

Donated Chemical Probe PIP4K2A Inhibitor BAY-091

September 15th, 2021

Presenters: Clara Lemos & Nico Bräuer

(Lars Wortmann, Horst Irlbacher, Simon Holton)

Target rationale

Working Hypothesis:

PIP4K2A inhibition induces cell death in p53 mutant tumors by hyperactivating AKT*

- p53 mutant cells have increased redox levels
- maintaining high levels of PIP4K2A is critical to prevent overactivation of AKT by PI5P
- PIP4K2A inhibitors are expected to induce ROS dependent apoptosis in p53 mutant tumor cells

Target Validation:

- PIP4K2A silencing significantly inhibits proliferation of p53 mutant cells (but not of p53 WT cells)
- PIP4K2A silencing induces AKT phosphorylation

• PIP4K2A inhibition expected to induce cell death in p53 mutant tumors by hyperactivating AKT

* Emerling et al. Cell 2013; Jude et al. Oncogene 2015; Nogueira et al. Cancer Cell 2008

Literature known compound: THZ-P1-2

- Inhibitor THZ-P1-2 shows PI5P4K enzyme inhibition and target engagement in cells
- THZ-P1-2 covalently targets unannotated cysteines outside the PI5P4K active site
- AML/ALL cell lines are broadly sensitive to THZ-P1-2's covalent effects
- PI5P4K inhibition causes autophagy disruption and upregulates TFEB signaling

Summary of THZ-P1-2 activity on off-targets								
Kinase	Secondary assays							
ABL1	21.3 nM (Invitrogen); >8000 nM on ABL1- positive cell lines; negative by streptavidin pulldown in lysate							
CSNK2A2	1340 nM (Invitrogen)							
кіт	>10000 nM (Invitrogen) 3050 nM (Invitrogen)							
PDGFRB								
RPS6KA4/MSK2	>10000 nM (Invitrogen)							
TYK2	1600 nM (Invitrogen)							
BRK	313 nM (Invitrogen); negative by streptavidin pulldown in lysate							
PIKfyve	40 nM (Carna); ≥10000 nM in vacuolar assay negative by streptavidin pulldown in lysate							

Remarks:

- moderate antiproliferative activity in AML and ALL cells, including THP-1 but not p53 mutant selective
- antiproliferative activity of THZ-P1-2 is in part due to its covalent binding

Sivakumaren et al., Cell Chemical Biology 2020, 27, 1–13

• The availability of complementary inhibitors BAY-091 (non-covalent) and THZ-P1-2 (covalent) will help to better understand PIP4K2 pharmacology

Biochemical activity

Pharmacological in vitro Properties					
PIP4K2A 10µM ATP IC ₅₀	1 nM				
PIP4K2A 250 µM ATP IC ₅₀	3 nM				
PIP4K2A HTRF 10 μ M ATP IC ₅₀	9 nM				
PIP4K2A HTRF 2 mM ATP IC ₅₀	16 nM				

In vitro biochemical assay correlation

X-axis: PIP4K2A ADP Glo 10 µM ATP IC₅₀ [M];

Y-axis: PIP4K2A ADP Glo 250 μM ATP IC_{50} [M] (blue diamonds), PIP4K2A HTRF 10 μM ATP IC_{50} [M]

(red circles), PIP4K2A HTRF 2 mM ATP IC₅₀ [M] (green triangles)

- BAY-091 is a potent PIP4K2A inhibitor at low and high ATP concentrations in two different assay formats (for details see backup).
- All 4 biochemical PIP4K2A assay formats were shown to correlate well

In vitro profile

Pharmacological in vitro Properties					
PIP4K2A 10 μ M ATP IC ₅₀	1 nM				
PIP4K2A 250 μ M ATP IC ₅₀	3 nM				
PIP4K2A HTRF 10 μ M ATP IC ₅₀	9 nM				
PIP4K2A HTRF 2 mM ATP IC $_{50}$	16 nM				

Physicochemical Properties					
MW corr [g*mol]	427				
TPSA [Ų]	99				
LogD @pH 7.5	2.1				
Sw pH 6.5 [mg/L]	> 1000				
Stability, pH	stable				

