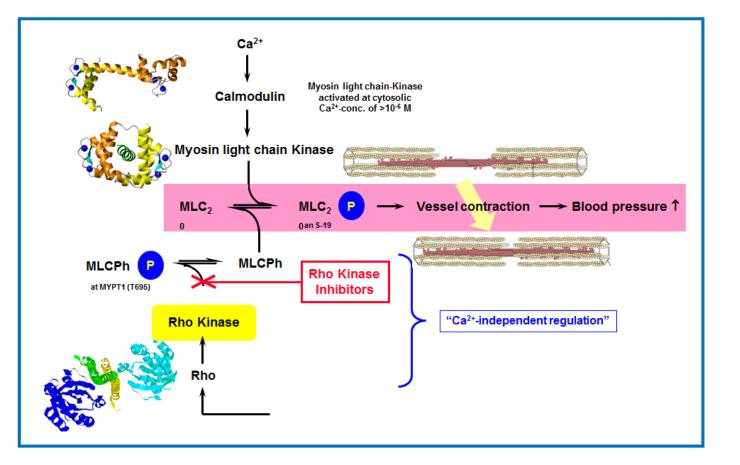
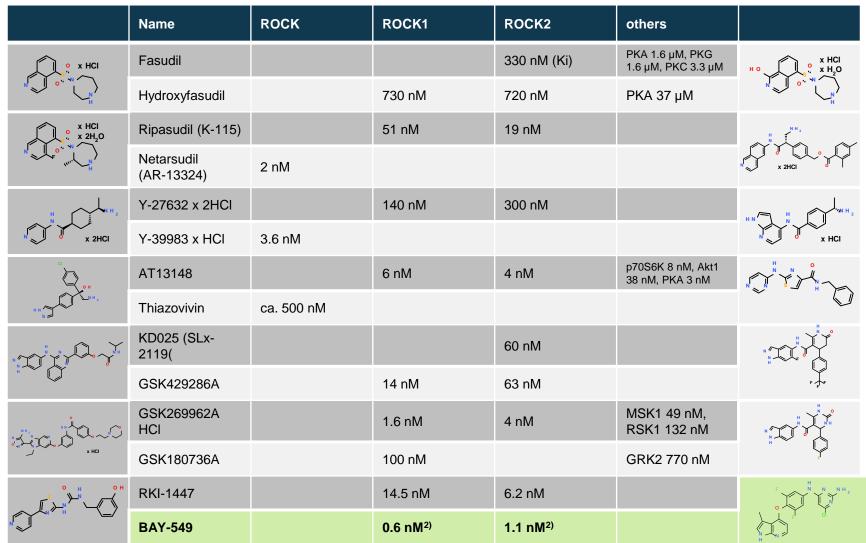


Donated Chemical Probe *ROCK1/2 Inhibitor Probe BAY-549*

June, 2019


Presenters: Hartmut Schirok & Raimund Kast


Scientific rationale

- The Rho-associated coiled coil containing protein kinase (ROCK) is a ~160 kDa serine/threonine kinase from the AGC kinase family.
- ROCK is an effector of the small GTP-binding protein RhoA, and is implicated in a multitude of fundamental cellular processes including smooth muscle contraction, cell growth and migration, endothelial barrier maintenance, and apoptosis.
- ROCK mediates the phosphorylation of the regulatory myosin-binding subunit of myosin light chain phosphatase (MLCPh). This inhibits the phosphatase activity causing an increase in the level of phosphorylated MLC and the contractile tone of the vascular smooth muscle apparatus independently of any change in intracellular Ca²⁺ concentration, a phenomenon known as "calcium sensitization".
- ROCK inhibitors counterbalance this process leading to net vasodilation.

Comparison with commercially available compounds¹⁾

1) https://www.selleckchem.com/ROCK.html 2) BAYER data

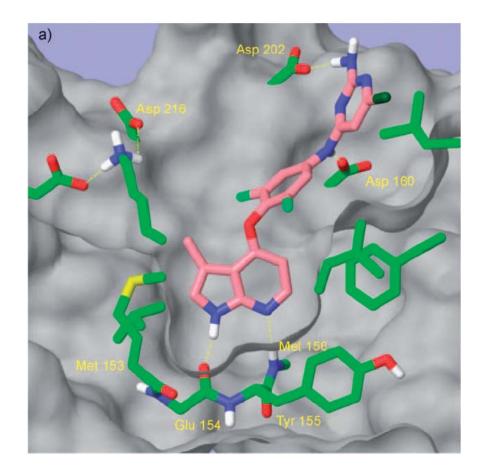
BAY-549:

- highly potent
- in-depth characterized
- novel scaffold
- good selectivity
- inactive structural analog

Technical in vitro profile

F N N N H 2			POTENC	POTENCY (IC ₅₀ [nM])			Properties & Physchem	Properties & Physchem		
		Biochem.	Biochem. ROCK-1 (h) IC ₅₀ [nN		M] 0.6	logD @ pH 7.5	2.3			
<mark>ر ہ</mark>	\checkmark		Biochem.	Biochem. ROCK-2 (h) IC ₅₀ [n Biochem. ROCK-2 (m) IC ₅₀ [r			BEI / LLE _d (calc, ROCK-2 (h))	25 / 8.6		
	FCI		Biochem.				Sw @ pH 6.5 [mg/L]	0.5		
				Biochem. ROCK-2 (r) IC ₅₀ [r		[] 0.8	0.8 MW / MW corr / TPSA [g*mol ⁻¹ / Å ²		Solubility	mg/L
н	BAY-	-549	Arteria Sa	Arteria Saphena rabbit IC ₅₀ [[nM] 65	Stability (r /h plasma, 4h) [%]	nd	рН 6.5	0.5
<i>in vitro</i> DMPK Properties							Selectivity	Selectivity		
Caco2	P _{app} (A-B)	[nm/s]	P _{app} (B-A)	[nm/s]	efflux ratio 0.4				рН 4	0.8
Permeability	59		23				In-house kinase panel	High selectivity see next slides	рН 8	0.3
			CL [L/h/	CL [L/h/kg] F _{max}		F _{max} [%]		See next sides	рН 10	0.2
metabolic	liver mic	:s (r)	2.3			44			PEG400	
stability rat hepatocytes		2.0		5		Upstate @ 10 µM (kinase panel)	High selectivity see next slides	PEG400/H ₂ O 80/20	120	
	human hepa	-	0.82		38				Solutol/EtOH	240
CYP inhibition	1A2	2C8	2C9	2D6	3A4	3A4 preinc.	SAFETY		/H ₂ O 40/10/50	240
ΙC ₅₀ [μΜ]	>50	nd	6.0	>50	41	6.6	Cytotox (HuH-7 cells) [µM]	1.9	0.1 M HCI	247
PXR nd					hERG IC ₅₀ [μM]	>30	Acetone	6331		

• BAY-549 has high *in vitro* potency and selectivity.


• BAY-594 has low solubility and intermediate permeability with no efflux in Caco2 assay.

Docking study with BAY-549

Molecular modeling images of BAY-549 docked and minimized into ROCK-1 (2esm.pdb, subunit A, Asp216 side chain minimized):

The inhibitors is shown in pink, while the protein surface is given in grey with key amino acids labeled and highlighted in green. Heteroatoms and polar hydrogens are color coded (N, blue; O, red; S, yellow; F, light green; Cl, dark green; polar H, white) and hydrogen bonds are shown as yellow dotted lines.

from: *J. Med. Chem.* **2008**, *3*, 1893 – 1904. DOI: 10.1002/cmdc.200800211

BAYER E R

ROCK1/2 Inh Probe BAY-549

Selectivity profile in more detail – kinase panel

Kinase Profiling at Upstate

114 Kinases (10 µM)

Inhouse Kinase Data:

111 Kinases (10 µM)

23 Different kinases	IC ₅₀ : 1-10 μΜ
TrkA	IC ₅₀ :252 nM
Flt3	IC ₅₀ :303 nM
PKA	IC ₅₀ :734 nM
ROCK-2 (rat);	IC ₅₀ : <1 nM
ROCK-2 (human);	IC ₅₀ : 1 nM

Mps1	IC ₅₀ : 0.54 μΜ
AKT1	IC ₅₀ : 0.82 μΜ
FLT4	IC ₅₀ : 1.04 μΜ
NUAK1 (10 µM ATP)	IC ₅₀ : 1.66 μΜ
TrkA	IC ₅₀ : 3.84 μΜ
KDR	IC ₅₀ : 3.89 μΜ
FMS	IC ₅₀ : 4.21 μΜ
PDGFRβ	IC ₅₀ : 4.90 μΜ

