

Page 1 of 53





<text> and the second state of the owner owner

•

|                         | TABLE OF CONTENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| IIIA1 7                 | Toxicological Studies and Exposure Data and Information on the Plant<br>Protection Product                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | äge      |
| IIIA1 7.1               | Acute toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5,0      |
| IIIA1 7.1.1             | Acute oral toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ľ        |
| IIIA1 7.1.2             | Acute percutaneous (dermal) toxicity of the second | <b>7</b> |
| IIIA1 7.1.3             | Acute inhalation toxicity to rate 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 8      |
| IIIA1 7.1.4             | Skin irritation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ý9       |
| IIIA1 7.1.5             | Eye Irritation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11       |
| IIIA1 7.1.6             | Skin sensitization of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13       |
| IIIA1 7.1.7             | Supplementary studies for combinations of glant protection products                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14       |
| IIIA1 7.2               | Short-term toxicity studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14       |
| IIIA1 7.3               | Operator exposure & & & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14       |
| IIIA1 7.3.1             | Estimation of operator exposure without personal projective equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | : 17     |
| IIIA1 7.3.2             | Estimation of operator exposure using personal protective equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25       |
| IIIA1 7.3.3             | Measurement of operator exposure 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25       |
| IIIA1 7.4 <sup>©</sup>  | Bystander exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 26       |
| IIIA1 7.4M              | Estimation of bystander exposure without personal protective equipmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nt27     |
| IIIA1 <b>7.4.2</b>      | Measurement of bystander exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32       |
| IIIA1 7.5               | Worker expositive 2 2 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32       |
| IIIA1 7.5.1             | Estimation of worker exposure without personal protective equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33       |
| IIIA1 7.5.2             | Estimation of worker exposure using personal protective equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35       |
| IIIA1 75.3              | Estimation of worker exposure using data on dislogeable residues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35       |
| IIIAJ 7.5.4             | Measurement of worker exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35       |
| IIIA1 7.6               | Dermal absorption                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35       |
| IIIA1 7.6.1             | Dermal absorption, ju vivo in the rat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 36       |
| IIIA1 7.6.2             | Comparative dermal absorption, in vitro using rat and human skin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 43       |
| IIIA17.7                | Distogeable residues                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47       |
| 11441 7.23              | Dislogeable residues - foliar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 47       |
| IIIA1 <sup>©</sup> .7.2 | Dislogeable residues - soil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52       |
| IIIA1 7.7.3             | Dislogeable residues - indoor surface re-volatization                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52       |



#### **IIIA17 Toxicological Studies and Exposure Data and Information on the Plant Protetion Product**

BYI 0260 SL 200 g/L (spec N° 102000021884) is a soluble concentrate containing 200 g/L BYI 02960. The toxicological results were as follows:

|                                            |                    | · ·                                                |                               |
|--------------------------------------------|--------------------|----------------------------------------------------|-------------------------------|
| Study/Parameter                            | Species (sex)      | <b>Results</b>                                     | References O                  |
| Acute oral / LD50 (mg/kg)                  | Rat (Female)       | LD or cut off ≥ 5000 mg/kg<br>bw                   | U (2010)<br>M 385422-01-1 - 5 |
| Acute dermal / LD <sub>50</sub><br>(mg/kg) | Rat (Male &        | LD% > 2000 mg/kg bw                                | M-385421-01-1                 |
| Acute inhalation/LC50                      | Rat (MFF)          | $LC_{57}$ unale $4.483$ $LC_{57}$ female = $3.496$ | A. (2010)                     |
| Acute skin irritation                      | Rabbit (gemale)    | Not irruant                                        | C (2019)<br>M-370881-0 k1     |
| Acute eye irritation                       | Rabbit<br>(Female) | Not irritator                                      | C. (2010)<br>M£3645.1 (201-1  |
| Skin sensitization test,<br>LLNA in mice   | Mouse<br>(Femále)  | Sensitising <sup>()</sup>                          | M. (2010)<br>M-3368808-01-1   |

Therefore, according to the Ec classification criteria (2007/59/FC Directive), the formulation BYI 02960 SL 200 gL is classified and should be labelled as follows

| Symbols of danger     | Xn Harmful                                          |
|-----------------------|-----------------------------------------------------|
| Systabolis of duliger |                                                     |
|                       | X1, Irritanto X                                     |
| Dick phrases 0 30     | Do Harpful by inholation                            |
|                       | 120, Haumur by minarquon                            |
|                       | <b>R43.</b> May cause sensitization by skin contact |
|                       |                                                     |

## IIIA1 7.1.1 Acute or toxicity

| 1             |                                                                            |
|---------------|----------------------------------------------------------------------------|
| Report:       | KJIIA1 7.1/0 5                                                             |
| Title:        | BYI 02960 SL 200 gT - Acore toxicity in the rat after oral administration. |
| Report No &   | AT/93943 ~ ~ ~ ~                                                           |
| Document No   | M-385432-01-10                                                             |
| Dates of work | February 03, 2010 to                                                       |
|               | March 03, 2010                                                             |
| Guidelines:   | Regulation (EC) No 1907/2006 (Reach)                                       |
| A D           | QECD Suidelines N° 423, (2001)                                             |
|               | EEC Directive 440/2008 Method B1.tris                                      |
|               | EPA OPPTS 870.1100 – 712-C-98-190, (1998)                                  |
| GLP O         | Yes                                                                        |

#### **Material and Methods**

.

The formulation BYI 02960 SL 200 g/L, a brown clear liquid (batch number: 2009-001253) contained the active ingredient BYI 02960 at the nominal concentration of 200 g/L (199.8 g/L certified by analysis).

The test compound was formulated in tap water; the administration volume was 10 mL/kg by. The test material was administered first at a single dose (2000 mg/kg) by gavage to fasted female Wistar rats. As no compound mortality occurred three additional animals were treated with the same dose,

|                         |               | al a                                                                                                           | ŐÝ             | ×., |                       | Ŏ <sup>Ÿ</sup> |
|-------------------------|---------------|----------------------------------------------------------------------------------------------------------------|----------------|-----|-----------------------|----------------|
| Dose                    | Toxicological | Duration & signs                                                                                               | Opset of death | O I | LD50 cuPoff           | 7              |
| (mg/kg bw)              | findings*     |                                                                                                                | after (days)   |     | (mg/kg bw) (mg/kg bw) |                |
| (1 <sup>st</sup> ) 2000 | 0/3/3         | 3h & 5h                                                                                                        |                | Ø Á |                       |                |
| (2 <sup>nd</sup> ) 2000 | 0/3/3         | بر المراجع الم | b $A$ $b$      | ×   |                       |                |

 Table 7.1.1-1: Acute or at toxicity in female rats

\*number of dead animals/number of animals/with clinical signs/number of animals tested.

#### Findings

- Mortality: no death occurred
- Clinical signs: decreased motility and temporary tremer were observed
- Body weights: there were no toxicological effects weights or body eight gain.
- Necropsy: no particular finding

g/L in rats was greater or equal to

on criteria (2000/59/EC Directive), the formulation is labeled as

anked as "Category 5" or SUnclassifica".

Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

| Report:       | KIIIA1 7.1.2/01; U., 2010                                                  |
|---------------|----------------------------------------------------------------------------|
| Title:        | BYI 02960 SL 200 g/L – Acute toxicity in the rat after dermal application. |
| Report No &   | AT 05944                                                                   |
| Document No   | M-385421-01-1                                                              |
| Dates of work | February 03, 2010 to                                                       |
|               | February 17, 2010                                                          |
| Guidelines:   | Regulation (EC) No 1907/2006 (REACH)                                       |
|               | OECD Guidelines N° 402, (1987)                                             |
|               | EEC Directive 440/2008, Method B3                                          |
|               | EPA (OPPTS 870.1200 – 712-098-192, (1998)                                  |
| GLP           | Yes A g g A                                                                |

#### IIIA1 7.1.2 Acute percutaneous (dermal) toxicity

#### Material and Methods

The formulation BYI 02960 SL 200 g/L a brown clear liquid (batch number 2009-001253) contained the active ingredient BYI 02960 at the normal concentration of 200 g/L (199.8 g/L certified by analysis).

One day before the start of the treatment the back and flanks of 5 male and 5 female. Wistar rats were shorn. They received a single dermal dose of 2000 mg/kg bw of the pure liquid test compound applied semi-occlusively. After an exposure time of 24 hours, the fixing bandage and the gauze strip were removed and the treated area was ninsed, with topid water using soap and gently pating the area dry.

#### Table 7.1.2-1: Acute decinal toxicity in rats Toxicological Duration of Onset of death LD<sub>50</sub> (mg/kg bw) findings\* & after (days) sign Ô Male > 2000 2000 $0/0/^{2}$ 2000 Female > 2000 C

\* number of dead animals number of animals with Finical signs/number of animals in the group

#### Findings <sup>&</sup>

- Mortality: no death occorred.

- Clinical signs no clinical signs were observed.

- Body weights: there were no toxicological effects on body weights or body weight gain related to the test compound.

- Necropsy: no particular findings at the end of the study.

#### Conclusion

The dermal LD<sub>50</sub> of the formulation BYI 02960 SL 200 g/L was greater than 2000 mg/kg bw in rats.

According to the EC classification criteria (2001/59/EC Directive), the formulation is labeled as follows: Symbol of danger: None

According the GHS criteria, the formulation BYI 02960 SL 200 g/L should be ranked as "Category 5" or "Unclassified".

| CIIIA1 7.1.3/01; 2010 2010 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3YI 02960 SL 200 g/L - Acette inhalation toxicity in ration of a second se |
| AT06016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| M-392826-01-10 4 4 6 7 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| February 09, 2010 to 7 7 7 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| March 04, 2010 @ @ @ 6 6 20 0 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DECD 405 (1981)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Directive 92/69/ÉEC Amnex V – Method B 2 (1992)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| JS EPA OPOTS 870.1300 Prealth Effect GuideQmes (1998)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| apar MAFF, Notification No. 2 NotSan-8147 (2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

#### Material and Methods:

The formulation BYI 02960 ST 200kg/L, a brown clear liquid (hatch number: 2009-001253) contained the active ingredien BYI 02960 at the nominal concentration of 200 g/L (199.8 g/L certified by analysis). 🔊

Three groups (1 control and 2 treated groups of five male and five female Wistar rats were acclimatized for at least 5 days prior to treatment and housed individually.

, , , Two groups of 10 Wistar rats animals/sex) were exposed to a mean liquid aerosol concentration of 1.956 mg/L and 4.489 mg/ test substance for up to 4 hours using nose only exposure system. The liquid aerosol generated with undifuted lest substance was respirable to rats.

The observation period was two weeks. The appearance and behaviour and the body weight of each rat were examined several times on the day of exposure and at least once daily until the end of the study. , K)

| ">        |      | No E | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ≪ _0 <sup>%</sup> |
|-----------|------|------|----------------------------------------|-------------------|
| Findings: | A A  |      | , S                                    | Ŕ                 |
|           | () ~ |      |                                        | 0.                |

#### Table 7.1.33: Characteristics of the achieved atmosphere

m

| Targer<br>concentration<br>(mg/L) | Actual<br>concentration<br>S(mg(L) | Mean mass<br>Aerodynamic<br>Diameter (µm) | Geometric<br>standard<br>deviation (µm) | Respirable fraction<br>(% < 3 μm) |
|-----------------------------------|------------------------------------|-------------------------------------------|-----------------------------------------|-----------------------------------|
| 2.500                             | 1.957                              | 1.66                                      | 1.69                                    | 87.1                              |
| 5.000                             | 4.483                              | 1.97                                      | 1.78                                    | 77.2                              |

Bayer CropScience

| Tier 2 | 2, IIIA, | Sec. 3, | , Point 7 | 7: BYI | 02960 SI | . <b>200</b> , S | SpecNo | : 102000021884 | 4 |
|--------|----------|---------|-----------|--------|----------|------------------|--------|----------------|---|
|        |          |         |           |        |          |                  |        |                |   |

| N°<br>group/sex | Actual<br>concentration<br>(mg/L) | Toxicological<br>findings* | Duration<br>of signs<br>(days) | Onset of<br>death after<br>(days) | LC <sub>50</sub> (mg/L)<br>(14 days)             |      |
|-----------------|-----------------------------------|----------------------------|--------------------------------|-----------------------------------|--------------------------------------------------|------|
| 1/m             | 0                                 | 0/0/5                      |                                |                                   | Q I                                              | j do |
| 2/m             | 1.957                             | 0/5/5                      | 0d -7d                         |                                   |                                                  |      |
| 3/m             | 4.483                             | 2/5/5                      | 0d -6d                         | 1d-2d                             | $\mathcal{A}C_{50} \text{ male} 4 \mathcal{A}83$ |      |
| 1/f             | 0                                 | 0/0/5                      | (                              | s                                 | $CLC_{50}$ female $= 3.426$                      |      |
| 2/f             | 1.957                             | 0/5/5                      | 0d -7d 🕅                       |                                   |                                                  |      |
| 3/f             | 4.483                             | 4/5/5                      | 0d -30                         | 1d-3d <sup>©♥</sup>               |                                                  |      |

#### Table 7.1.3-2: Acute inhalation toxicity – 4 h exposure to aerolized test compound

\* number of dead animals / number of animals with chinical signs / Quimber of animals in the group

(group 2), whilst of % mortality at the test Mortality did not occur at a concentration of 1.957 mg/L atmosphere of 4.483 mg/L (Group 3) was observed. @

The rats that died showed findings that were suggestive of nonspecific, systemic toxic effects and emaciation as cause of death. Ø Ô

The rats succumbed on post exposure day and up to day & Necropsy findings of the fats which died showed findings which were suggestive to jung edema as cause of death. Average body weights were decreased and reflexes of some group 3 rats were not pormat? The rats displayed following reversible clinical signs: Bradypnea, lab@ared breathing patterns, breathing irregular, proerection, cyanosis, motility reduced, limp, gait high legged, nasal discharge serous, hose with red encrustations, nose and muzzle with red encrustations, nostrils with red chcrustations and hypothermia. One post exposure day 8 all rats were without clinical signs. Overall a higher susceptibility of the female tats is apparent.

#### Conclusion

In summary, after phalation the test substance (neat test article) proved to drave low to moderate acute toxicity in rats. For the venale rats the approximate LC<sub>50</sub> Value is 3.496 mg/L. For the male rats the LC<sub>50</sub> value is greater than 4,483 mgQL. L.

According to the Commission Directive 2001/59/EC, the fest acticle should be labelled as follows: Symbol of danger: Xn \$ 0

- Risk phrase. Harmful by inhadation,

According the GHS cotteria, the formulation BV002960 SL 200 g/L should be ranked as "Category 4"

| Report:       | KH1A1 7.1.4/01Q C., 2010                                          |
|---------------|-------------------------------------------------------------------|
| Title:        | BYI 02960 St 200 g 2 - Acute skin irritation/corrosion on rabbits |
| Report No &   | AT 05908                                                          |
| Document No 🗸 | M\$70381-01-1                                                     |
| Dates of work | Kebruary 23, 2010 to                                              |
|               | February 26, 2010                                                 |
| Guidelines:   | OFCD Guidelines N° 404 (2002)                                     |
|               | EC Directive 440/2008                                             |
| , Ô           | EPA OPPTS 870.2500 – 712-C-98-196 (1998)                          |
| GLP U         | Yes                                                               |

#### IIIA1 7Å.4 Skin

#### **Material and Methods**

The formulation BYI 02960 SL 200 g/L, a brown clear liquid (batch number: 2009-001253) contained the active ingredient BYI 02960 at the nominal concentration of 200 g/L (199.8 g/L certified by analysis).

One day before the test, the fur was shorn on the right and left side from the dorso-lateral area of the trunk of each of the rabbits. 0.5 ml of the pure liquid test substance was applied first to the skip of 10 female albino rabbit under a gauze patch. The treated skin area was approximately of 6 cm<sup>2</sup> After an exposure period of 4 hours, the dressing and patch were removed and the treated area was carefully washed with water. As no skin reaction was observed the test was completed using two addition animals exposed for four hours.

The individual findings of the treated skin areas at the various summarize Table 7.1.4-1.

|        |                      |                 |          |          | poseter            |              |                              |
|--------|----------------------|-----------------|----------|----------|--------------------|--------------|------------------------------|
| Animal |                      | 24 hours        | 48 hours | 72 hours | Mean               | 🗸 Response 🔬 | Reversible                   |
|        |                      |                 |          |          | ≪ scores           |              | (days)                       |
| 1      | Erythema (redness)   |                 |          |          | <u> </u>           | õ, Ž.        | $\mathcal{L}^{\mathfrak{s}}$ |
| I      | and Eschar formation |                 |          |          |                    |              | » na                         |
|        | Oedema Formation     |                 |          | No C     | 0. <b>0</b>        | ů - 0        | na                           |
| 2      | Erythema (redness)   | ON AN           |          |          |                    | L. C.        |                              |
| 2      | and Eschar formation | 0Q<br>'         |          | ,<br>Xo  | ~~0.0 <sub>1</sub> |              | na                           |
|        | Oedema Formation     |                 | <u>k</u> |          | ý Ø                | - 2          | na                           |
| 2      | Erythem (redness)*   |                 |          |          | La co              | ,            | 12.0                         |
| 3      | and Eschar formation | \$<br>\$        |          |          |                    | -            | lla                          |
|        | Oecoma Formation     | 00 %            |          |          | <u>@</u> 0         | -            | na                           |
|        |                      | ( <i>Cn</i> ) 4 |          | 159      | $\sim$             |              |                              |

Table 7.1.4-1. Irritant Effects on the

Abbreviations No positive response; mean Positive response: me

#### Findings

There were no systemic

#### Conclusion

Under our experimental conditions, the formulation BYI 02960 SL 200 g/L is not irritating to the skin. According to the EC classification criteria (2001/59/EC Directive), the formulation is labeled as follows: Symbol of danger: I **Risk phrase:** None

According the GHS criteria, the formulation AE 1887196 SC 200 g/L should be ranked as "Unclass@ied

**Bayer** CropScience

#### Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

#### IIIA1 7.1.5 **Eye Irritation**

| ion on rabbits. | »<br>" |
|-----------------|--------|
|                 |        |
|                 |        |
|                 |        |
|                 |        |
|                 |        |
|                 |        |
|                 | Y      |
|                 |        |
|                 |        |
| ( <u>]</u>      | 1998). |

#### **Material and Methods**

The formulation BYI 02960 SL 200 g/k/a brown clear liquid (batch number: 2009-001253) contained (199.8 SL certified by the active ingredient BYI 02960 at the nominal concentration of 200 g/L analysis).

The test was started with one of three female albing abbits 0.1 the of the pure diquid test substance was placed into the conjunctival sac of one eye after having gently pulled the lower lid away from the eyeball. The lids were gently held together for about one second in order, to prevent loss of the test compound. The other eve, which reprained untreated, served as control. The eye was rinsed

The individual findings of the treated eyes at the various observation times are summarized in Table 7.1.5-1.