Safety Properties	
hERG [µM]	> 10

In vitro DMPK Properties											
Caco-2	P _{app} (A-I	B) [nm/s]	P _{app} (B-A)) [nm/s]	efflux ratio						
permeability		0	25	7	-						
			CL [L/	h/kg]	F _{max} [%]						
metabolic stability	liver micro	somes (h /r)	0/2	2.8	100 / 33						
,	hepato	cytes (r)	2.3	3	44						
CYP inhibition IC₅₀ [µM]	1A2	2C8	2C9	2D6	3A4	3A4 preinc.					
	> 20	3.1	16	> 20	> 20	> 20					

Overall BAY-091 shows a good in vitro DMPK & PhysChem profile

Cellular activity

Cellular assays and target Engagement proven by CETSA

- Cellular PIP4K2A target engagement with BAY-091 was proven by CETSA technology (IC₅₀ ~ 1 μ M)
- No effect in cellular mechanistic (pAKT, ROS) or functional assays (p53 mutant proliferation) → Working Hypothesis to be questioned!

X-ray Structure in complex with BAY-091

Key Interactions include

- Single hydrogen bond between naphythridine nitrogen and kinase hinge motif (Val¹⁹⁹)
- Electronic interaction between the terminal naphythridine ring system and the adjacent Phe²⁰⁰ side chain
- The R-configuration provides an optimal exit vector for the carboxylic acid that allows hydrogen-bonding and salt-bridge interactions with Thr²³² and Lys²⁰⁹

• X-ray of a BAY-091 in complex with PIP4K2A available

BAYER E R

BAY-091 was investigated in Eurofins Kinase Panel (373 kinases, 1 µM compound)

