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Biology
•  BRPF proteins are a subgroup of the 

bromodomain protein reader family  
with three members: BRPF1, BRPF2,  
and BRPF3

•  BRPFs are transcriptional regulators  
and scaffold proteins forming a quaternary 
complex with the histone acetyltransferase 
MOZ/MORF (Figure 6)

•  BRPF1 plays an essential role in  
AML bearing the MOZ-TIF2 fusion,  
and its knockdown reduces  
transformation ability7

•  BAY-299 binds to BRPF2 (Kd = 45 nM) and TAF1 (Kd = 17 nM) with high affinity and selectivity (Figure 8)•  BAY-598 is highly active in cells, and can be dosed orally to mice for target validation studies (Figure 5)

Biology
•  ATAD2 (ATPase family AAA-domain containing protein 2) is 

an epigenetic regulator that binds to chromatin through its 
bromodomain (BD), a motif specialized for acetyl-lysine 
recognition

•  ATAD2 directly associates with multiple transcription factors, 
and has thus been proposed to act as a co-factor for 
oncogenic transcription factors (Figure 9)

•  High expression of ATAD2 is strongly correlated with poor 
prognosis in a wide range of tumor types, including breast, 
lung, gastric, endometrial, hepatocellular, and ovarian cancers
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Figure 1. Examples of widely used, low quality tool compounds.

Polyphenolic natural  
products such as resveratrol, 
quercetin, and curcumin  
pose an especially daunting 
challenge for target validation 
work. While it has been 
recognized for years that 
these compounds show 
nonspecific behavior, are 
unstable under many assay 
conditions, and may contain 
impurities, target validation 
studies using these and  
other similarly problematic 
substances remain common 
in the scientific literature. 
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SMYD2 prevents p53 recruitment (e.g. in cancer cells)
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Figure 2. Role of SMYD2 in prevention of p53 recruitment.

Figure 5. (A) Cellular activity of BAY-598: Inhibition of cellular p53 methylation. HEK 293 cells co-transfected with p53-FLAG and SMYD2-FLAG or 
catalytically inactive SMYD2mutant-FLAG were treated with BAY-598 for 24 hours. (B) Inhibition of SMYD2-dependent methylation was evaluated  
ex vivo by treating mice bearing subcutaneous tumor xenografts (SMYD2 overexpressing KYSE-150 cell line) with oral doses of BAY-598 and 
subsequent analysis of tumors for methylation signals by dot-blotting.

Figure 8. (A) Selectivity of BAY-299 using the BROMOscan™ panel. BROMOscan™ tree generated using the TREEspot™ software tool and is 
reprinted with permission from DiscoverX®. (B) Isothermal calorimetry measurements for BAY-299 with BRPF2 and TAF1 BD2.

Figure 3. Lead finding process for the SMYD2 
inhibitor BAY-598.

Figure 9. ATAD2 acts as a regulator of transcription through its interaction 
with various transcription factors.

Figure 11. Cellular target engagement. TagGFP-tagged wild type (WT), 
BD mutant, and ATPase domain mutant ATAD2 proteins were expressed 
in MCF7 breast cancer cells and their binding to chromatin was measured 
by fluorescence recovery after photobleaching (FRAP). The recovery t½ 
of tagGFP-tagged WT ATAD2 protein was significantly faster in MCF7 cells 
treated with 1 µM BAY-850 than in untreated cells, and was comparable 
with the tagGFP-tagged BD mut ATAD2. Treatment of MCF7 cells with 
BAY-460 control compound had no major effect on the recovery t½.

Figure 12. TREEspot™ plots of BROMOscan™ data for BAY-850 
(test concentration: 10 μM) showing monoselectivity of the compound 
for ATAD2. The image was generated using the TREEspot™ software 
tool and reprinted with permission from KINOMEscan®. 

