

### **Donated Chemical Probe**

## Luteinizing Hormone Receptor Antagonist **BAY-899**

- and its close Analogue BAY-298 -

October, 2019

Lars Wortmann, Bernhard Lindenthal & Gernot Langer





- LH-R belongs to the family of glycoprotein hormone GPCRs (together with FSH- and TSH-R). All three signal into the cAMP second messenger pathway
- LH-R is activated by high affinity agonist LH binding to a large, glycosylated extracellular domain
- LH is a non-covalently linked, heterodimeric glycoprotein consisting of an α- and a β-subunit; (α-subunit common to all glycoprotein hormones)
- LH and FSH are key components of the hypothalamic– pituitary–gonadal (HPG) axis and essential for the regulation of sex hormone levels in males and females
- LH-R is a valid target for intervention of hormonedependent diseases and for contraception



Modified from http://www.dsdgenetics.org and used with permission of Prof. Peter Koopman.

LH-R Antagonists are of great interest when studying hormone-dependent diseases, contraception or other reproductive biological processes

## Luteinizing Hormone Receptor Antagonists

SMOL modulators of hLH-R activity known from literature

- Two SMOL ligands of the hLH-R described in the literature: Org 43553 (Agonist) & LUF5771 (Antagonist)
- Org 43553 <u>activates</u> the hLH-R by reversibly binding to an allosteric binding site, i.e. without interfering with the binding of the natural ligand LH
- LUF5771 <u>antagonizes</u> hLH-R signaling by reversibly binding to a second allosteric site (i.e. distinct from the Org 43553 binding pocket \*) - without interfering with the binding of the natural ligand LH again.
- LUF5771 is not suitable for in vivo application

\* Heitmann, L.H. et al. MCE, 351, (2012), 326 - 336



No hLH-R antagonist suitable for *in vivo* application is described in the literature

## Luteinizing Hormone Receptor Antagonists

Antagonist dose response studies: BAY-298 mode of action



- Limited rightward shift observed in the presence of either LH or the SMOL agonist Org43553 -> BAY-298 behaves as a non-competitive hLH-R antagonist (comparable results expected for actual probe BAY-899 ~ highly structurally related)
- Working hypothesis: Like Org 43553 BAY-298 & BAY-899 bind to remnants of the rhodopsin binding site of hLH-R



BAY-298 (and, in all likelihood, BAY-899) act as a non-competitive, i.e. allosteric hLH-R antagonist(s)



## Luteinizing Hormone Receptor Antagonists

In vitro Profile of BAY-298 and SGC-Donated Chemical Probe BAY-899

| Pharmacological in vitro Properties |                               |                        |                               |                             |           |
|-------------------------------------|-------------------------------|------------------------|-------------------------------|-----------------------------|-----------|
| h LH Antagonism, IC <sub>50</sub>   |                               | 96 nM                  |                               |                             |           |
| r LH Antagonism, IC <sub>50</sub>   |                               | 23 nM                  | a İ İ                         | LI I                        | 1         |
| cyn LH Antagonism, IC <sub>50</sub> |                               | 78 nM                  |                               |                             | F         |
| h TSH Antagonism, IC <sub>50</sub>  |                               | 2.3 µM                 | Luteinizing hormo             | BAY-298)<br>one receptor ar | ntagonist |
| h FSH Antagonism, IC <sub>50</sub>  |                               | > 16 µM                | Physicochemica                | al Properties               |           |
| h LH Agonism, EC <sub>50</sub>      |                               | > 16 µM                | MW corr [g*mol]               | 474                         |           |
| h Fraction unbound [%]              |                               | 0.2                    | TPSA [A <sup>2</sup> ]        |                             | 54        |
|                                     |                               |                        | LogD @pH 7.5                  | 4.7                         |           |
| Safety Properties                   |                               |                        | Sw pH 6.5 [mg/L]              |                             | 3.5       |
| hERG [µM] 3.0                       |                               | Chemical stability, pH |                               | stable                      |           |
|                                     |                               |                        |                               |                             |           |
| In vitro DMPK Pro                   | operties                      |                        |                               |                             |           |
| Caco2                               | P <sub>app</sub> (A-B) [nm/s] |                        | P <sub>app</sub> (B-A) [nm/s] | efflux r                    | atio      |

| In vitro DMPK F                         | Properties                    |     |                               |      |                      |             |
|-----------------------------------------|-------------------------------|-----|-------------------------------|------|----------------------|-------------|
| Caco2                                   | P <sub>app</sub> (A-B) [nm/s] |     | P <sub>app</sub> (B-A) [nm/s] |      | efflux ratio         |             |
| permeability                            | 15                            |     | 20                            |      | 1.3                  |             |
| metabolic<br>stability                  |                               |     | CL [L/h/kg]                   |      | F <sub>max</sub> [%] |             |
|                                         | liver microsomes (h /r )      |     | 0.2/0.2                       |      | 85 / 94              |             |
|                                         | hepatocytes (r)               |     | 1.1                           |      | 74                   |             |
| CYP inhibition<br>IC <sub>50</sub> [µM] | 1A2                           | 2C8 | 2C9                           | 2D6  | 3A4                  | 3A4 preinc. |
|                                         | > 20                          | 0.7 | 4.4                           | > 20 | > 20                 | > 20        |