Kinese	Inhibition	TrkC(h)	14.82	PI3 Kinase (11.03	LATS1(h)	8.31	PRK1(h)	5.64	VRK2(h)	4.1	LATS2(h)	1.83	TLK1(h)	-0.87	JAK2(h)	-5.62	CaMKIIgam	-16.51
Kinase	[%]	mTOR(h)	14.8	PKA(h)	11	MAP4K3(h)	8.29	STK39(h)	5.6	CDKL1(h)	4.02	Rsk2(h)	1.78	FGFR3(h)	-1	PAK6(h)	-5.79	LTK(h)	-16.81
PIP4K2a(h)	142.02	ICK(h)	14.79	Rsk3(h)	10.89	CDK6/cyclin	8.28	eEF-2K(h)	5.5	SBK1(h)	4.02	Pim-3(h)	1.67	PKBalpha(h)	-1.04	NDR1(h)	-6	EphA4(h)	-16.84
Flt1(h)	56.81	WNK1(h)	14.66	EGFR(h)	10.85	TLK2(h)	8.27	NEK7(h)	5.49	IKKalpha(h)	3.94	GRK1(h)	1.52	JNK2alpha2(-1.41	Rsk1(h)	-6.03	Eyn(h)	-17.31
KDR(h)	50.07	PI3 Kinase (14.4	Pyk2(h)	10.72	GRK3(h)	8.23	STK32C(h)	5.49	ErbB4(h)	3.85	PIP5K1g(h)	1.51	CDK2/cyclin	-1.5	ALK1(h)	-6.17	MKK6(h)	-18.97
c-RAF(h)	35.96	CaMKIgamr	14.37	CDK18/cycli	10.59	PKG1beta(h)	8.22	GSK3alpha(l	5.47	BrSK2(h)	3.83	MSK1(h)	1.48	PKCbetaII(h	-1.59	Rsk4(h)	-6.19	PKCdelta(h)	-20.86
NEK4(h)	32.07	TSSK1(h)	14.25	ACK1(h)	10.5	CDKL3(h)	8.18	MRCKgamn	5.46	PKCeta(h)	3.77	PAK5(h)	1.42	WNK3(h)	-1.89	Hck(h) activa	-6.21	CaMKIIdelta	-21.46
PI3 Kinase (30.93	Haspin(h)	14.18	Syk(h)	10.42	CK1gamma1	8.17	ULK2(h)	5.46	CLK1(h)	3.74	EphB2(h)	1.4	AMPKalpha	-1.91	HRI(h)	-6.26	Aurora-B(h)	-23.74
SRMS(h)	26.31	ULK1(h)	14.16	NUAK2(h)	10.39	LOK(h)	8.13	MOK(h)	5.44	Bmx(h)	3.69	mTOR FKB	1.38	TSSK2(h)	-1.97	SGK(h)	-6.56	MLK1(h)	-23.82
PI3KC2g(h)	25.37	PKR(h)	13.92	CDK12/cycli	10.3	BRK(h)	8.07	CHK2(h)	5.38	SIK2(h)	3.68	PAK4(h)	1.36	DCAMKL2(-2.01	EphA8(h)	-6.72	Blk(h)	-26.86
PAK2(h)	24.95	Aurora-A(h)	13.76	TAO2(h)	10.27	TAK1(h)	7.89	DCAMKL3(5.32	HIPK1(h)	3.6	TYK2(h)	1.22	TTBK1(h)	-2.05	DAPK2(h)	-6.79	CK1gamma3	-28.46
NEK1(h)	24.39	SIK(h)	13.36	SNRK(h)	10.26	MYLK2(h)	7.84	MAPKAP-K	5.32	Cdc7/cyclinB	3.59	ACTR2(h)	1.17	SAPK2b(h)	-2.08	P1k3(h)	-7.76	RIPK2(h)	-29.87
TSSK4(h)	23.97	MAP4K5(h)	13.35	IKKepsilon(1	10.23	Arg(h)	7.75	TrkA(h)	5.32	PKBbeta(h)	3.52	TTBK2(h)	1.17	PKCzeta(h)	-2.41	CaMKIbeta(-7.99	Rse(h)	-32.02
PAK1(h)	23.77	FAK(h)	13.32	Mer(h)	10.21	MAPK2(h)	7.74	WEE1(h)	5.28	SRPK1(h)	3.4	CDK13/cycli	1.16	Pim-1(h)	-2.53	SRPK2(h)	-8.51	ALK(h)	-33.12
PRAK(h)	23.56	DCAMKL1(12.96	PIP5K1a(h)	10	DYRK3(h)	7.66	Fer(h)	5.23	Mnk2(h)	3.39	MST3(h)	1.03	ROCK-I(h)	-2.77	PDK1(h)	-8.72	HPK1(h)	-34.19
B-Raf(h)	23.47	Flt4(h)	12.93	PKBgamma(9.92	cSRC(h)	7.51	BIKe(h)	5.17	CK2alpha1(h	3.34	ZIPK(h)	0.91	Txk(h)	-2.9	P1k4(h)	-8.83	<u> </u>	
cKit(h)	22.32	LRRK2(h)	12.9	PDHK4(h)	9.88	Snk(h)	7.48	ALK2(h)	5.14	WNK2(h)	3.31	CDK16/cycli	0.85	IR(h)	-2.92	PhKgamma1	-9.06		
MEK1(h)	21.54	BTK(h)	12.82	DRAK1(h)	9.65	AAK1(h)	7.44	SIK3(h)	5.14	PEK(h)	3.26	GCK (h)	0.85	GCN2(h)	-3.21	TTK(h)	-9.1		
RIPK1(h)	21.25	MEKK2(h)	12.82	Wee1B(h)	9.64	CaMKI(h)	7.33	MuSK(h)	5.1	CK1alpha(h)	3.17	Ron(h)	0.76	DAPK1(h)	-3.29	MEK2(h)	-9.56		
