

Donated Chemical Probe

AKT Inhibitor
Probe BAY1125976

September 2021

Presenters: Oliver Politz (Lars Bärfacker)

This is a new beginning of a terminated project......

Int J Cancer. 2017 Jan 15;140(2):449-459. doi: 10.1002/ijc.30457. Epub 2016 Oct 20.

BAY 1125976, a selective allosteric AKT1/2 inhibitor, exhibits high efficacy on AKT signaling-dependent tumor growth in mouse models

```
Oliver Politz <sup>1</sup>, Franziska Siegel <sup>1</sup>, Lars Bärfacker <sup>2</sup>, Ulf Bömer <sup>1</sup>, Andrea Hägebarth <sup>1</sup>, William J Scott <sup>3</sup>, Martin Michels <sup>2</sup>, Stuart Ince <sup>3</sup>, Roland Neuhaus <sup>1</sup>, Kirstin Meyer <sup>1</sup>, Amaury Ernesto Fernández-Montalván <sup>1</sup>, Ningshu Liu <sup>1</sup>, Franz von Nussbaum <sup>4</sup>, Dominik Mumberg <sup>1</sup>, Karl Ziegelbauer <sup>1</sup>
```

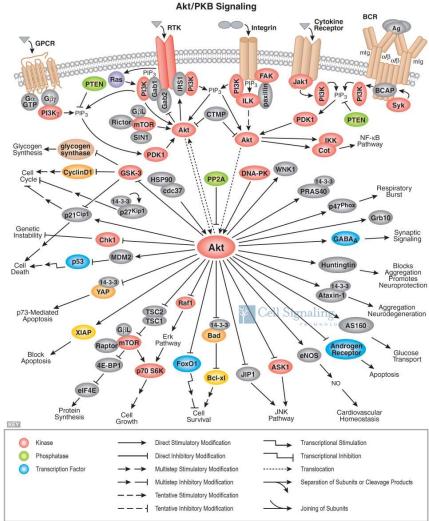
Affiliations + expand

PMID: 27699769 DOI: 10.1002/ijc.30457

Free article

- BAY1125976 requested by the SGC
- Bayer project from 2017
- unique opportunity for a donated Chemical Probe

Profile of BAY 1125976


- BAY 1125976 is a highly selective and potent allosteric inhibitor of AKT1 and AKT2 with similar potency (IC50 ~10 nM), while it displays weaker activity against AKT3 (IC50 ~500 nM) and is inactive against ~230 other protein/lipid kinases (>1 μM)
- Mechanistically, BAY 1125976 blocks AKT signaling by inhibiting the phosphorylation of AKT at both Thr308 and Ser473 (IC50 <1 nM), as well as downstream phosphorylation of 4E-BP1 (IC50<50 nM)
- The strong inhibition of cellular pAKT and downstream signaling by BAY 1125976 translates to a broad inhibition of tumor cell proliferation in vitro, with strongest effects in tumor cell lines that carry defects in the tumor suppressor PTEN, or oncogenic mutations in PIK3CA
- Daily oral dosing of BAY 1125976 in human xenograft tumor models induces strong pharmacodynamic inhibition of AKT phosphorylation that correlates with drug exposure
- In vivo, BAY 1125976 demonstrates dose-dependent antitumor efficacy in multiple xenograft tumor models of different histological types with AKT-mutations or PTEN deletions or PIK3CA mutations while being well tolerated
- When combined with anti-hormonal therapeutics in breast and prostate cancer cell lines, BAY 1125976 shows synergistic anti-proliferative effects, translating to enhanced antitumor efficacy with durable tumor regressions in vivo
- Combination of BAY 1125976 with the bone-targeting agent radium-223 dichloride in a breast cancer metastasis model results in a reduced total tumor and bone
 metastases burden
- Human PK for BAY 1125976 is favorable once daily dosing as well as alternative schedules possible
- Excellent physicochemical profile

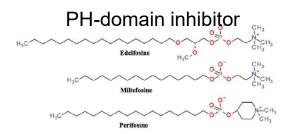
Background & Scientific rationale

Roles of AKT kinases in cell biology:

