------|
|                 | Ô. A        |          | ×        | a a construction and a construct |        | _0×             |           |                     | 0     |
|                 | persistence | purpose  | 0        | °~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | £      | , CV            |           |                     |       |

|          |                      | 1 Alian A |               |
|----------|----------------------|-----------------------------------------------------------------------------------------------------------------|---------------|
| ~Ŷ       | Compound in a in     | DT50 mod                                                                                                        | DT 50 initial |
| 4        |                      | <u>[uays]</u>                                                                                                   | [uays]        |
| <u>A</u> | Iprovalicarb V V     | 30.8                                                                                                            | 25.4          |
|          | PMPA (MÍO)           | 38.6                                                                                                            | 43.1          |
| , K      | Nacetyk MP A M15) O' | 76.2                                                                                                            | 105.7         |
|          |                      |                                                                                                                 |               |

#### Figure 9.1.2-1: Proposed metabolic pathway of phenyl-labelled iprovalicarb in soil under anaerobic conditions



# Bayer CropScience

and a second

Doc. M-III /Tier 2, Sec. 5, Point 9 - Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

#### Folpet

For the 3<sup>rd</sup> party active substance folpet, produced from

Bayer CropScience AG has the right of reference to files, data, studies, summaries and assessments owned by which were submitted in the EU for the support of the registration of the active substance folpet and the representative formulation Folpan 80 WDG. Therefore, no summary data of folpet are submitted here. For details please refer to the statement mentioned at page 9. 

#### **IIIA1 9.2 Field Studies**

The results of field studies performed with representative preparations of the active substances as provided in Annex II in the context of Section 5, Point are also applicable for this preparation."

#### Soil dissipation testing on a range of representative soils **IIIA1 9.2.1**

### **Iprovalicarb**

The field dissipation of iprovalicarb oas evaluated during the Amer I Inclusion. In addition kinetic evaluation of the dissipation behaviour of iprovalicarb and its petabolite PMPA (MH) has been performed. A short summary of the data is given below:

The dissipation of iprovaliearb under field conditions has been investigated a number of sites in England, France and Germany. The kinetic evaluation of six field dissipation trials for persistence or trigger purpose according to FOCUS kinetics (FOCUS, 2006) resulted in non-hormalised half-lives of 3.7 to12.5 days for iprovalicarb and 202 to 228.4 days for the merabolite PMPA (M10). The corresponding DT<sub>90</sub> values were in the vange of 12.8 to 61.7 days and 73.600 7580 days respectively. The nonnormalised Dis \$250 values for persistence of frigget purpose are sommarised in Table 9.2.1-1.

| Table 0 2 1 /2   | Dist                                                                                    | , fald |
|------------------|-----------------------------------------------------------------------------------------|--------|
| 1 abie 9.2. į-gz | Distis, initial values of iprovancare of iprovancare and as includente river A (M10) in | i neia |
|                  | dissingtion trials for the gas numeros and the prototo on maisture normalized)          |        |
| ~~ ×             | issipation triats, for trigger purpose that temperature or moisture normansed)          |        |
|                  |                                                                                         |        |

|   | . 01    | ());    |        | * | ) O` | <b>%</b> | $\sim$ $\bigcirc$ |     |
|---|---------|---------|--------|---|------|----------|-------------------|-----|
|   | ^ر<br>ک | ompou   | ind≪J  | Ő | °N   | 🌾 rang   | ge DisT50, init   | ial |
| ~ | Ş 🗌     | ~~      | Ş      | N | Å    |          | [days]            |     |
| Ô | Å       | novalie | Şarb ( |   |      | , "Ş     | .73 – 12.45       |     |
|   | , Ôř    | MPAN    | M10) Û |   |      | ®*22     | 2.15 - 228.4      |     |
| Ŷ | O       | ×°      | $\sim$ |   | Ś    | ð        |                   |     |

## Folpet 🖑

For the 3rd party active substance folpet broduced from

Bayer CropScience AG has the Fight of reference to files, data, studies, summaries and assessments which were submitted in the EU for the support of the registration of the active owned by substance forpet and the representative formulation Folpan 80 WDG. Therefore, no summary data of folpet are submitted here. For details please refer to the statement mentioned at page 9.

#### IIIA1<sup>9/2.2.2</sup> Soil residue testing

Soil residues relevant for succeeding crops can be predicted from soil dissipation data provided in

IIIA1 9.1.1 and IIIA1 9.2.1 (see also IIIA1 9.4). Therefore, no further soil residue testing with the preparation is required.

Liprovalicarb Due to the use pattern of the formulation and the degradation rates of the active substance not the degradation rates of the active Jn of L Jn of substance folpet and the representative formulation Falpan 80 WD Therefore, so sumpary data of folpet are submitted here. For details please tefer to the statement mentioned at page

#### Aquatic (sediment) field dissipation **IIIA1 9.2.4**

This is not an EC data requirement / not required by D

#### Forestry field dissipation **IIIA1 9.2.5**

This is not an & data requirement Onot required b

#### Mobility of the Plant Protection Broduct in Soil **IIIA1 9.3**

Specific studies on the preparation have not been performed. The results of studies performed with the active substance provided in the Annex I Section 5, point 7 and subsequent addenda are also applicable for the preparation. Short summaries of the data are given below.

# Iprovalicarb

**Iprovalicarb** The <u>adsorption</u> constants of for provalicarb calculated by means of the Freundlich adsorption isotherm ranged from 0.60 - 4.64 mL/g The corresponding K<sub>oc</sub> were in the range of 44 - 221 mL/g with an arithmetic mean of 114 mLog. For the major soil metabolites SZX 0722-carboxylic acid (M03), PMPA (M10) and S-acet PMPON (M15) the W values were in the range of 0.012 - 0.354 mL/g, 0.67 - 11  $\frac{1}{100}$  mL/g and 0.34 -  $\frac{1}{1000}$  56 mL/g and the corresponding K<sub>oc</sub> values were in the range of 0.6 - 13.1 mL/g (mean 5.2 mL/g), 117.9 - 574.6 mL/g (mean 290.2 mL/g) and 32.2 - 53.4 mL/g (mean 39/2 mL/g prespectively The values are summarised in Table 9.3-1.

No obvious pH dependence was observed for Iprovalicarb, PMPA (M10), N-acetyl-PMPA (M15) but for the metabolite SZX 0722 carboxylic acid (M03).

0.9025

Doc. M-III /Tier 2, Sec. 5, Point 9 – Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

|                                | K <sub>oc</sub> (mean)<br>[mL/g] | 1/n (mean) |
|--------------------------------|----------------------------------|------------|
| Iprovalicarb                   | 114                              | 0.8725     |
| SZX 0722-carboxylic acid (M03) | 5.2                              | 1,0250     |
| PMPA (M10)                     | 290.2                            | @0 8629    |

39.7

#### Table 9.3-1: Adsorption properties of iprovalicarb and metabolites in soil

#### Folpet

For the 3<sup>rd</sup> party active substance folpet, produced from

N-acetyl-PMPA (M15)

Bayer CropScience AG has the right of reference of files, data, studies, summaries and assessments owned by which were submitted in the EU for the support of the registration of the active substance folpet and the representative formulation polpan 80 WDG. Therefore, no summary data of folpet are submitted here. For details please refer to the statement mentioned at page 9.

o<sup>4</sup>, o

## IIIA1 9.3.1 Column leaching

### Iprovalicarb

The potential mobility of iprovalicarb can be determined from the adsorption desorption studies described under section IIIA1 9.3 and no column leaching studies are eported.

### Folpet

For the 3<sup>rd</sup> party active substance folpet, produced from **Constant and State States** and assessments Bayer CropScience AG has the right of reference to files data, studies, summaries and assessments owned by **States** which were submitted in the PU for the support of the registration of the active substance folpet and the representative formulation Folpan 80 WDG. Therefore, no summary data of folpet are submitted here. For details please refer to the statement mentioned at page 9.

# IIIA1 9.3.2 Uysometer studies

## Iprovalicarb

Based on the results of a lysimeter study it can be concluded with a high probability that iprovalicarb and its metabolites will not contaminate deeper soil layers or groundwater at concentrations  $\geq 0.1 \ \mu g/L$ .

## Folpet

For the 3rd party active substance folpet broduced from

Bayer CropScience AG has the right of reference to files, data, studies, summaries and assessments owned by **Sector** which were submitted in the EU for the support of the registration of the active substance to pet and the representative formulation Folpan 80 WDG. Therefore, no summary data of folpet are submitted here. For details please refer to the statement mentioned at page 9.

# Bayer CropScience

Doc. M-III /Tier 2, Sec. 5, Point 9 - Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

#### **IIIA1 9.3.3 Field leaching studies**

### **Iprovalicarb**

Field leaching studies have not been conducted for the active substance as sufficient information. derived from the existing studies.

### Folpet

For the 3<sup>rd</sup> party active substance folpet, produced from

Ullea Up which were submitted in the EU for the support of the registration of the active substance folpet and the representative formulation Folpan 80 WDG. Therefore, ho surbmary data of folpet are submitted here. For details please refer to the statement menuoned at page . Bayer CropScience AG has the right of reference to files, data, studies, summaries and assessments

No volatility studies on the preparation have been performed. Defai Is of the volatility of the active substance are given in Section 1. The vapour pressures are also reported in Section A1 3.

#### · field stud Volatilitv **IIIA1 9.3.5**

## **Iprovalicarb**

Field volatility studies showed a low trand of iprovalicarb to solatilise from soil and plants under field conditions. Therefore an exposure or emission via contaminated at is not to be expected. Ľ

# Folpet

For the 3 party active substance folget, produced from

Bayer CropScience AG has the right of reference to files, data studies, summaries and assessments which were submitted in the EU for the support of the registration of the active owned by substance folpet and the representative formal ation Folpan 80 WDG. Therefore, no summary data of folpet are submitted here for details please refer to the statement mentioned at page 9.

#### Predicted En Concentrations in Soil (PECs) for the Active IIIA&9.4 iconmental Substance

#### Modelling inper parameters for iprovalicarb Table 9.4

| DTso soil [days] (lab_worst case_non-normalised) 68.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | End-Point S                                                                  | Active substance: iprovalicarb<br>Value used for modeling |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|
| D 130 500 [augs] (augs) | <sup>v</sup> DT <sub>50</sub> soil [days] (lab., worst case, non-normalised) | 68.56                                                     |

Endpoints for PECsóu

Iprovalicarb

### Page 19 of 49 2012-05-12 Doc. M-III /Tier 2, Sec. 5, Point 9 – Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

### Folpet

For the 3<sup>rd</sup> party active substance folpet, produced from

Bayer CropScience AG has the right of reference to files, data, studies, summaries and assessments owned by which were submitted in the EU for the support of the registration of the active substance folpet and the representative formulation Folpan 80 WDG. For details please refer to the statement mentioned at page 9.

No PEC<sub>soil</sub> calculations of folpet are submitted here. Bayer CropScience AG is using a risk envelope approach for the risk assessment of the representative formulation. Within the scope of this supplementary dossier, up to 4 applications at 1.35 kg/ha folpet are proposed as a safe use in grapes. This is much below the critical GAP that currently defends in this crop in the EU, where 10 applications of up to 1.6 kg/ha have been approved, with all other parameters such as interval between applications or pre-harvest interval being identical or very similar. Therefore, Bayer CropScience AG considers it justified to refer to folpet data owned by the Annex I tisting of iprovalicarb.

### PEC<sub>soil</sub> modelling approach

Calculations were based on a simple first tier approach (Excel sheet) assuming even distribution of the compound in upper 0-5 cm soil dayer. A standard soil density of 1.5 g/cm<sup>3</sup> was assumed. Crop interception data which correspond to the intended growth stages were taken from the FOCUS groundwater guidance paper (FOCUS, 2002<sup>1</sup>).

taken into account depending on the growth stage at application The interception rates follow the recommendations of the FQCUS groundwater guidance paper@FOCUS, 2002) for grapes.

## PEC<sub>soil</sub> for ippovalicarb

| Report:        | KUIA1 94 701, 2012                                                                    |
|----------------|---------------------------------------------------------------------------------------|
| Title:         | Predicted environmental concentrations in soil (PEC <sub>soil</sub> ) of iprovalicarb |
|                | verse in ymes, early, wres, intermediate and wines, late in Europe                    |
| Report No:     | \$\San 12-0169 \sqrt{69} \sqrt{12}                                                    |
| Document No: @ | ∑ M-42963&01-1 √ √                                                                    |
| Guidelines:    | Soil Persistence Models and OU registration: Report of the FOCUS Soil Modelling       |
| ~Ç             | WorkGroup, 1996 7 2                                                                   |
| 2              | EC Bocuttent Reference 7617 y 4/96                                                    |
| GLP:           | No (calcolation)                                                                      |
|                |                                                                                       |

**Methods and Materials:** The predicted environmental concentrations in soil (PEC<sub>soil</sub>) of iprovalicarb were estimated using a simple first tice approach (Excel sheet). Detailed application data used for simulation of  $PEC_{soil}$  were compiled in Table 9.4-2.

Substance Specific Parameters: PEC<sub>soil</sub> calculations were based on the DT<sub>50</sub> of 68.56 days (worst case of laboratory studies mon-normalised).