MLK3(h)	21.13	MKK3(h)	12.82	FGFR2(h)	9.63	CaMKIV(h)	7.26	Fgr(h)	5.05	MINK(h)	3.07	TRB2(h)	0.49	IRAK1(h)	-3.31	ASK1(h)	-9.98		
MST1(h)	20.61	Tie2(h)	12.81	MLK4(h)	9.6	CDK2/cyclin	7.13	MAPKAP-K	5.05	VRK1(h)	3.04	Hck(h)	0.45	GRK5(h)	-3.49	IGF-1R(h)	-10.09		
SLK(h)	19.74	PRKG2(h)	12.72	CLIK1(h)	9.55	NEK11(h)	7.12	CaMKK1(h)	5.03	LIMK2(h)	3.03	PI3 Kinase (0.43	TAF1L(h)	-3.49	PKCtheta(h)	-10.11		
CDKL2(h)	19.42	PKCmu(h)	12.7	STK16(h)	9.54	DRAK2(h)	7.08	PRK2(h)	5.02	STK25(h)	3.01	ULK3(h)	0.33	Ret(h)	-3.56	EphB1(h)	-10.48		
TGFBR2(h)	19.28	PKD3(h)	12.64	IR(h), activat	9.43	CSK(h)	6.94	EphA3(h)	4.71	ZAP-70(h)	2.99	ATM(h)	0.32	MEKK3(h)	-3.58	CRIK(h)	-10.67		
DYRK2(h)	19.11	Axl(h)	12.63	PDGFRalpha	9.33	PKG1alpha(l	6.77	CaMKIdelta	4.68	IKKbeta(h)	2.85	CDK7/cyclin	0.3	SAPK4(h)	-3.58	DNA-PK(h)	-10.68		
PRP4(h)	18.88	CDKL4(h)	12.6	PDGFRbeta(9.33	PAR-1Balph	6.75	CK2(h)	4.66	CLK3(h)	2.84	HIPK2(h)	0.19	Lck(h) activa	-3.67	Ros(h)	-11.32		
CLK4(h)	18.82	Lyn(h)	12.49	NEK6(h)	9.31	PKACbeta(h	6.73	Aurora-C(h)	4.64	STK33(h)	2.82	GRK6(h)	0.16	ALK4(h)	-3.68	ALK6(h)	-11.34		
MYO3B(h)	18.15	PDHK2(h)	12.45	MAK(h)	9.23	CDK5/p25(h	6.65	Tec(h) activa	4.62	SAPK2a(h)	2.76	CDK17/cycli	0.09	Yes(h)	-3.76	SGK2(h)	-11.48		
CDK14/cycl	18.05	CK1gamma2	12.38	EphA1(h)	9.2	NEK9(h)	6.61	CHK1(h)	4.56	GRK7(h)	2.75	ChaK1(h)	0.08	OSR1(h)	-3.86	MELK(h)	-11.67		
MLK2(h)	18.01	Abl(h)	12.1	ltk(h)	9.18	FGFR1(h)	6.44	ARK5(h)	4.55	IRE1(h)	2.72	MST2(h)	0.08	MSK2(h)	-3.96	Fes(h)	-11.86		
PKCbetaI(h)	16.52	DYRK1B(h)	12.05	CK1delta(h)	9.07	MAPK1(h)	6.43	MSSK1(h)	4.51	PrKX(h)	2.66	CLK2(h)	0.07	PKCepsilon(-4.26	Flt3(h)	-12.01		
DDR2(h)	16.27	IGF-1R(h), a	12.02	TSSK3(h)	8.88	Pim-2(h)	6.42	BMPR2(h)	4.45	MARK1(h)	2.52	CDK5/p35(h	-0.03	CK2alpha2(h	-4.36	JNK3(h)	-12.1		
PKCalpha(h)	16.24	NIM1(h)	12.01	CK1epsilon(1	8.85	IRR(h)	6.25	PKD2(h)	4.37	A-Raf(h)	2.41	GSK3beta(h)	-0.05	BrSK1(h)	-4.39	MAP4K4(h)	-12.23		
ATR/ATRIP	16.22	CDK9/cyclin	11.83	CDK1/cyclm	8.82	IRAK4(h)	6.22	HIPK3(h)	4.32	CDK3/cyclin	2.41	PhKgamma2	-0.34	MARK3(h)	-4.67	SAPK3(h)	-12.55		
STK32A(h)	15.99	EphB4(h)	11.81	CaMKIIbeta	8.65	SGK3(h)	6.09	p70S6K(h)	4.3	Met(h)	2.36	PKCgamma(-0.39	ZAK(h)	-4.94	CaMKIIalph	-13.29		
NEK2(h)	15.9	DDR1(h)	11.7	LIMK1(h)	8.64	NDR2(h)	5.88	Plk1(h)	4.29	TAO3(h)	2.25	JAK1(h)	-0.44	MRCKalpha	-4.99	JAK3(h)	-14.21		
EphA5(h)	15.8	CDK4/cyclin	11.31	NLK (h)	8.59	PKCiota(h)	5.85	JNK lalpha1(4.24	EphA7(h)	2.1	EphA2(h)	-0.55	Fms(h)	-5.04	PTK5(h)	-14.53		
HIPK4(h)	15.73	CaMKK2(h)	11.28	ErbB2(h)	8.53	MARK4(h)	5.8	DYRK1A(h)	4.22	TrkB(h)	2.08	ROCK-II(h)	-0.6	MLCK(h)	-5.27	TNIK(h)	-14.85		
DMPK(h)	15.1	PASK(h)	11.07	1BK1(h)	8.44	LKB1(h)	5.7	PI3KC2a(h)	4.18	TAO1(h)	1.92	Lck(h)	-0.68	AMPKalpha	-5.39	FGFR4(h)	-15.75		
STK32B(h)	14.91	WNK4(h)	11.06	NEK3(h)	8.41	MST4(h)	5.69	PAK3(h)	4.13	GRK2(h)	1.9	TGFBR1(h)	-0.85	EphB3(h)	-5.61	MRCKbeta(l	-15.79		