- · Akt is a central switch
 - Promotes cell growth, cell cycle progression, survival, DNA repair
 - · Hormone receptor signaling
 - · Role in immune regulation
- · Akt pathway activation
 - · Growth factor overexpression
 - · Growth factor receptor activation
 - Mutations in AKT and PI3K
 - PTEN inactivation
 - · Overexpression and amplification of Akt
- Downstream effectors
 - mTOR
 - EIF4B, p70S6K,
 - p27^{KIP1}
 - Mdm2
 - DNA-PK
 - BAD (Bcl-2 family), Caspase-9

© 2003 - 2007 Cell Signaling Technology, In

kt PKB.eps • created January 2003 • revised December 20



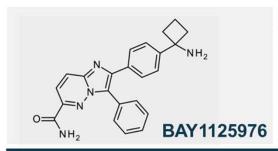
Competitor compounds, a literature known, patents, commercially available

Class	Description						
ATP-competitive inhibitors	Orthosteric inhibitors targeting the ATP-binding pocket of the protein kinase B (Akt)						
Isoquinoline-5-sulfonamides							
Azepane derivatives	A series structures derived from (-)-balanol						
Aminofurazans	GSK690693						
Heterocyclic rings	7-azaindole, 6-phenylpurine derivatives, pyrrolo[2,3-d]pyrimidine derivatives, CCT128930,						
	3-aminopyrrolidine, anilinotriazole derivatives, spiroindoline derivatives, AZD5363, ipatasertib (GDC-0068, RG7440), A-674563, A-443654						
Phenylpyrazole derivatives	AT7867, AT13148						
Thiophenecarboxamide	Afuresertib (GSK2110183), 2-pyrimidyl-5-amidothiophene derivative (DC120), uprosertib						
derivatives	(GSK2141795)						
Allosteric inhibitors	Superior to orthosteric inhibitors providing greater specificity, reduced side-effects and less toxicity						
2,3-diphenylquinoxaline analogues	2,3-diphenylquinoxaline derivatives, triazolo[3,4-f][1,6]naphthyridin-3(2H)-one derivative (MK-2206)						
Alkylphospholipids	Edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine, ET-18-OCH ₃) ilmofosine (BM 41.440), miltefosine (hexadecylphosphocholine, HePC), perifosine (D-21266), erucylphosphocholine (ErPC), erufosine (ErPC3, erucylphosphohomocholine						
Indole-3-carbinol analogues	Indole-3-carbinol, 3-chloroacetylindole, diindolylmethane, diethyl 6-methoxy-5,7-dihydroindole [2,3-b]carbazole-2,10-dicarboxylate (SR13668), OSU-A9						
Sulfonamide derivatives	PH-316, PHT-427						
Thiourea derivatives	PIT-1, PIT-2, DM-PIT-1, N-[(1-methyl-1H-pyrazol-4-yl)carbonyl]-N'-(3-bromophenyl)-thiourea						
Purine derivatives	Triciribine (TCN, NSC 154020), triciribine mono-phosphate active analogue (TCN-P), 4-amino-pyrido[2,3-d]pyrimidine derivative API-1, 3-phenyl-3H-imidazo[4,5-b]pyridine derivatives, ARQ 092						
Other structures, derivatives	BAY 1125976, 3-methyl-xanthine, quinoline-4-carboxamide and 2-[4-(cyclohexa-1,3-dien-1-yl) 1H-pyrazol-3-yl]phenol, 3-oxo-tirucallic acid, 3α - and 3β - acetoxy-tirucallic acids, acetoxy-tirucallic acid						
Irreversible inhibitors	Natural products, antibiotics Lactoquinomycin, Frenolicin B, kalafungin, medermycin, Boc-Phe-vinyl ketone, 4-hydroxynonenal (4-HNE), 1,6-naphthyridinone derivatives, imidazo-1,2-pyridine derivatives						

Table1 from: Nitulescu, G. M., et al. (2016). Int J Oncol 48(3): 869-885.