Bub1, CDK2, CDK9, cKit, EGFR, FGFR1, FGFR3, FGFR4, GSK3 β , IKK β , IRAK4, MKNK1, NEK2, SRPK1, TAO2, Tie2: IC₅₀ > 20 μ M

As usual, full profile will be delivered after probe acceptance

Selectivity profile in more detail - safety pharmacology in vitro

Off-Target	Species	Inhibition in % @ 10 µmol	IC50 [µmol/l]	Ki [µmol/l]
Adenosine A1	Human	55		
Adenosine A1	Human	57		
Dopamine D1	Human	62		
Dopamine D1	Human	61		
Opiate kappa (OP2, KOP)	Human	69		
Opiate kappa (OP2, KOP)	Human	65		
Opiate mu (OP3, MOP)	Human	51		
Transporter, Dopamine (DAT)	Human		32	0.25
Transporter, Dopamine (DAT)	Human		34	0.0027
Transporter, Dopamine (DAT)	Human		39	0.31
Transporter, Dopamine (DAT)	Human	98		
Transporter, Norepinephrine (NET)	Human	55		
Transporter, Norepinephrine (NET)	Human	56		
Calcium Channel L-Type, Dihydropyridine	Rat		599	0.039
Calcium Channel L-Type, Dihydropyridine	Rat		690	4.4
Calcium Channel L-Type, Dihydropyridine	Rat		703	4.5
Calcium Channel L-Type, Dihydropyridine	Rat	72		
Sodium Channel, Site 2	Rat		656	6.0
Sodium Channel, Site 2	Rat		664	6.1
Sodium Channel, Site 2	Rat		704	6.4
Sodium Channel, Site 2	Rat	70		

Biochemical Screen at Panlabs

63 Radioligand binding assays (10 μM) Values of inhibition >70% were followed up with determination of IC_{50}

Proliferation Assays at Panlabs

24 tumour cell lines (see at the end of the document)

Growth inhibition; IC_{50} : >1 µM

No significant off target effects identified

Safety pharmacology details

In vivo tests at Pharmacology Discovery Servies (Eurofins)

Off-Target	Species	Test concentratio n [µmol/l]	Inhibition in % @ 10 µmol	IC50 [µmol/l]	Ki [µmol/l]	100% = normal
Body Temperature - Agonist - Body temperature - 1 Hour	Mouse		98			
Body Temperature - Agonist - Body temperature - 2 Hours	Mouse		99			
Body Temperature - Agonist - Body temperature - 30 Minutes	Mouse		100			
Cholesterol, Normal Serum (Total, HDL, TG) - Agonist - Cholesterol of serum	Mouse		85			
Cholesterol, Normal Serum (Total, HDL, Triglyceride) - Agonist - HDL of serum	Mouse		76			
Cholesterol, Normal Serum (Total, HDL, Triglyceride) - Agonist - Triglyceride (TG) of serum	Mouse		91			
Cholesterol, Normal Serum (Total, HDL, Triglyceride) - Agonist - Triglyceride (TG) of serum	Mouse		92			
Depression, Behavior	Mouse		100			
Gastrointestinal Motility - Agonist - G.I Motility Decrease	Mouse		79			
Gastrointestinal Motility - Agonist - G.I Motility increase	Mouse		79			
Glucose, Serum, Fasted - Glucose	Mouse		139			
Hepatotoxicity, SGPT PharmaProfile - Agonist - S-Glutamic pyruvic transaminase	Mouse		95			
Cardiovascular, Postural Hypotension, Tilt Response - Agonist - Heart Rate - 1 Hour	Rat		94			
Cardiovascular, Postural Hypotension, Tilt Response - Agonist - Tilt Blood Pressure	Rat		89			
Gastric Acidity, Basal - increase - Gastric acidity measurement	Rat		102			

In-vivo pharmacokinetics and histopathological findings

		Mouse	Rat	Dog
dose iv	[mg/kg]	0.5 ^{bolus}	0.5 ^{inf}	0.05 ^{inf}
CL _{plasma}	[L/(h•kg)]	1.9	1.2	0.23
CL _{blood}	[L/(h•kg)]	3.2	1.7	0.41
V _{ss}	[L/kg]	2.2	1.6	0.83
t _{1/2}	[h]	1.5	1.2	2.5
dose po	[mg/kg]	nd	0.91	0.10
AUC _{norm, po}	[kg•h/L]	nd	0.39	3.2
C _{max,norm}	[kg/L]	nd	0.089	0.43
BA	[%]	nd	48	73

• The compound is well suited to perform *in-vivo* studies with oral application.

Pharmacokinetics

- BAY-549 is a low to medium clearance drug in conscious female NMRI mice, male Wistar rats and female beagle dogs. The clearance decreased with increasing size of the animal species. Mice had the highest volume of distribution of 2.2 L/kg. However, its half-life in dogs was longer than in rats and mice.
- The **oral bioavailability** amounted approximately to 50% in male Wistar rats and 75% in female beagle dogs. In dogs, the half-life was significantly longer after oral administration compared to that after i.v. administration indicating a slower absorption by the oral route.

Histopathological findings in rats (SHR), 10 mg/kg, gavage, 2 weeks, n = 5

- Heart: Focal myocardial degeneration (grade 1 or 2)
- Liver: Centrilobular hypertrophy
- Kidneys: Hyperplasia of cortical tubules, basophilic tubules
- Mesenteric vessels: minimal proliferation of vasa vasorum. In SHR controls no such findings were found. However, the number and severity score is comparable to the Wistar controls of this study. An inflammatory reaction was absent.
- Mesenteric lymph node: Erythrophagocytosis/blood resorption.
- Nephrotoxicity similar to that observed in Wistar rats, borderline vascular lesions of equivocal toxicological relevance

In vitro profile of Negative Control BAY-4900

$F \xrightarrow{H}_{N} \xrightarrow{N}_{N} \xrightarrow{N}_{N} \xrightarrow{H}_{2}$		POTENC	CY (IC ₅₀ [n	M])				
		Biochem	. ROCK-1 ((h) IC ₅₀ [n	M]	LogD @ pH 7.5	3.0	
CI O			Biochem	Biochem. ROCK-2 (h) IC ₅₀ [nM] 17.700			BEI/LLE	
	F		Biochem	ROCK-2	(m) IC ₅₀ [I	nM]		0.57
✓ ↓ ↓			Biochem	Biochem. ROCK-2 (r) IC ₅₀ [nM]			Sw @ pH 6.5 [mg/L]	0.57
1	BAY	-4900	Arteria Sa	aphena ral	obit IC ₅₀	[nM]	MW / MW corr / TPSA [g*mol ⁻¹ / Å ²	2] 437 / 377 / 91
in vitro DMPK Properties							Selectivity	
Caco2	P _{app} (A-B) [[nm/s]	P _{app} (B-A)	P _{app} (B-A) [nm/s] efflux ratio				
Permeability	76		41			0.54	In-house kinase panel	ongoing
			CL [L/h	/kg]] F _{max} [%]			
metabolic	liver mics (m	/ r / d / h)						
stability	rat hepato	ocytes					Eurofins @ 1 µM (kinase panel)	
human hepatocytes								
CYP inhibition	1A2	2C8	2C9	2D6	3A4 3A4 preinc.		SAFETY	
IC ₅₀ [μΜ]							Cytotox	
PXR							hERG IC ₅₀ [μM]	ongoing

- BAY-4900 has high structural similarity to BAY-4900 and similar Caco2 permeability
- BAY-4900 does not inhibit ROCK