<sup>&</sup>lt;sup>1</sup> FOCUS (2002): Generic Guidance for FOCUS Groundwater Scenarios, Version 1.1; Date: April 2002, amending FOCUS 2000

#### Comparison of actual application use pattern and the calculated use pattern used for PEC<sub>soil</sub> Table 9.4- 2: calculations of iprovalicarb

| Individual crop     | FOCUS        |             | Applio   |                        | Amount reaching      |                                        |
|---------------------|--------------|-------------|----------|------------------------|----------------------|----------------------------------------|
|                     | crop used    | rate per    | interval | plant                  | BBCH                 | the soil per season                    |
|                     | for          | season      | [days]   | interception           | stage                | application                            |
|                     | interception | [g a.s./ha] |          | [%]                    |                      | [g a.s./hat                            |
| GAP:                | -            |             | -        | ~                      | Ą                    |                                        |
| grapes              | vines        | 1 - 4 x 216 | 10 - 14  | 60 - 85 🔬              | 16 - 75              | ≪J - 4 x 32.4 - 86.4                   |
|                     |              | 1 - 4 x 162 | 10 - 1🌮  | 60 - 70                | 16 - 61 <sub>@</sub> | C 1 - <b>4</b> © 48.6 <b>∠-</b> 64.8 ⊀ |
|                     |              | 1 - 4 x 150 | 10, 12   | 60 - 🔊                 | 15 - 85              | 1 7 x 22 5 60.0 °                      |
| Simulation:         |              |             | À        |                        |                      |                                        |
| vines, early        | vines        | 4 x 216 4   | 🖗 10     | ~4 x 60                | 15-85                | x 4 x 86.4                             |
| vines, intermediate | vines        | 4 x 216 Ķ   | LØ Å     | \$60/70/ <b>#9</b> /70 | <u>(</u> 30 - 85)    | 86.4/64.8/64.8/64.8                    |
| vines, late         | vines        | 4 x 216     | × 40 0   | 70/8585/85             | 80-85                | €4.8/32. <u>4</u> 32.4/ <u>3</u> 2.4   |
|                     |              | 4           | <u> </u> | Q ,                    |                      | O Q A                                  |

Findings: The PEC<sub>soil</sub> and the time work the daverage values (TWA<sub>soil</sub>) of provalicarb after application in vines are summarised in Table 9.4-6 and the provalicarb after application in Table 9.4-3: PEC<sub>soil</sub> (actual) and TWA<sub>soil</sub> of introvalicarb

| Table 9.4- 3: | PEC <sub>soil</sub> (actual) | and TWAsoil | of provalicarb |
|---------------|------------------------------|-------------|----------------|
|---------------|------------------------------|-------------|----------------|

|            |                   |                             | 0                           | 4//m .ii        | - ~ /                |                      |         |
|------------|-------------------|-----------------------------|-----------------------------|-----------------|----------------------|----------------------|---------|
|            | Time vines, early |                             | vines, int                  | ermediate       | vines, late          |                      |         |
|            | [days]            | PECseil                     | <b>WAsop</b>                | PPCsoil         | TWAsoil 🗞            | PECsoil              | TWAsoil |
|            | 2                 | [mg/kg]                     | ©[mg/kg]                    | ,∬mg/kg],∿      | [mg/kg]♥             | [mg/kg]              | [mg/kg] |
| Initial    | 0,                | <b>9</b> 5398 O             |                             | 0,3 <b>20</b> ° | & <del>.</del>       | <u></u> 0)).181      | -       |
|            | Ę.                | Ø.394 🖉                     | Q.396 🖉                     | Q:317 (         | 0.3,19               | <sup>(م)</sup> 0.180 | 0.180   |
| Short term |                   | 0.39                        | ~~0.394 <sup>~</sup>        | 0.314           | 0.317                | 0.178                | 0.180   |
|            | <u>گُ</u> 4 ر     | 0,383                       | <sup>≪</sup> 0. <b>3</b> 9¥ | 0.30            | 0.314                | 0.174                | 0.178   |
| . (        |                   | 0.371 📡                     | 0,385                       | 0,298           | © 0.309 <sup>°</sup> | 0.169                | 0.175   |
| ) Ô        | 2                 | <i>√</i> 0.322 <sup>O</sup> | <b>9</b> .359 6             | QZ 59           | ° 0 <b>2</b> 88      | 0.147                | 0.163   |
| Long term  | 28                | 0.300                       | <u>1</u> 0.34               | 00.241          | <b>0</b> ,279        | 0.137                | 0.158   |
|            | 50                | 0,240                       | 0.313                       | 0.195           | ∾0.251               | 0.109                | 0.142   |
| E V        | 1000              |                             | Q.251 C                     | 0.146 🔩         | © 0.201              | 0.066                | 0.114   |

216 g provalearb/har x 60% interception, 10 days application interval vines, early: x 216 g iprovaticarb/ha, 60/70/70/70/0nterception, 10 days application interval vines, intermediate 0/85/85/85% interception, 10 days application interval vines, late:

# PEC<sub>soil</sub> for folpet

For the 3<sup>rd</sup> party active substance folpet, produced from

Bayer CropScience AG has the right of reference to files, data, studies, summaries and assessments which were submitted in the EU for the support of the registration of the active owned by substance folget and the representative formulation Folpan 80 WDG. For details please refer to the statement mentioned at page 9. ~Ò

No PEC & calculations of folget are submitted here. Bayer CropScience AG is using a risk envelope approach for the risk assessment of the representative formulation. Within the scope of this supplementary dossier, up to 4 applications at 1.35 kg/ha folpet are proposed as a safe use in grapes. This is much below the critical GAP that currently defends in this crop in the EU, where 10 applications of up to 1.6 kg/ha have been approved, with all other parameters such as interval between

applications or pre-harvest interval being identical or very similar. Therefore, Bayer CropScience AG wherever appropriate. A folpet-specific risk considers it justified to refer to folpet data owned by assessment is not considered necessary to defend the Annex I listing of iprovalicarb.

| Modelling<br>Comments:<br>IIIA 9.4/01                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ŵ) |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Agreed PEC <sub>s</sub><br>(active substance):<br>IIIA 9.4/01 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
| [IIA1 9.4.1 Ini                                               | tial PECs values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    |
| Please refer to point                                         | IIIA19.4. $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \begin{array}{c} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |
| IIA1 9.4.2 Sho                                                | ort-term PECs values (1-4 days after last application)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Please refer to point                                         | IIIA1 9.4. $\begin{array}{c} \mathcal{A} \\ \mathcal{A} $ |    |
| IIA1 9.4.3 Lo                                                 | ig-term PECs values (from 7,100 days after last application)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Please refer to point                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |

#### Predicted Environmental Concentrations in Soil (PECs) for Relevant **IIIA1 9.5 Metabolites**

Predicted environmental concentrations in soil were calculated for the metabolites indicated in Table 9 These metabolites are not automatically "relevant" with regard to their environmental, biological, ecotoxicological or toxicological properties.

#### **Endpoints for PEC**soil

### **Iprovalicarb**

| e  | nvironmental concentrations in soil were calculated for the metabolites indicated in Type 9-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ta | bolites are not automatically "relevant" with regard to their environmental, biological,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| lc | ogical or toxicological properties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ts | for PEC <sub>soil</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| a  | rb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1  | : Modelling input parameters for iprovalizarb metabolites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|    | End-Point Iprovaticarb metabolites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | SZX 0722-carboxylic acid (M03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | Molecular mass correction A & O Q 1.0935 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | DT <sub>50</sub> soil [days] (lab., worst case, non-normalised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | Maximum occurrence in soil $[0^{6}]$ $[0^{7}]$ $[0^{7}]$ $[0^{7}]$ $[0^{7}]$ $[0^{7}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | PMPA (M10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | Molecular mass correction of the two sets of the set of |
|    | DT <sub>50</sub> soil [days] (lab@worst ease, non normalised) @ 987.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | Maximum occurrence in soil [%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | N-acetyl-PMRA (M15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | Molecular mass correction S S O & 0.5536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | $DT_{50}$ soil feays] (bb., worst case, non-normalised) $O = 0.929$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | Maximum occurrence manaerobic soil [%] 29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# Table 9.5-1:

## Folpet

For the 3<sup>rd</sup> party active substance folger, produced from

Bayer CropScience AC has the right of reference to files, data, studies, summaries and assessments which were submitted in the EU for the support of the registration of the active owned by substance folpet and the representative formulation Folpan 80 WDG. For details please refer to the O statement mentioned at page.

No PEC<sub>soil</sub> calculations of olpetmetabolites are submitted here. Bayer CropScience AG is using a risk envelope approach for the risk assessment of the representative formulation. Within the scope of this supplementary dossier, up to 4 applications at 1.35 kg/ha folpet are proposed as a safe use in grapes. This is much below the critical GAP that currently defends in this crop in the EU, where 10 applications of up to 1.6 kg/ka have been approved, with all other parameters such as interval between applications or pre-harvest interval being intentical or very similar. Therefore, Bayer CropScience AG considers it justified to ver appropriate. A folpet-specific risk assessment ssary to defend the Annex I listing of iprovalicarb. is not considered neo

# **Bayer CropScience**

Doc. M-III /Tier 2, Sec. 5, Point 9 - Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

### PEC<sub>soil</sub> for iprovalicarb metabolites

For iprovalicarb the metabolites SZX 0722-carboxylic acid (M03), PMPA (M10) and N-acetyl-PMPA (M10) were considered.

| Report:      | KIIIA1 9.5 /01, 2012                                                                       |
|--------------|--------------------------------------------------------------------------------------------|
| Title:       | Predicted environmental concentrations in soil (PECsoil) of iprovalicato                   |
|              | Use in vines, early, vines, intermediate and vines, late in Europe                         |
| Report No:   | EnSa-12-0169                                                                               |
| Document No: | M-429638-01-1                                                                              |
| Guidelines:  | Soil Persistence Models and EU registration: Report of the FOCUS Soil Modelling            |
|              | Work Group, 1996                                                                           |
|              | EC Document Reference 760 $VI/96$ $\sim$ $0^{\circ}$ $\sqrt{0^{\circ}}$ $\sqrt{0^{\circ}}$ |
| GLP:         | No (calculation)                                                                           |
|              |                                                                                            |

Methods and Materials: PECsoil for the metabolites were calculated using the approach, sceparios and application rates described for the calculations for the parent compound in Point 94 **\$1**). Compound specific parameters are summarised in The 9.3

#### Input parameters for PEC soffor metabolites of ipcovalicate Table 9.5- 2:

|                                       |                   |                            | $\bigcirc$ $\bigcirc$ $\bigcirc$ $\bigcirc$ | **                       |
|---------------------------------------|-------------------|----------------------------|---------------------------------------------|--------------------------|
| Compound                              | Data soil*?       | Max. occurrence            | Modar mass                                  | 🔬 Molar mass             |
|                                       | / days            | in søil                    | ္တ [g/mol]                                  | <b>Correction</b> factor |
| ~                                     | k <sub>s</sub> ov | <i>∽ [</i> %] <sup>∧</sup> |                                             |                          |
| SZX 0722-carboxylic acid (2003)       | ) 🌵 🎉 🆧           | 10.0                       | 350.41                                      | 1.0935                   |
| PMPA (M10)                            | 187.33            | S& 5                       | ¥35.2                                       | 0.422                    |
| N-acetyl-PMPA (M15)                   | 1.929             | 29.1                       | × 177 25                                    | 0.5531                   |
| a) worst case of laboratory studies n | on-pormalised     |                            | 0 4                                         |                          |

Findings: The PEC, Sand the time weighted average values (TNA source fiprovalicarb metabolites SZX 0722-earboxylic acid (M03) PMPA (MIO) and Wacetyl-PMPA (M10) are summarised in 🖓 and 🖇 5, respectively 3, Table 9. Table 9 able 🎗

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>©</sup> Time <sup>∽</sup> | vines 🖉              | early     | y vines, inte | ermediate | vines   | , late  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------|-----------|---------------|-----------|---------|---------|
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [daxo]                         | <b>PÉC</b> soil      | T Asoil O | PECsoil       | TWAsoil   | PECsoil | TWAsoil |
| ~Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ŭ,                             | O[mg/kg]             | mg/kg     | (mg/kg]       | [mg/kg]   | [mg/kg] | [mg/kg] |
| Initial 🕰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                              | 0.013                | ÷,        | 0.013         | -         | 0.009   | -       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                             | Q,009                | QQ911 >>  | 0.009         | 0.010     | 0.006   | 0.008   |
| Short term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~27                            | <u>ý</u> 0.006       | @.009     | 0.006         | 0.009     | 0.004   | 0.007   |
| $\sim$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ₩4                             | 0. <b>003</b>        | Q 0.000   | 0.003         | 0.006     | 0.002   | 0.005   |
| , and the second | _                              | < <u>0</u> 901       | 0,095     | < 0.001       | 0.004     | < 0.001 | 0.003   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 2 1 ∿                        | Ø.001~C              | Q002      | < 0.001       | 0.002     | < 0.001 | 0.001   |
| Long tern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~28                            | \$ 0.00 <sup>1</sup> | Ø.001     | < 0.001       | 0.001     | < 0.001 | < 0.001 |
| Ĺ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 250 . (                      | ° < 0.€01            | Q < 0.001 | < 0.001       | < 0.001   | < 0.001 | < 0.001 |
| Ú,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 100 C                        | < 0.001              | < 0.001   | < 0.001       | < 0.001   | < 0.001 | < 0.001 |