Allosteric Inhibitor

MK-2206



Pharmacology of AKT inhibitors

Data	BAY 1125976	MK2206	Ipatasertib (GDC-0068)	Capivasertib (AZD5363)	
MoA	allosteric	allosteric	ATP comp.	ATP comp.	
Biochemical activity:					
AKT1/2/3 ^{wt} [nM]	5/18/428	19/16/103	5/18/8	3/3/7	
AKT1/2 E17K [nM]	1.6µM/>2µM	>2µM/>2µM	3/11	2.7/4.8	
Cellular MoA (model)					
pAKT-S473 AKT1 ^{wt} [nM]	1.5 (KPL-4)	6.6 (KPL-4)	Strong increase >200%	Strong increase >200%	
pAKT-S473 AKT1 ^{E17K} [nM]	0.8 (LAPC-4) 83 (KU-19-19)	180 (KU-19-19)	Strong increase >200%	Strong increase >200%	
p4EBP1-T70	35 (LAPC-4) 100 (KU-19-19)	460 (KU-19-19)			
pPRAS40-T246 AKT1wt [nM]	228 (LNCaP)	No data	157 (LNCaP)	No data	
pPRAS40-T246 AKT1 ^{E17K} [nM]	140 (LAPC-4)	No data	100 (LAPC-4)	No data	
Proliferation					
AKT1 ^{wt}	60nM (MCF-7)	380nM (MCF-7)		No data	
AKT1 ^{E17K}	40nM (LAPC4)	150nM (LAPC4)	533 (LAPC4)	No data	
In vivo MoA (% inh over time [h])			i i		
KPL4 AKT1 ^{wt}	pAKT-S473 >80% / 24h	pAKT-S473 >80% / 24h	pPRAS40 >80% / ~8h (PC3)		
KU-19-19 AKT1 ^{E17K}	pAKT-S473 >80% / 24h	pAKT-S473 >80% / 24h	, ,		
In vivo tumor growth inhibition (T/C)					
Model, dose mg/kg, response	AXF984 AKT1 ^{E17K} , 50, SD PC3, 50, SD	AXF984 AKT1 ^{E17K} , 240, SD	PC3, 100, SD		

Technical In vitro profile

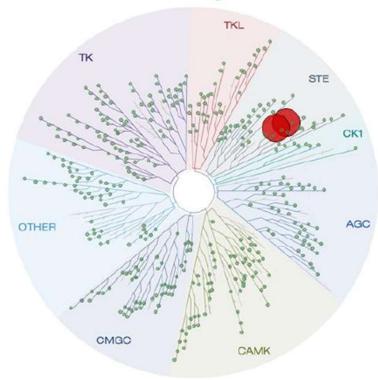
POTENCY (IC ₅₀ [nM])						
AKT1 (at 10 µM ATP)	5.2					
AKT1 (at 2 mM ATP)	44					
AKT2 (at 10 µM ATP)	18					
AKT2 (at 2 mM ATP)	36					
AKT3 (at 10 μM ATP)	427					

Properties & Physchem	
LogD @ pH 7.5	2.3
LLE	6.0
Sw @ pH 6.5 [mg/L]	308
MW / TPSA [g*mol / ²]	383 / 99
Stability (r/h/d plasma, 37°C, 2h) [%]	100

in vitro DMPK Pro	perties		- 7				
Caco2	P _{app} (A-B) [nm/s]		P _{app} (B-A)	[nm/s]	efflux ratio		
Permeability	135		412			3.1	
			CL [L/h/kg]		F _{max} [%]		
metabolic stability	rat hepato	cytes	1.3		70		
	dog hepatocytes		1.2		43		
	human hepa	tocytes	0.64		52		
CYP inhibition	1A2	2C8	2C9	2D6	3A4	3A4 preinc.	
IC ₅₀ [μM]	> 20	> 20	> 20	> 20	> 20	> 20	
CYP Induction							

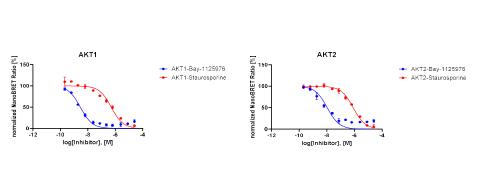
Selectivity	
In-house kinase panel	High selectivity see next slide
Eurofins @ 1 µM (kinase panel)	See next slide