Summary / Conclusion

Probe criteria	
Inhibitor/agonist potency: goal is < 50 nM (IC ₅₀ , Kd)	Surpasses criteria; high potency in biochemical ROCK1 assay with $IC_{50} < 1$ nM
Selectivity within target family: goal is > 30-fold	Surpasses criteria; selectivity >250 fold vs all other kinases (Upstate panel , Trk-A IC ₅₀ = 252 nM)
Selectivity outside target family: describe the off-targets (which may include both binding and functional data)	Surpasses criteria; LeadProfilingScreen Dopamine transporter $IC_{50} = 0.4 \ \mu M$
On target cell activity for cell-based targets: goal is < 1 μ M IC ₅₀ /EC ₅₀	Surpasses criteria ; mechanistic tissue assay (arteria saphena rabbit), IC ₅₀ = 65 nM;
On target cell activity for secreted targets: appropriate alternative such as mouse model or other mechanistic biological assay, e.g., explant culture	Surpasses criteria; suitable pharmacokinetic profile for <i>in vivo</i> studies; <i>in vivo</i> efficacy in experimental animal models (rat, dog)
Neg ctrl: <i>in vitro</i> potency $- > 100$ times less; Cell activity $- > 100$ times less potent than the probe	Surpasses criteria;

We ask for acceptance of ROCK inhibitor BAY-549 as chemical probe, accompanied by BAY-4900 as negative control

Project Team / Acknowledgement

Chemistry

Marcus Bauser Samir Bennabi Michael Brands Jaques Dumas Jens Ergüden Achim Feurer Santiago Figueroa-Pérez Michael Hahn Heike Heckroth Jörg Keldenich Mario Lobell Joachim Mittendorf Holger Paulsen Hartmut Schirok Michael Thutewohl

Pharmacokinetics Mark Jean Gnoth Elke Stahl

Drug Metabolism

Armin Kern Dieter Lang Martin Radtke

Pharmacology

Raimund Kast Andreas Knorr Klaus Münter Johannes-Peter Stasch Joachim Hütter

Physiology

Heimo Ehmke (Univ. Hamburg)

Toxicology Volker Geiß

Safety Pharmacology Michael Hoffmann

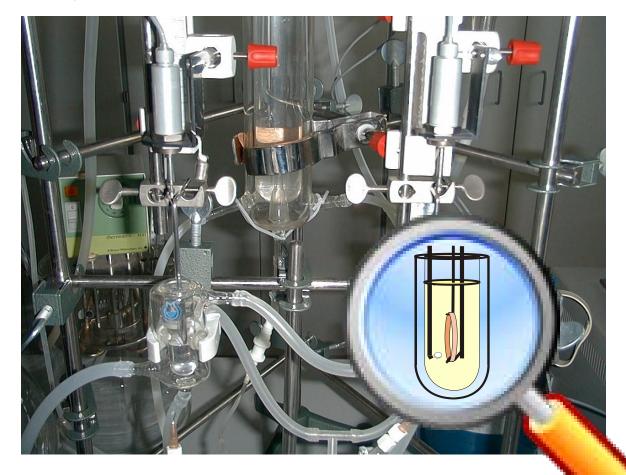
Pharmaceutical Technology Alfons Grunenberg Susanne Zuleger

Patents

Gabriele Handke-Ergüden Alan Graff

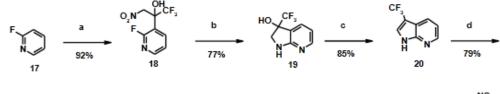
PD-CV

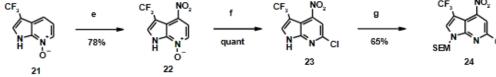
Sabine Gelfert-Peukert

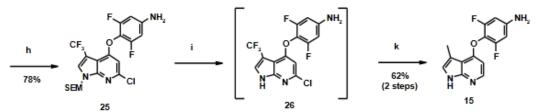


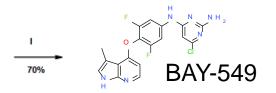
Thank You

24


Assay description




Effects of vasoactive compounds on contractions of isolated rabbit saphenous aterery rings induced by phenylephrine: Rabbit saphenous artery rings were connected to isometric force transducers and in carbogen-gassed Krebs-Henseleit placed solution at 37 °C. Contractions in response to phenylephrine treatment are carried out several times. Test compound-dependent changes in subsequent contractions are evaluated as percent of previous control. The IC_{50} -value determines the concentration of test compound needed to cause 50% inhibition of the control contraction.



Chemical Synthesis of BAY-549

(a) LDA, THF, -75 °C; CF₃CO₂Et, -78 °C f rt; CH₃NO₂, rt, 92%. (b) H₂ (1 atm), PtO₂, EtOH, rt; filtration, reflux, 77%. (c) SOCl₂, Pyr, CH₂Cl₂, rt, 85%. (d) *m*-CPBA, EtOAc, 0 °C, 79%. (e) HNO₃, TFA, 70 °C, 78%. (f) Cl₃CCOCl, HMDS, THF, 0 °C; quant. (g) SEMCl, NaH, DMF, rt, 65%. (h) K₂CO₃, DMSO, 120 °C, 78%. (i) TFA, CH₂Cl₂, rt. (k) LiAlH₄, THF, reflux, 62%. (l) 4,6-Dichloropyrimidine-2-amine, water, aq HCl, reflux, 70%.

BAY-549 was synthesized in a linear sequence of 11 steps;

Numbering of compounds from

H. Schirok, H. Paulsen, W. Kroh, G. Chen, P. Gao, *Org. Proc. Res. Devel.* **2010**, *14*, 168-173.

Starting Materials

2-Fluoropyridine CAS-RN 372-48-5 Ethyl trifluoroacetate CAS-RN 383-63-1 Nitromethane CAS-RN 75-52-5 4-Amino-2,6-difluorophenol CAS-RN 126068-97-7 4,6-Dichloropyrimidine-2-amine CAS-RN 156-83-2

Chemical Synthesis of BAY-549

Step 1

1,1,1-Trifluoro-2-(2-fluoropyridin-3-yl)-3-nitropropan-2-ol (18). To a solution of freshly prepared LDA (1.48 mol) in THF (3.2 L) at -75 °C was added 2-fluoropyridine (120 g, 1.24 mol), and the mixture was stirred for 4 h at this temperature. To the resulting suspension, ethyl trifluoroacetate (246 g, 1.73 mol) was added, during which the internal temperature should not rise above -45 °C. The reaction was warmed to rt. Nitromethane (134 mL, 2.47 mol) was added, and the reaction was stirred overnight. The solution was poured into HCl (ag 2 N, 17 L), and the mixture was extracted with EtOAc (2 × 8 L). (Remark: The retro-nitro-aldol reaction takes place under basic conditions. Therefore, the reaction mixture must be poured into an acidic medium.) The combined organic layers were washed with brine (5 L), dried (Na₂SO₄), and the solvent was evaporated. The crystalline residue was triturated with PE, and the product was collected by suction filtration to yield 290 g (92%) of the title compound. (Remark: The DTA analysis of 18 revealed a strongly exothermic decomposition beginning at 140 °C with 2300 kJ/kg.) ¹H NMR (300 MHz, DMSO- d_6): $\delta = 5.10-5.16$ (m, 1H), 5.68 (d, J = 13.2 Hz, 1H), 7.25 (ddd, J = 7.7, 4.8, 2.3 Hz, 1H), 8.27 (ddd, J = 10.0, 7.7, 1.9 Hz, 1H), 8.33-8.38 (m, 2H). 13C NMR (125 MHz, DMSO-*d*₆): $\delta = 73.8$ (dq, ${}^{2}J_{CF} = 30.0$ Hz, ${}^{3}J_{CF} = 6.9$ Hz), 77.1 (d, ${}^{4}J_{CF} = 8.3$ Hz), 116.7 (d, ${}^{2}J_{CF} = 27.8$ Hz), 122.6 (d, ${}^{4}J_{CF} = 4.2$ Hz), 123.8 (q, ${}^{1}J_{CF} = 286$ Hz), 141.6 (d, ${}^{3}J_{CF} =$ 3.2 Hz), 148.9 (d, ${}^{3}J_{CF} = 15.7$ Hz), 159.0 (d, ${}^{1}J_{CF} = 236$ Hz). HRMS calcd for C8H6F4N2O3: 254.0315; found: 254.0321.