X = ERα, AR, E2F, and Myc

ATAD2
Ac

X
Ac Ac

Percentage control

@ 0.1 µM

0%

0.1%

0.1–1%

1–5%

5–10%

10–35%

KD BRPF2 = 45 nM

0.00 
–0.20 
–0.40 
–0.60 
–0.80 

2.00 
0.00 

–2.00 
–4.00 
–6.00 
–8.00 

–10.00 
–12.00 
–14.00 

0.0 0.5 1.0 1.5 2.0 

0 20 40 60 80 100 
Time (min) 

kc
al

 m
ol

–1
 o

f
in

je
ct

an
t

µc
al

 s
ec

–1

kc
al

 m
ol

–1
 o

f
in

je
ct

an
t

µc
al

 s
ec

–1

 

Molar ratio
KD TAF1 BD2 = 17 nM 

0.00 
–0.20 
–0.40 
–0.60 
–0.80 
–1.00 

2.00 
0.00 

–2.00 
–4.00 
–6.00 
–8.00 

–10.00 
–12.00 
–14.00 

0.0 0.5 1.0 1.5 2.0 

0 20 40 60 80 100
Time (min) 

 

Molar ratio

What constitutes a high-quality chemical probe?

Chemical matter criteria
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The challenge
•   Low reproducibility of published target validation studies has been recognized as a roadblock 

for cancer drug discovery1

•  Widespread use of inappropriately characterized or unspecific chemical entities (Figure 1)  
as tools for cancer target validation limits the translation of basic research findings into 
successful drug discovery2, 3

The solution
•  Academic and industrial institutions have started to address this issue by providing access to 

high-quality small molecular probes for novel targets of interest4

•  Here, we present probe quality criteria and three probes for epigenetic targets of interest, all of which 
are available to academic labs for advancing the understanding of SMYD2, BRPF2, and ATAD2

Figure 4. Optimal positioning of substituents, 
guided by Watermap calculations, boosted target 
potency and binding efficiency.

Biology
•  SMYD2 was postulated to play a key role in regulation of 

p53 (Figure 2)
 – SMYD2 monomethylates p53 at lysine 370
 –  Recruitment of methylated p53 to target genes is impaired
 –  Increased SMYD2 activity could lead to apoptosis 

resistance in cancer cells 

•  SMYD2 is highly expressed in many cancers, and is a 
prognostic indicator for reduced overall survival

 – Esophageal squamous-cell carcinoma
 – Bladder cancer
 – Gastric cancer

Lead finding
•  Screening of approximately  

3 million compounds  
followed by hit validation  
and cluster prioritization 
using biophysical assays, 
selectivity assays, and 
chemical inspection identified 
a series of pyrazoline 
SMYD2 inhibitors (Figure 3)

•  Systematic and X-ray-guided 
structure-activity relationship 
exploration yielded a  
>100-fold increase in potency 
(Figure 4)

A B A B

Lead finding
•  Screening of 11  

DNA-encoded libraries 
comprising a total of  
65 billion compounds 
provided a structurally 
unprecedented bromodomain 
inhibitor scaffold

•  The hit was derived from a 
110 million-membered library 
based on central formyl acid 
building blocks 

•  Systematic SAR exploration 
has led to BAY-850, a potent, 
cellularly active and 
exquisitely selective ATAD2 
BD inhibitor (Figure 10)
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Figure 10. Lead finding process for BAY-850. (A) A hit was identified from a 65 billion compound library.  
(B) Systematic SAR exploration led to identification of BAY-850, a potent, cellularly active, and selective  
ATAD2 BD inhibitor.
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Figure 6. Role of BRPF proteins.
Figure 7. Lead finding process for the BRPF2 inhibitor BAY-078. Systematic SAR studies 
gave subsequently rise to the more potent and selective probe BAY-299.
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•  BAY-850 engages ATAD2 in cells, as shown by FRAP experiments (Figure 11), and is highly selective (BROMOscanTM, Figure 12)