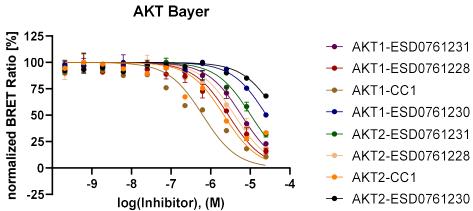
SAFETY				
Ames	negative			
hERG IC ₅₀ [µM]	8.7			


- BAY-1125976 has high in vitro potency and selectivity
- BAY-1125976 has high solubility and high permeability

Selectivity Profile in more detail

- AKT1, AKT2, AKT3 currently measured @ Benedict-Tilman Berger lab
- Additional compounds sent for comparison
- Data on BAY1125976 will provide more insight into selectivity of Chemical Probe
- Data will identify most suitable negative control in direct comparison / same selectivity assay

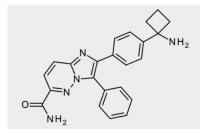

MC 1021282-1 @ 1000nM



Kinome scan of BAY 1125976 for selectivity profiling at 1µM

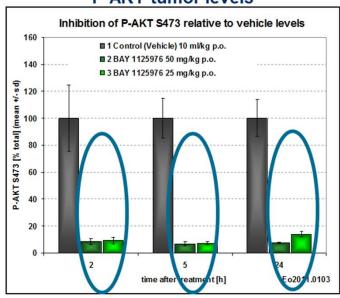
NanoBRET profiling data from Berger lab

IC50, [M]	ESD0761231	ESD0761230	ESD0761228	CC1 (Ctrl)	Bay-1125976	Staurosporine
AKT1	6.00E-06	2.56E-05	2.81E-06	6.32E-07	2.84E-09	5.10E-07
AKT2	1.04E-05	4.97E-05	4.03E-06	2.16E-06	1.07E-08	8.09E-07