|                                     |                          |           |                                                           | F SC | GC-do                | onated      |  |
|-------------------------------------|--------------------------|-----------|-----------------------------------------------------------|------|----------------------|-------------|--|
| Pharmacological in vitro Properties |                          |           |                                                           |      |                      |             |  |
| h LH Antagonism, IC <sub>50</sub>   |                          | 185 nM    |                                                           |      |                      |             |  |
| r LH Antagonism, IC <sub>50</sub>   |                          | 46 nM     |                                                           |      |                      |             |  |
| cyn LH Antagonism, IC <sub>50</sub> |                          | n.d.      |                                                           | J H  | ~                    | $\sim$ +    |  |
| h TSH Antagonism, IC <sub>50</sub>  |                          | 24 µM     | N 36 (BAY-899)<br>Luteinizing hormone receptor antagonist |      |                      |             |  |
| h FSH Antagonism, IC <sub>50</sub>  |                          | > 16 µM   | Physicochemical Properties                                |      |                      |             |  |
| h LH Agonism, EC <sub>50</sub>      |                          | n.d.      | MW corr [g*mol]                                           |      |                      | 459         |  |
| h Fraction unbound [%]              |                          | 1.7       | TPSA [Å <sup>2</sup> ]                                    |      |                      | 80          |  |
|                                     |                          |           | LogD @pH 7.5                                              |      |                      | 2.8         |  |
| Safety Properties                   |                          |           | Sw pH 6.5 [mg/L]                                          |      |                      | 39          |  |
| hERG [µM] 10.6                      |                          | 10.6      | Chemical stability, pH                                    |      |                      | stable      |  |
| In vitro DMPK Properties            |                          |           |                                                           |      |                      |             |  |
| Caco2 Papp                          |                          | B) [nm/s] | P <sub>app</sub> (B-A) [nm/s] efflux                      |      | flux ratio           |             |  |
| permeability                        |                          | 89        |                                                           | 95   |                      | 1.1         |  |
|                                     |                          |           | CL [L/h/kg]                                               |      | F <sub>max</sub> [%] |             |  |
| metabolic<br>stability              | liver microsomes (h /r ) |           | 0.1/0.2                                                   |      | 89 / 95              |             |  |
|                                     | hepatocytes (r)          |           | 1.3                                                       |      | 68                   |             |  |
| CYP inhibition                      | 1A2                      | 2C8       | 2C9                                                       | 2D6  | 3A4                  | 3A4 preinc. |  |
| IC <sub>50</sub> [µM]               | > 20                     | 21        | 0.0                                                       | > 20 | > 20                 | > 20        |  |

BAY-899 was selected as SGC-donated Chemical Probe due to its better in vitro DMPK, PhysChem and selectivity.

### Luteinizing Hormone Receptor Antagonists Functional Selectivity Profile of **BAY-899**

|                                                             |             | (% of control) | (% of control) |
|-------------------------------------------------------------|-------------|----------------|----------------|
|                                                             | A2B         | 16             | -1             |
|                                                             | A3          | -6             | 25             |
|                                                             | alpha 1A    | 45             | 2              |
| Functional selectivity profile of BAY-899 in panel of 25    | alpha 2A    | -16            | -2             |
| GPCRs ("Bayer-Panel" @ Eurofins)                            | beta 1      | 13             | -1             |
|                                                             | beta 2      | 26             | -3             |
| - Dath the enteremietic (inhibition) and exercistic         | CB1         | 4              | 52             |
| Both, the antagonistic (inhibition) and agonistic           | D1          | 15             | -1             |
| (activation) properties were determined                     | D2L         | 67             | -1             |
|                                                             | H1          | 4              | -4             |
| The percentage of the mean value obtained when testing in   | H2          | 34             | -2             |
| - The percentage of the mean value obtained when testing in | H3          | -19            | 38             |
| duplicates at a single concentration of 10 µM is reported.  | MC4         | 11             | -2             |
|                                                             | Motilin     | 28             | -1             |
| Conclusion: No inhibition or activation > 70% at 10 µM      | M1<br>M4    | 52<br>2        | 1              |
| compound concentration reveals excellent colectivity within | NK1         | 24             | -0             |
| compound concentration reveals excenent selectivity within  | kanna (KOP) | -10            | -56            |
| target family                                               | mu (MOP)    | 8              | 56             |
|                                                             | EP3         | -5             | -1             |
|                                                             | P2Y2        | 8              | -1             |
|                                                             | 5-HT1A      | 0              | 1              |
|                                                             | 5-HT2B      | 18             | 1              |
|                                                             | 5-HT6       | 12             | -1             |
|                                                             | sst4        | 6              | 23             |