Step 2

3-(Trifluoromethyl)-2,3-dihydro-1*H*-pyrrolo[2,3-*b*]pyridin-3-ol (19). Compound 18 (100 g, 393 mmol) was dissolved in EtOH (1.5 L) and stirred under H₂ (1 atm) with PtO₂ (2.23

g, 7.87 mmol) as catalyst. After the consumption of the theoretical amount of H₂, the solution was filtered, and the filtrate was refluxed overnight. Subsequently, the solvent was removed under reduced pressure. The residue was dissolved in EtOAc (1 L) and washed with aq sat. NaHCO3 solution (0.8 L). The aqueous phase was extracted with EtOAc (0.5 L), and the organic layer was dried (Na2SO4). The solvent was removed under reduced pressure, and the oily residue was triturated with CH₂Cl₂ (0.3 L). The crystalline product was collected by suction filtration and washed with CH2Cl2 (150 mL) to yield 57.2 g (71%) of the title compound. An additional 4.5 g (6%) was obtained after chromatographic purification on silica gel (1.0 kg, eluent: CH₂Cl₂/MeOH, 30:1 to 10:1) of the mother liquor. (Remark: Fluoride is liberated during the reaction and etches the glassware.) ¹H NMR (400 MHz, DMSO- d_6): $\delta = 3.45$ (d, J = 11.7 Hz, 1H), 3.71 (d, J = 11.7 Hz, 1H), 6.59 (dd, J =7.3, 5.1 Hz, 1H), 6.84 (s, 1H), 6.97 (s, 1H), 7.53 (d, J = 7.3Hz, 1H), 7.97 (dd, J = 5.1, 1.2 Hz, 1H). ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 52.2, 77.7 (q, {}^2J_{CF} = 29.9 Hz), 112.4, 117.7,$ 125.3 (q, ${}^{1}J_{CF} = 284$ Hz), 132.9, 149.9, 163.4. HRMS calcd for C₈H₇F₃N₂O: 204.0510; found: 204.0515.

Step 3

3-(Trifluoromethyl)-1H-pyrrolo[2,3-b]pyridine (20). Compound 19 (211 g, 1.03 mol) was dissolved in CH₂Cl₂ (3.2 L). Pyridine (164 g, 2.07 mmol) and thionyl chloride (246 g, 2.07 mmol) were added, and the reaction was stirred for 2 h. Then ice was added, and the reaction was neutralized to pH 5.7 with aq NaOH solution. The solution was extracted with CH2Cl2 (2 \times 1.5 L), and the combined organic layers were washed with water (1.5 L) and dried (Na₂SO₄). The solvent was removed in vacuo to yield tan crystals. The crude product was triturated with PE (600 mL) for 15 min, and the crystals were collected by suction filtration to yield 164 g (85%) of the title compound. (Remark: The DTA analysis of 20 showed a strongly exothermic decomposition beginning at >160 °C with ~850 kJ/kg.) ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 7.26$ (dd, J = 7.9, 4.7Hz, 1H), 8.05 (d, J = 7.9 Hz, 1H), 8.16 (s, 1H), 8.39 (dd, J =4.7, 1.3 Hz, 1H), 12.51 (br s, 1H). 13C NMR (125 MHz, DMSO d_6): $\delta = 102.8$ (q, ${}^2J_{CF} = 36.8$ Hz), 115.3, 117.2, 124.2 (q, ${}^{1}J_{C,F} = 266 \text{ Hz}$), 126.9, 127.2 (q, ${}^{3}J_{C,F} = 5.0 \text{ Hz}$), 144.5, 148.0. HRMS caled for C₈H₅F₃N₂: 186.0405; found: 186.0407.

Step 4

3-(Trifluoromethyl)-1*H*-pyrrolo[2,3-*b*]pyridine 7-Oxide (21). A solution of *m*-chloroperbenzoic acid (335 g, 1.45 mol) in EtOAc (3 L) was dried (Na₂SO₄) and cooled to 0 °C. Compound 20 (180 g, 969 mmol) was added in portions. The mixture was stirred for 1 h during which time white crystals precipitated. They were collected by suction filtration and washed with EtOAc (600 mL) to yield 155 g (79%) of the desired *N*-oxide. (*Remark:* The DTA analysis revealed a weakly exothermic reaction of the mixture.) ¹H NMR (DMSO-*d*₆, 400 MHz): $\delta = 7.25$ (dd, J = 8.0, 6.2 Hz, 1H), 7.67 (d, J = 8.0Hz, 1H), 8.16 (s, 1H), 8.31 (d, J = 6.2 Hz, 1H), 13.40 (br s, 1H). ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 105.4$ (q, ¹*J*_{CF} = 37.4 Hz), 117.5 118.5, 119.5 (q, ³*J*_{CF} = 2.2 Hz), 123.5 (q, ¹*J*_{CF} = 266 Hz), 127.5 (q, ¹*J*_{CF} = 5.0 Hz), 132.7, 138.5. HRMS calcd for C₈H₃F₃N₂O: 202.0354; found: 202.0348.

Numbering of compounds and procedures from

H. Schirok, H. Paulsen, W. Kroh, G. Chen, P. Gao, Org. Proc. Res. Devel. 2010, 14, 168-173.

Chemical Synthesis of BAY-549

Step 5

4-Nitro-3-(trifluoromethyl)-1*H*-pyrrolo[2,3-*b*]pyridine 7-Oxide (22). A solution of compound 21 (162 g, 801 mmol) in trifluoroacetic acid (1.9 L) was heated to 70 °C. HNO₃ (65%,

111 mL, 1.60 mol) was added within 10 min. (Remark: The reaction was slightly exothermic, and the heating bath was removed for 30 min upon HNO3 addition during which time the internal temperature was 65-75 °C.) The reaction was heated to 70 °C for 2 h. Then it was poured into an ice/water mixture (5.4 L). The precipitate was collected by suction filtration and washed with water (1.8 L). The product was dried in vacuum to yield 156 g (78%) of the title compound. (Remark: The DTA analysis of the nitration mixture resulted in a maximal tolerable internal temperature of 30 °C and a recommended maximal reaction volume of 2 L. The DTA analysis of 22 showed a strongly exothermic decomposition beginning at >105 °C with >2900 kJ/kg. However, the compound was not sensitive to impact or friction.) ¹H NMR (DMSO- d_6 , 500 MHz): $\delta =$ 8.09 (d, J = 6.9 Hz, 1H), 8.46 (s, 1H), 8.49 (d, J = 6.9 Hz, 1H), 14.2 (br s, 1H). ¹³C NMR (125 MHz, DMSO- d_6): $\delta =$ 105.5 (q, ${}^{2}J_{CF} = 37.9$ Hz), 110.7, 115.4, 122.6 (q, ${}^{1}J_{CF} = 266$ Hz), 132.4, 132.7 (q, ${}^{3}J_{CF} = 6.5$ Hz), 137.0, 141.3. HRMS calcd for C₈H₄F₃N₃O₃: 247.0205; found: 247.0209.

Step 6

6-Chloro-4-nitro-3-(trifluoromethyl)-1H-pyrrolo[2,3-b]pyridine (23). Compound 22 (152 g, 615 mmol) was dissolved in THF (2.6 L). Hexamethyldisilazane (130 mL, 615 mmol) was added, and the mixture was cooled to 0 °C. An orange precipitate was formed. Trichloroacetyl chloride (279 g, 1.54 mol) was added dropwise during which the precipitate dissolved, and the color changed to yellow. The mixture was subsequently warmed to rt. The mixture was stirred for 2 h and then poured into water (13 L) and extracted with EtOAc (2×5.3 L). The combined organic layers were washed with brine (2.6 L) and dried (Na₂SO₄). The solvent was evaporated, and the residue was triturated with PE. The product was collected by suction filtration to give the desired compound in quantitative yield (200 g). ¹H NMR (DMSO- d_6 , 500 MHz): $\delta = 8.08$ (s, 1H), 8.63 (s, 1H), 13.62 (s, 1H). 13C NMR (125 MHz, DMSO d_6): $\delta = 102.5$ (q, ${}^2J_{C,F} = 38.2$ Hz), 105.2 (q, ${}^3J_{C,F} = 1.8$ Hz), 111.6, 129.9 (q, ${}^{1}J_{CF} = 266$ Hz), 133.6 (q, ${}^{3}J_{CF} =$ 5.7 Hz), 144.3, 148.5, 149.9. HRMS calcd for C₈H₃ClF₃N₃O₂: 264.9866; found: 264.9872.