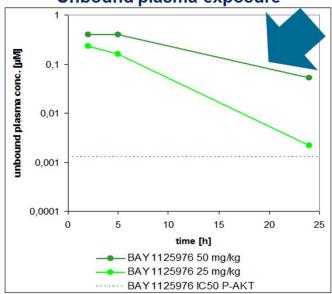


In vitro proliferation in broad breast cancer cell line panel

Cell line	subtype	ER	PR	ERBB2/ HER2	IC50 (BAYER)	IC50 (Sanger)	AKT1	BRAF	CDKN2A	KRAS	PIK3CA	PTEN	RB1	TP53
ZR-75-1	L	+	-	-	7,02E-08	7,02E-08	wt	wt	wt	wt	wt	p.L108R	wt	wt
EVSA-T	L				1,20E-07	9,22E-08	wt	wt	wt	wt	wt	p.T319fs*1	wt	p.S241C
KPL-4	LH				1,74E-07	1,74E-07	wt	wt	wt	wt	p.H1047R	wt	wt	wt
MDA-MB-361	L	+	+	+		4,61E-07	p.D3N	wt	wt	wt	p.E545K; p.K567R	wt	wt	p.E56*
MDA-MB-415	L	+		+		4,65E-07	wt	p.P74A	wt	wt	wt	p.C136Y	wt	p.Y236C
MFM-223	L					5,97E-07	wt	wt	wt	wt	p.H1047R	wt	wt	p.K132R
HCC202	L			+		8,01E-07	wt	wt	wt	wt	p.E545K; p.L866F	wt	wt	p.T284fs*21
HCC70	В	-	-	-	8,44E-06	1,11E-06	wt	wt	wt	wt	wt	p.F90fs*9	wt	p.R248Q
T47D	L	+	+		6,03E-08	1,19E-06	wt	wt	wt	wt	p.H1047R	wt	wt	p.L194F
MDA-MB-453	LH			+	1,22E-07	1,33E-06	wt	wt	wt	wt	p.H1047R	wt	vvt	wt
HCC1954	В	-	-	+		1,39E-06	wt	wt	wt	wt	p.H1047R	wt	wt	p.Y163C
EFM-19	L	+	+			1,68E-06	wt	wt	wt	wt	p.H1047L	wt	wt	p.H193R
HCC1187	В	-				2,79E-06	wt	wt	wt	wt	wt	wt	wt	p.G108delG
MCF7	L	+	+	-	6,33E-08	3,41E-06	wt	wt	p.?fs	wt	p.E545K	wt	wt	wt
BT-474	LH	+	+	+	1,67E-08	4,20E-06	wt	wt	wt	wt	p.K111N	wt	wt	p.E285K
CAMA-1	L	+		+		4,88E-06	wt	wt	wt	wt	wt	p.F278fs*12; p.D92H	wt	p.R280T
HCC1569	В			+		5,83E-06	wt	wt	wt	wt	wt	p.K267fs*9	wt	p.E294*; p.D228fs*19
BT-20	В	-	-	-	3,85E-07	6,20E-06	wt	wt	p.?del	wt	p.P539R	wt	wt	p.K132Q
EFM-192A	L	+	+	+		1,03E-05	wt	wt	wt	wt	p.C420R	wt	wt	p.E271fs*1
MDA-MB-175-VII	L	+				1,04E-05	wt	wt	wt	wt	wt	wt	wt	wt
COLO-824	В	•		+		1,04E-05	wt	wt	wt	wt	wt	wt	p.S350I	p.?
CAL-51	В		NA			1,25E-05	wt	wt	wt	wt	p.E542K	p.E288fs: p.T321fs	wt	wt
HCC2218	L	-	-	+		1,41E-05	wt	p.E296K	wt	wt	wt	wt	wt	wt
Hs-578-T	Claudin low	-	-	-		1,58E-05	wt	wt	wt	wt	wt	wt	wt	p.V157F
BT-549	В	-	-	-	8,44E-06	1,59E-05	wt	wt	wt	wt	wt	p.V275fs*1	p.?	p.R249S
CAL-120	В				1,00E-05	1,81E-05	wt	wt	wt	wt	wt	wt	wt	p.?
HCC1937	В	-	-	-		2,00E-05	wt	wt	wt	wt	wt	wt	p.?	p.R306*
MDA-MB-468	В			•	6,47E-06	2,01E-05	wt	wt	wt	wt	p.E545A	p.L70fs*7	p.?	p.R273H
MDA-MB-436	Claudin low		-	•		2,03E-05	wt	wt	wt	wt	wt	wt	wt	p.E204fs*7
MDA-MB-157	Claudin low	-	-	-		2,40E-05	wt	wt	wt	wt	wt	wt	wt	p.A88fs*52
HCC1806	В	-	-	-		2,88E-05	wt	wt	wt	wt	wt	wt	wt	p.T256fs*90
HCC1395	Claudin low	-	-	-		3,86E-05	wt	wt	wt	wt	wt	wt	wt	p.R175H
MDA-MB-231	В	-	-	-	1,00E-05	2,83E-04	wt	p.G464V	p.?fs	p.G13D	wt	wt	wt	p.R280K



 BAY 1125976 demonstrates potent anti-proliferative efficacy in luminal and luminal Her2^{O/E} breast cancer lines in vitro

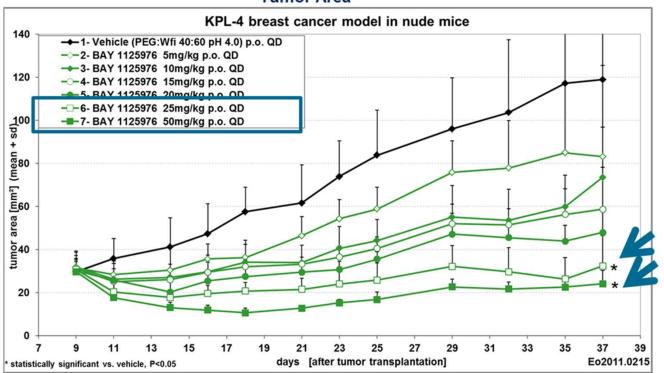


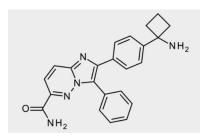
Mode of Action in vivo KPL-4 model (PIK3CAH1047R, HER2^{O/E})

Unbound plasma exposure

Strong P-AKT tumor

- Strong P-AKT tumor inhibition (>70%)
- Significant unbound plasma exposure up to 24 hours post treatment