PEQoil (actual) and TWAS of SEX 0722-carboxylic acid (M03) Table 9.5-3:

4 x 216 gorovalicarb/ha, 4 x 60% interception, 10 days application interval vines, early

thes, intermediate x 216 y iprovalicarb/ha, 60/70/70/70% interception, 10 days application interval 4 x 216 g iprovalicarb/ha, 70/85/85/85% interception, 10 days application interval

Doc. M-III /Tier 2, Sec. 5, Point 9 - Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

|            | Time   | vines,              | , early | arly vines, intermediate |           |                     | , late a °      |
|------------|--------|---------------------|---------|--------------------------|-----------|---------------------|-----------------|
|            | [days] | PEC <sub>soil</sub> | TWAsoil | PEC <sub>soil</sub>      | TWAsoil   | PEC <sub>soil</sub> | TWASSI          |
|            |        | [mg/kg]             | [mg/kg] | [mg/kg]                  | [mg/kg]   | [mg/kg]             | [mg/kg] 6       |
| Initial    | 0      | 0.093               | -       | 0.076                    | -         | 0.043               | <u> </u>        |
| Short term | 1      | 0.093               | 0.093   | 0.075                    | 0.075     | 0.043               | ×0.043          |
|            | 2      | 0.093               | 0.093   | 0.075                    | 0.075     | 0.043               | C 0.043         |
|            | 4      | 0.092               | 0.093   | 0.074                    | 0.075     | 0.043 %             | <u>_0.043</u> ≪ |
|            | 7      | 0.091               | 0.092   | 0.004                    | 0.075     | 0.042               | 0.043           |
| Long term  | 21     | 0.086               | 0.090   | 0.070                    | 0.073     | 0.040               | \$ 0.042        |
|            | 28     | 0.084               | 0.089   | \$0.068                  | 0.072     | 0,039 🖉             | 0,041           |
|            | 50     | 0.078               | 0.085   | 0.063                    | Q 0.069 o | £0.036              | © 040 °         |
|            | 100    | 0.064               | 0.078   | 0.052 a                  | 0.063     | ~~0.030°            | © 0.036         |

| Table 0 5 4.  | DEC .           | (aatual) | and TWA       | of DMDA   | (M10) |
|---------------|-----------------|----------|---------------|-----------|-------|
| 1 able 9.3-4: | <b>FLU</b> soil | (actual) | anu I w Asoil | OI F MIFA | WIIU) |

4 x 216 g iprovalicarb/ha, 4 x 60% interception, 10 days apply cation paterval vines, early: vines, intermediate:  $4 \times 216$  g iprovalicarb/ha, 60/767/0/70% faterception, 10 days application interval vines, late:  $4 \times 216$  g iprovalicarb/ha, 70/89/85/85% interception, 10 days application interval.

| Table 9.5- 5: | PEC <sub>soil</sub> (actual) and | TWA Sil of | f N-acety | A PMPA | х¢М15) |
|---------------|----------------------------------|------------|-----------|--------|--------|
|---------------|----------------------------------|------------|-----------|--------|--------|

| vines, early:  | 4 X Z I                | o g iprovalicaro     | /na, 4 x 60% mi       | erception, 10 ga    | ays approximing          |                      |                  |
|----------------|------------------------|----------------------|-----------------------|---------------------|--------------------------|----------------------|------------------|
| vines, interme | diate: 4 x 21          | 6 g iprovalicarb     | /ha, 60/7             | )% Interception     | , 10 days applie         | ation interval       | ¥ *              |
| vines, late:   | 4 x 21                 | 6 g iprovalicarb     | /ha, 70/89/85/8;      | 5% interception     | , he days applic         | ationointerval       | A                |
|                |                        |                      | 1                     | ř. Oř               | Q .                      |                      | D' A             |
|                |                        |                      | Ś, Ś                  |                     | 'A (                     |                      |                  |
| ble 9.5- 5:    | PEC <sub>soil</sub> (a | ctual) and TW        | Axil of N-acet        | tvlæMPA             | 15) 👋 👌                  |                      | , Å              |
| r              |                        | ,<br>                |                       | <u>× ~ × </u>       |                          | <u> </u>             | 0                |
|                | Time                   | vines                | searly 🧳 🔍 🦧          | 🔰 vines, inte       | apmediate                | S Xines              | s, late          |
|                | [days]                 | PECsoil              | TWA <sub>soil</sub> 🚿 | PEC <sub>soil</sub> | TWAsoil                  | PEC il               | <b>WTWA</b> soil |
|                |                        | [mg/kg]              | ∭ mg/kĝ               | ung/kgb             | mg/kg O                  | [m͡͡͡g/kg] ំ         | 🎾 [mg/kg]        |
| Initial        | 0                      | <b>A</b> 919 %       | <u> </u>              | 0.010               | <u> </u>                 | 0.014                | -                |
|                | 1                      | ≪ð.00 <u>2</u>       | <b>29</b> ,013        | 0,009               | 0.093                    | ی 0.007 <sup>0</sup> | 0.010            |
| Short term     | 2                      | õ 0.004              | ~0.010°               | 0.004               | <b>~</b> ©©10 °∧         | 0.003                | 0.007            |
|                | 4 %                    | y < 0,001            | 0.000                 | \$0.001 °           | 0.006                    | < 0.001              | 0.004            |
|                | 7,                     | <.0.001 0            | 0.0004 2              | ~<0.00 <sup>°</sup> | l≪ 0.004 ⊂               | <b>\$00</b> .001     | 0.003            |
|                | 2¢                     | Ø0.001               | Ø.001 🔊               | < 0.001             | 0,001                    | Ç¥0.001              | < 0.001          |
| Long term      | 28                     | $\mathcal{L} < 0.00$ | ×\$0.001 <sup>™</sup> |                     | <0.001 <sub>@</sub>      | < 0.001              | < 0.001          |
|                | ¢ 50 گ                 | P' < 0.001           | ×0.00x                | \$¥0.004            | £0.004                   | < 0.001              | < 0.001          |
| . (            | 100                    | $\leq 0.001$ %       | < 0,001               | ∀<0 <u>001</u>      | \$\$ <sup>7</sup> <0.00₽ | < 0.001              | < 0.001          |

4x 216 g provalicarb/ha, 4/x 60% interception, 10 days apprication interval vines, early vines, early vines, early vines, intermediate 4 x 216 g iprovaticarb/ha, 60/79/70/70% arterception, 10 theys application interval 46 g iprovalicarboad, 70/85/85/85% interception, 10 days application interval vines. late 

# PECsoil for for for metabolites

For the 3<sup>rd</sup> party active substance folpet, produced from

Bayer CropScience AQ has the right of reference of files, data, studies, summaries and assessments which were submitted in the EV for the support of the registration of the active owned by substance folpet and the representative formulation Folpan 80 WDG. For details please refer to the statement mentioned at page.

No PEC<sub>soil</sub> calculations of folpet/metabolites are submitted here. Bayer CropScience AG is using a risk envelope approach for the risk assessment of the representative formulation. Within the scope of this supplementar dossien up to 4 applications at 1.35 kg/ha folpet are proposed as a safe use in grapes. This is much below the critical GAP that currently defends in this crop in the EU, where 10 applications of up to b kg/ha have been approved, with all other parameters such as interval between applications or pre-harvest interval being identical or very similar. Therefore, Bayer CropScience AG considers it

justified to refer to folpet data owned by wherever appropriate. A folpet-specific risk assessment is not considered necessary to defend the Annex I listing of iprovalicarb.

The set of Modelling Comments:

Doc. M-III /Tier 2, Sec. 5, Point 9 – Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

#### **IIIA1 9.6** Predicted Environmental Concentrations in Ground Water (PECgw)

### **Endpoints for PEC**<sub>gw</sub>

#### **Iprovalicarb**

| arb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×. Š                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1: Modelling input parameters for iprovali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | icarb and its major metabolites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| End-Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Active substance: iprovalicars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Value used for modelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Inrovalicarh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Aqueous solubility [mg/L] at 20°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Vanour pressure [Pa] at 20°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $7 \frac{1}{10} \frac{1}{10}$ |
| $DT_{50}$ soil [days] (geo-mean lab_normalised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Adsorption data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - 1/n (arith mean)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - $K_{oc} / K_{om} [L/kg]$ (arith. mean)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C 7 125.9/66.9 4 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SZX 0722-carboxylic acid (M03)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Molar mass correction factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Aqueous solubility [mg/L] at to C, all 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vapour pressure [Pa] at 20% 🖉 🔗                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ₩ <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DT <sub>50</sub> soil [days] (geo-mean lab., mormalised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Formation fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0:3242 × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Adsorption data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - 1/n (arith. mean)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - PEARL input data <sup>a</sup> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - K <sub>oc</sub> , A <sup>-</sup> / K <sub>om</sub> , A <sup>-</sup> [L/(C) <sup>0</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - K <sub>oc, AH</sub> K <sub>om, AH</sub> / Kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | × 0 14.30 / 8229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - PELMO uput gata".                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J. 15000 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - $K_{oc}$ $[K_{oc}]$ | $\sqrt{1.34} 0.89$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PMPA ( <i>MI</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Molar mass correction factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>2</sup> 0.422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Aqueous solubity [mg/L] at & C, pH 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Vapour pressure [Pa, at 20°C $\sim$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DT <sub>50</sub> soil Qays] (geo-mean lab., normalised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Formation fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.5061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Adsorption data:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| - 4(m (arith mean)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.8629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $-K_{oc} / K_{om} [L/kg) (arithonean) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 290.2 / 168.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| N-acetyi-Pivek (M15k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.5521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Molar mass correction factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Aqueous solubility [mg/h] at 2000, pH h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| vapour pressure [Pa] at 20°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2./ x 10 <sup>-3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| D15d soil [days] (gettemean hab., nothealised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Max. occurrence avanaerobic sou(2/%]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Adsorption data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $= 1/n$ (arith. mean) $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| - Kor Kon th/kgl (arith. mean)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.7723.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

 a) and E Parte, the restoring values were implemented: a relative, dissociated compound K<sub>oc</sub>, A and active a undissociated K<sub>oc</sub>, A a) alkaline, dissociated K<sub>oc</sub>, A a) acidic, undissociated K<sub>oc</sub>, A a) acidic, undissociated K<sub>oc</sub>, A a) in <u>PELMO</u>, the following values were implemented: 2 different points at the Henderson-Hasselbach equation or curve, the inflection point is apparent soil  $pK_a$  of 5.88 (H<sub>2</sub>O)

### Folpet

For the 3<sup>rd</sup> party active substance folpet, produced from Bayer CropScience AG has the right of reference to files, data, studies, summaries and assessments owned by which were submitted in the EU for the support of the registration of the active substance folpet and the representative formulation Folpan 80 WDG. For details please refer to the statement mentioned at page 9.

No PEC<sub>gw</sub> calculations of folpet and its metabolites are submitted here Bayer CropScience AG is using a risk envelope approach for the risk assessment of the representative formulation. Within the score of this supplementary dossier, up to 4 applications at 1.35 kg/ha folpet are proposed as a safe use in grapes. This is much below the critical GAP that currently defends in this crop in the EU, where 40 applications of up to 1.6 kg/ha have been approved, with all other parameters such as interval being identical or very similar. Therefore, Bayer CropScience AG considers it justified to refer to folpet data owned by the rever appropriate. A folpet-specific risk assessment is not considered necessary to detend the funce.

## PEC<sub>gw</sub> modelling approach

The predicted environmental concentrations in groundwater ( $PEC_{gw}$ ) for the active substance(s) were calculated using the simulation models PDARL and PELMO following the recommendations of the FOCUS working group on groundwater scenarios.

The leaching calculations were run over 26 years as proposed for pesticides which may be applied every year. The first six years are a 'warm up' period; only the last 20 years were considered for the assessment of the leaching potential. The 80<sup>th</sup> percentile of the average annual groundwater concentrations in the percolate at 1 ar depth under a treated plantation were evaluated and were taken as the relevant PEC<sub>gw</sub> values. In respect to the assessment of a potential groundwater concentrations will be even lower due to dilution in the groundwater layer.

According to FOCUS, the calculations were conducted based on mean soil half-lives, referenced to standard temperature and moisture conditions. Crop interception will reduce the amount of a compound reaching the soft and therefore this has been taken into account depending on the growth stage at application. The interception rates follow the EOCUS recommendations (Table 9.6-2).

# Table 9.6.2: FOCUS groundwater crop interception values

|                       |                                        | Crop: vines     |                  |           |          |
|-----------------------|----------------------------------------|-----------------|------------------|-----------|----------|
| Stage O               | without leaves                         | Ofirst leaves   | leaf development | flowering | ripening |
| Crop interception [%] | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <sup>♥</sup> 50 | 60               | 70        | 85       |
|                       | \$90 <sup>°</sup>                      | 01 - 08         | 11 - 19          | 60 - 69   | 71 - 99  |
|                       |                                        |                 |                  |           |          |

# Bayer CropScience

Doc. M-III /Tier 2, Sec. 5, Point 9 – Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

### IIIA1 9.6.1 Active substance

#### **PEC**<sub>gw</sub> for iprovalicarb

| Report:      | KIIIA1 9.6.1 /01, 2012                                                           |
|--------------|----------------------------------------------------------------------------------|
| Title:       | Predicted environmental concentrations in groundwater recharge (PECgoo of        |
|              | iprovalicarb based on FOCUS PEARL 4.4.4 and FOCUSPELMO 4.4.3                     |
|              | Use in vines early, vines intermediate and vines late in Europe                  |
| Report No:   | EnSa-12-0167                                                                     |
| Document No: | M-430141-01-1                                                                    |
| Guidelines:  | FOCUS groundwater scenarios in the EU plant protection product review process. O |
|              | Report of the FOCUS Groundwater Scenarios Workgroup.                             |
|              | EC Document Reference SANCO/321/2000 rev.2                                       |
| GLP:         | No (calculation)                                                                 |

**Materials and Methods:** The predicted environmental concentrations in groundwater (PEC, ) for , ° iprovalicarb were calculated using the simulation model POCUS PEARL (version 4.4.4) and FOCUS PELMO (version 4.4.3). Detailed application data used for simulation of PEC<sub>gw</sub> were compiled Table 9.6.1-1.