• BAY-091 does not inhibit any off-target kinases > 60% @ 1 μM compound concentration

In vitro technical profile of Negative Control BAY-0361

*For accurancy, the probe candidate BAY-091 was also tested at Eurofins: $\rm IC_{50}$ (BAY-91): 21 nM

			POTENC	Y (IC ₅₀ [n	M])		Properties & Physchem			
°→→ OH		PIP4K2A	IC ₅₀ eurofi	ns	371 nM* (18 fold)	LogD @ pH 7.5	2.0			
NH							fu [%] Williams_E / rat / Mouse	-		
	F						Sw @ pH 6.5 [mg/L]	tbd		
							MW / TPSA [g*mol / Ų]	440 / 99		
	BAY-	0361					Stability (r /h plasma, 4h) [%]	-		
in vitro DMPK Pro	perties						Selectivity			
Caco2	P _{app} (A-B) [nm/s]		P _{app} (B-A)	P _{app} (B-A) [nm/s]		efflux ratio				
Permeability	tbd						In-house kinase panel (#)	tbd		
					CL [L/h	/kg]		F _{max} [%]		
metabolic	Human liver mics		tbd				Eurofine oofsty namel			
stability	rat hepatocytes						Euronins safety panel	Not available		
	human hepa	tocytes								
CYP inhibition	1A2	2C8	2C9	2D6	3A4	3A4 preinc.	SAFETY			
ΙC ₅₀ [μΜ]	-	-	-	-	-		Cytotox	Not available		
PXR			-				hERG IC ₅₀ [μM]	Not available		

• BAY-0361 was suggested as negative control

Summary / Conclusion

Probe criteria	
Inhibitor/agonist potency: goal is < 50 nM (IC ₅₀ , Kd)	BAY-091 meets criteria
Selectivity within target family: goal is > 30-fold	Surpasses criteria BAY-091 was investigated in Eurofins Kinase Panel: No off-target kinase inhibition > 60% at 1 μM compound concentration.
Selectivity outside target family: describe the off-targets (which may include both binding and functional data)	BAY-091 was investigated in Bayer-Eurofins Safety Panel. For results please see backup slide
On target cell activity for cell-based targets: goal is < 1 μM IC_{50}/EC_{50}	Surpasses criteria Cellular target engagement demonstrated by CETSA technology: IC_{50} (intact cells) ~ 1 μ M.
Suitability as in vivo chemical probe	No
Neg ctrl: in vitro potency $- > 100$ times less; Cell activity $- > 100$ times less potent than the probe	BAY-0361 (18 fold less active)

Acknowledgements

Bayer AG:

Lars Wortmann Nico Bräuer Clara Lemos Simon Holton Horst Irlbacher Jörg Weiske Christian Lechner Robin Meier Vera Pütter Clara Christ Antonius ter Laak Philip Lienau Ulf Bömer Ralf Lesche Barbara Nicke Shing-Hu Cheung Marcus Bauser Andrea Haegebarth Franz von Nussbaum Dominik Mumberg

Pelago (CETSA):

Jakob Karén Catrine Berthold Siöberg

Thank you to the whole team!

