

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

IIA 7 Fate and Behaviour in the Environment

Introduction

Additional information is provided in this document on the fate and behaviour of the functional active substance fenhexamid (KBR 2738) in soil and water using the ¹⁴C-cyclohexane label besides the ¹⁴Cphenyl label of fenhexamid. In case where the new studies were not specifically labeled C-phenyl label was used for fenhexamid. The active substance belongs to the chemical class of hydroxyabilides for use on fruits and vegetables in Europe and other regions.

The chemical structures and report names of metabolities are given in the Kist of Netabolities as part of document N of this submission.

Physico-Chemical Properties of KBR 2738

Parameter	Y J & Values Q
Molecular Weight	3020 g/ma
Molecular Formula	CI 40H17 CI2 N O2
Water solubility (at 20°C)	$p_{\rm H} 5 \rightarrow 14 mg/L$
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $
Vapour pressure	25°C 9 x 10 ⁻⁹ hPa
Henry's Law Constant 5 0 0 4 4 5	20° 9 5° 0E-6 Ba m ³ /mol (pH 5),
	5 x 10P 6 Pa m ³ /mol (pH 7), 3 x 10E-7 Pa m ³ /mol (pH 9)
UV absorption (peak maxima)	الأربى المربي
pK _a (ambient temperature pH 2-15)	§ § 7.3
Partition coefficient octwat Pow / log Pow (20°C)	$pH 4 \rightarrow 3.62$
	$pH 7 \rightarrow 3.51$ pH 9 $\rightarrow 2.23$
Relative Density (20°C)	1.34 g/mL
Melting Point	153°C
Stability of compound at room temperature	Stable

Route of degradation in verobic soil

738 was investigated under aerobic conditions at 20 °C The degradation of [xyclohexyl-1 in four softs by Incubation in the dark for 120 days in of MWHC and a soil moisture of 55% maximum.

One metabolite, a [GC]biphenyl-KBR 2738 with Bayer Crop Science and BCS-CQ88719 (M24) was identified as a major compound formed in a range from 4.18.8% AR in maximum during 120 days of incubation (Table 7-1) A top of eight other minor components were observed in the course of the study, none of them accounting for more than \$.0% AR for an individual component. The total of other unidentified components whick were fot quantified individually amounted up to 14.9% in Ì maximum.

A second transformation product whick was the quently detected was tentatively identified as a [C-O-(M24) With BayerCropScience code BCS-CQ88720 via HPLC-co-C] dimer of KBR 2738 chromatography and occurred with maximum amounts up to 5.0% of AR. Ż

The microbial Conversion of KBR 2738 under aerobic conditions in soil thus includes the following steps:

- Formation of the major metabolite [C-C]biphenyl-KBR 2738 (1)
- Formation of non-extractable residues and (2)
- (3) Mineralization (formation of CO₂).

¹ Maximum water holding capacity

High amounts of non-extractable residues were found which reached their maximum values after 14, or 21 days of incubation (max. 67.0% of AR). The amounts declined then slowly and continuously ip to the end of the study.

Experiments with sterilized soil samples showed no mineralization (< 0.1%) over eight days. Despite that, the same general metabolite pattern was observed in the sterilized as in the oon-sterilised? samples. These results indicate that the metabolism of fethexamid, and in particular the formation of bound residues, are partly abiotic processes which are however whanced by the activity microorganisms.

Table 7-1:	Occurrence of [C-C]-dimer of KBR 273	8 (BÇ	S-CQ887	719 (M	24)) д	etabolite	in fo ur	EUsoils
	under aerobic laboratory conditions	Q.	, N	s and a second	K)	Â	"	NU N

unuer acro				
Compound	Soil	Maximum occurryenc	e Ma ximum occurren <u>c</u> e at dag	Occurrence at study end (%AR)
BCS-CQ88719:				21.7 2 2 3 4 1.7 5 1.1 0 1.1 0
		↓ · · · · · · · · · · · · · · · · · · ·		\$ <u>\$</u> 1.4Q

All degradation products observed were of gransient nature which is indicated by the high amounts of CO₂.

When compared to the results of the old aerobic soil degradation study (with plenyl moiety radiolabel for fenhexamid), no significant changes were observed with the exception that the [C-C]biphenyl-KBR 2738 was observed in higher anounts in the new stad. Therefore this metabolite was then

Rate of degradation in aerobic soil

The route and rate of degradation in aerobic soil was investigated under defined conditions in the laboratory after application of [cyclohexyl-1-¹⁴C]-labelled KBR 2738 (new study) and [phenyl-L92-¹⁴C]-labelled KBR 2738 (old study) to four European each reflecting a range of soil types with respect to their texture, organic carbon content and pH.

The investigations resulted in the detection of metabolite BCS-CQ88719 (M24), & [C-C]bipheo/I-KBR 2738 at a significant level to be addressed as compound in environmental tisk assessment. This of finding resulted in additional rate of degradation test with ¹⁴C-labelled BCS-CQ88719 (M24) applied to four European soils.

The laboratory tests performed on route and rate of degradation in aerobic soil were kinetically evaluated following the criteria as set out by FOCUS guidance. The evaluation soll for comparison with trigger endpoints and input parameters for use in environmental modelling $\sqrt{2}$

For comparison with EU trigger endpoints in soil, the data sets derived are summarized for the parent compound KBR 2738 and metabolite BCS-CQ-9871900124) in Tables 7-2 o 7-3, respectively.

Table 7-2:	Best-fit DT500 and	BT 90-values	forparent	compound	KBR 2	27 38 in	8 [©] soils	under	aerobic
	laboratory condition	is for compa	rison with F	EU trigger e	nelpoint	\$ ~	Q Q		

Soil, Test Temperature	Label	DF50 O	🎸 DTŵy	Model
Ű,		a (days)	🔍 (days)	
		· 0.16Q	§ _ Q .37	FOMC
		Q21 S	[√] √ ^v 1.84	FOMC
		Ø.08 O	<i>Q</i> 1.19	FOMC
		0.76	ð 2.52	SFO
	× ~~2		1.37	FOMC
		× & 0.27 ×	0.96	SFO
	O L O	0 ^{-1.0}	9.93	SFO
		6 06 I	1.63	SFO
		≫0.27		

Label 1 = $cyelohexyl-1-{}^{14}C$, Label 2 = $phenyl-<math>C = -{}^{14}C$, Q

 Table 7-3:
 Best-fit DTs- and DT₉₀-values for metabolite BCS-CQ88719 (M24) in four soils under acrobic laboratory conditions for comparison with EU trigger endpoints

	Soil Test Temperature	DT50 (days)	DT90 (days)	Model
		° 5.84	130.73	FOMC
~ ~	2	4.33	85.73	FOMC
S		1.18	> 1000	FOMC
E,		22.74	231.12	FOMC
, A	Ŏ ^Ŷ	5.10		

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

For the <u>parent compound KBR 2738</u> a total set of eight DT₅₀-values was obtained to range from 0.08 days in soil **1** to a maximum of 1.06 days in soil **1** to 2.74 days i

Rates of aerobic degradation of KBR 2738 and its soil metabolite wore found to be very fast under conditions of the laboratory. Therefore field studies were not taken into account for the prostigation of the degradation behavior of fenhexamid notits major degradation product BCS-CQ88719 (M24).

The results of kinetic evaluation for use as modelling input parameters in environmental risk assessments are summarized for the parent compound KBR 2738 both radio tabels and metabolite BCS-CQ88719 (M24) in Tables 7-4 to 7-6 prespectively.

Table 7-4: Optimised DT₅₀-values for parent compound (cyclohoxyl-1-¹⁴C) KBS 2738 from four soils under aerobic laboratory conditions for use as modeling input parameters in environmental exposure assessments

	exposure assessi	Ö "~	r	<i>a</i> • •			
Soil	\sim	🔬 Model 🌂	k k	-ratesro	DT50500	FF	
	<u>k</u>		0 ĵ)/day	🖉 [days]	× [-]	
		FOMC	ų , Ž	1.682	(Q41) ^a	√ 0.11	
	S, O	<i>`</i> ≫FOMCÙ	×	1,290 0	~0.56)	0.09	
		FOMC		¥.931	0.36) ^a	0.06	
		SFO S	V Q	0.916, (Ø .76	0.05	
) ^a calculat	ed from DT90 of bi-p	hasic model	.32 🔊	ГО ^с (U	. ~		
			6				

Table 7-5: Optimised DT₅₀-values for parent compound [phenyl-UL-¹⁴C] KBR 2738 from four soils under aerobic laboratory conditions for use as modelling input parameters in environmental exposure assessments

~O		. 1		*	
	Soil	2	Mođel	k-ratesfo	DT50 _{SFO} [days]
цу.		Q ~~	SFO	2.023	0.34
A.			SEQ "	2.362	0.29
Ÿ	þ,	s ^o a	[≸] FØMC	0.232	2.99) ^a
L.			SFO	1.555	0.45
		n DT90 of F	MC model/3.	32	
e ^Q					

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Table 7-6: Optimised DT₅₀-values for metabolite BCS-CQ88719 (M24) from four soils under aerobic laboratory conditions for use as modelling input parameters in environmental exposure assessments

assessments			Č,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Soil	Model	k-rate _{sFO}	D T50 _{SFO}	
		[1/day]	ر [days]	
	FOMC	0.018	, 39.42) ª ∿	
	FOMC	م م الم الم الم الم الم الم الم الم الم	25.83)ª Č	
	DFOP	مي 0.009) ^b مي [©]	75.34	
	DFOP	0.010)Q	· 72.20	ν ου _τ ου τ
) ^a calculated from DT90 of	FOMC model/33		v ^Q o ^r	- ò
) ^b calculated from k-slow	<u> </u>	e st		

For the parent compound fenhexamid a new study using the [O_{C} clohexyl-1-¹⁴C] labelled KBR 2738 and an old study using [phenyl-UL-14C] labeled KBR 2738 have been performed. For modeling endpoints total set of four optimised $O_{T_{50}}$ -values could be derived each by use of different kinetic model. Recalculations have been done to result in O_{T50} -values. The D_{T50} -values ranged from 0.29 days in soil to 2.99 days in soil **1000**

For metabolite BCS-CQ88719 (M24) a total set of four DT_{50} -values was derived by use of the FOMC and DFOP biphasic kinetle models. In order to evaluate the DT50 SFO values recalculations were done as mentioned in Table 7.57 The DT50 Fo values ranged from 25,83 days on soil

The kinetic evaluation resulted in acceptable and feliable fits bouse of different kinetic models and subsequently recalculated $DT50_{SFO}$ values. The resulted $DT50_{SFO}$ values and k-rates are conservative and robust input parameters in environmental risk assessments.

K j

Soil adsorption 🍭

to 75 34 days in soil

The sorption behaviour to only was derived by standard batch equilibrium tests on four soils with the parent compound KBR 2738. Due to the insufficient water solubility of the metabolite BCS-CQ88719 (M24) the classical batch equilibrium method was not feasible. To derive reliable K_{OC} values a soil column leaching study with four soils was performed with BCS-CQ88719 (M24).

For the **parent compound Tenhevamid (KBR 2738)** values for the coefficients of adsorption according to Preundlich (Kr, ads) ranged from 12.43 mL/g to 15.79 mL/g with corresponding values related to organic earbon (Koc, add) to range from 313 mL/g to 654 mL/g (arithmetic mean: 517 mL/g). Values for the Freundlich coefficient of adsorption 1/n ranged from 0.8604 to 0.8958. No significant dependence was observed for the adsorption behaviour from pH or the texture of investigated soils. According to Briggs, feminexamid can be classified as low mobile to immobile for adsorption and as immobile for desorption.

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

For **metabolite BCS-CQ88719 (M24)**, a [C-C]-dimer of fenhexamid values for the soil adsorption coefficients K_d calculated according to Lambert ranged from 15.2 to 19.8 mL/g (mean: 17.3 mL/g). The respective organic carbon normalized soil adsorption coefficients (K_{OC}) ranged from 35 to 893 mL/g (mean: 668 mL/g).

The soil adsorption coefficients K_d calculated according to Hamaker and McCall ranged from 29.5 to 27.5 mL/g (mean: 23.7 mL/g). The respective organic carbon normalized soil adsorption coefficients (K_{OC}) ranged from 489 to 1214 mL/g (mean: 912 mL/g).

No ¹⁴C-radioactivity was detected in the leachates. Approximately the whole radioactivity applied was found in the first segment (0-3 cm) only amounts of less than 4% of AR were found in the other segments below.

Using the Briggs classifications for the estimation of the publicity of crop protection agents in soil based on K_{OC} values, BCS-CQ88719 (M24) can be classified as fow mobile to immobile for adsorption.

Aqueous photolysis

In former photolysis study in aqueous buffer solution (**particular**, 1996a) the benzoxazole of KBR 2738, MOO (WAK 7004) which was formed in amounts of approximately 24 % of applied radioactivity was further metabolized very fast (DT50 << 1/d) and therefore not taken into consideration for modelling purposes.

In a phototransformation experiment with fenhex and published in Chemosphere vol. 81, pp. 844-852 (**1990**) another new aqueous photometabolite occurred in amounts up to 15% of AR and was identified as 1-methyl cyclohexane carboxamide (M40). Different photo sentitive additives like acetone, etc. and humic outstances like humic acids, etc. were utilized in those phototransformation experiments. The metabolite is added into the aquatic degradation pathway shown in Figure 7-2.

Fate in water/sedbnent

The biotransformation of KBR 2738 using the [cylckhexyl-1-¹⁴C] radiolabel was studied under conditions of sediment/water testing in two different systems. The route of degradation was shown to to result the formation of two major metabolites KBR 2738-3-des-chloro (M12) and 1-methylcyclohexanecatboxylic acid (M39) and one minor metabolite the sulfate of KBR 2738 (M27) which was also detected in minor amounts in a formerly performed aerobic water/sediment metabolism study.

1-Methylcyclobexane carboxylic acid (M39) accounted for up to max. 8.9 % of the AR in water and up to max. 88% of AR in sediment (these amounts include a minor metabolite, KBR 2738-sulfate (M27), which accounted for a maximum of 4.2 % of AR in the total system).

KBR 2738-3-deschloro (M12) accounted for only up to 1.1 % of AR in the water phase and in the sediment extract it accounted to a maximum amount of 7.5 % of the AR.

Besides the formation of NER (max. occurrence 55.6% of AR) the degradation was accompanied by formation of significant amounts of ¹⁴C-carbon dioxide occurring up to 36.4% AR in total systems in the course of the study.

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Trigger endpoints

Following FOCUS kinetic guidance the dissipation half-life of KBR 2738 from water was estimated to range from 1.62 to 5.45 days using different radiolabels and water/sediment test systems. In sediment the dissipation half-life ranged between 10.58 and 22.81 days.

For the degradation of KBR 2738 in total systems half-lives were in the range of 6.77 to 4.60 days of AR when applying different kinetic models as best fit. The values serve for comparison with trigger endpoints in aquatic systems.

The parent compound fenhexamid dissipated relatively fast from water and sediment phase. The major metabolite 1-methylcyclohexanecarboxylic acid (M39) which was tormed during incubation in significant amounts decreased to amounts below the LOD only. Whereas the major metabolite & BR 2738-3-des-chloro (M12) which occurred only in the sediment phase of one water/sediment test system in significant amounts is still present in low amounts (5.0% of AR) at the end of the study but decreasing steadily.

[cyclohexyl-1-14C] fenhexamid:

 Table 7-7:
 Degradation and dissipation parameters for persistence endpoints of [cycloHexyl-1]²⁴C

 fenhexamid
 Image: CycloHexyl-1]

Evaluation level	/ Phase 🐇	, O*	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		-
type of paramete	er 🔬 🔾	Model DT5) DT90 Model	∭	
	A	(Cays) (days)	🖉 (days)	(days)
PI / deg.	🖉 Total system	HS 10.96	5~ 4550 &DFOP	y 14.60	60.64
PI / diss.	Water 🛇	پې 5.45 SHOP کې 5.45	, 19.74 ^O DFOP	2.41	14.98
PI / diss.	Sediment	FOMC 22020) 6102.68 FOMC	22.81	108.55
Ő					

Table 7 -8: Degradation and dissipation parameters for persistence endpoints of M39 (1-methylcyclohexanecarboxylic acid)

Evaluation level /	Rase , O		Ž,	-		_
type of parameter		Model DT5	🕵 DT90	Model	DT50	DT90
	Y 4 OV	(days	days)		(days)	(days)
MI / deg.	Total system	(parent@S) \$42	21.32	SFO (parent DFOP)	7.97	26.48
MI / diss. 🔊	Water 🗸 🔨	n a? o n.a.	≫ n.a.	n.a.	n.a.	n.a.
MI / diss 🕰	Sediment 🎾	EQMC 0 17,6	113.81	SFO	23.26	77.28
	N Q					

Table 49: Degradation and dissipation parameters for persistence endpoints of M12 (KBR 2738-3-deschloro)

Evaluation level	1/ Phase 2	Ş'	×.		-		-
type of paramet	er y a w	Model	DT50 (days)	DT90 (days)	Model	DT50 (days)	DT90 (days)
MI/deg.	Total system	n.a.	n.a.	n.a.	SFO (parent DFOP)	73.79	245.12
ML diss. 🖉	Water	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
MET / diss	Sediment	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
e S							

[phenyl-UL-¹⁴C] fenhexamid:

Table 7-10:	Degradation and dissipation parameters for persistence endpoin	ts of [phenyl-U	/ L- ¹⁴C] ݣ	
	fenhexamid	ð		A

Evaluation level / type of parameter	Phase	 Model	DT50 (days)	 DT90 & (days)	 Mode	DT50 OF DT90
PI / deg.	Total system	DFOP	13.91	57.73	SFO	6.77 22.48
PI / diss.	Water	DFOP	1.62	15.32	PFOP	2, 2 8 513.06 5
PI / diss.	Sediment	FOMC	14.98	116.37	SFO	<u></u>

Modelling endpoints The dissipation and degradation data from tests of KBR 2738 in two water sediment systems, were additionally evaluated in order to derive best fits to measured data as input parameters for use by modelling within aquatic environmental exposure assessments

[cyclohexyl-1-¹⁴C] fenhexamid

Table 7-11: Degradation and dissipation parameters for modelling endpoints ⁴Cl in the second se fenhexamid 🔪 🧔 L,

n

Ŷ

°

Evaluation level /	Phase 🔿	õn (<u>)</u> (, ~ . -Ô		
type of parameter	S O	Model	k-carte 🏑	'DT5₽Ű	Model	k-rate	DT50
		y ~~ (1	17days) 🔊	(days)	0 .8	(1/days)	(days)
PI / deg.	Total system	sfo ~	′0.062°× ×	JI.14	FOMC	0.037	18.49) ^a
PI / diss.	Water	[°] SFOk [™]	02123	5.65	FOMC	0.127	5.47) ^a
PI / diss.	O Sediment	SFO	9.028	25.08 🛒	رّ SFO	0.027	26.09
) ^a calculated by DT90	ғомс ⁽³⁾ .32		,				

Degradation and desipation paraffeters for modelling endpoints of M39 (1-Table 7 -12: methylcyclohexapecarboxylic acid) \wedge

a.	- 68 A) ^v O'				
Evaluation level /	Phase ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			-			
type of parameter			k-rate (1/days)	DT50 (days)	Model	k-rate (1/days)	DT50 (days)
MI / deg.	System	(parent FQQC)	0.111	6.23	SFO (parent FOMC)	0.083	8.33
MI / diss. 🖉	Water 🖄 🧹	n.a	n.a.	n.a.	n.a.	n.a.	n.a.
MI / diss.	"Sediment 🗸	^{୭°} SFờ	0.030	22.98	SFO	0.030	23.26
		Ś					

Ď

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Table 7-13: Degradation and dissipation parameters for modelling endpoints of M12 (KBR 2738-3-deschloro)

)						\$	
Evaluation level /	Phase						
type of parameter		Model	k-rate	DT50	Model	k-rate	P3 0
			(1/days)	(days)	"0"	(1/days)	(days)
MI / deg.	Total system	n.a.	n.a.	n.a.	SFO (parent FOMC)	°.010	68.20
MI / diss.	Water	n.a.	n.a. 🖉	n.a.	n.a.	n a	¢ðva. €
MI / diss.	Sediment	n.a.	n.a., 🛛	n.a.	n.a. 🖉	/ n.s.	n.a.
			AUX -	Â,		1. ⁰	
			Q ^O ^r	»			
[piteliyi-OL-'C] le	iniexanniu.	Ş	ζ, [°] β°,	5 *			d ^y
Table 7-14. Degre	adation and dissin	ation nara	hotors for most	lling	draints of [many]	14C18	

1 able /-14:	Degradation and dissipat	лоп рагая	lielels ru	n møge	:mng/ga	upomus	or thôu	enyi-wil-	CH.	e
	fenhexamid	1	(M)	Ũ	Q,	Q	\sim	0″	<i>"</i> ©"	J.
		474	°~	\sim		1	and a second sec		R.	Ŵ

		****		<u> </u>		A	1 80
Evaluation level /	Phase	Å			ب ^ر ر ^۲	<i></i>	
type of parameter		Model	k-rate	DT50€	Model 🖉	k-rate	DT50
			(1/days) -	(days)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	(1 days)	🖉 (days)
PI / deg.	Total system 🖉	SFO SFO	0.047	1,4571	SFO	§9.102	6.77
PI / diss.	Water 🧖	DFOP	0.156	Ab 1) ^a	, D¥SOP °C	0.176	3.93) ^a
PI / diss.	Sediment	°∼y HS_	0.023) ^b	م <i>چ</i> 29.88	SFO O	0.066	10.58
) ^a calculated by DT90D	fop/3.32 💖 🐇		L a	× 4	× . 0	~	
) ^b k-rate of slow phase	à Ô	× A	¢ "		o '	,Q	

For evaluation of modelling endpoints often the SDO kinetic model was assayed. If a biphasic model (HS, DFOP, FOMQ) was choosen as the kinetic model which will result in robust and reliable modelling evaluation the DT_{50} values were recalculated. In case of bi-phasic fits a conservative SFO-type half-life was re-calculated from the DT_{50} of the FOMC model or from the slower phase of DFOP decline curve. The kinetic parameters determined are compiled for Level P-I in Tables 7-11 to Table

type half-life was re-calculated from the DD% of the FOMC model or from the slower phase of DFOP decline curve. The kinetic parameters determined are compiled for tevel P-I in Tables 7-11 to Table 7-14.

Figure 7-2: Proposed metabolic pathway for KBR 2738 under aerobic conditions of water/sediment and in addition one major metabolite occurring in an external aqueous photholysis study

IIA 7.1 Route of degradation in soil - laboratory studies

IIA 7.1.1	Aerobic degradation
-----------	---------------------

IIA 7.1	Route of degradation in soil - laboratory studies
IIA 7.1.1	Aerobic degradation
Report:	KIIA 7.1.1 /01; .; 2011 A
Title:	[cyclohexyl-1- ¹⁴ C]Fenhexamid (KBR 2738): Aerobic Degradation/Metabolism in Four European Soils
Report No &	MEF-11/037
Document No	M-415995-01-1
Guidelines:	- OECD: Guideline 307, Aerobic and Anaerobic Transformation of Soil, 2002 - Commission Directive 95/36/EC amending Council Directive 91/414/EEC
	- Regulation (EC) No. 1107/2009
GLP	Yes A A A

Executive Summary

The degradation of [cyclohexyl-1Q4C]KBR 2738 was investigated order acrobic conditions at 20 °C and a soil moisture of 55% & MWHC2 in Four soils by incubation in the park for 120 days in maximum. The test substance ¹⁴C_cKBR 2798 was applied at a nominal test concentration of 2.7 mg a.s./kg soil, equivalent to a rate of 1000 g/ha if the field (2.5 cm depth, if g/cm bulk density). In parallel sterilized soil samples were also utilized in degradation experiments. Arerilization was done using gamma radiation of Coood and in addition treatment with QgCl2

In the following these parts of the study are summarized which were performed to elucidate the route of degradation in soil, Parts concerning evaluation of rate of degradation are reported in sections IIA 7.2.1 of this document?

The applied radioactivity (AR) was completely recovered (93,07102.6% AR). After 120 days of incubation, non-extragable regioactivity ranged from 5 k)-60.0% AR. Mineralisation accounted for 10.4-19.6% AR as 4002 by day 20. No significant amounts of other organic volatile components were observed ($\leq 0.1\%$ AR).

Metabolite BCS-CQSS719 (M24), a [CzCqbiphenyl-KBR 2738 was identified as a major compound formed in a range from \$1-8.85 AR a maximum during 120 days of incubation. A total of eight other might components were observed in the course of the study, none of them accounting for more than 5.0% AR for an individual component. The total of other unidentified components which were not quantified individually amounted to up to \$9.9% in maximum.

The microbial conversion of KBR 2038 upder aerobic conditions in soil thus includes the following steps:

- Formation of the major metabolit BCS-CQ88719 (M24) (1)
- (2)Formation of non-extractable residues and
- alization (formation of CO2).

² Maximum water holding capacity

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

High amounts of non-extractable residues were found which reached their maximum values after $\frac{1}{4}$ or 21 days of incubation (max. 67.0% of AR). Then, the amounts slowly declined towards the end of the study.

Experiments with sterilized soil samples showed no mineralization (< 0.1%) over eight days. Despite that, the same general metabolite pattern was observed in the sterilized as in the oon-sterilised samples, and also significant amounts of bound residues were formed in the sterilized samples. The formation of metabolites and of bound residues was considerably slower, however, upder storile conditions.

Considering that the sterilized soil samples serie not entirely sperile (as was shown by the determination of germ total), these results may indicate that the metabolism of tenhexamid, and in particular the formation of bound residues, are partly abiour processes. Which are however enhanced by the activity of soil microorganisms.

- A. Materials
- 1. Test Material: [cyclohexyl-1-4C]KBR 2738

cyclohexyl-1-C]KBR 2738 Specific radioactivity: 4.64 MBq/ng Radiochemical purity Chemical purity: > 99% Sample D: KATH 6639 Soil samples as characterised in Fable OI.1-Kwere collected freshly from the field. the set of 2. Soil: Few days before start of the test the air dried softs were sieved through a 2 mm

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Table 7.1.1-1:	Characteristics	of test soils
----------------	------------------------	---------------

a u				
Soil	,			
)		
Geographic Location	/ NRW /	/	/ NRW	
(City / State / Country)	Germany	NRW / Germany	/ Germany	NRW / Germany
GPS coordinates				
Pesticide use history		No pesticide use f	or previous 5 years	
Collection procedures	Samp	le taken with shove	and transport in plast	ic bag
Sampling depth			20 cm 🗸 🖓 🔪	
Storage conditions	l.	• Rooph te	mperature o	
Storage length	Å	-5 days after sieving	before pre-incubatio	n a
Soil preparation	4	Sieved	2 (2 mm)	
Texture Class (USDA)	Loamy sand	Sift Joam	A Loana	Cay loan
Sand [50 µm - 2 mm] (%)	81 2	23	A 37 A	× 33
Silt [2 µm - 50 µm] (%)	DO (S)	<u></u> ≪ 60 × ≪	^س 42 ک	5 3 6
Clay [< 2 μm] (%)		NY W NO	<u>مَ</u> 21 مَ	\$ ³¹
pH in Water	Q 6.5	≥6.8 ≥	S & S	° 7.5
pH in CaCl ₂ (0.01 M)		\$ 6.5 °	× × ×	× 7.4
pH in KCl (1 M)	ç x x x x x x x x x x x x x x x x x x x	6.3	s 5.4 ^O	o [™] 7.1
Organic Matter ^A (%)	<u>لار 3.3 کې</u>	K A1 K	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	7.8
Organic Carbon (%)		2.4		4.5
CEC (meq/100 g)	<u>, 9.3</u> <u>s</u>	j ^y 13.4 y	₩0.1	20.6
MWHC (g/100 g)	y ^y 30.7	<u>64</u>	<u>62.5</u>	85.5
Moisture at $1/3$ bar = 2.5		S not re	eported 🗇	
(g H ₂ O /100 g dry soft)	$\sim \sqrt{2}$	<u></u>	<u> </u>	
Microbial biomass (mg Commass/10	No g dry vital soil)			
Initial (Day 0)	©"613 (¢ [™] 0°	× 985 ×	873	2892
Final, Day 120 (-/+) 🔗 👘		<u>440/558 ○</u>	400/671	1697/1892
Microbial biomass (mg C _{biomass} /10	Okg dry sterilized or		Юў М	
Day 3 without solvent application;	Ž03	0 ^{5 ×} 259 × 0	323	481

CEC: Cation exchange capacity; MWHC: Maximum Water Holding Capacity; n.d.: not determined; (-/+) with or without solvent application

Stud@design B.

Experimental conditions: Four soils were incubated in the dark at 20°C (±1°C) with 1. [cyclohexy-1-¹⁴C]KBR $\sqrt[37]{38}$ for 120 days in maximum. The soils received a nominal test concentration $\sqrt[6]{2.7}$ mg/kg soft corresponding to a field rate of 1000 g/ha (assuming incorporation into the top 2.5 coord of soil and bulk density of 1.5 g/mL). The test substance was dissolved in an acetone water mixture before a volume of 2 mL was applied dropwise to 100 g of each soil using an adjustable pipette No exporation procedure was performed. The application solution was prepared using water acetom $(6/1 \sqrt{v})$. The effect of the solvent on the microbial activity was investigated by the determination of microbial activity in biomass samples with solvent application. Soil moisture was adjusted to 55% MWHC and samples of 100 g dry weight of soil were filled into Erlenmeyer incubation flasks. The static test systems were completed by attachment with traps (soda lime and polyurethane foam) for the collection of ¹⁴C-carbon dioxide and other volatiles.

Sampling: Duplicate samples were collected after 0, 0.1, 1, 3, 7, 14, 30, 44, 63, 90 and 120 2. days of incubation. The complete samples were immediately processed, by extraction and concentration. The extracts were analysed by HPLC. Two-dimensional TLC analysis confirmed the results of the HPLC measurements for the test item fenhexamid and metabolites BCS-CQ\$8719(M24) and CQ88720 (M20) as well as the detection of numerous minor transformation products which were not identified due to their low amounts of AR.

Analytical procedures: The entire soil sample in each tesevessel was processed by a stepwise 3. extraction procedure. After separation by centrifugation the softwas extracted four times successively with aqueous acetonitrile (80:20, v/v) by shaking at ambient temperature for 30 min followed by centrifugation. Microwave extraction (1000 W, 10 min) with aqueous aceton Wrile (\$0:20 V) was performed on the residual soil at enhanced temperature (70°C) twice. The ambient expracts were combined and analyzed for volume and radioactivity. The same was done for the extracts obtained from microwave extraction ("microwave" of "aggressive extracts").

Ambient extracts were concentrated prior to HPLC-analysis when necessary The Begressive extracts were concentrated at each sampling interval. Following quarmation of rationactivity in each extract by LSC, analysis of extracts was performed by reversed-phase HOLC and ¹⁴C-flow-through detection techniques as the primary analytical method. Extracts from representative samples were re-analysed by normal phase TLC followed by "C-detection with a Fuji BAS 2000 bio-imaging system as confirmatory method.

The determination @non-extractable residues (NER) was performed by combustion/LSC of aliquots

of the air-dried extracted Soil.

The LOD was in the range of 0.1% of AR Based on a LOD of 0.1% of the applied radioactivity (for the sum of all extraors) the unit of quantification (LOQ) is estimated to be about 0.3% of AR (3 times x LOD = 0.3%).

II. Results and Discussion

Data: The results of aerobic biotransformation of [cyclohexyl-1-¹⁴C]KBR 2738 and in four European soils are summarized in Tables 7.1.1-2 to 7.1.1-5. A.