Step 7

6-Chloro-4-nitro-3-(trifluoromethyl)-1-{[2-(trimethylsilvl)ethoxy]methyl}-1H-pyrrolo[2,3-b]pyridine (24). To compound23 (204 g, 634 mmol) and [2-(chloromethoxy)ethyl](trimethyl)silane (116 g, 697 mmol) in DMF (2.5 L) was added NaH (60% suspension in mineral oil, 25.4 g, 634 mmol) in portions, and the mixture was stirred at rt for 45 min. The mixture was poured into brine and extracted with EtOAc (2×4 L). The combined organic layers were washed with brine (2 L), dried (Na₂SO₄), and evaporated. The crude product was purified by column chromatography on silica gel (6.0 kg, eluent: PE/EtOAc, 95:5) to yield 162 g (65%) of the title compound. ¹H NMR $(DMSO-d_6, 300 \text{ MHz}): \delta = -0.10 \text{ (s, 9H)}, 0.84 \text{ (dd, } J =$ 8.1, 8.0 Hz, 2H), 3.58 (dd, J = 8.1, 8.0 Hz 2H), 5.70 (s, 2H), 8.16 (s, 1H), 8.83 (s, 1H). ¹³C NMR (125 MHz, DMSO- d_6): $\delta = -1.51, 17.0, 66.4, 73.9, 102.7$ (q. ${}^2J_{CF}$ = 38.6 Hz), 105.8 (q, ${}^{3}J_{C,F}$ = 1.9 Hz), 112.8, 122.7 (q, ${}^{1}J_{CF} = 266$ Hz), 136.1 (q, ${}^{3}J_{CF} = 6.0$ Hz), 145.1, 148.8,

148.9. HRMS calcd for $C_{14}H_{17}ClF_3N_3O_3Si + [H^+]$: 396.0753; found: 396.0753.

Numbering of compounds and procedures from

H. Schirok, H. Paulsen, W. Kroh, G. Chen, P. Gao, Org. Proc. Res. Devel. 2010, 14, 168-173.

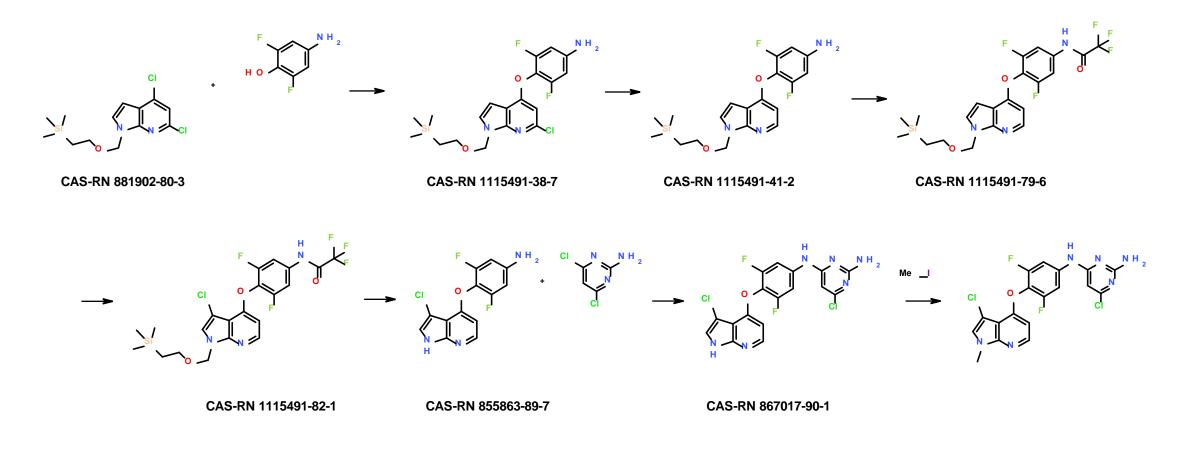
Chemical Synthesis of BAY-549

Step 8

4-[(6-Chloro-3-(trifluoromethyl)-1-{[2-(trimethylsilyl)ethoxy]methyl}-1H-pyrrolo[2,3-b]-pyridin-4-yl)oxy]-3,5difluoroaniline (25). Compound 24 (71.6 g, 181 mmol) was dissolved in DMSO (0.7 L) under argon. K₂CO₃ (75.0 g, 543 mmol) and 4-amino-2,6-difluorophenol (39.4 g, 271 mmol) were added, and the mixture was heated to 120 °C for 3 h. The mixture was poured into water (3.5 L) and extracted with EtOAc $(2 \times 1.5 \text{ L})$. The combined organic layers were washed with brine (1 L) and dried (Na2SO4), and the solvent was evaporated. The crude product was purified by column chromatography on silica gel (4.0 kg, eluent: PE/EtOAc, 4:1) to yield 72.5 g (96% pure, 78% yield) of the desired product. ¹H NMR (DMSO-d₆, 500 MHz): $\delta = -0.09$ (s, 9H), 0.84 (dd, J = 8.1, 8.0 Hz, 2H), 3.58 (dd, J = 8.1, 8.0 Hz, 2H), 5.62 (s, 2H), 5.90 (s, 2H), 6.40 (d, J = 11.0 Hz, 2H), 6.53 (s, 1H), 8.39 (s, 1H), ¹³C NMR $(125 \text{ MHz}, \text{DMSO-}d_6): \delta = -1.50, 17.0, 66.1, 73.4, 96.9 \text{ (dd,})$ ${}^{2}J_{CF} = 23.1 \text{ Hz}, {}^{3}J_{CF} = 4.0 \text{ Hz}$, 101.3, 102.9 (q, ${}^{2}J_{CF} = 38.8$ Hz), 104.7 (q, ${}^{3}J_{CF} = 1.6$ Hz), 117.0 (t, ${}^{2}J_{CF} = 16.4$ Hz), 123.1 $(q, {}^{1}J_{CF} = 266 \text{ Hz}), 130.2 (q, {}^{3}J_{CF} = 5.6 \text{ Hz}), 146.7, 148.3,$ 148.7 (t, ${}^{3}J_{CF} = 13.4$ Hz), 155.2 (dd, ${}^{1}J_{CF} = 244$ Hz, ${}^{3}J_{CF} =$ 6.9 Hz), 159.2. HRMS calcd for $C_{20}H_{21}ClF_5N_3O_2Si + [H^+]$: 494.1085; found: 494.1086.

Step 9 and 10

3,5-Difluoro-4-[(3-methyl-1H-pyrrolo[2,3-b]pyridin-4vl)oxylaniline (15). Compound 25 (20.0 g, 40.5 mmol) was dissolved in CH₂Cl₂ (200 mL) and trifluoroacetic acid (200 mL) was added. The mixture was stirred at rt for 1.5 h and then concentrated in vacuo. The residue was diluted with EtOAc (400 mL), and the solution was washed with brine (300 mL), dried (Na₂SO₄), and the solvent was evaporated. To the residue was added toluene (100 mL), and the mixture was concentrated again. This procedure was repeated three times to give the SEMdeprotected compound. The crude product (14.7 g, 40.4 mmol) was dissolved in THF (200 mL) under nitrogen and slowly treated with LiAlH₄ (2.4 M in THF, 170 mL, 408 mmol). The reaction was heated to reflux for 10 h. Then a second portion of LiAlH₄ (2.4 M in THF, 170 mL, 408 mmol) was added, and the mixture was heated to reflux for additional 14 h. Excess of LiAlH₄ was then hydrolyzed by the addition of aq 10% NaOH solution (100 mL). The solid was removed by filtration, and the filtrate was concentrated in vacuo to leave an aqueous solution which was extracted with EtOAc (2×200 mL). The combined organic layers were dried (Na2SO4), the solvent was evaporated, and the residue was purified by column chromatography on silica gel (500 g, eluent: ethyl acetate/petroleum ether, 1:2) to give the title compound (7.00 g, 62% over two steps). (Remark: Fluoride is liberated during the reaction and


etches the glassware.) ¹H NMR (500 MHz, DMSO-*d*₆): $\delta = 2.42$ (s, 3H), 5.77 (s, 2H), 6.17 (d, J = 5.4 Hz, 1H), 6.40 (d, J = 10.7 Hz, 2H), 7.13 (s, 1H), 7.98 (d, J = 5.4 Hz, 1H), 11.36 (s, 1H). ¹³C NMR (125 MHz, DMSO-*d*₆): $\delta = 12.2$, 97.1 (dd, ²*J*_{C,F} = 19.3 Hz, ⁴*J*_{C,F} = 4.6 Hz), 98.5, 108.0, 109.2, 118.2 (t, ²*J*_{C,F} = 16.4 Hz), 122.2, 144.4, 148.0 (t, ³*J*_{C,F} = 13.2 Hz), 151.1, 155.9 (dd, ¹*J*_{C,F} = 243 Hz, ³*J*_{C,F} = 7.3 Hz), 159.3. HRMS calcd for C₁₄H₁₁F₂N₃O + [H⁺]: 276.0943; found: 276.0948.