Thank You

Selectivity versus PIP4K2B and PIP4K2C

- Key PIP4K2A residues interacting with BAY-091 are conserved in PIP4K2B. Other residues differences are conservative changes that are not expected to sterically disrupt BAY-019 binding
- PIP4K2A gatekeeper threonine residue is replaced by a methionine in the PIP4K2C isoform.
- BAY-091 may have reduced activity against the PIP4K2C isoform

Selectivity Profile in more detail: safety screen (Eurofins, #77 targets)

Cat #	Assay Name	Batch*	Spec.	Rep.	Conc.	% Inh.	Cat #	Assay Name	Batch*	Spec.	Rep.	Conc.	% Inh
Compo	ound: CHH004-2020, PT #: 1234752						219500	Dopamine D1	449770	hum	2	10 µM	15
107000	Aldose Reductase	449834	rat	2	10 µM	20	219600	Dopamine D _{2L}	449693	hum	2	10 µM	8
107710	ATPase, Na ⁺ /K ⁺ , Heart, Pig	449916	pig	2	10 µM	-22	219700	Dopamine D _{2S}	449695	hum	2	10 µM	10
112020	Carbonic Anhydrase II	449666	hum	2	10 µM	-6	219800	Dopamine D ₃	449694	hum	2	10 µM	27
104010	Cholinesterase, Acetyl, ACES	449747	hum	2	10 µM	27	224010	Endothelin ET _A	449763	hum	2	10 µM	-11
116030	Cyclooxygenase COX-1	449646	hum	2	10 µM	19	224110	Endothelin ET _B	449880	hum	2	10 µM	1
118030	Cyclooxygenase COX-2	449647	hum	2	10 µM	29	226010	Estrogen ERa	449769	hum	2	10 µM	10
124010	HMG-CoA Reductase	449836	hum	2	10 µM	-7	226810	GABAA, Chloride Channel, TBOB	449780	rat	2	10 µM	12
132000	Leukotriene LTC ₄ Synthase	449838	gp	2	10 µM	-7	226600	GABAA, Flunitrazepam, Central	449764	rat	2	10 µM	3
199017	Lipoxygenase 15-LO	449987	hum	2	10 µM	20	228510	GABAB, Non-Selective	449712	rat	2	10 µM	5
140010	Monoamine Oxidase MAO-A	449648	hum	2	10 µM	7	232030	Glucocorticoid	449659	hum	2	10 µM	32
140120	Monoamine Oxidase MAO-B	449649	hum	2	10 µM	81	232600	Glutamate, AMPA	449720	rat	2	10 µM	-4
142000	Nitric Oxide Synthase, Neuronal (nNOS)	449840	rat	2	10 μM	13	232710	Glutamate, Kainate	449699	rat	2	10 µM	-2
199010	Nitric Oxide Synthetase, Inducible (iNOS)	449841	mouse	2	10 µM	-12	232810	Glutamate, NMDA, Agonism	449697	rat	2	10 µM	-3
107300	Peptidase, Angiotensin Converting Enzyme	449664	rabbit	2	10 µM	0	232910	Glutamate, NMDA, Glycine	449768	rat	2	10 µM	-1
152000	Phosphodiesterase PDE3	449848	hum	2	10 µM	74	239300	Growth Hormone Secretagogue (GHS, Ghrelin)	449787	hum	2	10 µM	6
154420	Phosphodiesterase PDE4D2	449650	hum	2	10 µM	38	239610	Histamine H1	449767	hum	2	10 µM	27
156000	Phosphodiesterase PDE5	449849	hum	2	10 µM	62	239710	Histamine H ₂	449702	hum	2	10 µM	-26
194020	Thromboxane Synthase	449842	hum	2	10 µM	98	239820	Histamine H ₃	449877	hum	2	10 µM	3
200510	Adenosine A1	449707	hum	2	10 µM	13	243000	Insulin	449792	rat	2	10 µM	-1
200610	Adenosine A _{2A}	449708	hum	2	10 µM	7	252200	Motilin	449823	hum	2	10 µM	-2
200720	Adenosine A ₃	449787	hum	2	10 µM	21	252610	Muscarinic M1	449721	hum	2	10 µM	13
203110	Adrenergic a1A	449651	hum	2	10 µM	-4	252710	Muscarinic M ₂	449722	hum	2	10 µM	8
203630	Adrenergic a2A	449652	hum	2	10 µM	-15	252810	Muscarinic M ₃	449722	hum	2	10 µM	0
203710	Adrenergic a2B	449653	hum	2	10 µM	-2	252910	Muscarinic M ₄	449721	hum	2	10 µM	6
203810	Adrenergic a2c	449691	hum	2	10 µM	4	258730	Nicotinic Acetylcholine a3β4	449781	hum	2	10 µM	-8
204010	Adrenergic B1	449702	hum	2	10 µM	2	260130	Opiate õ1 (OP1, DOP)	449723	hum	2	10 µM	25
204110	Adrenergic B2	449761	hum	2	10 µM	-12	260210	Opiate κ (OP2, KOP)	449724	hum	2	10 µM	-2
204200	Adrenergic B3	449875	hum	2	10 µM	16	260410	Opiate µ (OP3, MOP)	449725	hum	2	10 µM	13
206000	Androgen (Testosterone)	449771	hum	2	10 µM	14	299005	Progesterone PR-B	449766	hum	2	10 µM	29
210030	Angiotensin AT1	449654	hum	2	10 µM	22	299036	Purinergic P2X	449925	rat	2	10 µM	-30
210120	Angiotensin AT ₂	449655	hum	2	10 µM	11	268820	Purinergic P2Y, Non-Selective	449883	rat	2	10 µM	31
212520	Bradykinin B1	449852	hum	2	10 µM	0	271110	Serotonin (5-Hydroxytryptamine) 5-HT _{1A}	449728	hum	2	10 µM	27
212620	Bradykinin B ₂	449762	hum	2	10 µM	1	271650	Serotonin (5-Hydroxytryptamine) 5-HT _{2A}	449704	hum	2	10 µM	19
217050	Cannabinoid CB1	449714	hum	2	10 µM	-11	271700	Serotonin (5-Hydroxytryptamine) 5-HT ₂₈	449815	hum	2	10 µM	98
217100	Cannabinoid CB2	449716	hum	2	10 µM	1	271800	Serotonin (5-Hydroxytryptamine) 5-HT ₂ c	449759	hum	2	10 µM	29