Table 7.1.1-2:	Degradation of [cyclohexyl-1- ¹⁴ C]KBR	2738 in	loamy	sand	soi
	aerobic conditions	L		Õ¥	

			-~			a.Y		- L			~~Q	ò	* 🗸
Compound	Replicate		Re	sidues	(% AR	pon th	e folloy	ving day	s after	trætme	nt (ØA	T),	
	No	0	0.1	1	3	7 🔊	14 🔊	21 🔬	30	چ 44 گ	63 🔬	§90 🐇	A20
	(A)	95.7	63.3	12.4	à3	Ø	24	2.5	2,0	125	1.6	2.2	2.6
Fenhexamid	(B)	97.1	62.3	12.8	3.6	2.7	Q.2	2.0	Q6	1.7	24	237	2,5°
	Mean	96.4	62.8	12.6	3.5%	2.7 🔦	2.3	2.2 🛓	1.8	\$1.7	1.6	\$2.3	Z.6
BCS-CQ88719	(A)	0.5	5.7	8.8	5.5%	32.7	2.3	1.9	1.5~	1.2	1.1%	1.3	¥ 1.7
	(B)	0.3	5.9	8.8	& 6 <u>.</u> 0	2 B	24	J.P	1,%	10	1.	1.60	1.6
	Mean	0.4	5.8	¥∕8.8 ∮	5.8	~~ 8.7	~Q2.4	A.9	\$? \$	Ĩ.	Ľ	1.4	1.6
CQ88720	(A)	0.4	2.7	5.0 0	3.8	2.5	1.5	1.4	§1.2	s <u>≫</u> 0.9	A.2	L 1 .5	1.5
	(B)	0.3	25	50	37	2.4	1.9~	1.3 C		1.4	<u>) 1.0 %</u>	1.6	1.5
	Mean	0.3	$Q^{2.6}$	≪5 ^{,50}	<i>6</i> 68	2057	1 J	144	1.2	1,20	1,1	1.6	1.5
RT 14	(A)		> 0.8	$\mathbb{Y}^{1.9}$	1.0	°Ø.5	AQ.5		0.6	09	6	0.3	0.7
	(D) Mean		1.8	2.1	1.2	0.0	0.4	0.4	¥0.0 706 %		0.7	0.3	0.7
PT 17		×I MO		2.07	000	10	0.5	1 1	0.0 %			0.3	2.0
KI I/	(B)	<000	$ $	2.9	489	and a state		1.r	0.0	0.7	1.0	1.4	1.5
	Mean 🖇		0.8	2.8	$\bigcirc_{0.8}$	01.2	≈.0.9	0.9	¢ 0.9	°~0.9	1.0	1.6	1.7
RT 21	(A)	<l00< td=""><td></td><td>0.80/</td><td>1.1</td><td>1.0.*</td><td>1.2</td><td>0.6</td><td>0.5</td><td>1.5</td><td>1.3</td><td>1.6</td><td>1.6</td></l00<>		0.80/	1.1	1.0.*	1.2	0.6	0.5	1.5	1.3	1.6	1.6
	(B)	<µQQ	. 65	10	1.2	0.8	0.8	0.8	1.1	1.2	1.1	1.7	1.8
	Mean	0	A.5	×9.9	` M	°1.0	10	0.7%	Q.S.	1.3	1.2	1.6	1.7
RT 36	(A)	n.d.	≥×1.0 &	, 2.5	2.5	\$3.1	3.0	£C2.5	Q15	2.2	2.4	2.9	2.2
	(B)	n.d	1.30	2.6	2.8	J [°] 2.9 (2.5	2.6	2.3	2.2	2.3	2.7	2.2
	Mean	Ŵ	1.1	2.5	2.7	3.0~	🕈 2.7 🤇	2.6	2.4	2.2	2.3	2.8	2.2
RT 38) (A)	"n.d.	× 0.9	24	٥.	2.10	2¢,	2.6	2.2	2.2	2.7	2.6	1.6
	(B)	n.d. a	1.5	2.3	2.3	Q.5	~(2%) × 10 0		2.4	2.2	2.7	1.7	1.8
DT 40	Mean		0.56	2.4	× 2.4 (2.3	~ 2.3	©2.4	2.3	2.2	2.7	2.1	1./
KT 40		n.a.	0.% ()	2.0°	4.1	4.K	2.9	× 3.2 3.6	3.3	3.5	3.0	1.3	1.0
	Maan	11.d.		\$25	100	43	7.4 A	3.0	3.9	3.0	2.9	1.1	1.2
RT 42	(Å)	and a	04	0^{-18}	$\sqrt{27}$	\$30	3 4	2.2	2.6	3.2	2.9	0.7	0.4
KI 42		n.d.O	0.%	150	2.6	2.6	3.6	2.4	1.7	2.2	2.5	0.5	0.4
	Mean	<u> </u>	0.6	1.6	2.0	2.80	3.5	2.3	2.2	2.7	2.4	0.6	0.4
Unidentified A	(A)	0.6	\$.2	42.4	§ 149.8	129	14.1	13.1	12.6	11.0	11.6	10.5	9.5
radioactivity	(B) (ð 0.5 g	[≫] 3.2	Ø12.2	X3.2 ·	13.7	14.3	13.1	12.8	12.7	10.3	10.4	9.4
Ŵ	Mean	0.5	₹ 3,2	12.3	š 14.0	13.3	14.2	13.1	12.7	11.9	11.0	10.4	9.5
Total	(A)	97.2	8001	53@/	42 1	36.8	34.2	31.5	29.8	29.2	28.6	26.2	24.8
extractable	(B) -	28:2	8¥.1	540	457	37.6	35.0	31.5	30.0	29.4	27.1	25.6	24.6
residues	Mean	97.7	80.6	ک کرچ	41.9	37.2	34.6	31.5	29.9	29.3	27.8	25.9	24.7
¹⁴ CO	(A)	n.a.	< 0.4	0.9 🔍) <u>3.4</u> 7 <u>3</u> 4	5.9	/.8	8.9	10.5	12.2	14.2	16.6	19.6
CO ₂	Mean V	11.4	~0.45U	0.9	3.4	5.5	7.3	8.9	10.3	12.0	13.7	16.9	19.7
Volatile				$\overline{\mathcal{A}}$	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1
organics	(AB)	0 n.a. 6	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
	Mean A												
Not-	\mathcal{A} (A)		20.1	44.1	52.9	55.8	58.5	56.7	55.1	57.3	55.8	52.0	52.0
extractable	(B)	2.8	20.3	43.6	53.1	54.1	55.8	56.7	56.0	54.9	56.9	53.4	52.3
residue	Mean	2.9	20.2	43.8	53.0	55.0	57.2	56.7	55.5	56.1	56.3	52.7	52.2
Total % 冷	(A)	100.1	100.2	97.9	98.4	98.5	100.5	97.1	95.5	98.7	98.6	94.8	96.4
recovery 🖱	(B)	101.1	101.4	98.5	98.2	97.1	98.3	97.1	96.3	96.3	97.7	96.2	96.6
	Mean	100.6	100.8	98.2	98.3	97.8	99.4	97.1	95.9	97.5	98.1	95.5	96.5

n.d. : not detected, n.a. : not analyzed, DAT : days after treatment

													Ŷ	ð
T 11 7110	р I.			1 1 14		D 4730	• •1/1		•1			\$	ř. ô	
Table 7.1.1-3	: Degradat	tion of [cyclohe	xyl-1- ^{r-}	CIKB	R 2738	in silt l	loam so	011				under	
	aerobic c	onattion	15							à		4	. 4	_
Compound	Replicate		Re	esidues	(% AR) on th	e follow	ving day	ys after	treatme	nt (DO	ř) ő	y o	D
	No	0	0.1	1	3	7	Ĝ2	21	30	44	63	90	120	<i>a</i> _n
	(A)	96.5	68.9	17.6	3.5	3.0	2.4	1.7 🖌	Q. 1.6	1.5	Ø 1.4	\$2.0	×1.4	Š
Fenhexamid	(B)	96.6	68.6	19.3	3.7	2.9	2.4	1.6°	2.0	1.6	1.4.Q	1.5	₹ 2.2 K	P
	Mean	96.5	68.7	18.4	3.6	2.9	2.4	-Q	1.8	45	1,4	1.Ŵ	1,&	
BCS-CQ88719	(A)	0.5	4.1	7.7	5.4	03.5	2.6 #	1.6	@1.4	\mathcal{Q}_{0}	0.9	<i>@</i> 9.9	Ø,1	
	(B)	0.4	4.0	7.6	5.5	3.4	2.4	≥ 1.5 °≈	1.8	0.9	0.9	(0.9 4	Q×1.2	
CO22720	Mean	0.4	4.0	7.6	\$4	3.60) 67 A	2.50	1.6	1.6		0.9	0.9 ≈	1.1	
CQ88720	(A) (B)	0.3	1.5	4.2 4.0 a	3.3	× <u>90</u>	a.3		Q2	0.7	000 Á	1.0	0.9 \$	
	Mean	0.4	1.4	4.1	3.2%	2.0 ~	1.3	0.9	1.0	\$0.7	0.6	Q0.9	C0 .9	
RT 14	(A)	0.1	1.0	1486	1.1	0.9	0.50	0.5	0.4	0.5	0.4	0.3	¥ 0.4	
	(B)	0.1	1.1	Ø.0	<u>¢12</u>	0.9	0.5%	0.5	0.5	057	0.5	0.30	0.6	
DT 17	Mean	0.1	1.1	≫1.9 ¢	1.2 07 ×	Q0.9	~(0%.5 6 / 0 0 / 0					0.3	0.5	
KI 17	(A) (B)	<l0q <l00< td=""><td>1.0</td><td>2.7</td><td>0.9</td><td>0.9</td><td>0.7.</td><td>¥ 0.5 C</td><td>0.6</td><td>0.4</td><td>0.5 %</td><td>0.6</td><td>1.0</td><td></td></l00<></l0q 	1.0	2.7	0.9	0.9	0.7.	¥ 0.5 C	0.6	0.4	0.5 %	0.6	1.0	
	Mean	202	1.0	<u>_</u> 2.8	<u>A</u> S	1,00	0,00	0.5	0.6	0.5	0,5	0.6	1.0	
RT 21	(A)	n.d. 🔊	≫0.3 °	1.2	1.2	@ .6	1.0	<i>ø</i> s	0.5	ÛĞ,	0.5/	0.5	0.9	
	(B)	n.d.🗶	0.3	0.8	× 1.2	1.2	<u>0.7</u>	0.7	GO .8	0.5	0.5	0.6	0.7	
DT 26	Mean	Ôŋ	0.3	1.0	1.2	1.4 (0.8	[°] 0.6	¥ 0.6 %	°≪ 0.5	0.5	0.6	0.8	
KT 36	(A) (B)	∿n.e.	0.5	14	1.87 2.90	2,0 #\$	2.0 \ 18	1.\${\style{2}}	1.4	1.2	1.4	1.1	1.3	
	Mean 🐇	11.u.	0.5	Q 1.5	$O_{1.8}$	01.9	° 9 .9	¥.5	¢ 1.3	$\sim 2^{10}$	1.2	1.2	1.0	
RT 38	(A)	n.d.	0.4	1.10	1.5	1.6 🛠	∫_1.7	© _{1.4 (}	[™] 1.3	£1.0	1.1	1.2	0.8	
	(B)	ncd.	65 ^y	40	1.4	1.50	1.50	1.2	1.1	1.1	1.1	1.0	0.6	
DT 40	Mcaji		<i>≈</i> 9.4	×4/3	~5	\$1.6	1.00		120	1.1	1.1	1.1	0.7	
RT 40		<u>n.d.</u>	¥0.4 (g	1.2	¥1.6	16	1.1	\$1 6	1.0	1.6	1.6	0.9	0.4	
	Mean	11.u_	0.5	1.3	1.69	1.7 C	1.6	1.9	1.0	1.6	1.8	0.8	0.3	
RT 42 0) (A)	" n.d.	"ĥd.	× 0 9	2	1.50	0,8,	1.6	1.7	1.3	1.5	0.4	n.d.	
	(B)	n.d. 😞	n.d.	00.8	1.3	1.6	~05	A V	0.9	1.3	1.3	0.4	n.d.	
	Mean			≈ 0.9		D ^v 1.5	× 0.8	Q1.6	1.3	1.3	1.4	0.4		
radioactivity	(A)	07% 6¥		6.6 V	9.6	6.5	6.3	7 0	6.0	6.2 5.6	5.5 5.5	4./	4./	
Tudiouetivity	Mean	0.5	Q.2	\$6.1	19 <u>9</u>	6.5	6.5	6.9	6.0	5.9	5.5	4.9	4.4	
Total	(Å) 🔏	Q, 98.0 *	79.4	0°46.9 °	√30.6	£75.2	\$1.0	19.3	17.5	16.0	15.3	13.7	12.9	
extractable	(B)O	° 97.90	79.2	47.2C	30.6	24.6	©20.1	18.5	17.2	15.6	15.4	13.2	12.1	
residues	≫ Mean ♥	20	70,3	47.0%	30,6	24.	20.6	18.9	17.3	15.8	15.4	13.4	12.5	
¹⁴ CO	(A) (B)	₩a.	~~0.1 ~~0.1			609 V 1	9.2	10.4	12.0	13.9	15.8	18.5	20.9	
	Mean 🗞			1.1	4.3	7.0	9.3	10.6	12.2	14.0	15.9	18.6	20.9	
Volatile	(A)	n⁄a.	<0,1,7	<00	<0.4	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
organkes	(B)*	AQA.	°×9.1	xQũ ľ	20) ·	< 0.1	<0.1	< 0.1	< 0.1	0.1	0.1	< 0.1	<0.1	1
	Mean	"U"				(5.0	65.0	65.5	<i>(</i>) -	0.1	0.1			1
Not- extractable	$\langle (\mathbf{R}) \rangle$	$\frac{4.3}{42}$	20.4	5 47.0 (47.1)°61.5 ∑60.4	62.0	67.0	65.3	63.5	62.6	63.7 65.4	63.6	59.6 61.9	1
residue A	Mean		21.0	410	61.0	63.1	66.8	65.9	63.8	63.6	64.6	63.9	60.7	
Total %		₽ 02.3	\$99.8	95.0	96.4	94.1	97.3	95.0	93.1	92.5	94.9	95.8	93.4	
recovery	(B)	102.1 C	100.8	95.3	95.2	95.9	96.1	95.9	93.5	94.4	96.9	96.2	94.9	1
	Mean 🔬	102	100.3	95.2	95.8	95.0	96.7	95.4	93.3	93.4	95.9	96.0	94.2	1

n.d.: not detected; n.a not analyzed; DAT: days after treatment

Table 7.1.1-4	: Degradat	tion of	[cycloh	exyl-1-	¹⁴ C]KI	BR 273	8 in lo	oam soi	il		u	nder a	erobic	~
	condition	IS										\$	Ş,	Ş
			D	• 1	(0/ 4.0	ь <u>а</u>	0.11	• 1	0				<u>× 16</u>	Ĩ
Compound	Replicate		K	esidues	(% AK	() on th	e follow	ving day	ys after	treatme	nt (DA			-
	No	0	0.1	1	3	7	14	21	30	44 44	63	90	¥20	
	(A)	89.9	46.4	9.8	4.3	2.9	3.2	2.1	2.3	1.7	1,70	2.7 <i>©</i>	3.4	2
Fenhexamid	(B)	89.0	45.8	10.1	4.3	3.2	<u>C3.1</u>	2.1	L.T	1.8	1.5	2.71	1.87	a
	Mean	89.4	46.1	9.9	4.3	3.1	¥ ^{3.2}	2.1	2.0	1.7	Q.6	Q .7	× 7.6	Ś
BCS-CQ88719	(A)	0.9	4.6	4.8	3.4	2.5	1.9	1.3 C	<u>▼ 1.2</u>	1.1	0.9	1.4	<u>1.7</u>	Р.
	Mean	0.8	4.6	4.0	3.5	A.4	1.9		1.2 A2	1.0	0.8 s	1.40		1
CQ88720	(A)	0.4	2.2	3.4	3.1	0 [°] 2.2	1.8 /	1.3	Ø1.5	\$.0	Q.0	<i>C</i> .1	@.4	1
	(B)	0.4	2.2	3.5	2.8	2.0	1.8	≥ 1.5 °	1.4	<u> </u>	1.0	€ <u>2.4</u>	Q*1.4	
DT 14	Mean	0.4	2.2	3.5	% 0	2.90	1,80°	1.4~	1.4	1.1	1.0 *	2.2 ~	1.9	-
KI 14	(A) (B)	0.2	2.4	2.9	₹.6 1.6	0.9	0 1.0	200.6	9.6	0.8	<u>010</u>	10 <u>20</u>	0.9°	
	Mean	0.3	2.3	2.7	1.6%	0.9	1.0	0.6	0.7	\$0.8	0.6	\$0 .7	6.8]
RT 17	(A)	0.1	1.1	2.9	1.0	13	1.2	0.6	0.5~	0.4	0.5	0.7	1.1	
	(B) Mean	0.1	1.1		6,0 <u>9</u>			0.6	0%0/ 6.k	0679 65	0,5	0.90	0.7	-
RT 21	(A)	0.1	0.5	0.7°	¥ 1.1 ×	аси.5 У 0.8	11	$\sqrt{0.8}$	0.5	~ 0.7	S0.6	0.0 199	1.1	•
	(B)	0.4	0.Q	0,4	1.0	0.8	0.9	0.7 C	0.7	۾ 0.5	0.8 %	0.9	0.6	1
	Mean	0.4	$\mathcal{Q}^{0.4}$	_% 0.6	40	908	1,00	0.7	0.6	0.60	0,7	0.9	0.9	
RT 36	(A) (B)	n.d. 🛛	1.4	2.1	2.4	"Ø".7 24	26	<u> </u>	2.1	29	69	2.4	1.9	-
	Mean	11. u . «	1.5	2.4	2.4	2.5	2.2 2.4	2.1	2.2 %	2.2	2.1 2.0	2.8	2.3	
RT 38	(A)	vn d.	1.4	<i>t</i> âji î	20	2,8,	2,2, \	2.4	2.6	1.9%	2.1	1.7	1.5	1
	(B)	n.d.	1.4	2.3	4 3 .9	<u>QŽ</u>	ð*	2.4	2.6		1.9	1.9	2.3	
DT 40	Mean X		1.4	2.3	©2.6	02.5	×2.1	$\bigcirc^{\mathbb{Z}.4}_{4.0}$	© 2.6	× 9	2.0	1.8	1.9	-
K1 40	(B)	n.d n(d.	23	2.40	2.9	4.1	<u>3.2</u>	3.5	2.9	2.0	2.2	1.1	2.6	
	Mean	Ň	2 .0	×2.7	~3~2	°Â.≯	3.90	3	22	2.7	2.6	1.3	1.6]
RT 42		n.d.	¥1.1 ≬	2.8	2.6	2.2	2.8	<u>2.6</u>	sQj₿	1.9	2.0	1.8	0.5	1
	(B) Mean	n.d	1.40	2. Kg	2.5	2.5	2.3	2.7	2.0	2.2	2.0	1.2	2.6	-
Unidentified Ø	(A)	<u> </u>	1.2	44.4	124.8	14.0	12.5 @	142	12.9	14.1	13.0	8.8	8.2	•
radioactivity	(B)	a, 0.7 a	6.0	Q14.3	15.0	d3.8	~ (A.3	14,0	14.0	13.7	12.5	8.5	8.2	1
<u> </u>	Mean	0.8 0	6.5	14.4	\14.9	Q14.0	×13.5	Q 4.1	13.4	13.9	12.8	8.6	8.2	
Total	(A) (B)	92.7% 91%	69%) 69%)	476¥ 379	40.0 3	37.8	33.4	32.0	30.5	28.6	27.3	24.5	23.4	-
residues	Mean	92.2	\$9.4	47.8	×40.1	36.5	366	31.7	30.2	28.5	26.6	24.9	23.9	
	(Å)	Q, n.a. 🔬	× <0.1	0 1.3	≫3.8	\$5.8	Å .4	8.4	9.8	11.3	13.4	16.3	18.7	
¹⁴ CO ₂		n.aO	<0,1	1,2 0	3.6	5.4	7.3	8.3	9.4	11.2	13.5	16.0	17.9	
Volatile	✓ Mean -	N		10°		5.60×	/.5	8.3	9.6	<0.1	13.5	16.1	18.3	-
organics	(B)	n.a.	<0.1	Ø×0.1	×0.1	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
	Mean 🕎		Ý	Â	× ~	0.1								
Not-	(A)	8:8	303	450	52.8	53.1	57.5	55.4	55.5	55.2	54.2	54.2	51.5	4
extractable	(B) ⁻ Mean	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	039.5 0304	40.8		50.0 54.8	56.7	55.0 55.2	55.2	55.6 55.4	55.2	53.4 53.8	51.9	1
Total %	(A)	101.5	100.0	94.1	بر ایر 96.6	96.4	98.3	95.7	95.8	95.1	94.9	95.0	93.5	1
recovery	(B) A	1000	9955	95.9	[♥] 95.7	97.7	97.0	94.8	94.2	95.4	95.6	94.8	94.3	1
Â	Mean	1.0.2	99.8	24.0	96.1	97.1	97.6	95.3	95.0	95.2	95.3	94.9	93.9	

n.d.: not defected; a a.: nor analyzer; DAT: days after treatment

Table 7.1.1-5	Degradati	ion of [cyclohe	xyl-1- ¹	⁴ C]KB	R 2738	3 in cla	y loam	soil		u	inder a	erobic	Ô
	conditions	,										Ô	Y O	p ²
Compound	Replicate		Re	esidues	(% AR	() on th	e follow	ving day	ys after	treatme	nt (DA	T) K		
	No	0	0.1	1	3	7	14	21	30 ,	44	63	\$90 ⊲	A 120 a	
	(A)	98.0	82.3	41.5	4.2	2.4	1.8	1.4	1:46	1.3	1%	0.9%	0.86	ľ
Fenhexamid	(B)	98.0	81.0	41.2	4.3	2.4	<u>(</u> 3 .9	1.5	ÅA Ø	1.5	<i>10</i> ″	A.2	68	a)
PCS C089710	Mean	98.0	81.6	41.4	4.2	2.4 *	∛ ≉1.9	1.5	©1.5	1.4	0.2	0:0	A 9.8	Š
((M24) (M24)	(A)	0.2	1.3	3.6	4.4	2.9	2.0	1.6 ⁰	[*] 1.9	1.1 %	0.7 Č	0.6 C	0.4	
	(B)	0.2	1.2	3.3	3.7	2.6	2.0	4Q6°	1.5	00	078	0.8	0,40	
CO89720	Mean	0.2	1.2	3.4	4.1	0°2./	2.0	1.6	@ ^{¥./}	A 0 5	0.8	20.7		
CQ88720	(A) (B)	n d	0.6	1.5	<u> </u>	1.1	1.0	0.7		0.5	0.4°	$0.3 \times 0.3 $	0.2	
	Mean	n.u.	0.6	1.8	<u>Ø</u> .3	. Øľ	Ø.9	0.1	0.0	0,5	0,4	0.3	0.2	
RT 14	(A)	0.1	0.8	2.1	1.3	0.7	0.5	<i>.</i> 09.4	0 .5	0.4	<u>ک</u> لا	1938	R3	
	(B)	0.1	1.1	1.9	1.5%	0.7	0.4	0.5	0.3	\$0.4	0.3	0.4	@0.3	
DT 17	Mean	0.1	0.9	20	1.4	0.7	0.50	0.4	0.4	0.4	0.3	0.3	▼ 0.3 0.2	
KII/	(A) (B)	<loq <loq< td=""><td>1.0</td><td>Q_{28}</td><td>×124</td><td></td><td>a 0″</td><td>0.0</td><td>0.8 6.6</td><td></td><td>0.4</td><td>0.40</td><td>0.3</td><td></td></loq<></loq 	1.0	Q_{28}	×124		a 0″	0.0	0.8 6.6		0.4	0.40	0.3	
	Mean	~LOQ	1.0	2.7	× 1.2	1.0	↓1.0 ×	0.6	×0.7	20.5		Q.4	0.2	
RT 21	(A)	n.d.	0.	1,5	2.9	2.8	1.0	ž 0.7 🦳	0.8	م 0.4 ^ل	0.3 %	0.5	0.3	
	(B)	n.d.	0.5	_ [3	30	200	1.0	0.7	0.6	0.3	0,4	0.5	0.3	
	Mean		0.4 v	1.6	2.9	B:6	1.0	<u>Q</u>	0.7	005	0.4	0.5	0.3	
RT 36	(A)	n.d.%	n.d.	0.5	× 0.8	0.7	0.9	0.7 <u>.</u>	\$9.3	$\mathcal{O}_{0.8}^{0.8}$	0.6	0.5	0.5	
	(B) Mean	n.a.	n.₫.¥	0.4		0.7%	0.9	0.7	0.7	$^{<0.6}$	0.7	0.1	0.7	
RT 38	(A)	n.d.	⊿\n.d.	0.4	AR 6	Ø.S	a G	.0.6	0.2	0.7	0.6	0.4	0.5	
	(B) 🛠) n.d. 🗸	» n.d. "	0.4	$\mathbb{O}_{0.5}$	0.6	× 9.6	Ø.5	Q 0.6	~ <u>0</u> 3	0.4	0.1	0.6	
	Mean 🔊	Ø		0.4	0.5	¥ 0.5 ≰	0.6 گ	$O_{0.5}$	0.5	0.4	0.5	0.2	0.6	
RT 40	(A)	n(d.	, KON	00	0.6	0.50	0.8	0.6	0.3	0.5	0.6	0.4	0.9	
	(B) ³	() .ď.	~\$¢.d.	*9.5	AQ 6	\$1.0°	0.460	0.9%		0.3	0.3	0.1	0.8	
PT 12		nde	v 🖗	0.4	>>0.0 ₽05 %	0.0	0.7	5	20,0	0.4	0.5	0.2	0.9	
KT 42	$(B) \otimes$	nsd.	n.d.	0.1	0.5	0.6	0.4	0.5	n.d.	0.7	0.5	0.2	0.5	
Ö	Mean	,	Q	2	19.5	0.0	04	0.5		0.6	0.5	0.2	0.5	
Unidentified	(A)	a) 0.8 a	≫1.5	02.3	4.8	4.7	~050	~3.J	3.5	3.3	3.1	3.0	2.7	
radioactivity	(B)	1.2	1.2	[≫] 3.4	<u> </u>	0 [×] 4.6	×3.8	O3 .5	3.4	3.1	3.1	3.6	2.8	
Total	Mean	1,0%		2.9	4.7	100	3.7	¥ 3.7	3.4	3.2	3.1	3.3	2.8	
extractable		9920 1 1 99 6	- 96 5	3≈4,5 5√1 4	23.8	174	13.7	11.6	10.5	9.7	8.7 8.5	7.6	7.4	
residues	Mean 4) 99.3 ×	87.1	Ø*57.3 °	23.3	Q17.7	3.5	11.6	10.6	9.4	8.6	7.6	7.5	·
	$\mathbb{Q}^{(A)}$	n.a.O	<0,1	1,7 C	7.6	P 11.8	©14.4	16.3	18.2	20.1	22.5	25.8	27.4	
$^{14}CO_2$	9 (B)	ALO.	~0,1	188	78	11.	14.6	16.3	18.5	20.7	22.7	25.7	27.4	
	Mean	0	\sim	41.8	Ø	108	14.5	16.3	18.4	20.4	22.6	25.7	27.4	
Volatile "	(A) (n.a.	~<0.1	ØK0.1	×0.1	<u>≈0.1</u>	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	
organics 🔊	(B) Mean	n.a.		<0.1 	¤ <∪.1√) ^{*<} 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1
Not-	(A)	ST.	°43.6	20.9	698	65.5	66.9	66.9	64.8	64.1	63.9	60.1	59.6	1
extractable	(<u>B</u>)	03.4	,Û14.2	35.3	8 .0	65.6	66.5	67.1	65.3	64.0	62.8	60.8	59.2	
residue	Mean	3.2	13.2	36.1	64.4	65.6	66.7	67.0	65.0	64.1	63.3	60.5	59.4	
Total %	(A)	102	1013	95.9	[♥] 95.2	95.3	95.0	94.9	93.5	94.0	95.1	93.6	94.4	
recovery	<u>≶ (B) ∛</u> Mess	1.02.9	100.7	244 2	95.6	94.8	94.5	95.1	94.5	93.8	94.0	94.0	94.3	
		2.3		שע.2 ד. 1	93.4	93.0	94.8	93.0	94.0	73.9	94.0	73.8	74.3	J

n.d.: not detected @i.a.: not analy@d; DAT: days after treatment

B. Mass balance: The total radioactive material balances showed a complete recovery to range from 92.5 -102.9% AR for the four soils investigated. The results are summarised in more retail in Table 7.1.1-6. Conclusively there were no signs for losses of radioactivity from sample work-up and processing.

Table 7 1 1-6.	Material balances	of radioactivity in	four European soils
1 able /.1.1-0:	Wrater fai Dalances	of radioactivity in	Tour may opean sons

			/// h	<i>.</i>		
Soil			A.			2
Total Recovery (% AR)	94.8 - 101.4	9 2 5 – 102.3	🍣 93 5 ° 10	15 29	93.5-402.9	
Mean	98.0	g 96.1 N	% % % % % % % % % % % % % % % % % % %	× vo	\$\$5.8 Q	
Rel. standard deviation	1.8	2.8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	/ <u>`</u> ```````````````````````````````````	3.0	
				AL Y	•	

C. Bound and extractable residues: Values of extractable radioactivity decreased with time accompanied by the formation of non-extractable residues as summarized in Table 7 1.4-7. Starting from a complete extractability by day zero 97.8% for the second s

and 99.3% for , 92.2% for Values decreased to 24.7% () after a maximup@ncubation period of 20 days.), 23.9% () and 0.5%12.5% (In turn values for non-extractable radioa of vity were low by day zero (2.9% for me, 4.3% for Pto increase to maximum amounts of 57,27, 66,8, 56.7 and 67.0% at 9.0% for and 3.2% for DAT-14 or DAT-21 in soils respectively. Towards the end of the study the and amounts of bound residues slowly decline to 52,2,60.7,51.7 and 59.4% of AR in soils and respectively.

In the parallel experiments with stallized soils (Co-60 gamma irradiation and treatment with HgCl₂) no mineralization was observed until DAT-8 (\$ 0.1%/PCO₂ when the microbially active samples had 5.6% to 17.8% ¹⁴CO₂ on DAT-7). However, in the sterificed soils both dimers and numerous minor metabolites were formed, though slower than in the microbially active samples. The same is true for the formation of non-extractable residues: After 8 days of incubation, the amounts of bound residues in the sterilized samples were 33.4, 45.2, and 32.9% of AR for soils and , respectively, i.e., considerably lower than the amounts of bound residues found in non-sterilized samples on DAT-7 (55.0, 63.1and 65.6% of AR respectively); for soil formation and degradation rate test vessels (54.8% of AR, DAT-7).

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Soil				
Extracted RA (%)	24.7 -97.8	12.5 - 98.0	23.9@ 92.2	7.5 - 99
Bound Residues (%)	2.9 - 57.2	4.3 - 66.8	9.0 - 56.7	O 3.2 67.0
Extraction Efficiency on DAT-0 (%)	97.8	98.0	92.2 ×	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

All values given as percentages of initially applied radioactivity.

D. Volatile radioactivity: The maximum amount of 14CO2 was 27.4% of AR at the end of the study (soil , DAT-120). In soils **sector and the** the maximum amounts of 14CO2 detected were 19.6, 20.9 and 18.3% of AR, respectively. No significant amounts of volatile organic compounds were detected in any soil (values being <0.2% at all sampling intervals).

E. Transformation of parent compound: There was observed the formation of a single major component identified as [C-C]-dimer of KBR 2738 BCS-C088719 (M24). The amounts of BCS-CQ88719 (M24) reached maximum values of 8.8, 7 %, 4.7 and 4.1% of AR after one or three days of incubation in soils **Example 19** and **Example 19** respectively. After a decrease until DAT 4/DAT-21, the amounts of BCS-CQ88719 (M24) in the extracts remained more or less stable until the end of the study. On DAT-120, BCS-CQ88719 (M24) decounted for 7, 1, 1, 1.4 and 0.4% of AR in soils **Example 1** and **Example 1** and

A second transformation product which was frequently detected was tentatively identified as the [C-O-C]-dimer CQ88720 (M20) via HPLC-co-chromatography. Maximum amounts of 5.0, 4.1, 3.5 and 2.3% of AR were detected after one or three days of incubation in soils **second and second according to their retention times (RT) and reached maximum amounts of 2.7% (RT14), 2.8% (RT17), 2.9% (RT21) 3.0% (RT36) 2.7% (RT38), 4.4% (RT40) and 3.5% (RT42) of AR. The profiles of identified compounds found in four soils tested are presented in Table 7.1.1-8.**

Compound Soil (% AR)	Maximum occurrence at day	Occurrence at study end (% AR)
[C-C-dimer of KBB 2738	1	1.7
BCS-CQ88719 (M24)	1	1.1
	1	1.4
	3	0.4
III. Conclusion		

Table 7.1.1-8 Occur of metabolites of cycloloxyl-1-10 |KBR 2738 in aerobic soil.

Ĉ

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Based on the study results the route of aerobic degradation of KBR 2738 in soil is characterised by the following major processes:

- Formation of the major metabolite BCS-CQ88719 (M24)
- Formation of non-extractable (bound) residues
- Mineralisation (formation of carbon dioxide)

Experiments with sterilized soil samples showed no mineralization (< 0,1%) over eight days. Despite that, the same general metabolite pattern was beeved in the stephized as in the non-sterified samples, and also significant amounts of bound residues were formed in the sterflized samples. The formation of metabolites and of bound residues was considerably sower, however, under sterile conditions.

Considering that the sterilized soil samples were not entirely sterile (as was shown by the determination of germ total), these results indicate that the metabolism of fenloxamid, and in particular the formation of bound fesidues, are partly abiotic processes, which are bowever enhanced by the activity of soil microorganisms, All degradation products observed were of transient nature which is indicated by the high amounts of QQ_2 .

of KBR 2738 in aerobic sojil is presented in A summary of the proposed metabolic pathway Figure 7.1.1-1.

minor transformation products + ¹⁴CO₂ + Non-extractable Residues

IIA 7.1.2 Anaerobic degradation

Due to the proposed use patterns (application as a fungicide in fruits and vegetables) it can be just fied that KBR 2738 will not be exposed to anaerobic conditions. Therefore, a study manaerobic degradation is considered not relevant.

However, an anaerobic soil degradation was conducted, but not summarized here.

Report:	KIIA 7.1.2 /01; 2008	Ø
Title:	[Phenyl-UL-14C] Fenhexamid: Anaerobic Soil Metabolism 🖉 🕉 🖉	1
Report No	MEKBL007-1	
Document No	M-367218-02-1	
Guidelines	- OECD Guidelines for Testing of Chemicals, Guideline 307, 2002	
Guidennes.	- US EPA Subdivision N, Section 162-2, Anaerobic soil metabolism, 1982 🛷	
11 4 7 2	Data of degradation in will (1) Job writer (tudio)	
11A 7.2	Kate of degradation in gon(s) a raboratory studies	

IIA 7.2

Call Call Rate of degradation in soil(s) laboratory studies **IIA 7.2.1**

An evaluation of the kinetics of degradation was performed separately for two studies on route and rate of degradation in aerobic soil under abor for conditions. The half-lives derived from evaluations serve for comparison with EUGrigger endpoints.