Step 11

6-Chloro-N4-{3,5-difluoro-4-[(3-methyl-1H-pyrrolo[2,3b]pyridin-4-yl)oxy]phenyl]pyrimidin-2,4-diamine (16). Compound 15 (6.00 g, 21.8 mmol) and 4,6-dichloropyrimidine-2amine (3.93 g, 24.0 mmol) were suspended in water (80 mL). HCl (4 N ag, 11 mL) was added, and the mixture was heated to reflux for 20 h. Subsequently, the mixture was basified with conc. aq NaOH solution. Some dmf was added, and the aqueous phase was extracted with EtOAc. The organic laver was washed with water and dried (Na2SO4), and the solvent was evaporated. The crude product was triturated with a small volume of icecold methanol. The precipitate was collected by suction filtration and washed with CH₂Cl₂ to yield 4.50 g (51%) of the title compound. The mother liquor was concentrated and purified by column chromatography on silica gel (200 g, eluent: CH2Cl2/ MeOH, 100:4 with increasing proportion of MeOH) to yield further 1.70 g (19%) of the title compound. ¹H NMR (400 MHz, DMSO- d_6): $\delta = 2.44$ (s, 3H), 6.04 (s, 1H), 6.21 (d, J = 5.4Hz, 1H), 6.99 (br s, 2H), 7.16 (s, 1H), 7.74 (d, J = 10.6 Hz, 2H), 7.99 (d, J = 5.4 Hz, 1H), 9.77 (s, 1H), 11.43 (br s, 1H). ¹³C NMR (125 MHz, DMSO- d_6): $\delta = 12.0, 94.3, 98.3, 103.1$ $(dd, {}^{2}J_{CF} = 21.3 \text{ Hz}, {}^{4}J_{CF} = 4.8 \text{ Hz}), 107.7, 108.9, 122.3, 123.0$ $(t, {}^{2}J_{CF} = 16.1 \text{ Hz}), 138.6 (t, {}^{3}J_{CF} = 13.0 \text{ Hz}), 144.1, 151.1,$ 154.9 (dd, ${}^{1}J_{CF} = 245$ Hz, ${}^{3}J_{CF} = 6.8$ Hz), 158.3, 158.4, 161.3, 162.6. HRMS calcd for $C_{18}H_{13}ClF_2N_6O + [H^+]$: 403.0881; found: 403.0865.

Chemical Synthesis of Negative Control BAY-4900

BAY-4900 was synthesized in a linear sequence of 8 steps starting from CAS-RN 881902-80-3

Selectivity profile in more detail

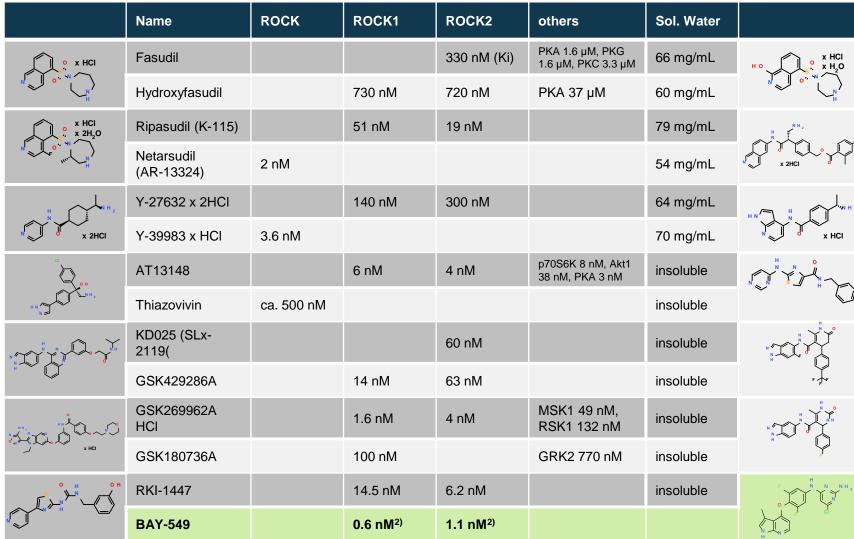
Kinase Profiling at Upstate

114 Kinases (10 µM)

23 Different kinases	IC ₅₀ : 1-10 μM
TrkA	IC ₅₀ : 252 nM
Flt3	IC ₅₀ : 303 nM
PKA	IC ₅₀ : 734 nM
ROCK-2 (rat);	IC ₅₀ : <1 nM
ROCK-2 (human);	IC ₅₀ : 1 nM

Inhouse Kinase Data:

Mps1	IC ₅₀ : 0.54 μΜ
AKT1	IC ₅₀ : 0.82 μΜ
FLT4	IC ₅₀ : 1.04 μΜ
NUAK1 (10 µM ATP)	IC ₅₀ : 1.66 μΜ
TrkA	IC ₅₀ : 3.84 μΜ
KDR	IC ₅₀ : 3.89 μΜ
FMS	IC ₅₀ : 4.21 μΜ
PDGFRβ	IC ₅₀ : 4.90 μΜ


Bub1, CDK2, CDK9, cKit, EGFR, FGFR1, FGFR3, FGFR4, GSK3 β , IKK β , IRAK4, MKNK1, NEK2, SRPK1, TAO2, Tie2: IC₅₀ > 20 μ M

	BR 4463 @ 10 µM
Abl(h)	86
Abl(m)	67
Abl(T315I)(b)	72
ALK(h)	22
AMPK(r)	92
Arg(h)	63
Arg(m)	64
Aurora-A(h)	23
Axl(h)	15
Blk(m)	84
the second se	82
Bmx(h)	99
BTK(h)	93
CaMKII(r)	108
CaMKIV(h)	122
CDK1/cyclinB(h)	
CDK2/cyclinA(h)	80
CDK2/cyclinE(h)	60
CDK3/cyclinE(h)	67
CDK5/p35(h)	93
CDK6/cyclinD3(h)	91
CDK7/cyclinH/MAT1(h)	43
CHK1(h)	91
CHK2(h)	36
CK1ô(h)	35
CK1(y)	56
CK2(h)	94
c-RAF(h)	24
CSK(h)	121
cSRC(h)	104
EGFR(h)	115
EphA2(h)	96
EphB2(h)	112
EphB4(h)	109
ErbB4(h)	95
Fes(h)	72
FGFR3(h)	88
Fgr(h)	73
Flt3(h)	2
Fms(h)	36
Fyn(h)	86
GSK3a(h)	87
GSK38(h)	101
IGF-1R(h)	59
IKKa(h)	141
IKK8(h)	128
IR(h)	41
JNK1a1(h)	78
	84
JNK2a2(h)	92
DATE 2753	
JNK3(h)	and the second se
JNK3(h) Lck(h) Lyn(h)	50

	00
MAPK1(h)	99
MAPK2(h)	83
MAPK2(m)	79
MAPKAP-K2(h)	106
MEK1(h)	91
Met(h)	18
MKK4(m)	121
MKK6(h)	94
MKK78(h)	80
MSK1(h)	14
MST2(h)	41
NEK2(h)	81
p7086K(h)	16
PAK2(h)	98
PAR-1Ba(h)	67
PDGFRa(h)	97
PDGFR8(h)	128
PDK1(h)	72
Pim-1(h)	80
PKA(b)	6
PKA(h)	5
PKBa(h)	16
PKB8(h)	15
PKB ₇ (h)	13
PKCa(h)	94
PKC8I(h)	92
PKCBII(h)	91
PKCy(h)	67
PKC8(h)	84
PKCs(h)	72
PKCq(h)	76
PKCi(h)	82
PKCµ(h)	40
PKC0(h)	58
PKCζ(h)	107
PKD2(h)	72
Plk3(h)	103
PRAK(h)	64
	30
PRK2(h)	48
Ret(h)	
ROCK-II(h)	0
ROCK-II(r)	-2
Ros(h)	90
Rse(h)	85
Rsk1(h)	28
Rsk1(r)	21
Rsk2(h)	39
Rsk3(h)	52
SAPK2a(h)	79
SAPK2b(h)	99
SAPK3(h)	96
SAPK4(h)	84
SGK(h)	24
	80
Syk(h)	74
Tie2(h)	
TrkA(h)	1
TrkB(h)	16
Yes(h)	77
ZAP-70(h)	108