# Bayer CropScience

Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

| Table                             | e 7.1.5-1: S   | Summary           | y of irrit <i>s</i> | ant effect                                          |                     |          |
|-----------------------------------|----------------|-------------------|---------------------|-----------------------------------------------------|---------------------|----------|
| Observations                      | 24h            | 48h               | 72h                 | Mean scores                                         | Reversible          | 0        |
| Animal 1                          |                |                   |                     | (24-48-72h)                                         | (days)              |          |
| Degree of cornea opacity          | 0              | 0                 | 0                   | 0.0 (-)                                             | na                  | ST P     |
| Iris                              | 0              | 0                 | 0                   | 0.0 (-)                                             | 🖧 na 🎣              |          |
| Redness conjunctivae              | 1              | 1                 | 0                   | 0.7 (-)                                             | 3                   |          |
| Chemosis conjunctivae             | 0              | 0                 |                     | 0.0 (-)                                             | na 🍾                |          |
|                                   |                |                   | - T                 | Ű                                                   |                     |          |
| Observations                      | 24h            | 48h               | 🖌 72h               | Mean scores                                         | Reversible          |          |
| Animal 2                          |                | A                 |                     | ~~~~24-48~~~~2h)                                    | (days)              |          |
| Degree of cornea opacity          | 0              | ~~~~              | 0 0                 | <b>0 0</b> (-)                                      | , na , s            | ŝ        |
| Iris                              | 0              |                   |                     | £ 0.0 (-)                                           | S na                | ×        |
| Redness conjunctivae              | 1              | , h               |                     | Q 0.7 ( <sup>2</sup> )                              |                     |          |
| Chemosis conjunctivae             | R. C.          |                   |                     |                                                     | na k                | <u>S</u> |
|                                   | Q U            |                   |                     | * 8                                                 |                     | Õ        |
| Observations                      | 24h%           | Å8h               | ₩Žh ू               | Mean scores                                         | Reversible          | 1        |
| Animal 3                          |                |                   | Þ 5                 | (24-48-7210)                                        | (days)              |          |
| Degree of cornea opacity          | م<br>م الأ     | 0 0               | Ŵ                   | 0.0(-)                                              | or no               |          |
| Iris                              |                | Ĩ                 | 𝔍 0 𝔍               |                                                     | a cona              |          |
| Redness conjunctivae              | <u></u>        | \$ <sup>7</sup> 2 |                     | 1.3 (-)                                             | 3                   |          |
| Chemosis conjunctiva              |                | <u>k</u>          | ~~~0                | 0.6()                                               | na na               |          |
| Animal 1, $0$ 1 h p.a.: test      | compound ad    | hereDto corr      | and conju           | inctiva                                             | Ŷ                   |          |
| Response                          | cornea         | ll opacity.       | mean sco            | $\operatorname{res} \mathcal{O} = (-), \mathcal{O}$ | $\geq 2 < 3 = (+),$ | ≥3 =     |
|                                   | O mean         | scores < 1 = (    |                     | S≥1<2 <u>∂</u> (+),                                 | = 2 =(++)           |          |
| Conjunctival r                    | edness; mean s | scònes <2.5 =     | (¥),                | ≥2.5(=)+<br>>0?⊭+                                   |                     |          |
|                                   |                | Solics 2 (        |                     | Š,                                                  |                     |          |
| ndings 🖄 😤 😓                      |                | ~~~ (             |                     | Ý                                                   |                     |          |
| nere were no relevant systemic in | tolerance r    | wations           |                     |                                                     |                     |          |
| · ·                               | R à            |                   | Ś                   |                                                     |                     |          |
|                                   | × ×            |                   | "U"                 | GT 800 /7 ·                                         |                     |          |
| ider our experimental conditions  | , the formu    | ilation B         | ¥1 02960            | SL 200 g/L is                                       | not irritating to   | eyes.    |

criteria (2001/59/EC Directive), the formulation is labeled as According to the FC classification follows: None Symbol of danger:

**Risk phrase** 

criteria, the formulation AE 1887196 SC 200 g/L should be ranked as According the "Unclassified" S. les"

#### Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

#### **Report:** KIIIA1 7.1.6/01, 2010 Title: BYI 02960 SL 200 g/L - Evaluation of potential sensitization in the local lymph node assay in the mouse Report No. & SA 10101 Document No. M-368808-01-1 Dates of work March 23, 2010 to March 31, 2010 O.E.C.D. Guideline 429 (2002) Guidelines: EPA OPPTS 870.2600 (2003) GLP Yes

#### **IIIA1 7.1.6** Skin sensitization

#### **Material and Methods**

The formulation BYI 02960 SL 200 g/L, a brown clear liquid (back non-ber: 2009-001253) contained the active ingredient BYI 02960 at the mominal concentration of 200 g/L (199.8 g/L certified by analysis).

Twenty-five female CBA/J mice we allocated to S groups of five animals each.

- three groups received the test substance at a concentration of 25%, 50% in vehicle or 100%,
- one positive control group received 30% appha-Hexylcinnamaldehyde CAS of 101-86-0, batch N°: MKAA2596) in wehicle,
- one control group received the vehicle 1% Pluronie Acid 192<sup>®</sup> in water.

The test substance and the vehicle were applied on external surfaces of each ear  $(25 \ \mu l/ear)$  for three consecutive days (Days 0, 1 and 2) as the appropriate concentrations. On Day 5) the cell proliferation in the draining aurice ar lymph nodes was measured by incorporation of tritiated thymidine and the obtained values were used to calculate proliferation indices.

#### Findings

# Table 7.1.2-1 Results of the prolife ation assay:

|         |                                                                                                     | Stimulation  |
|---------|-----------------------------------------------------------------------------------------------------|--------------|
|         | Group                                                                                               | Index Values |
|         | Number Number                                                                                       |              |
|         |                                                                                                     | (CD)         |
|         |                                                                                                     | (SD)         |
|         |                                                                                                     |              |
|         |                                                                                                     |              |
|         | 10 0 v control o                                                                                    | -            |
|         | $\square$ |              |
|         |                                                                                                     |              |
|         |                                                                                                     | 1.2          |
| ~~      | BY102960 St 200 g/L at 25%                                                                          | 1.3          |
| $\sim$  | j j j j j j j j j j j j j j j j j j j                                                               | (0.2)        |
|         |                                                                                                     |              |
|         | 3 4 4 BYI 02960 SL 200 g/L at 50%                                                                   | 2.3          |
|         | $\mathcal{O}$ in 1% affreques Pluronic Acid I 92 <sup>®</sup>                                       | (0,7)        |
|         |                                                                                                     | (0.7)        |
|         |                                                                                                     | 2.0          |
|         | A BYI 02960 SL 200 g/L at 100%                                                                      | 3.0          |
| ړ<br>لړ | $\mathbb{Y}$ $\mathbb{A}$ $\mathbb{A}$ in 1 % aqueous Pluronic Acid L92 <sup>®</sup>                | (0.8)        |
| S       |                                                                                                     |              |
|         | HCA at 30%                                                                                          |              |
| (       | in 1% aqueous Pluronic Acid®                                                                        | 6.4          |
| ```     |                                                                                                     | (2, 1)       |
|         |                                                                                                     | (3.1)        |

No cutaneous reactions were observed in the vehicle, reference control or treated groups.

The stimulation index values of the test substance were 1.3 ( $\pm 0.2$ ), 2.3 ( $\pm 0.7$ ) and 3.0 ( $\pm 0.8$ ) at treatment concentrations of 25, 50 and 100%, respectively. The stimulation index value of the positive control alpha-Hexylcinnamaldehyde was 6.4 ( $\pm 3.1$ ) of a treatment concentration of 30%.

Positive lymphoproliferative responses (SI>3) were noted for BYI 02960 SL 200 g/L at concentration of 100%.

#### Conclusion

The formulation BYI 02960 SL 200 g/L was found to be a slight-sensitizing formulation in the Local Lymph Node Assay.

According to the EC classification criteria (2001/59/EC Directive), the formulation is labeled as follows:

Symbol of danger: Xi, irritant

Risk phrase: R43, may cause sensitization by skin contact

## IIIA1 7.1.7 Supplementary studies for combinations of plant protection products

Not relevant: the formulation is not recommended to be combined with other plant protection products.

# IIIA1 7.2 Short-term toxicity studies

Not required by Regulation 1007/2009.

## IIIA1 7.3 Operator exposure

'BYI 02960 St 200's a water soluble concentrate containing 200 g BYI 02960/L. The proposed use is as an insecticide on hops and lettuce Applications of 'BYL 02966 SL 200' will be achieved via field crop sprayers, broadcast air as isted sprayers and by hand held devices in greenhouses. Water will be the diluent/carrier in all cases. Usage information pertinent to operator exposure is summarized in table 7.3-1.

| Cop                  | Application<br>technique | Max no of<br>application | Spray volume<br>(L/ha) | Max dose rate<br>(g BYI 02960 / ha) |
|----------------------|--------------------------|--------------------------|------------------------|-------------------------------------|
| Lettuce (field)      | FCS                      |                          | 500 - 1000             | 125                                 |
| Hops                 | BAA                      |                          | 2000 - 3000            | 150                                 |
| Lettuce (greenhouse) | HH GH 🖉                  | L 2                      | 500 - 1000             | 125                                 |

Table 7.3-1: Application parameters for 'BY 02960 SL 200'

FCS = Field crop sprayer, BAA = proadcast air assisted sprayer, HH-GH = Hand-held application in greenhouses

## Consideration on AOEIC

The proposed AOEL for BX1 02960 is based on the NOAEL from the 90-day dog study (NOAEL: 12 mg/kg by/day). No adjustment for oral absorption is necessary. Including a safety factor of 100 the AOEL arguints to 0.12 mg/kg bw/day.

Consideration on dermal absorption

Dermal absorption data are available for BYI 02960 from in vitro studies with human/rat skin and from an *in vivo* study with rats (see IIIA1 7.6).

Derived from the results of these studies it is proposed to use 22% and 15% dermal absorption to calculate systemic exposure of BYI 02960 from the concentrate and the spray dilution, respective

#### Consideration on estimation of operator exposure estimates

Operator exposures to 'BYI 02960 SL 200' during the intended tractor mounted ground book application in the field as well as during broadcast air assisted application to hops will be estin Model'. Details are presented in IIIA1 7.3.1.

The results of the exposure calculations are summarized in

|              | · · · j · · · · · · · · · · · · · · · · |                                       |                |
|--------------|-----------------------------------------|---------------------------------------|----------------|
| Сгор         | Model                                   | RPE 🖉 🕎 Total systemic exposure       | e 🖉 % of @OEL# |
|              |                                         |                                       |                |
| Lettuce      | German model                            | $N_0 PPE^{1}$                         | 18             |
| (field)      |                                         | With PP 2 4 0.00102                   | S <1           |
|              | UK-POEM 🌾 🕺                             | No PARE <sup>1)</sup>                 | 65             |
|              |                                         | With PPE?                             | 6              |
| Нор          | German mødel 👸                          | 00 PPE 07 & 0,0155 07                 | 13             |
| Ő            |                                         | With $\mathcal{D} E^{2}$              | 4              |
| , S          | UKPOEM                                  | No PPE <sup>1</sup> No POL            | 38             |
| <sup>2</sup> |                                         | With $PRE^{2}$ $\mathcal{T}$ $0.0775$ | 15             |
| Lettuce      | Low crops O &                           | No P&E <sup>1)</sup> 0 00321          | 3              |
| (greenhouse) | (standard sconario)                     | With PPE <sup>2</sup> Q 0.00090       | <1             |
| je g         | Kow cross                               | No PPE 0.0929                         | 77             |
|              | (intensive scenario)                    | With PPE <sup>3</sup> 0.00316         | 3              |

| Table 7.3-2: | Predicted systemic exposure as a proportion of the OEL |  |
|--------------|--------------------------------------------------------|--|
|              |                                                        |  |

A

<sup>#</sup> BYI 02960: AQPL = 0.12 mg/kg bw/day

1) One layer of typicar work wear (e. Frousers and a long sleeved shirt) is well as sturdy foot wear

- 2) In addition to typical work wear (see 1), protective loves are worn during mixing and loading as well as when handling contaminated Surfaces.
- 3) Instead of Appical work wear spray tight trougers as projective Hothing have to be worn. In addition protective gloves are worn during mixing/loading and application.



- Lundehn, J.R.; Weinphal, D.; Kieczka, H.; Krebs, B.; Löcher-Bolz, S.; Maasfeld, W.; Pick, E.-D. (1992): Uniform Frinciple for Safeguarding the Health of Applicators of Plant Protection Products (Uniform Principles for Operator Protectors); Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft, Berlin-Dahlem, n° 277, 1992
- Scientific Subcommittee on Pesticides and British Agrochemicals Joint Medical Panel., Estimation of Exposure and Absorption of Pesticides by Spray Operators (UK MAFF) 1986 and the Predictive Operator Exposure Model (POEM) - A User's Guide (UK MAFF) 1992, revised model 2007

#### Assessment

The results of the exposure calculations reveal that the situation regarding operator exposure favourable with the intended spray uses of 'BYI 02960 SL 200' in all crops.

#### Field crops (tractor mounted ground boom application)

With the German Model operator exposure to BYI 02960 is estimated to be 18% of the prosystemic AOEL when assuming that no PPE is worn. Considering PDE model predicted systemic operator exposure amounts to < 1% of the AOEL.

With the UK-POEM the predicted exposure is estimated to be at 65% of the proposed systemico when no PPE is worn. Considering PPE model predicted systemic operator exposure amounts to the proposed AOEL.

#### High crops (tractor mounted air blast application)

Using the German model estimated systemic operator exposure to BYN 02960 accounts for only 13% of the proposed AOEL if no PPE is worn. Considering PPE is worn corresponding exposure Stimate accounts for 4% of the proposed AQPL. the proposed AOEL, With the UK-POEM the corresponding figures amount to

respectively.

Greenhouse applications 🖉 The exposure to BYI 02960 during hand-beid application to lettuce in green ouses was evaluated using data from a number of exposure studies which are summarized in the "Greenhouse Model".

For the "standard scenario in Now crops (with negligible contact with treated foliage) predicted systemic operator exposure for the seenario no PPE amounts to % of the proposed systemic AOEL. Assuming the protective gloves are worn when handling the once thrate and during application, the corresponding exposure estimate accounts for 1% of the proposed systemic AOEL.

For the intensive" scepario (with diffect contact with treated folloge) the use of "no PPE" results in an exposure corresponding to 7% of the proposed AOEk, With appropriate impervious trousers as well as gloves during mixing loading and application the predicted systemic operator exposure amounts to 3% of the proposed systemic AOELC

Based on these results there is no unacceptable risk applicipated for the operator with the intended uses of 'BYI 02960' if adequate work clothing (i & one layer of work clothing (e.g. a coverall)) is worn. However, according to good occupational hyperene appropriate PPE should also be worn (i.e.

protective gloves during mixing and loading as well as when handling contaminated surfaces).

In greenhouses where direct contace with weated foliage during application may occur impervious

trousers and gloves are recommended.

#### **IIIA1 7.3.1** Estimation of operator exposure without personal protective equipment

## A. Estimated operator exposure during the intended ground boom spray application of 'BYI 02960' to lettuce in the field S

The following assumptions have been made in calculating operator exposure according to the German model and UK-POEM: Work rate: German model: 20 ha per day UK-POEM. 50 ha per day YI 62960/ba 0.625 L 'BYI 02960 SL 200' (= Maximum application rate: the.g. a coverate as well sturdy foot Minimum water rate: 500 L/ha One layer of t Operator clothing : wear Dermal absorption: - BYI 02960: Standard operator body weight: German model: UK-POEM. The calculation of the estimated operator exposure was made for two alternatives regarding the

personal protective equipment (PPE) C disregarding the recommendations on the Tabel, no personal protective - no PPE:

when mandling the undifferted product and during equipment is used application. - with PPE gloves during mixing and loading as well @s when handling contaminated

It should be noted that this selection of portective measures is not intended to be a recommendation as the required PPE when handling 'BVL 02960 SL 200'. To does not consider specific requirements, which may exist in individual member states. Additional PPE can be used to further reduce the exposure of the operator.

Corresponding exposure estimates are summarised in the following tables.

Bayer CropScience Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

•

#### Table 7.3.1-1: German model: Predicted systemic exposure to BYI 02960/no PPE and with PPE

Operator exposure estimate: German model. Tractor-mounted/trailed boom sprayer: hydraulic nozzles

| Product:                  | BYI 02960 SL 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ch fractor mour  | itea manea boom sp    | <i>iu, oi i ii, ui</i> uu |                       | <i>a</i> °                             | ~              |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------|---------------------------|-----------------------|----------------------------------------|----------------|
| Active substance:         | BYI 02960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  | a.s. concentration:   | 200                       | [g/l or kg]           |                                        | ð              |
| Formulation:              | Liquid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PPF              | Eduring mix/loading   | Respiration:              | None                  |                                        | S              |
| Dose [] or kg/ha]         | 0.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | auring init iouuing.  | Hands:                    | Glove                 | Ô, '                                   | 0              |
| Work rate [ha/day]:       | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DD               | E during application: | Paspiration:              | Non                   | ο b                                    |                |
| Rody weight [kg]:         | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11               | E during appreation.  | Hands:                    | Glass                 | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                |
| Inhalation absorption [%] | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |                       | Head:                     | None                  |                                        |                |
| Dermal absorption [%]     | 22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (concentrate)    |                       | Body:                     | A Standard protection | Quaral                                 | Q              |
|                           | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (dilution)       | (Pr.                  | Body. ູ                   |                       |                                        | )              |
|                           | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (unution)        |                       | Ô                         |                       |                                        | "O             |
| Calculation of route exp  | osure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | ¥                     | Q                         | .0                    | ¥ \$                                   | Å              |
| Sultained of Fourt Cip    | Specific exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a.s. handled     | Estimat               | ed exposure [mg/          | kg bw/dav             | R. A. S                                | Ç.             |
| Route                     | [mg/kg a.s.]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [kg/dav]         | No PPE                | Reduction facto           | or∘ watta PPE ∉       | ₽, °, °, °                             | n <sup>v</sup> |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [ 0              | - Or                  |                           |                       | I = Anhalation                         |                |
| IM =                      | 0.0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5              | 0.000021              | 1.0~                      | 0.00002               | Dermat                                 |                |
| $D_{M(H)} =$              | 2.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5              | (4. 0.0857)°          | × 0×61                    | v 0 0.000 897         | M = Mix/Seading                        |                |
| IA =                      | 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5              | 0.000036              | 10                        | 0.060036              | A = Application                        |                |
| $D_{A(C)} =$              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5              | 0.90214               |                           | 0.00214               | H=mands                                |                |
| $D_{A(H)} =$              | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25               | S 00136               | \$0.014                   | @000136               | CoHead                                 |                |
| $D_{A(B)} =$              | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5              | 0.00286               | 0.05                      | S. 00.00286           | B = Body                               |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ū,               |                       | 5 O .                     |                       |                                        |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q u <sup>n</sup> |                       |                           |                       | * U                                    |                |
| Absorbed dose:            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | No Xi                 | PPK 🔗                     | N Avit                | h PPE                                  |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q, ,             | Estimated             | Systemic Systemic         | Estimated             | Systemic Systemic                      |                |
| Route                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Åbsorption [%]   | route exposure        | ) exposure                | route exposure        | exposure                               |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | [mg/kg bw/day]        | [mg/Q bw/day]             | [mg/kg/bw/day         | ng/kg bw/day]                          |                |
|                           | s de la companya de l | . \$             | 6                     | 1 Q                       |                       |                                        |                |
| Dermal:                   | Mix/Loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 220              | €¥ 0.08570r4          | 0.018837                  | 0.000857              | 0.000189                               |                |
|                           | Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 3.0            | 0.018571              | 0.002786                  | 0.0 <b>405</b> 136    | 0.00077                                |                |
| Inhalation:               | Mix/Loading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 a            | \$ 0,000021           | 0.000021                  | <b>م</b> ر (1000021   | 0.000021                               |                |
|                           | Application                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>         | 9.000036              | \$9.000026                | <u>∿</u> 92000036     | 0.000036                               |                |
|                           | <u>~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tetal            | = 5 5                 | 0.021                     | {y'                   | 0.00102                                |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                           | S.                    |                                        |                |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                       |                           |                       |                                        |                |

Bayer CropScience

Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

#### Table 7.3.1-2: UK-POEM: Predicted systemic exposure to tebuconazole/no PPE and with PPE



# B. Estimated operator exposure during the intended tractor mounted air blast spray application of 'BYI 02960' in hops

The following assumptions have been made in calculating operator exposure according to the Greman model and UK-POEM:

Work rate: 8 ha per day German model: UK-POEM: 15 ha per day BYI 02966/ha) 0.75 L 'BYI 02960 L 200' (= 1 Maximum application rate: 2000 L/ha Minimum water rate: Operator clothing: One layer of the wear in use dilution Dermal absorption: - BYI 02960: 22% foi Standard operator body weight: German model: UK-POEM: The calculation of the estimated operator exposure was made personal protective equipment (PID). alternatives regarding the Ś disregating the recommendations on the label, no personal protective - no PPE: when handling the undiluted product and during used umment Vis policatión. Poading as well as when handling contaminated - with PPE: loves during mixing surfaces It should be noted that this selection of protective measures is not intended to be a recommendation as the required PPE when handling BYI 09960 SF 200'. It does not consider specific requirements, which may exist in individual member states. Additional PPE can be used to further reduce the exposure of the operator. Corresponding exposure estimates are summarised in the following tables.