Report: KIIAO7.1.1 (01; 2011 Title: [cvolohexyl-1-14] Fenhaxamid (KBR 2738) Serobid Degradation/Metabolism in Four European Soils Report No & MEF 41/034 Mef 5995 01-1 Document No Mef 15995 01-1 Guideline 307, Actobic and Anaetobic Transformation in Soil, 2002 - Commission Directive 95/36/EC americang Directive 91/414/EEC (Annexes I and II. Pate and Behaviour in the Epwiron pent), 1995 Regularion (EC) No. (107/2009 GLP Yes Yes
Title: [cvolohexyl-1-14] Fenhexamid (KBR 2738) Aerobic Degradation/Metabolism in Four European Soils Report No & MEFA1/03 Document No MeFA1/03 Guidelines: OECLY Guideline 307, Actobic and Anacrobic Transformation in Soil, 2002 - Commission Directive 95/36/EC amending Directive 91/414/EEC (Annexes I and II fate and Behaviour in the Environment), 1995 GLP Yes
According Degradation/Metabolism in Four European Soils Report No & MEF-41/03 Document No Mef-41/03 Guidelines: OECE/ Guideline 397, Actobic and Anaerobic Transformation in Soil, 2002 - Commission Directive 95/36/EC amending Directive 91/414/EEC (Annexes I and II fate and Behaviour in the Environment), 1995 GLP Yes
Report No & MEF 41/03 Document No Mef 1599501-1 Guidelines: OECE/ Guideline 307, Actobic and Anacrobic Transformation in Soil, 2002 - Commission Directive 95/36/EC amending Directive 91/414/EEC (Annexes I and II fate and Behaviour in the Epwironment), 1995 GLP Yes
Document No Mei1599501-1 O O Guidelines: OECE/ Guideline 307, Actobic and Anaerobic Transformation in Soil, 2002 - Commission Directive 95/36/EC amending Directive 91/414/EEC (Annexes I and II fate and Behaviour in the Environment), 1995 GLP Yes
Guidelines: OECEY. Guideline 397, Actobic and Anaerobic Transformation in Soil, 2002 - Commission Directive 95/36/EC amending Directive 91/414/EEC (Annexes I and II, Pate and Behaviour in the Epwironment), 1995 - Regulation (EC) No. 1107/2009 GLP Yes
GLP Yes Y
II. Pate and Behaviour in the Environment), 1995 -Regulation (ÊC) No. 1107/2009 GLP Yes
Opened Opened Opened GLP Yes Yes
GLP Yes Yes G
Report: KIIA.7.2.1.01;
Title: W Kinetic Expluation of the Aerobic Metabolism of [Cyclohexyl-1-14C]Fenhexamid
(KBR 258) in Soil for Modelling and Trigger Purposes
Report No MEF 1/690 ~
Document No M-421881-64-1
Guidelines: Cuidance Document on Estimating Persistence and Degradation Kinetics from
The province of the FOCUS and
Work Group on Degradation Kinetics. EC Sanco/10058/2005 ver.2.0, 2006
GLP

Executive Summary

The aerobic degradation of [Cyclohexyl-1-¹⁴C]fenhexamid and its metabolite BCS-CQ88719 M24) was kinetically evaluated based on one laboratory study (1990) and 1990 maximum water holding capacity).

The evaluation followed the recommendations of the FOCUS working group on degradation kinetics (FOCUS, 2006) and can be considered as a basis for modeling and persistence endpoints.

For the parent compound fenhexamid the FOMC model was selected in all soils except (SFO) to estimate modelling (Table 7.2.1-1) and persistence (Table 3.2.1-2) endpoints. For B CQ88719 (M24) reliable conservative formation fractions were estimated.

Table 7.2.1-1: Optimised degradation parameters of fenhes mid for modelling endpoints and formation fractions (FF) of BCS-CQ88719 (M24).

Soil	Model k-rafesro MT50sto FE (M24)	
	FQMC 1.682 5 641) ^a 5 0.11	
	FOMQ 7 7 1250 0 50.56) 0 0.09	
	$1931 \sqrt{2} 0.36$	
	\$\$ \$\$ 0.05	
) ^a calculated from DT	90 of pi-phasic model/3.32 and a way of the	

Table 7.2.1-2: Optimused degradation parameters of fenbexamid for persistence endpoints.

Soil &		a 5 0750 %	DT90
	\cap \cap^{v} $\iota^{'0^{v}}$ $\iota^{'0^{v}}$		[days]
~	, FØM		1.37
×	Jo Prom		1.84
	FOM FOM	C , 0 0.08	1.19
	Y & O ^Y SFC) 炎 🔬 0.76	2.52
a Or		O ^y	

. I. Material and Methods

Details on the study conduct and its results are summarized under IIA 7.1.1/01. The degradation data for KBR 2738 and its metabolite BCS-CQ 8719 (M24), a [C-C] dimer of KBR 2738 were kinetically evaluated following FOCUS guidance with the software KinGUI, version 1.1.

The measured values were taken into account as reported and thus treated as individual replicates. All sets with their data points were weighted equally. The concentration at time zero was included in the parameter optimisation with the initial value being allowed to be estimated by the model.

For all revidues used in the kinetic evaluation, the following procedure was applied. The parent value at time 0 was set to the value of the total mass balance at this time point. The metabolite value at the same time point was set to "0". This procedure assumes that at time 0 no dissipation of the parent substance occurs.

The kinetic evaluation took into account the models simple first order (SFO), first order multi compartment (FOMC, Gustafson-Holden), Hockey-stick (HS) and double first order in parallel

(DFOP). The parameters of the four models were estimated each by non-linear optimization to the measured data with KinGUI.

The identification of the appropriate kinetic model was based on visual assessment of fits and the chi²⁰ scaled-error (χ^2) to be a minimum. The visual inspection focused on a rather random distribution of residuals rather than to show a systematic distribution from the calculated curve. However, in case of small systematic deviations from the curve, fits could still be qualified as visually acceptable.

A single-sided T-test is used to identify the probability that a parameter is not significant that is equal or smaller than zero. Generally, this probability is the higher the more uncertain a parameter is. Let \vec{p} be the value of a parameter and s its standard deviation then its T-value is calculated as $T = \vec{p}$ s. Finally the probability of this T (t-prob) is obtained from the Student's t-distribution where the degrees of freedom are defined as the number of measurements minus the numbers of model parameter. Normally, a probability t-prob of 0.05 is considered as sufficiently small. A prob up to 0.4 is deemed acceptable if it can be justified by the fit or weight of evidence from other data. The degredation parameters are required to be significant for model ling purposes

Other than for the parent, it will be often neither feastble nor meaningful to diffeontiate between SFO and the bi-phasic models for metabolites because the number of free parameters for such systems assuming SFO is already at its limit. The use of bi-phasic models easily doubles the number of free parameters which results in more uncertain, i.e. non-significant parameters

In a first step the parent is fitted without considering the metabolite data to identify the appropriate parent model. In a second step the metabolite is added to the selected parent model and all parameter are optimized simultationally. If the metabolite can not be fitted adequately a decline fit is performed. The aerobic soil metabolism of fenhexamid can be characterised by the metabolic pathway shown in Figure 7.2.1-1.

Figure 7.2.1-1: Compartment model used for the kinetic analysis of [Cyclohexyl-1-14C] fenhexamid in aerobic soil systems.

II. Results and Discussion

Model selection for parent compound KBR 2738:

The best-fit models were selected according to visual assessment and lowest χ^2 error as it is summarized in Table 7.2.1-3. The fits from application of the SFO, FOM and DFOP model were significantly different with regard to the visual assessment as well as for the difference in class error with values being as high as approximately 20% for the SEO model for some soils.

and	. Т	The degradation	ion drates wer	re significant	(t-pro <0.	05) for all	cases
with the exception for	soil	· 🖉	F.	\sim 0	Ŷ,Ô		Ĩ
For soil	degradation w	as described	best by the	SFOmodel.	Only Or t	his modek	the t-

prob gave significant degradation rates.

Table 7.2.1-3: Chi2-error, visual assessment. (VA) and significance of degradation rate (t-prob) for fenhexamid in the soils studied by **and significance** of degradation rate (t-prob) for are given in bold for modelling endpoints and italic for persistence endpoints.

	- A A A A A A A A A A A A A A A A A A A	0 4			
Soil	Ą	⊘Modeb	Chi2 [%]	OVA O	Ût-proby ^b
		ゞ SFO	\$ 19. Q	0 ⁷ - 0° 4	S ^O < 0 €001
		FQMC «	7.2	^v . Q	<0.091/<0.001
		↓ \$FOP	° 🖤 9.3 🚿	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<i>گ</i> ي 0.002
		§ SFQ	در 19. <u>4</u> ∕	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<0.001
	, A a	FOMC	<i>©</i> ″,₿° %	, ,+ [×] , (S<0.001/<0.001
, C	, A L	DEOD C	× * * 8.2 O		< 0.001
p ^V		SFO 🛇	\$19.9	<u> </u>	< 0.001
, D	, 0 ⁷ , X 4	FOME	~~~ 6. 9	~ + ~	<0.001/<0.001
		DEOP	s 9.8 c	, *Š	0.003
- C	, O O	SFO S	ິ (Q12.0 🖉	@_+	<0.001
	νø.	FOMCY	¢™12.5	× +	0.231/0.248
	Wall a Wantah	, y O'	h1.	"0"	

)^a Visual assessment: + 200d, oracceptable, - not acceptable

)^b prob of k-rate for FO, of Apha/Beta for FOMC, and k-slow for DFP

Model selection for metabolitie [C-C biphenyl of KBR 2738 (BCS-CQ88719 (M24)): In Table 7.2.1-4 the results of the evaluation of the modelling and persistence endpoints of BCS-CQ88712(M24) are summarized. Novalid estimation was possible.

Table 7.2.1-4: Chi2-error visual assessment (VA) and significance of degradation rate (t-prob) for BCS-CQ88719 (M24) in the soils studied by (2011) modelled with decline fits. Kinetic evaluations accepted are given in bold for modelling endpoints and italic for persistence indpoints.

Soil Soil	Nodel	Chi2 [%]	VA) ^a	t-prob) ^b
	SFO (parent FOMC)	33.6	-	< 0.001
	SFO (parent FOMC)	29.0	-	< 0.001
	SFO (parent FOMC)	36.9	-	< 0.001
	SFO (parent SFO)	27.2	-	0.064

)^a Visual assessment: + good, o acceptable, - not acceptable

)^b t-prob of k-rate for SFO

Estimation of Formation Fractions

The degradation rate of the metabolite BCS-CQ88719 (M24) could not be evaluated appropriately. Therefore also the validity of the estimated values for the formation fraction (FF) from the fits is questionable, although the formation and maximum concentration of the metabolite was fitted very well and FF was determined with relatively small uncertainties standard deviations estimated of value).

A further degradation study is available in which BCS-CQ887 9 (M24) is applied directly to the same four soils as in the current study. The degradation rate could be conservatively evaluated with FOMC and DFOP.

In the following it is tested whether the substance parameter values (DT50 of parent and FE from current study and DT50 of BCS-CQ88 19 (M24)) result in a conservative teprecentation of the current degradation study. This would indicate that the leaching assessment based on these values will result in higher concentrations than expected from the studies and are therefore conservative.

For each of the four soils forward runs were performed with all parameters fixed to their estimated values. These parameters were fixed and briward runs calculated with Kingur for all four soils.

It is demonstrated that for each soil the measured concentrations are usually widely overpredicted during the study period of 120 days. The parameters used for risk assessment, including the formation fractions, hence conservatively describe the experimental concentrations. The usage of the formation fraction therefore appears justified.

111. Conclusion

Ô

Values for half-lives and DT96 were determined for the parent compound KBR 2738. The values are suitable for comparison with trigger endpoints within the environmental risk assessment in soil. The degradation of the parent fedrex and could be described best by bi-phasic kinetic model FOMC for the soils **Exercised and Fedrex** and **Fedrex**. Reliable formation fractions of the BCS-CQ88719 (M24), a [C,C]-dimer of KBR2738 could be estimated.

After selection of most appropriate kinetic models according to the results given in Tables 7.2.1-3 and 7.2.1-4 values for half-lives of degradation and their associated DT90-values were obtained as it is summarized for the parent compound KBR 273 s in Table 7.2.1-5.

Table 7.2.1-5: 🔎	Optimised	deg@dat	ion par	ameters o	f fenhexamid	for persistence	endpoints.
------------------	-----------	---------	---------	-----------	--------------	-----------------	------------

Soik Soik	~ç [©] Model	DT50 [days]	DT90 [days]
	FOMC	0.16	1.37
	FOMC	0.21	1.84
	FOMC	0.08	1.19
	SFO	0.76	2.52

Augenover and a second and a se DTs day All calculated half-lives for the parent fenhexamid were clearly below 1 day, even the DT₉₀ did_pnot attool the selection of the selection of

New kinetic evaluation of a former aerobic soil degradation study with the [phenyl-UL-¹⁴C] labeled fenhexamid was done to derive half-lives of fenhexamid for use as input parameters in environmental exposure assessments by modelling.

Report:	KIIA 7.2.1 /01;
Title:	Aerobic degradation and metabolism of KBR 2738 in soil
Report No &	PF4195 // MR 434/96
Document No	M-002410-02-1
Guidelines:	- US EPA Pesticide Assessment Guidelines, Subdivision N Chemistry. Environmental Fate, § 162-1 Aerobic Soil Metaborism Studies, 1982 - BBA, Guidelines for Official Teching of Plant Protectants, Par IV, 4-4, 1986
GLP	Yes v v v v v A v

Report:	KIIA 7.2.1 /02; 2012 2012 2012 2012
Title:	Kinetic Evaluation of the Aerobic Metabolism of phenyl-PL-14CF enhexamid
	(KBR 2738) in Soil for Modelling and Trigger Purposes 2
Report No &	MEF-11/689
Document No	M-422395-01-1
Guidelines:	"Guidance Document on Estimating Persistence and Degradation/Kinetics from
	Environmental Fate Studies on Pesticides in EU Registration" Report of the
	FQCUS Work Group on Degradation Kinetics, EC Document Reference
	Sanco/10058/2005 version 2.6, 2006
GLP	No (calculation)
A	

Executive Summary

The aerobic degradation of [phenyl-fk-14C] fenhexamid@was.kmetically evaluated based on one laborated study (frequencies, 1996) on four softs (20 °C, 40 % of maximum water holding capacity, for one soil (1996) 75% of 1/3 bar proisture).

The evaluation followed the recommendations of the FOCUS working group on degradation kinetics (FOCUS, 2006) and can be considered as a basis for modelling and persistence endpoints.

As kinetic function to estimate the modelling endpoint in all cases the SFO model was selected except (FOMC). As kinetic function to estimate the persistence endpoint in two cases the FOMC model (for and function) and in two cases the DFOP model (for and function)

was selected.

Table 7.2.1-6 Optimised degradation parameters of fenhexamid for modelling endpoints.

Soil Soil Soil	Model	k-ratesfo [1/days]	DT50sfo [days]
	SFO	2.023	0.34
	SFO	2.362	0.29
	FOMC	0.232	2.99) ^a
	SFO	1.555	0.45

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

)^a calculated from DT90 of FOMC model/3.32

Table 7.2.1-7: Optimised degradation parameters of fenhexamid for persistence endpoints.

			A.V	
Soil	Model	DT50	DT 90	
		[days]	[days]	Ô ^y Â ^y ,
	FOMC 🂦	0.12	' 1.37 🔬	
	DFOP 💎	0.27	0.96 🔘	
	FOMC	1.06	9.93 🔊	
	DFOP	0.41 Q 0°	1.63	
	e'0			

I. Material and Metho

Details on the study conduct and its results are summarized in the old dossier submitted in 1997. The degradation data for KBR 2738 were kinetically evaluated following FOCUS guidance with the software KinGUI, version 1.1. The measured values were taken into account as reported and this treated as individual replicates. All sets with their data points were weighted equally. The concentration at time zero was included in the

parameter optimisation with the mitial value being approved to be estimated by the model

For all residues used in the Kinetic evaluation, the following procedure was applied. The parent value at time 0 was set to the value of the total mass balance at this time point.

"Non-detects" (n.d.) at sampling intervals before of directly after the last detect were replaced by a concentration of 0.5 CLOQ ($LOQ \neq 0.2\%$ AR). All other sampling times without detectable amounts were not considered for the evaluation.

Sampling points at dates > 12 K days after application were excluded from evaluation. This is justified when taking into account that viability of soil microbes is known to suffer during prolonged storage of soils under aboratory conditions A A A

The kinetic evaluation took wito account the models sumple first order (SFO), first order multi compartment (FOMS, Gustafson-Holder), Hockey-stick (HS) and double first order in parallel (DFOP). The parameters of the four models were estimated each by non-linear optimization to the measured data with KinGUI.

The identification of the appropriate kinetic model was based on visual assessment of fits and the chi² scaled-error (χ^2) to be a minimum. The visual inspection focused on a rather random distribution of residuals rather than to show a systematic distribution from the calculated curve. However, in case of small systematic deviations from the curve, fits could still be qualified as visually acceptable.

A single-side T-test is used to identify the probability that a parameter is not significant, that is equal or smaller than zero. Generally, this probability is the higher the more uncertain a parameter is. Let p be the value of a parameter and s its standard deviation then its T-value is calculated as T = p / s. Finally the probability of this T (t-prob) is obtained from the Student's t-distribution where the degrees of theedone are defined as the number of measurements minus the numbers of model parameter. Normatly, a probability t-prob of 0.05 is considered as sufficiently small. A t-prob up to 0.1 is deemed acceptable if it can be justified by the fit or weight of evidence from other data. The degradation parameters are required to be significant for modelling purposes.

The aerobic soil metabolism of fenhexamid can be characterised by the metabolic pathway shown in Figure 7.2.1-2.

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

II. Results and Discussion

Model selection for [phenyl-UL-¹⁴C]fenhexamid: The best-fit models were selected according to visual assessment and lowest χ^2 error summarized in Table 7.2.1-8. and, For modelling endpoints the SFO kinetic model was taken for the solutions the FOMC finetic model was choosen the to the visual , only for the soil assessment. For persistent endpoints the kinetic model FOMC was related for the soils the Shetic model DFOP was evaluated and for the soils and Table 7.2.1-8: Chi2-error, visual assessment (VA) and significance of degradation rate (t-prob) for fenhexamid in the soils studic by 1996). Kinetic evaluations accepted are given in bold for modelling encounts and italic for persistence endpoints. Soil (Model) nrob SRO :0**7**8Ň1 'ØMC CH/<0.0Q1 0.004 0 004 <0.001 <0.001/0.046 A Contraction of the second se 0.025 0.025 < 0.001 <0.001/<0.001 0.005 DEM 0.017 < 0.001 < 0.001/0.014 0.062 0.073)ª Kyual assessment @ good, @acceptable, - not acceptable)^b t-prob of k-rate@r²SFO.of Alpha Beta foor OMQ and k-slow for OFOP and HS onclusion Values for half-lives and DT90 were determined for the parent compound KBR 2738. The values are

Values for half-lives and DT90 were determined for the parent compound KBR 2738. The values are suitable for comparison with trigger endpoints within the environmental risk assessment in soil. The degradation of the parent fenhexamid could be described best by bi-phasic kinetic model FOMC for the soils and the bi-phasic model DFOP for the bi-phasic model DFOP for the bi-phasic model DFOP for the bi-phasic mod

Table 7.2.1-5: Optimized degradation parameters of [phenyl-UL-14C] fenhexamid for persistence

Soil	Model	DT50 [days]	DT90 [days]
	FOMC	0.12	1.37
	DFOP	0.27	0.96
Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

which has a half life of 1.06 days all other calculated half-lives for the early below 1 day, even the DT_{90} did not exceed 10 days. Besides for soil parent fenhexamid were clearly below 1 day, even the DT₉₀ did not exceed 10 days.

IIA 7.2.2 Aerobic degradation of the active substance in soils at 10%

No particular study was performed to investigate the aerobic degradation of KBR 2798 in soil at the lower temperature of 10 °C under laboratory conditions. Degradation rates may be extrapolated to lower temperatures by an Arrhenius type approach For a conversion of DT 50 values determined at 20 °C to rates at 10 °C a multiplication factor of 2,58 may be used. This procedure follows aproposal described by the EFSA: Scientific Optimion of the Panel on Plant Protection Products and their Residues on a request from EFSA related to the default Q10 value used to describe the temperature effect on transformation rates of pestorides in soil. The EFSA Journal (200

Aerobic degradation of gelevant metabolites in soils at 20 **IIA 7.2.3**

Route of degradation studies performed with the [cyclohexane-1-14] fente xamid in aerobic soil (IIA 7.1.1/02) indicated [C-C]-biphenyl of fenhexamid@M246 to be significant mansformation product formed under laboratory conditions

The [C-C]-biphenye of ferhexamo, BCS CQ88719 (NP24) was observed at maximum values of 8.8%) by day and declined towards study end down to 1.7 % of AR. AR in soil The potential formation and a significant level in acobic soil thus triggers environmental risk assessments in soil, groundwater and sufface water.

For metabolite BCS-CQ887 (M24) the corresponding aboratory data on rate of degradation and their evaluations with regard to trigger evaluation and modelling input parameters is summarized in the following.

<i>Q</i> _n	
Report: 🛷	KIIA 7,2.3 /01,7
Title: 🕰	[Biphenyl-theory] [Biphenyl-th
, d'	Accobic Degradation in Cour European Soils
Report No &	₩EF-14/940 >> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Document No	M-422085-01- Q
Guidelines:	- OECD: Guideline 307, Aerobic and Anaerobic Transformation in Soil, 2002
GLP	Xes J J

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Executive Summary

The degradation [biphenyl-UL-14C]BCS-CQ88719 (M24) was investigated under aerobic conditions at 4 20 °C and a soil moisture of 55% of MWHC in four European soils by incobation in the Park for 120 days in maximum. The test substance was applied at a nominal test conceptration of 23 yug BCS-CQ88719 (M24)/kg soil, equivalent to a rate of 1000 g a.s. fenhexamid/ha in the field and a maximum occurrence of 8.8% AR in studies on route of degradation (2.5 cm depth, 1.5 g/cm³ bulk density). The applied radioactivity (AR) was completely recovered (91.7- 98/3% AR). After 120 days of incubation, non-extractable radioactivity ranged from 58.9–65.9% QR. Mineralisation was moderate to account for 5.2-7.4% AR as ¹⁴C-carbon dioxide by day 120. Cormation of other organic volatife components was insignificant ($\leq 0.1\%$ AR).

The biotransformation in soil resulted in the formation of a bunch of minor metabolites. To facilitate the analyses of the radio-chromatograms the chromatograms were roughly devided into three regions of which each reagion contains a bunch of metabolites. Non of those metabolites exceed the trigger of 5% of AR compared to the parent fenhexamid. Therefore these regions were not forther characterized.

The biotic character of degradation of BCS-CQ88719 (M24) in arobic Soil is indicated by the formation of non-extractable (bound) residues via minor metabolites and the formation of ¹⁴C-carbon dioxide to a moderate, but marked extent. \cap Investigations of the degradation behaviour of the [CC]-bipheny of fendexand (BCS-CQ88719 (M24)) in four aerobic sols resulted in half-lives of 1.18 to 22.74 days (geometric mean: 5.10 days) for best fits following KOCUS kinetic guidance.

I. Material and Methods

- Soil Samples as characterised in Pable 7.2.3-1 were collected freshly from the field. A 2.
- angle ID KML 9/20 Soil sample is characterised in Fable 72.3-1 were collected freshly from the field. . few days before sart of the test the air dried soils were sieved through a 2 mm sieve.

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Table 7.2.3-1:	Characteristics	of	test	soils
----------------	-----------------	----	------	-------

Soil	(
		()	S	
Geographic Location	NRW/ Germany	NRW	/ NRW	/ _
(City / State / Country)		Germany	Germany	NRW / Cormany
GPS coordinates				
		<u> </u>	Ű	
			× õ	D D S
Pesticide use history		No pesticide use	er previous 5 sears	
Collection procedures	Sampl	otaken with shovel	and Cansport in plas	ac bag Q
Sampling depth	C.	× ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	20 çm 0 0	
Storage conditions	Ő	Room te	nyperature	c 4
Storage length	4	-5 days after sieving	beforepre-incubation	n a l
Soil preparation		Sieved	(2.mm)	
Texture Class (USDA)	Sandy Ivam	Silt loan	Ĉ Loam	Clay koam
Sand [50 µm - 2 mm] (%)	Q1 (~	23 × ×	J & 33 Q	5 ⁵ 33
Silt [2 µm - 50 µm] (%)		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	్ల 50 ని క	©36
Clay [< 2 μm] (%)	$Q^{\gamma} 9$	¹⁷ 2 ⁷		s 31
pH in Water	0 . 59 6	\$ 6.4	Å Õ.2 _↓ Õ	× 7.2
pH in CaCl ₂ (0.01 M)	§ * * 8.7 "	6.2	× 6 4.9 °	0 7.1
pH in KCl (1 M)	<u>لارم 5.5 ک</u>	Ly 15-9 🔧	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.9
Organic Matter ^A (%)	0 3.2	3.1		9.7
Organic Carbon (%)	A <u>1.9</u>	1.8 V	×2.9	5.6
CEC (meq/100 g)	9.8		& 10. 0	22.0
MWHC (g/100 g)	م 47 <u>.</u> 1% م	\$2.0	© 60.°	81.6
Moisture at 1/3 bar SpF 2.5		NOT re	ported @	
(g H ₂ O /100 g dry (soil)	Ś 🤬 🚿			
Microbial biomass (mg Cbiomass ()	00 g do vitak soil)		- 	
Initial (Day 0) 🖉 🔗 🥙	رم 67 <u>5</u> م	× 2840 0	587 😴	2926
Final, Day 120 (-/+)	<u>k</u> 312,051 Ö	407/169	© 250/110	1999/2123

^A) \mathcal{F} organic matter = % organic carbon × 1.704; CEC: Cation exchange capacity; MWHC: Maximum Water Holding Capacity n.d.: not determined

B. Study design

1. Experimental conditions: Samples of 100 g dry weight of soil each were filled into Erlenmeyer incubation flasks and pre-equilibrated for 3-4 days (darkness, 20 °C, moisture content of 55% MWHC). At application each sample received a dose of [biphenyl-UL-¹⁴C] BCS-CQ88719 (M24) equivalent to a nominal test concentration of 235 μ g BCS-CQ88719 (M24)/kg soil, corresponding to a field rate of 1000 g a.s. fenhexamid/ha and a maximum occurrence of 8.8% AR in study IIA 7.10/02. For dose calculation incorporation into the top 2.5 cm of soil and a bulk density of 1.5 g/mL vas assumed. For application the targeted amount of test item dissolved in DMSO (dimethyl sulfoxide) was dispensed drop-wise to the soil surface as uniformly as possible by an adjustable pipette

The actual gose applied per test vessel was 25.1 μ g of [biphenyl-UL-¹⁴C]BCS-CQ88719 (M24) for all soils. Eo Towing application the static test systems were completed by attachment with traps (soda lime and polyurethane foam) for the collection of ¹⁴C-carbon dioxide and other volatiles. Samples were incubated at 20 ± 1 °C and a moisture content of 55% MWHC in the dark for 120 days in maximum.

In addition, samples containing untreated soil were incubated under the same conditions for determination of soil microbial activity at selected time points.

2. Sampling: Duplicate samples were removed for work-up after 0, 0.1, 0, 3, 8, 14, 20, 30, 44, 63, 91 and 120 days of incubation. Samples for determination of soil microbial biomass were investigated after 0 and 120 days of incubation. The complete samples were immediately processed by extraction and HPLC analysis was usually performed within three days. After analysis, the extracts were stored in a freezer. In addition to the HPLC-analysis, representative extracts were subjected to TLC-analysis within about 5 month after sampling the trap attachments containing sola line were processed within a maximum of 78 days. The PU floam was extracted and analyzed within 58 days. Bound residues were analyzed by combustion and subsequent SC measurements within up to 68 days after sampling.

3. Analytical procedures: The entire soil sample in each test vessel was processed by a step vise extraction procedure. After separation by centrifugation the soil was extracted four times successively with aqueous acetonitrile (80:20, v/v) by shaking at ambient temperature for 30 mm followed by centrifugation (cold extract). An additional extraction was performed using microwave for 10 min at approximately 70°C with aqueous acetonitrile (80:20, v/v) on the residual soil as the last extraction step (hot extract). The different extraction fractions from each extraction cold or "hot" were combined and if necessary extracts were concentrated to a small volume prior to analysis.

A ¹⁴C-material balance was established for each sample by extraction analysis of volatiles and combustion of non-extractable residues. Following quantitation of radioactivity in each extract by LSC, analysis of extracts was performed by reversed phase HPLC and ¹⁴C-flow-through detection techniques. The determination of non-extractable residues (NER) was performed by combustion/LSC of aliquots of the air-dried extracted soil.

Radioactivity was determined by LSC measurements with an OOQ of up to 0.6% of AR depending on the extraction solvent, etc. A single peak of 20 Bq could be detected which corresponded to 0.4% and 0.2% of applied radioactivity for the ambient and microwave soil extracts, respectively. Values between maximum LOD (0.4% of applied radioactivity) and LOQ (three times maximum LOD = 1.1% of applied radioactivity) were taken into account in the tables and for calculations.

C. Determination of degradation kinetics: Degradation data were kinetically evaluated according to FOCUS guidance by use of the software KinGui, version 1.1. Following calculations of fits with kinetic models SFO, FOMC and OFOR the best fit was evaluated by visual assessment and the error of chi-square (χ^2) to be a minimum in the significance test.

Ñ

II. Besults and Discussion

A. Data: The results of aerobic biotransformation of [biphenyl-UL-¹⁴C]BCS-CQ88719 (M24) after incubation in four European soils are summarized in Tables 7.2.3-2 to 7.2.3-5.

Ò

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

	un	der aer	obic co	ndition	s			()	4	* @	Ő	7 ~	¥ ¢	う
Compound	Replicate		Re	esidues	(% AR	() on th	e follow	ving day	ys after	treatme	nt (DA	T), 📎		1
1	No	0	0.1	1	3	8 /	¥4	21	<u>Š</u> Õ	44	63	Å.	120	, O
BCS-CQ88719	(A)	88.0	84.6	71.5	58.5	41.	31.1	23.5	¥21.3	17.8	15.3	Ø9.5 d	7.0	Ď¥
(M24)	(B)	89.3	84.9	73.9	59.2	4CŐ	30.7	24	21.4	18,0	14.5	8.9 ⁰	7.5	ł
	Mean	88.6	84.7	72.7	58.9	A.	30.9	23:8	Ø.4	£8.4	1449	9.2	λ.	
Region 1	(A)	2.7	2.9	3.1	3.5	4.0	5.4	\$ 5.7 %	6.2	8.0	8.2	£9.2 i	0.2	
	(B)	2.6	2.8	2.7	\$ <u>4</u> 8	4.8	5.90	5.8	7.6	8.0	🎙 9.2 🥎	9.2 🖇	₽ ″9.9	
	Mean	2.7	2.9	2.9	Q .6	4 4	<u>s</u> e	5	~6.O	800	87	9,2	10.0	
Region 2	(A)	2.0	2.0	1.9	1.8	©~1.4 _▲	Ø1.6	~Q.5	, T.6	1.5	0 .8	<i>Q</i> 0'	£1/1	
	(B)	2.0	2.2	1,00	12	1.6	1.6	1.6	1.8 🤇	D ^v 2.4 🔬	1.6	[~] 1.3	Q 0.7	
	Mean	2.0	2.1	Ø.Š	Ľ*¶″	<u></u> 1®ໍ	1.6%	1.0	1,2,7	1.9	1.7	1.1	°0.7	
Region 3	(A)	n.d.	1.0	\$ 3.1 §	3.4	A.7	~ \$ 7.7	6.5	Ç1	A	Ø	8.7	8.2	
	(B)	n.d.	0.6	2.3 C	° 3.4 °	¥ 4.3	© 5.9 ′	¥ 6.8	7.3	s≫6.5	\$ ⁸ .2	8.8	8.9	
	Mean	n.d.	0.8/	263	3 Ø	4.5	5.8	6.6°C	7.20	6.9 🕻	jັ 7.9 [°] ^	8.7 🖉	8.5	
Unidentified	(A)	4.7	Ø6.0 。	% .1	\$.6	Įĝ?ľ	121	1.008	14.8	16.9	110	18.9	19.1	
radioactivity	(B)	4.6	[♥] 5.6	6.9	8.8	10.7	13.4	4.2	Ø 0 6.6	16.8	19 .0	19.2	19.4	
	Mean	4,7	5.8	7.5	8.7	10.4	۶ 13.0	^v 14.0	¥15.7 %	16.9	گ18.3	19.1	19.2	
Total	(A)	°A2.7	90.6	19 .6	652	51(2	43.8	37.59°	3629	34.8	32.9	28.4	26.1	
extractable	(B)	, 93.9	90.4	80.7	6 8.0	9 1.6	Q.1	\$8.2	<u>,</u> 38.0	_303	33.5	28.2	26.9	
Residues*	Mean 🖉	93.3°	90.5	80.2	67.6	\$ 51.4	4 4.0	© 37.8	\$7.1	35.3	33.2	28.3	26.5	1
	(A)	nta.	<03	OQV	0.2	0.50	1.10	1.8	2.4	3.2	3.9	4.7	5.5	
$^{14}\text{CO}_2^{\#}$	(R) [®]	Gi.a.	₹%0.1	×0.1	6/2	207	12	68	20%	3.2	4.0	5.0	6.0	
	Affean ?	» n.a.	^y < 0.1%	0.1	⁹ 0.2	∕≫0.6	1 <u>.</u> 1	Q7.8	** <u>2/</u> 4	3.2	4.0	4.8	5.8	
Volatile	O' (A)	n.a.	< 0.1	< 0.1	< 0.1	0.1	n.d.	n.d. (🏷 n.d.	< 0.1	n.d.	< 0.1	< 0.1	
Organics [#]	(B)	n.a.	G9 .1	<u>≨0</u> .1	<i>≪</i> 0,¥	< 000	< 0.1	n.d	n.d.	< 0.1	n.d.	n.d.	< 0.1	
	Mean	» n.a. 🦂	× 0.1	Ø 0.1	< 0.1	0.1	A9 .1	m.d.	n.d.	< 0.1	n.d.	< 0.1	< 0.1	
Not-	(A) 🔊	1 2.Q Q	6.3	* 15.3	,∿26.1	Q40.5	×49.2 ×	32.4	54.1	59.5	58.9	60.1	61.2	
Extractable [#]	(B)	2@/	B	14 9 ″	25A	40.6	47.0	\$ 53.0	53.5	57.2	57.5	58.7	59.0	
Residue [#]	Mean	2.0	09 ⁷ .3	×1 <i>5</i> ″.1	2507	40! .\$	481	52.7	53.8	58.4	58.2	59.4	60.1	4
Total %	(Ă) (Ă)	94.7 🔬	§ 96.8	Ø95.0 °	Ø3.5	\$2.3	\$ 4.2	91.5	92.7	97.6	95.7	93.2	92.8	
Recovery*	(B)	95. ©	968	95.8C	93.6	92.9	¹⁰ 92.3	93.0	93.8	96.2	95.0	91.8	92.0	1
A	∛ Mean ⊂	95,3	26%	9Q4	93Ø\$)	92,0	93.2	92.3	93.3	96.9	95.3	92.5	92.4	

Table 7.2.3-2: Degradation of [biphenyl-UL-14C|BCS-CQ88719 (M24) in sand loam soil