The use of iprovalicarb in vines early, vines intermediate and vines late in Europe was assessed according to the Good Agricultural Practice (GAP). Applications to vine are intended of  $1 - 0 \times 150 - 216$  g a.s./ha, with 10 - 14 days application intervals, at BDCH 15 - 85. Therefore, three representative periods were chosen for the assessment (Table 6.1-1), an early period to start at BBCH 45, an intermediate period to cover BBCH 50 - 61, and a late period to cover BBCH 80 - 85. The calculations were based on the maximum intended application rate together with the maximum intended number of applications per season and the minimum interval between two applications. The use of the higher use rate, lower crop interception and a shorter application interval leading to a lighter of compound reaching the soil in the simulation provides a conservative estimate for the groundwater concentrations from the current formulation.

|                 |                 |               |             |                | , , , <i>, , , ,</i>  | 0   |
|-----------------|-----------------|---------------|-------------|----------------|-----------------------|-----|
| Table 9.60 - 1: | Comparison of   | actual applic | ation use p | attern and cal | culated use pattern f | ior |
| K.V             |                 |               | л» О``      | $\sim$         | •                     |     |
| ~ 2/            | PECex calculati | ons of iprova | ilcarp _    |                |                       |     |
|                 | _~)) _ ( /      | ×/ • ~ *      | . 1         | (n 4) (n       |                       |     |

| Individual crop N FOCUS     | , 7 , 0                        | OXpplig               | cation       |         | Amount reaching     |
|-----------------------------|--------------------------------|-----------------------|--------------|---------|---------------------|
| 🦉 🖉 🖉                       | vate per                       | interval              | plant        | BBCH    | the soil per season |
| ∅ O <sup>∨</sup> for        | season .                       | Oldays                | interception | stage   | application         |
| Section Vinter Ception      | [g a s./ha]                    |                       | [%]          | -       | [g a.s./ha]         |
| A. 3                        |                                |                       | =            |         | =                   |
| GAP:                        |                                | <sup>°</sup>          |              |         |                     |
| grapes wines                | 1 - 4 🔊 216 🖓                  | <sup>¶</sup> 910 - 14 | 60 - 85      | 16 - 75 | 1 - 4 x 32.4 - 86.4 |
|                             | 1 - 6 x 162                    | 10 - 14               | 60 - 70      | 16 - 61 | 1 - 4 x 48.6 -64.8  |
|                             | 1 - 4 x 150°                   | 10 - 12               | 60 - 85      | 15 - 85 | 1 - 4 x 22.5 - 60.0 |
|                             |                                |                       |              |         | •                   |
| Simulation:                 | J <sup>Y</sup> a. <sup>Y</sup> |                       |              |         |                     |
| vines, early vines          | AOX 216                        | 10                    | 4 x 60       | 15 - 85 | 4 x 86.4            |
| vines, intermediate vines 🔊 | 4 x 216                        | 10                    | 60/70/70/70  | 50 - 85 | 86.4/64.8/64.8/64.8 |
| vines, fote S gvines        | 4 x 216                        | 10                    | 70/85/85/85  | 80 - 85 | 64.8/32.4/32.4/32.4 |
|                             |                                |                       |              |         |                     |
|                             |                                |                       |              |         |                     |

For the metabolite <u>SZX 0722-carboxylic acid (M03)</u> a moderately significant correlation is given for the dependency of the K<sub>oc</sub> from soil pH. Therefore, in <u>PEARL</u>, the following values were implemented:

dissociated compound  $K_{oc, A}$ - and the undissociated compound  $K_{oc, HA}$ . The inflection point is apparently soil pK<sub>a</sub> of 5.88 (H<sub>2</sub>O). In <u>PELMO</u>, the following values were implemented: 2 different points at the Henderson-Hasselbach equation or curve: K<sub>oc</sub> at pH 7.0 and at pH 5.5. The inflection point is apparently soil  $pK_a$  of 5.88 (H<sub>2</sub>O).

Typically, a leaching assessment is carried out considering aerobic conditions as a common agricultural. situation. Therefore, observed major aerobic metabolites were taken into account, implementing their amounts and behaviour as observed under aerobic conditions. However an anaerobic soil, a brither ast degrading mayor metabolite, N-acetyl-PMPA (M15), was identified, which did not occur prider acrobic O conditions, mainly due to fast degradation. Based on these observations, a conservative anaerobic leaching assessment was carried out for this metabolite, respectively. The aerobic degradation behaviour of this metabolite was studied separately in a laboratory study Anaerobic leaching scenario: Under common agricultural situations in Europe, considering e.g. climatic conditions or slope of fields, it is obviously unrealistic, that a total treated agricultural field of area owns anaerobic, each year after application and lasting for a long time period, as typically considered for aerobic leaching assessments. Such conditions would make farming effectively impossible. Therefore, two more realistic, but still very conservative scenarios have been considered here: Scenario 1: Anaerobic conditions may occur regularly h plane fields or cropping areas, when rain water remains in small sinks and functives with low permeability. In this case, only a relatively small percentage of the total cropped area or field would be affected. Scenario 2: Anaerobic conditions on larger scafe may occur due to flooding along fivers. Typically, this flooding will not occurregularly or each year only with large time intervals in between. The following assumptions have been made to address these two scenarios. Partly, additional safety



| Table 9.6.1- 2: | Substance specific and model related input parameter for PECgw calculation of iproval | icarb |
|-----------------|---------------------------------------------------------------------------------------|-------|
|                 | and its major metabolites                                                             | 0     |

| Parameter             | Unit Iprovalicarb SZ |                         | SZX 0722-carboxylic             | PMPA              | N-acetyl-PMPA                                         |
|-----------------------|----------------------|-------------------------|---------------------------------|-------------------|-------------------------------------------------------|
|                       |                      |                         | acid (M03) (M10)                |                   | (MIS)                                                 |
| Molar mass            | [g/mol]              | 320.44                  | 350.41                          | 135 Ør            | 107.25                                                |
| Water solubility      | [mg/L]               | 17.8                    | 56000                           | 1 <i>5</i> 00     | ~660Q ~~~~                                            |
| Vapour Pressure       | [Pa]                 | 7.82 x 10 <sup>-8</sup> | 8.9 x 10 <sup>-6</sup>          | <sub>4</sub> 20   | 2.7 x 10 <sup>3</sup>                                 |
| DT <sub>50</sub> soil | [days]               | 6.78                    | 0.97                            | \$1.08            | ~~~ <u>0</u> .92 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Formation fraction    | [%]                  | -                       | <b>©3</b> 242                   | 🖓 0.5061 🦿        |                                                       |
| Koc                   | [L/kg]               | 113.9                   | PEARE: 0.64 / 14.3ª             | 290.2             | \$\$39.74 K                                           |
|                       |                      |                         | PELMO: 1.54 / 10 ₪              | ×,                |                                                       |
| Kom                   | [L/kg]               | 66.1                    | PEARL: 0.37 / 8@ <sup>9a)</sup> | · 168,3           | , <sup>∞</sup> 23.0 , <sup>∞</sup>                    |
|                       |                      |                         | PELMO: 0.89/5.91                | ? Q'.(            |                                                       |
| Freundlich exponent   | [-]                  | 0.8725                  | 1.025                           | <b>0</b> 8629     | ≪_0.902€                                              |
| Molar activ. energie  | [kJ/mol]             | 65.4 📡                  | 65.4                            | ≪ 65.4            | <sup>™</sup> 65.4                                     |
| Q <sub>10</sub>       | [-]                  | 2.58                    | 258                             | 2.58              | £ 258 °                                               |
| Plant uptake factor   | [-]                  | 0.5                     | 0.5                             | .0.5 <sup>(</sup> | 0.5                                                   |

a) For the metabolite SZX 0722-carboxylic acid (M03) a moderately significant correlation is given for the dependency of a) For the metabolite SZX 0/22-carboxylic acid (M03) a moderately significant correlation is given for the dependency of the K<sub>oc</sub> from soil pH. Therefore, in <u>PEAR</u> the following values were implemented; a kaline dissociated compound K<sub>oc</sub> A- of 0.64 L/kg (corresponding K<sub>om</sub> Q 0.37 D/kg) and acidic undissociated compound K<sub>oc</sub>, ha of 14.30 L/kg (corresponding K<sub>om</sub> HA: 8.29 L/kg). The inflection point is appatent soil pK a of 5.88 (H2O).
In <u>PELMO</u>, the following values were implemented; 2 different points at the Henderson diasselfach equation or curve: K<sub>oc</sub> of 1.54 L/kg at pH 7.0 (corresponding K<sub>om</sub> 0.89 C/kg) and K<sub>oc</sub> of 0.19 L/kg at pH 5.5 (corresponding K<sub>om</sub> : 5.91 L/kg). The inflection point is apparent soil pK of 5.88 (H2O).
b) maximum occurrence in anaerobic soil: 29.1%

of ippovalicate and its major metabolites are given in Findings: The 80<sup>th</sup> percentile concentrations Table 9.6.1-3.

| Table 9.6.1- 3: PECg | w of iprovalicar | ſþ, |
|----------------------|------------------|-----|
|----------------------|------------------|-----|

| Scenario |                   | <u> </u>                               | 6 Lprova               | liçarb 🕡              |         |         |
|----------|-------------------|----------------------------------------|------------------------|-----------------------|---------|---------|
| Ô        | Vines,            | çarly 🔬 👌                              | 🍼 Viges, int           | ermediate             | Vines   | s, late |
|          | PEARL 👡           | PEOMO                                  | PEARL                  | PELMO                 | PEARL   | PELMO   |
| <i>K</i> | , PECgw, O        | ₽ĔC <sub>gw</sub> ∿                    | <b>OPEC</b> gw         | <b>©PEC</b> gw        | PECgw   | PECgw   |
| •        | a lug/L           | [μg/Ι                                  | [μg(L]                 | گ <sup>™</sup> [µg/L] | [µg/L]  | [µg/L]  |
|          | 100.0 > گرچ       | ¢ < 0,001                              | ° <09001 ≳             | < 0.001               | < 0.001 | < 0.001 |
| (        | ବ <_6001 ୍୍ର୍     | ° <00:001 √                            | £0.001                 | < 0.001               | < 0.001 | < 0.001 |
| 1        | 0.0010            | ≥0.0Q1 <sup>O</sup>                    | °~~0.0010°             | < 0.001               | < 0.001 | < 0.001 |
| \$       | < 0.00            | 0.001                                  | Q <sup>*</sup> < 0,001 | < 0.001               | < 0.001 | < 0.001 |
|          | < 0.001           | < 001                                  | _≪0.001                | < 0.001               | < 0.001 | < 0.001 |
|          | ×9.001 ×          | < 0.001                                | 0.001                  | < 0.001               | < 0.001 | < 0.001 |
|          | 0.00 <del>1</del> | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ××<0.001               | < 0.001               | < 0.001 | < 0.001 |

vines, early: 4 x 216 gprovalie arb/ha, 4 x 60% miterception, 10 days application interval 1 x 216 g iprovalicarb/h@60/70/49/70% interception, 10 days application interval vines, intermediate 16 g iprocalicarb/ha, 70/85/85/85% interception, 10 days application interval vines, late:

Conclusion: There are no concerns for groundwater from the use of iprovalicarb in accordance with the the corrent formulation. use patter

### **PEC**<sub>gw</sub> for folpet

For the 3<sup>rd</sup> party active substance folpet, produced from

Bayer CropScience AG has the right of reference to files, data, studies, summaries and assessments owned by which were submitted in the EU for the support of the registration of the active substance folpet and the representative formulation Folpan 80 WDG. For details please refer to the statement mentioned at page 9. No PECgw calculations of folpet are submitted here. Bayer CropScience KG is using a risk envelope approach for the risk assessment of the representative formulation. Within the scope of this supplementary dossier, up to 4 applications at 1.35 kg/ba folpet are proposed as a safe use in grapes. is much below the critical GAP that currently defends in the EU, where 100 applications of up to 1.6 kg/ha have been approved, with all other parameters such as interval between versions of the second -specifi -speci applications or pre-harvest interval being identical or very similar. Therefore, Bayer CropScience AG wherever appropriate. A topet-specific risk considers it justified to refer to folpet data owned by