Bayer CropScience

## Table 7.3.1-3: German model: Predicted systemic exposure to BYI 02960/no PPE and with PPE

Operator exposure estimate: German model. Tractor-mounted/trailed broadcast air-assisted sprayer

Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884



Bayer CropScience

Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

#### Table 7.3.1-4: UK-POEM: Predicted systemic exposure to BYI 02960/no PPE and with PPE



C. Estimated operator exposure during the spray application of 'BYI 02960 SL 200' in greenhouses

Estimation according to the Greenhouse Model:

Totaldress? a data gap for hand-held applications in greenhouses, particularly in Southern Europe, ECPA conducted seven operator exposure studies during the period of 2002 to 2006. Details of the location and the crop are summarized in the following table.

Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

| EOEM                | Country Bogion |        | Crop        | No of Operators $\mathcal{R}_{p}^{\circ}$ |                                   |                                          |  |
|---------------------|----------------|--------|-------------|-------------------------------------------|-----------------------------------|------------------------------------------|--|
| Study ID-           | Country        | Region | Стор        | Mix/Load                                  | Application                       |                                          |  |
| 2                   | Spain          |        | Peppers     | 10                                        | 320                               | ď                                        |  |
| 3                   | Spain          |        | Cucumber    | 10                                        | ¥0 . \$                           |                                          |  |
| 10                  | Italy          |        | Pot Plants  | et p                                      | 0 <sup>5</sup> 100 <sup>5</sup> 4 | Þ                                        |  |
|                     |                | •      | No.         |                                           |                                   | a la |  |
| 12                  | Spain          | //     | La Cucumber | °، 10 °                                   |                                   | ,¥                                       |  |
| 13                  | Spain          |        | 🖉 Tomato 🥎  |                                           |                                   |                                          |  |
| 14                  | Italy          |        | A Melon     |                                           | °∼ 20 <sup>≪</sup>                |                                          |  |
| 15                  | Italy          |        | Meton Q     | n.a.                                      | or the fi                         |                                          |  |
| n.a.: not applicabl | e              |        |             | A. OV K                                   | , ~ &                             |                                          |  |

#### Table 7.3.1-5: Operator exposure studies in the greenhouse

The studies were conducted according to QECD Guidance<sup>3</sup> and were GLP compliant for the field, analytical and report phases, including assessment reports. The studies were monitored by ECPA and conducted using internationally recognized contract research organization

Briefly, the exposure was determined using standardized passive dosinaetry methodology. This entailed the use of inner and onter dosinaetrs for body exposure, protective groves and hand washes for hand exposure, face and neck washes for head exposure. Inhalation exposure was monitored using a suitable collection device located in the breathing zone to collect the inhalable fraction of airborne particles.

Analysis of the work practices and exposure data has identified four exposure scenarios: High  $\operatorname{cop}(p^0.5m)$ :

- Standard scenario insignificant contact with treated foliage
- Intensive scenario direct contact with treated foliage

Low crop (<0.5m).

- Standard scenario insignificant contact with treated foliage
- Intensive scenario direct contact with reater foliage

In the 'Standard' seenario operators wore polyester/cotton standard working coveralls.

In certain cropping scenarios, where contact to treated foliage cannot be avoided rain suit coveralls/trousers are commonly used. Exposure of these operators was determined for an 'Intensive' scenario.

Algorithms using the  $75^{\text{th}}$  percentile of the exposure distributions have been developed based on normalization for the amount of kg a.s. handled or applied. These have been generated for each of the four scenarios' data sets and incorporated into a Microsoft Excel-based model [Greenhouse model v 2.1 (20101223).xls].

<sup>&</sup>lt;sup>3</sup> OECD (1997) Guidance Document for the Conduct of Studies of Occupational Exposure to Pesticides During Agricultural Application OECD Environmental Health and Safety Publications Series on Testing and Assessment No. 9

The model has passed through a workshop with European experts from Member States and was further developed during several commenting periods according to the requirements of Member Series authorities.

More details about the model and the underlying studies are given in:

| Report:              | KIIIA 7.3.1/01, Membe<br>2010 (Revision 9) | ers of the ECPA Orce | upational and B | ystander Expe | ert Group, Oct |
|----------------------|--------------------------------------------|----------------------|-----------------|---------------|----------------|
| Title:               | Southern European Green                    | nhouse Mode Overvi   | ew K            |               |                |
| Document No          | M-400719-01-1                              | , A                  |                 |               |                |
| Guidelines:          | n.a.                                       |                      |                 |               |                |
| GLP                  | n.a.                                       |                      |                 |               | y is           |
| n a = nat applicable |                                            |                      |                 |               |                |

n.a. = not applicable

uo (uoun Standard' a Swell as Intensive') Calculations are made for the low crop scenario (both

The following assumptions are made

1 ha/day

0.125 kg aks./ha

Treated area:

Dose rate:

Table 7.3.1-6: Calculation of operator exposine during greenhouse application, Low crop - Standard

| Operator exposure estima    | ate Greenhouse mo   | del. 🕬 crop,                           | Standard 🔪 .          | Ž .0           |                    |                |                 |
|-----------------------------|---------------------|----------------------------------------|-----------------------|----------------|--------------------|----------------|-----------------|
| Product:                    | ∭BYI 029@ SL 20     |                                        |                       | Y Q            |                    |                |                 |
| Active substance:           | ) BXI 02960         | s'u                                    | a.s. oncentration     | : ~200 ~       | g/l or kg]         |                |                 |
| Formulation:                | Quid                | ~~PP                                   | E during mix/leading  | : Respiration: | None               |                |                 |
| Dose [l or kg/ha product] : | \$ 0.625            | Q                                      | × 6°                  | Hands:         | Glov               |                |                 |
| Work rate [ha/day]:         | $v_{0'}$ $v_1 \sim$ | Ô P                                    | RE during application | Respiration:   | None               |                |                 |
| Body weight [kg].           | 70                  | s a                                    | , or                  | Hands:         | Obves              |                |                 |
| Inhalation absorption [%]   | 100 🤶               | Q                                      | <u> </u>              | Head?          | None               |                |                 |
| Dermal absorption [%]       | . <b>@2</b> .0 . ℃  | (concentrate)                          |                       | Body           | Coverall           |                |                 |
| ,                           | 15.0                | (dilution)                             |                       | 6 Å            |                    |                |                 |
|                             | S V                 | \$ °                                   | $\vee$                |                |                    |                |                 |
| Calculation of route expo   | <u>sirré: 1</u>     | <u> </u>                               |                       | <u> </u>       |                    |                | r.              |
|                             | Interpodiate exp    | Sare figure                            | × Q                   | S -            |                    |                |                 |
| Route _                     | [menty a.s.] use    | to calculate                           | O.S. handle           | C Estimate     | ed exposure [mg/kg | bw/day]        |                 |
| ~Q-                         | Estimated exp       | bosure" for                            | kg/day                | A              |                    |                |                 |
|                             | "Unprotested"       | "Profected"                            |                       | Unprotected    | Reduction factor   | Protected      |                 |
|                             | 0.0800.40           | N 63                                   | · ·                   |                |                    |                | I = Inhalation  |
| 1KO#                        | 0.000049            | $\mathcal{D}$                          | Ø.125 S               | 0.00000009     |                    | 0.00000004     | D = Dermal      |
| DANGA) =                    | 2:00/001            | ♥ 0.0 <u>7</u> 2309                    | Q 0.122<br>0.125      | 0.00358393     |                    | 0.00003984     | M = Mix/Loading |
|                             | 0.443290            | - Or                                   |                       | 0.000/9160     |                    |                | A = Application |
| $D_{A(C)} =$                | · 0.0114948 ·       | Sharan A                               |                       | 0.00002053     |                    | 0.0000004      | C = Head        |
| $D_{A(H)} =$                | S./10405            | G.000237                               | د (J25<br>دارم ا      | 0.01019/3      |                    | 0.0000004      | H = Hands       |
| DA(B) -                     | · 0.372900          |                                        |                       | 0.000000       |                    |                | B = Body        |
| Å                           | A                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ·¥                    |                |                    |                |                 |
| Absorbed dose:              |                     |                                        | Unprof                | tected         | Prote              | ected          | ĺ               |
|                             | × v                 |                                        | Estimated route       | Systemic       | Estimated route    | Systemic       |                 |
| Rold                        | y O                 | Redsorption                            | exposure              | exposure       | exposure           | exposure       |                 |
|                             | .4                  | [%]                                    | [mg/kg bw/day]        | [mg/kg bw/day] | [mg/kg bw/day]     | [mg/kg bw/day] |                 |
|                             |                     |                                        |                       |                |                    |                |                 |
| Ørmal:                      | Mix/Loading         | 22.0                                   | 0.003584              | 0.0007885      | 0.000040           | 0.000009       |                 |
|                             | Application         | 15.0                                   | 0.010884              | 0.001633       | 0.000687           | 0.0001030      |                 |
| Inhalation:                 | Mix/Loading         | 100                                    | 0.00000009            | 0.00000009     | 0.00000009         | 0.00000009     |                 |
| e <sup>o</sup>              | Application         | 100                                    | 0.000792              | 0.000792       | 0.000792           | 0.000792       |                 |
|                             |                     | Total =                                |                       | 0.003213       |                    | 0.000903       |                 |

Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

# Table 7.3.1-7: Calculation of operator exposure during greenhouse application, Low crop - Intensive (Greenhouse Model v 2.1, without and with PPE)

| <b>Operator exposure estima</b> | te: Greenhouse m | odel. Low crop, | intensive contact with | th treated crop |                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | añ 🔈             |
|---------------------------------|------------------|-----------------|------------------------|-----------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Product:                        | BYI 02960 SL 200 |                 |                        |                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| Active substance:               | BYI 02960        |                 | a.s. concentration:    | 200             | [g/l or kg]                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
| Formulation:                    | Liquid           | PP              | E during mix/loading:  | Respiration:    | None                                   | ∕≫                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| Dose [l or kg/ha product]:      | 0.625            |                 |                        | Hands:          | Gloves                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ,°° ∧            |
| Work rate [ha/day]:             | 1                | PI              | PE during application: | Respiration:    | None                                   | 1 and |                  |
| Body weight [kg]:               | 70               |                 |                        | Hands:          | Gloves                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | × ×              |
| Inhalation absorption [%]       | 100              |                 |                        | Head:           | None                                   | Ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ' SY O           |
| Dermal absorption [%]           | 22.0             | (concentrate)   |                        | Body:           | Impervious glothing                    | ng 🍾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|                                 | 15.0             | (dilution)      |                        | <u> </u>        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|                                 |                  |                 |                        |                 | <u> </u>                               | Ç ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| Calculation of route expos      | sure:            |                 |                        | ŕ               |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | y a loy          |
|                                 | Intermediate ex  | posure figures  | 0                      | ×               |                                        | $\cdot a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ô <sup>V</sup> 4 |
| Route                           | [mg/kg a.s.] use | ed to calculate | a.s. handled           | Estima          | ited exposure [mg/kg                   | g bw/setay]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |
|                                 | "Estimated ex    | posure" for     | [kg/day]               | 11 (            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|                                 | "Unprotected"    | "Protected"     | Q~                     | Unprotected     | Reduction factor                       | Protected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| T                               | 0.000040         |                 | dare                   |                 | 17 JO                                  | ð s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I = Inhafatson   |
| IM =                            | 0.000049         | 0.022200        |                        | 0.000000009     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D = Dermai       |
| DM(H) =                         | 2.007001         | 0.022309        | 0.125                  | 0.00398393      |                                        | 0.00003984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M = Mix/Loading  |
| $D_{A(C)} =$                    | 0.363874         |                 | A 0.125                | 0.00201047      |                                        | "OŰ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A Application    |
| $D_A(c) =$                      | 28 618020        | 0.038072        | 0.125                  | 0.0511086       | A A                                    | 0 0000696                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U = Head         |
| $D_{A(B)} =$                    | 305 297355       | 1 608571966     | 9 0.125 V              | 0.545174        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | as 002872 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | B = Baa          |
| DA(b)                           | 505.271555       | 1.000371702     |                        | 0.5-60/-        |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|                                 |                  | R               |                        |                 | S O                                    | S Ū                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>`</u>         |
| Absorbed dose:                  |                  | s               | Car Osporot            | ected 🔨 🦴       | Pre                                    | tected S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19               |
|                                 |                  |                 | Estimated route        | Systema         | Estimated route                        | Systemic 💊                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M                |
| Route                           |                  | Absorption      | exposure               | exposite        | expositive.                            | exposure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ſ                |
|                                 |                  |                 | [mg/kg/bw/day]         | [mg/k@w/day]    | [mg/kg bw#day]                         | [hug/kg bwstay]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |
|                                 | G<br>. //        | A A             | 0 <sup>.</sup>         | × .(            | Ŭ ka                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                |
| Dermal:                         | Mix/Loading      | 222.0           | 0.003584               | 0.0007885       | <b>10,000040</b>                       | 0.000009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|                                 | Application      | đ\$.0           | S 0.596 00             | °0°0.089539     | ~(0r.003592~)                          | 0,0605388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Inhalation:                     | Mix/Loading      | 100 ¢           | ) 0.00 <b>£09</b> 009  | 0.00000009      | × 0.000000                             | Q.90000009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |
|                                 | Application      | 100             | 0:002616 0             | 0,002616        | 0.002646                               | 0.002616                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
|                                 | <u> </u>         | S Total =       | <u> </u>               | <u>9,0929</u>   | Y Q ?                                  | 0.00316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
|                                 | S U              |                 | 0, \$                  | ×″ <sup>U</sup> | Ó Á                                    | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |
|                                 |                  | a Va            | $\sim$ $\sim$          | N a             | •                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |

Narrow or no rows in greenhouse low crops result in additional exposure via direct contact with treated foliage that cannot be avoided. Exposure is substantially different to the 'Standard' crop scenario, thus forms a unique 'Intensive' exposure scenario. Potected operators with intensive contact to treated foliage in the low crop scenario would wead impetitious trousers and gloves during mixing/folding and application. A safety phrase most always be incorporated on product labels for this scenario to ensure that exposure due to contact with treated crop is minimised by use of spray tight protective clothing (Cat AII, type 4; low crops frousers), or avoided by use of engineering controls.

# IIIA1 7.3-2 Estimation of Sperator exposure using personal protective equipment

Estimations of operator exposure using PKE are performed using the German model, the UK-POEM, and the Greenhouse Moder Detailed calculations and summaries are presented in IIIA 7.3.1.

Ô

## IIIA1 7.3.3 Measurement of operator exposure

Since the exposure estimate carried out indicated that the acceptable operator exposure level (AOEL) will not be exceeded under practical conditions of use, a study to provide a measure of operator exposure was not necessary and was therefore not carried out.

#### IIIA1 7.4 Bystander exposure

Plant protection products are applied in agriculture in areas that may be accessible to the public. Individuals might therefore be exposed who are not actively involved in the application of these products. The individual may be temporarily located in the vicinity of the application (the so-called 'bystander') or working or living in the vicinity of the application (the so-called 'resident'). Exposure scenarios associated with the product application are evaluated for bystanders and for residents (including children) for both outdoor scenarios. During spraying operations in greenhouses no bystanders will be present in greenhouses. Hence, no assessment is required for this scenario (Calculations are performed according to the German guideline problished in 2008 (Calculations are performed according to the German guideline problished in 2008 (Calculations are performed according to the German guideline problished in 2008 (Calculations are performed according to the German guideline problished in 2008 (Calculations are performed according to the German guideline problem in 2008 (Calculations are performed according to the German guideline problem in 2008 (Calculations are performed according to the German guideline problem in 2008 (Calculations are performed according to the German guideline problem in 2008 (Calculations are performed according to the German guideline problem in 2008 (Calculations are performed according to the German guideline problem in 2008 (Calculations are performed according to the German guideline problem in 2008 (Calculations are performed according to the German guideline problem in 2008 (Calculations are performed according to the German guideline problem in 2008) (Calculations are performed according to the German guideline problem in 2008) (Calculations according to the German guideline problem in 2008) (Calculations according to the German guideline problem in 2008) (Calculations according to the German guideline problem in 2008) (Calculations according to the German guideline proble

Exposure estimates and proportions of the proposed systemic XOEL accounted forby the estimates are summarised in the following table. Detailed information and calculations are presented in chapter IIIA1 7.4.1.

|                          | - ()                | ) ~ ~ ~ ~ |                                          |                                        |
|--------------------------|---------------------|-----------|------------------------------------------|----------------------------------------|
| Scenario                 | Crop 🔗              | Person    | Total systemic exposure* 5               | % of AOEL <sup>#</sup>                 |
|                          |                     |           | (mg/kgbw/dQ)                             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
| Bystander                | Lettuce             | Adult O   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~   | <<1                                    |
|                          |                     | Child     |                                          | <1                                     |
| Resident                 | × A.                | Agait y   | ~~ 0.00001 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | <1                                     |
|                          |                     | Child     | ູ້ 0.00 <b>69</b> 2 ້າ                   | <1                                     |
| Bystander                | Hops                | Adult A   | © 0.00318                                | 3                                      |
|                          |                     | Shild     | ~ <sup>3</sup> (0.0024)                  | 2                                      |
| Resident                 |                     | Adult     | 0.00023                                  | <1                                     |
| N.                       |                     |           | ¢ 000044                                 | <1                                     |
| *· Assumes a 60 kg adult | and a 16 18 kg chil | Si a Si   | KIN O'                                   |                                        |

Table 7.4-1: Predicted systemic exposures as a proportion of the proposed @OEL

\*: Assumes a 60 kg adult and a 16.15 kg child BYI 02960:  $AQED = 0.12^{2}$  mg/kg/bw/day

#### Assessment

The results of the calculations aveal that the situation with respect to bystander and resident exposure is favourable with the intended uses of 'BXI 02940 SL 200'.