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

	8	und	ler aero	bic co	ndition	S	-	. ,			_			Ş
Compound	Replicate		Re	esidues	(% AR) on th	e follow	ving day	vs after	treatme	nt (DA'	T) _ 💭	Ô	1
1	No	0	0.1	1	3	8	14	21	30	<i>à</i> ¥	63	9Y	120	
BCS-CQ88719	(A)	88.7	84.0	70.9	53.9	37.1	26.0	20.7	17.2	14.3	11.0	8.8 🛒	7.0 0	
(M24)	(B)	89.7	84.4	70.8	55.2	36.8	25.8	20.5	1#\$3	13.6	10.5	9.5	7.4	Í
	Mean	89.2	84.2	70.9	54.6	37.0	<u>9</u> 5.9	20.6	1.3.7	14.0	10.8	24	ð7	.C
Region 1	(A)	3.0	3.2	3.5	4.4	3.8	[♥] 5.3	5.9	R, 5.7	7.1	07.1	6.8	\$5.5	Š
-	(B)	3.4	4.0	3.3	4.0	454	4.9	5.4	6.3	7.2	7.3 Q	6.0	5.8 %	ľ
	Mean	3.2	3.6	3.4	4.2	A.1	5.1	₹Q;	6.0	74	763	6.Ŷ	5	
Region 2	(A)	2.5	2.4	2.1	2.3 Q	1.8	1.4 🖉	×1.4 °	Ø1.6	₹₹.5	Q.9	Č9 .8	Ø.0	
-	(B)	2.7	2.4	2.3	2,2	2.0 °	1.8	1.2	1.8	چ 1.5 گ	1.2 🥿	0.5	1.0	
	Mean	2.6	2.4	2.2	ð	- CI	¥6	1.5	17	155	1.6	0.7	1.0	
Region 3	(A)	n.d.	0.8	2.2 🐇	2.7	3.6	a 3.7	. <u>0</u> .2	Ø.7	6.3	62	677	A.S	
-	(B)	n.d.	0.8	1.9	≥ 2.9°	3.4 ^	¥ 4.0	5.9 🔎	7.5	\$ ^{7.4}	6.5	\$7.6	6.5	
	Mean	n.d.	0.8	2.9	2.8	35	3.X	5.5	7.1°	6.8	6.4%	7.1	6.7	
Unidentified	(A)	5.5	6.4	Q7.8	\$9.3	×9/2	10/4	125	14,0	149	155	14.3	13.4	
radioactivity	(B)	6.1	7.3	7.5	9.1 %	9.9	€N0.7 ¢	P2.6	3 5.6	36 .1	AS .1	Q1	13.2	
	Mean	5.8	68	7,7	9.2	9.5	10.5	۲ 12.5 C	14.8	نم 15.5 [©]	°°15.2 ‰	14.2	13.3	
Total	(A)	94.2	P20.4	£ 7 \$.7	6 72	403	364	33.21	31	29.0	26,2	23.1	20.4	
extractable	(B)	95.8	91.6	78.4	64.3	46.7	\$6.5	Ø.M	29.9	29.7	256	23.6	20.6	
Residues*	Mean	95.0	91 😡	78.5Ô	63.8	46.5 ₍₁	≫ 36.5	≶∕33.1 ຼິ	م∕ي30.5 م	Q29.5	25.9	23.4	20.5	
	(A)	s n.a.	< 6.1	<u>B</u>	0,4	1,1	1.7 💊	2.5	3.4	4.2%	5.2	6.6	7.5	
¹⁴ CO ₂ [#]	(B)	n.a.	A 0.1	0.1	4 8 .4	Ň	63	¢2.5	3.5	425	5.6	6.4	7.3	
	Mean 🕺	n.a.	$\sim < 0.1$	0.1	0.4 J	©1.0	°~1.7	2.5	\$ 3.4	°~4.3	5.4	6.5	7.4	
Volatile	(A)	n a.	<	< 0	< 0.0	< 0.1	n.d.	n.d. (⊅ _{n.d.}	≫< 0.1	< 0.1	n.d.	n.d.	
Organics [#]	(BC)	a.a.	°<0.1	≪Ø .1	≈ 0.1	ૢૼૡૼૺૺૢ	< 00	n.d	n.dØ	< 0.1	n.d.	< 0.1	n.d.	
	Mean 📎	n.a.	∛× 0.1 🌾	< 0.1	≫ 0.1	0.1	A .1	n.d.	n.t.	< 0.1	< 0.1	< 0.1	n.d.	
Not-	(A)	2.00	6.80	17.\$	31.4	46.1	€54.3 ¢	57.8	57.3	62.4	63.0	63.6	65.8	
Extractable#	(B) 🕜	2.0	63	16.9	30.9	45	53.6	56.&	58.4	61.7	64.6	64.2	65.1	
Residue# 🔊	Mean	\$2.0	%6 .6	A.1	<u>Ø</u> .1	45.9	500	57.00	57.8	62.0	63.8	63.9	65.5	
Total %	(A) 🖉	96.2	🕈 97.2 🗟	96.2	<u></u>	93.5	2.4	3 .4	91.8	95.8	94.5	93.4	93.7	
Recovery [*] [≫]	(B)	97,8%	9840,	95	95.6	93.4	91.9	¥92.4	91.7	95.8	95.8	94.3	93.1	
-	Mean	97:0	97.6	95/8	953	93@	92.1	92.9	91.7	95.8	95.2	93.8	93.4	
n.d. : not detect # values taken f * differences to	ted, n.@ : not rom materiaf	analyzed balance	DAT : A	days aft	er treatn	nent D nding.er	<i>a</i> <i>b</i> rors							-

Table 7.2.3-3: Degradation of [biphenyl-UL-14C]BCS-CQ88719 (M24) in solt loam soil

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Table 7.2.3-4	: Degradat aerobic c	tion of ondition	biphen 1s	yl-UL-	14C]B0	CS-CQ	88719 ((M24) i	in loam	soil		\$ \$	under	
Compound	Replicate		Re	esidues	(% AR) on th	e follov	ving day	vs after	treatme	nt (DA'	Г)		ĺ
<u>r</u>	No	0	0.1	1	3	8	14	21	30	ÂĂ	63	9¥	420	
BCS-CQ88719	(A)	78.5	65.8	56.2	47.8	35.5	27.0	23.7	20.7	19.0	16.7	≫ 16.2~(15.3	
(M24)	(B)	79.0	65.3	56.6	47.9	36.4	28.9	24.3	2343	18.8	16,7	15.90	15.%	1
	Mean	78.7	65.5	56.4	47.8	36.0	(2 8.0	24.0	24.5	18.9	¥6.7	16,0	153	<i>Q</i> 1
Region 1	(A)	2.3	1.9	2.6	3.4	3.8	3.7	4.9 🔬	Q 4.9	5.9	0.6.0	\$6.6	\$6.5	Š
-	(B)	2.4	2.3	2.9	3.1	3.4	3.4	4.7°	4.5	5.7	6.0 Q	6.1	₹ 6.7 🕵	P
	Mean	2.3	2.1	2.7	3.3	<u>\$.6</u>	3.5	Æ,	4.7	568	6.0	6.Ŵ	6.0	
Region 2	(A)	1.6	1.4	1.9	1.5	Ø1.3	1.2 /	1.2	ØĬ.4	<i>∽</i> ∰.0	Q.6	<i>0</i> 9.9	Ø.7	
-	(B)	1.6	1.5	1.5	1.1	1.7 c	1.7	0.9	1.7	> 1.4 >	1.2	€ 1.3 v	\$1.2	
	Mean	1.6	1.4	1.7	<u>ک</u> ری	b	14	1.0	1	1.70	1.4	1.1	0.9	
Region 3	(A)	0.9	4.4	7.0	6.9	≪1 .7	8 .1	9.2	0.6	9.8	\$.8	\$T>	9.9°	
-	(B)	1.4	3.9	5.6	6.7%	°7.3 ≈	6.9	9.5 д	9.3	\$9.4	9.6	& 8.3	8 .4	
	Mean	1.2	4.1	6.4	6.8	75	7.5 ⁰	9.4	9.9	9.6	9.2 _%	8.2	8.7	
Unidentified	(A)	4.8	7.7	J1.4	KJ.1.9	\$2.9	j29	45,3	16,8	1700	164	15.0	16.1	
radioactivity	(B)	5.4	7.6	10.0	¢∕11.0 ∞	Å2.4 s	¥2.0 ,	@5.1	J5.5	\$6.5	25. 8	\$5 .7	16.4	
	Mean	5.1	7.0	10.7	11,4	12.6	12.4	م 15.2 م	P16.2	م 17.1 🖉	©16.6 م	15.6	16.2	
Total	(A)	83.3	73.Š	67.6	58.1	48.9	399)	394	37	36.0	33,1	31.7	31.5	
extractable	(B)	84.4 剩	72.9	\$66.6	58.8	48.8	40.9	69A	37.8	3523	333	31.6	31.6	
Residues*	Mean	83.9 [%]	73Q	67.1	¢ 59.3	48.6 ₍₁	40.4	√ <u>3</u> 9.2 ≦	37.7	<i>©</i> \$6.0	s 33.3	31.7	31.5	
	(A)	n n Ga	$< \mathbb{Q}_1$	23 ^D	025	0.8	1.4	2.0	2.2	∑ 3.0 ×	4.0	4.9	5.3	
¹⁴ CO ₂ [#]	(B)	ñ.a.	0.1 کے	0.1	£9.3	Ň	Ľ¶"	2.0	2.D	3	3.9	4.8	5.2	
	Mean) n.a. 🦨	~ 0.1	0.1	0.3	Q0.8	°~J.4	×2.0	& 2.5	°~3.1	3.9	4.9	5.2	
Volatile	(A)	n.a.	< 90,7	< 0.0	< 0.0	² < 0.1	n.d.	n.d. (♥ n.d.	∛≪ 0.1	n.d.	n.d.	n.d.	
Organics [#]	(B)	fixa.	<u>∿≲</u> 021	<i>₹</i> 9.1	€0.1	୍୶ଡ଼ୖ	n.e	n.dC	< 0.0	< 0.1	n.d.	n.d.	< 0.1	
	Mean	n.a.	%¢0.1	< 0.1	∼∽0.1	£Ø.1	૧૧.સ.	n.el.	z de l	< 0.1	n.d.	n.d.	< 0.1	
Not-	~(A)	14.60	23. IO	29.¢	0° 35.7 %	J 45.1 🖞	51.5	31.8	53.4	56.0	57.7	57.4	59.5	
Extractable#	(B) 🔗	14.√	23.1	29.7	35.4	44.8	50.8 [©]	52. 1	53.8	56.9	57.3	56.4	58.3	
Residue [#]	Mean	×J,4.4	≪23.1	29:4	10 75	45.0	5 Ø	<u>520</u>	53.6	56.4	57.5	56.9	58.9	
Total %	(A)	ې 98.0 ک	¢ [≠] 96.6 &	§ 96.9	_\ 95.6	6 94.3	3 2.9	ÐŽ.8	93.8	95.7	94.8	94.1	96.3	
Recovery ^{* *}	(B)	98.5	96,0,	96.4	94.5	94.4	93.1	≫93.6	93.8	95.3	94.7	92.8	95.1	
	Mean	98.2	9 6,3	96,6	95	94.Š [♥]	93.0	93.2	93.8	95.5	94.7	93.4	95.7	J

Table 7.2.3-5	: Degradati under aer	ion of obic cor	biphen ditions	yl-UL-	14C]B	CS-CQ	88719	(M24)	in clay	y loam	soil			
Compound	Replicate		Re	esidues	(% AR	() on th	e follow	ving day	ys after	treame	nt (DA	T) (U)	Ó	
-	No	0	0.1	1	3	8	14	21	30	Â4	63	91	120	
BCS-CQ88719	(A)	92.0	89.7	84.8	78.6	68.2	57.3	49.3	40.7	31.2	24.5	✓ 18.1	16.0	5
(M24)	(B)	91.4	90.6	84.7	79.9	67.4	56.4	49.9	3 ≶ 97 ⁹	31.9	244	19	15.%	ſ
	Mean	91.7	90.1	84.8	79.2	67.8	G6.8	49.6	AØ.3	31.5	24.3	18/9	68	,V
Region 1	(A)	1.6	2.4	3.1	3.8	7.6	^{\$\$} 9.0	9.6	Q 9.1	9.6	08.6	7.1	\$5.4	5
	(B)	2.4	2.6	3.5	3.5	765	9.3	9.¢	10.6	9.1	8.4	6.40	¢ 5.7 ℃	
	Mean	2.0	2.5	3.3	3.7	A.6	9.1	₽\$¢ [°]	28	9.3	805	6.&	5.0	
Region 2	(A)	2.1	2.1	1.8	2.1 Q	1.8	1.3	×1.4 .	ØĨ.8	¥.8	Q.2	ÔJ.0	Ø.9	
	(B)	2.2	1.8	1.7	2,3 °	1.4	1.4	1.0	1.4	1.7 🗞	» 1.0 «	1.0 🖌	0.8	
	Mean	2.1	1.9	1.7	ð2	. CO	¥3)	1.2	16	1.75	1.1	1.0	0.9	
Region 3	(A)	n.d.	n.d.	0.7	n.d.	n.d.	On.d.	O.d.	Øð.	n.d.	A.	ngd.	n(d.	
	(B)	n.d.	n.d.	0.6	n.d.	n.d.	y n.d.	n.d.	🛆 n.d. 🏾	n.d.	n.d.	Sn.d.	n.d.	
	Mean	n.d.	n.d.	G .7	n d.	n.	n.dC	n.d	n.d.	n.d	n.d.s	n.d. 🔊	n.d.	
Unidentified	(A)	3.7	4.5	Q5.6	\$5.9	×9/3	10/3	14.0	10,9	110	23	8.1	6.3	
radioactivity	(B)	4.5	4.3	ົ 5.7 _ແ	\$ 5.8 %	9 .0	€ }10.7 ≠	90.5	22.0	Ĵ0.7	9 .4	Ø.4	6.5	
	Mean	4.1	4.Q″	5.7	5.8	9.4	10.5	7 10.8 C	11.4	ځ 11.0 🖌	₽9.6 %	7.8	6.4	
Total	(A)	95.7	B ^{4.1}	sQ\$.5	874.5	7408	675	6031	516	42.0	34.4	26.2	22.3	
extractable	(B)	96.0 🔌	94.9	¥90.4	85.7	*% .4	%7 .1	ØØ!5	<u>\$</u> 1.9	42.6	Њ	27.1	22.2	
Residues*	Mean	95.8	94	90.40	85.1	/ 77.0 _{(j}	_≫ 67.3	\$60.4	∱\$1.7	<i>©</i> 42.6	33.9	26.6	22.2	
	(A)	 n.a. 	<%1	B)	92	0,5	0.9 💊	1.4	2.0	2.8 🗶	3 .8	5.4	6.5	
¹⁴ CO ₂ [#]	(B)	n.a.	0.1 کچک	0.1	48.2	ØŠ	59'	¢ ^{1.4}	2:0	28	4.0	5.2	6.7	
	Mean	n.a.	y < 0.1	0.1	0.2	Q0.5	°~j0.9	$O^{\gamma.4}$	\$2.0	°~¥.9	3.9	5.3	6.6	
Volatile	(A)	n.a.	< 0,0%	<0	< 0 🔊	< 0.1	Ø < 0.1	< 0.1	U < 0.1	∞0.1	n.d.	< 0.1	< 0.1	
Organics [#]	(B)	ð.a.	×_0.1	≪Ø .1	<i>∝</i> 0.1	ş QQ	n.¢	< 0.0	n.dØ	n.d.	< 0.1	< 0.1	< 0.1	
	Mean	n.a.	SYK 0.1 €	< 0.1	≫ 0.1	£ ^{0.1}	≪Ø .1	9 .1	×)×1	< 0.1	< 0.1	< 0.1	< 0.1	
Not-	(A)	1.40	2.80	6.3	10.1	18.0) 26.2	\$31.4	40.3	50.5	56.2	60.6	66.2	
Extractable#	(B)	1.2	26	6.0	10.3	18,7	26.8	32.2	39.9	50.2	56.9	60.6	65.7	
Residue# 🔊	Mean	≪J1.3	X.7	62	10.2	18.4	2@3	31.0	40.1	50.4	56.5	60.6	65.9	
Total %	(A)	97.1 8	y 96.9 k	§∛96.8	<u>\</u> 94.8	Ô ^{96.1}	¥.7	@3.1	94.0	95.8	94.3	92.1	95.0	
Recovery	(B)	97.2%	97,5,	965	96.2	95.6	94.8	¥94.0	93.8	95.7	94.4	92.9	94.5	
	Mean	97.1	9 7.2	96/7	955	95⊙	94.8	93.6	93.9	95.8	94.3	92.5	94.8	

n.d. : not detected, n.@ : not analyzed DAT : hays after treatment # values taken from materia balance

* values taken from materia balance values may occur due to rounding errors

Mass balance. The total material balances of radioactivity showed a complete recovery to B. range from 91.7 – 98.3% AR for the four soils investigated. The results are summarised in more detail in Table 7.2.3-6. Conclusively, there were no signs for losses of radioactivity from sample work-up and Q processing.

Ĩ Ŵ

Ò

Total material balances of radioactivity in four European soils Table 7.2

Soil J G A	<u>S</u>			
Total Recovery (% AR)	92.3 - 96.9	91.7 - 97.6	93.0 - 98.3	92.5 - 97.2
Mean (% AR)	94.1	94.5	95.0	95.2
Rel. standard deviation	1.8	1.9	1.6	1.5

Values given as percentages of initially applied radioactivity

C. Bound and extractable residues: Values of extractable radioactivity decreased fast with time accompanied by the formation of non-extractable residues as summarized in Table 7.2.3-7 Starting from a complete extractability given by day zero (93.3% for soil

,	83.9% for	and	95.8% for)~	values
decreased to 26.5% (), 20.5% (), 31.5%		ð a
and 22.2% (after a maximum incul	bation period of	120 days.	, ° \$	× ,
In turn values for non-extra	actable radioactivity w	vere low by day	∮zero (2.0%∰	or soil	
2.0% for	and	3% for) with th	ne Oxception	of Bo il
with 14.	4 to increase $t_{0,0}$	1%%)(), 65	3% (
), 58.9% () and 85.9%) at the last Sai	npling interva	ıl (day
120).			AS.		

 Table 7.2.3-7:
 Extractable and non-extractable residues in four European foils (mean ± SD)

Soil	Extractable residues (%)	Non-extractable	residues (%)
	Day 0 9 Day 12005	L Day 0	^{yy} Day 120
	~ 93 ³ 3 0 ² 26.5 0	2.0 0	60.1
	₩ #0.6 × ±0.4 K	≤ ±0.0	±1.1
	ن 20.5 گُر گُرُون 20.5 مُ		65.5
		₩ <u></u> 9.0	±0.3
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		14.4 O	58.9
			$\pm 0.6$
N.	L 095.8 V 22.2 V	μ <u>3</u>	65.9
		ĵ ^y ~⊕0.1	$\pm 0.2$

Values given as percentages of initially applied adioactivity.

D. Volatile radioactivity. The extent of mineralisation to C-carbon dioxide was moderate to account for 5.8% AR (soil 4.4% (1.4%), 5.2% (1.4%)), 5.2% (1.4%)

) and 6.6% (**provide and any Sampling interval** (\$0.1% R).

E. Transformation of parent compound: There was observed the formation of a bunch of minor metabolites which were grouped to region 1,2 and 3 for simplification. No single peak of those regions exceeded the trigger of 5% of AR compared to the parent compound fenhexamid. The maximum radioactivity preasured in those regions was 10% of AR (region 1) at day 120 in soil

The maximum occurrence of further novidentified or diffuse radioactivity was 19.2 % of AR in soil at a 120. However, compared to the parent fenhexamid this amount is far below 5% and therefore no further investigestions were made.

The biotic character of degradation of the [C-C]-biphenyl of fenhexamid (BCS-CQ88719 (M24)) in aerobic soil is indicated by the formation of non-extractable (bound) residues *via* minor metabolites and the formation of ¹⁴C-carbon dioxide to a moderate, but marked extent.



F. Degradation kinetics: The evaluation of degradation kinetics was performed by fitting, of data to the three kinetic models SFO, FOMC (Gustafson-Holden) and DFOP³ and the quality of fits was assessed according to FOCUS kinetic guidance. The initial concentration at time zero was included in the parameter optimisation. All data points were weighted equally. For optimal good was of fit, the initial value was also allowed to be estimated by the model. The best-fit kinet model was selected by applying the criteria for chi-square ( $\chi^2$ ) scaled-error to be a minimum and on the basic visual assessment. The results of the kinetic evaluation are provided in Pable 7.2.3-8

(M24) in the four soils resulted in different The fits describing degradation of BCS-CQ88712 chi-square ( $\chi^2$ ) errors for SFO or biphasic models. When including results of visual assessment best fits were found to follow the FOMC and thus bipphasic kinetic model for all soils The degradation half-lives of BCS-CQ88719 (M24) were estimated to 5.84 days (soil

1.18 days ( ), 4.33 days ( and 22.74 days ) on the basis of FOMC kinetics. The corresponding DT90 values were estimated to 131 days (soil 86 davs and 231 days (

Degradation kinetics and their fits were also re-visited in a supplemental report to derive input parameters for modeling purposes in environmental exposure assessments with results presented in IIA 7.2.3/02.

	/s	Y N U		P*
		K S → B ∈	CS-CQ88719 (M2	24)
Soil 👸 🔬	Kinetic model	~ DT50	, <b>∅</b> DT90	Chi ² value
	FO SFO	11066	38.74	17.9
	FOMC	\$ \$\$84	130.73	4.5
	DEOP ~	5.68	94.44	5.6
	ç° sfo ⊻	8.55	28.41	18.4
	∲OM&	433	85.73	4.9
	C ^O DFQ₽∕	¥.48	78.81	7.4
	N SHO N	14.40	47.84	28.5
j õ a	J ^Y <b>E</b> ØMC	0 1.18	> 1000	10.2
	DFOR S	2.75	144.56	16.4
	SEO NO	30.43	101.07	8.5
	^Φ FOMC ^Δ	22.74	231.12	3.0
	^y ĎfOP _O ^y	22.68	167.58	3.4
	Bestar	5.10		
Best fits according to the critera set	are marked bold.			
	, ~~ 			
	III. Con	iclusion		
8				

Table 7.2.3-8: Kineties of aerobic de S-C(988719@M24) in four wils at 20°C

³ SFO = Single first order; FOMC = First order multi compartment; DFOP = Double first order in parallel

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Investigations of the degradation behaviour of the [C-C]-biphenyl of fenhexamid (BCS-CQ88719 (M24)) in four aerobic soils resulted in half-lives of 1.18 to 22.74 days (geometric mean: 5.10 days) for best fits following FOCUS kinetic guidance.

Apart from CO2 which accounted for up to 7.4% of AR, numerous minor transformation products were detected, as well as bound residues which reached their maximum values at the end of the study.

Results of kinetic evaluation within study IIA 7.2.3 /01 were re-visited to result in report 1677.2.302in order to derive input parameters for modelling use it environmental exposure assessments.

Report:	KIIA 7.2.3 /02; 2010 2010 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
Title:	Kinetic Evaluation of the Aerobic Metabolism of BCS-CO887 O in Soil for 🖉
	Modelling Purposes $O' = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$
Report No &	MEF-11/886
Document No	M-422686-01-1 $($
Guidelines:	"Guidance Document on Estimating Persistence and Degradation Kinetics from
	Environmental Fore Studies on Pesticides in F. Registration. Report of the
	FOCUS Work Group on Degradation Kinetics. ECDocument Reference
	Sanco/10058/2005 version 2.0, 2006 6 20 20 20 20 20 20 20 20 20 20 20 20 20
GLP	No (calculation) w a construction of the const

### **Executive Summary**

The data on degradation of pripheryl-UL-¹⁴C]BCS-CQ88719 (M24) for four soils were reported and evaluated kinetically for comparison with trigger endpoints in 21A 7,2.3/01. The data were re-visited in order to derive input parameters for modelling use in environmental exposure assessments.

The evaluation followed the recommendations of the OCUS working group on degradation kinetics (FOCUS 2006) and can be considered as a basis for modeling endpoints.

For BCS-CQ88719 (M24) the FOMC and the DFOP model were selected each in two soils. Degradation parameters relevant for modelling are given in (Table 7.2.3-10). The values from the four EU soils investigated are regarded as suitable and rebable for use as modelling endpoints in environmental exposure assessments.

Half-lives were calculated to range from 25.83 to 75.34 days.

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 >	, it	0. V			
Table/7,2 3_10+	Ontimicad	denvadation	noromoto	re M RCS	CO88710	(M24) for	modelling and noints
1 abic 2.2.3-10.	Opumuseu	ucgrauadun	parameter	A DC DC D-	UQ00/1)	(1124) 101	modening enupoints.

Soil	Model	k-rate sғо [1/day]	DT50sfo [days]
	[©] <i>C</i> FOMC	0.018	39.42) ^a
	FOMC	0.027	25.83) ^a
	DFOP	$0.009)^{b}$	75.34
	DFOP	0.010) ^b	72.20
^a calculated from DT90	of FOMC model/3.32		

)^b calculated from k-slow

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

The kinetic evaluation was performed following the recommendations of FOCUS (2006) to derive degradation parameters for fate modelling. The initial amount of the parent was fitted together with the degradation parameters. All data were

The initial amount of the parent was fitted together with the degradation parameters. All data were equally weighted which correspond to an absolute error model

The identification of the appropriate kinetic model was based on visual inspection of the fit and the scaled error chi². The simple first-order (SFO) model was rested first, because SFO is the simplest of the kinetic models and the one almost exclusively used in environmental exposure models.

If the SFO fit is visually not acceptable or the chi2-value exceeds significantly a value of 15 %, then the bi-phasic models are tested. Finally the model is chosen which is visually acceptable and provides a significantly better fit in terms of chi2. Thus it is avoided to use an over-parameterised model based on a marginally better fit only.

Ideally, the chi² value should be below 15° %. However, this value should only be considered as guidance and not absolute cut-off criterion. There might be cases where chi² for a metabolite is higher, but the fit still represente reasonable description of its formation and degradation behaviour. Higher values for metabolites are a consequence of low mean residue levels to which chi² is inversely proportional for example, = 30 % AR (e.g. for parent data) and relative small mean deviation of 1.5 % AR leads to chi² = 5 %, whereas the same deviation and = 6 % AR (more typical for a metabolite) leads to chi² = 5° %.

The by phasic models recommended are FOMC, DFOP and HS, where FOMC should not be used in cases where the final residue is more than 10% of its initial value, DFOP and HS should not be used if the residues fall below 10% of its initial value during the study period. For modelling purposes, an equivalent SFO half life (DT50_{SFO}) value can be calculated as DT90_{FOMC}/3.32. By this method the equivalent SFO-curve meets the bi-phasic curve at the time DT90_{FOMC} and consequently over predicts

the residue values at former times. In cases where DFOP or HS is the most appropriate model, DT50_{SFO} can be calculated by $ln(2)/k_2$ where k_2 is the slow phase degradation rate estimated by the biphasic model.

II. Results and discussion

Soil

BCS-CQ88719 (M24) can not be modelled adequately with the SFO prodel. The initial mass is large underestimated (82% instead of measured 97%) and degradation in the first days is too show. After 20k days the measured degradation slows down so that the SFO-Girve spinderestimates the measured concentrations. This results in a systematic deviation between measurements and model fur The SPOmodel is not acceptable. Because the residues fall below 10% of the intrial mass within the study period, the FOMC model is applied in the next step. The FOMC model yields an atmost perfect fit which is also expressed by the low chip-error value of 4 7%. The FOMC model is selected as modelling endpoint.

Soil

BCS-CQ88719 (M24) can not be indelled adequately with the SFQ mode? The initial mass is underestimated (83% instead of measured 38%) and degradation in the first days is too slow. After 20 days the measured degradation slows down so that the SFO-crave underestimates the measured concentrations. This results in a systematic deviation between measurements and model fit. The SFOmodel is not acceptable. Because the residues fall below 10% of the initial mass within the study period, the FOMC model is applied in the next step The BOMC model wields an almost perfect fit which is also spressed by the low chi2 error value of 5.2%. The FOMC model is selected as modelling endpoint

Soil

BCS-CQ88719 (M23) can bot be modelled adequately with the SFO model. The initial mass is largely underestimated (69% instead of 100%) and degradation in the first days is too slow. After 20 days the measured degradation flows down so that the SFO curve inderestimates the measured concentrations. This results in a systematic deviation between measurements and model fit. The SFO-model is not acceptable Because the residues remain above 10% of the initial mass within the study period, the HS- and DFOP models are applied in the next step. Both models yield in satisfying descriptions of the measurements with chi2-error values of 19.4% (HS) and 16.7% (DFOP). By both models the estimated M0-value is underestimated 977% and 3%, respectively, instead of measured 98%). This underestimation is conservative because the degradation of 20-25% of the substance is not covered by the degradation parameters. This, is proved by applying the DFOP-parameters to a M0 of 100% (as would be done in PEC-calculations) and performing a forward calculation. This lead to a slightly more conservative representation of the concentrations than the original fit (with M0 = 83%). The DFOP model is chosen as model ting endpoint, because of the lowest chi2-error value and a reliable k-slow (tprob <0.05).

Soil

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

BCS-CQ88719 (M24) can not be modelled adequately with the SFO model. After 60 days the measured concentrations are systematically underestimated by the SFO-curve. The SFO-model is not acceptable. Because the residues remain above 10% of the initial mass within the study period, the HS- and DFOP models are applied in the next step. Both models result in an acceptable fit with the with the chi²-error values (HS = 4.7%, DFOP = 3.4%). Due to the lower chi²-error the DFOP model is selected as modelling endpoint.

In Table 7.2.3-11 the results of the model selection for the modelling endpoints of BCS CQ88919 (M24) are summarized. For modelling endpoints the SFO model was substituted by the FOMC model in two cases and by the DFOP model in two cases.