#### **IIIA1 9.6.2 Relevant metabolites**

Predicted environmental concentrations in groundwater were calculated for those soil metabolites which 🔊 should be subject to further assessment according to the guidance document on the assessment of the relevance of metabolite in groundwater (SANCO/221/2000 -rev.10- final, 25 February 2003) metabolites are not automatically relevant in groundwater in the sense of this andance document

| PEC <sub>gw</sub> for iproval | icarb metabolites                                                                                                                                       |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| For iprovalicarb me           | etabolites SZX 0722-carboxylic acide (M03), PMPA (M10) and V-aceto-PMPA (M15)                                                                           |
| were assessed.                |                                                                                                                                                         |
| Report:                       | KIIIA1 9.6.2 /01,                                                                                                                                       |
| Title:                        | Predicted environmental concentrations in groundwater recharge (REC <sub>gy</sub> ) of<br>iprovalicarb based on BOCUS PEARL 4.4.4 and FOCUS PELMO 4.4.2 |
|                               | Use in vines early, Sines intermediate and vines late in Europe                                                                                         |
| Report No:                    | EnSa-12-0167                                                                                                                                            |
| Document No:                  | $M-430141-01_{T}Q^{2}$                                                                                                                                  |
| Guidelines:                   | FOCUS groundwater scenarios in the EU plant protection product review process.                                                                          |
|                               | Report of the FOCUS Groundwater Scenarios Workgroup.                                                                                                    |
|                               | EC Document Reference SANCO/324/2000aev.2                                                                                                               |
| GLP:                          | No (calculation)                                                                                                                                        |

Materials and Methods: PEC for the metabolite were alculated using the approach, scenarios and application described for the Calculations for the parent compound in Point IIIA1 9.6.1. Compound specific input data for the merabolites are simmarised together with the data of the parent compound in KIOA1 & 1 /01 and in Table 36.1-

Findings: The PEC<sub>gw</sub> values for the metabolites for the different EU scenarios are presented in , ¢ Table 9 2-1 to Table

| Scenario                                |                                |                                        | ZX 0722-carbo          | xylic acid (M03 | )       |         |
|-----------------------------------------|--------------------------------|----------------------------------------|------------------------|-----------------|---------|---------|
| Q)                                      | o <sup>∞</sup> Vines,          | early 🔿                                | ) ÖVine@int            | ermediate       | Vines   | , late  |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <b>PEARD</b>                   | PELMO                                  | »<br>PEARL             | PELMO           | PEARL   | PELMO   |
| 1                                       | PEC <sup>®</sup> <sub>gw</sub> | PEC w                                  | PKC gw                 | PECgw           | PECgw   | PECgw   |
| Į,                                      | [µĝ/L]                         | [ <b>fig</b> /L]                       | , [Jrg/L]              | [µg/L]          | [µg/L]  | [µg/L]  |
|                                         | ~~0.001 ×                      | ≫0.001                                 | م <sup>م</sup> 0.001   | < 0.001         | < 0.001 | < 0.001 |
|                                         | × 0.000 ×                      | × 0.001 ×                              | © <sup>y</sup> < 0.001 | < 0.001         | 0.001   | 0.008   |
|                                         |                                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | < 0.001                | < 0.001         | < 0.001 | 0.005   |
| L. L.                                   | <b>₹ 0.001 ©</b> ″             | ~~~0.002~~~                            | < 0.001                | < 0.001         | < 0.001 | 0.005   |
|                                         | ~0.00                          | °≪0.0@b                                | < 0.001                | < 0.001         | < 0.001 | < 0.001 |
| - C                                     | <0_001                         | J < 0.9€1                              | < 0.001                | < 0.001         | < 0.001 | 0.002   |
|                                         | <ul><li>&lt; 0.001 ∩</li></ul> | < 0.001                                | < 0.001                | < 0.001         | < 0.001 | < 0.001 |

| Table 9.6.2- 1: | PEQw of the i | provalicarb | metabolite SZ | X 0722-earboxylic | acid (M03) |
|-----------------|---------------|-------------|---------------|-------------------|------------|
|                 | \$Y           |             |               | •                 |            |

vines, carly: 4 x 246 g iptovalicarb/ha, 4 x 60% interception, 10 days application interval

vines intermediate: 4 x 216 g intovalicarb/ha, 60/70/70% interception, 10 days application interval vines, late: 4 x 216 g provalicarb/ha, 70/85/85/85% interception, 10 days application interval

| Scenario                          |                                                     | PMPA ( <i>M10</i> )                     |                         |                                           |                   |               |  |  |
|-----------------------------------|-----------------------------------------------------|-----------------------------------------|-------------------------|-------------------------------------------|-------------------|---------------|--|--|
|                                   | Vines                                               | , early                                 | Vines, int              | ermediate                                 | Vine              | s, late 🖉 🕺   |  |  |
|                                   | PEARL                                               | PELMO                                   | PEARL                   | PELMO                                     | PEARL             | <b>PÉX MO</b> |  |  |
|                                   | PEC <sub>gw</sub>                                   | PEC <sub>gw</sub>                       | PEC <sub>gw</sub>       | PEC <sub>gw</sub>                         | PECgw             | <b>PEC</b>    |  |  |
|                                   | [µg/L]                                              | [µg/L]                                  | [µg/L]                  | [µg/L]                                    | <sup>[μg/L]</sup> | 🧄 [нзАр]      |  |  |
|                                   | < 0.001                                             | < 0.001                                 | < 0.001                 | < 0.001                                   | < 0.001           | × <0,001      |  |  |
|                                   | < 0.001                                             | 0.001                                   | < 0.001                 | 0.001                                     | < 0.001           | مي¢0.001      |  |  |
|                                   | < 0.001                                             | 0.001                                   | < 0.001                 | 0.00                                      | < 0.00            | <0.0 <b>€</b> |  |  |
|                                   | < 0.001                                             | 0.002                                   | < 0.001                 | 0.000                                     | < 0.001           | <b>990</b> 1  |  |  |
|                                   | < 0.001                                             | < 0.001                                 | < 0.001                 | < 0,001                                   | < 0.001           | <b>0</b> .001 |  |  |
|                                   | < 0.001                                             | < 0.001                                 | ≪0,001                  | < 0.001 °                                 | ₩0.00K            | Q 0.001       |  |  |
|                                   | < 0.001                                             | < 0.001                                 | Q 0.001                 | $\sim 0.000$                              | °≪ 0.009          | © < 0.001     |  |  |
| vines, early:<br>vines, intermedi | 4 x 216 g iprovali<br>iate: 4 x 216 g iprovali      | carb/ha, 4 x 60% ;<br>carb/ha, 60/70/70 | interception,°10 da     | x application inte<br>10 days application | Bval 👌 💊          |               |  |  |
| vines, late:                      | 4 x 216 g iprovali                                  | carb/ha, 70/85/85                       | 85% interception,       | 10 dags applicatio                        | on interval       |               |  |  |
| Fable 9.6.2- 3:                   | $\operatorname{PEC}_{\operatorname{gw}}$ of the ipp | rovalica 🕉 meta                         | bolite Nacetyl-         | PMPACM15                                  |                   | Ŏ             |  |  |
| Scenario                          |                                                     | _0* _×                                  | N-acetw] <sup>2</sup> P | $MP \mathcal{R}(M15)$                     |                   | Ô             |  |  |

| Table 9.6.2- 2: | PECaw  | of the iprovalicarb | metabolite PMPA    | <i>(M10)</i> |
|-----------------|--------|---------------------|--------------------|--------------|
|                 | I LCgw | of the ipioranearb  | metabolite i wii i | (1110)       |

| <b>Fable 9.6.2- 3:</b> | PEC <sub>gw</sub> of the iprovalica | metabolite Nace | tyl=PMPAQM15               |  |
|------------------------|-------------------------------------|-----------------|----------------------------|--|
| Scenario               | Vines, early                        | Vines,          | PMPA (M15)<br>intermediate |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vines,                  | exply                                  | Vines, int              | ecmediate     | 🗘 🔊 Vines         | , late  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------------------------------|-------------------------|---------------|-------------------|---------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PEARL                   | , PELNO                                | PEARL ,                 | 🔊 PELMO 🗞     | PEARL             | PELMO   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PEC <sub>gw</sub>       | ₽₩ <u>C</u> gw <sub>~</sub>            | PEC <sub>gw</sub> &     | PECgw         | <b>PEC</b>        | PECgw   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [µg/L] 🔊                | µg/L                                   | μg/L                    | ~~[μg/]       | <u>ک [μg/L</u>    | [µg/L]  |
| Scenario 1 <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ~~~ _3                  |                                        |                         |               |                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 🔍 001 🖉               | ÿ <sub>≶</sub> Ø.001 ○                 | 0.001 ×                 | \$0.004       | s, <b>€</b> 0.001 | < 0.001 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.001                   | ~~ 0.00 <i>1</i>                       | ¢0.00 کې                | < 0.0Q        | ≪y < 0.001        | < 0.001 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$\$< 0.06¥             | ~ 0.001 ~                              | <u>&lt;0.001</u>        | <u> </u>      | < 0.001           | < 0.001 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~_Q.Q01 ~               | × <0.001 >>                            | ≤0.001 २                | Ø.001         | < 0.001           | < 0.001 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | £9.001 O                | 0.00k                                  | ×0.00                   | 0.001         | < 0.001           | < 0.001 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | °€0.001€                | < 0.001                                | ~~<0.0 <b>0</b> 1       | O < 0.001     | < 0.001           | < 0.001 |
| Solution and the second s | < 0.001                 | $\sqrt{3} < 0.001$                     | ) < 0.001 @             | <b>≈@</b> 001 | < 0.001           | < 0.001 |
| Scenario 2 <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                                        |                         |               |                   |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ₹ 0.001                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                         | < 0.001       | < 0.001           | < 0.001 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ < 0, <del>0</del> 01 | < 0,001                                | <0.001                  | < 0.001       | < 0.001           | < 0.001 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>م</sup> ري 001.001 |                                        | ر <sup>37</sup> 0.001 ک | < 0.001       | < 0.001           | < 0.001 |
| ~Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $Q_{0.00}$              | $\sim 0.00$                            | ¢¢≤0.00                 | < 0.001       | < 0.001           | < 0.001 |
| A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 0.001                 | ♀ < 0.4 <b>0</b> 1 、                   | ° <0,001                | < 0.001       | < 0.001           | < 0.001 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < <b>0</b> 9001 Q       | < 0.001                                | ×0.001                  | < 0.001       | < 0.001           | < 0.001 |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~©0.001                 | <b>≫</b> 0.001                         | s्र्¥ 0.001             | < 0.001       | < 0.001           | < 0.001 |

vines, early: 4 x 216 g iprovalicato/ha, 42 60% fuerception, 10 days application interval vines, intermediate: 4 x 216 g iprovalicato/ha, 60/70/70/10% interception, 10 days application interval vines, late: 24 x 216 g iprovalicato/ha, 70/85/85/85% interception, 10 days application interval a) anaerobic conditions considered within two different scenarios, detailed description see KIIIA1 9.6.1 /01, page 29

Conclusion: There are no concerns for groundwater from the use of iprovalicarb in accordance with the use pattern for the current formulation.

### PEC<sub>gw</sub> for folpet metabolites

For the 3<sup>rd</sup> party active substance folpet, produced from

Bayer CropScience AG has the right of reference to files, data, studies, summaries and assessments owned by which were submitted in the EU for the support of the registration of the active substance folpet and the representative formulation Folpan 80 WDG. For details please refer to the statement mentioned at page 9. No PEC<sub>gw</sub> calculations of folpet metabolites are submitted here. Bayer CropScience AG is using a risk envelope approach for the risk assessment of the representative formulation. Within the score of the supplementary dossier, up to 4 applications at 1.35 kg/ha folpet are proposed as a safe us in grapes. The is much below the critical GAP that with all other parameters such as interval between applications or pre-harvest interval being identical or very similar. Therefore Bayer CropScience AG considers it justified to refer to folpet data owned by wherever appropriate. A tolpet-specific risk assessment is not considered necessary to defend the Annex Misting of ippovalicarb.

| Modelling                |  |
|--------------------------|--|
| Comments:                |  |
| IIIA 9.6.2               |  |
| Agreed PEC <sub>gw</sub> |  |
| (metabolites):           |  |
| IIIA 9.6.2               |  |
|                          |  |
|                          |  |

# IIIA1 9.6.3 Additional field testing

No additional field testing was required

# IIIA1 9.6.4 Information on impact on water treatment procedures

The compounds would got be expected to reach water treatment plants in sufficient concentrations to have any impact on water treatment procedure.

# IIIA 9.7 Predicted Environmental Concentrations in Surface Water (PECsw) for the Active Substance

No specific information is a callable for the preparation, however the information on the active substance iprovalicate as provided in the Annex 10 in the context of Section 5, Point 7 submitted within the EU Basic Dossier 1008 and the Annex 10 Renewal Dossier 2012 are also applicable for the preparation. A summary of this information is presented below. For the 3<sup>rd</sup> party active substance <u>folpet</u>, produced from 1000 Bayer CropScience AG has the right of reference to files, data, studies, summaries and assessments owned by 1000 which were submitted in the EU for the support of the registration of the active substance folpet and the representative formulation Folpan 80

WDG. Therefore, no summary data of folpet are submitted here. For details please refer to the statement mentioned at page 9.

#### Summary of fate and behaviour of iprovalicarb in water

In sterile aquatic systems iprovalicarb was stable to <u>hydrolysis</u>. Under the experimental conditions no formation of hydrolysis products was observed. Considering the hydrolytic stability determined and er environmental pH and temperature conditions, it is not expected that hydrolytic processes will contribute . to the degradation of iprovalicarb in the environment.