Comparison with commercially available compounds¹⁾

https://www.selleckchem.com/ROCK.html
BAYER data

BAY-549: highly potent and indepth characterized dual ROCK1/2 inhibitor with novel scaffold, good selectivity and an inactive structural analog

PHARMACOLOGY DATA REPORT

Bayer HealthCare AG

1044288 and 1044289 MDSPS PT#: 1013906 WO#: ALT CODE 1: ALT CODE 2: ALT CODE 3: SAMPLE(S) BAY - 549 - BR-4474 M.W.: Assumed as 300 STRUCTURE: **MD**S Pharma Services Discovery MDS Pharma Services • Tel: 425-487-8277 • Fax: +425-487-8211 • e-mail: bothell.lab@mdsps.com For the Fastest Access to Your Results - Request Information on MDS Pharma Express The

E. METHODS

2. Determination of IC₅₀, TGI and LC₅₀

The measured results was calculated by the following formula:

PG (%)=100 × (Mean F_{test} - Mean F_{time0})/(Mean F_{ctrl} - Mean F_{time0})

If (Mean F_{test} - Mean F_{time0}) < 0, then

PG (%)= 100 × (Mean F_{test} - Mean F_{time0})/(Mean F_{time0} - Mean F_{blank})

Where:

PG: percent growth

Mean F_{time0} = The average of 2 measured fluorescent intensities of reduced alamarBlue at the time just before exposure of cells to the test substance.

Mean F_{test} = The average of 2 measured fluorescent intensities of alamarBlue after 72-hour exposure of cells to the test substance.

Mean F_{ctrl} = The average of 2 measured fluorescent intensities of alamarBlue after 72-hour incubation without the test substance.

Mean F_{blank} = The average of 2 measured fluorescent intensities of alamarBlue in medium without cells after 72-hour incubation.

A decrease of 50% or more (\geq 50%) in fluorescent intensity relative to vehicle-treated control indicated significant cell growth inhibition, cytostatic or cytotoxic activity, and a semi-quantitative IC₅₀, TGI and LC₅₀ were then determined by nonlinear regression using GraphPad Prism (GraphPad Software, USA).

 IC_{50} (50% Inhibition Concentration): Test compound concentration where the increase from time₀ in the number or mass of treated cells was only 50% as much as the corresponding increase in the vehicle-control at the end of experiment.

TGI (Total Growth Inhibition): Test compound concentration where the number or mass of treated cells at the end of experiment was equal to that at time₀.

 LC_{50} (50% Lethal Concentration): Test compound concentration where the number or mass of treated cells at the end of experiment was half that at time₀.

F. TABLES OF RESULTS

<u>Table 1-2</u>

Effect of T	<i>Test</i> Substance	on the Growt	h of 24 Tum	or Cell Lines

Treatment	Assay Name	Percent Growth (Mean ± SEM, n = 2)							
		Blank	Time ₀	Vehicle	Concentration (µM)				
						10	1	0.1	0.01
PT# 1044289	370000, Breast, MCF-7	-100	0	100	6±4	57±2	87±1	89±9	92±3
(BR-4474)	370100, Breast, T-47D	-100	0	100	-45±2	-2±4	86±1	97±8	106±6
=BAY-549	370200, Colon, DLD-1	-100	0	100	5±1	24±1	66±4	94±2	101±0
	370300, Colon, HT-29	-100	0	100	-38±9	10±4	75±1	95±1	100±8
	370400, Kidney, A-498	-100	0	100	-1±2	26±2	98 ± 5	93±5	99±2
	370500, Kidney, ACHN	-100	0	100	-25±4	27±0	60±10	106±2	103±1
	370600, Leukemia, HL-60	-100	0	100	35±2	53±6	89±5	88±4	98±4
	370700, Leukemia, K562	-100	0	100	32±6	42±3	69±4	92±5	95 ±7
	370800, Liver, HC-4	-100	0	100	-56±8	12±8	59±5	94±1	102 ± 5
	370850, Liver, Hep 3B	-100	0	100	-4±5	11±0	51±6	82±3	90±8
	370900, Liver, HepG2	-100	0	100	-3±6	18±4	62±2	95±6	101± 4
	371000, Lung, A549	-100	0	100	-15±3	7±2	42±2	97±4	103±4
	371050, Lung, NCI-H460	-100	0	100	-45±12	2±1	50±2	82±3	98±1
	371100, Lung, PC-6	-100	0	100	-65±6	32± 7	70±9	84±5	105±9
	371200, Lymphoma, H33HJ- JA1	-100	Û	100	80±7	98±1	97±6	103±5	96±8
	371300, Lymphoma, U937	-100	0	100	17±5	56±7	104±2	103±2	101±1
	371350, Melanoma B16-F0	-100	0	100	-46±5	53±9	106±1	94±4	98±5
	371400, Melanoma, SK-MEL-5	-100	0	100	-32±1	65±6	98±3	89±8	106±3
	371500, Neuroepithelioma, SK-N-MC	-100	0	100	-72±8	38±3	98±5	103±4	103±0
	371700, Pancreas, MIA PaCa-2	-100	0	100	-23±5	45±0	88±3	98±1	95±3
	371800, Pancreas, PANC-1	-100	0	100	-31±9	55±1	87±2	86±3	98±8
	371900, Prostate, PC-3	-100	0	100	29±3	48±1	58±3	102±5	97±2
	372000, Skin, A431	-100	0	100	-36±5	35±3	77±3	103±6	92±9
	372100, Stomach, KATO III	-100	0	100	19±7	27±7	66±8	99±11	98±7

A decrease of 50% or more (\geq 50%) in fluorescent intensity relative to vehicle-treated control indicates significant growth inhibition, cytostatic or cytotoxic activity.

MDS Pharma Services - Discovery • Tel: +425-487-8277 • Fax: +425-487-8211 • e-mail: bothell.lab@mdsps.com http://www.mdsps.com

Page 16 of 24

Table 1-3

Effect of Test Substance on the Growth of 24 Tumor Cell Lines

Treatment	Assay Name	Percent Growth (Mean \pm SEM, n = 2)							
		Blank	Time ₀	Vehicle	Concentration (µM)				
					10	1	0.1	0.01	0.001
Mitomycin	370000, Breast, MCF-7	-100	0	100	-67±9	11±2	31±4	81±6	98±3
	370100, Breast, T-47D	-100	0	100	-75±0	5±5	37±8	107±4	97±
	370200, Colon, DLD-1	-100	0	100	-9 ± 9	34±0	53±4	100 ± 1	$100\pm$
	370300, Colon, HT-29	-100	0	100	-44±9	25±7	67±7	107±4	104±
	370400, Kidney, A-498	-100	0	100	-93±2	-23±5	45±1	75±4	95±
	370500, Kidney, ACHN	-100	0	100	-86±2	-33±7	30±1	89±2	93±
	370600, Leukemia, HL-60	-100	0	100	-92±9	-17±11	31±2	81±4	93±
	370700, Leukemia, K562	-100	0	100	-42±4	10±1	67±5	80±8	97±
	370800, Liver, HC-4	-100	0	100	-72±0	-5±8	14±2	85±9	100
	370850, Liver, Hep 3B	-100	0	100	-68±0	8±2	22±7	97±10	96±
	370900, Liver, HepG2	-100	0	100	-99±2	-19±0	34±2	91±1	99±
	371000, Lung, A549	-100	0	100	-92±2	-15±3	22±2	76±2	99±
	371050, Lung, NCI-H460	-100	0	100	-100±0	-28±6	8±2	79±4	104:
	371100, Lung, PC-6	-100	0	100	-73±3	9±5	58±6	98±5	94±
	371200, Lymphoma, H33HJ- JA1	-100	0	100	-90±6	-58±0	38±3	53±0	77 <u>+</u>
	371300, Lymphoma, U937	-100	0	100	-84±8	-16±4	19±1	88±5	96±
	371350, Melanoma B16-F0	-100	0	100	-90±7	-29±9	25±8	68±8	89±
	371400, Melanoma, SK-MEL-5	-100	0	100	-91±1	-18±2	54±5	76±8	93±
	371500, Neuroepithelioma, SK- N- MC	-100	0	100	-91±5	-63±9	12±1	91±1	101:
	371700, Pancreas, MIA PaCa-2	-100	0	100	-96±5	12±1	40 ±7	94±5	97±
	371800, Pancreas, PANC-1	-100	0	100	-61±2	-1±1	19±1	91±7	91±
	371900, Prostate, PC-3	-100	0	100	-47±3	31±4	60±4	93±6	102:
	372000, Skin, A431	-100	0	100	-95±2	-14±9	29±1	83±9	97±
	372100, Stomach, KATO III	-100	0	100	-59±6	-4±9	53±2	85±5	101;

A decrease of 50% or more (\geq 50%) in fluorescent intensity relative to vehicle-treated control indicates significant growth inhibition, cytostatic or cytotoxic activity.