				<u></u> .	¥	4	L.		(
Soil		"Mod	él≽″	Schi2	9%]	(VA) ^a		∭t-prob_) ^Ď	S
		SFQ	Ĵ≯	17.9	' "C	· - K	Ĵ.	<0.001	Ő
	-	,Õ [♥] FØ₩	ic 🔊	2 4.7	, O	, 1	~<	0.001/<0.09	1
	d	Ś∽ ŚFC) 🦻	18.4	S.	<i>Õ</i> -	Ô.	\$0.00€	
		ኛ 🍦 🌾 🖗	lê ,	S.2Ó) A) + _~	P	0.001/<0.00	1
	~~~	SFC	9 ô	28.5	, S		ð	<0,001	
	L ^Y	¢ î¶S	L	19.4	L.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Ô	0.068	
	6	) [≫] _,⊅FO	P	^{°0} 16.7		Ç o	S .		
	× 4	SFQ		\$ 8.5	· *	· - D		< 0.001	
5		¢ HS	Ĩ.	~ <b>0</b> 7	×,	«°.		< 0.001	
	ÿ Ö`	🔊 DFO	P S	<b>∢</b> _3.4	0	Ň	L	<0.001	
) ^a Visual assessment:	+ good, o ace	ptable, not a	cceptable		D c				
) ^b t-prob of k-rate for	SFO, of Alpha	″Beta før FOt	4¢, and k	Slow for	DFOP a	nd HS	/		
Cn		· · · · · · · · · · · · · · · · · · ·		/ A.F					

Values for optimized half-lives were determined for metabolite BCS-CQ88719 (M24) using the corresponding model FOMC or DFOP and racalculations according to FOCUS kinetic guidance to result in DT50_{SF} values. The values from the four EU softs investigated are regarded as suitable and reliable for use as modelling endpoints in environmental exposure assessments.

DT50_{SFO} values ranged from 25.83 to 7534 days.

### IIA 7.3

Degradation ests of TABR 2738 in aerobic soil under laboratory conditions resulted in very short halflives of less than t day. Therefore field studies were not taken into account for the investigation of the degradation behavior of fenheramid nor its major degradation product BCS-CQ88719 (M24).

### IIA 7.40 Mobility studies

Due to insufficient parental mass data during former adsorption/desorption study a new study was performed. The sorption behaviour to soil was investigated for the active substance KBR 2738 and its

soil metabolites BCS-CQ88719 (M24), a [C-C]-dimer of KBR 2738 using batch equilibrium or soil column leaching experiments with soils covering a distinct range of pH, texture and organic carbon.

### IIA 7.4.1 Adsorption and desorption of the active substance

		station and a state of the stat	
Report:	KIIA 7.4.1 /01;	2011	
Title:	[phenyl-UL-14C]Fenhexamid (KB	R 2738): Q	
	Adsorption/Desorption on Four S	spits L	
Report No &	MEF-11/248	¢ ⊳°	
Document No	M-417746-01-1		
Guidelines:	- OECD Guideline for Testing of ( - Commission Directive 90/36/E@	Shemicals No. 106, Ad	sorption/Desorption
	(Annexes II, Fate and Behaviour	in Envirorment) July 1	14,19950 S
GLP	Yes	$\sqrt{2}$	

### **Executive Summary**

The adsorption/desorption characteristics of KBR 2738 were determined for four soils in a concentration range of two orders of magnifilde. For the definitive test the overall mean values of recoveries for all concentrations were in the range of 94.4 to 400.3% (mean; 97.5%) and thus in an acceptable range.

Values for the coefficients of adsorption according to Freendlich ( $K_{F, ads}$ ) ranged from 12.43 mL/g to 15.79 mL/g with corresponding values related to organic carbon ( $K_{0, ads}$ ) to range from 313 mL/g to 654 mL/g (arithmetic mean: 510 mL/g). Values for the Freundlich coefficient of adsorption 1/n ranged from 0.8604 to 0.8958.

No significant dependence was observed for the adsorption behaviour from pH or the texture of investigated soils.

According to Briggs, ferhexatorid can be classified as low mobile to immobile for adsorption and as immobile for desorption.

### I. Material and Mathods

### A. Material

**Test Material:** [Phenyl-UL-¹⁴C]Fenhckamid (KBR 2738) Specific radioactivitQ 3.33 MBq/mg (90 μCi/mg) Radiochemical putity: > 99% (HPLC, radioactivity-detector) Chemical putity: > 99% (HPLC, UV-detector, 210 nm) Sample ID: KATH 6488

2. Soil: S

Sorption test were performed with four soils covering a range of pH, organic arbon content and texture. The characteristics of soils originating from Germany are summarised in Table 7.4.1-1. The soils were also used for tests on route and rate of degradation in aerobic soil in the laboratory.

Soil ID/ Batch ID         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308         20100308 <th>Parameter</th> <th></th> <th>Results/</th> <th>'Units ^C</th> <th>5</th>	Parameter		Results/	'Units ^C	5
Batch ID         20100308         20100308         20100308         20100308         20100308         20100308           Geographic Location (City / State / Country)         North Rhine- Westphalia/ Germany         North Rhin	Soil ID/				
Geographic Location (City/ State / Country)       North Rhine- Westphalia/ Germany       North Rhine- Westphalia/ Germany       North Rhine- Westphalia/ Germany       North Rhine- Westphalia/ Germany       North Rhine- Westphalia/ Germany         Soil Series       N/A       N/A       N/A       N/A       N/A         Texture Class ^       Loamy Sand       Silt Loam       Clay       A         Sand ^       81%       23%       37%       33%         Silt ^       10%       60%       22%       366         Clay ^       9%       17%       21%       37%         pH (0.01 M CaCls, 1:2)       6.2       6.5       5.4       7.4         pH (Water, 1:1)       6.5       6.8       6.1       7.5         pH (Saturated Paste)       6.6       6.3       5.4       7.1         Organic Matter ^B 3.3%       134       10%       20.6         Cation Exchange Capacity       9.3       134       10%       20.6         ot ref 2.0       14.4%       30.8%       31.4 %       37.5%         Water Holding Capacity       1.16%       2.3%       1.08 g/cm ³ 1.00 g/cm ³ N/A       N/A       A       N/A       N/A       N/A       N/A     <	Batch ID	20100308	20100308	20100308	20100308
Soil Series         N/A         N/A <t< td=""><td>Geographic Location (City / State / Country)</td><td>/ North Rhine- Westphalia/ Germany</td><td>/ North Rôme- Westphália/ Gétmany</td><td>North Rhine- Sestphalia/ Germany</td><td>North Rhine Westphalia Fermaty</td></t<>	Geographic Location (City / State / Country)	/ North Rhine- Westphalia/ Germany	/ North Rôme- Westphália/ Gétmany	North Rhine- Sestphalia/ Germany	North Rhine Westphalia Fermaty
Texture Class $^{\wedge}$ Loamy Sand         Silt Loam $^{\circ}$ Loam $^{\circ}$ Clay $^{\circ}$ 33%           Sand $^{\wedge}$ 81%         23%         37%         33%         33%         33%         33%         33%         33%         33%         33%         33%         33%         33%         33%         33%         33%         33%         33%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%	Soil Series	N/A	N/A .	Q N/A L	NQ 0
Sand A 81%         23%         37%         33%         33%           Silt A 10%         60%         22%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%         36%	Texture Class A	Loamy Sand	Silt Loam	€Loam √	Clary Loan
Silt ^       10% $60\%$ $42\%$ $36\%$ Clay ^       9%       17%       21% $36\%$ pH (0.01 M CaCl ₂ , 1:2)       6.2       6.5       5.8       7.4         pH (water, 1:1)       6.5       6.8       6.1       7.5         pH (Saturated Paste)       6.6       6.8       6.1       7.5         pH (1 N KCl, 1:1)       6.1       6.3       5.4       7.1         Organic Matter ^B 3.3%       4.1%       50%       7.8%         Organic Carbon       1.9%       2.4%       2.9%       4.5%         Cation Exchange Capacity       9.3       13.4       1034       20.6         (CEC)       meq/100g       meq/100g       meq/100g       meq/100g       meq/100g         Water Holding Capacity       1.1.6%       22.3%       31.4 %       37.5%         Water Holding Capacity       1.1.6%       2.3%       31.4 %       37.5%         Bulk Density       1.1.92/cm³       1.05 g/cm³       1.08 g/cm³       1.00 g/cm³         Particle Density       N/A       N/A       N/A       N/A         Said Axonomic       Saidy, ptp/cd       Nag/a       N/A       N/A	Sand A	81%	2,3% ~	× 37%	33%
Clay $^{\Lambda}$ 9%         17%         21%         37%           pH (0.01 M CaCl ₂ , 1:2)         6.2         6.5         5.8         7.4           pH (Water, 1:1)         6.5         6.8         6.1         7.5           pH (Saturated Paste)         6.6         6.8         6.1         7.5           pH (1 N KCl, 1:1)         0.5.1         6.3         5.4         7.1           Organic Matter ^B 3.3%         4.1%         5.0%         7.8%           Organic Carbon         1.9%         2.4%         22.9%         4.5%           Cation Exchange Capacity         9.3         13.4         0.4         0.0%         meq/100 g           Water Holding Capacity         9.3         14.4%         30.8%         31.4         37.5%           Water Holding Capacity         11.6%         2.3%         31.4         37.5%           Water Holding Capacity         11.6%         2.3%         32.7%         32.7%           0.33 bar (pF 2.5)         11.6%         2.3%         N/A         N/A           Particle Density         N/A         MA         N/A         N/A           Soil flaxonomic         Sandy, tixed, mesic, Typic         Argudalfs         N/A	Silt ^A	10% C		AZ% ~	36%
pH (0.01 M CaCl ₂ , 1:2)       6.2       6.5       5.8       7.4         pH (Water, 1:1)       6.5       6.8       6.1       7.5         pH (Saturated Paste)       6.6       6.8       6.1       7.5         pH (1 N KCl, 1:1)       0.1       6.3       5.4       7.1         Organic Matter B       3.3%       7.1%       5.6       7.8%         Organic Carbon       1.9%       2.4%       2.9%       4.5%         Cation Exchange Capacity       9.3       1.34       104       20.6         (CEC)       meq/100g       meq/100g       meq/100 g       meq/100 g         Water Holding Capacity       11.6%       2.3%       31.4 %       37.5%         Water Holding Capacity       11.6%       2.3%       32.7%       32.7%         Bulk Density       1.192/cm2       4.05 gem³       1.08 g/cm³       1.00 g/cm³         Particle Density       N/A       N/A       N/A       N/A         Soil MappingUnit       0.51°04.6'       N S1° 04.5'       N 50° 22.9'         Soil MappingUnit       0.51°04.6'       N S1° 04.0'       N 51° 04.5'       E 006° 43.0'	Clay ^A	9%	<u>,</u> 0° 1,7% ~ €	21%	
pH (Water, 1:1)       6.5       6.8       6.1       7.5         pH (Saturated Paste)       6.6       6.8       6.1       6.5       7.1         Organic Matter ^B 3.3%       4.1%       50%       7.8%         Organic Carbon       1.9%       2.4%       22.9%       4.5%         Cation Exchange Capacity       9.3       1.34       104       20.6         (CEC)       meq/100g       meq/100g       meq/100g       meq/100g       31.4 %       37.5%         Water Holding Capacity       14.4%       30.8%       31.4 %       37.5%       32.7%         Water Holding Capacity       1.10%       22.3%       22.5%       32.7%         Water Holding Capacity       1.10%       2.3%       31.4 %       37.5%         Water Holding Capacity       1.10%       2.3%       32.7%       32.7%         Bulk Depsity       1.10%       2.3%       1.08 g/cm ³ 1.00 g/cm ³ Particle Density       N/A       N/A       N/A       N/A         Soil MappingUnit       51°04.6'       N \$1°040'       N \$1°04.5'       N \$50° 22.9'         Soil MappingUnit       51°04.6'       N \$1°040'       N \$1°06.4'       E 006° 43.0' <td>pH (0.01 M CaCl₂, 1:2)</td> <td>6.2</td> <td>√ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>L 5,8 L</td> <td>7.4</td>	pH (0.01 M CaCl ₂ , 1:2)	6.2	√ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	L 5,8 L	7.4
pH (Saturated Paste)       66       66       66       66       7.1         Organic Matter B       3.3%       7.1%       50%       7.8%         Organic Carbon       1.9%       2.4%       2.9%       4.5%         Cation Exchange Capacity       9.3       13.4       104       20.6         (CEC)       meq/100g       meq/100g       meq/100g       meq/100g       meq/100g         Water Holding Capacity       14.4%       30.8%       31.4%       37.5%         0.1 bar (pF 2.0)       14.4%       2.3%       22.5%       32.7%         Water Holding Capacity       11.0%       22.3%       22.5%       32.7%         Bulk Density       1.10g/cmi       1.05 g/cm³       1.08 g/cm³       1.00 g/cm³         Particle Density       N/A       N/A       N/A       N/A         Soil Faxonomic       Sandy, r0xed, mesic, Typic       N S1° 04.0'       N S1° 04.5'       N S0° 22.9'         Soil Mapping Unit       51°04.6'       N S1° 040'       N 51° 04.5'       N 50° 22.9'         Soil Mapping Unit       5006°33.5'       5007° 06.4'       E 006° 43.0'	pH (Water, 1:1)	6.5 ⁰ (	6.8 ~		\$ 7.D
pH (1 N KCl, 1:1) $6.1$ $6.3$ $5.4$ $7.1$ Organic Matter ^B $3.3\%$ $4.1\%$ $50\%$ $7.8\%$ Organic Carbon $1.9\%$ $2.4\%$ $50\%$ $4.5\%$ Cation Exchange Capacity (CEC) $9.3$ $1.1\%$ $2.4\%$ $22.9\%$ $4.5\%$ Water Holding Capacity 0.1 bar (pF 2.0) $1.4\%$ $30.5\%$ $31.4\%$ $37.5\%$ Water Holding Capacity 0.3 bar (pF 2.5) $14.4\%$ $30.5\%$ $31.4\%$ $37.5\%$ Bulk Density Particle Density $1.10\%$ $22.3\%$ $22.5\%$ $32.7\%$ Soil flaxonomic Classification (USDK) $1.10\%$ $22.3\%$ $22.5\%$ $32.7\%$ Soil Mapping Unit $51^\circ04.6'$ N S1° 04.0'       N/A       N/A         Soil Mapping Unit $51^\circ04.6'$ N S1° 04.0'       N S1° 04.5'       N 50° 22.9'         Soil Mapping Unit $51^\circ04.6'$ N S1° 04.0'       N 51° 04.5'       N 50° 22.9'	pH (Saturated Paste)		~~~ 6.8° ~~	م کې 6.1 م پې 6.1 م	<b>G</b> .5
Organic Matter B         3.3%         4.1%         50%         7.8%           Organic Carbon         1.9%         2.4%         22.9%         4.5%           Cation Exchange Capacity         9.3         134         104         20.6           (CEC)         meq/100g         meq/100g         meq/100g         meq/100g         meq/100 g           Water Holding Capacity         0.1 bar (pF 2.0)         14.4%         30.8%         31.4 %         37.5%           Water Holding Capacity         11.6%         22.3%         22.5%         32.7%           Organic Labor         11.0%         22.3%         22.5%         32.7%           Bulk Depsity         1.10 g/cm²         4.05 g/cm³         1.08 g/cm³         1.00 g/cm³           Particle Density         N/A         N/A         N/A         N/A           Said Faxonomic         Said faxonomic         Said faxonomic         Cambudolb         Mapping 0.11         N/A         N/A         N/A           Soil Mapping 0.11         0.51°04.6'         N S1°040'         N 51°04.5'         N 50° 22.9'         E 006° 43.0'	pH (1 N KCl, 1:1)	Q6.1	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5.40 8	7.1
Organic Carbon       1.9%       2.4%       2.9%       4.5%         Cation Exchange Capacity (CEC)       9.3       13.4       10.4       20.6         Water Holding Capacity 0.1 bar (pF 2.0)       14.4%       30.8%       31.4%       37.5%         Water Holding Capacity 0.33 bar (pF 2.5)       14.4%       30.8%       31.4%       37.5%         Bulk Density       11.6%       22.3%       22.5%       32.7%         Bulk Density       1.19 g/cmk       1.05 g/cm³       1.08 g/cm³       1.00 g/cm³         Particle Density       N/A       N/A       N/A       N/A         Said Taxonomic Classification (USDA)       Sandy, t0xed, Cabbudolbs       Loamy, mixed, Argudalfs       N/A       N/A         Soil Mapping Unit       951°04.6'       N Sl° 04.0'       N 51° 04.5'       N 50° 22.9'         Soil Mapping Unit       51°04.6'       N Sl° 04.0'       N 51° 04.5'       E 006° 43.0'	Organic Matter ^B	3.3%	¥.1%		7.8%
Cation Exchange Capacity (CEC)9.3 meq/100g13.4 meq/100g10.4 meg/00 g20.6 meq/100 gWater Holding Capacity 0.1 bar (pF 2.0)14.4% 14.4%30.8%31.4 % 30.8%37.5%Water Holding Capacity 0.33 bar (pF 2.5)11.6% 11.6%22.3% 22.3%22.5% 32.7%32.7%Bulk Density Particle Density1.10 g/cm² MA1.05 g/cm³ MA1.08 g/cm³ MA1.00 g/cm³ N/ASail Faxonomic Classification (USDA)Saindy, mixed, MALoamy, mixed, MAN/ASoil Mapping Init Soil Mapping Init Classification0.51°04.6' MAN Si ° 04.0' MO1°040'N 51° 04.5' E 006°83.5'N 50° 22.9' E 006°63.5'	Organic Carbon	1.9%	2.4%	Q2.9%	©″ 4.5%
Water Holding Capacity       14.4%       30.8%       31.4%       37.5%         Water Holding Capacity       11.6%       22.3%       22.3%       32.7%         Bulk Density       1.102/cm²       1.05 g/cm³       1.08 g/cm³       1.00 g/cm³         Particle Density       N/A       N/A       N/A       N/A         Said faxonomic       Said y mixed,       Onesic, Typic       N/A       N/A         Soil Mapping Init       051°04.6'       N Si ° 040'       N 51° 04.5'       N 50° 22.9'         E 006@33.5'       2007°063'       E 007° 06.4'       E 006° 43.0'	Cation Exchange Capacity (CEC)	, 09.3 0 meq/100g	13.4 meg/100,es	10% meg/900 g	20.6 meq/100 g
Water Holding Capacity       11.6%       2.3%       22%%       32.7%         Bulk Density       1.100/cm²       1.05 g/cm³       1.08 g/cm³       1.00 g/cm³         Particle Density       N/A       N/A       N/A       N/A         Soil J axonomic       Sandy, mixed, mesic, Typic       Oresic, Typic       N/A       N/A         Soil Mapping Init       0'51°04/6'       N Sl° 040'       N 51° 04.5'       N 50° 22.9'         E 006'03.5'       2007°06'3'       E 007° 06.4'       E 006° 43.0'	Water Holding Capacity 0.1 bar (pF 2.0)	14,4%	30.8%	× \$31.4 %	37.5%
Bulk Density       1.100 / m²       1.05 g/cm³       1.08 g/cm³       1.00 g/cm³         Particle Density       N/A       N/A       N/A       N/A         Said faxonomic       Sandy, roxed, mesic, Typic       Loamy, mixed, mesic, Typic       N/A       N/A         Soil Mapping Init       Soil Mapping Init       Soil 04.6'       N Si ° 040'       N 51° 04.5'       N 50° 22.9'	Water Holding Capacity 0.33 bar (pF2.5)	×11.6%	2.3%	22 ²³ %	32.7%
Particle Density       N/A       N/A       N/A       N/A         Soil Jaxonomic       Sandy, mixed, mesic, Typic       Loamy, mixed, mesic, Typic       N/A       N/A         Classification (USDA)       Soil Mapping Init       <	Bulk Depsity	○ 1.1 @g/cm ³ /cm ³	~1.05 gem ³	$1.08 \text{ g/cm}^3$	$1.00 \text{ g/cm}^3$
Seif Faxonomic Classification (USDA)       Sandy, mixed, mesic, Typic Carebudolis       Loamy, mixed, mesic, Typic Carebudolis       N/A       N/A         Soil Mapping Unit Soil Mapping Unit Carebudolis       Soil Mapping Unit Carebudolis       Soil Mapping Unit Carebudolis       N Si ° 04-0' Carebudolis       N Si	Particle Densit	ØN/A ≦ ́	A A	N/A	N/A
Soil Mapping Unit         \$\overline{5}1^{\circ}04.6'\$         N \$\overline{9}007^{\circ}06.3'\$         N \$51^{\circ} 04.5'\$         N \$50^{\circ} 22.9'\$           E 006 \$3.5' \$\overline{5}1007^{\circ}06.3'\$         E 007^{\circ} 06.4'\$         E 006^{\circ} 43.0'\$         E 006^{\circ} 43.0'\$	Soit Taxonomic Classification (USDS)	Sandy, mixed, Smesic, Typic Cambudolls	Loamy, mixed, A mesic, Typic, C Argudalfs	₩Ø N/A	N/A
Son Mapping Init & E 006 33.5' & E 007° 963' E 007° 06.4' E 006° 43.0'	Sett Mension All and a	\$ 51°04,6'	b [∞] N SA° 04 ₂ Q'	N 51° 04.5'	N 50° 22.9'
	Soil Mapping Unit	\$€ 00€®3.5' >>>	£*007°@6.3'	E 007° 06.4'	E 006° 43.0'
	% organic matter = % organic	$\operatorname{arbon}_{X} X./24 \mathcal{Q}$			

Experimental conditions: Samples of 0.5 g dry weight of soil (2 mm) were weighed each 1. into centrifuge tubes to which a solution of 0.01 M aqueous calcium chloride containing 50 mg HgCl2/L was acced to result of a final volume of 18 mL. The slurry was pre-equilibrated for at least one day followed by the addition of 2 mL of the corresponding application solution to result in a final volupre of 20 mL and a soil/solution ratio of 1:40. As part of pre-tests control samples containing no soil were prepared the same way for determination of stability of the test item in calcium chloride solution and for testing of adsorption to the walls of the test vessels. Initial nominal concentrations of the ¹⁴C-test substance in the aqueous phase were 1, 0.3, 0.1, 0.03 and 0.01 mg/L thus covering two orders of magnitude.

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) *(Submission for Annex I renewal)* 

Adsorption and desorption took place in the dark at  $20 \pm 1$  °C for 24 hours each (soils ) using an overhead shaker at approximately 30 rpm. Due to insufficient and stability of the test item in the soil samples and adsorption was limited to 9 hours and desorption to 15 hours. The highest concentration tested was therefore significantly below than the water solobility 38 mg/L as determined at different pH (3-9). Acetonitrile was present as an organic go solvent below 0.1% during the tests from preparation of the application solutions. An initial pH of 6.0 was determined for the aqueous 0.01 M calcium chloride solution in the absence of solt. Due to the insufficient stability of the test item, it was not possible to establish a plateau concentration Therefore, 24 hours was chosen as adsorption equilibration time file. shaking duration for soil In the definitive test, whereas the adsorption samples and as lippited to 9 equilibration time for soil samples and hours. With regard to the stability of the test item, 24 hours was considered appropriate for desorption and 15 hours for the soil equilibrium of the soil samples and samples and For work-up the aqueous supermatant was separated from soil by decentation and contribution (10 min, 4200 rpm). Radioactivity in water and soil extracts was determined by liquid scintillation counting (LSC). Non-extractable radioactivity in soil was determined by combustion followed by LSC to establish a full material Balance.

Finally the adsorption parameters were calculated using the Freundlich adsorption isotherm.

2. Analytical procedures: Radio-labeled KBR 2738 was determined by liquid scintillation counting (LSC on the definitive test, MPLC analyses with ¹⁴C Detector were used for the parental mass balance in the pre tests. The limit of detection (LOD) was set to 0.5% of applied radioactivity, the limit of quantification (LOQ) to three times the LOD i.e. approximately 1% of the applied radioactivity. Values between LOD and LQQ are used for calculation just as given.

M. Results and Discussion

### A. Mass balance and results of preliminary tests:

Preliminate tests performed of solubility and stability of the test substance in aqueous 0.01 M calcium chloride solution confirmed stability under the conditions of the test. Pre-tests on adsorption to the walls of test vessels by staking an aqueous solution of the test substance in the absence of soil for up to 96 hours showed no adsorption as it is bocumented by a constant concentration during the total testing period.

Pre-tests of adsorption equilibrium to soil resulted in mass balances ranging from 92.9% to 96.7% of AR (mean values of duplicates) for all soils (Table 7.4.1-2). In parallel, the stability of the test substance was confirmed by parental mass balances of more than 90% of AR.

For the definitive tests the overall mass balance for individual samples at all concentrations and for all soils investigated ranged from 94.4% to 100.3% of AR. The resulting mean recoveries (Table 7.4.1-3)



were found to range from 95.6% (soil	to 99.3%	(soil			) 🔊
with standard deviations ranging from $\pm$ 0.4% AR (soil	1.0%	AR (soil	).		<i>a</i>
Table 7.4.1-2:Parental mass balance after incubation for 24 percentage of applied radioactivity in solution and	and 48 h d soil extr	ours, rest act (mean	bectively, of duplica	calculated tes).	às.
Matrices	Soil 1	Soil 2	Soil 3 O	Soil 🏈	L.
Soil ID			$\mathcal{G}^{\mathbb{Z}}$		
Recovery radioactivity in supernatant [% AR]	69.9 Q	71.5	6407	90.1 🔊	Å
Test item in supernatant [Area %] *	99.1 °	100.0	99.4 Q	99.2°	×
Recovery test item in supernatant [% AR]	69.3Q	71°.5 🔨	63.8	69.5	
Recovery radioactivity in solid phase [% AR]	25/9 🔪 🤇	Ž6.0 👋	3 K P	<b>\$</b> 5.5	Ÿ.
Test item in solid phase [Area %] *	95.8 🔊	97,1°	9 <b>3</b> 7.7 🔊	96.6	
Recovery test item in solid phase [% AR] 🔿 🖉 🖉	24.9	253	29.1	24.6	0
Non-extractable residues	NQ	N/A	N/AO [®]	NOA A	0
Total recovery of radioactivity [% AR]	95.8 A	, 97 <u>, 5</u> 0 [°]	95,2	95.6	
Total recovery of test item [% AR]	94.1 O ^v	96.7	92.9 🔊	94.15	
Mean for all soils: 94.5 %	~~~.		Ű	- Ĉa	
Soils and solution for 48 hour		ř _O	S.	Ú ⁴	
Soils and Incubation for 24	hours	Å,		1	
N/A = Not available		Š Å	ř 👋		
	~~ `~	, Q	Ča –		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		. 0		

Overall material balance for soils after adsorption, desorption, soil extraction and Table 7.4.1-3: combustion expressed as percentage of applied radioactivity (one replicate).

Description 🖉 🖌 🐧	Soil 1 🔍	Soil 2. 🖉 🔬	Soil 37	Soil 4
Soil ID		S Q		
	Recovery	Recovery	Recovery	Recovery
Test concentration (mg/L)		🕻 % AR 🏳 🚽	[% AR]	[% AR]
	99.8	97.20 0	98.7	96.5
	99.7	95.7° O	99.3	96.6
	28 .7 ×	96.9	100.3	94.4
0.03	99.1 💮 🛛	95.8	98.9	94.4
0.01	99,0	95,1 ^{0°}	98.6	95.8
Mean recovery N .	903 0	9621	99.1	95.6
SD V O V	₩0.4 °°	⊭ 0.8	± 0.6	± 1.0

Data are calculated based on sun of radioactivity for removed supernatants after adsorption and desorption steps, soil extraction and final soo combostion.

B. Transformation of parent compound of the stability of the test substance was confirmed by HPLC analysis to result in parental mass batances of more than 90% of AR.

Ø

Ŵ

Fundings Based on the results of pre-tests for an adequate soil-to-solution ratio the definitive C. tests were performed at a ratio of 1:40 for all soils. The equilibration time for adsorption was 24 hours for souls and 9 hours for soils and respectively. The equilibration time for desorption was 24 hours for soils an and 15 hours for soils and and

respectively.

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Within definitive tests, the portion of ¹⁴C-KBR 2738 adsorbed to soil after 24 hours was found to be 23.7% to 33.8% AR for soil 24.7% to 36.6% AR for soil and 26.3% to 38.8% AR for soil , 28.5% to 41.9% AR for soil (Table 7.4.1-4). Following 24/15 hours of desorption the corresponding values for radioactivity desorbed amounted to 47.1% to 54.9% (% of initially adsorbed radioactivity) for soil 4% to 49 for soil 36.8% to 49.0% for soil 35.0% to and for soil (Table 7.4.1-5). \bigcirc The adsorption behaviour of [phenyl-UL-14C] KPR 2738 could be accurately described within a nominal concentration range of 0.01 mg/L to 1.0 mg/L by the Freundlich equation for all soils (Table 7.4.1-6). The adsorption constants $K_{(ads)}^{P}$ of the Focundich isotherms anged from 42.43 to 14.07 mL/g with associated Freundlich exponents 1/n to be below 1 for all soils (0.8604 to 0.8998). The adsorption behaviour to soil was thus to some extent affected by the concentration of the test item. The corresponding correlation coefficients of adsorption isotherms ranged from 0,0957 to 0.9996 therefore indicating a good linear fit to the measured data. When being normalized for organic carbon content of soil values of KOC(ads), varied from 3P3 mLy (soil to 654 mL/g in maximum) with an arithmetic mean of 517 m/ g. Using the Briggs classifications for the (soil estimation of the mobility of crop projection agents in soil based on KF and/or KOC-values, fenhexamid can be classified as low mobile to mmobile for adsorption and as impobile for desorption Langed i The correspondence of Kerk 2738 once adsorbed to soft part the correspondence of Kerk 2738 once adsorbed to soft part the correspondence of th Desorption constants (F(des) according to Ereundlich ranged from 29.23 mL/g (soil). The corresponding values for K_{OC(des)} ranged from voresult in an arithmetic mean K_{OC(des)} values were thus slightly higher than the corresponding values of K_{oc(ads)}, indicating a

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Description			Ö Ü A
Concentration	Soil*	Solution	Percentage
of a.i.	(mg/kg)	(mg/L)	adsorbed
Soil		(Soil (Soil	
Control	N/A	N/A Q	
0.011 mg/L	0.145	0.007	33.8Q0.7 0
0.031 mg/L	0.390	0.02 [™] ⊘°	314 ± 1.3
0.11 mg/L	1.269	9,073 s	
0.31 mg/L	3.340 🐇	Ø.231 V	26.6 ±0.4
1.04 mg/L	9.843	<u>v</u> <u>v</u> 0.780 <u>b</u>	
Soil		-Soil I	
Control	N/& v	N/A O	
0.011 mg/L	0 13 7 4 .		3665 ± 0.4
0.031 mg/L	0.431		€ \$ 3 4.7 ± 6%
0.11 mg/L	1.304 6	\$ 0.072 \$ b	○ 31.0 ± 0.0
0.31 mg/L	3.727 ₂	0.2 2	2907 ± 0.4
1.04 mg/L	¥0.278	<u>0</u> 0.782	24.7 ± 0.2
Soil		(Soil IDs	
Control 🖉		NA &	
0.011 mg/L 🖉	ی ک ² 0.179 ک	∕ <u></u> ,006 ^O	41.9 ± 0.1
0.031 mg/L 🔊 🔍 🤇	0.489 ~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	39.4 ± 0.2
0.11 mg 🖉 🔊	\$\$07 0° x	0.067	35.9 ± 0.6
0.31 mg/L	4.131 × s.Q	\$ 0211 V	32.9 ± 0.7
1.04 mg/L 火	<u>م من 11,8</u> 274 ک		28.5 ± 0.3
Soil .		(Soil ID:	
Control	NAO V	′ <u>&</u> AN/A	
0.011 mg/6 🕺	0.166	0.007	38.8 ± 0.0
0.031 mg/L	<u>5 0501 00 00000000000000000000000000000</u>	^{مَ} ^{مَ} 0.019	40.3 ± 1.1
0.11 ngg/L C	<u> </u>	0.067	36.3 ± 1.9
0.34 mg/L	₩ \$¥ 3646 ⁴ . Ø	0.223	28.9 ± 0.5

° ₩41- -Table 7 4 1 4. I III 14CIKDD 2720 :. Dofiniti . 4. C. e r 1

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

end of de	sorption equilibrium (mean	\pm s.d.)	
Description		-	
Concentration	Soil	Solution	O Percentage
of a.i.	(mg/kg)	(mg/L)	desørbed*
Soil		(Soil 19:	
Control	N/A	N/A Q	
0.011 mg/L	0.077	0.002	47.1 0.6 0
0.031 mg/L	0.200	€ 0.005 € °	4857 ± 2.2
0.11 mg/L	0.638	0,016	¥9.8±0,8
0.31 mg/L	1.600	Q043 ~	52.1 ⊉0.8
1.04 mg/L	4.435	μ ^{⁰ 0.13⁹ δ⁰}	549 ± 0.0
Soil		, (Soil	
Control	N/& sh	N/A O	
0.011 mg/L	0 0 97 🖉 🕻		384 ± 0.3
0.031 mg/L	0.257	<u>6</u> 004	20.3 ± 0.1
0.11 mg/L	0.736	\$ 0.014 × ~	0 435 ± 0.4
0.31 mg/L	2.073	0° ~ 0.0 40 ° 6	4404 ± 0.5
1.04 mg/L	\$.203 °	© 0.127 ×	Ø49.4 ± 0.3
Soil		(Soil ID:	
Control 🔬	A A A	NA &	2
0.011 mg/L 🖉	\$0.113 × ×	\$ 0,002 O	[™] 36.8 ± 0.2
0.031 mg/JS	0.309	× × × · · · · · · · · · · · · · · · · ·	36.9 ± 0.0
0.11 mg 🖉 🔗	\$\$\$873 _ ~ ~ ~	0.000	42.1 ± 0.9
0.31 mg/L	2.319	يخ 00045 V	43.9 ± 0.7
1.04 mg/L 👔	6.0 5 0	0.1450	49.0 ± 1.2
Soil Soil		Soil ID:)
Control 🔊	NAO W	K ANA	
0.011 mg/	0.108	0.001	35.0 ± 1.3
0.031 mg/L	\$337 ×	0.004	32.8 ± 1.1
0.11mg/L	0.969	0.014	36.5 ± 1.9
0.34 mg/L		0.041	44.8 ± 0.9
a©04 mg/L Sa	Q 5.545 Q	0.134	49.3 ± 1.8

° ₩41- -Table 7 4 1 5. J III 14CIKDD 2729 ;-D. C. st. C f [__]

*

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

	G . 1		Adsorption				Desorption			
Soil	Soli type	pH*	K _F [mL/g]	1/n	R ²	Koc** [mL/g]	K _F [mL/g]	€1/n		Koc 🖓 [în][/g]
	loamy sand	6.2	12.43	0.8958	0.9991	654	29.23	0.9303	8,9988-	1538
	silt loam	6.5	13.37	0.8849	0.9993	557	34.92	0.9042	0.9994	1 455
	loam	5.8	15.79	0.8770	0. 9996	544 [©]	3454	6 8846		1191
	clay loam	7.4	14.07	0.8604	0.9957	343	32.18	0.850	0.9922	N 15
Mean (arithmetic)			13.91	0.8795	0.9984	512	32.92	0.8924	0.997 3	12 25 °
pH: Value given as c K _F : Freundlich coeff 1/n : Slope of the Fro K _{oc} : Adsorption coeff R ² : Regression coeff	letermined icients of a eundlich ac ficient per icient of F	with 0.0 adsorption lsorption organic reundlic	1 M calcin in (**) and /desorption carbon (K n equation	\tilde{m} chlorite after first on n isotherms x = 0/% of	solution desorption ganic carls					0 S

Table 7 4 1_6. Adsorption and desorption constants of KRR 2738 in soil

MI. Conclusion

Overall medium values of adsorption were determined for the active substance KBR 2738. Except for organic carbon content, the Freundlich coefficients RF for adsorption and desorption did not correlate with other physico-chemical properties of soil. There was also no obvious dependence of adsorption or desorption on pH of soil Of his is in good agreement with the chemical structure showing no structural elements that could obviously be a cause for such dependence within the range of pH being relevant Å for environmental conditions.

were two to three times higher than the respective adsorption The desorption constants $K_{\rm F}(des)$ constants, indicating the compound once adsorbed to soil.

Column Caching studies rely metabolites, degr. & react. products **IIA 7.4.4**

a,

Column leaching studies with the soil metabolite BCS-CQ88719 (M24), a [C-C]-dimer of fenhexamid were performed in order to evaluate reliable values for the Koc-value. The classical batch equilibrium method was not feasible due to the insufficient water solubility of the test item.

Ŵ	
Report:	Kul A 7,2,4 /01,, 2012
Title:	[Biphenyl-UL-14C]BCS-CQ88719:
Í Í	SoilColumn Leaching
Report No & 🖉	MEF-1 + 991
Document No	M-422470-01-1
Guidelines:	- OECD Guideline - Testing Chemicals, No. 312, Leaching in Soil Columns, 2004
, Ox	- US EPA Fate, Transport and Transformation Test Guidelines,
9	OPPTS 835.1240, Leaching Studies, 2008
GLP	Yes

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Executive Summary

The soil adsorption behavior of [biphenyl-UL-¹⁴C]BCS-CQ88719 (M24) was investigated \$ column leaching experiment performed on four test soils from Germany. About 16 µg test item BC CQ88719 (M24) was applied onto the surface of bulk-packed soil columns (diprension 30 cm/length), cm inner diameter), which had been saturated with 0.01 M aqueous CaCl2 solution before The columns were eluted with CaCl₂ solution at a constant flow rate of approximately 8.2 m/L/h for three days, which equals a simulated constant rainfall of about 100 men per day, or 300 mm in total Column elution was conducted under saturated flow conditions Throughout the experiments The column eluates were collected in constant time intervals of 12 kours (approx 100 mL/fraction) and analyzed by LSC.

No 14C-radioactivity was detected in the leachates. Approximately the whole radioactivity applied was found in the first segment (0-3 cm), only amounts of less than 7% of AR were found in the other segments below.

After draining, the soil columns were deep-frozen and cut into 6 segments. The radioastivity content in each segment was determined by garaction/combustion followed by USC. The material balance of each soil column was in the range of 96.2 to 100.8% of the applied test item radioactivity. The complete material balance found for all test columns demonstrated that no significant radioactivity dissipated or was lost during processing.

The evaluation of the numeric soil distribution of efficient (Kd) and the corresponding organic carbon normalized distribution coefficient (KOC) was based on nothematics derived from chromatographic theory.

Table 7.4.4-1: Summary d	A key data and results of soil column	n Draching	
Soil origin:	Sermany (Cormany	Germany	() Germany
Soil type (USDA)	Sandy Toam Silt loam	Loam	Clay loam
pH (CaCl ₂ , sõil characterization)	5.7 0 5 .2 0 .2 0	4.9	7.1
Organic cârbon [%]	5 H9 7 1.8	2.9	5.6
Kd fmL/g	15. 2 20.7 20.7 20.7 20.7 20.7 20.7 20.7 20.7	0^2 18.0 ¹ / 24.8 ²	$19.7^{1} / 27.4^{2}$
Koe [mL/g]	805 / 1099 893 71214	$621^{1}/856^{2}$	$353^{1}/489^{2}$

The following Table 7.4.4,1 sumparizes the key data of this study:

(Mean Koc: 6681 / 9122 (ML/g) Moxement and sorption of chemicals applied to the soil, Weeds13, 185-190, 1965. 1 calculation according to 2 calculation according to "The interpretation of soil leaching experiments", in: Environmental dynamics), pp/135-172, Plenum Press, N. Y., 1975. of pesticides, (Eds.)

According to the BRIGOS classification system for mobility of crop protection agents in soil, BCS-CQ887,19 (M23) would be classified as immobile in soils and

low to inmobile in soil and low mobile in soil

I. Material and Methods

A. Materials

- 1. Test Material: [Biphenyl-UL-¹⁴C]BCS-CQ88719 (M24) 2. Soil:

Table 7.4.4-2: Characteristics of test soils

Parameter		Results/	Units ^C ~	w s
Soil ID/				
Batch ID	20110523	×20110924	2011052	≈ 20 10524
				/
Geographic Location (City /	Sorth Rhine-	North Rhife-	North Rhine	%North Rhine-
State / Country)	Westphalia/	Westphalia/	Wostphalia/	© Westphalia/
	Germany	🖉 Germany 👋	Germany &	Germany
Soil Series 🔌	N/A Q	© ∠N/A ~	V NOX V	N/A
Texture Class A	Sandy Loam	Stit Loan 🖇	, Lõam 🔗	Clay Loam
Sand A		2327 O	33%	23%
Silt ^A	S14%		50%	44%
Clay A S O	<u>~</u> 9%∜ ~	× × 7% Q		33%
pH (0.01 M Cael ₂ , 12)	557	6,2	× ≪4.9	7.1
pH (Water, 1:1)	0 9.9 %	\$ 6 9 8	© 5.2	7.2
pH (Saturated Paste)	\$ 5.9 A	§ 69.4	5.2	7.1
pH (1 KCl, 1:1)	5.50	5.9	4.5	6.9
Organic Matter ^B	<u>6</u> 3. 3%	<u> </u>	5.0%	9.7%
Organic Carbon	× × 9% ×	1×1×8% 5 [×]	2.9%	5.6%
Cation Exchange Capacity	9.8 9	g Q2.1 👡	10.0	22.0
(CEC)	meq/h00 g	meq/100 g	meq/100 g	meq/100 g
Water Holding Capacity		38.8%	37.0%	43.6%
0.1 bar (pF 2.0)			57.070	45.070
Water Holding Capacity	\$ 10 89 5	× 27 9%	24.9%	34 3%
0.33 bar (pF 2.5), 9			21.370	51.570
Bulk Density	$1.24/g/cm^{3}$	1.16 g/cm^3	1.04 g/cm^3	0.99 g/cm^3
Particle Density	^2,58 g/cm ≜	x^{*} 2.51 g/cm ³	2.59 g/cm^3	2.52 g/cm^{3}
Soil Taxopamic	Sandy, mixed,	Loamy, mixed,		
Classification (USDA)	mesic, TypicQ	mesic, Typic	N/A	N/A
	Cambudolls	Argudalfs		
Soil Manning Unit	_₹\$¥ 51°04Q6'	N 51° 04.0'	N 51° 04.5'	N 50° 22.9'
	Č [™] Ě 006°53.5'	E 007°06.3'	E 007° 06.4'	E 006° 43.0'

USA.

according to USDA classification

^B % organic matter = % \bigcirc ganic carbon $\times 1.724$

^C Analyses performed at

^D long term average

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

B. Study design

1. Experimental conditions: The study was performed with cylindrical glass tubes finner diameter 5 cm, length ca. 45 cm) filled with sieved air-dry soil to a height of approximately 30 cm. During the study the columns were eluted with 0.01 M aqueous CaCl2 solution. Two peristaltic pumps were used for solution delivery to the column top and for active effluent drainage from the column ponding solution above the top soil layer, such ensuring saturated flow conditions as required for the calculation of Kd/KOC values according to the chromatographic theory.

The outlet of the glass tube was covered with quark wool. Then, the conical bottom was filled with a layer of washed quartz sand up to a level just reaching the orlindical part of the glass tube. Small portions of the sieved, air-dry test soil were piccessively poured into the glass column under gentle vibration to obtain a uniformly, dry-packed soil layer. For a finable glass of 30 cm, 628 to 775 g of soil were used per column.

The packed soil columns were slowly saturated with 0.01 M CaQ12 solution by reverse flow from bottom to top, to displace the air in the soil pores by water. The columns were equilibrated for approximately 8 hours, before the excess solution was drained and the solution level was brought to soil surface level. Saturation and excess volumes were determined 15.8 µg of test item/BCS-CQ88719 (M24) were applied to the surface of bulk packed soil columns (30 cm long, 5 cm inner diameter; duplicate columns for each soil) that had been saturated with 0.01 M aqueous CaC12 solution before. The experiments were performed in duplicates.

For a total of three days, or unt solution was delivered automatically to the column tops by a multichannel peristatic pump. Aponding solution of 10-20 mm above soil level was maintained, to ensure saturated flow conditions. After gravitational passage through the soil columns, constant flow drainage was whieved by a second pump

The total inigation volume that was applied over the 72 hours of the experiment was 589 mL. The eluent flow rates were adjusted to 8 mL/h, which equals a simulated constant rainfall of about 100 mm per day. The study was conducted in a walk-in climatic chamber at controlled temperature $(20 \pm 1 \, ^\circ\text{C})$. The column chates were collected in constant time intervals of 12 hours (approximately 100 mL per fraction) by a time controlled automatic fraction collector and analyzed by LSC. No 14C-radioactivity was detected in the leachates. After the irrigation was finished, the columns were allowed to drain. The leachate fractions were analyzed daily by LSC (2 x 2 mL), and the eluent volumes and pH values were determined.

After draining, the soil columns were deep-frozen. For further analysis, the frozen soil columns were pushed out of the glass tubes and cut into segments:

- column@1 and 2 of each soil treated with test item): 6 segments (2 segments of 2 among the work of 6 am length each)
 - 3 cm@ength.each, Asegments of 6 cm length each)
- columns 2 and 4 of each soil (freated with reference substance): 5 segments of from length each

The quartz sand was combined with the bottom segment.

2. **Similar procedures:** The radioactivity in solutions was determined by liquid scintillation counting (LSC). The LOQ was estimated to 1.2 Bq per 500 μ L aliquot measured. The radioactivity in

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

soil was determined by combustion of the air- and freeze-dried samples after extraction.Extraction procedures are summarized in Table 7.4.4-3:

Table 7.4.4-3: Characteristics of test soils

Samples	Solvent	Volume	Duration 💒	Temperatur	Cycles
Column 1*, segments 1-6; Column 2*, segment 1	Acetonitrile	80 mI	30 min shakang	ambient	
Column 1*, segment 1	Acetonitrile	80 juil	10 mm. microwave	₩ ^C Q	
Column 3**, segments 1-5	Acetonitrile/water 4/1 (v/v)	80 mL	30/min shaking	ambient	

* treated with test item

** treated with reference substance

No particular LOQ for this analytical method

A. Mass balance

Results and Discussion The material balance of test item was if the parge of 96.2 to 1003% of the applied radioactivity (Table 7.4.4-4 - Table 7.4.4-7). The good praterial balance in all columns demonstrates that no significant amount of radioactivity dissipate for was lost during processing. Radioactivity of [3H2 labeled water detected in the leachate fractions accounted for 91.7 to 100.2% of

AR. The material balance of atrazine was in the range of 91. To 96.7% of the applied radioactivity.

B. Transformation of parent compound: In the soil extracts only parent could be detected. No major degradation products were observed.

Findings: Extractable radioactivity in the top segments of soil С. and accounted for 56.9, 53, 54.0 and 7, 59% of AR (mean), respectively (Table 7.4.4-4 - Table 7.4.4-7). No radioactivity was lost during concentration of the extracts (recoveries >94%). The radioactivity assigned to the test item by HPIQC was 93% Extragable radioactivity detected in segments 2-6 was <0.5%. Non-extractable radioactivity in the top segments of soil and determined by combustion, accounted for 41.1, 2.1, 35 and 22.0% of AR (mean), respectively (Table 7.4.4-4 -Table 7.4.4-7). Non-extractable radioactivity detected in segments 2-6 was <1%.

Table 7.4.4-4: Material balance of BCS-CQ88719 (M24) in soil column packed with soil in % of applied radioactivity

radioactivity	e of BCS-CC	288719 (N	v124) in s	soll colu	mn pack	ed with	SOIL	In % of apple	a
Fytr Badioactivity	Replicate	1		Soil Se	aments		<u>~</u>	ı Š	T.
Extr. Radioactivity	No.	1	2	3	4	5 4	∑°6		\mathbb{P}
Ambient extract	1	54.88	0.23	0.02	0.00	0.00	0.00		
	2	58.04	n.a.	n.a.	n.a.	n . a	n.a.	Ô SI	, Q
	Mean	56.5		Ò		<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		, a.
Microwave		0.55	n.a. 4	Fn.a.	n.a.	🖉 n.a.	n.a.O	' \$° 4	Ś
	Z Mean	n.a.	n.a.	n.a.	n.aov	n.a.	n a	Q S	K ^O
Total	1	55 43	0-23	0.02	800	en 00 (50 00 <i>i</i>		¢″
	2	58.04	Qn.a.	n.a. 🖄	∀ n.a. 🤇	n.a.	n.a C	¢ ¢ ¢	/
	Mean	56.7				Ø.	ð		
Bound Residue	1	39.90 [°]	0.26	040	0:96	0 09	0:09	<i>. .</i> .	0
	2	42.36	0.07	0.09	0.08	90.06	0.10		1
Total Bound Desidues	Mean	41.1	0.2			0.6*	0,1		
Total Bound Residues	1	l' (N		°∼42	76%	Ň	Ő		
	Mean		S.	× 41	. 67 _~	5° .		e de la companya de l	
Segments Subtotal	Â,	95.33	0.49	0.120	0.06	0.0	0,09		
	@_ ^{2^v} ~ «	100.40	0.0	0,09)	0:08	0.06		х.,	
Second and Tradel	Mean'y	97.9	6023	AQ.1		0.1	<i>©</i> 0.1 ₍	Ĵ [≫]	
Segments Total		S (Ŷ (کر اور کر	148 ×		, Ô		
	Mean	ð _s ç	, A	98	.5	J.			
Leachate 🔬	S 19	Ő		.°~	Å «	Fractio	ons		
	Nov	@1	2	√ 3	40	* 5 🍫	6		
		n.d.	n.do	n.d	n.d.		< 0.1		
	Mean		n:ơ.	ાગ્રેલ.	Gad.	$\mathcal{S}^{0.1}$	<0.1		
Leachates Total		×							
	× 2 4	\$, ô	" "	<0	.1 🖉				
	Mean		Ç.	<u> </u>	\sim			-	
Columny Total		S°.	× 6	~~ 96a	18				
	Mean 🗸	V .		, 100 ~98	.80				
n.a. : not analyzed			S	S.				1	
		\sim :	$\mathcal{V} $	102					
A D		?' ⁽		,					
	s é		× V						
	* ~		Ş.						
		Q	, Y						
	L _0	í "S							
A A	¢', 5	Q,							
		S S							
	N.	У							
X X A	₹¥								
	7								
A G									
Č ^{O*}									

Table 7.4.4-5: Material balanc radioactivity	e of BCS-CO	288719 ((M24) in	soil colu	umn pac	ked witl	h soil	in % o	f applied	
Extr. Radioactivity	Replicate	1	2	Soil Se	gments	5	к [©] с	Ĺ	Ŭ _S)
Ambient extract	1	1 54.17	0.37	3	4	0.02	0.02	, C		Řo
	2	53.19	n.a.	n.a.	n.a.	NX 2.	n.a.			S
	Mean	53.7		<u>S</u>		ŵ	, (,
Microwave		0.34	n.a.	n.a.	n.a.	n.a.	n.a.	Ň	2 Q	. Ô ⁴
	Mean	11.a.		- 11.a.		۵. ۱۱.۵.		, Q	o ^v	W U
Total	1	54.51	037	0.07	0.05	0.02	Q0.02 (~
	2	53.19	[≪] n.a.	。n.a.	n.a. 🔊	√n.a. _©	n.a		- S	
Downed Desidence	Mean	53.9×				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6005	°¥	.4	•
Bound Residue	2	41.07	0.47 . 1077	₩31	-900 1906	0.04	$\sim 0.02^{\circ}$	Ĵ Į		0
	Mean	42.1 ∧	×0.6 ~	0.2	0.1	0.00	0.0	, C	1 C	
Total Bound Residues	1		i L	×42	.37 0″	N.	- O		Ő	
					.69	s,	S é			
Segments Subtotal		•0 ¢@6.18.0	b 0 85 C	- 4; 014	0.110	<u>)</u> () () () () () () () () () () () () () (
Segments Subtotal		95.68	0.75	0.34	0,06	0.94	19,992	×,		
	Mean	95,9	0.8	0.2	. Ø.ĭ	<i>©</i> 0.0	0.0	0″		
Segments Total	Å.	S	Ű,	© 97	.41					
No and Andrews	2 (Mean			96	.88 🔊 71/2	<i>S</i> ^v	Ś			
Leachate		0			0	Fracti	ÓMS			
	XQ.		^ي 2	⊳ 3 _	4 ⁽⁽	5	6	7		
		n.d.	n.d	n.d	n d	n d.	<0.1	n.d.		
	Mean	n.d.	neg.	n.a.	mo.	×07.0.	<0.1	n.a.		
Leachates Total 🖉 🛸	0		y ô		[™] <0.∦	9				
	³ Mean		<u></u>		\$0.9 0					
Column Total					96.88 97.41					
	North Contraction		- OF	- A	97.1					
Ý Č		\sim	, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~)r						
A	3		Ĩ L							
	Q°		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~							
N OY		ٽ ري	Ĭ							
4 1 1	Ø "S	\mathcal{Q}^{*}								
	, v 	Ø								
	No.	8								
	\$									
) [*]									
E Q E										
Č										
~										

Гаble 7.4.4-6: Material balanc radioactivity	e of BCS-CO	288719 ((M24) in	soil colu	umn pac	ked wit	h soil	in % o	f applied	
Extr. Radioactivity	Replicate			Soil Se	gments		<u>ò</u>] _	ø s	0
	No.	1	2	3	ິ 4	5 (6	4		
Ambient extract	1	65.26	0.04	0.02	0.11	0.02	0.02	Å.	29	Ô
	2	62.13	n.a.	n.a.	n.a.	n≰a. [≫]	n.a.	× :		Ĵ
Mississi	Mean	63.7				Ũ.			ſ,Ô	. C
Microwave	2	0.08	n.a.	n.a.	n.a.	∫ n.a.	n.a.	, St	Â,	, O ^Y
	Mean	11.a.		11.a.	11.de.	11.a.		~~	en la	
Total	1	65.94	07094	0.02	0.11	Ø.02	Q0.02 (,
	2	62.13	n.a.	。n.a. 🧃	n.a. 🕅	n.a.	, n.a		~~~	
	Mean	64.0%				<u> </u>	<u> </u>	`~≯	, w	
Bound Residue	1	33.34	0.05	002	0700	B Ø2	Ø.00		A L)
	2	3576	°°°24	Ø.15	~%09	0.09	0.10		Ŭ.	
Total David Dasiduas	Mean	<u>(</u> 34.5 /	<u>\</u> 0.1 ~	v 0.1 (<u> </u>		~	A CONTRACTOR	
lotal Bound Residues	1			°~3'5 ≈∞36	.41 12	ð	Ű	<u>S</u>	0	
		w w		× 30 34	.+ <i>p</i> o (9/ ?	S,	S L)	
Segments Subtotal	R (¢ 9 9.25 @	ð 0.10 C	0.04	0.110	 	0.0	°~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
8	@ 2 🔍	^{\$} 97.890	0.24	0.16	0,09	0.99	19,90	%		
	Mean	98,6	0.2	0.1	. % .ľ	<i>©</i> 0.1	0.1	O'		
Segments Total	Å.	S,	Ĩ	Ø 99	.57	× ~				
	2 0		y y	28	.56 ≪°	- D	~~~~			
Laashata	yrean	0~	<u> </u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				L		
Leachate	NO NO		S'	× 3		s racu	ons ¥6	7		
		v n d∧	n d [®]	n dØ	n A	nd	nd	n d		
	⁴ 2 %,	n d	n.d.	n.d.	and.	≾n.d.	n.d.	n.d.		
) Mean [®]	K, Or		ð ,		2,0				
Leachates Total 🦉 🛸		\$ \$, , ,		n.d 🗐					
	Mean	» () ~^^	- 6 ^g	- And	p.69.					
Column Total	¥`&U	Ő ^y s	j, 4		99.57					
			y O	````````````````````````````````````	98.56					
n a : not analyzed	viean [°]		Ś	<u> </u>	99.1					
	Ŭ N	\sim	× *	<i>"0</i> "						
		S' de)ř						
E C	Nº V									
	~~~~	Ś	~Q [*]							
		0 ~	, and a second s							
		× ₁ 0	v							
	Ø S	$\mathcal{Q}^{\mathbf{v}}$								
		Ø								
		b b								
	Ő									
	Ý									
× A×										
Ű										