The UV-VIS absorption data in the environmentally relevant pH range showed that in ovalicarb in aqueous solutions does not absorb any light at wavelengths above 281 nm. Therefore no contribution of the direct <u>photodegradation</u> to the overall elimination of iprovalicarb in the aqueous environment is to be expected.

Studies with iprovalicarb in four different natural water/sectiment systems under aerobic conditions showed that the compound was thoroughly degraded leading to  $O_2$  as the end product of the mineralisation process. In parallel to mineralisation, bound residues over formed PMPA (*M10*) was identified as major metabolite (200%) of the applied adioactivity) in the water and sectiment layers and N-acetyl-PMPA (*M15*) as major metabolite in the water/tayer. SZX 0722-carboxylic acid (*M03*) was found in amounts of 5.2% of the applied adioactivity in one entire system and N-acetyl-N-methyl-PMPA (*M16*) was found in very small amounts (< 0.5% of the applied radioactivity).

Iprovalicarb was metabolised to the endpoint  $O_2$  via several routes. In one route iprovalicarb was degraded via oxplation of the methyl group of the momatic system yielding the SZX 0722 carboxylic acid (M03). In the other route the breakdown of the molecule started with deavage in one of the amide bonds which led to the main metabolite PMPA (M10) Subsequently PMPA reacted with an activated acidic acid derivative yielding N-acetyl-PMPA (M16). This metabolite was methylated in very small amounts to form N-acetyl-N-methyl-PMPA (M16). Otimately the breakdown of iprovalicarb led to total mineralisation of the aromatic nucleus in the form of carbor dioxide. The proposed pathway of iprovalicarb in water-sediment systems under aerobic conditions is given in Figure 9.7-1.

To derive the parameters suitable for modelling purpose and environmental risk assessments a kinetic evaluation of the data from the two water-sediment studies was performed according to FOCUS kinetics (FOCUS, 2006) for the parent compound the major metabolites.

For iprovalicate the  $\text{DisT}_{50}$  for modelling purpose in the water phase were in the range of 16.65 to 57.28 days (geom. mean 24.61 days) and in the range of 24.20 to 78.99 days (geom. mean 46.78 days) for the sediment phase. In the total system the DegT<sub>50</sub> for modelling purpose were in the range of 19.93 to 58.67 days (geom. mean 34.73 days). For persistence trigger evaluation the DisT<sub>50</sub> in the water phase were in the range of 14.84 to 57.28 days and in the range of 24.20 to 78.99 days for the sediment phase. In the total system the DegT<sub>50</sub> for persistence trigger evaluation the DisT<sub>50</sub> in the sediment phase. In the total system the DegT<sub>50</sub> for persistence trigger evaluation were in the range of 19.17 to 58.67 days. The corresponding DisT<sub>90</sub> in the water phase were in the range of 58.2 to 190.3 days and in the range of 80.4 to 262.4 days for the sediment phase. In the total system the DegT<sub>90</sub> were in the range of 66.9 to

Doc. M-III /Tier 2, Sec. 5, Point 9 - Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

194.9 days. (see Table 9.7-1).

#### Table 9.7-1: DT<sub>50</sub> (and DT<sub>90</sub>) values of iprovalicarb in water sediment systems for modelling purposgand trigger evaluation

| Compartment                 | Kinet                 | tic evaluation   | according to FO®     |                               |
|-----------------------------|-----------------------|------------------|----------------------|-------------------------------|
| Compartment                 |                       |                  |                      |                               |
|                             | for <b>modellin</b>   | ig purpose       | for trigger          | evaluation $$                 |
|                             | DT <sub>5</sub>       | 0 <sup>b)</sup>  | $DT_{50}^{b)}$       | DT <sub>90</sub> <sup>b</sup> |
|                             | [day                  | 's]              | [days]               | [days]                        |
|                             | range                 | geo. mean        | L. L.                |                               |
| Water phase                 | 16.65-57.28           | 24.61            | 14.84457.28          | 582-190,5                     |
| Sediment                    | 24.20-78.99           | <b>46.78</b>     | 2 20-78.99           | x80.4-2624                    |
| Total system                | 19.93-58.67           | ¢¢ 34.73         | 9.17-58.67           | Oč6.9-194.9                   |
| ) Kinetic calculation by    | (2012), submitte      | d within the An  | ne II doscher submi  | rted in 2012                  |
| (IIA, KIIA 7.8.3 /03) acco  | ording to FOCUS       | 2006): Guidanc   | Document on Est      | imating Q                     |
| Persistence and Degradat    | ion Kinetics from E   | Invironmenta     | ate Studies on Pest  | icides in EU.                 |
| Registration The Final R    | eport of the Work (   | Transin on Degra | dation Kinetics of F | FOCUS                         |
| SANCO/10058/2005 v 2        | 0 June 2006 $\times$  |                  |                      | O L A .                       |
| b) water and sediment phase | DisTer total av       | m. Dolt          |                      | O' D' A                       |
| b) water and sediment phase | . Dis 150, wiai syste | 5111. Lacger 50  | × A AV               |                               |
|                             | l l l                 | S' O             |                      |                               |
|                             |                       |                  | 0 4                  |                               |
|                             |                       | v iv             | ×1 A.                |                               |

For SZX 0722-carboxylic acid (M02) the Deg  $T_{50}$  in the total systems for modeling porpose and trigger evaluation were in the range of 5.64 to 25.15 days (geom. mean 12.10 days arith. mean 15.89 days). The corresponding DegT<sub>90</sub> were in the range of 18.94 to \$6.85 days.

For PMPA (M10) a DegT<sub>50</sub> in the total systems for modelling purpose and trigger evaluation of 66.34 days is considered appropriate. The corresponding DegT<sub>90</sub> is 220.4 days.

For N-acetyl-PMPA (M15) no teliable and statistically significant degradation parameters could be evaluated. So, for predictive modelling, a conservative default DT 50 of 7000 days might be assumed in a total water-sediment system for Nacety PMPA. (Summary of the data of these metabolites see Table 9.7-2.)

# Table 9.7- 2: Evabation for persistence and modelling endpoints of iprovalicarb in water sediment systems

| Compartment       | Compound 🔊      | à ò            | Kinetic e           | valuation according to FO   | CUS <sup>a)</sup> for |
|-------------------|-----------------|----------------|---------------------|-----------------------------|-----------------------|
| jê Ç <sup>a</sup> |                 |                | nodel               | ing purpose and trigger eva | aluation              |
| N.                |                 |                |                     | DegT <sub>50</sub>          | DegT <sub>90</sub>    |
|                   |                 |                |                     | [days]                      | [days]                |
| Ö                 | PA &            | × ×            | range               | geo. mean/ arith. mean      |                       |
| Total system      | SZX 0722 Carbox | dic acid (M03) | 5.64 25.15          | 12.15/15.89                 | 18.74-86.85           |
| ~~~               | POMPA (MTO)     |                | <u>66.34</u>        | -                           | 220.4                 |
| .1                | N-acet PMRO (1  | MISER 6        | ©1000 <sup>b)</sup> | -                           | -                     |

Kinetic calculation by 2012), advinited within the Anne II dossier submitted in 2012 (IIA, KIIA 7.8.3 /03) according to FOCUS (2006) Guidance Document on Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pesticides EU Registration. The Final Report of the Work Group on Degradation

Kinetics of FOCUS. SANCO/10058/2005, v.2.0 June 2006 default value.





#### Summary of fate and behaviour of folpet in water

For the 3<sup>rd</sup> party active substance folpet, produced from

Bayer CropScience AG has the right of reference to files, data, studies, summaries and assessments owned by which were submitted in the EU for the support of the registration of the active substance folpet and the representative formulation Folpan 80 WDG. Therefore, no summary data of folpet are submitted here. For details places refer to the

| substance folpet and the representative formulation Folpan 80 WDG. Therefore, no summary data of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| folpet are submitted here. For details please refer to the statement mentioned at page 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\mathbf{PEC} = \mathbf{colorizations} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| PEC <sub>sw</sub> calculations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The following PEC <sub>sw</sub> calculations are applicable to Europe and represent a worst-case use pattern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Endpoints for PEC <sub>sw</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Incovalicarb $\mathcal{A} \rightarrow \mathcal{A} \rightarrow \mathcal$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Table 9.7-3: Modelling input parameters for iprovalicarby 20 20 20 20 20 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Endpoint 🖉 🖓 🗸 Values used for modelling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Aqueous solubility $[mg/L]$ at 20° $6$ $6$ $6$ $7$ $17.8$ $7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Vapour pressure [Pa] at $\mathfrak{W}^{\circ}$ $\mathfrak{C}$ $\mathfrak{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DT <sub>50</sub> soil [days] (lab. geo-mean, normatised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $K_{oc} / K_{om} [L/kg]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $DT_{50}$ total system water stediment [days] (geo tean) $O' = \frac{34033}{34033}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

### Folpet

For the 3rd party active substance folpet, produced from

Bayer CropScience AG has the right opreference to files, data, studies, summaries and assessments which were submitted in the EU for the support of the registration of the active owned by substance folpet and the representative formulation Forpan 80 WDG. For details please refer to the statement mentioned at page 95

No PEC<sub>sw</sub> calentations of folget are submitted here. Bayer CropScience AG is using a risk envelope approach for the risk assessment of the tepresentative formulation. Within the scope of this supplementary dossier, up to papplications of 1.35 kg/ha folpet are proposed as a safe use in grapes. This currently defends in this crop in the EU, where 10 is much below the crucical GAP that applications of up to 1.6 kg/ha have been approved, with all other parameters such as interval between applications or fre-harvest inferval being identical or very similar. Therefore, Bayer CropScience AG considers it justified to refer to folget data owned by wherever appropriate. A folget-specific risk assessment is not considered necessary to defend the Annex I listing of iprovalicarb. 

# Bayer CropScience

Doc. M-III /Tier 2, Sec. 5, Point 9 – Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 *(Submission for Annex I renewal)* 

#### PEC<sub>sw</sub> modelling approach

#### Calculation of PEC values for the active substances according to FOCUS

FOCUS<sub>sw</sub> is a four step tiered approach:

Step 1: In this, the most conservative step, all inputs are considered as a single heading to the water body and a worst-case PEC<sub>sw</sub> and PEC<sub>sed</sub> is calculated.

Step 2: A refinement is made whereby individual loadings into the water body from different entry routes are considered. Scenarios are also considered for Northern and Southern Europe separately but no specific crop scenarios are defined.

Step 3: An exposure assessment using realistic worst case scenarios is made. The scenarios are representative of agricultural conditions in Europe and consider weather soil, dop and different waterbodies. Simulations use the models PRZM, MACRO and TOSSWA

Step 4: PEC values are refined by considering mitigation measures or specific scenario descriptions on a case-by-case basis. If step 4 calculations are required, the will be presented in the national addenda

## PEC<sub>sw</sub> for iprovalicarb

| Report:      | KIIIA1.9.7/01; <b>1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1</b>                               |
|--------------|----------------------------------------------------------------------------------------------|
| Title:       | Predicted environmental concentrations in surface water and sediment (PEC <sub>sw</sub> ) of |
|              | iprovalicarbaccording to CUSsw Step 1-2                                                      |
|              | Use in vines in Europe & S & S                                                               |
| Report No:   | EnSa-12-0168                                                                                 |
| Document No: | ∭.429643-0€71 ,                                                                              |
| Guidelines:  | FOGUS Sarrace Water Scenarios in the EU Evoluation Process under 91/414/EC.                  |
| Č,           | Report of the FQCUS Working Group on Surface Water Scenarios. EC Document                    |
| ð            | Reference SANCO/4802/2001-rev 22003                                                          |
| GLP:         | "No (calculation)                                                                            |
| 0, -V        |                                                                                              |

**Materials and Methods:** Predicted environmental concentrations in surface water and sediment (PEC<sub>sw</sub> and PEC<sub>sed</sub>) of iprovalicarb have been calculated for the use of iprovalicarb in vines in Europe. At FOCUS Step 2 the application period was set to March to May, calculations considered the use in Northern and Southern Europe. Details of the parameters used in the calculations are summarised in

Table 9.7-4.