Cat #	Assay Name	Batch*	Spec.	Rep.	Conc.	% Inh.
202020	Transporter, Adenosine	449765	hum	2	10 µM	42
220320	Transporter, Dopamine (DAT)	449782	hum	2	10 µM	-12
226400	Transporter, GABA	449786	rat	2	10 µM	1
204410	Transporter, Norepinephrine (NET)	449790	hum	2	10 µM	25
274030	Transporter, Serotonin (5- Hydroxytryptamine) (SERT)	449729	hum	2	10 µM	10
287530	Vasopressin V1A	449874	hum	2	10 µM	-3

Significant inhibition at 10 µM compound concentration for the following targets:

Cat #	Assay Name	Species	Conc. % Inh.
140120	Monoamine Oxidase MAO-B	hum	10 µM 81
152000	Phosphodiesterase PDE3	hum	10 µM 74
156000	Phosphodiesterase PDE5	hum	10 µM 62
194020	Thromboxane Synthase	hum	10 µM 98
271700	Serotonin (5-Hydroxytryptamine) 5-HT _{2B}	hum	10 µM 98

• BAY-091 shows good selectivity beyond kinases. Significant inhibition @ 10 µM: MAO-B, PDE3, PDE5, 5-HT2B, Thromboxane Synthase

Biochemical Assay Formats

Assay 2: Quantification of reaction product PI(4,5)P2 (HTRF)

330nm

Energy Transfer