BAY-899 is highly selective in a commercial panel of 25 GPCRs (tested in agonistic and antagonistic mode)

Inhibition

Activation

### Luteinizing Hormone Receptor Antagonists **BAY-298** & **BAY-899** *Pharmacokinetics (Low dose rat PK)*



Chemical probe BAY-899 shows high exposure, long half-life, high oral bioavailability and high volume of distribution

### Luteinizing Hormone Receptor Antagonists In vivo Efficacy Studies with **BAY-298** & **BAY-899**

- BAY-298 treatment leads to a dosedependent lowering of estradiol levels in female rats following treatment for 8 days (q.d., po, vehicle: Myrj53 (Polyoxyethylene (50) stearate) in 0.9% w/v NaCl solution (85 mg/100 mL))
- BAY-899 is equi-efficacious
- BAY-298 also showed efficacy in several other *in vivo* studies

for further information see: Wortmann et al., *J Med Chem.* 2019; 62(22):10321-10341



#### BAY-899 showed in vivo efficacy in a female rat model with regard to the lowering of estradiol levels





- **BAY-897** was selected as negative probe molecule
- BAY-897 showed no activity on the hLH and hFSH receptor

BAY-897 (R)-enantiomer IC<sub>50</sub> (hLH-R) > 16 μM IC<sub>50</sub> (hFSH-R) > 16 μM

Solubility (nephelometric): 5 mg/L Caco-2 permeability: A-B: 12 nm / sec, efflux ratio: 0.4

BAY-897 was selected as negative probe molecule and is inactive on the hLH-R and hFSH-R (> 100 fold)



## Luteinizing Hormone Receptor Antagonists

Summary for **BAY-899** & Conclusion

| Probe criteria                                                                                | BAY-899                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Selectivity within target family: goal > 30-fold<br>(based on cellular IC <sub>50</sub> , Kd) | Surpasses criteria<br>No activity on FSH-R, TSH-R.<br>Clean in commercial GPCR panel of 25 GPCRs (all < 70%<br>inhibition / activation at 10µM compound concentration) |
| Selectivity outside target family: describe the off-targets                                   | Lead Profiling Screen for <b>BAY-899</b> to be initiated after probe-<br>acceptance. Bayer-internal kinase panel initiated.                                            |
| On target cell activity for cell-based targets: goal < 1 $\mu$ M                              | Surpasses criteria<br>185 nM in cell-based assay                                                                                                                       |
| <b>Negative control</b> : <i>in vitro</i> potency $\rightarrow$ ~100-fold less than probe     | Surpasses criteria<br>BAY-897 is inactive on hLH-R and hFSH-R                                                                                                          |
| Suitability as <i>in vivo</i> chemical probe                                                  | Suitable for <i>in vivo</i> experiments                                                                                                                                |
| Publication of BAY-298 & BAY-899 data                                                         | Wortmann et al, J Med Chem. 2019; 62(22):10321-10341                                                                                                                   |

## Luteinizing Hormone Receptor Antagonists

Acknowledgements

#### **Bayer AG:**

Lars Wortmann Bernhard Lindenthal Gernot Langer Peter Muhn Alexander Walter Joachim Kuhnke Marcus Koppitz Ulrich Lücking Reinhard Nubbemeyer

Dieter Heldmann Lothar Sobek Dieter Moosmayer Judith Günther Martina Schäfer Katrin Nowak-Reppel

Hilmar Weinmann Heiner Fritzemeier<sup>†</sup>

#### FMP (Berlin):

Ronald Kühne Federica Morandi Anna K. Schrey

#### Thank you to the whole team!



# Thank You



Luteinizing Hormone Receptor Antagonists

BAYER

Elucidation of the Absolute Configuration of the Eutomer



- For most of the examples investigated there is a ~ 10 fold difference in the activity of both enantiomers
- X-ray analysis of compound 5 revealed the (S)-configuration of the eutomer

X-ray analysis of compound 5 revealed the (S)-configuration of the eutomer

IC<sub>50</sub> (hLH) = 193 nM



Luteinizing Hormone Receptor Antagonists Synthesis of **BAY-899** 



<sup>*a*</sup>Reagents and conditions: (a) THF; (b) zinc, acetic acid, quantitative; (c) propargylamine, sodium tetrachloroaurate dihydrate, EtOH (as a mixture of regioisomers); (d) TFA, (as a mixture of regioisomers); (e) 4-nitrophenyl chloroformate, 2-(4-fluorophenoxy)pyrimidin-5-amine, THF; (f) HPLC separation of regioisomers and enantiomers.

The synthesis of **BAY-899** is feasible. Separation of regio- and enantiomers requires HPLC.