radioactivity	e of BCS-CC	288719 (	NI24) in	SOIL COL	umn pac	ked with	1 8011	IN % 01		
Extr. Radioactivity	Replicate			Soil Se	egments		ð,		Ø A	
•	No.	1	2	3	<b>4</b>	5	6	4	·	<i>y</i>
Ambient extract	1	74.95	0.14	0.02	0.02	0.02	0.02	<u></u>		Ro
	2	78.36	n.a.	n.a.	n.a.	nxa.»	n.a.		ÇQ ^v v	S.
	Mean	76.7		Ô		A T		$\&' \sim$	, , , , , , , , , , , , , , , , , , ,	1
Microwave	1	0.45	n.a.	Mn.a.	n.a. 🦼	n.a.	n.a.	/	×	Å
	2	n.a.	n.a. 🏑	n.a.	n.a.O	[≫] n.a.	n.a	Ã.	S.	& ^O
	Mean		0		Q ^Y	0	-A	¥ ۲.	0,0	v
Total	1	75.40	074	0.02	0.02	<b>9</b> .02	QØ.02 (	D a	Ň	
	2	78.36	°™n.a.	。n.a.	n.a. 🗞	n.a.	n.a.	. K	, S	
	Mean	76.9%		Ň		K,		$\sim$	, ¹⁰	
Bound Residue	1	22.46	0,13	୦୫୮	0,03	894	<b>@</b> 12		A L	0
	2	24,50		<b>W</b> 12	~~~14	0.08	0.10		Ű.	
	Mean	¥2.0 ∧	<b>v</b> 0.1 ~	0.1	<u>} 0.1 (</u>	₿ <b>0,1</b> 0	0.*		A CA	
Total Bound Residues		Ý . ¢		~22 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.88 O	N.	Ĩ	Â,	õ	
			S.S.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	.040°	S.			)	
Sammanda Sabbadal	- Miean	"0" . 07.96 /	· »				0.14			
Segments Subtotal		69/.80 ( 00 86	6 0.20 C	0.13			0.1@ a@0			
	Manny	08.0	0.05%			0.90 &0.1		×		
Sagmants Tatal	k with	C'	- 0.2 - K	0/1 @v 98	SY 7			$\bigcirc$		
	Ģ [×]	S .	¢,	106	39					
	A Mean.			- Age	).4/	Ś	Ś			
Leachate	Streen 9			~~		Fracti	<u> </u>			
	NG .	<b>O</b> 1	\$2.	<b>∛</b> 3 _	<b>4</b>	P' 5	6	7		
		J~<0.1	n.d.	n.do	n.el	n.C	n.d.	n.d.		
õ "N	\$ 2 6	<0.1	n.d.	n.d.	nd.	vn.d.	n.d.	n.d.		
	Mean	60	N.	ð	S.					
Leachates Total 🔗 🔍	ed .	<u>م</u>		Ş (	O<0.k	ŷ				
~ ~ ~	₩2 6	∱ ∂	, "O	ſ@	<u>્ર</u> 02					
	Mean	~	S	~~~~	Ň					
Column Total 👌 🏠	r k	S.	N 0	, ,	98.51					
\$°.4	Ŷ.			۲ ×	^{**} 100.39					
<u> </u>	Mean	1. 2	, <u> </u>	Ŭ.	99.4					
n.a. : not analyzed	, Č	0 [×]	, Õ ^y	The second secon						
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		$\sim$ ,		¥						
A Or	29° 4	¥ 6	, Ū	II						

The evaluation of the primerio soil distribution coefficient (K_d) and the corresponding organic carbon

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Soil	K _d ¹	Koc ¹	K _d ²	Kojc ²
(columns /	15.2 / 15.4	799 / 813	29.5 / 20.9	1,049 / 11,03
(columns)	15.9 / 16.2	883 / 902	21.6 / 22.1	×1198 2230
(columns)	18.1. 17.9	624 / 618	25.0 / 24.8	861 / 850
(columns)	19.6 / 19.8	3540, 354	27.3 27.5	\$487 / 491
Mean	1 7.3	668	Q3.7	OP12
calculation according to Lambert	~	, Ŭ	<u>~~</u>	Ô, Ô
2 calculation according to Hamaker / McCall	e S	ja ja	″_Ô [^] >	
Fable 7.4.4-9: Kd/Koc Values of ¹⁴ C-Atrazine: 🗪 🦼	ŗ, Ľ	ð S		A f
Soil	Kd ¹	Koc ¹		Koc
(mean of)	© 4.85	0 254	8 .4 ×	1 3 37
(mean of the second sec	2.3		3.00	Å 168
(mean of) a a	8.96	\$ ³⁰⁴ \$	^{2.1}	∀ 415
(mean of)	9%4	165	12.90	230

2 calculation according to Hamaker /

III. Conclusion

The soil adsorption coefficients Kd salculated according to Largeert ranged from 15.2 to 19.8 mL/g (mean: 17.3 mL/g) The respective organic carbon formalized sour adsorption coefficients (K_{oc}) ranged from 353 to 893 mL/g (mean: 658 mL/g). The soil adsorption coefficients Kd calculated according to ranged from 20.5 to 27.5 mL/g (mean: 25,7 mL/g). The respective organic carbon normalized soil adsorption

coefficients (K_{oc}) ranged from 489 to 4214 mJ/g (mean: 9D mL/g).

Using the Briggs classifications to the estimation of the mobility of crop protection agents in soil be classified as low mobile to immobile for based on K_{oc} values. adsorption

Direct photofransformation of relevant metabolites in water IIA 7.6

In former photolysis study in aqueous buffer solution (, 1996a) the benzoxazole of KBR 2738, MIQ (WAR 7004) which was formed in amounts of approximately 24 % of applied radioactivity was for ther metabolized very fast (DT50 << 1 d) and therefore not taken into consideration for modelling purposes.

Additional to the direct photolysis mentioned under point IIA 2.9, a further phototransformation experiment published in Chemosphere vol. 81, pp. 844-852 from 2010 was taken into account. In this et al. a new major aqueous photometabolite occurred in amounts up study performed by to 15% of AR and was identified as the 1-methyl cyclohexane carboxamide (M40). In those

phototransformation experiments different photo sentitive additives like acetone, etc. and humic substances like humic acids, etc. were utilized in the experiments. The metabolite is added into the aquatic degradation pathway shown in Figure 7-2.

Degradation in aquatic systems IIA 7.8

Aerobic biodegradation in aquatic systems **IIA 7.8.1**

Studies on the aerobic biodegradation in aquatic systems are not a data requirement of Directive 91/414/EEC. However, data of a water-sediment study allow for a comprehensive description of the fate and behaviour of KBR 2738 in biotic aquatic systems. fate and behaviour of KBR 2738 in biotic aquatic systems

IIA 7.8.3	Water/sediment studies
-----------	------------------------

Report:	KIIA 7.8.3 /01; 201 201 201 20 20 20 20 20 20 20 20 20 20 20 20 20
Title:	[Cyclohexyl-1&C] Fenhexamid: Aerobic Aquatic Metabolism
Report No &	MEF-10/6370 2 0 2 0 0 0 0 4
Document No	M-417147-01-1
Guidelines:	- OECD Guideline for the Testing of Chemicals No. 308 Aerobic and Anaerobic
	Transformation in Aquatic Sediment Systems, adopted April 24, 2002
	- Commission Directive 95/36/CC amending Council Directive 91/414/EEC
	(Connexes II and III, Fafe and Behavior in the Environment), July 14, 1995
	US EPA Fate, Transport and Transformation Test Guidelines, OPPTS 835.4300
	and OPPTS 835.4400, Aerobic and Anaerobic Aquatic Metabolism, 2008
GLP Ö	Yes a g g o g

Executive Summary

The aerobic biotransformation of [cyclobexyl-LAC]fephexamid (KBR 2738) in two different waterat 20 ± 2 °C in the dark for 100 days. sediment systems and≊ The total recovery of adioactivity in individual test vessels of the systems ranged from 92.9 to 102.0 % (mean of duplicates, overall notan 96.3 %, RSD 2.6 %). The radioactivity in individual test vessels of the test systems ranged from 91.9 to 100.8 % (mean of duplicates, overall mean 95 1 %, RSD 3.0%).

A full material balance was established for all samples.

The radioactivity in test systems from water decreased steadily from 93.6 % of the AR at DAT-0 to 1,2% of the AR at study termination (Day 100). The radioactivity in test systems water decreased from 95.7 % of the AR at DAT-0 to 6.0 % of the AR towards the from end of the study The extractable radioactivity in test systems from increased from 3.0 % of the AR at DAT-7 and declined to 14.2 % of the AR at study termination Extractable C residues in sediments from increased from 1.5 % of the AR at DAT-0 to 27.6 % of the AR at DAT-14 and dropped to 6.9 % of the AR at study termination. The non extractable residues for test systems from were 0.2 % of the AR at DAT-0 and increased to 55.6 % of the AR at study termination. For water/sediment systems,

the amounts of bound residues were 0.1 % of the AR at DAT-0 and increased to 42.7 % of the AR towards the end of the incubation period, with a maximum of 45.4 % of the AR at DAT-39. At termination of the study, the ¹⁴CO₂ recovery (mean values of duplicates) in systems from was 22.0 % of the AR. In water/sediment systems, ${}^{14}GO_2$ accounted for 36.4% of the AR at study termination while formation of other organic volatile components was negligible (<0.1% of AR). 1-Methylcyclohexane carboxylic acid (M39) was observed as a major degradation product

[cyclohexyl-1-14C]KBR 2738 in the water phases and in the sediment extracts of both water/sediment) and 8.9 % 🤅 systems. In the water phases it accounted for up to of 6.4 % () of the AR. In the sediment extracts, methylcyclonexane carboxylic acid accounted for 7.8 % and 4.1 % of the AR, respectively (these amounts include a minor metabolity, KBR 2738-sulfate

(M27), which accounted for a maximum of 4.2 % of the AP in the total estem of KBR 2738-3-deschloro (M12) was observed as a major degradation product of fenhexamid in the only. In the water phase it accounted for only up to 1.1 % water/sediment system of of the AR and in the sediment extract it accounted to a maximum amount of \$5 % of the AR. In the water/sediment system of residues of KBR \$738-3 deschloro (MP2) were detected only in small amounts: In the water phase residues above the LOD were not found and in the sediment extract it accounted to a maximum amount of 1.4 % of the AR. KBR 2738-sulfate (M27) was observed as a monor degradation product of fenhexamid only in the n apounts of up to 4.2,% of the AR (calculated value for the water/sediment system of total system).

The half-life for the dissipation from the water was calculated to 5.6 days (system both determined on the basis of a best fit to measured data by and 2.7 days 🎓 applying the bi-phasic kinetic model DEOP. For the degradation in total systems thalf-lives were calculated to 10.8 days (system trom best fits applying the massic kinetic model DFOP. and 14.5 days (

. . Material and Methods

A. Material 1. Test Material:

F[cyclohexyd-1-14C]KBR 2738 Specific adioactivity: 4.64 MBq/mg Radiochemical purity: >99% (HPLC) Sample ID: KML 9212

2. Test Syston: The study was carried out with two contrasting water/sediment systems collected at two locations in German. Water and sediment of each system were collected from the same area. While sostem % was collected from the standing water of a pond, system " was collected from an artificially dammed creek and thus originating from flowing water. No pesticide was applied to or around either area prior to collection. Sediments and water were collected from the top 0 to 20 cm and stored at ambient temperature overnight prior to further processing. Before set-up of samples, the wet sediment was passed through a 2 mm sieve by use of the associated

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

water. The characteristics of the sediments and their associated water are summarised in Table 7.822 and Table 7.8.3-2.

-1 at 10^{-1} , -30^{-1} , -10^{-1}
--

Properties of Sediments		1	
Parameter			
Geographic Location	close to		2 4
	North Rhine Westphalia	V North Rhone-Westphali	
Soil Taxonomic Classification (USDA) [#]	Sigt Loam	Q Q Sand o	Ô
Sand $(2000 - 50 \ \mu m) \ [\%]^{\#}$	35 0 0 4		
Silt (< 50 – 2 µm) [%] [#]			-
Clay (< µm) [%] [#]			
$pH^{\#}$	5.0 (CaCl ₂), 5.2 (H ₂ O)	60° (CaQ ₂); 6.5 (H_2O)	A C
Organic Carbon [%] ^{*,2}	2.94/.n.a./4.83 0	0.20 n.a. 0.49 (
Soil Microbial Activity	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 . J. 7	
[mg CO ₂ /hr/kg sediment (dry wt)			
Cation Exchange Capacity [meq/100 g]		۵ _م ⁰ 2.4 <u>«</u>	
Redox Potential E _h [mV		+212	
	N QUI A		

Table 7.8.3-2: Physics-chemical characteristics of water

	J Z
Table 7.8.3-2: Physico-chemical characteristics of water	
Properties of Waters &	Ø
Pakameter, 4 4	
Temperature [°C] ¹	Ø 11.5
γ pH ¹ γ γ γ γ 7.6 γ γ	7.5
$\mathbb{A}^{\mathbb{A}}$ Hardness [$\mathbb{C}^{\mathbb{A}}$]*.2 $\mathbb{A}^{\mathbb{A}}$ $\mathbb{A}^{\mathbb{A}}$ $\mathbb{A}^{\mathbb{A}}$ $\mathbb{A}^{\mathbb{A}}$ $\mathbb{A}^{\mathbb{A}}$	n.a. / 9.7 / 10.3
Oxygen Concentration (saturation) 908	92.2
Total Organic Garbon (\mathcal{OOC}) $[\mathfrak{pg}/L] * \mathcal{O}$ $\mathcal{OZ} / 4 / \mathcal{OC}$	2 / 2 / 4
Dissolved Organic Carbon OOC $< 2 0 9$ $A [mg/L]^{*,2}$	< 2 / 2 / 3
Total Nitrogen [mg/L]* Q 3.7 m.a. / 1.2	4.0 / n.a. / < 1.0
Total Phosphores $[mg/\Delta]^{*,2}$ \sim	< 0.03 / n.a. / 0.08
\mathbb{P} Redox Potential $E_h \partial \mathbb{P} V$	+229

B. Study design

1. Experimental conditions. The tests were performed in individual glass cylinders as test vessels whick were filled with sieved sediment to a depth of 2 cm. Associated water was added to each test vessel up to a depth of 6 cm above the sediment to result in a sediment-to-water ratio of 1:3 (v/v). The test versels were pre-incubated at 20 ± 2 °C in the dark for 5 days for equilibration of systems with regard to oxgen content, pH, redox potential and phase separation. During periods of acclimation and incubation the water phase was aerated by gentle agitation of the water phase by an orbital shaker.

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Each of the static test vessels was attached to a trap for volatile components formed, *i.e.* soda lime for ¹⁴C-carbon dioxide and polyurethane foam plug for other volatiles. Two replicates were prepared for each sampling date.

The nominal application rate of 52 μ g/batch corresponds to about 100 μ g/L water and was prientated on the projected maximum field application rate of 1000 g/ha. The actual test concentrations was 53

μg a.s/L for both, **and and an and an and an analysis**. Each sample was dosed by applying an methanol: water (F:1, v:v) solution of ¹⁴C-KBR 2738 dropwise onto the water surface to result in average amount of 53.1 μg KBR 2938 applied per test ressel. Non-sterile, untreated samples were prepared in parallel for each water sediment system for monitoring of total organic carbon (TOC) in the water and the microbial biomas in the sediment phase, respectively. One sample per water/sediment system was analyzed at time zero and after 2, 100 days of incubation taken each two aliquots out of one test system. The water/sediment samples were incubated under static conditions (gentle staking of test ressels test flasks permeable to air) at 20 ± 2 °C for a maximum period of 100 days.

2. Sampling: Duplicate samples of were removed for analysis after 0, 1, 5, 3, 7, 14, 30, 62 and 100 days of incubation for and and and systems of the syst

à

3. Analytical procedures: At each sampling interval, the pld and dissolved oxygen content were measured in the water phase. In addition, the redox potential was determined in the water phase and the sediment.

Water and sediment were separated by decantation which was followed by extraction of the sediment at the same day. Sediment was extracted exhaustively with aqueous acetonitrile under ambient and aggravated conditions (3×80 fall acetonitrile/water (4/1, $\sqrt{3}$) extractions at ambient temperature and 1 x 80 mL acetonitrile/water 04/1, $\sqrt{3}$) using microwave accelerated solvent extraction).

Water samples were analysed boLSC and HPLC directly without concentration. Sediment samples were in general concentrated poor to HPLC analysis

Extracted sediment was air-dried prior to quantification of radioactivity via combustion and LSC.