Doc. M-III /Tier 2, Sec. 5, Point 9 - Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

#### Comparison of actual application use pattern and calculated use pattern for FOCUS Table 9.7-4: Step 1 & 2 calculations of iprovalicarb

| Individual crop     | FOCUS        |             | Applic   | _            | Amount reaching    |                                  |
|---------------------|--------------|-------------|----------|--------------|--------------------|----------------------------------|
|                     | crop used    | rate per    | interval | plant        | BBCH               | the soil per/season              |
|                     | for          | season      | [days]   | interception | stage              | application                      |
|                     | interception | [g a.s./ha] |          | [%]          |                    | [g a.s./hat                      |
| GAP:                |              |             |          | ~            | Ą                  |                                  |
| grapes              | vines        | 1 - 4 x 216 | 10 - 14Ô | 60 - 85 న    | 16 - 75            | ≪J <sup>*</sup> -4 x 32.4 - 86.4 |
|                     |              | 1 - 4 x 162 | 10 - 14  | 60 - 70      | 16 - 61 🭙          | 0 1 - 4⊚ 48.6⊱64.8 ↓             |
|                     |              | 1 - 4 x 150 | 10, 12   | 60 - 🔊       | 15 - 85            | 1 7 x 22 5 60.0 0                |
| Simulation:         |              |             |          |              |                    |                                  |
| vines, early        | vines        | 4 x 216     | ♥ 10     | ~4 x 60      | 15 - 85            | √ <b>x 86</b> €                  |
| vines, intermediate | vines        | 4 x 216 🗶   | ĽØ Š     | £60/70/79/70 | <u>(</u> ,50 - 85) | 86.4/64.8/64.8/64.8              |
| vines, late         | vines        | 4 x 216     | × 90     | 70/85/85/85  | 80- <b>8</b> 5     | £4.8/32£(32.4/32.4               |

Compound specific input data are summarised in Table

#### Substance specific and model related input parameter for BECs. estculation of inpovalicarb Table 9.7- 5:

| Parameter                        | Q,         | Ô        | Ô        | ð     | Ugit                           | <b>Walue</b>                            | sed in modelling        |
|----------------------------------|------------|----------|----------|-------|--------------------------------|-----------------------------------------|-------------------------|
| Aqueous solubility               | at 20°C .  | <i>S</i> | <i>©</i> |       | [mg/L]                         | )» O                                    | 19 <del>5</del> 8 €.,   |
| Vapour pressure at               | 20°C       | ¥        | 1        | 0     | <sup>™</sup> [Pa] <sup>©</sup> |                                         | 7,82 x 10 <sup>-®</sup> |
| DT <sub>50</sub> soil (lab. geo- | mean no    | rmalisec | l) 💦     | Ô     | [days]                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 6.780                   |
| Koc / Kom                        | A          | Ċ,       | K<br>K   | Å     | [[4/kg]                        |                                         | 13.9 206.1              |
| 1/n                              | à l        | ħ (      |          | Ű.    | Õ[-] &                         | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 08725                   |
| DT <sub>50</sub> total system (  | pater-sedi | ment (g  | eo. mea  | in) 🔬 | <sup>≫</sup> [days¶″           | ×                                       | 34.73                   |
| <u> </u>                         |            |          | Ś.       |       |                                | 0                                       | - ¥                     |

For an aquatic rist assessment the worst-case concentration considering other a single application or multiple applications, Pould be considered, Especially in case that the dominant entry route is via drift.

multiple applications should be considered, especially incase that the dominant entry route is via drift. Therefore, both multiple applications (in accordance with the use patterns) and single applications were considered.

Doc. M-III /Tier 2, Sec. 5, Point 9 – Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

### Findings:

**Step 1 and 2**: The maximum PEC<sub>sw</sub>, PEC<sub>sed</sub> and PEC<sub>sw 21d TWA</sub> values for for Steps 1 and 2 are given in Table 9.7-6.

| Crop                | Step | Application | Region            |                                      | Iprovalicarb           |                     |
|---------------------|------|-------------|-------------------|--------------------------------------|------------------------|---------------------|
|                     |      | scenario    |                   | PECsw, max                           | PECsw, 21d TWA         | PECked, max         |
|                     |      |             | A                 | [µg/L] 🕺                             | / [µg/L] 🍾             | ∘ <b>∬</b> ¤g/kgĮ∕√ |
| Vines, early        | 1    |             |                   | 273.1                                | 220.7                  | 284.8               |
|                     | 2    | Multi       | N-ĘU <sup>™</sup> | 18.5 <b>4</b>                        | 14.02                  | 20M1 A              |
|                     |      |             | S₋ĘU              | 24.92                                | 19.93 Q                | ð 1.23 S            |
|                     |      | Single      | A, EU             | ° <sub>م</sub> 999§يې                | <i>√</i> 7.18 <i>√</i> | O 9.809             |
|                     |      |             | S-EU              | ~_13.1₅°©́́                          | ~%10. <b></b> ≨⊅″      | © 14. <b>C</b> 5    |
| Vines, intermediate | 1    | 6           | , ko              | 273 J                                | ) 🖉 22 🎯 🔬             | 284.8               |
|                     | 2    | Multi 🔊     | NÆU               | 18,54                                | ¥.72                   | <sub>3</sub> 20.11  |
|                     |      | . 1         | S-EU              | <u>4</u> 1.73 °                      | 17.33                  | 23.6 <b>V</b>       |
|                     |      | Singlo      | Ŋ <b>N-ĘÔ</b> Ŋ   | <u>≈</u> <sup>∞</sup> 8.9 <b>2</b> Q | 7,182                  | \$ 2,809            |
|                     |      |             | S-FU              | 11,08                                | 🔊 🔏 🕉 🔨 🌾              | 2.13                |
| Vines, late         | 1    | Q V         |                   | 2739.1                               | <b>2</b> 0.7           | 284.8               |
|                     | 2    | Multi       | °∽Ni-EU©          | ~¶5.99~                              | £ 12.64€               | <i>Q</i> 17.26      |
|                     |      |             | S-EU              | × 17.90                              | 14≈ <b>2</b> 0 ≈       | 19.39               |
|                     | (    | , Single 🔗  | NÆU               | 0,7 <b>7</b> 938 (                   | S.825                  | 7.955               |
|                     | Ś    |             | S-EU 🐇            | 8.584                                | 6.84                   | 9.346               |

Table 9.7-6: Maximum PECsw, PECsed and PECsw, 21d TWA values for iprovalication Step 1 and Step 2

vines, early:  $4 \times 216$  g iprovalicate/ha,  $4 \times 6\%$  interception, 10 days application interval vines, intermediate:  $4 \times 216$  g iprovalicate/ha, 6670/70/76% interception, 10 days application interval vines, late:  $4 \times 216$  g iprovalicate/ha, 70/85/85% interception, 10 days application interval vines, late:  $4 \times 216$  g iprovalicate/ha, 70/85/85% interception, 10 days application interval

## PEC<sub>sw</sub> for folpet

For the 3<sup>rd</sup> party active substance folget, produced from Bayer CropScience & G has the right of reference to files, data, studie, summaries and assessments owned by which were submitted in the EU for the support of the registration of the active substance folget and the representative formulation Folgar 80 WPG. For details please refer to the statement mentioned at page 9.

No PEC<sub>sw</sub> calculations of folpec are submitted here. Bayer GopScience AG is using a risk envelope approach for the risk assessment of the representative formulation. Within the scope of this supplementary dossier, up to 4 applications at 135 kg/ba folpet are proposed as a safe use in grapes. This is much below the critical GAP that **Example approved**, with all other parameters such as interval between applications of up to 4.6 kg/ba have been approved, with all other parameters such as interval between applications or pre-harves interval being identical or very similar. Therefore, Bayer CropScience AG considers it justified to refer to tolpet data of ned by **Example** wherever appropriate. A folpet-specific risk assessment is not considered necessary to defend the Annex I listing of iprovalicarb.

**III 9.7 Initial PECsw value for static water bodies** Please refer to Point IIIA1 9.7.

#### **IIIA1 9.7.2** Initial PECsw value for slow moving water bodies

strong at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodies (1-14 days after last at the state water bodi

Doc. M-III /Tier 2, Sec. 5, Point 9 - Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

#### **IIIA1 9.8** Predicted Environmental Concentrations in Surface Water (PECsw) for **Metabolites**

#### EU endpoints for PEC<sub>sw</sub>

### **Iprovalicarb**

Table 9.8-1: Modelling input parameters for inrovalicarh metabolites

| Metabolites                                                              |                                       |
|--------------------------------------------------------------------------|---------------------------------------|
| admaints for PEC                                                         |                                       |
|                                                                          |                                       |
| alicarb                                                                  |                                       |
| 0.8.1. Modelling input peremeters for inrovalizarh metabol               | litos                                 |
| y.o- 1. Woodening input parameters for iprovancarb inclasor              |                                       |
| End-Point                                                                | Iprovalicarb metabolites              |
|                                                                          | Salues used in model ling             |
| SZX 0722-carboxylic acid (M03)                                           |                                       |
| Aqueous solubility [mg/L] at 20°C and pH 7                               | ۲ <u>کې ۲</u> ۳6000<br>۲              |
| Vapour pressure [Pa] at 20°C                                             | 8.9 x 10 <sup>-6</sup>                |
| DT <sub>50</sub> soil [days] (geo. mean lab., normalised)                | L L 297 ~ L                           |
| Max. occurrence in soil [%]                                              |                                       |
| $K_{oc} / K_{om} [L/kg]$ (worst case alkaline solits) $\mathcal{O}$      | <u>Q.64 / 007</u>                     |
| 1/n (arith. mean)                                                        | <u> </u>                              |
| DT <sub>50</sub> total system water-sediment (days) (geo. metal)         |                                       |
| Max. occurrence in total system stater-sediment [*]                      | <u><u> </u></u>                       |
|                                                                          |                                       |
| A quaque aclubility [ma/L Rat 2008] bind m 1 1                           |                                       |
| Venour procesure [Do] at 20°C                                            |                                       |
| DT soil [days] (geo mean law normalised)                                 | 20 3                                  |
| Max occurrence in spil [%]                                               | × × × × × × × × × × × × × × × × × × × |
| $K_{aa}/K_{am}$ [I/kg] (arith mean)                                      | 2968 / 168 3                          |
| 1/n (arith mean)                                                         | × ( <sup>2</sup> 0.8629               |
| $DT_{50}$ total system water-sedment [days] (n $rac{1}{2}$ )             | 66.34                                 |
| Max. occurrence in Qotal system water-sediment 128                       | 19.7                                  |
|                                                                          |                                       |
| N-acetol-PMFX (M15)                                                      | Ø)                                    |
| Aqueous solubility [mg/L] @ 20°C and pH 7 0                              | <i>š</i> 6600                         |
| Vapour pressure [Pa] at 20°C                                             | 2.7 x 10 <sup>-3</sup>                |
| DI 50 soil [days @geo, mean lab., normalised] O V V .                    | 0.72                                  |
| Max. occurrence in anderobic soil [%]                                    | 29.1                                  |
| $K_{oc}/K_{om}$ [LAg] (arith. means $V$                                  | 39.7 / 23.0                           |
| 1/n (arith. řínean)                                                      | 0.9025                                |
| DI <sub>50</sub> total system water sediment [days] (default worst case) | 1000                                  |
| Max. occurrence in oral system water-sediment [%]                        | 11                                    |
|                                                                          |                                       |

## Folpet

For the 3<sup>rd</sup> party Cactive substance folget, produced from

Bayer Cropsoence AG has the right of reference to files, data, studies, summaries and assessments which were submitted in the EU for the support of the registration of the active owned by substance folger and the representative formulation Folpan 80 WDG. For details please refer to the statement montioned at page 9.

NoPEC<sub>s</sub>, calculations of folpet metabolites are submitted here. Bayer CropScience AG is using a risk enveloge approach for the risk assessment of the representative formulation. Within the scope of this supplementary dossier, up to 4 applications at 1.35 kg/ha folpet are proposed as a safe use in grapes. This is much below the critical GAP that currently defends in this crop in the EU, where 10 applications of up to 1.6 kg/ha have been approved, with all other parameters such as interval between applications or pre-harvest interval being identical or very similar. Therefore, Bayer CropScience G considers it justified to refer to folpet data owned by **sector** wherever appropriate. A folpet-specific risk assessment is not considered necessary to defend the Annex I listing of iproval carb.

#### **PEC**<sub>sw</sub> for iprovalicarb metabolites

(M10) and N-acetyl-PMPA (M75) For iprovalicarb metabolites SZX 0722-carboxylic acid (M03), PM were assessed.

| Panart.      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Keport.      | $\mathbf{XIIIAI 9.8} / 01, 202 0 01 0^{Y} 0^{Y}$ |
| Title:       | Predicted environmental concentrations in surface water and sediment PEC of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | iprovalicarb according to POCUS Step 1-2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | Use in vines in Europe 2 2 2 2 2 2 2 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Report No:   | EnSa-12-0169 $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$ $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Document No: | M-429638-00-1 & & & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Guidelines:  | FOCUS Surface Water Scenaries in the EU Evaluation Process under 91/414/EC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              | Report of the FOCUS Working Group on Sudface Water Scenarios EC Document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              | Reference SANCO/4802/2001-rev22003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| GLP:         | No calculation) of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Materials and Methods: PECsw for the metabolities were calculated using the approach, scenarios and application rates described for the valculations for the parent compound in Point IIIA1 9.7. Input