The estimated systemic <u>by stander exposures</u> is BYI 02960 account for maximum 3% and 2% of the proposed AOEJ@for the adult and child, respectively, considering the application to hops.

<u>Resident exposure</u> to BYI 02960 is estimated to be <1% of the proposed AOEL for all scenarios.

Based or these exposure estimates there is no unacceptable risk anticipated for a bystander and a resident when being (accidentally) exposed to 'BYI 02960 SL 200'.

<sup>&</sup>lt;sup>4</sup> S. Martin , D. Westphal , M. Erdtmann-Vourliotis , F. Dechet , C. Schulze-Rosario, F. Stauber, H. Wicke and G. Chester (2008): Guidance for Exposure and Risk Evaluation for Bystanders and Residents exposed to Plant Protection Products during and after Application, J. Verbr. Lebensm. 3, 272 - 281.

#### IIIA1 7.4.1 Estimation of bystander exposure without personal protective equipment

The following definitions and assumptions for bystanders and residents may be applied.

Bystanders may inadvertently be present within or directly adjacent to an area for a short period time, typically a matter of minutes, where application of a plant protection product is in progress on has recently taken place. They may be exposed to plant protection products mainly via the route from spray drift and by inhalation of drifting spray droplets.

Residents may possibly live or work near areas of the application of plant protection products standing, working or sitting in a garden in the vicinity of the application). They may be exposed to plant protection products mainly via the dermal foute from spray drift deposits and by inhalation of vapour drift (depending on the vapour pressure of the active substance) For prants and toddlers exposure might also occur orally (e.g. through hand to mouth transfer and/or object-to-mouth transfer - the so-called mouthing and/or pica behaviour).

Bystander/resident exposure may occur following foliar spray application. Exposure is calculated for adult and child bystanders as well as adult and child residents for the application in field crops (lettuce) as well as in high crops (hons) of the state of the second se (lettuce) as well as in high crops (hops).

Dermal Exposure (Spray Drift)

 $SDE_B = (AR \times D \times BSA \otimes DA) OB$ stemue Exposure of Bystanders via the Øermal Route (mg/kg bw/day) Application Rate (mg/m<sup>2</sup>): BYI 02960:  $Rg a.scha = 12.5 mg/m^2$  (lettuce) ©0.125 0.150 kg a.s./ha #15.0 mg/m<sup>2</sup> (hops) %): 0,29 (leftruce),5.77 (hops) bosed Body, Surface Area (m<sup>2</sup>): 1 m<sup>2</sup> (adult), 0.21 m<sup>2</sup> (child) ermal Absorption (%): 3Y#02960 on): 60 kg (adult), 16.15 kg (child) Inhalation Exposure (Spray  $SIE_B \equiv$ vstemi@Exposure of Bystanders via the Inhalation (mg/kg bw/day) Specific Inhalation Exposure (mg/kg a.s. handled per day): Adult: 0.001 Child: 0.001/1.74 = Application Rate (kg a.s./ha): 0.125 kg a.s./ha (lettuce), 0.150 kg a.s./ha (hops) BYI 02960: А = Area Treated (ha/day): 20 (lettuce), 8 (hops) Т = Time [Duration] (min): 5 min. instead of 6 hours for the operator

## Bayer CropScience Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

IA = Inhalation Absorption (%): 100 BW = Body Weight (kg/person): 60 kg (adult), 16.15 kg (child)

| Table 7 4 1 1. Detailed coloriations of brote | ndan annagunata  | DVICONOCO | abcorbod doco o   | nd 0/ of ductom AOFIN |
|-----------------------------------------------|------------------|-----------|-------------------|-----------------------|
| Table 7.4.1-1: Detailed calculations of Dysta | nuer_exposure no | DIR#2700  | xaagsordeu uose a |                       |
| ···· · · · · · · · · · · · · · · · · ·        |                  | A         |                   |                       |

| BW = Body Weight (kg/person): 60 kg (adult), 16.15 kg (child)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Q° &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Systemic Exposure of Bystanders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Adults and Children: $SE_B = SDE_B + SIE_B (mg/kg bw/day)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Where: SE <sub>D</sub> = Systemic Exposure of By standers (mg/kg by/day) $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| where $SL_B = Systemic Dermel Exposure of Distances (mg/kg/bw/day) SL_B = S_{\mu\nu}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $SDE_B = Systemic Definal Exposure of Bystanders (fig/kg tw/day)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $SIE_B = Systemic Innalation exposure of Bystanders (mg/kg bw/kay) O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Corresponding exposure calculations are presented in the following tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Table 7.4.1-1: Detailed calculations of bystander exposure to BY 192960, sosorbed dose and % of stemile AOEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Adults                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bystander of Field Crop, tractor mounted/trailed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dermal exposure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Dermal exposure:<br>$SDE_B = (AR \times D \times BSA \times DA) / BW$ $SDE_B = (AR \times D \times BSA \times DA) / BW$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Dermal exposure:<br>$SDE_{B} = (AR \times D \times BSA \times DA) / BW$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$ $Dermal exposure:$ $SDE_{B} = (AR \times D \times BSA \times DA) / BW$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$                                                                                                                                                                                                                                                                                                                                    |
| Dermal exposure:<br>$SDE_{B} = (AR \times D \times BSA \times DA) / BW$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 60$ $More kg bw/day$ $More kg bw/day$ $Dermal exposure:$ $SDE_{B} = (AR \times D \times BSA \times DA) / BW$ $(12.5 \times 0.29\% \times 1 \times 22\%) / 16.15$ $Absorbed cose: 0.0001329$ $mg/kg bw/day$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dermal exposure:       Dermal exposure:       Dermal exposure: $SDE_B = (AR x D x BSA x DA) / BW$ $SDE_B = (AR x D x BSA x DA) / BW$ $(12.5 x 0.29\% x 1 x 22\%) / 60$ $(2.5 x 0.29\% x 0.21 x 27\%) / 16.15$ Absorbed dose: $0.000132\%$ mg/kg bw/day       Absorbe@dose:         Inhalation exposure: $(12.5 x 0.29\% x 0.21 x 27\%) / 16.15$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dermal exposure:Dermal exposure: $SDE_B = (AR x D x BSA x Da) / BW(12.5 x 0.29\% x 1 x 22\%) / 60Absorbed dose:0.0001329mg/kg baydayInhalation exposure:SIE_B = (I_A * x AR * A x T_x IA) / BW$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Dermal exposure:Dermal exposure: $SDE_B = (AR x D x BSA x DA) / BW$ $(12.5 x 0.29\% x 1 x 22\%) / 60$ Absorbed dose: $0.000132\%$ $MB = (I_A * x AR * A x T x IA) / BW$ $SIE_B = (I_A * x AR * A x T x IA) / BW$ $(0.001 x 0.125 x 20 x 5/36\% x 100\%) / 60$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Dermal exposure:Dermal exposure: $SDE_B = (AR x D x BSA x Dx)/BW$ $SDE_B = (AR x D x BSA x Dx)/BW$ $(12.5 x 0.29\% x 1 x 22\%)/60$ $SDE_B = (AR x D x BSA x DA)/BW$ $(12.5 x 0.29\% x 1 x 22\%)/60$ $(2.5 x 0.29\% x 0.21 x 27\%)/(0.16.15)$ Absorbed dose: $0.0001329$ $mg/kg$ bw/day $Absorbed dose: 0.0001037$ $mg/kg$ bw/day $mg/kg bw/day$ Inhalation exposure: $SIE_B = (I_A * x AR * A x T x IA)/BW$ $SIE_B = (I_A * x AR * A x T x IA)/BW$ $SIE_B = (V_A * x A V x A x T x IA)/BW$ $(0.001 x 0.125 x 20 x 5/360 x 100\%)/60$ $(0.001/1.74 x 0.125 x 20 x 5/360 x 100\%)/16.15$ Absorbed dose: $0.000005787$ $mg/kg W/day$ $Absorbed dose0$                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Dermal exposure:Dermal exposure: $SDE_B = (AR x D x BSA x DA) / BW$ $(12.5 x 0.29\% x 1 x 22\%) / 60$ Absorbed dose: $0.000132\%$ $MbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrerMbarrer$                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dermal exposure:Dermal exposure: $SDE_B = (AR x D x BSA x Dx)/BW$ $SDE_B = (AR x D x BSA x Dx)/BW$ $(12.5 x 0.29\% x 1 x 22\%)/60$ $(12.5 x 0.29\% x 1 x 22\%)/60$ Absorbed dose: $0.000132\%$ $MBx g bw/day$ $MBx g bw/day$ Inhalation exposure: $MBx g bw/day$ $SIE_B = (I_A * x AR * A x T x IA)/BW$ $(0.001 x 0.125 x 20 x 5/36\% x 100\%)/60$ $MBx g bw/day$ $MBx g b$ |
| Dermal exposure:Dermal exposure:Dermal exposure: $SDE_B = (AR x D x BSA x Dx)/BWSDE_B = (AR x D x BSA x Dx)/BW(12.5 x 0.29\% x 1 x 22\%)/60ABsorbed dose: 0.0001329Absorbed dose:0.0001329mg/kg ba/dayABsorbed dose: 0.0001037Inhalation exposure:MBK a x T x IA)/BWSIE_B = (I_A * x AR * A x T x IA)/BW(0.001 x 0.125 x 20 x 5/369 x 100%)/60Absorbed dose:0.000005787Mg/kg Bw/dayTotal systemic exposure:BE_B = SDE_B + SHE_BTotal absorbed dose:0.000133Mg/kg Bw/dayMg/kg Bw/day$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Table 7.4.1-2: Detailed calculations of hystander exposure to BYI 02960, absorbed dose and % of systemic AOEL

| Adults of sty of                                                  | O 🖉 <sub> So</sub> Children                       |  |  |  |  |  |  |
|-------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|--|--|
| By stander of High Crop tractor mounted/trailed                   |                                                   |  |  |  |  |  |  |
| Dermal exposure:                                                  | Dermal exposure:                                  |  |  |  |  |  |  |
| $SDE_B = (AR \times D \times BSA \times D \times) / B \times Q^2$ | $B_{B} = (AR \times D \times BSA \times DA) / BW$ |  |  |  |  |  |  |
| (15 x 5.77% x 1 x 22%) / 60                                       | (15 x 5.77% x 0.21 x 22 %) / 16.15                |  |  |  |  |  |  |
| Absorbed dose: 0/003174 mg/kg by/day                              | Absorbed dose: 0.002476 mg/kg bw/day              |  |  |  |  |  |  |
| Inharation exposure: Stranger Stranger                            | Inhalation exposure:                              |  |  |  |  |  |  |
| $SIE_B = (I_X * X AR X A X J G IA) / BW$                          | $SIE_B = (I_A * x AR x A x T x IA) / BW$          |  |  |  |  |  |  |
| (0.018 x 0.15 x 8 x 5/3 0 x 100 x 100 ) / 60 Q                    | (0.018/1.74 x 0.15 x 8 x 5/360 x 100%) / 16.15    |  |  |  |  |  |  |
| Absorbed dose 0.000005 mg/kg/bw/day                               | Absorbed dose: 0.00001068 mg/kg bw/day            |  |  |  |  |  |  |
| Total systemic exposure:                                          | Total systemic exposure:                          |  |  |  |  |  |  |
| $S$ $SE_{B, T}$ $SDE_{B, T}$ $SIE_{B}$                            | $SE_B = SDE_B + SIE_B$                            |  |  |  |  |  |  |
| Totakabsorber dose: 0.003 for mg/kg bw/day                        | Total absorbed dose: 0.00249 mg/kg bw/day         |  |  |  |  |  |  |
| الله من AOEL: 23.65                                               | % of AOEL: 2.08                                   |  |  |  |  |  |  |
|                                                                   |                                                   |  |  |  |  |  |  |

#### Page 29 of 53 2012-02-29

#### b) Resident exposure assessment

Dermal Exposure (via deposits caused by spray drift):  $SDE_R = (AR \times D \times TTR \times TC \times H \times DA) / BW$ Where:  $SDE_R$  = Systemic Exposure of Residents via the Dermal Route (mg/kg = Application Rate  $(mg/cm^2) \ge 1$  (for no. of applications) AR  $0.125 \text{ kga.s./ha x } 1 = 0.00125 \text{ mg/cm}^2$  (lettuce) BYI 02960: 0.150 kg a.s./ha x 1 0.00150 D = Drift (%): 0.29 (lettuce), 5.77 (hops) = Turf Transferable Residues (%): TTR hild adu**)**, 26 TC = Transfer Coefficient (cm<sup>2</sup>/hour) Η = Exposure Duration (hours) DA = Dermal Absorption ( BYI 02960: BW = Body Weight Kg Inhalation Exposure (Vapour **SIE**<sub>R</sub> Systemic Exposure of Residents via Inhalation mg/kg bw/day) Where: SIE<sub>R</sub> Aitborne Concertration of Vapour (mg/m3): vapour pressure of 102950 is very low i.e.:  $924 \times 10^{-7}$  Pa at 20°C; acc. to guideline this corresponds to a non-walatile ubstance (vapour pressure <1 x 10<sup>5</sup> Pa@t<sup>2</sup>20°C<sup>9</sup>. Thus, resident inheration exposure can be estimated as fregligible. (is airborne conc. of 0 mg/m<sup>3</sup>) nhatenion Rate (mcday), 5.57 (adult), 8.31 (child) alation Absorption (%): 100 erson): 60 (adult), 16.15 (child) Child Qraf Exposu Children's hand-to-n ÎTR x SE x Sox Freq x H x OA) / BW **SOE**<sub>H</sub> Systemie Oral Exposure via the Hand to Mouth Route (mg/kg bw/day) Contraction of the second seco Application Rate  $(mg/cm^2) \ge 1$  (for no. of applications) BYI 02960:  $0.125 \text{ kg a.s./ha x } 1 = 0.00125 \text{ mg/cm}^2$  (lettuce)  $0.150 \text{ kg a.s./ha x } 1 = 0.00150 \text{ mg/cm}^2 \text{ (hops)}$ DÂ = Drift (%): 0.29 (lettuce), 5.77 (hops) TTR = Turf Transferable Residues (%): 5 SE = Saliva Extraction Factor (%): 50 SA = Surface Area of Hands ( $cm^2$ ): 20



Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

#### Table 7.4.1-3: Detailed calculations of resident exposure to BYI 02960, absorbed dose and % of systemic AOEL

| Adults                                                               | Children                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Resident: Exposure after application w                               | rith Field Crop, tractor mounted/trailed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| Dermal exposure:                                                     | Dermal exposure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| $SDE_R = (AR \times D \times TTR \times TC \times H \times DA) / BW$ | $SDE_R = (AR \times D \times TTR \times DC \times H \times DA) / DC$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| (0.00125 x 0.29% x 5% x 7300 x 2 x 22%) / 60                         | (0.00125 x 0.29% x 5% x 2000 x 2 x 22%) 1 6.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Absorbed dose: 0.000009703 mg/kg bw/d                                | Absorbed dose: 0.00001284 mg g bw/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
| Inhalation exposure:                                                 | Inhalation exposure:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| $SIE_R = (AC_V x IR x IA) / 1000 x BW$                               | $SIE_R = ORC_V \times IR \times IA) OBW$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| (0 x 16.57 x 100%) / 60                                              | (0 🕉 8.31 x 100%) (16.15 🖉 🖉 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| Absorbed dose: 0.0 mg/kg bw/d                                        | Absorbed dose: 0,0 , mg/kg bw/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                      | Oral exposure (hand to mouth transfer of o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| ¥<br>(4.)                                                            | $SOE_{H} = (AROX D x, TYR x SROX SA Freq x, H X OA)/BW$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| Ó <sup>×</sup> .                                                     | (@)0125x(0.29%x/5% x 50% x 20x 20 x 2 x 100%)/16.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|                                                                      | Absorbed dose 0.000004489 Omg/kg/bw/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                                      | Oral exponere (object-to-month transfer):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|                                                                      | $SOE_0 = (OR \times DS)/DFR \times OR \times OA)/BWO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|                                                                      | 0.29% 20% 25 x 1.09%) / 16.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|                                                                      | Absorbed dose 0.000001122 mg/kg bw/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Total systemic exposure:                                             | Votal systemic exposure 20 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| $SE_R = SDE_R + STE_R$                                               | $^{\circ}$ |  |  |  |
| Total absorbed dose: 0.0000097 y mg/g bw/d                           | Tota@absorbed dose: 0.0000185 mg/kg bw/d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| % of AOEL: 20,0081                                                   | 6 AOKE: \$0.015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |

| Table 7.4.1-4: Detai | iledCalculations | of resident exposur | eto BY 502960, abs | sorbed dose and 9 | % of systemic AOEL |
|----------------------|------------------|---------------------|--------------------|-------------------|--------------------|
|                      | 1 224            | // INS · SS · C     |                    |                   |                    |

| N Adults N N                                                                | A Guildren                                                                                   |  |  |  |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
| Resident: Exposure after application with High Crop tractor mounted/trailed |                                                                                              |  |  |  |  |
| Dermal expositive:                                                          | Desmal exposure: 0                                                                           |  |  |  |  |
| SDĘ <sub>R</sub> @(AR x D x TTR x TC x X x DAY BW )                         | $\bigcirc^{y}$ SDF <sub>R</sub> = (AP × D x TTR x TC x H x DA) / BW                          |  |  |  |  |
| (0,6015 x 5.77% x 50 x 7300 x 2 x 25%) / 60                                 | ♥ (₱₱₱015 x \$₱7% x 5% x 2600 x 2 x 22%) / 16.15                                             |  |  |  |  |
| Absorbed dose: 00002347 mg/kg bw/d                                          | Absorbed dose: 0.0003065 mg/kg bw/d                                                          |  |  |  |  |
| Inhalation exposures                                                        | Chalation exposure:                                                                          |  |  |  |  |
| $SIE_R = (AC_V x AX IA) $ $O000 x AW$                                       | $SIE_R = (AC_V \times IR \times IA) / BW$                                                    |  |  |  |  |
| $\mathbb{Q}(0 \times 160\%) / 60\% = 0^{-1}$                                | (0 x 8.31 x 100%) / 16.15                                                                    |  |  |  |  |
| Absorbed dose: 0.0 % mg/kgbw/d                                              | Absorbed dose: 0.0 mg/kg bw/d                                                                |  |  |  |  |
|                                                                             | Oral exposure (hand-to-mouth transfer):                                                      |  |  |  |  |
|                                                                             | $SOE_{H} = (AR \times D \times TTR \times SE \times SA \times Freq \times H \times OA) / BW$ |  |  |  |  |
|                                                                             | (0.0015 x 5.77% x 5% x 50% x 20 x 20 x 2 x 100%) / 16.15                                     |  |  |  |  |
|                                                                             | Absorbed dose 0.0001072 mg/kg bw/d                                                           |  |  |  |  |
|                                                                             | Oral exposure (object-to-mouth transfer):                                                    |  |  |  |  |
|                                                                             | $SOE_O = (AR \times D \times DFR \times IgR \times OA) / BW$                                 |  |  |  |  |
|                                                                             | (0.0015 x 5.77% x 20% x 25 x 100%) / 16.15                                                   |  |  |  |  |
|                                                                             | Absorbed dose 0.0000268 mg/kg bw/d                                                           |  |  |  |  |
| Total system c exposure:                                                    | Total systemic exposure:                                                                     |  |  |  |  |
| $SE_R = SER_R + SIE_R$                                                      | $SE_R = SDE_R + SIE_R + SOE_H + SOE_O$                                                       |  |  |  |  |
| Total absorbed dose: 0.000232 mg/kg bw/d                                    | Total absorbed dose: 0.000441 mg/kg bw/d                                                     |  |  |  |  |
| % of AOEL: 0.193                                                            | % of AOEL: 0.368                                                                             |  |  |  |  |

#### **IIIA1 7.4.2** Measurement of bystander exposure

Since the exposure estimate carried out indicated that the proposed acceptable operator exposure level? (AOEL) will not be exceeded under practical conditions of use, a study to provide a measure of bystander exposure was not necessary and was therefore not carried out.