Volatile radioactivity in Soda time was determined by addition of 18% hydrochloric acid and absorption of the liberated of $\frac{1}{2}CO_2$ in a mixture of Carbosorb E/Permafluor E+ for LSC measurement. The potential presence of $\frac{14}{2}CO_2$ in the water phase was checked the same way following the removal of a 50 mL aliquot directly after decantation.

For determination of other colatile radioactivity polyurethane foam plugs were extracted with ethyl acetate followed by LSC assay of the extracts.

The vadioactivity in liquid samples was directly determined by LSC while extracted sediment was combusted to adsorb ¹⁴C-carbon diox de formed prior to the determination by LSC.

Chromatographic investigations were performed by reversed phase HPLC with ¹⁴C-flow-through detection as the primary analytical method for quantification. Identification of transformation products was carefed out by co-elution with authentic reference material. Normal-phase TLC using a bio-radioitnaging system as ¹⁴C-detector was utilized as the confirmatory analytical method for selected water and rediment samples. The identity of the ¹⁴C-test material was confirmed by HPLC/MS- and HPLC/proton-NMR coupling techniques.

The LOD for the HPLC method was about 0.9 % of the AR for the water phase and about 0.1 % of the AR for the sediment extracts.

С. Determination of degradation kinetics: Dissipation rates from the water phase and rates of degradation for the total system were calculated by use of the software KinGui, version 1,1% The kinetic evaluation included the fitting of data with kinetic models SFO, FOMC and DFOP to the experimental data and their assessment according to FOCUS guidance of result in Maues for comparison with trigger endpoints.

Results of a separate kinetic analysis in order to derive input data for modelling within aq environmental risk assessments are presented in another port, under point IIA 7.8.302

II. Results and Discussion

A. Findings

After having reached equilibrium between water phase and the sedfment the antispated test conditions were maintained througout the whole incubation period after application of the test substance anged from pH 6. 2 7.3 For the water The pH-values in the water phases from , pH value Qranged from 8.0 - 8.4 phases of Č ranged from H 63-For the sediment The pH-values in the sediment from

, pH values ranged from 6.8 8.3. of

, O Measurements of the redox potential in water and sediment and the oxygen content in the water indicated aerobic conditions for both water/sediment systems during incubation (Table 7.8.3-3 and

The results of microbial biograss deferminations or sedupents showed that biological activity of the test systems was goen during the entitle incubation period, From Tower values of biomass after 100 days of inculation, some trend for a reduction could be derived for both systems. The decrease may be regarded as advincal situation within laboratory tests on soils and sediments with microbia suffering from a lack of nutrients when being field additicial in test flasks and separated from the

stems stems insurveduents & insurvedu
Sampling interval *		Water		Sed	iment 🔍	Ģ
(day)	O ₂ -Sat. (%)	рН	$E_{obs}(mV)$	H⊈	Eobs (0
0	90	8.1	176	A.4	143 O	}
	92	8.1	164	° 7.3	175	
1	90	8.1	157 🚄	7.5	<u>6</u> √ 163	Ô
	90	8.2	172 🔊	7.4 °	× 1,78 ,	Þ
2	89	8.1	160	7.4 🔊	₹¥58	
	89	8.1 🕅	146	7.5®	× 167	
3	84	<u>8</u> .0	178	764	Q 188	Ľ
	84	8 .0	~ 3 82 ⊘°	A.3 L	. 194 <u> </u>	V
7	82	<i>Q</i> 8.1	>> 172 ♥	~~7.4 ∖ °`	\$136 Q	
	80 (× 8,0 °	1.66	Ø 7. D	× 159	
14	81 C	<u>8</u>	468 m	68	1,62	1
	78 🔬	8.2	0 ¹⁶⁴ 0	6.9	A39 L	Þ
30	92 🔊	8,0~	124	7.6	\$117	
	93 🖓 🦦	X 861 X	× 129 ×	y 6,0,	لا 10	
62	980	×9.2 ×	×180 č	<i>Q</i> .4	▶ 199	
		× 8.3 ×	20181,5	<u>5</u> 7.5 Č	_@150	
100	Q90	8.4	S 186	0 7.8	× 194	
	93 × 1	× 8,4	2 183 8	× 80 1	185	

Table 7.9.3.3. Measurements of dissolved eviden nH and redevinetial in system

 100
 290
 84
 186
 7.85
 194

 Ess = Redox potential as medified with reference elective (AgArgCI)/the redox potential reference is the hydrogen standard electrode (Es) resides from the suprov due (AbargCI)/the redox potential reference alectrode (Es) resides from the suprov due (AbargCI)/the redox potential reference alectrode (Es) resides from the suprov due (AbargCI)/the redox potential reference alectrode (Es) resides from the suprov due (AbargCI)/the redox potential reference alectrode (Es) resides from the suprov due (AbargCI)/the redox potential reference alectrode (Es) resides from the suprov due (AbargCI)/the redox potential a fixed value of +197 mV for the potential of the reference alectrode (Ea) r. i.e. $E = E_{obs} = E_{$

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Sampling		Water		Se	diment 🔗
interval *	O ₂ -Sat.	рН	Eobs	рН 🖉	Eop
(day)	(%)	-	(mV)		(mV)
0	78	7.2	170	7_0	A43 ~
	79	7.3	168	\$40 [°]	مَحْ 129
1	79	7.3	15	7.1	158
	77	7.3	166	Q 7.1	Ø 1997 2
2	78	7.3	155	6.9	Q 42 0
	69	7.3	🛋 156 🔍	7.1	18 ⁰
3	70	7.2	178 🕎	[™] 7.1 [™]	\0' 3 3 (0'
	67	7.3	107	× 7.10 ·	58 5
7	41	7.1	135 ×		8
	48	7.2	1370	07.1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14	65	7.2	× 159 ~	A 7.0 S	
	64	7 2	Y 751 0	6:9	32
30	83	<u>6</u> .2	× 142 × «	, <u>j</u>	89 O
	80	06.4	134	<u>م</u> ې 6.7	4 6 9
62	87	Q 6.5	<u>185</u>	6.20	× 169
	90	§.4		K (K) _ C	147
100	91 ~	\$ \$%.6	T 180C	6.1 0	185
	83 🔊	6.4	L 180 L	× 6.2 Ø	140

Table 793 4. Measurements of dissolved everyon and and redev note

 E_{obs} = Redox potential as measured with reference electrode (Ag/AgCl). The redox potential referring to the hydrogen standard electrode (E_h) results from the sum of the measured volue (Eobs) and a fixed value of +197 mV for the potential of the reference electrode used (Eref), De. Eh

A. Data A summary of key data on total occovery and the distribution of radioactivity into the various components formed in water and sediment is given for system Table 7,8,3-6 for system

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Table 7.8.3-5	: Biotra	nsformatio	on of	[cyclohex	yl-1- ¹⁴ C]	KBR	2738 in	water/	sediment	system	
			120 C		Samuli	na intorre	l (day)	Ô	0		67 1
C	M - 4	0	1		Sampin		1 (uay)	a a a a a a a a a a a a a a a a a a a			-
Component/	Matrix	U	1	2	3	7	14	°©° 30	62	3400	
	Water	95.7	80.6	72.1	65.0	39.4	19.6	1.3	<u>,<</u> <u>OD</u>	ph.d.	2
	Layer	± 0.2	± 4.1	± 1.3	± 2.9	± 6.0	± 2.6	± 0.0			a
Fenhexamid	Sediment	1.3 + 0.0	9.2	10.2	+ 1.5	$\frac{21.1}{+3.0}$	Q.0.0	12.9 ($+1.0$) 3.40" + (1)6	3.0	Š
	Entire	± 0.0 97.0	± 1.0 89.8	± 0.0 82.2	± 1.3 & 4	± 3.0	40.8	± 1.90	±2010	30	0.
	System	± 0.2	± 2.3	± 0.7	A±14	$\pm 30^{\circ}$	± 10.0	419	ی ج ± 0.6	10000	r i
	Water	n d	n d	_ 0.1	nd	_ 5:0 ş	- <i>©</i>	\$3.2 \(2 300	- °, v	
	Laver	11.0.	n.u.	n.u.	n.u.			$\pm 0^{2}$	±00	×±01	
		n.d.	n.d.	næ	avd.	≪n.d. ≪	n.d	n de	n.d.	n.d.	
U2*	Sediment			4	× (- New Or	-10 ⁵ -		l incen	
	Entire	n.d.	n.d.	n.d. %	n.d.	n.d.	,≰LOD	\$ 3.2	2.2	202	
	System		Å		Ň	Ő	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	± 0.29	⇒ 0.0	0.1	
	Water	n.d.	1.40	\$4	≪3.2	∫≫ 6.0 _≪)	8,9	Ø	SLOD	Q-LOD	
1-methyl-	Layer		$\pm 02^{\vee}$	€0.3 ა	5 ± 0.7	±0.0°	±9.8	\$ 0.0	6		
cyclohexane	Sadimant	n.d.	DEOD	LOD	1,3	26	04.1	ິ 2.1 🔊	1.10	< LOD	
carboxylic	Seament		¥ Q		±0.1	€0.2	5 ± 0.4	± 0,2	± 0.0		
acid**	Entire	n.d.	1.4	2.4	A.4	<u>8.6</u>	12.9	đĩ	\$1.1	< LOD	
	System	Ś	± 0.2	≥€0.3	± 0.8	±Qrl	_s±Ø.4	± 0.2	$\mathcal{O} \pm 0.0$		
	Water	n _e d.	On.d.	🔊 n.d. 🖉	n.d.	n.ď.	n.d. 🕅	y n.d. 🖗	n.d.	n.d.	
	Layer	°~~ 4			Å.	Q [°]					
KBR 2738-	Sediment 5	🗸 n.d. 🖉	n.¢	Dd.	SLOD (<u>D</u> n.d <u>&</u>	< LOĎ	<u>,</u> (2))4	< LOD	< LOD	
3-des-chloro	5cument		×~.	Qu			Ó –	€ 4 0.0	1.05	1.05	
	Entire	p.d.	Sn.d. 🔬	∾ n.d. ∾	< 1.000	A.d.	< LOD	1.4	< LOD	< LOD	
	System		¥. %					± 0.0			
	Water	<u>n.d.</u> *	nxd	n.d.	K LOD	° <loo< td=""><td>4%.4j*</td><td>5.2</td><td>4.4</td><td>3.8</td><td></td></loo<>	4%.4j*	5.2	4.4	3.8	
Unidentified/	Layer 🖓		0	× ¢		0.	$\phi^{0.7}$	± 0.4	± 0.2	± 0.2	
Diffuse 🔬 🖉	Sediment	< LOD	S LOD		hy	1.3	KK LOD	1.0	1.0	< LOD	
radioactivity	Entiro			± 0.2	± 0.0	± 0.4	4.4	± 0.1	± 0.1	1 2	-
Ky.	Sustem			4.0 (1.0)	$0^{+1.4}$	- 1.0 + 1.0	+0.7	+0.2	+ 0.0	+0.7	
	Watan	5¥7	© © 20 %		r ⊥ 9,5 68,8	46.0	± 0.7	± 0.5	± 0.0	± 0.7	
	water	95.7	+2%	14 <i>0</i> 22	+ 2 7	$0^{+6.0}$	52.0 + 1.0	+0.4	4.4	3.0	
Total			1		3187	25 ± 0.0	± 1.0	± 0.4	± 0.2	± 0.2	
extractable	Sectiment	+0	1 8	$\mathbb{O}^{1.7}$	$+ \pm 6$	+33	+0.5	+3.4	+0.5	+0.5	-
residues	Entire	 	91.2	86.2	873	71.0	58.1	24.9	11.9	7.3	
	System	≥ ± 0.2 ≥	± 200/	±%9.2	₩1.0	± 3.2	± 0.5	± 3.0	± 0.6	± 0.7	
14.5.5	~	n.a. 💙		<u> </u>	0.6	2.0	4.0	17.9	32.3	36.4	
¹ ⁻ CO ₂	, Ç	A	@≇ 0.0	£ ± 0.0	± 0.0	± 0.2	± 0.3	± 1.3	± 1.7	± 1.9	1
	<u></u>	Ana. 🔊	∑<0.1	< 6.1×	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	1
Organic vola	tites	L A	±000	±9.0	± 0.0	± 0.0	± 0.0	± 0.0	± 0.0	± 0.0	1
Non articat	- <u>A</u>	× 0.10	×4×3	₩7.5	11.9	20.6	26.0	45.4	44.7	42.7	1
non-extract.		±0.0	± 1.9	2 ± 0.3	± 0.9	± 1.4	± 0.1	± 2.0	± 6.4	± 1.2	
Material held	nce**®	Ø7.3 👗	97.3	96.2	100.8	94.6	92.6	92.8	92.6	91.9	
iviatoriai Ugia	nec Or	= 0.4	± 0.5	± 0.2	± 0.1	± 1.8	± 0.4	± 9.1	± 6.1	± 3.8	

Mean values (mean ± standard deviation; n = 2) given as percentages of applied radioactivity (% AR) Entire system @water # sediment, n.a. = not analyzed; n.d. = not detected * besides U2 two other region of interest above the LOD were detected but not shown here

**sum of [™] methylcyclohexane carboxylic acid and max. occurrence of 4.2% of AR KBR 2738-sulfate

*** Difference of this values taken from material balance values in comparison to an addition of the fraction listed here are due to rounding errors in this special case due to the fact that the amounts of peaks occurred in the HPLC chromatograms but were below the LOD were divided into different regions of interest