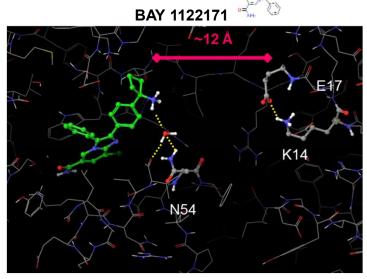

Study Design:


Single oral dose; fast exposure over 24 h
 P-AKT inhibition (S473) measured in tumor extracts

Allo AKT inhibitor BAY 1125976 demonstrates potent anti-tumor efficacy in KPL-4 BC (PIK3CA^{H1047R}, HER2^{O/E}) *in vivo*

Tumor Area

 Continuous QD dosing schedule preferred based on preclinical studies and used in FiM protocol

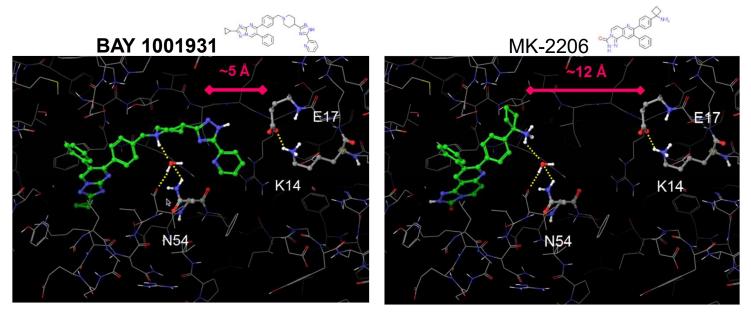


AKT1-E17K mutation: structural data

BAY 1001931

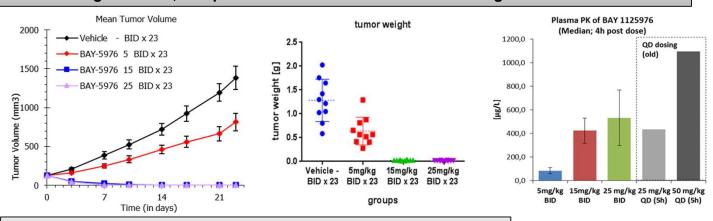
F17

K14

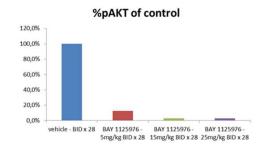


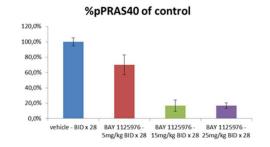
- · Docking into allosteric binding pocket formed by kinase and PH domain of AKT1
- Binding site of BAY 1125976 like series (right) is more remote from E17K mutation site than first-generation series (BAY 1001931)
- Thus, binding affinity of current series is probably less affected by E17K mutation
- Both PH as well as kinase domain of AKT1 undergo major conformational change upon complex formation. Impact of E17K mutation on conformational change and ligand binding site is unpredictable
- Differential docking of selected allosteric AKT inhibitors in wt AKT1
- No direct interaction of BAY1125976 like compounds with E17 position

AKT1-E17K mutation: structural data



Docking of Competitor MK2206 into allosteric binding site




Strong Activity of BAY 1125976 in Breast Cancer Model with the AKT1^{E17K} mutation

> BAY 1125976 with high efficacy in an AKT1^{E17K} breast cancer PDx model when dosed in a BID dosing schedule, comparable PK between QD and BID dosing

> Strong inhibition of pAKT and downstream marker pPRAS40

- > pPRAS40 levels correlate with efficacy
- > pAKT with inhibition also at non-efficacious doses

In vitro profile of Negative Control BAY-940

\Diamond
HO NH ₂
(N
ΒΔΥ-94 0

POTENCY (IC ₅₀ [nM])					
AKT1 (PKB alpha)	3740				
AKT2 (PKB alpha)	3840				
AKT1 (Nano BRET)	6000				
AKT2 (Nano BRET)	10400				

Properties & Physchem					
LogD @ pH 7.5	1.60				
TPSA [g*mol / Ų]	76				
Sw @ pH 6.5 [mg/L]	99				
MW [g/mol]	356				
Stability (r/h/d plasma, 37°C, 2h) [%]	n.d.				

in vitro DMPK Properties							
Caco2 Permeability	P _{app} (A-B) [nm/s]		P _{app} (B-A) [nm/s]		efflux ratio		
	n.d.		n.d.		n.d.		
metabolic stability			CL [L/h/kg]		F _{max} [%]		
	rat hepatocytes		n.d.		n.d.		
	dog hepatocytes		n.d.		n.d.		
	human hepatocytes		n.d.		n.d.		
CYP inhibition IC ₅₀ [μΜ]	1A2	2C8	2C9	2D6	3A4	3A4 preinc.	
	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	
CYP Induction	n.d.						