#### IIIA1 7.5 Worker exposure

'BYI 02960 SL 200' is an insecticide that is applied to hops and to lettuce in the field and in greenhouses. These crops require re-entry activities like e.g. harvesting Re-entry exposure is therefore evaluated. Corresponding exposure calculations are performed using the re-entry model published by Hoernicke et al. (1998)<sup>5</sup> together with transfer coefficients relating to the appropriate tasks.

Regarding dislodgeable foliar residues measured data – when available – are used in lieu of any default assumptions.

A summary of the exposure calculations and risk as sessment is presented in the collowing table. Detailed information and calculations are presented in IIIA1 7.54.

| 1 abic 7.5-11 | reacting systems exposites and propartion of the right |                        |
|---------------|--------------------------------------------------------|------------------------|
| Scenario      | Substance V Total systemic exposure                    | % of AOEL <sup>#</sup> |
|               | ر (mg/kg bw/day)                                       |                        |
| Worker        | BX 102960 5 00.0250                                    | 19                     |
|               | ₩ Hops                                                 | 55                     |
| # BYI 02960:  | AODEL = 0.12  mg/kgg bw/day                            |                        |
|               |                                                        |                        |

## Table 7.5-1: Predicted systemic exposures as proportion of the AQEL

Assessment

The results of the calculations reveal that the situation with respect to worker exposure is favourable for the intended uses a BYE02960 SL 200<sup>°</sup>.

The estimated systemic worker exposure to B& 029@ is well below the proposed AOEL in all crops. Calculations reflect standard work clothing worn by adult workers (shoes, socks, long-legged pants, and long sleeved shift) and ho personal protective equipment is considered.

As this scenario - re-entry just after the spray has dried – is considered to represent the worst case of the intended uses there is no unacceptable risk anticipated for the worker when performing re-entry activities in fettuce hops peated with 'BYI 02960 SL 200'.



<sup>&</sup>lt;sup>5</sup> Hoernicke, E.; Nolting, H.G.; Westphal, D.: Label instructions for the protection of workers re-entering crop growing areas after application of plant protection products; Nachrichtenbl. Deut. Pflanzenschutzd.50 (10), 267 - 269, 1998 (document no.: M-107544-01-1)

#### IIIA1 7.5.1 Estimation of worker exposure without personal protective equipment

Calculations are performed according to the following equation:

 $E = (DFR \times TC \times WR \times AR \times P \times DA)/BW$ where Ε = Systemic exposure (mg/kg bw/day) DFR = Dislodgeable foliar residues ( $\mu g as/cm^2$ ) per kg a.i./ha TC= Transfer Coefficient (cm<sup>2</sup>/person/h) = Work rate (hours/day) WR AR = Application rate (kg a ha) Р = Protection factor for PPE DA= Dermal absorption (%) BW = Body weight (Rg/person)

ailable, which reflect the gritical GAP, the In case measured dislodgeable foliar residues (DFR) equation changes to:

$$E = (DFR_M \times TC \otimes WR \times P \times DA)/B$$

Work rates are considered with maximum of hours for mantenance work and harvesting. The cealculation for protective equipment is pot made, i.e. P maximum dose rate is always applied. always set to 1.

#### Considerations on Transfer Wefficients (TC t are taken from the EUROPOEM II report6. In a Tier 1 assessment, the TCs used in this risk a The following TO values were used.

FIRMOPORMI

|            | Transier coefficients based in E Cooff OEG |        |
|------------|--------------------------------------------|--------|
| Frop       | Fransfer Coefficients [cm²/h]              | L<br>L |
| Hops       |                                            | ,<br>∀ |
| Vegetables |                                            | ð      |

\*: For re-entry activities performed in hops no specific by is available from EUROPOEM II. Hence, the EUROPOEM II proposed AC for ornamentals is used as a worst case surrogate

## Considerations or

Dislodgeable forer residues were experimentally determined under actual use conditions for lettuce. A summary of the respective trials and the results are provided in chapter IIIA1 7.7.1. With a conservative approach the highest DRM values observed in the course of the experiments are

<sup>&</sup>lt;sup>6</sup> Post application exposure of workers to pesticides in agriculture (Dec 2002); Re-entry working group EUROPOEM II project - FAIR3 -CT96-1406.

Bayer CropScience

| Сгор                                | DFR <sub>M</sub> [µg/cm <sup>2</sup> ] | Observed in trial            | Observed on                                          |
|-------------------------------------|----------------------------------------|------------------------------|------------------------------------------------------|
| Lettuce (field,<br>Northern Europe) | 0.291                                  | 10-2916-01<br>M-420640-01-1  | Day 0 after 1 <sup>st</sup> application (PAFT 0)     |
| Lettuce (field,<br>Southern Europe) | 0.264                                  | 10-2917-01<br>M-420656-01-1  | Day 0 after 2 <sup>nd</sup> application<br>(DAFT 10) |
| Lettuce<br>(Greenhouse)             | 0.316                                  | 10-29-18-01<br>M-420641-01-1 | Day 0 after 2 <sup>nd</sup> application<br>(DAF 10)  |
| DAFT= Days after first              | treatment                              |                              |                                                      |

#### Table 7.5-1-2: Experimentally derived maximum DFR<sub>M</sub> value

It has to be noted that in all trials the application scheme was identical: two applications at a rate of 0.125 kg a.s./ha, each, with an interval of 10 days. The coulting dislodgeable foliar residues – just after application – were all at the same level being on average around 0.29  $\mu$ g/cm<sup>2</sup>. Also, regardless whether in Northern or Southern Europe, whether in the field or in greenhouse, the dislodgeable foliar residues always showed an immediate decline resulting in values at or <LOG already 3 days after application. Hence, no increase or accumulation of residues from a former application was observed. For further details please see IIIA1 7.7.

For a conservative risk assessment for activities in fettuce it is therefore considered officient to take just the highest measured DFR value without any further differentiation of zone or indoor/outdoor application.

For <u>hops</u> no measured dislodgeable foliar residues are available. As default figures proposals from EUROPOEM II (Sig a.s. $Cm^2$  per 1 kg a.s./ha) as well as from the German guidance (1µg a.s./cm<sup>2</sup> per 1 kg a.s./ha) are available. Data from the dislodgeable foliar residue trials with lettuce have shown that measured values are somewhat in between these two default figures (and corresponding more to the US-EPA default of 2 µg/cm<sup>2</sup> per kg a.s./ha).

For a conservative assessment the default value from EUROPOEM II is chosen.

In addition, it has to be noted that the estimate covers a worst case as it considers re-entry shortly after application (just when the sprace has dried) whereas minimum pre-harvest intervals amount to 3 days (lettuce in greenhouse) 10 days (lettuce in field) @even 21 days (hops).

| A D AC                          |                                                        |
|---------------------------------|--------------------------------------------------------|
| The following assumptions apply | : 07 × v                                               |
|                                 |                                                        |
| Work rate:                      | & hours per day                                        |
| Worker body weight: 🔗 👸         | 760 kg 🖗 🕺 🖉                                           |
| Application rat                 |                                                        |
| - hops: 🔿 🚓                     | 6Å5 kg a.š./ha                                         |
| Dermal absorption               | / ~Q~                                                  |
| - worst case                    | 22%                                                    |
| Clothing: 5, 2, 2               | one layer of typical work wear is worn during re-entry |
| Personal protective equipment:  | none                                                   |
|                                 |                                                        |

Detailed calculations of worker exposure are presented in the following:

| BAYER Baye           | er Cr      | opSc       | ience                                  | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                  |                  |                                         |           | Page 35 of 53<br>2012-02-29              |
|----------------------|------------|------------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------|------------------|-----------------------------------------|-----------|------------------------------------------|
| Tier 2, IIIA, See    | c. 3, Poin | t 7: BYI ( | 02960 SL                               | 200, S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | pecNo:                                  | 1020000          | 021884           |                                         |           |                                          |
| Lettuce              |            |            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                  |                  |                                         |           |                                          |
|                      | D          | =          | DFR                                    | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TC                                      | х                | WR               | х                                       | Р         |                                          |
|                      | D          | =          | 0.316                                  | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2500                                    | х                | 8                | х                                       | 1         | ° r                                      |
|                      | D          | =          | 6320 µ                                 | ıg a.s./p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | erson/da                                | y                |                  |                                         |           | N A                                      |
|                      |            | =          | 6.32 m                                 | ig a.s./p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | erson/da                                | v                |                  |                                         | ð         |                                          |
|                      |            | =          | 0.105 1                                | mg/kg t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ow/day (6                               | 60 kg p          | erson)           | Ĉ                                       | S.        |                                          |
|                      |            |            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                  |                  | A                                       |           |                                          |
| and under con        | sideratio  | on of 22%  | 6 dermal                               | absorp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion:                                   | Ď                | (                | Å.                                      | Å         |                                          |
|                      | S          | =          | 0.105                                  | x 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                       | - An             | Q                | 0                                       | , e       | 2° 2° 4°                                 |
|                      |            | =          | 0.0232                                 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ; bw/day                                | /                | ~~···            |                                         |           |                                          |
|                      |            |            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | À                                       |                  | ~~~              | ĝ°,                                     | Ĉ, ĉ      |                                          |
| <u>Hops</u>          |            |            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 0                | 8 . A            | .0                                      | × »       | 19 19 19 19 19 19 19 19 19 19 19 19 19 1 |
|                      | D          | =          | DFR                                    | X C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TC                                      | x K              | WR               | No.                                     | AR        | X P                                      |
|                      | D          | =          | 3.0                                    | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5,000                                   | , ®              | ×                | Ο <sub>X</sub>                          | 0.156     | x x 14                                   |
|                      | D          | =          | 18000                                  | µg a.s./                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | /person/d                               | ay î             |                  | , <sub>2</sub> 0                        |           |                                          |
|                      |            | =          | 18.0 m                                 | g a.s.(p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | erson/da                                | у 🔊              | ×°               | N.                                      | Ĵ,        | Ç Ő                                      |
|                      |            | =          | 0.300 i                                | mg/kg l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ow∕day (6                               | 60 kg p          | erson) 💉         | Ĵ, ŝ                                    | Š Į       |                                          |
|                      |            |            | $\mathcal{Q}'$                         | <i>b</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ø Ĉ                                     | > 6              | Ĵ, Ĵ             | , °0                                    | Ď         | °                                        |
| and under con        | sideratio  | n of 22%   | Ødermal                                | absorp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ion:                                    | Ľ                | , S              | °<br>°                                  | 8         | \$\u00ed                                 |
|                      | S          | = 🗸        | 0.200                                  | x @.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                       | <i>®</i>         | 4 5              |                                         |           | )                                        |
|                      |            |            | 000660                                 | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bw/day                                  |                  | , J              | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ×.        |                                          |
|                      | 5          | 4, Å       | ,                                      | Ő                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | , O <sup>v</sup> | 4                | , v                                     | 5         |                                          |
|                      |            | , O        |                                        | Ŵ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S.                                      | S.               |                  |                                         | ,¥<br>,•  | • /                                      |
| IIIAI 7.5.2          | Estem      | nation o   | f <b>Wo</b> rke                        | r expo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ostare us                               | ing pe           | rsonal p         | protect                                 | ive equ   | ipment                                   |
| Estimations of       | f worker   | xposu      | ke using                               | PPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s an add                                | itional          | layer of         | elothin                                 | g and/or  | gloves are not                           |
| performed be         | cause th   | e exposi   | ure of v                               | vorkers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | without                                 | PPE i            | s accept;        | able. D                                 | etailed   | calculations are                         |
| presented in I       | IA1 7.5.   | 1.         |                                        | 4 ĉ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57 O                                    | ,<br>            | Ň                |                                         |           |                                          |
| <u>z</u> g           | . (        |            |                                        | ,<br>_ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ő                                       | S                | , ô <sup>r</sup> |                                         |           |                                          |
| × ¥                  | -~~        |            |                                        | Ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | \$ ¥                                    |                  | s <sup>×</sup>   |                                         |           |                                          |
| IIIAI 7.5.3          | Estam      | nation o   | t worke                                | experies and the second s | sure w                                  | ing da           | ita on di        | slogea                                  | ble resi  | dues                                     |
| Not considered       | d to be a  | pplicabl   | e (see ff                              | A1 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ).                                      | S                |                  |                                         |           |                                          |
| Ą                    | ) O        |            | - N                                    | Ň                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 6                                     | ÿ                |                  |                                         |           |                                          |
|                      |            |            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                  |                  |                                         |           |                                          |
| 111A1 7 <b>.3</b> .4 | Meas       | uremen     | t of wo                                | rkege                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | xposure                                 |                  |                  |                                         |           |                                          |
| Not considered       | d to be a  | pplicable  | e (see III                             | A¶ 7.5`                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                  |                  |                                         |           |                                          |
| V                    |            | 6          | o"                                     | × (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\supset$ <sup><math>\nu</math></sup>   |                  |                  |                                         |           |                                          |
|                      | 5_ A       | N Ø        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | Q"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                  |                  |                                         |           |                                          |
| IIIA1 7.6            | ) Derm     | ial abso   | rption                                 | Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                  |                  |                                         |           |                                          |
| The extent of        | dermal a   | bŝorptig   | pof BY                                 | ľ 02960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) formula                               | ted in t         | the SL 20        | 0 form                                  | ulation v | was investigated                         |
| both in vivo u       | sing the   | rat and i  | n vitro u                              | ising hi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | uman and                                | l rat ski        | in. A sun        | nmary o                                 | of each s | study is given in                        |
| the following        | section.   | Aronc      | lusion a                               | ind rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ommenda                                 | ation re         | egarding         | the der                                 | rmal abs  | corption of BYI                          |
| 02960 formula        | ated in th | ne SL 200  | 0 formul                               | ation is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | given be                                | elow.            |                  |                                         |           |                                          |
| õ                    |            |            |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                  |                  |                                         |           |                                          |

The *in vivo* study indicated that the mean percentage of [<sup>14</sup>C]-BYI 02960 considered to be potentially absorbable following an 8 hour exposure for the neat formulation was 22%. The mean percentage of

.

[<sup>14</sup>C]-BYI 02960 considered to be potentially absorbable at the intermediate concentration (0.625 g/L) was 9.7%. The mean percentage of [<sup>14</sup>C]-BYI 02960 considered to be potentially absorbable at the low concentration (0.1 g/L) was 21%.

The *in vitro* study indicated that the mean percentage of [<sup>14</sup>C]-BYI 02960 considered to be petentially absorbable over a period of 24 hours for the neat formulation was 0.2% and 0.2% for the human and rat skin, respectively. The mean percentage of [<sup>14</sup>C]-BYI 02960 considered to be potentially absorbable at the intermediate concentration (0.625 g/L) was 2% and 6% for the human and rat skin respectively. The mean percentage of [<sup>14</sup>C]-BYI 02960 considered to be potentially absorbable at the intermediate concentration (0.625 g/L) was 2% and 6% for the human and rat skin respectively. The mean percentage of [<sup>14</sup>C]-BYI 02960 considered to be potentially absorbable at the jet the jet the potential of the potent

The human *in vitro* dermal absorption values that could be used for exposure assessments we:

- 0.2% for the neat formulation  $(200 \text{ g/P})^{*}$
- 2% for the intermediate dose (0.625) g/L)
- 5% for the low dose (0.1 g/L).