Table 7.8.3-6	Table 7.8.3-6: Biotransformation of [cyclohexyl-1-14C] KBR 2738 in water/sediment system at 20 °C										
					Samnlii	ng intervs	l (dav)	*			P
Component/	Matrix	0	1	2	3	7	14	\$30	62 炎	190	
	Water	93.6	62.6	48.4	47.0	27.8	9.7	< LOD	n d	n/d.	
	Layer	± 0.1	± 0.6	± 2.9	± 2.8	± 0.4			. O″	G' d	Ø.
Eanhavamid	Sadimont	3.0	28.2	36.5	42.8	\$ 46.3	37(8	22.6	11.3	6.00	
rennexannu	Seament	± 0.4	± 0.5	± 2.2	± 2.3	± 0.6	4.0	± 1.6	$\ell \pm 0.0^{\vee}$	± 0.1	L.
	Entire	96.7	90.8	85.0	89.8	74.2	6 ¥7.5	22,6	1408	6.0	0″
	System	± 0.3	± 0.0	± 0.6	_£Ø .5	± 0.2	≠ 0.9	±D6	±0.1	$O \pm 0.1$	1
	Water	n.d.	n.d.	n.d.	n.d.	n.d. 🌂	< LOOD	DEOD	У n.d.	n.d.	
	Layer			Q	5						
116	Sediment	n.d.	n.d.	n.¢	næd.°	SEOD	K K LOD	n.dO	'n,d.	≪ľ.1	
00	Scument			O'	<u>v</u>			ð	d a	± 0.0	
	Entire	n.d.	n.d.	n.d.	🖉 n.d. 🖉	< LQD	< LØD	<lod< td=""><td>5⁹ n.d. 🖉</td><td>1.4</td><td></td></lod<>	5 ⁹ n.d. 🖉	1.4	
	System			$(\mathcal{V}) $		s,	A	Ď	Ŵ	+ 9.0	
	Water	n.d.	1.1	2:1	<u></u>	LA.5 (∫× 6.4 ×	< LQD	stord.	An.d.	
1-methyl-	Layer		± 0.0	,±%9,1	₩0.0 ×	$\gamma \pm 0.1$	± 0.2				
cyclohexane	Sediment	n.d.	< ŁØĎ	LOD %	🏹 1.5 🏑	3.60	AD8	<u>5</u> 6.0 <u>6</u>	1.30	< LOD	
carboxylic	Scument		Q [×]	Â	±.0.1	±0.3	0.1	$\mathcal{V} \pm 0.0^{2}$	±,0,1		
acid	Entire	n.d.	1.1	2,6	27	8 .1	14.2	60	1.3	< LOD	
	System	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	± 0:0	± 0.6	<i>®</i> €0.1 ↓	5 ± 0.1	± 0.3	±Ø.6	o [¥] ± 0.1		
	Water	n.d.	≪n,d.	n.d. 🖌	n.d	< L⁄Q⁄D	×J.1	👸 LOD	n.d.	n.d.	
	Layer	<u></u>	O' 🔊			\	Sf± 0.2				
KBR 2738-	Sediment	N.d. J	< LOD 4	< LOD	<≴tood boots and boots an	Q* 2.2	[∞] 5.₩	ZQ*	7.5	5.0	
3-des-chloro	Seament	K Q	<u></u>	0		± 0.0	±0.1	s, ¥Ø.5	± 0.3	± 0.2	-
	Entire	n.d.0	<u>S</u> DOD	& LOD &	v <lod,< td=""><td>2.2</td><td>Ø^{6.2}</td><td>Ç* 7.1</td><td>7.5</td><td>5.0</td><td></td></lod,<>	2.2	Ø ^{6.2}	Ç* 7.1	7.5	5.0	
	System	Á.	Ő ^	¥ ×	~~~~~	€0.0	$\pm 0.1_{\odot}$	± 0.5	± 0.3	± 0.2	
	Water	N.d.	n.d. 🔍	p.d.	`^\$ø.d.	🔊 n.d. 🖉	< LQQ	< LOD	1.4	1.2	
Unidentified/	Lager		×	. O v	$\mathcal{S} \sim$	<u> </u>	×V		± 0.0	± 0.0	
Diffuse	Sediment	n/d	< LOD	[™] n.d. Ø	n.d.	< QD	<i>®</i> LOD	< LOD	< LOD	1.1	
radioactivity		×, , ×	Q A		<u> </u>	@		LOD	• •	± 0.0	
	Entire	[∼] n.d.	* < LOW*	n.đ.	n.d.	Sector Sector	<pre>clob</pre>	< LOD	2.0	2.3	-
- K	System	<u>v, o</u>	~~``		0' V				± 0.6	± 0.1	
	Water	93,6	63.7	0 ^v 50.5	49(3,	X 2.4	17.2	< LOD	1.4	1.2	-
Total	Layer	4 ± 0.1	$y \pm 0.5$	± 2.0	±Q.8	± 0.5	± 0.3		± 0.0	± 0.0	
extractable	Sediment	<u>€</u> >3.0 €	28	s.37.0	A4.7 (\$ 52.1	51.2	36.2	20.7	12.1	
residues)*±04;	±\$.5	@ 2.7 ($D' \pm 2.6''0''$	± 0.9	± 0.5	± 1.6	± 0.9	± 0.1	
	Bantıre ♥	20/	<i>9</i> ^{92.0}	¥ 87.5	94.0	84.4	68.5	36.7	22.1	13.3	-
4	System	<u></u> £0.3 ≈	$\varphi \pm 0.04$	± 000)	±Ø.2	± 0.4	± 0.8	± 1.1	± 0.9	± 0.1	
¹⁴ CO ₂	°,	🛛 n.a. 🖉	< 0.4	0.1	≥ 0.1	0.1	1.2	11.2	17.7	22.0	1
	~~~		1 1 2 0.0	, d, f = 0.0, ≪	$\psi \pm 0.0$	$\pm 0.0$	± 0.2	$\pm 3.6$	$\pm 0.7$	$\pm 0.8$	-
Organic volat	tiles 🔊	na.		$\vee < 0.1$	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	
<u> </u>		<i>'0' ĉ</i>	g″ ± 0.0 ≥		$\pm 0.0$	$\pm 0.0$	$\pm 0.0$	$\pm 0.0$	$\pm 0.0$	$\pm 0.0$	-
Non-extract.	residues A		4	Å.2	7.6	11.8	23.6	40.7	53.6	55.6	
			±,0.2	<u> </u>	$\pm 0.8$	$\pm 0.0$	$\pm 0.1$	± 1.1	$\pm 2.7$	$\pm 1.7$	
Material Bala	mce**		97.2	96.6	102.0	97.1	95.7	93.4	94.7	92.9	-
		<u> </u>	t = 0.3 °	$\pm 0.2$	± 0.4	$\pm 0.8$	$\pm 0.7$	± 1.4	± 1.9	± 1.5	J

Mean values (mean 4 standard deviation; n = 2) given as percentages of applied radioactivity (% AR) Entire system = Gater + sediment n.a. = Dot analyzed; n.d = not detected **Difference of this values taken from material balance values in comparison to an addition of the fraction listed here are due

to rounding errors in this special case due to the fact that the amounts of peaks occurred in the HPLC chromatograms but were below the LOD were divided into different regions of interest



**B.** Material balance: For system the total recovery of radioactivity in the individual test vessels ranged from 91.9% of AR to 100.8% (mean 95.1  $\pm$  3.0%). The recovery in a individual test vessels of system ranged from 92.9% to 102.0% AR (mean 96.3  $\pm$  2.6%). The balances of radioactivity were therefore in an acceptable range for all sampling intervals indicating no significant losses of radioactivity during incubation and processing of samples.

### C. Residues in water, bound and extractable residues in sediment:

The radioactivity in test systems from a study termination. The radioactivity in test systems from a study termination. The radioactivity in test systems from a study termination. The radioactivity in test systems from a study termination. The radioactivity in test systems from a study.

Extractable ¹⁴C sediment residues in test systems from the sediment of the AR at DAT-0 to 52.2 % of the AR at DAT-7 and declined to 14.2 % of the AR at study termination. Extractable ¹⁴C residues in sediments from the sediment of the AR at DAT-0 to 27.6 % of the AR at DAT-14 and dropped to 6.9 % of the AR at study termination.

The maxima of non-extractable ¹⁴C residues (mean values of duplicates) in the sediments were 55.6 % of the AR for and 45,0% of the AR for

At the end of the study periods, 22.6% of the AR was present as  ${}^{14}CO_2$  in systems from and 36.4% of the AR was present as  ${}^{14}CO_2$  in systems from total amount of  ${}^{14}CO_2$  accounted for  ${}^{16}CO_2$  trapped in social line as well as for the amount of  ${}^{14}CO_2$  present in the water phases (all sampling intervals) and ediments (only DAP-100). Organic volatile compounds amounted to  ${}^{16}O_1$  by the AR in both systems.

In the water phase from 1000 at DAT-30, for the amount of tenhexamid decreased from 93.6 % of the AR at DAT-0 to < COD < t DAT-30. (a) the 1000 at DAT-30 to < COD < t DAT-30. (b) the 1000 at DAT-30 to < COD < t DAT-30 to < COD <

In the sediment phase from **Delete to 1**, the amount of fenhexamid increased from 3.0 % of the AR at DAT-O to a maximum amount of 46.3 % of the AR at DAT-7 and then declined to 6.0 % of the AR towards study termination. In the **Delete to 3** sediment the amount of fenhexamid increased from 1.5 % of the AR at DAT 0 to a maximum amount of 21.2 % of the AR at DAT-14 and then declined to 3.0 % of the AR at study termination.

1-Methylcyclohexane carboxylic acid/was observed as a major degradation product of fenhexamid in the water phases and in the sediment extracts of both water/sediment systems. In the water phases it accounted for up to of 64% ( 1000) and 8.9% ( 1000) of the AR. In the sediment extracts, 1-methylcoclohexane carboxylic acid accounted for 7.8% and 4.1% of the AR, respectively these amounts include a minor metabolite, KBR 2738-sulfate, which accounted for a maximum of 4.2% of the AR in the total system of 1000).

In addition KBR 2738-3-deschloro was observed as a major degradation product of fenhexamid in the water/sediment system of **and the sediment extract** in the water phase it accounted for only up to 1.1 % of the AR and in the sediment extract it accounted to a maximum amount of 7.5 % of the AR. In the



KBR 2738-sulfate was observed as a minor degradation product of fenhexamid only in the water/sediment system of **Second Second** in amounts of up to 4.2 % of the AR (calculated value for the total system. Minor transformation products were detected in both water/sediment systems tested. None of the components exceeded 3.2% of AR in total systems in the course of the study.

**D.** Volatilisation: Formation of 14CO2 was observed in all water/sediment systems. At termination of the study, the 14CO2 recovery tmean values of duplicates in systems from **Second Problem** was 22.0 % of the AR. In **Second Problem** water/sediment systems, 14CO2 accounted for 36.4 % of the AR at study termination. From these data it can be concluded that a high amount of fenhexamid is mineralized in water/sediment systems. The formation of other voratile components was insignificant by accounting for less than 0.1% AR at any sampling interval in the course of the study. KBR 2738 and its residues were therefore subject to for the transformation in water/sediment systems till mineralisation.

E. Transformation of parent compound: KER 2738 was transformed by a cleavage of the carboxamide moiety, dechlorination and conjugation processes in both water sediment test systems (for structures, see Figure 7.8.3-1). I-Methylcyclohexane carboxylic acid (M39) was found up to 14.2% of the AR and up to 12.9% of the AR and up to 1

of the **system**, the amount includes a minor metabolite, KBR 2738-sulfate (M27), which accounted for a maximum of 4.2% of the AR in the Otal system.

KBR 2738-3-deschlor (M12) was detected up to 7.5 % of the RR at DAT-62 and up to 1.4 % of the AR at DAT-30 in the total systems of manual and manual respectively.

Metabolites as well as their maximum occurrence are showed in Table 7.8.3-9.

The mechanisms of dissipation from the voiter body to the sediment as well as degradation therefore contributed to the elimination of the parent substance from the total systems to result in the formation of NER and ¹⁴C-carbon dioxide as terminal products of biotransformation.



* in ______ only: sum of 1-methylcyclohexane carboxylic acid (M39) and KBR 2738-sulfate (M27) with nax. amounts of 4.2% AR of KBR 2738-sulfate (M27) in entire system





**F. Degradation kinetics:** The evaluation of degradation kinetics in the water phase and the total water/sediment systems was performed by use of the software KinGui (Version 1.1). After fitting of

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

data to the three kinetic models SFO, FOMC (Gustafson-Holden) and DFOP⁴ the quality of fits was assessed according to FOCUS kinetic guidance. The data sets were treated as replicate data. The faitial concentration at time zero was included in the parameter optimisation. All data points were weighted equally. For optimal goodness of fit, the initial value was also allowed to be estimated by the model. For the detrmination of the best fit preference was given to the error of chi-square  $\chi^2$ ) to be a minimum. The results of the kinetic evaluation are provided in Table 7.8.3-10.

With regard to degradation of KBR 2738 in total water/sediment systems the chi-square  $(\chi^2)$  errors were found to be below 6 for all models applied with overall ranges of  $\chi^2$ -errors being marginal for a given system. For the dissipation of KBR 2738 from the water phase differences in the overall range of  $\chi^2$ -error was more pronounced ending up in a bi-phasic kinetic behaviour for the best fit for both systems (DFOP for both systems).

The dissipation half-life of KBR 2738 from water was estimated to 546 days (system and 2.7 da

For the degradation of KBR 2738 in total systems half-lives of 168 days (system **Equation**) and 14.5 days (system **Equation**) were estimated when applying a DFOP kinetic model as best fit.

Degradation kinetics was also evaluated in a separate report to derive input parameters for modeling purposes in environmental exposure assessments. These results are presented under IIA 7.8.3/02.

Table	7.8.3-10: Best-fit	kinetics for	the dissipati	on from wat	er and degrada	tion in tota	al water/sediment
	systems of	[cyclonexyl-1]	-4C] KBR 2	7 <b>38</b> after incu	bation at 20°C		

System	<b>Matrix</b>	Kinetic model	DØ 50	ў DT90	Chi ² Err
je G			(days)	(days)	(%)
\$\$ }	Waterphase	SFO N	¢ 5.7∢≯	19.1	2.8
		FOMC	5.5	20.3	2.7
	A	DFOP 🔬	\$.6	20.0	2.7
Germany	Total system	Ŭ ŠFO Ô	@11.1	37.0	2.9
~Q~ (		FOMC	≫ 10.7	41.2	2.6
4	° ₂ 9′	<b>₽</b> ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	<b>D</b> 10.8	37.0	2.3
	Water Mase	SFO N	3.5	11.5	13.5
		I I NOMC S	2.6	17.3	9.5
		<b>DFOP</b>	2.7	15.2	3.9
Germany	Total system	SFO	15.4	51.2	5.2
Connany		FQMC	14.6	60.1	5.0
		<b><i>DFOP</i></b>	14.5	60.3	4.8

Best fits according to the criter set are marked bold.

### **III.** Conclusion

Once appred to water surfaces KBR 2738 is eliminated from the water phase *via* sorption processes to the sediment. The processes are paralleled by a microbial degradation to result in KBR 2738-3-des-

⁴ SFO = Single first order; FOMC = First order multi compartment; DFOP = Double first order in parallel

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

chloro (M12) and 1-methyl-cyclohexane carboxylic acid (M39) as major metabolites in water/sediment systems. Further microbial conversion proceeds result in non-extractable residue and large amounts of ¹⁴C-carbon dioxide as terminal products of metabolic transformation under conditions of water/sediment testing. Sorption of KBR 2738 to the sediment proceeded slowly in sandy water/sediment systems with low organic matter while elimination was pronounced in systems with a sandy loam texture and higher organic carbon content. Following FOCUS kinetic gurdance optimum fits resulted in half-live of 5.6 days (_______) and 2.7 days (_______) for the dissipation from water. For the degradation in total systems, the corresponding half-lives were 10.8 days for the sandy system and 14.5 days for the sandy loam system _______. KBR 2738 is therefore expected to degrade relatively tast in aquatic systems of the environment.

Report:	KIIA 7.8.3 /02; 2012 × × × A
Title:	Kinetic Evaluation of the Aerobic Aquatic Metabolism of [Cyclonexyl 4] ¹⁴ C]-2
	Fenhexamid (KBR 2938) and its metabolites for modelling and persistence endpoints
Report No &	MEF-11/757
Document No	M-422393-01-1 9 9 9 6 6 0 0 5
Guidelines:	"Guidance Document on Estimating Persistence and Degradation Kinetics from
	Environmental Fate Studies on Pesticides in EL Registration". Report of the FOCUS
	Work Group on Degradation Karetics. EC Document Reference Sanco/10058/2005
	version 2/0, 2006
GLP	No (calculation) & O & V & V

### Executive Summary

The degradation and dissipation behaviour of [cyclohexyl-1-140] fends amid (KBR 2738) and its metabolites 1 methylcyclohexanecarboxylic acid (M39) and Ns2-chloro-4-hydroxyphenyl)-1-methylcyclohexanecarboxamide (M12) an an aquatic environment was investigated by kinetic evaluation of two aerobic water-sedurent systems (

The evaluation for bwed the recommendation of the FOCUS working group on degradation kinetics (FOCUS, 2006) and considered modelling and points.

It includes an analysis of the kinetics of renhexarinid (parent = P) and its metabolites (M) considering the total system (Level I, degradation) and the single phases separately (Level I, dissipation).

Parameters of the selected models for penhexamid are shown in Table 7.8.3-11, Table 7.8.3-13, Table 7.8.3-15 (modelline) endpoints) and Table 7.8.3-12, Table 7.8.3-14, and Table 7.8.3-16 (persistence endpoints) for the total system (Devel I, degradation) and for the single phases (Level I, dissipation) of tenhexamid, \$\overline{0}39\$, and \$\overline{1}29\$

Table	7.8.3 <b>A</b>	SFQdeg	gradation	n ænd	dissipation	parameters f	or modelling	endpoints o	f fenhexamid
	181 0	<u> </u>	· . 🔾	~ ~	7/	-		-	

Evaluation level	A Phase						·
type of parameter		Model	k-rate (1/days)	DT50 (days)	Model	k-rate (1/days)	DT50 (days)
PI / deg.	Total system	SFO	0.062	11.14	FOMC	0.037	18.49) ^a
PI / diss. PI / diss	Water Sediment	SFO SFO	0.123	5.65 25.08	FOMC SEO	0.127	5.47) ^a 26.09
11/ 0135.	Scument	510	0.020	25.00	510	0.027	20.07

)^a calculated by DT90_{FOMC}/3.32

Document M: IIA, Tier 2, Sec. 5, Point 7 - Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Table 7.8.3-12: Degradation and dissipation parameters for persistence endpoints of fenhexamid Evaluation level / Phase Model type of parameter Model **DT50 DT90** DT50 DF90 (days) (days) (days) (day: 10.60 2.41 PI / deg. HS Total system 10.90 45.60 ℤĎFOP 60.6 19.74 5,45 PI / diss. DFOP DFOP Water 140% 22.81 **20**.20 1.08.5 FOMC 102.68 FOMC PI / diss. Sediment  $\bigcirc$ Į O 0 Table 7.8.3-13: SFO degradation and dissipation for modelling endpoints of M39 (1-methylcyclohexane-×. carboxylic acid) O Ø 0 Evaluation level / Phase ФТ50 Model type of parameter Model k-rate ©DT5€Ĺ k-rate (days) (di∕days) (dav (days) S₽Ø SKØ MI / deg. **Total system** 0.08 8.33 0 1 1 1 (parent SFO) (paren) FOM ⊗ n.a. ⊗ SFO® On.a. ĥ≯a. MI / diss. Water Da. n.a n.a. \$.030 C Sediment SFØ **\$0.030** MI / diss. 220 23.26 Å Ò 1 Table 7.8.3-14: Degradation and dissipation for persistence endpoints of M39 (P-methyl-cyclohexane-»Ô carboxylic acid Õ Ő Phase **Evaluation** level / Ø Model © DT90 Model **DÍ**50 type of parameter & **DT50 DT90** Ò  $\bigcirc$ (days) (date (days) (days) SFQ@ SFO MI / deg. 7.97 26.48 Total system 6 32 (parent HS). Ø (parent DFOP)

MI / diss. 🖉	Water 🔬	a. nua.	$n.a_{n}$	n.a.	n.a.	n.a.
MI / diss	Sediment	JOMC 17.65	× 1135x81	SFO	23.26	77.28
KŞ ^v			Å.			

A

Ro

Table 7.8.3-15: SPO degradation and dissipation for modelling endpoints of M12 (KBR 2738-3-des-chloro)

Evaluation level /	Phase ^~	~~					
type of parameter	ð _v y	Model 8	k-rate	DT50	Model	k-rate	DT50
		<u> </u>	(days)	(days)		(1/days)	(days)
MI / deg.	Total system	n.a .~	Şn.a.	n.a.	SFO (parent FOMC)	0.010	68.90
MI /ˈd/iss.	Water 🔊	Aga. S	n.a.	n.a.	n.a.	n.a.	n.a.
MI / diss.	∧ Sediment	n.a. 🗶	n.a.	n.a.	n.a.	n.a.	n.a.

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

Table 7.8.3-16:	Degradation and dissi	pation for persiste	nce endpoints of M12	(KBR 2738-3-des-chlor)
				(

Evaluation level / type of parameter	Phase	 Model	DT50 (days)	 DT90 (days)	- Mod@ [*]	DT50 (dass)	DT90 (Qays)
MI / deg.	Total system	n.a.	n.a.	💍 n.a.	SFO (parent DFOP)	ر بر 13.79	°∽245.10×
MI / diss.	Water	n.a.	n.a.	🕅 n.a.	Q n.a.	0 n.a.\$	nkav. 🗸
MI / diss.	Sediment	n.a.	n.a.	n.a.	n.a.	<u>v</u> n,	ja.a. (

I. Material and Methods

The kinetic evaluation was based on data of a water-sediment study (IIA 7.8.3/01) conducted with [cyclohexyl-1-¹⁴C]-labeled KBR 2738 in a sandy (conducted with a silt loam sediment (conducted water at 20°C in the dark for a maximum of 100 days. Measured and reported duplicates were taken into account singularly. There was no tit for non extractable residues (NER) and yolatile radioactivity formed (open system).

Four kinetic models, the simple first order (SFO) first-order multiple-compartment (FOMC, Gustafson-Holden), the bockey-stick model (48), and the bi-exponential model (DFOP, double first order in parallel) were considered in this study. Now eighting of the data was performed in the kinetic analysis.

A Level I evaluation was performed for the total system (degradation), and the single phases (dissipation, using decline fit from the maximum occurrence onwards). The contrast to degradation, the dissipation parameters in water-sediment studies include not only degradation but also transfer into the other phase (water or sediment).

Degradation parameters are diseful for exposure models which explicitly consider the transfer of compound between different phases. Dissipation parameters can be used for exposure models which consider water and sediment phase separately.

The choice of the appropriate kinetic model is based on visual inspection of the fit and the scaled Chi²error. For modelling endpoints it is additionally becked by the t-test whether degradation or dissipation parameters are sufficiently reliable to be used for exposure modelling.

For the derivation of modelling endpoints, simple first-order (SFO) kinetics are tested first, because SFO is the simplest of the kinetic models and the one almost exclusively used in environmental exposure models. If the SFO fit is visually no acceptable or Chi²-error significantly exceeds a value of 15 %, then the bi-phasic models are tested. Finally the model is chosen which is visually acceptable and provides a significantly better fit in terms of Chi²-error. This avoids using an over-parameterised model based on a marginally better fit only.

Ideally, the Ch²-error value should be below 15 %. However, this value should only be considered as guidance and not as an absolute cut-off criterion. There will be cases where the Chi²-error is higher, but the fit still represents a reasonable description of the degradation behaviour.

The biphasic models recommended are FOMC, DFOP and HS, where FOMC should not be used in cases where the final residue is more than 10 % of its initial value. For modelling purposes, an equivalent SFO half-life is calculated as DT90_{bi-phasic}/3.32, when the final residues are below 10% of

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

the initial value. By this method the equivalent SFO-curve meets the bi-phasic curve at the time DT90_{bi-phasic} and consequently over predicts the residue values at earlier times. When the final residues remain above 10% of the initial value, the DT50_{SFO} is calculated from the slow to rate (k2) by DT50_{SFO} =  $\ln(2)/k2_{HS,DFOP}$ , and the DT90_{SFO} =  $\ln(10)/k2_{HS,DFOP}$ . For the derivation of persistence endpoints, the SFO model is tested against the FOMC model. If the SFO model gives an acceptable fit and the Chi²-error is smaller than that of the FOMC model, the SFO model is selected. If the FOMC model is better, the other bi-phasic models HS and DFOP are tested, and the most appropriate in terms of visual fit and Chi²-error is selected. For pathway fits in a first step the appropriate model for the parent is identified. In a second step the pathway is implemented with the parent model acidentified and the SFO model for the metabolite.

In accordance with the experimental data **(200)** the compariment fields shown in Figure 7.8.3-2 was developed. Between compariments transformation reactions were assumed to proceed only one-way. The data pre-processing was done to accordance with FOCUS (2006). The initial amount of the parent compound was free futed and the initial amount for metabolites was fixed to a value of zero. All data were weighted equally thus corresponding to an absolute error model. Following this scheme the parent fender amid degrades to \$139 and M12 All compounds degrade to unextractable residues and volatiles. Minor metabolites are neglected.





For Level I evaluations of dissipation, the decline of a compound in either phase is fitted to measured data from their maximum binwards,  $M^*(t^*)$ , using a simple differential equation as the first one of the system above. The time axis is shifted by the time tmax where the maximum occurs,  $t^* = t$  - tmax, and the residue values are chosen accordingly  $M^*(t^*) = M$  (t - tmax),  $t \ge \text{tmax}$ . This procedure is called in the toflowing decline- or dissipation fit.



Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

#### **II. Results and Discussion**

#### A. Model selection

### 1. Total System

### Parent

For the **system the SFO fit was visually and statistically well acceptable.** The last data points were slightly underestimated. However, according to FOCUS (2006) this is acceptable when the residuals decreased below 90% of the initial concentration until this date. This is the case (about 95% degradation at day 62). The k-rate is significant (with t-test <0.007) and the Ch²-errors are well below 15%. Thus the SFO model was selected for **sector of the modelling endpoint**. For persistence endpoints additionally the FOMC model was calculated it achieved a very good fit with a smaller Chi²-error value. This triggered additional calculations with the HS and DFOP model to determine the best fit bi-phasic model. Both models yielded an excellent fit "Phe HS model was selected for persistence endpoints, because the Chi² error (2.2%) is slightly smaller than the error of the FOMC and DFOP model.

For the system the SFO fit looks similar to the system, but the residuals at day 62 are >10%, hence too high to neglect deviations between model and measurements at that data point. Therefore additionally the FONC model was calculated. The fit to the later data points is very good, and the Chi²-error value is satisficiently small (4.9%). Hence the FOMC model was selected for the modelling endpoint.

For persistence endpoints additionally the HS and DFOR models were calculated to determine the best fit bi-phasic models Both models yielded a visually acceptable fit. The DEOP model was selected for persistence endpoints, because the Chi²-error (4.7%) is smaller than the error of the FOMC and HS model.

Table 7.83=17:	Scaled Chi ² -error, visual acceptability (VA: - yes no) and significance of degradation rate
44	(t-prob) of feithexamid for different kinetic models applied to the total system values.
	Varies in bold indicate the kinetic model chosen for modelling endpoints, in italics for

Model	Chi ² -erro (%) A ^a A ^b prob	Chi ² -error (%)	VA) ^a	t-prob) ^b
SFO SFO	3.0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5.2	-	< 0.001
FOMC	227 2 0.0270.042	4.9	+	0.036/0.061
HS	$2.2$ $0^{\circ}$ $0^{\circ}$ $0^{\circ}$ $0^{\circ}$	4.9	+	< 0.001
DFOP 4	2.3 <u>4</u>	4.7	+	0.500

)^a +/-: yes/ne yes/ne

## t-prob = 1-probability test

# Mataba

Metabolites

In the system **M12** occurred only at one time point. Therefore it is not included in the kinetic evaluation. The metabolite M39 for the system **Was** calculated with the SFO

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

model in the metabolic pathway together with fenhexamid (using the identified models SFO for modelling endpoints and HS for persistence endpoints). In both pathway fits the model was very well able to reproduce both the formation and the degradation of the measured concentrations, although the maximum concentration is slightly underestimated. The chi2-error is higher than recommended. However, the fitted curve describes the measurements adequately and no systematic deviation between model and measurements can be observed. Therefore, the SFO-model is accepted as modeling and and the HS-model as persistence endpoint.

For **the visual fit of M39 is similarly good, representing the formation and the** decline of the measured concentrations very well, and only slightly underestimating the maximum concentrations (parent FOMC (modelling endpoints) and parent DFOP (persistence endpoints)). The chi2-error is higher than recommended. However, the fitted curve describes the measurements adequately and no systematic deviation between model and measurements can be observed. Therefore, the SFO-model is accepted as modelling and and the DFOP-model as persistence endpoint. For M12 the SFO fits are excellent and read to statistically acceptable fits (chi²-error <15% and prob <0.05). Both fits were selected for modelling and persistence endpoints, respectively.

 Table 7.8.3-18:
 Scaled Chi²-error, visual acceptability (VA: +/ves/nov and significance of degradation rate (t-prob) of M39 in the total system of the complete metabolic pathway (CP). Values in bold indicate the kinetic model chosen for modelling endpoints (mod), in italics for persistence endpoints (per).

	V
Evaluation scheme & Moder Chi ² -Gror (% V& &	-prob) ^b
CP (mod) SFQ SFQ 31.5 + +	<0.001
CP (per)	<0.001
$)^{a}$ +/-: yes/n	
) ^b for SFQ t-test of k-rate; for FOM@of Alpha/Beta	

 Table 7:8:3-19:
 Scaled Chi² error, visual acceptability (VA: +/- ves/no) and significance of degradation rate (t-prob) of M39 and M12 in the total system of the total system of the complete metabolic pathway (CP) and using decline fit (DC). Values in bold indicate the kinetic model chosen for modeling endpoints (mod), in italies for persistence endpoints (per).

Evaluation scheme	Substance	Model	Chi ² -error (%)	VA) ^a	t-prob) ^b
CP (mod)	6 ^{M39}	FOMC_SFO **	26.3	-	<0.001
CP (per)	M39 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DF& SFO	24.9	-	<0.001
CP (mod)	NIZ Y	FQMC-SFØ	14.9	+	0.035
CP (per)	M12	UDFOP-8FO	13.7	+	0.028
)a +/-: ves/n $0$					

b for SFQ Ftest of Frate: of FOMC of Alpha/Beta

2. Water Phase Parent (PI)



For the system the single phase fit for the water phase with SFO model was visually well acceptable. The statistical parameter Chi²-error and t-prob are small (3.2% and 40001 respectively). Hence the SFO model is selected for modelling endpoints. For persistence endpoints additionally the FOMC model was calculated. It achieved a very good fit with a smaller Chi²-error value. This triggered additional calculations with the HS and DFOP model was selected for persistence endpoints, because the Chi²-error (2.1%) is smaller than the error of the FOMC and HS model. For the system the SFO model tends to underestimate the initial mass and leads to systematic deviations (overestimation of early data points, underestimation of late points). Hence, the FOMC model is calculated. It leads to an acceptable fit with a Chi²-error of 8.7%. The last data point

at day 30 is slightly overestimated which is conservative, because it underestimates degradation. The FOMC model was selected for modelling endpoints.

For the persistence endpoints, the HS and PFOP models were carculated additionally to determine the best fit bi-phasic model. Both models yielded a visually excellent fit The DFOP model was selected for persistence endpoints, because the Chi²-error (3,6%) is maller than the error of the FOMC and HS model.

## Table 7.8.3-20: Scaled Chi²-error, visual acceptability (VA: + yes/no) and significance of degradation rate (t-prob) of ferror amount for different kinetic models applied to the water phase. Values in bold indicate the kinetic model chosen for modelling endpoints, in italics for persistence

	<u> </u>	N V	.~~ »	Y Q		/	
		<u>م</u>					
Model	Chor-error (%)	VA) ^a t-	prob) ^b	S.	Chi ² -error (%)	VA) ^a	t-prob) ^b
SFO SFO	3.2		<0.001		13:0	-	< 0.001
FOMC	3.0	+	©0.179/0 ⁹ 20	0	38.7	+	0.002/0.017
HS	38´ , ⁽		0.48		9.9	+	< 0.001
DFOP	Q2.1 Q 5	\$ + <i>C</i>	~0,001 S	, 3	3.6	+	<0.001
_		<b>N</b>	$\bigcirc$ $\bigcirc$	0			

)a +/-: yes/no Q )b for SFO ttest of k-rate; for FOM QT Alph Beta; for HS and DFOP of k-slow

# Metabolites (MI)

In both systems the maximum concentration of M39 is reached three sampling dates before complete dissipation of M39. Frence only three data points are available for a decline fit. With the SFO model the last data point is underestimated in both systems. Hence, the SFO model can not be used for modelling or persistence endpoints. No other model is applicable for cases with such small numbers of data points. No modelling and persistence endpoints can be derived for the water phase.

 Table 7:5-21:
 Scaled Chi²-error, visual acceptability (VA: +/- yes/no) and significance of degradation rate (t-prob) of M39 for the SFO kinetic model applied to the water phase values.

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)



indicated by the small Chi²-error value of 4.8%. The SPO model was selected as modelling endpoint. For persistence endpoints additionally the FOMC model was calculated it resulted in a slightly better fit (Chi²-error value = 2.1%). The HS and DFOP model can not be used due to the limited number of data points. Therefore, the FOMC model was selected as persistence endpoints.

For the system 5 data points are available for the decline fit. The SFC model resulted in a very good fit with a Chi²-error of 4.6 and a t-prob of 0.00. It was selected for modelling endpoints.

For persistence endpoints additionally the FOMC model was calculated. The FOMC model resulted in an excellent fit and improved the Chi² error to 1.8%. This triggeted calculations with the HS and DFOP models. Both resulted also in excellent fits, but with dightly higher Chi² error values (2.7% and 1.9%, respectively). The FOMC model was selected for persistence endpoints of

Table 7.8.3-22: Scaled Ch²-error, visual acceptability (VA: +Syes/no) and spenificance of degradation rate t-prob of fenhexamet for different kinetic models applied to the sediment phase values. Values in bold indicate the kinetic model chosen for modelling endpoints, in italics for persistence endpoints.

	R.			5° 5°,	o [×]	
	Chi ² -erro	(%) (¥A) ^a	Çîrob)	Chi ² -erio	(%) VA) ^a	t-prob) ^b
SFO	Č <b>4</b> .8	A +	<0.901	<u> </u>	<b>6</b> +	<0.001
FOMC	2.1	Ô ^v ô ^v	. ©0.159∕ <b>0</b> 209 . ©	D 0 1.8	8 +	0.007/0.020
HS	.1		Y <u>1</u> 9 ⁴ 19 ⁴	2.7	7 +	< 0.001
DFOP	Ĩ			1.9	) +	0.320

)a +/-; yes/no )b for SFO t-test of k-rate; for SOMC of Alpha/Beta; for SIS and DFOP of k-slow

### Metabolites

In the **second second s** 

For persistence endpoints the FOMC model is calculated. It resulted in a slightly better fit with lower  $Chi^2$ -error (6.0%). Due to the limited data points the HS and DFOP models could not be used. The FOMC model was selected for persistence endpoints.

Also for the system four data points are available. The SFO model resulted in a yery good fit with an acceptable Chi²-error (12.6%) and small t-prob (<0.001). It was selected as modelling endpoint.

For persistence endpoints additionally the FOMC model was calculated, but indid not improve the (Chi²-error = 18.2%). Therefore the SFO model was also selected for persistence endpoints?

Table 7.8.3-23: Scaled Chi²-error, visual acceptability (VAV+/- ves/no) and significance of degradation fate (t-prob) of M39 for different kinetic models applied to the sediment plase values. Values in C bold indicate the kinetic model chosen for modelling endpoints, in talics for persistence endpoints.

	I			$\land$	ด้เ	~~ <u>~</u> ````	
		-	« «		Ĵ ⁷ E _o		
	Chi ² -error (%)	VA) ^a	t-prob	Chir error to		The second secon	prob)
SFO	9.2	+	0.001	~~ <u>12.6</u> ~	A + 6	₹ <0.001	
FOMC	6.0	+	0.687/0.168	y . 48.2 (	ĴŰ, ĴŰ	\$0.370 <b>7</b> 0	1383
) ^a +/-: yes/no							

)^b for SFO t-test of k-rate; for FOMC of Apha/Beta

### **B.** Kinetic parameters

B. Kinetic parameters Parameters of the selected models for fentexamic are shown in Table 7.8.5-11, Table 7.8.3-13, Table 7.8.3-15 (modelling endpoints) and Table 7.8.3-12, Vable 7.8.3-14, and Table 7.8.3-16 (persistence endpoints) for the total system (Level I, degradation) and for the single phases (Level I, dissipation) of fendexam@, M397 and M12

& HI. Conclusion

Once applied to water surfaces KBR \$738 & relatively test eliminated from total water/sediment de la companya de la aquatic model systems, 8 K)

Evaluation of persistent endpoints for the parent renhexamid and its metabolites M39 and M12 using

Evaluation of persistent resulted of different tendexamid and its metabolites M39 and M12 u the best fit assessment resulted of different kinetic models as shown in Table 7.8.3-24 for Level I.

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

# Table 7.8.3-24: Degradation and dissipation parameters for persistence endpoints of fenhexamid (parent) and its metabolites M39 and M12.

Evaluation level /	Phase				-		- 0.	
type of parameter		Model	DT50	DT90	Model 🔊	DT50		
			(days)	(days)	- O ^v	(days)	(days)	
fenhexamid					1	Ő	o Pa 1	
PI / deg.	Total system	HS	10.96	<u>45.60</u>	D¢€Ø₽	14:60	∿.69.64 ×	
PI / diss.	Water	DFOP	5.45	<u></u> (219.74	<b>D</b> FOP	2.41	14.98	Ø
PI / diss.	Sediment	FOMC	22.20	102.68	FOMC	22.81 🍧	<u>9 108.55</u>	Ş
M39			Å	1	^o ^v	× ô		) [°]
MI / deg.	Total system	SFO (parent HS)	6.42	21.32	SEO (pareat DFQE)	,0 7,97 7	26.48 ( ⁰ )	
MI / diss.	Water	n.a.	Q.a.	n.a	n.a.		n a	
MI / diss.	Sediment	FOMC of	ر 17.65 م	° 113.51	SEO	<u>0</u> 23.26	77(2)8	
M12		C	) "Q`	×.	2 ~ 1	à l	1	
MI / deg.	Total system	n.a.	, float.	~ n.a. √	SFO (parent	79.79	245.1	
MI / diss.	Water	nka.	Nn.a.	≯ n _f a	/ n.a	n.a.	n a?	
MI / diss.	Sediment	A.a. 🦿	≫ n.a _k , 🦉	°∧n,a.	<u> </u>	n.a 🔊	(D.a.	
n.a.: not applicabl	e			22			<u></u>	

New kinetic evaluation of a former aerobic aquate water sediment degradation study with the [phenyl-UL-¹⁴C] labeled fentexamid was done to derive half-lives of fentexamid for use as input parameters in environmental exposure assessments by modelling.

Report:	KALA 7.857/02;
Title:	Degradation and metabolism of KBR 2738 in the System Water/Sediment
Report No &	SPF 4202 // MCR 913/96 ~ S & S
Document No 🖉	M=003782-61-1 6 2 2 2 2
Guidelines: 📎	BA-Quidelines for cesting of Plan Protestants (Registration) Part IV, 5-1,
	Degradability and Fate of Plant Projectants in the Water/Sediment System, 1990
GLP	Yest a g
le sa	
4	
Report: 🖏	KIIA 7.8.3 03; 2012 Q
Title: 🕡	Kinetic Evaluation of the Aerobic Aquatic Metabolism of [Phenyl-UL-14C]
~Ŷ	Fenhexamid (KBR 2798) for modelling and persistence endpoints
Report No &	MEF-91/0529 47 07 00
DocumentNo	M-422394 01-1
Guidelines:	Souidance Document on Estimating Persistence and Degradation Kinetics from
A S	Environmental Fate Studies on Pesticides in EU Registration". Report of the
	FOCUS Work Group on Degradation Kinetics. EC Document Reference
L.	Sanco/10058/2005 version 2.0, 2006
GLP	No (calculation)

## Executive Summary

and

The degradation and dissipation behaviour of [phenyl-UL-¹⁴C] fenhexamid (KBR 2738) in an aquatic environment was investigated by kinetic evaluation of two aerobic water-sediment systems (

, at 20-21 °C in the dark;

The evaluation followed the recommendations of the FOCUS working group on degradation kinetics (FOCUS, 2006) and considered modelling and persistence endpoints. It included an analysis of the kinetics of fenhexamid considering the total system (Level PI, degradation) and the single phases separately (Level PI, dissipation), which welded the results shown in Table 7.8.3-25 for modelling endpoints and Table 7.8.3-26 for persistence endpoints. Table 7.8.3-25: SFO degradation and dissipation parameters for modelling endpoints of phenal U fenhexamid Evaluation level / Phase ∕DT5Q ∅ k-rate DT50 type of parameter Model @ Model k-rate @1/daŷs) (davs) (days Hdavs) 14,71 OBFO DFOP PI / deg. **Total system** SFO 0.102 Ø.047 **§**.77 0.150 0076 PI / diss. Water **D**FOP \$61)^a @¶*93 PI / diss. Sediment 023 0.066 10 )^a calculated by DT90_{DFOP}/3.32 )^b k-rate of slow phase Degradation and dissipation parameters for persistence endpoints of phenal-UL-14C] Table 7.8.3-26: fenhexamid 🔬 Ô Evaluation level / Phose ЭТ50 Model **D**T90 Modeľ **DT90** type of parameter DT50 (days) day (days) PI / deg. DFØP Total system 57.73 **CSFO** 6.77 22.48 91 \$.32 Water . Sediment PI / diss. DFOP DFOP 2.28 13.06 PI / diss. FOM A6.37@ 10.58 35.16 Material and Methods

The kinetic evaluation was based on data of a water-sediment study (IIA 7.8.3/01) conducted with [phenyl-UL -¹⁴C] abeled KBR 2738 in a loan sediment (**14**C) and a silty clay loam sediment (**14**C) and their associated water at 200C in the dark for a maximum of 100 days.

Measured and reported mean of two replacates, were taken into account singularly.

Four kinetic models, the simple orst-order (SEO), first-order multiple-compartment (FOMC, Gustafson-Holden), the hockey-stick model (HSO and the bi-exponential model (DFOP, double first order in parallel) were considered in this study.

A Level I evaluation was performed for the total system (degradation), and the single phases (dissipation, using decline for from the maximum occurrence onwards). In contrast to degradation, the dissipation parameters in vater-sediment studies include not only degradation but also transfer into the other phase (water or sediment).

Degradation barameters are useful for exposure models which explicitly consider the transfer of compound between different phases. Dissipation parameters can be used for exposure models which consider water and sediment phase separately.

The choice of the appropriate kinetic model is based on visual inspection of the fit and the scaled Chi²error. For modelling endpoints it is additionally checked by the t-test whether degradation or dissipation parameters are sufficiently reliable to be used for exposure modelling.

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

For the derivation of modelling endpoints, simple first-order (SFO) kinetics are tested first, because SFO is the simplest of the kinetic models and the one almost exclusively used in environmental exposure models. If the SFO fit is visually not acceptable or Chi²-error significantly exceeds a value of 15 %, then the bi-phasic models are tested. Finally the model is chosen which is visually acceptable and provides a significantly better fit in terms of Chi²-error. This avoids using an over-parameterised model based on a marginally better fit only. Ideally, the Chi²-error value should be below 15 %. However, this value should only be considered as guidance and not as an absolute cut-off criterion. There will be cases where the Ohi2-erfor is higher but the fit still represents a reasonable description of the degradation behaviour The bi-phasic models recommended are FOMC FOP and HS, where FOMC should not be used in cases where the final residue is more than \$0 % of its initial value. For modelling purposes, an equivalent SFO half-life is calculated as DT90_{bi-plase}/3.32Cwhen the first residues are below 10% of the initial value. By this method the equivalent SFO curve meets the bi-phasic curve at the time DT90_{bi-phasic} and consequently over predicts the residue values at earlier times. When the final residues remain above 10% of the initial value the QT50_{SFC} is calculated from the slow a-rate QC2) by DT50_{SFC} =  $\ln(2)/k_{2HS,DFOP}$ , and the DT90_{SFQ}  $\ln(10)/k_{2HS,DFOP}$ . For the derivation of persistence, endpoints, the SFQ model is tested against the DOMC model. If the SFO model gives an acceptable fit and the Chi²-error is smaller than that of the FOMConodel, the SFO model is selected. If the FQMC model is Better the other bi-phasic models AS and DFOP are tested, and the most appropriate in terms of visual fit and Chierrocis selected. For pathway fits in a first step the appropriate model for the parent is identified. In a second step the pathway is implemented with the parent model as identified and the SPO model for the metabolite.

In accordance with the experimental data (manufacture for the parent for the parent fenhexamid degrades to unextractable residues, minor metal offices, and volatiles, and

Figure 7.8.3-3: Compartment model for the total water-sediment system kinetic evaluation of [phenyl-UL\$C]KBR 2738 Levely



For Level evaluations of dissipation, the decline of a compound in either phase is fitted to measured data from their maximum onwards,  $M^*(t^*)$ , using a simple differential equation as the first one of the system above. The time axis is shifted by the time tmax where the maximum occurs,  $t^* = t - tmax$ , and



the residue values are chosen accordingly  $M^*(t^*) = M$  (t - tmax),  $t \ge tmax$ . This procedure is called *j* f the following decline- or dissipation fit.

### **II. Results and Discussion**

### A. Model selection

### 1. Total System

For the parent the SFO fits are visually and statistically well acceptable for the is slightly underestimated. However, according to system. The last data point for FOCUS (2006) this is acceptable when the residuals decreased below 90% of the applied mass until this date. This is the case already at day 60. The k-rate is significant (with t-test <0.001) and the chi²errors are well below 15%. Thus the SFQ model was selected for the modelling endpoint. For the persistence endpoint additionally the FOMC model is tested. The visual fit and ch2-error values are slightly better for the FOMC than for the SPO model. Hence, additionally the HS and DFOP model are tested. Both yield acceptable visual fits (for PIS the last data point is underestimated similarly to the SFO model). The chiz-error value is also shnilar though slightly better for the DFOP model than for the others. Therefore, the DFOP model is used to estimate the persistence endpoint.

the SFO model gives excellent sults. The SFO fit is very bood, with a chi2-error For value of only 6.3 and a highl reliable k-rate. The SFO model is selected for modelling endpoints. For persistence encounts additionally the FOMC model is calculated. The fit is not better than the SFO model (chičerror = 6.7). Hence also for persistence endpoints the SFO model is selected.

Scaled Chi²-error visual acceptability (VA: +/, yes/no) and significance of degradation rate (t-prob) of feature amily for different kinetic models applied to the total system values. Table 7.8.3-27: Value Vin bold indicate the kinetiomodel chosen for modelling endpoints, in italics for persistence indpojats.

				<u> </u>		_	-
Q			J ~	, Or			
	chi2error (%)	VAO ^P	t-prob)b	Ì	chi ² -error (%)	VA) ^a	t-prob) ^b
SFO 🔊	0 6.3 0 ×	$\rightarrow$	0.00	5	6.3	+	<0.001
FOMC	6.20 ~0	) + 10	0.1820	.217	6.7	+	0.390/0.394
HS	B1 N	+ 0 %	y \$0,00	6			
DFOP 🖑	\$6.2	$\sim^+$	~ ⁹ 0.50	0			

+/ xes/no ) for SFO t-test of k-rate; for POMC of Alpha Beta; for HS and DFOP of k-slow

2. Water Phase

t-prob = t-probability test

Evaluation of the dissipation from the water phase in the system is performed with the the rapid decline within the first 6 hours followed SFO model in a first step. In the by the slover dissipation can not be described appropriately with the SFO model (indicated also by the high chi@error of 24.5% in Table 4). The initial mass is reduced to 77%, which is not acceptable. Fixing the initially applied mass to 100%, results in an unacceptable underestimation of the measured values from day 7 on. Hence, the SFO model is not accepted. In the next step the FOMC model is run,

Document M: IIA, Tier 2, Sec. 5, Point 7 – Environmental Fate and Behaviour of Fenhexamid (KBR 2738) (Submission for Annex I renewal)

which yields an unacceptable fit by underrepresenting early data points and overestimating later points. The clearly bi-phasic behaviour can be adequately described by both HS and DFOP model. The obvious breakpoint at 6 hours is met very well. Of course the fast k-rate (most probably aduced by rapid sorption to the sediment) is not significant (p = 0.49 for both models) because it is based on only two time points. Since the slow phase is highly reliable, both models are acceptable. The DFOP model is chosen for modelling and persistence endpoints because it led to a slightly lower chi² error. In the system the situation is similar, though the bi-phasic behaviour at the first day is not as pronounced as in the system. Hence, the SFO and FOMC fit might be acceptable. However, the initial mass at SFO is again underestimated. To be consistent with the first day is not reliable (based on only few data points), which is deemed acceptable, since the slow rate is highly reliable and the breaking points are fitted well. The DFOP model yielded the lowest chi²-error value and is selected for both modelling and persistence endpoints.

Table 7.8.3-28: Scaled Chi²-error, visual acceptability (VA: 9- yes/po) and significance of degradation rate (t-prob) of fenhexanid for different kinetic models applied to the water phase. Values in bold indicate the kinetic model chosen for modelling endpoints, in falics for persistence endpoints.

					@	Ro	0	<u>)</u>
			0 4	- B	S.	°~/ 🔪		,
	chi ² -error (%)	ØA) ^a ∅	prob)	chi ² -e	error (%)	VA VA	s s	t-prob) ^b
SFO	24.5	- 4	00008	, O A	17.7 ₆	K∰ [™]	L.	0.001
FOMC	20.3 👟		0.044/0.1	§\$ `~	17.4	(k) + %		0.123/0.215
HS	3.9	۴ _م رې	_Ø<0.00₺		6.8	0' + 🕎		< 0.001
DFOP	25	/ + <u> </u>	√ [™] <0,001	.~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2.3 L	t		<0.001
) ^a +/-: yes/no		S I		N N	Ű "O"	<u> </u>		
) ^b for SEO t.	test of k-rate for FC	$MC \circ f \Delta \ln b$	/Beta Mor HS a	nd DEOP of	1-stow	×Q		

)^b for SFO t-test of k-rate: Or FOMC of Alpha/Beta? for HS and DFOP of k-stow

### 3. Sediment

In the **product of the system with the SFO model** (Figure 17) the residues at the last data point are underestimated. Since the dissipation is not larger than 90% (of the observed maximum) the SFO model is not acceptable. For the same reason only the HS (Figure 18) and DFOP models (Figure 19), but not the FOMC model, are applied in the next step to derive modelling endpoints. Both models yield a reasonable visual figure the slow rate is sufficiently reliable for the HS model (t-prob = 0.090). The HS model is chosen for modelling endpoints due to the slightly smaller chi2-error.

For persistence endpoints additionally the FOMC model (Figure 20) is calculated, yielding an excellent fit and a larger reduction of the chi²-error. The FOMC model is chosen for persistence endpoints.

In the **system the SFO** fit (Figure 21) is acceptable. The deviation at the last data point is very small and a fa time point where 90% of the initial mass already dissipated. Therefore the SFO model was accepted for modelling endpoints.

For persistence endpoints additionally the FOMC model (Figure 22) is calculated. No improvement in the visual fit or the chi²-error is observed. Hence, the SFO model is selected for calculating persistence endpoints.



 Table 7.8.3-29:
 Scaled Chi²-error, visual acceptability (VA: +/- yes/no) and significance of degradation rate (t-prob) of fenhexamid for different kinetic models applied to the sediment phase values. Values in bold indicate the kinetic model chosen for modelling endpoints, in italics for persistence endpoints.

									<u>~</u>
	1.2								, A-
SEO	chi ² -error (%	$(0) VA)^a$	t-prob)	ch1 ² -er	ror(%)		1		<del>_{</del>
SFU FOMC	10.9	- +	0.008 0.0 <i>81/</i> 0.1 <i>6</i>		<b>ð.4</b> 9 8	+ ∅ +	store and a store	" < <b>U. UGA</b> 0 44 V/0 1 1 10	Ş
HS	0.7 & N	+ +	0.004/0.10 <b>A AQA</b>	N No	7.0	Q T	Ŵ	0.401/0.44%	1
DFOP	8.0	+	0.000	Å	a C	) v	Ň	Q 6	×,
)a +/-: ves/	no		¢,	Å.	-Q ¹	<i>l</i> o [°]	<u>~</u> ~	<del>`</del> Ô	<u> </u>
)b for SFO	t-test of k-rate;	for FOMC of Alph	na/Beta; for H&	d DFOP of k	slow .	Ű	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	joj joj	, Y
			G V	la a	Ç'	, j	Č,		
			o ^v .	o s		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Å.	.4	
			JII. Con	elusion	Q.	Ö			۶°
Onco on	liad to wate	r aurfagga VD		ting to	alim.	Atod Q	om thetal	water/code	ont
Once app	lieu to wate						om rotal	water/seemin	em
aquatic m	odel systems	(Table $7.8.3-2$ )	Tor Level I).		4J	Č,		* U	
		4		, K	>		S S		
Table 7.8.	3-30: Degrad	dation and diss	sination param	eters for	ersister	ce endr	oint©of [	phenyl-UL-14	⁴ Cl
	fenhex	amid. 🦉 ,	Na Pa	S O	Q.	С. С. I	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	FJ	~1
			× ×				0	, 	
Evalu	ation level /	Phase 4			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ý . T			
type o	f parameter	°∼ 4	Mödel T	150 D	(90 <i>K</i> )	Model	1901 50	D190	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			(X) Orde	iys		(days)	(days)	
PI / de	eg.	ÿ Total ⊗y stem ↔	DFOP	.91 57	.7③	SFO 4	· [∽] ¥ 6.77	22.48	
PI / di	ss.	Watter	DFOP 1.	620 ⁰ 18	/32	DFOP,	2.28	13.06	
PI / di	ss.	Sediment 1	FOMC 14	98 A10	5.37	SÊØ	10.58	35.16	
				<u> </u>	AN AN	~			
		. w		S (0 _ ()	Ŵ			
	, Q	K K	à ô	Ű	<u>`</u> ®`				
Ŕ					. 0				
«\Y	î î		ST IN	Q	×,				
		. ~	X 8		7)				
	¢,	ASI							
	, and the second s	54 A ³ . O	, o ^y . Ô	, O					
	~Q° U			ð					
	4			, Ç					
	, , ,	ŶQ '		» 1					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								
- A	ж,	S >	Q S						
·		, O. V.	7, 4						
	~ ^	\ <i>Q</i> ⁷ , Ş	, Q'						
			Ø						
			~Q						
() ~()	Ţ,								
Ň	S A	× 25							
, st	Nº N	N.							
K _	Ğ	L'							
ç Ç	) [*]								