MDS Pharma Services - Discovery • Tel: +425-487-8277 • Fax: +425-487-8211 • e-mail: bothell.lab@mdsps.com http://www.mdsps.com

Page 18 of 24

F. TABLES OF RESULTS

Table 2-2

The Summary of IC₅₀, TGI and LC₅₀ Values

Treatment	Asssay #	Assay Name	*IC ₅₀	^b TGI	°LC ₅₀
PT# 1044289	370000	Tumor, Breast, MCF-7	11 µM	>100 µM	>100 µM
(BR-4474)	370100	Tumor, Breast, T-47D	2.9 μM	15 μM	75 µM
	370200	Tumor, Colon, DLD-1	2.4 μM	>100 µM	>100 µM
BAY-549	370300	Tumor, Colon, HT-29	2.9 μM	19 µM	>100 µM
	370400	Tumor, Kidney, A-498	7.8 μM	70 µM	>100 µM
	370500	Tumor, Kidney, ACHN	3.6 µM	32 μM	>100 µM
	370600	Tumor, Leukemia, HL-60	21 µM	>100 µM	>100 μM
	370700	Tumor, Leukemia, K562	8.3 μM	>100 µM	>100 µM
	370800	Tumor, Liver, HC-4	2.1 µM	13 μM	82 µM
	370850	Tumor, Liver, Hep 3B	1.3 µM	45 μM	>100 µM
	370900	Tumor, Liver, HepG2	3.1 μM	54 µM	>100 µM
	371000	Tumor, Lung, A549	1.5 μM	25 μΜ	>100 µM
	371050	Tumor, Lung, NCI-H460	1.1 μM	11 μM	>100 µM
	371100	Tumor, Lung, PC-6	4.2 μM	18 μM	76 µM
	371200	Tumor, Lymphoma, H33HJ-JAI	>100 μM	>100 µM	>100 µM
	371300	Tumor, Lymphoma, U937	14 μM	>100 µM	>100 µM
	371350	Tumor, Melanoma, B16-F0	12 µM	36 µM	>100 µM
	371400	Tumor, Melanoma, SK-MEL-5	16 µМ	50 μM	>100 µM
	371500	Tumor, Neuroepithelioma, SK-N-MC	7.9 μM	20 μM	52 µM
	371700	Tumor, Pancreas, MIA PaCa-2	8.9 μM	48 µM	>100 µM
	371800	Tumor, Pancreas, PANC-1	11 µM	45 μM	>100 µM
	371900	Tumor, Prostate, PC-3	9.4 μM	>100 µM	>100 µM
	372000	Tumor, Skin, A431	5.5 µM	31 µM	>100 µM
	372100	Tumor, Stomach, KATO III	3.2 μM	>100 µM	>100 µM

 ${}^{a}IC_{50}$ (50% Inhibition Concentration): Test compound concentration where the increase from time₀ in the number or mass of treated cells was only 50% as much as the corresponding increase in the vehicle-control at the end of experiment.

^bTGI (Total Growth Inhibition): Test compound concentration where the number or mass of treated cells at the end of experiment was equal to that at time₀.

^cLC₅₀ (50% Lethal Concentration): Test compound concentration where the number or mass of treated cells at the end of experiment was half that at time₀.

A semi-quantitative determination of IC₅₀, TGI and LC₅₀ was carried out by nonlinear regression analysis using GraphPad Prism (GraphPad Software, USA).

MDS Pharma Services - Discovery • Tel: +425-487-8277 • Fax: +425-487-8211 • e-mail: bothell.lab@mdsps.com• http://www.mdsps.com

F. TABLES OF RESULTS

Table 2-3

The Summary of IC50, TGI and LC50 Values

Treatment	Assay #	Assay Name	^a IC ₅₀	^b TGI	^с LС ₅₀
Mitomycin	370000	Tumor, Breast, MCF-7	0.081 µM	0.76 µM	7.1 μM
	370100	Tumor, Breast, T-47D	0.13 μΜ	0.76 µM	4.4 μM
	370200	Tumor, Colon, DLD-1	0.36 µM	5.6 µM	>10 µM
	370300	Tumor, Colon, HT-29	0.38 μM	2.2 μM	>10 µM
	370400	Tumor, Kidney, A-498	0.079 μM	0.40 μM	2.0 μM
	370500	Tumor, Kidney, ACHN	0.060 µM	0.31 μM	1.6 µM
	370600	Tumor, Leukemia, HL-60	0.061 µM	0.36 µM	2.2 μM
	370700	Tumor, Leukemia, K562	0.22 μM	1.7 μM	>10 µM
	370800	Tumor, Liver, HC-4	0.048 µM	0.43 μM	3.8 μM
	370850	Tumor, Liver, Hep 3B	0.082 μM	0.69 µM	5.8 μM
	370900	Tumor, Liver, HepG2	0.082 μM	0.38 μM	1.8 μM
	371000	Tumor, Lung, A549	0.047 μM	0.32 μM	2.1 μM
	371050	Tumor, Lung, NCI-H460	0.036 µM	0.20 μM	1.2 μM
	371100	Tumor, Lung, PC-6	0.21 μM	1.0 μM	4.9 μM
	371200	Tumor, Lymphoma, H33HJ-JAI	0.027 μM	0.17 μM	1.1 μM
	371300	Tumor, Lymphoma, U937	0.052 µM	0.34 μM	2.3 μM
	371350	Tumor, Melanoma, B16-F0	0.035 µM	0.25 μM	1.8 µM
	371400	Tumor, Melanoma, SK-MEL-5	0.10 µM	0.50 μM	2.3 μM
	371500	Tumor, Neuroepithelioma, SK-N-MC	0.042 μM	0.15 μM	0.54 μM
	371700	Tumor, Pancreas, MIA PaCa-2	0.15 μM	0.72 μM	3.5 µM
	371800	Tumor, Pancreas, PANC-1	0.056 µM	0.59 μM	6.1 μM
	371900	Tumor, Prostate, PC-3	0.32 μM	2.1 μM	>10 µM
	372000	Tumor, Skin, A431	0.064 µM	0.37 μM	2.1 μM
	372100	Tumor, Stomach, KATO III	0.12 μM	0.87 μM	6.1 μM

 ${}^{3}IC_{50}$ (50% Inhibition Concentration): Test compound concentration where the increase from time₀ in the number or mass of treated cells was only 50% as much as the corresponding increase in the vehicle-control at the end of experiment.

^bTGI (Total Growth Inhibition): Test compound concentration where the number or mass of treated cells at the end of experiment was equal to that at time₀.

 $^{\circ}LC_{50}$ (50% Lethal Concentration): Test compound concentration where the number or mass of treated cells at the end of experiment was half that at time₀.

A semi-quantitative determination of IC_{50} , TGI and LC_{50} was carried out by nonlinear regression analysis using GraphPad Prism (GraphPad Software, USA).

MDS Pharma Services - Discovery • Tel: +425-487-8277 • Fax: +425-487-8211 • e-mail: bothell.lab@mdsps.com http://www.mdsps.com

H. REFERENCES

Page 24 of 24

- 1. Ahmed, S. A., Gogal Jr., R. M. and Walsh, J. E. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: An alternative to [³H]-thymidine incorporation assay. Journal of Immunological Methods <u>170</u>: 211-224, 1994.
- Boyd, M. R., Status of the NCI preclinical antitumor drug discovery screen. (Published by J. B. Lippincott Company, Philadelphia, PA 19105, USA) Principles & Practices of Oncology Updates <u>3 #</u> <u>10</u>: 1-12, 1989.
- 3. Boyd, M. R. et al. Data display and analysis strategies for the NCI disease-oriented *in vitro* antitummor drug screen. In: Cytotoxic anti-cancer drugs: models and concepts for drug discovery and development. Boston: Kluwer Academic Page: 11-34, 1992.