# Bayer CropScience

Doc. M-III /Tier 2, Sec. 5, Point 9 – Fate and behavior in the Environment - Iprovalicarb + Folpet WG 65.3 (Submission for Annex I renewal)

| Table 9.8- 2: | Substance specific and model related input parameter for PEC <sub>sw</sub> calculation |
|---------------|----------------------------------------------------------------------------------------|
|---------------|----------------------------------------------------------------------------------------|

| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit                                       | Values used in modelling                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------|
| SZV 0777 aarbarulia aaid (M02)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                                              |
| Aqueous solubility at 20°C and pH 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [mg/I]                                     | 36000                                        |
| Vapour pressure at 20°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [Hig/L]                                    | <b>9 x</b> 10 <sup>-6</sup>                  |
| DT <sub>co</sub> soil (geo mean lab normalised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [dave]                                     |                                              |
| Max occurrence in soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [04y3]                                     |                                              |
| $K_{\rm c}/K_{\rm c}$ (worst case alkaline soils)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [/v]<br>[⁄/[/kg]                           |                                              |
| 1/n (arith mean)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                              |
| $DT_{50}$ total system water-sedimen (geo mean)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [davs]                                     | 0 <sup>1</sup> 1845 0 5                      |
| Max. occurrence in total system water-sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [%]                                        |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
| PMPA ( <i>M10</i> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                              |
| Aqueous solubility at 20°C and pH 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [mg/L]                                     | LEV00 × ×                                    |
| Vapour pressure at 20°C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ĉ[Pa] Ø                                    |                                              |
| DT <sub>50</sub> soil (geo. mean lab., normalised)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ¶ [dayś]≶                                  | <u> </u>                                     |
| Max. occurrence in soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , jŵj                                      | <u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u> |
| $K_{oc} / K_{om}$ (arith. mean)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | °{[Ĵ/kg]                                   | <u> </u>                                     |
| 1/n (arith. mean)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19 [-] Ø                                   | \$1.862 <u>9</u>                             |
| $DT_{50}$ total system water-sedimen (n = 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | [days]                                     | <u> </u>                                     |
| Max. occurrence in total system water-sedificent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D D                                        |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~ <i>6</i> ;                               |                                              |
| N-acetyl-PMPA (M15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time/I                                     | × × × ×                                      |
| Venous solubility at 20°C and ph 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ≤ [mg/L]                                   | × × 0000                                     |
| DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Fa)                                       | 2 (3 10-3<br>00 72                           |
| Max accurrence in an archite will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>δ</sup> <sup>q</sup> uays <sub></sub> | 201                                          |
| $\frac{1}{1}$ $\frac{1}$ | / [70]<br>/ [[ <i>t</i> ]///               | 29.1                                         |
| $\frac{\mathbf{K}_{oc}}{1/n}$ (arith mean).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            | 0.9025                                       |
| DT <sub>co</sub> total system water-sedimen (default worst case)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Idays/                                     | × 1000                                       |
| Max accurrence in total system water sediment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | × · · · ·                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            | /                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | w <sub>v</sub> oʻ                          |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , A                                        |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ð                                          |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S                                          |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 103                                        |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
| A & Y Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
| A C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                              |

(Submission for Annex I renewal)

### **Findings:**

Step 1 and 2: The maximum PEC<sub>sw</sub>, PEC<sub>sed</sub> and PEC<sub>sw 21d TWA</sub> values for the metabolites of iprovalicarb at Step 1 and Step 2are given in Table 9.8-3 to Table 9.8-5.

Maximum PECsw, PECsed and PECsw, 21d TWA values for metabolite Sex 0722 carboxylic acid Table 9.8-3: (M03) S

| Crop                | Step | Application         | Region                     | SZX 0722 carboxylic acid (M03 |                              |                       |
|---------------------|------|---------------------|----------------------------|-------------------------------|------------------------------|-----------------------|
| 1                   |      | scenario            |                            | PECsw, max 🐉                  | PECsw, 21d TWA               | PECsed, max           |
|                     |      |                     |                            | 🎾 [µg/L] 🧷                    | [µg/L]                       | ∭yμg/kg               |
| Vines, early        | 1    |                     | ¥                          | 32.78-Q                       | 19.10                        | SY 0.201 €            |
|                     | 2    | Multi               | N-EL                       | 0.561                         | <b>0</b> ,351 4              | Q 0 <del>0</del> 03 % |
|                     |      |                     | S₊₫Ŭ                       | Ø\$61                         | ° \$0.376                    | Ø.003                 |
|                     |      | Single              | <b>∂\$</b> <sup>2</sup> ÉU | ~0.329 <i>©</i> <sup>4</sup>  | ~%0.2 <b>↓</b> ©″            | © 0.002               |
|                     |      |                     | , Š-EU ∘                   | 0.329                         | <i>,</i> ⊘° 0. <b>29</b> 5 ∘ | 0,002                 |
| Vines, intermediate | 1    | (                   | Ď.Ű                        | 32.48                         | 19910                        | 0.201                 |
|                     | 2    | Multi , 🔨           | N-₽U                       | 0.561 O                       | 0.351                        | 0.003 L               |
|                     |      | , S                 | °∧S-EU ∽                   | 0.561                         | 0.363                        | 0.00                  |
|                     |      | Single              | N-EU                       | رمن 0.3 <b>2</b> %            | °∽ 0,2,16 <sub>*</sub>       | 0.002                 |
|                     |      | Q. (%               | S-KU                       | × Q329 ~                      | Ø.192 S                      | 0.002                 |
| Vines, late         | 1    |                     |                            | × <u>3</u> 2.78               | Š19.10                       | Q 0.201               |
|                     | 2    | Multi               | Ň-EU                       | ۍ <sup>م</sup> 0.56           | 0.341                        | 0.003                 |
|                     |      |                     | S-EQ                       | 0.561                         | <u>ک</u> ک                   | 0.003                 |
|                     | 4    | Single              | N-EU                       | \$ \$329                      | Ø.206                        | 0.002                 |
|                     | *    | Y & .0 <sup>y</sup> | S-EU @                     | ×0.329                        | 0.214                        | 0.002                 |

 $\cap$ 

vines, early: 4 x 216 g provalicarb/ha, 4 x 60% inferception, 10 days application interval vines, intermediate: 4 x 216 g/provalicarb/ha, 60/70/70% inferception, 10 days application interval vines, late: 4 x 216 g iprovalicarb/ha, 70/85085/85% interception, 10 days application interval L

#### PECser and PECsw, 24d TWA values for metabolite PMPA (M10) Table 9.8-4: Maximum PEC

| Crop 🔊                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Step | Application | Region                      |            | <sup>®</sup> PMPA <i>(M10)</i> |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-------------|-----------------------------|------------|--------------------------------|------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | scenario    |                             | PECsw, mar | PECsw, 21d TWA<br>[µg/L]       | PECsed, max<br>[µg/kg] |
| Vines carly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ÛĬ ( | S.S.        | S.                          | \$ 46.84   | 41.14                          | 128.9                  |
| Ky 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 👡  | Multi 🔊     | ∘"Ŋ-EU                      | ^~,        | 4.257                          | 13.61                  |
| ~Ç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ° 4' |             | ‰S-EU                       | 8.629      | 7.663                          | 24.50                  |
| l S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A    | Single 🔬    | N-EU                        | 1.440      | 1.263                          | 4.036                  |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Q" s | S de S      | S EU                        | 2.513      | 2.223                          | 7.119                  |
| Vines, intermediate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |             |                             | 46.34      | 41.14                          | 128.9                  |
| .4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20   | Multre      | N-E                         | 4.835      | 4.257                          | 13.61                  |
| and the second s | à    | N 6 5       | ∑. <b>*£</b> Ŭ              | 6.732      | 5.960                          | 19.06                  |
| Å.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | 🗸 "Single 🖉 | <b>∧ð</b> -EU               | 1.440      | 1.263                          | 4.036                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |             | <b>Š∕S-</b> EU              | 1.976      | 1.745                          | 5.577                  |
| Vines, late                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E.   |             | $\mathcal{D}_{\mathcal{F}}$ | 46.34      | 41.14                          | 128.9                  |
| <u>"</u> Q"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2    | 🛇 Manti 🔗   | N-EU                        | 3.318      | 2.895                          | 9.250                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A` E |             | S-EU                        | 4.456      | 3.916                          | 12.52                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | , Single    | N-EU                        | 1.010      | 0.877                          | 2.804                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | õ    | S Y         | S-EU                        | 1.332      | 1.166                          | 3.728                  |

vines, and vines 4 x 216 g iprovalicarb/ha, 4 x 60% interception, 10 days application interval vines, htermodate: 4, 216 g.pp/valicarb/ha, 60/70/70/70% interception, 10 days application interval A 216 sprovalicarb/ha, 70/85/85% interception, 10 days application interval vines, late

| Crop                | Step | Application | Region        | N-a        | ncetyl-PMPA <i>(M</i>  | (15) <sub>@,° &amp;</sub> |
|---------------------|------|-------------|---------------|------------|------------------------|---------------------------|
| -                   | -    | scenario    | 0             | PECsw, max | PECsw, 21d TWA         | PEC ad, max               |
|                     |      |             |               | [µg/L]     | [µg/L]                 | [ûg/kg] 🔗                 |
| Vines, early        | 1    |             |               | 45.43      | <b>\$</b> .04          | @17.48                    |
|                     | 2    | Multi       | N-EU          | 1.131      | î.105                  | <sup>™</sup> Q.4Q1        |
|                     |      |             | S-EU          | 1.155      | 1.128                  | × 0,451                   |
|                     |      | Single      | N-EU          | 0.362 🔬    | 0.354 🔊                | <u> </u>                  |
|                     |      |             | S-EU_Ô        | 0.386      | 0.37                   | ~~~~ 0.1 <b>5</b>         |
| Vines, intermediate | 1    |             | · As          | 45.43Q     | 45.04                  | 9 17:48                   |
|                     | 2    | Multi       | N-EU          | 1.191      | Ľ¥05 Q                 | <b>3?</b> .441 (c)        |
|                     |      |             | SEU           | QI43 °     | L.117                  | © 0.446                   |
|                     |      | Single      | <b>⊘</b> M-EU | ~0.362     | Q, 0.3,5⊕ <sup>∞</sup> | © 0.141                   |
|                     |      |             | S-EU.         | 0.374      | ₯ 0,3,06 ू×            | <b>0</b> ,946             |
| Vines, late         | 1    | ×           |               | ° 45.43 ~  | 4\$04                  | 17.48                     |
|                     | 2    | Multi       | ₩EU C         | Ø.122 O    | 1.096                  | → 0.438°                  |
|                     |      | × A         | °∼S-Elo       | 1.129      | \$ 1.103               | © 0, <b>@</b> 41          |
|                     |      | Single      | א N-É₽        | 0.353      | 0345                   | 0.138                     |
|                     |      |             | Stell 🏻       | y Q.360 ×  | Ø.352 S                | ©0.141                    |

| Table 9.8- 5: | Maximum PEC <sub>sw</sub> | , PEC <sub>sed</sub> and PEC <sub>sw,</sub> | 21d TWA values for me | tabolite N-acetyl-PMPA (M15) |
|---------------|---------------------------|---------------------------------------------|-----------------------|------------------------------|
|---------------|---------------------------|---------------------------------------------|-----------------------|------------------------------|

vines, early: 4 x 216 g iprovalicarb/h0 4 x 6% interception, b days application intervals vines, intermediate: 4 x 216 g iprovalicarb/ha, 60/70/70/70% interception, 10 days application intervals vines, late: 4 x 216 g iprovalicarb/ha, 70%5/85/85% interception, 40 days application intervals

### PECsw for folpet metabolites

For the 3<sup>rd</sup> party active substance forpet, produced from. Bayer CropScience AG has the right of reference to files, date studies, summaries and assessments which were submitted in the EU for the support of the registration of the active owned by substance folger and the representative formulation Folger 80 WDG. For details please refer to the statement montioned at page 9. m No PEC Calculations of folget metabolites are substitted here. Bayer CropScience AG is using a risk envelope approach to the risk assessment of the representative formulation. Within the scope of this supplementary dossier, up to 4 applications at \$35 kg/ha folget are proposed as a safe use in grapes. This currently defends in this crop in the EU, where 10 is much below the critical GAP that applications of up to .6 kg ha have been approved, with all other parameters such as interval between applications or pre-harvest interval being identical or very similar. Therefore, Bayer CropScience AG considers it justified to refer to folget data wined by wherever appropriate. A folpet-specific risk assessment is not considered necessary to defend the Annex I listing of iprovalicarb.

| Modelling                   |
|-----------------------------|
| Comments of 5               |
|                             |
| Agreed/PECs                 |
| (metabolites) of N          |
| IIIA 9.8 2                  |
| $\mathcal{O}^{\mathcal{O}}$ |

#### **IIIA1 9.8.1** Initial PECsw value for static water bodies

Please refer to Point IIIA1 9.8.

#### **IIIA1 9.8.2** Initial PECsw value for slow moving water bodies

Please refer to Point IIIA1 9.8.

1-4 days after ast Short-term PECsw values for static water bodies **IIIA1 9.8.3** application)

Please refer to Point IIIA1 9.8.

#### ocfies **IIIA1 9.8.4** Short-term PECsw value application)

Please refer to Point IIIA1 9.8.

w values for static water bodies Long-term PE atter last **IIIA1 9.8.5** application)

Please refer to Point IIIA

#### moving water bodies 7-42 days after last slow long-term PEC **IIIA1 9.8.6** (application)

Please refer to Point

#### Additional field testing **IIIA1 9.8.7**

e been performed or are required. No additional field studies formu ation h

#### **IIIA1 9.** Fate and B

# **Iprovalicarb**

Iprovalicarb  $\sqrt{2}$   $\sqrt{2}$   $\sqrt{2}$   $\sqrt{2}$   $\sqrt{2}$  Iprovalicarb has a very low vapour pressure of  $\sqrt{2}$ .7 x 10<sup>-8</sup> Pa. Therefore, it can be concluded that significant volatilisation of iprovalicate is not to be expected.

In addition, estimates of the chemical lifetime in the troposphere resulted in half-lives < 1 day.

## Folper

For the 3<sup>rd</sup> party active substance folpet, produced from

Bayer CopScience AG has the right of reference to files, data, studies, summaries and assessments which were submitted in the EU for the support of the registration of the active owned by

. Later of the second s substance folpet and the representative formulation Folpan 80 WDG. Therefore, no summary data of