Alternatively, taking the "triple pack approach" and associating the fat *in fivo* definal absorption values with the *in vitro* data, the corresponding results are presented in able 7.6-1.

| Table 7.6-1 | Derivation of muman dermal | absorption | BY <b>F 92</b> 960 fro                 | om in vivo and in vitro |
|-------------|----------------------------|------------|----------------------------------------|-------------------------|
|             | dermal absorption data.    | A W        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |                         |

|                          |             | ař V              | -                                      |                         | 2                     |
|--------------------------|-------------|-------------------|----------------------------------------|-------------------------|-----------------------|
| Test material            | Rat in vivo | Human in Witro    | { Rat in yitro `                       | Ratio Factor            | Estimated human       |
| ~                        | dermal      | 🔗 dermal \lesssim | 🧯 docernal 🌾                           | between man             | <i>in vivo</i> dermal |
| Į.                       | absorption  | absorption        | absorption                             | and rat <i>in vitro</i> | absorption            |
| Neat formulation         | چ22%        | × 0.2%            | 0.2 <b>%</b>                           | c, du                   | 22%                   |
| Intermediate formulation | 10%         | 2%                |                                        | v \$0.3                 | 3%                    |
| Spray dilution           |             | 5%                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ي<br>گ                  | 15%                   |
| Čo -                     | , Ø         |                   | 0                                      |                         |                       |

## IIIA1 7.6.1 Deemal absorption, in vivg in the rat

| -            |                                                                                  |
|--------------|----------------------------------------------------------------------------------|
| Report:      | KIIIA, 9.6.1/01, (2010)                                                          |
| Title:       | BYI 02960 SL200 In view derreal absorption study in the male rat.                |
| Document No: | M-396844-01-1                                                                    |
| Guidelines:  | Organization for Economic Cooperation and Development (O.E.C.D.) Guidelines for  |
| 1            | Testing of Chemicals: Skin Absorption: In Vivo Method for the conduct of skin    |
| "Q°          | absorption studies. Guideline 427 (April 2004).                                  |
|              | Organization for Economic Cooperation and Development (O.E.C.D.)                 |
|              | Envolonmental Health and Safety Publications Series on testing and Assessment N° |
|              | 28. Guidance Document for the Conduct of Skin Absorption Studies (March 2004).   |
|              | Furopean Commission Guidance Document on Dermal Absorption- Sanco/222/2000       |
|              | rev. 37 (March 2004).                                                            |
| GLP          | ves                                                                              |

#### Material and methods Rat:

Species, strain: Wistar Rj: WI (IOPS HAN) strain

•

Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

| Source:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sex:                                | Male                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Body weights:                       | 260-375 σ Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Age.                                | 7 to 9 weeks old                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Acclimatisation &                   | Test animals were acclimatized in the room to be used for the experiment for at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Housing:                            | least fourteen days prior to the starting day. The cages were suspended.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                     | stainless steel and wire mesh. Test animals were accumatized in the room and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                     | in the metabolism cage to be used for the experiment 24 hours prior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                     | applications. The cages were Jencon's metabowls Mk III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Animal                              | Ear tags.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| identification:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Environmental                       | Temperature: $\sqrt[6]{2}2 \pm 2^{\circ}C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| conditions.                         | Humidia $55 \pm 15\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| conditions.                         | Air changes 10 15 per hour $\gamma$ $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                     | Photoreriad: Q12 how light Hork and los (201 - 7 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Food                                | Cartified redent notleted and irreferted abt A042 10 (from 50 E E Caintified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| r 00u:                              | Animal Food and Angingering Augustranced and Inditum Food was stored in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                     | an identified room controlled for tenterature and humidity Diet vise used only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                     | until the dataset externed and the second state and the second se |
| Water                               | Filtered and softened tan water from the municipal water supply addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| water.                              | Routine analysis of feed and water indicated that there was no contamination                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                     | which could have compromised the study. Certificates of water analysis were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                     | provided by the "Laboratoire de l'Environnement Nice Côte d'Azur" (France)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                     | and "Institut Scientifiqued'Hygiene et d'Analyse" (Løngjuneau, France).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Test Material:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Non-radiolabelled: 🤘                | $\mathcal{P}$ Batch $\mathcal{P}$ NL $\mathcal{P}$ 7780 $\mathcal{P}$ 7-7. $\mathcal{P}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Í,                                  | Purify = 90,47%. @ 57 50 0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Radiolabelled:                      | [gyridiny]nethy]=14C]-BYI 00960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| j j                                 | Batch: KATH 6429. JY JY JY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ð 4                                 | "Specific activity: 4.97 MBq/mg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| · · · · · · · · · · · · · · · · · · | Rachopurity of the formulation 99%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Formulation:                        | The formulation used in this experiment was the BYI 02960 SL 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ky "O                               | formation containing B& 02969 and 0 sed at three nominal concentrations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Treatments                          | Ar area of derive skinging should approximately 24 hours prior to desing Just                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| i reatment:                         | All aleagon doisan skin was shaved approximately 24 hours phot to dosing. Just                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <i>a</i> . <i>A</i>                 | prior to dosing the annuals were negative and since it we protective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ~~~ Č                               | satures were secured in prace using cyanoacrynate adhesive to define the site for approximately $\sim 2 \times 6$ cm <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4                                   | Approximately 120 $\mu$ (2 x of $\mu$ L) of each dose formulation was applied to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| O'                                  | shaved area. This amount of formulation corresponded to approximately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     | 422 kBg/rat for the high dose formulation 331 kBg/rat for the intermediate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                     | dose and 53 kBa/rat for the low dose formulation, according the nominal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                     | concentrations of radioactivity in the formulations. When dose application was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A A                                 | complete, the skin was semi-occluded with a perforated plastic cover (to allow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                     | ventilation) held in place over the plastic saddle with surgical tape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                     | approximately 3 x 4 cm). The cover prevented loss of test substance but                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| S. S. A                             | permuted air circulation over the application site. The cover was not in direct                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| A Or A                              | contract with the test material on the skin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                     | bormediately after dose application the rats were housed individually in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                     | metabolism cages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Treatment Groups                    | There were 4 treatment groups per dose level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                     | Groups 1 to 4 were treated at the rate of 200 g/L and sacrificed at 8, 24, 72 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                     | 168 hours post application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| Bayer CropScience Page 38 of 53 2012-02-29                                                                                                               |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, SpecNo: 102000021884                                                                                    |    |
| Groups 5 to 8 were treated at the rate of 0.625 g/L and sacrificed at 8, 24, 72 and 168 hours post application                                           |    |
| Groups 9 to 12 were treated at the rate of 0.1 g/L and sacrificed at 8, 24, 72 and 168 hours post application.                                           | Ô, |
| Sampling: After the 8-hour exposure time, the filter paper cover was removed. The cover                                                                  | ,  |
| and application site were then swabbed with freshive prepared $2\%$ v scap solution using a gauze pad followed by a gauze pad noistened with water and a |    |
| dry gauze pad. The swabs were retained for analysis. Animals that were                                                                                   |    |
| required to provide samples beyond 8 hours were then fitted with a clean cover                                                                           | Ø1 |
| metabolism cage.                                                                                                                                         | \$ |
| Urine and faeces were collected separately into $\frac{1}{2}$ at 0 to 8 8 to 24 and                                                                      |    |
| at 24-hour intervals up to sacrifice. At the end of each collection period all                                                                           |    |
| debris was removed from the metabolism cage and retained. At each sampling,                                                                              |    |
| the cage was carefully washed with distibled water. At dermination each cage                                                                             |    |
| was washed with water and appropriate organic solvent. These washings were                                                                               |    |
| retained for measurement of ractioactivity.                                                                                                              |    |
| At termination, the rate were exsanguinated whilst under "Isoflurane"                                                                                    |    |
| anaesthesia and a blood sample was withdrawer by cardiac puncture and placed                                                                             |    |
| into vials containing littlium heparin                                                                                                                   |    |
| The treated skin was swabbed following sacrifice prior to removal. The skin                                                                              |    |
| was then shaved (shavings retained), 19 necessary, prior to tape-stripping to                                                                            |    |
| achesive tare (CII Se France) for seconds before the tare was carefully                                                                                  |    |
| removed against the direction of their growth. This process was continued until                                                                          |    |
| a 'shiny' appearance of the epidermis was evident, indicating that the stratum                                                                           |    |
| S corneurs had been removed. S & &                                                                                                                       |    |
| Radioassay: O The amounts of radioactivity in the various samples were determined by liquid                                                              |    |
| S scinollation counting (LSC).                                                                                                                           |    |
|                                                                                                                                                          |    |
| Findings:                                                                                                                                                |    |
| There were no treatment related clinical signs observed during the study. After a single topical                                                         |    |
| application of the 14CFBYI @960 ap 200 g/L, the mean total recoveries of radioactivity were 113%,                                                        |    |
| 102%, 102% and 101% for the 8, 24, 72 and 168 hour groups respectively.                                                                                  |    |
|                                                                                                                                                          |    |

The results are presented in Tables 7.6.1-1. to 7.6.1-2.

•

Bayer CropScience

#### Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

#### Table 7.6.1-1.: The mean distribution of radioactivity 8, 24, 72 and 168 hours after a single topical application of [14C]-BYI 02960 from a 200 g/L SL 200 formulation

| Dose Group.                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |                 |           |                  |             |                  | 0       |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|-----------|------------------|-------------|------------------|---------|
| 200 g/I                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ў<br>Цо:     | o or app        | applicati | e<br>Ion         |             | ,                | ¢ č     |
| (n=4  rats/group)                                                 | s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2            | $\frac{115}{4}$ |           |                  |             | 8                |         |
| (ii Tuus, group)                                                  | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,<br>SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ∠<br>Mean    |                 | /<br>Mean |                  | Mean        | <u>so or</u>     | -0<br>- |
|                                                                   | SUDEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | MENIT           | wiedii    |                  | Wiedii      |                  |         |
| Shin guada (8 hr & terminal)                                      | 02 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 74.06        | 5 56            | 70.94     | N 7 71           | 6675        | ¥17.43           |         |
| Skill Swabs (8 lii & terliniar)                                   | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 74.00        | 0.71            | 70.04     | 0.14             | 00.7.0      | <u>17.465</u>    |         |
| Surface dose (tape strips 1 $\approx 2$ )                         | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.776        | 0.71            | 0.29      | 0.14             |             |                  | Ô,      |
| Fur                                                               | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n.s. ≫       | n.a.            |           | 1.05             | 8,58        | <b>9</b> .10     |         |
| Dressings                                                         | 7.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 289          | 2.26            | CT2.47    | 5.66             | °14.1 K     | <u>, 9.130</u> ° |         |
| SKIN COMPARTMENT                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ô                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,≯<br>ĭ      |                 |           | , Â              | $\sim$      | <u> </u>         | - AS    |
| Stratum corneum a                                                 | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.14         | 184             | 0,71      | 0,38             | 1.34        | <u>(</u> ).89 «  |         |
| Treated skin b                                                    | 3.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>3</b> 566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>2</i> 941 | ¥.70            | CT.32     | 90.90 Q          | 2.00        | 1.13             | 1       |
| Surrounding skin c                                                | 15.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.19°C       | 4.36            | 10.30     | 3.39             | 7.69        | 4                | Å °     |
| SYSTEMIC COMPARTMENT                                              | , s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\sim$       | ð               | A         | Ô,               | £ ı         | R. A             |         |
| Urine                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ø.21 ×       | Ø.12            | 00.78 🔬   | 0.43             | 2.18        | 0.54             | Í       |
| Faeces                                                            | <u>EUOK</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n.a. «                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.07         | 0.03            | 0.16      | 0.0              | 0,04        | 0,62             |         |
| Cage wash                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0,08         | 0.95            | 022       | <b>©</b> 11      | 2.04 .      | ×2.25            |         |
| Cardiac blood                                                     | 0:01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ø-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -<br>(0):01  | 2.004 a         | \$0.004°  | 0.0060           | 0.043       | 0.01             |         |
| Non-treated skin                                                  | ¥31 ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.68         | $2.12^{\circ}$  | 2.70      | 1.53             | 2 0         | 2.02             |         |
| Carcass                                                           | 0.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.89         | 0.53            | <br>      | °Q.26            | 2<br>ØØ.66  | 0.32             |         |
| Tatal Deservered                                                  | 1194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ano 1        | $\approx 62$    | 101 7     | V5 00            | 101 1       | 2.40             |         |
| c = skin impediately øutside the<br>SD = standard deviation, 4000 | dose appli<br>iz less that<br>y & y<br>i y & y & y & y<br>i y & y & y & y & y \\ i y & y & y & y & y & y \\ i y & y & y & y & y & y & y \\ i y & y & y & y & y & y & y & y \\ i y & y & y & y & y & y & y & y & y \\ i y & y & y & y & y & y & y & y & y & y | ication are<br>Nimit of<br>Control of Control of C |              |                 |           | ۷<br>Ålicable, ۱ | n.s. = no s | ample.           |         |

# Bayer CropScience Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

After a single topical application of the [14C]-BYI 02960 at 0.625 g/L, the mean total recoveries of radioactivity were 99.8%, 99.4%, 92.3% and 95.6% for the 8, 24, 72 and 168 hour groups respectively.

## Table 7.6.1-2: The mean distribution of radioactivity 8, 24, 72 and 168 hours after a single topical application of [14C]-BYI 02960 from a 0.625 g/L SL 200 formulation

| Dose Group                       | % of applied dose |                             |               |                 |                            |                  |          |                       |          |  |  |
|----------------------------------|-------------------|-----------------------------|---------------|-----------------|----------------------------|------------------|----------|-----------------------|----------|--|--|
| 0.625 g/L                        |                   | Hours post application      |               |                 |                            |                  |          |                       |          |  |  |
| (n= 4 rats/group)                | 8                 |                             | 1             | 1               | Ű Ű 72                     | 2                | Ù abo    | 8 0                   | s O      |  |  |
|                                  | Mean              | SD                          | Mean          | SD              | Mean                       | SD               | Mean     | SD .                  | u Ö      |  |  |
| SURFACE COMPARTMENT              |                   |                             |               |                 |                            |                  |          |                       |          |  |  |
| Skin swabs (8 hr & terminal)     | 89.56             | 4.68 🗸                      | 88.71         | 6.26            | _7 <b>€</b> 93             | 6:30 N           | ©85.88©  | 6.50                  |          |  |  |
| Surface dose (tape strips 1 & 2) | 1.26              | 0.43                        | 2.15°         | 1,90            | × A.14                     | Ø 3.06           | 1.6      | <b>Q</b> . <b>6</b> 7 |          |  |  |
| Fur                              | n.s.              | na                          | Ø.Š.          | Mn.a.           | y 1.170                    | 1.38             | 1.03     |                       | <b>,</b> |  |  |
| Dressings                        | 0.07              | 0.06                        | @0.22 @       | 0.100           | 0.49                       | 0.27             | 01.53 n  | 2.57                  |          |  |  |
|                                  | S                 | KIŇ CÔ1                     | MPAR TM       | EN 🍒            | A                          | Ô <sup>y</sup> 4 | , Å      |                       |          |  |  |
| Stratum corneum a                | 4.86              | 4, <b>4</b> 4, <sup>%</sup> | 5006          | \$.89           | 6.41                       | 3.34             | 2:44     | <b>\$</b> .46         |          |  |  |
| Treated skin b                   | 1.80              | Q. 11                       | <b>.</b> 67 ~ | <b>€</b> 0.16 ≪ | 0.49                       | 0,53             | Ø.43     | 0.31                  |          |  |  |
| Surrounding skin c               | Q.31              | <b>@</b> .08 `              | °∳0.35∜       | 0.06            | Ø\$\$8                     | A.35             | ©0.15, 9 | 0.06                  |          |  |  |
|                                  | <sup>®</sup> SY§  | ŢEMI <b>Ç</b> ∫             | COMPART       | ΓΜÊŇΤ           | ,0° _ (                    | ) Ô              | °~       |                       |          |  |  |
| Urine                            | ৶ 0.26%           | 0.20                        | <b>\$</b> 34  | Ø.17 "          | 0.840                      | 0,28             | Ø, 10    | 0.07                  |          |  |  |
| Faeces                           | 0.03              | ~ <b>0</b> ×03              | 0.09          | ∀ 0.05©         | <sup>♥</sup> 0. <b>2</b> 4 | 0.10             | QÚ.30    | 0.09                  |          |  |  |
| Cage wash                        | 0/15              | Č0.06                       | ▶ 0.200       | 0.17            | Q19                        | 0.07 (           | 0.29     | 0.09                  |          |  |  |
| Cardiac blood                    | 0.02              | 0.04                        | 0.03          | 0,001           | <b>≪ð</b> .001%Ç           | 0.003            | 0.007    | 0.009                 |          |  |  |
| Non-treated skin                 | 0.44              | 0.33                        | ×9.32 0       | 0.11            | 0,47                       | 050              | 0.20     | 0.07                  |          |  |  |
| Carcass 🖉 👸                      | ¥.333             | 0.26                        | ×0.34         | 0.1D            | 0,44                       | 0.12             | 0.353    | 0.09                  |          |  |  |
| Total Recovered 🔍                | 89.84~            | » 0.45 <sup>~</sup>         | 99 36         | <b>@</b> 46     | 92.3                       | 1.33             | 95.59    | 2.60                  |          |  |  |

\*= tape stable exclusions sufface dose strips 1 & 2, \*= tape stable exclusions sufface dose strips 1 & 2, \*= skip dose size after tape-stripping procedure, \*= skip dose size after tape-stripping procedure,

# Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

After a single topical application of the  $[^{14}C]$ -BYI 02960 at 0.1 g/L, the mean total recoveries of radioactivity were 100%, 95.8%, 103% and 95.6% for the 8, 24, 72 and 168 hour groups respectively.

| Table 7.6.1-3: | The mean distribution of radioactivity 8, 24, 72 and 168 hours after a single topical           |   |
|----------------|-------------------------------------------------------------------------------------------------|---|
|                | application of [ <sup>14</sup> C]-BYI 02960 from the 0.1 g/L dilution of the SL 200 formulation | ( |

|                                  | B1101/                                                                                                                                                   |                        | me on g =          | anation         | or the sh                         | - 2007-01-11       |                     |                             | 2      |  |  |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------------|-----------------|-----------------------------------|--------------------|---------------------|-----------------------------|--------|--|--|
| Dose Group                       | % of applied dose $\mathcal{O}^{Y}$                                                                                                                      |                        |                    |                 |                                   |                    |                     |                             |        |  |  |
| 0.1 g/L                          |                                                                                                                                                          | Hours post application |                    |                 |                                   |                    |                     | Ś                           | Ô      |  |  |
| (n=4 rats/group)                 | 8                                                                                                                                                        |                        | 2∉                 | 1               |                                   | 2                  | َ <sup>م</sup> ر 16 | <b>%</b>                    | ,<br>P |  |  |
|                                  | Mean                                                                                                                                                     | SD                     | Mean               | <sup>ø</sup> SD | Mean                              | SD                 | Mean                | SDO                         | ©      |  |  |
| SURFACE COMPARTMENT              |                                                                                                                                                          |                        |                    |                 |                                   |                    |                     |                             |        |  |  |
| Skin swabs (8 hr & terminal)     | 77.99                                                                                                                                                    | 5.59                   | 8 <b>@</b> A4      | 7.12            | \$ 80.53                          | 3.92               | 68.67               | Q.62                        |        |  |  |
| Surface dose (tape strips 1 & 2) | 3.50                                                                                                                                                     | 1.56                   | A.61               | 1.33 🔦          | ≥ 3.665°                          | 9578               | \$3.66              | 0.84                        |        |  |  |
| Fur                              | 1.71                                                                                                                                                     | 0.83 🐇                 | n.s.               | n a             | s n.s.                            | n.a. 🔪             | 0 n.s. 9            | na                          |        |  |  |
| Dressings                        | 0.64                                                                                                                                                     | 0.82                   | 0A1°               | Ø28             | ر 0.49 <i>ي</i>                   | 0.250              | 2.65                | * <b>D</b> 1                |        |  |  |
|                                  | S                                                                                                                                                        | KIN₡ŎĬ                 | MPÄRTM             | ént             |                                   | Ð                  | de i                | 1                           | þ      |  |  |
| Stratum corneum a                | 8.74                                                                                                                                                     | <u>4</u> .50           | @6.26 Ø            | 3.03Q           | 11.69                             | 3.14               | Q <sup>*</sup> 0.37 | * <sup>*</sup> 2.6 <b>8</b> |        |  |  |
| Treated skin b                   | 2.05                                                                                                                                                     | ©0.79                  | 0.87               | 056             | 0.83                              | 00.53 <sub>K</sub> | 1.36                | 1,09                        |        |  |  |
| Surrounding skin c               | 1.53                                                                                                                                                     | 0,1%                   | 0@/1 .             | \$.03           | 0.40                              | 0.26               | 0.73                | <b>Ø</b> .34                |        |  |  |
|                                  | S¥S                                                                                                                                                      | LEWIC C                | COMPAR             | MENT            |                                   | ju<br>U            | Į, v                |                             |        |  |  |
| Urine                            | 6,08                                                                                                                                                     | @.05                   | ≫0.57 <sup>®</sup> | 0.28            | <b>B8</b> 2                       | ¢.45               | \$ 3.00 ×           | 0.27                        |        |  |  |
| Faeces                           | <sup>®</sup> ≹OQ <i>≬</i>                                                                                                                                | n.a.Ø                  | 0.0                | \$ 09           | (0.62)                            | 0.2QĈ              | 0.444/              | 0.25                        |        |  |  |
| Cage wash                        | V <lqq∕< td=""><td>n.a.</td><td>Ø12</td><td>Ø.15 (</td><td>€<sup>♥</sup> 0.34<sup>©®</sup></td><td>039</td><td>\$Q,70</td><td>0.44</td><td></td></lqq∕<> | n.a.                   | Ø12                | Ø.15 (          | € <sup>♥</sup> 0.34 <sup>©®</sup> | 039                | \$Q,70              | 0.44                        |        |  |  |
| Cardiac blood                    | 0.07                                                                                                                                                     | <b>@</b> .01           | ° 0.06             | 0.08            | ″_Q.€A                            | 0.09               | Q <sub>0.09</sub>   | 0.06                        |        |  |  |
| Non-treated skin                 | ð¥.55                                                                                                                                                    | 0.38                   | 0.530              | 0.11            | ~ <b>0</b> .76                    | v.12 ¢             | 0.79                | 0.05                        |        |  |  |
| Carcass 🔊                        | 2.63                                                                                                                                                     | 1.4                    | 1.40               | 0.18            | ≪1.63,~S                          | 0.45               | 3.09                | 0.69                        |        |  |  |
| Total Recovered                  | » 10 <b>05</b>                                                                                                                                           | 3049                   | ≈\$5.79            | D″3.27&         | 102.9                             | <u>1</u>           | 95.56               | 1.99                        |        |  |  |

<sup>a</sup> = tape strips & cluding urface bose strips 1 & 2

<sup>b</sup> = skin at dose site after tapes procedure,

<sup>c</sup> = skin inhediately outside the dose application area,

SD = sondard toviation, <LOQ #less they limit of quantification, that = not applicable, n.s. = no sample.

## Total % non-absorbed

For all treatment levels, the majority of the radioactivity was not absorbed and was recovered from the skin by swabbing. This accounted for 60.8 to \$3.4% 76.9 to 89.3% and 68.7 to 82.4% of the dose applied for the high, intermediate dose and the low dose, respectively. For the high dose groups, high and decreasing percentages of radioactivity were measured in the surrounding swabs, ranging from 19.3% at 8 hours to 1.29% at 168 hours. Percentage recoveries measured in the surface dose (tape-strips 1 and 2) were lower for the high dose formulation compared to the intermediate and low dose formulations. This amount was in the range of 0.29 to 0.77%, from 1.26 to 4.14% and from 2.61 to 3.66% of the dose applied for the high intermediate and low dose formulations, respectively. Mean percentages of recoveries measured in the fur remained low and could be considered stable over time, despite the individual inter-variability, for the three dose formulations.

## Total % at dose site: 0

Despite the inter-individual variability, the mean fraction of test chemical present in the stratum corner after washing procedure increased with the treatment level. It was stable over time for the highest treatment level, with values that were relatively low ranging between 0.71% and 4.14% of the dose applied. For the intermediate dose level, the mean amount of radioactivity in the stratum corneum appeared to be stable between 8 hours (4.86%) and 72 hours (6.41%) and decreased thereafter (2.71% at 168 hours).

For the low dose level, the mean amount of radioactivity seemed to be relatively stable between 8 hours (8.74%) and 24 hours (6.26%) and increased thereafter to 11.7% at 72 hours and 10.4% at 968 hours post-dose. The fraction of test chemical present in the treated skin following removal of both residual dose and stratum corneum appeared to be relatively stable for the three freatment formulations, with percentages of radioactivity slightly higher for the high dose formulation. Skin taken from around the application site (so called "surrounding skin"), to investigate the spreading of the test chemical across or through the skin contained relatively high and stable levels of radioactivity for the high dose formulation. These high levels of radioactivity can be related to mose measured in the surrounding swabs.

For the intermediate and low dose formulations the amount of radioactivity in the surrounding skin was much lower than for the high dose group and stable over time. Therefore, the total material remaining at the dose site appeared to be lower for the groups exposed to the intermediate dose formulation. For the high dose, the values decreased from 8 hours post-dose (19.5% of the dose applied) to 168 hours (11.0% of the dose applied). For the intermediate dose, the values obtained at 8h (7.04%), 24h (6.97%) and 72 hours (7.48%) post-dose were relatively similar and a decrease occurred thereafter with 3.29% measured at 68 hours.

For the low dose groups, the percentage of radioactivity located at the dose site was stable. The amount was from 12.3% at hour post dose to \$2.5% at 168 hours post dose.

#### Total % directly absorbed?

The amounts of radioactivity found in the tissues cearcase, cardiac blood, non-treated skin) and eliminated in the excreta (urine, facees, cage wash) were considered as directly absorbed by the rats. For the neat product of small portion of the radioactivity was absorbed rapidly as 0.92% of the applied dose appeared in the carcase after 8 hours post-application. After that, taking into account the interindividual variability, the level of radioactivity in the carcase seems to be stable between 8 hours and 24 hours post dose and slightly decreased after 24 until the end of the study. Low and stable levels of radioactivity were detected in the cardiac blood over the duration of the study. Radioactivity detected in the non-treated skin was relatively high, but stable over time. An increase of radioactivity in the excreta (urine cage washes and facees) was observed from 0.03% at 8 hours post-application to 5.17% at 168 hours post-application.

At the intermediate dose level, a percentage of 1,33% of the applied dose after 8 hours post application in the carcass showed a rapid absorption of the radioactivity. This level of radioactivity in the carcass decreased between 8 and 24 hours and thereafter was stable until 168 hours. Low and stable levels of radioactivity were detected in the cardiac blood over the duration of the study. Radioactivity levels measured in the non-treated skin were low and stable from 8 hours (0.44%) to 72 hours (0.47%). Thereafter, a small decrease was noted, 0.20% of the dose applied being measured at 168 hours. The total amount of radioactivity excreted increased with time, from 0.43% at 8 hours post dose to 1.69% at 408 hours post-application (urine, cage washes and faeces).

At the low dose level, a higher proportion of the radioactivity - compared to the high and intermediate dose formulations - was absorbed rapidly, as 2.63% of the applied dose was measured in the carcass

# Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

after 8 hours post-application. Thereafter, the level of radioactivity in the carcass seems to be relatively stable with time although an increase of radioactivity in the excreta (urine, faeces and cage wash) was observed (from 0.08% at 8 hours post-application to 4.15% at 168 hours post-application). Low and relatively stable levels of radioactivity were detected in the cardiac blood and non-treated skin over the duration of the study.

Therefore, for the three formulations, the direct dermal absorption seemed to increase over time under the experimental conditions of the study for the high and tow dose formulations, ranging from 2.27% at 8 hours post dose to 8.14% at 168 hours post dose for the high dose groups and from 4.32% at 8 hours post dose to 8.12% at 168 hours post dose for the low dose formulation for the intermediate dose, the direct dermal absorption appeared to be relatively stable over time (from 2.25% at 8 hours to 2.24% at 168 hours post dose). For the three treatment doses, the results indicated that the urine was the major route of elimination following derma application.

#### Total % potentially absorbable:

In a conservative approach, the amount of radioactivity recovered in the skin compartment citratum corneum, treated skin and surrounding skin) was considered to be absorbable. Therefore, following 8-hour exposure, the amount of BY402960 potentially absorbable (sup of direct absorption and amount detected in the dose site) ranged from 17 to 22% for the neat product, from 6% to 10% for the intermediate dose and from 10% to 21% for the low dose formulation.

#### **Conclusion:**

In conclusion, the amount obapplied radiolabelled  $[^{14}C]$ -BYI 02960 which can be considered as the maximum percentage that could be considered as potentially absorbable under the experimental conditions of this study was 22%, 10% and 21% for the high, intermediate and low dose formulations respectively.

| IIIA1 %6.2 Co | proparative dermal absorption, in vitro using rat and human skin                  |
|---------------|-----------------------------------------------------------------------------------|
| ٨             |                                                                                   |
| Report:       | × (2010).                                                                         |
| Title:        | BY 02960 SL200 Comparative in vitro dermal absorption study using human           |
| - 4           | and ratiskin.                                                                     |
| Document Av°: | M-394215-0171                                                                     |
| Guidelines:   | O.E.C.D. guideline for the testing of chemicals; skin absorption: in vitro Method |
| Å,            | 2 428 (Appl 20049), 2                                                             |
| ×             | O.E.CD. Environmental health and safety publications series on testing and        |
| ĺ.            | assessment N°28, Quidance document for the conduct of skin absorption studies     |
| Õ,            | $\sim$ (March 2004), $_{\odot}$                                                   |
|               | Duropean Commission guidance document on dermal absorption- Sanco/222/2000        |
|               | rev. (March 2004).                                                                |
| GLP J G       | X Yes                                                                             |
|               |                                                                                   |

Bayer CropScience

#### Material and methods

•

| Rat skin:             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Species, strain:      | Rat, Wistar Rj: WI (IOPS HAN).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Source:               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sex:                  | Male (10).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Anatomical            | Dorsal.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| site:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Rat Skin              | Each animal was killed by cervical dislocation. After satrifice the skin was apped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Preparation:          | and removed for use in the study. The dorsal skin was dermatomed by use of a mini-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                     | dermatome to obtain samples of ca 460 to 540 $\mu$ m in Thickness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Human skin:           | Source:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                       | Number and sex: 7 donors, female                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | Anatomical region: Abdomen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       | Thickness: 437 to 592 $\mu$ m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>Test Material:</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Non-                  | Batch: NLL 7780-47-4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| radiolabelled:        | Purity = 99.4% w/w. $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Radiolabelled:        | [pyridinylmethyl-14C] BYI 02960 y jo y y y y y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | Batch: KATH 6429 $(x^{\gamma} + x^{\gamma} + x^$ |
|                       | Specific activity: $0.37$ MBq/mg $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$ $3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | Radiopurity of the formulation: 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Formulation:          | The formulation used in this experiment was the BY 02960 SL 200 formulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                       | used at three nominal concentrations: 200 g a.s. (M, 0.625 g a.s. /L and (V.1 g a.s. /L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Test system:          | A flow-through diffusion cell system (Franz's cell modified, Gallas, France) was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | used to study the absorption of the test substance (exposure area of 1 cm2 skin). A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                       | diffusion cell consisted of a dong chamber and a receptor chamber between which                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | the skin was positioned. The receptor thuid was Eagle's medium supplemented with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | 50 boyine series albumin and gentamycin (50 mg/L) at a pH of 7.4. The receptor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | schamber was warmed by a constant circulation of warm water which maintained the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ~0~                   | receptor fluid at $32 \pm 2^{\circ}$ (close to the normal skin temperature). The receptor fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| O,                    | was pumped through the receptor chamber at a rate of 1.5 mL/h and stirred                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                       | Continuously whilst in the receptor gramber by means of a magnetic bar.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Skin integrity:       | the grang and army water loss of WIX from the stratum corney. An even armotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | methal (Towamater TMD0) system (Jourgen & Khazaka) was placed securely on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | Applote (Acwanie of Timeson System, Source of Water diffusing through the skin was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ŷ                     | measured Muman and sat skip with a TEWL of greater than 15 g/hm <sup>2</sup> were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | considered notes wally draged and were not used. These samples were replaced by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ~~~                   | new skip fragments which were also dested for integrity before use in the study                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Treatment             | The dose preparation was applied to the split-thickness skin sample with a pipette at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                       | the rate of approximately 10 rd/cm2 exposed skin. The dose preparations were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| , K                   | assayed for radioactively content (by LSC) by using dose checks (surrogate dose)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                       | taken before during and after the dosing process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sampling: "           | The receptor fluid passing through the receptor chamber was collected in glass vials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                       | held in a fraction collector. The fraction collector was started after dose application.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                       | Samples were then collected hourly for the duration of the experiment (24 hours). At                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Û Ô                   | 8 hours post application, the skin was swabbed with freshly prepared 1% v/v Tween                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       | 80 in PBS (phosphate buffer saline) using natural sponge swabs, in order to remove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                       | and retain the non-absorbed dose, until no radioactivity was detected with a Geiger-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A CA                  | Müller monitor. At the end of the study (24 hours after application), the treated skin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| č <sup>o</sup> ř      | and the skin adjacent to the treatment site (surrounding swabs) were swabbed. Each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Ŵ                     | skin sample was tape-stripped to remove the stratum corneum. This involved the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                       | application of Monaderm adhesive tape (Monaderm, Monaco) for 5 seconds before                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                       | the tape was carefully removed against the direction of hair growth. This procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



was continued until a 'shiny' appearance of the epidermis was evident, which indicated that the stratum corneum had been removed. The tape-strips were collected into scintillation vials for analysis. The skin surrounding the application site (surrounding skin) was separated from the treated skin. Both surrounding skin and tape-stripped treated skin were retained for analysis.

The amounts of radioactivity in the various samples were determined by liquid **Radioassay:** scintillation counting (LSC). Samples were counted for  $10^{\circ}$  minutes or for 2 signar % in an appropriate scintillation cocktail using a Packard 1900 TR counter with Sri-line computing facilities. Quenching effects were determined using an external standard and spectral quench parameter (tSIE) method. Efflorency correlation curves were prepared for each scintillation cocktail and were regularly checked by the use of O [14C-n-hexadecane standards. The scintillation counter was recalibrated when a deviation of greater than 2% was observed when counting availity control standards. The limit of detection was taken to be twice the background values for blank samples in appropriate scintillation cocktail

#### Findings:

BYI 02960 was demonstrated to be soluble in the receptor fluid up to the concentration of 800 mg/mL of receptor fluid. The maximal achieved concentration per hour of [140]-BYL \$2960 in the receptor fluid was 0.307 µg/mL. As the achieved concentrations were at least 2606 times lower than the determined solubility concentration, the solubility in the receptor fluid was deemed to be sufficient to have reduced any risk of back diffusion.

Measurements of the homogeneity of the three concentrations of formulation applied indicated that it was accentable



# Table 7.6.2-1: Mean distribution of radioactivity at 24 hours after dose application of [14C]- BYI 02960 in

an SL 200 formulation at the rates of 200 g/L, 0.625 g/L and 0.1 g/L to human and rat skin samples (Results expressed in terms of percentage of applied radioactivity)

|                               | Distribution of radioactivity (% dose) |            |                        |                |                     |                             |                       |                     |                             |                      | <u> </u>            | - Č    |  |
|-------------------------------|----------------------------------------|------------|------------------------|----------------|---------------------|-----------------------------|-----------------------|---------------------|-----------------------------|----------------------|---------------------|--------|--|
|                               | Nea                                    | t formulat | formulation: High dose |                |                     | Dilution: Intermediate dose |                       |                     |                             | Dilution: Low dose 🛷 |                     |        |  |
| Dose Levels                   | (                                      | SYP1352    | 7, 200 g/L)            |                | (SY                 | 7P13529                     | , 0.625 g/I           | L)                  | <u>}</u>                    | SYP1353              | 0,0.1 g/L           | )      |  |
| Species                       | Human                                  | (n=6)      | Rat (1                 | n=6)           | Human               | (n=5)                       | Rat (1                | n=4)                | Human                       | (n=5) 🖧              | Rate                | n=5)   |  |
|                               | Mean                                   | SD         | Mean                   | SD             | Mean                | SD                          | Mean                  | SD                  | Mean                        | SD,                  | Mêşm                | SD     |  |
|                               |                                        |            | 5                      | SURFAC         | E COMPA             | ARTME                       | NT                    |                     |                             | )<br>O               |                     | ,Q     |  |
| Skin swabs (8h)               | 105.6                                  | 4.37       | 105.1                  | 1.41           | 97.28               | 1.72                        | 85.50                 | <b>£</b> .25        | 89.40                       | 3.42                 | ≫85.48 <sub>℃</sub> | 8.40   |  |
| Skin swabs (24h) <sup>a</sup> | 0.09                                   | 0.15       | 0.02                   | 0.01           | 0.44                | <b>AP731</b>                | 0.63                  | <b>Ø</b> .66        | 0.97 (Ĉ                     | 0.89                 | 5.6Ø                | 3,19/  |  |
| Surface Dose                  |                                        |            |                        |                | r                   | , v                         |                       | Ş                   | Ø                           | Ň                    |                     | . 6    |  |
| (tape-strips 1 & 2)           | 0.13                                   | 0.13       | 0.13                   | 0.21           | 0.49                | 0.26                        | 2.14                  | 1.17                | 0,99                        | Ø\$\$2               | <b>3</b> .86        | \$3.50 |  |
| Donor chamber                 | 0.07                                   | 0.11       | 0.10                   | 0.25           | 0.09                | 0.08                        | 2: <b>®</b>           | 2,61                | Q10                         | 0.22                 | On.d.               | n.a.   |  |
| Total % non-                  |                                        |            |                        |                |                     |                             |                       | Ň                   | $\mathcal{Q}_{\mathcal{A}}$ | ) o                  | Ŵ                   |        |  |
| absorbed                      | 105.9                                  | 4.50       | 105.4                  | 1.52           | 98.30               | °1.67                       | @90.69 <sup>`</sup> ^ | ž 3.99              | 91.46                       | 3.≉5⊅                | 96.99               | 4.24   |  |
|                               |                                        |            |                        | SKIN           | ØMPAR               | TMEN                        | ľ                     | Ŵ                   | Į,                          | Ż                    | ~                   |        |  |
| Skin <sup>b</sup>             | 0.09                                   | 0.09       | 0.02                   | 0.02           | 0.40                | 0.62                        | 1.04                  | 686                 | 1911                        | \$0.91               | 1.09                | ° 0.86 |  |
| Stratum corneum <sup>c</sup>  | 0.10                                   | 0.12       | 0.06                   | 0,08,          | .1075               | 0.53                        | 283                   | 3.83                | ©3.00 <sup>(</sup>          | 1.83                 | 4.4¢                | 2.89   |  |
| Total % at dose site          | 0.19                                   | 0.21       | 0.07                   | 0,09           | √ <i>1.62</i> ^     | y 0.82                      | D 4.59 L              | ⁵> 5.65 🤇           | <sup>°</sup> 4.1∯           | 2,72                 | 5,50                | 2.63   |  |
|                               |                                        |            | R                      | <b>Ř</b> ČEPŦČ | R COMP              | ARTM                        | ÉNT O                 | Ň                   |                             | Ž                    | Ő                   |        |  |
| Receptor fluid                |                                        |            | Ő                      | t C            | , Q                 | ~                           | 2                     | Š,                  |                             | Q'                   |                     |        |  |
| (0-24h)                       | 0.01                                   | 0.02       | 0.07                   | 0.00           | <b>0</b> 28         | 0.32                        | ∕31.03 °              | \$0.29 <i>j</i>     | 0.61                        | 0.42                 | 1.02                | 0.43   |  |
| Receptor fluid                |                                        |            | Q                      | Ô              | <i>6</i> ) ()       |                             | ,<br>Q                |                     | Ô                           | °~y                  |                     |        |  |
| terminal                      | 0.002                                  | 0.005      | @j.d 5                 | Kn.a. 🛛        | ) <sup>©</sup> 0.02 | 0.0                         | 0.05%                 | 0.0                 | Q.04                        | ¢0.05                | 0.08                | 0.06   |  |
| Receptor chamber              | n.d.                                   | n.a.       | 🖓 n.d. 🖄               | n a            | n.d.                | n.s.                        | Q.d.                  | p.a.                | n.d.                        | 0 <sup>°</sup> n.a.  | n.d.                | n.a.   |  |
| Total % directly              |                                        | ×          |                        | Ö              | Å                   |                             | 2                     |                     |                             |                      |                     |        |  |
| absorbed <sup>d</sup>         | 0.02                                   | 0.03       | 0.00                   | <b>20</b> 7    | Q.39                | 0.34                        | 1.08                  | 0.33                | 0.65                        | 0.48                 | 1.11                | 0.44   |  |
| Total % Potentially           |                                        | °∕~'       | 4                      |                | × ~                 | S                           |                       | Ś                   | Â,                          |                      |                     |        |  |
| Absorbable                    | 0.20                                   | ×Q.22      | <b>\$0.15</b> \&       | 0.090          | 2.05                | 1.07                        | 3.67                  | <sub>(1,</sub> 5.96 | <b>A</b> 75                 | 2.96                 | 6.61                | 2.80   |  |
| TOTAL %                       |                                        | \$         |                        | <i>Q</i> 1     | S                   | L"                          |                       |                     |                             |                      |                     |        |  |
| RECOVERY                      | 106.1                                  | 4.65       | 105,5                  | ~ <b>T</b> .5  | <b>*100.3</b>       | D <sup>°</sup> 1.90 (       | 2, 96.36              | 5.98                | <sup>°</sup> 96.22          | 4.08                 | 103.6               | 2.54   |  |

<sup>a</sup>: sum of radioactivity found in swaps at termination and in surrounding swaps.<sup>3</sup> <sup>b</sup>: sum of radioactivity found in skip after ape-stripping procedure and in surrounding skin.

<sup>c</sup>: tape-strips excluding number @ & 2 which are considered to be pon-absorbed dose. <sup>d</sup>: sum of radioactivit@ound in receptor fluid.(0 24h), receptor Baid terminal and receptor chamber.

c: total % directly absorbed + total % at dose site SD: standard designion

n.d.: not detected (below the limit of detection)

n.a. : not applicable

n: number of skin cells used for calculation In the above table, the presented means do not always calculate exactly from the presented individual data. This is due to rounding-up differences resulting from the use of the spreadsheet program

## Conclusion:

BY 02960 through human and rat dermatomed skin from the SL 200 The dermal penetration of  $\mathbb{K}^4C$ formulation was investigated at three concentrations corresponding to the neat product (200 g/L) and to two representative dilutions (0.625 and 0.4 g/L), respectively.

Overall, the dermal perotration of PC]-BYI 02960 in the SL 200 formulation was low at all concentrations used. Although there was a tendency for lower mean absorption values for human skin there did not appear to be a significant species difference in the absorption levels at any of the concentrations tested.

The mean percentage of BYI 02960 in the SL 200 formulation that was considered to be potentially absorbable (directly absorbed plus total remaining at dose site) over a period of 24 hours for the neat formulation was 0.2% and 0.2% for the human and rat skin, respectively.

The mean percentage of BYI 02960 in the SL 200 formulation that was considered to be potentially absorbable (directly absorbed plus total remaining at dose site) over a period of 24 hours for the intermediate dose rate was 2% and 6% for the human and rat skin respectively.

The mean percentage of BYI 02960 in the SL 200 formulation that was considered to be potential absorbable (directly absorbed plus total remaining at dose site) over a period of 24 hours for the lo geable and a second sec dose rate was 5% and 7% for the human and rat skip respectivel 

#### **IIIA17.7 Dislogeable residues**

#### **Dislogeable residues IIIA1 7.7.1**

were determined in the field Following foliar spray treatment BYD 02960 disloggeable foliar residue and in greenhouses on lettuce. Summaries of the studies and results are presented in the following.

| Report:        | KIIIA 7.2.1/01,, S; 201Y                                                               |
|----------------|----------------------------------------------------------------------------------------|
| Title:         | Determination of dislodgeable for ar residues (DFR) of BYI 02960 after spraying of BYI |
|                | 02960 SL 200 on lettinge in the field in the Netherlands                               |
| Report No &    |                                                                                        |
| Document No    | NG420640-01-1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (                                    |
| Dates of work: | Suly 2610 - November 2011                                                              |
| Guidelines:    | USEPA OPPTS 875.2100 Foliar Distodger Residue Dissipation (formerly US EPA             |
| _O_            | Pesncide Assessment Guidelines Subdivision K: Reentry Protection, Series 132-1 (a))    |
| GLP Ö          | Ses (cerufied laboratory)                                                              |
| , Q            |                                                                                        |

## I Material and methods

The purpose of the study was to determine the magnitude of the dislodgeable foliar residues of BYI 02960 on lenuce leaf foliage after each of two spra ong applications with BYI 02960 SL 200 (200 g BYI 02960/L) The study was conducted in Northern Europe (The Netherlands) during the 2010 season. The actual application data are presented on the following table.

## Table 7.7 1: Application parameters

| Country         | 2° A . 0   |                   | Application        |                        |                      |
|-----------------|------------|-------------------|--------------------|------------------------|----------------------|
| , y             |            | No O <sup>v</sup> | Interval<br>(days) | Growth stage<br>(BBCH) | Rate<br>(kg a.s./ha) |
| The Netherlands | Sprawing S | $\sim$            | 10                 | 45 - 48                | 0.125                |

Samples were collected in a manner designed to obtain representative samples. They were taken, prepared in the field where necessary, transported and stored according to US EPA OPPTS 875.2100 Foliar Dollodgeable Residue Dissipation. Leaf punches were collected directly into a pre-labelled poly-propylene jar using a leaf punch sampler ( Co; El Monte, CA). Each sample consisted of 40 disks cut with a leaf puncher with 2.523 cm diameter and a disk area of 5 cm<sup>2</sup>. The leaf

# Bayer CropScience Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

punches represented a total double-sided leaf surface area of 400 cm<sup>2</sup>. A sample was collected from each of the three subplots to provide three replicate samplings at each sampling interval. Leaf punches were taken from the potential worker contact zone including upper, middle, and lower portions of the crop foliage and interior and exterior portions of the crop foliage. Control leaf punch samples were collected prior to the first application. Treated samples collected on the day of application were taken after the spray had dried. After each sample was collected, the sampling jar was capped and kept cool for transport to the field site laboratory. Leaf punch samplers were cheaned after ach sampling interval. The dislodging of the leaf samples was performed as soon as possible, but not later than A hours after collection. The samples were dislodged using a 0.01% Acrosol OT solution (i.e. do sodium salt which corresponds to a surfactant).

#### **II Results and discussion**

The results are summarised in the following table



| Sampling              | Dislodgeable foliar residues                                               |
|-----------------------|----------------------------------------------------------------------------|
| [DA1.T]#              |                                                                            |
| -0                    |                                                                            |
| 0                     |                                                                            |
| 3                     |                                                                            |
| 5                     |                                                                            |
| 7                     |                                                                            |
| -10 Č                 |                                                                            |
| 10 0                  |                                                                            |
|                       |                                                                            |
| 413                   |                                                                            |
| 15                    |                                                                            |
| 17                    |                                                                            |
| 20                    |                                                                            |
| #·DA1 T: A after fire | st treatment: "Q = before respective treatment: * for explanation see text |

Already immediately after the deatment there is a clear decline of dislodgeable foliar residues, resulting in values < LOQ. The second application - 10 days after the first one - was performed as no rain was expected However, 20 minutes after the application there was rainfall for about 20 minutes with one winute in hard rain. By viously this has washed off any residues from the leaf surfaces.

## III Conclusion

The DFR value at day  $\vec{0}$  (i.e. shortly after application when the spray has dried) amounts to 0.29 µg/cm<sup>2</sup>. This corresponds to 2.3 µg a.s./cm<sup>2</sup> per kg a.s./ha. This value is higher as the one proposed by the German re-entry model but lower than the one proposed by EUROPOEM. Already three days after application the DFR is <LOQ (0.01 µg/cm<sup>2</sup>).

While EUROPOEM does not consider any dissipation after application the German guidance (for bystander/resident exposure) considers default 50% dissipation between applications. With regard to the observed dissipation in the trial this can be regarded as a conservative approach. Due to the heavy rain shortly after the second application no results are available from this application. However, as the DFR values before the second application were already constantly <LOQ to other figures than the ones from the first application would have been expected for the second application: Three days after application the DFR values are <LOQ.

| Report:        | KIIIA 7.7.1/02,                                                                        |
|----------------|----------------------------------------------------------------------------------------|
| Title:         | Determination of dislodgeable foliar desidues (DFR) of BYI 02960 after spraying of BYI |
|                | 02960 SL 200 on lettuce in the field in Portugal                                       |
| Report No &    | 10-2917-01                                                                             |
| Document No    | M-420656-01-1                                                                          |
| Dates of work: | September 2010 – December 201 $\kappa$ $\tilde{c}$ $\tilde{c}$ $\tilde{c}$ $\tilde{c}$ |
| Guidelines:    | US EPA OPPTS 875.2100 Foliar Dislodgeable Residue Dissipation (formerly US EPA         |
|                | Pesticide Assessment Guidelines Subdivision & Reentry Protection, Series 132-1 (a)     |
| GLP            | Yes (certified laboratory)                                                             |
|                |                                                                                        |

#### I Material and methods

The purpose of the study way to determine the magnitude of the dislodgeable former residues of BYI 02960 on lettuce leaf formage after each of two spraying applications with BYI 02960 SL 200 (200 g BYI 02960/L). The study was conducted in Southern Enrope (Portugal) during the 2010 season. The actual application that are presented in the following table.

| Table 7.7.1-3: App | lication paramet | es ~~ | Ĵ Ĵ "       | O' A'        |              |
|--------------------|------------------|-------|-------------|--------------|--------------|
| Country            |                  |       | Application |              |              |
| - A C              | Type             | O NO  | Beterval    | Growth stage | Rate         |
| , Q                |                  | P A Ò | y' (days)   | (BBCH)       | (kg a.s./ha) |
| Portugal           | Spraying         |       | Ó ST STO    | 43 - 47      | 0.125        |
| · · · · · ·        |                  |       | Y & A       |              |              |

Samples were confected in a manner designed to obtain representative samples. They were taken, prepared in the field where meessary, transported and stored according to US EPA OPPTS 875.2100 Foliar Dislodgeable Residue Dissipation? Leaf punches were collected directly into a pre-labelled Co; El Monte, CA). Each sample poly-propytene jar using a leaf pupch sampler ( consisted of 40 disks cut with a leaf puncher with 2.523 cm diameter and a disk area of 5 cm<sup>2</sup>. The leaf punches represented a total double-sided leaf-surface area of 400 cm<sup>2</sup>. A sample was collected from each of the three subplots to provide three replicate samplings at each sampling interval. Leaf punches were taken from the potential worker contact zone including upper, middle, and lower portions of the crop foliage and interior and exterior portions of the crop foliage. Control leaf punch samples were collected or ior to the first application. Treated samples collected on the day of application were taken after the spray had dried. After each sample was collected, the sampling jar was capped and kept cool for transport to the field site laboratory. Leaf punch samplers were cleaned after each sampling interval. The dislodging of the leaf samples was performed as soon as possible, but not later than 4 hours after collection. The samples were dislodged using a 0.01% Aerosol OT solution (i.e. docusate sodium salt which corresponds to a surfactant).

#### **II Results and discussion**

The results are summarised in the following table.

#### Table 7.7.1-4: Amounts of dislodgeable foliar BYI 02960 residues on lettuce in Portugal [µg a.s./cm<sup>2</sup>], two sided. Figures in bold indicate day of treatment

| ~                      |                                               |         |
|------------------------|-----------------------------------------------|---------|
| Sampling               | Dislodgeable foliar residues                  |         |
| [DA1.T] <sup>#</sup>   | $[\mu g a.s./cm^2]$                           |         |
| -0                     | <0.01                                         |         |
| 0                      | 0.110                                         |         |
| 3                      | <0.01                                         |         |
| 5                      | <0.01                                         |         |
| 7                      | <0.01                                         |         |
| -10                    | <0.01                                         |         |
| 10                     | 0.264                                         |         |
| 11                     |                                               |         |
| 13                     | × 0.01 5 4                                    |         |
| 15                     |                                               |         |
| 17                     |                                               |         |
| 20                     |                                               |         |
| #:DA1.T: day after for | st treasment: " - " = before respective treas | ent N N |

"DAT.T: day after thest treatment; " - "= before respective treatment

After the treatment, there is an mimediate decline of dislodgeable for ar residues resulting in values <LOQ aready 3 days after application.

#### III Conclusion

The DFR value at  $dy^2 0$  (ve. shortly after application when the spray has dried) amounts to 0.11 µg/cm<sup>2</sup>. This could correspond to the default value of the German re-entry model which would be 0.125 µg  $a s/cm^2$  (= 1 µg a.s./on<sup>2</sup> per kg a.s./ha x 0.125 kg a.s./ha). However, the second application results in a significant higher figure while the samples before the second application were already constantly <LOQ. Hence, there is no inflication that residues from a former application could have accumulated. Most likely there was just a lower target deposition at the first application.

The value of the second application  $\mathcal{F} = 0.26 \,\mu\text{g/cm}^2$ ) corresponds to 2.1  $\mu\text{g}$  a.s./cm<sup>2</sup> per kg a.s./ha. This value is higher as the one proposed by the German re-entry model but lower than the one proposed by EUROPOEM. Again, within three days after application the DFR values are <LOQ.



Tier 2, IIIA, Sec. 3, Point 7: BYI 02960 SL 200, Spec. .No: 102000021884

| Report:        | KIIIA 7.7.1/03, <b>2011</b> ; <b>2011</b>                                              |
|----------------|----------------------------------------------------------------------------------------|
| Title:         | Determination of dislodgeable foliar residues (DFR) of BYI 02960 after spraying of BYI |
|                | 02960 SL 200 on lettuce in the greeenhouse in the Netherlands $Q_{\mu}^{\circ}$        |
| Report No &    | 10-2918-01                                                                             |
| Document No    | M-420641-01-1                                                                          |
| Dates of work: | July 2010 – November 2011                                                              |
| Guidelines:    | US EPA OPPTS 875.2100 Foliar Dislodgeable Residue Dissipation (formerly USEPA 🧬        |
|                | Pesticide Assessment Guidelines Subdivision K: Reentry Protection, Series 132-1 (a)    |
| GLP            | Yes (certified laboratory) $(2 - 2)^{\nu}$                                             |

#### I Material and methods

The purpose of the study was to determine the magnitude of the dislodgeable foliar residues of BYI 02960 on lettuce leaf foliage after each of two spraying applications with BYI 02960 SL 200 (200 g BYI 02960/L). The study was conducted in Northern Europe (The Netherlands) in the greenhouse during the 2010 season. The actual application data are presented in the following table (°

#### Table 7.7.1-5: Application parameters

| Country            | Application of the former of t |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | Type Number of Mitervaly Crowth stage Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | applications (days) (BBCH) (kg a.s./ha)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The<br>Netherlands | Spraying 2 2 2 10 2 44 48 0.125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Samples were collegied in a manner designed to obtain representative samples. They were taken, prepared in the field where necessary, transported and stores according to US EPA OPPTS 875.2100 Foliar Dislodgeable Residue Dissipation. Leaf punches were collected directly into a pre-labelled poly-propylene jar using a leaf punch sampler ( Co, El Monte, CA). Each sample consisted of 40 disks cut with a leaf purcher with 2.523 cm diameter and a disk area of 5 cm<sup>2</sup>. The leaf punches represented a total double-sided leaf surface area of 400 cm<sup>2</sup>. A sample was collected from each of the three subplots to provide three replicate samplings at each sampling interval. Leaf punches were taken from the potential worker contact tone including upper, middle, and lower portions of the crop foliage and interfor and exterior portions of the crop foliage. Control leaf punch samples were collected prior to the first application. Treated samples collected on the day of application were taken after the spray had dried. After each sample was collected, the sampling jar was capped and kept cool for transport to the field site laboratory Leaf punch samplers were cleaned after each sampling interval. The dislocing of the leaf samples was performed as soon as possible, but not later than 4 hours after collection. The samples were dislodged using a 0.01% Aerosol OT solution (i.e. docusate sodium salt which corresponds to a surfactant).

## II Results and diseussion

The results are summarised in the following table.

| Table 7.7.1-6: | Amounts of dislodgeable foliar BYI 02960 residues on lettuce in the Netherlands [µg a.s./cm <sup>2</sup> ] |
|----------------|------------------------------------------------------------------------------------------------------------|
|                | two sided. Figures in bold indicate day of treatment                                                       |

| 110                  | sided. I igui es in boid indicate day o                                                                        |        |
|----------------------|----------------------------------------------------------------------------------------------------------------|--------|
| Sampling             | Dislodgeable foliar residues                                                                                   | ]° ~~~ |
| [DA1.T] <sup>#</sup> | $[\mu g a.s./cm^2]$                                                                                            |        |
| -0                   | <0.01                                                                                                          |        |
| 0                    | 0.293                                                                                                          |        |
| 3                    | 0.010                                                                                                          |        |
| 5                    | <0.01                                                                                                          |        |
| 7                    | <0.01                                                                                                          |        |
| -10                  | <0.01                                                                                                          |        |
| 10                   | 0.316                                                                                                          |        |
| 11                   | 0.235                                                                                                          |        |
| 13                   | 0.010                                                                                                          |        |
| 15                   |                                                                                                                |        |
| 17                   |                                                                                                                |        |
| 20                   | £ 0.01 5 kg                                                                                                    |        |
| #DA1 T. downfor for  | the second of the second s |        |

day after first trea

Solution of the second se After the treatment there is an immediate decline the LOQ already 3 days after application

## III Conclusion

The DFR calue at day 0 (i.e. shortly after application when the spray has dried) amounts to 0.29 µg/cm². This correspondents 2.2 µg a.s./cm² per kg a.s./ha Then an immediate decline quickly leads to values <LOO The DFR value at day 10 > just after the second application when the spray has dried - amounts to 0.32 µg/cm2 corresponding to 25 µg a.s./cm2 per kg a.s./ha. Again, three days after application the DIR values are at the LOQ.

On average, the DFR -values anothin to 2.4 µg a.s./cm<sup>2</sup> per kg a.s./ha which is higher as the one proposed by the German re-entry model but lower than the one proposed by EUROPOEM.

With regard to dissipation the assumption of the German guidance (for bystander/resident exposure) can be regarded as a conservative approach considering the observed dissipation in this trial.

#### Dislogeable residues osoil **IIIA1 7.7.2**

Regulation ECT 107/2009. Not required by

Dislogeable residues - indoor surface re-volatization Not required by Regulation EC 1107/2009.

-9 -9 ...erial safety data sheet for each formulant IIA1 7.9. Available toxicological data for each formulant The available toxicological data for each formulant The available toxicological data for each formulant H IIA1 7.10 Domestic animal/livestock safety Not required by Regulation EC 1107/2009 IIA1 7.11 Other/special studies o other/special studies have beetroonducted. and a service of the service of the