Selectivity			
In-house kinase panel	n.d.		
Eurofins @ 1 μM (kinase panel)	n.d.		
SAFETY			
Ames	n.d.		

n.d.

hERG IC₅₀ [µM]

- BAY-940 negative on AKT1 & AKT2
- BAY-940 perfect as negative control to the Chemical Probe

Summary / Conclusion

Probe criteria			
Inhibitor/agonist potency: goal is < 50 nM (IC_{50} , Kd)	Surpasses criteria		
Selectivity within target family: goal is > 30-fold	Surpasses criteria		
Selectivity outside target family: describe the off-targets (which may include both binding and functional data)			
On target cell activity for cell-based targets: goal is < 1 μ M IC_{50}/EC_{50}	Surpasses criteria		
On target cell activity for secreted targets: appropriate alternative such as mouse model or other mechanistic biological assay, e.g., explant culture	Additional proof for on target activity:		
Neg ctrl: <i>in vitro</i> potency – > 100 times less; Cell activity – >100 times less potent than the probe	Surpasses criteria		

We ask for acceptance of AKT inhibitor BAY1125976 as chemical probe, accompanied by BAY-940 as negative control

Thank You

Key Activity (IC50)

AKT1/AKT2 (active kinase, median)
 AKT1/AKT2 (active kinase, high ATP)
 AKT3 (Bioduro)
 AKT1 (PDK1 activation assay)
 ΔPH-AKT1 / ΔPH-AKT2
 5 / 18 nM
 44 / 36 nM
 428 nM
 22 nM
 20 / >20 μM

p-AKT (S473/T308) Alphascreen, KPL4
 p-4E-BP1 (T70) Alphascreen, KPL4
 35 nM

Kinase selectivity (median IC50 M)

Mer (10 μM/ 2 mM ATP)
 Flt-4 (10 μM/ 2 mM ATP)
 MKNK1 (10 μM/ 2 mM ATP)
 Mps1 (10 μM/ 2 mM ATP)
 5.94E-7 / >2.00E-5

Tumour Cell Proliferation (median IC₅₀)

LNCaP prostate cancer 15 nM
 LAPC4 prostate cancer 62 nM
 MCF7 breast cancer 82 nM
 KPL4 breast cancer 174 nM

In vivo

MTD nude mice/ rats: 50/ 25 mg/kg QD po
 MOA 80% P-AKT inhib (25 mg/kg): >24h
 Mouse: KPL4 (25 / 50 mg/kg QD) T/C 0.22 / 0.16
 Mouse: PC3 (50 mg/kg QD) T/C 0.13
 Rat: KPL4 (15 / 25 mg/kg QD) T/C 0.43 / 0.23

Safety / Tox

Cytotoxicity
 Ames
 hERG (IC₅₀)
 Ricerca Lead Profiler screen
 Category 0
 negative
 8.7 μM
 no effects < 10μM

DMPK

Microsomal Clint [L/kg/h] 0.69/0.86/0.30 (h/m/r) 48/84/93 (h/m/r)
 Hepatocytes CL [L/kg/h] 0.64/1.2/1.3 (h/d/r) 52/43/70 (h/d/r)
 Caco2 ap-bas (ratio) 135 (3.1)
 Fu % (h / d / g / r / m) 6 / 13 / 17 / 11 / 14

 $\begin{array}{lll} \text{CL}_{\text{blood}} \ (\text{rat}) & 1.2 \ \text{L/h/kg} \\ \text{Vss} \ (\text{rat}) & 13 \ \text{L/kg} \\ \text{t}_{1/2} \ (\text{rat}) & 3.7 \ \text{h} \\ \text{F} \ (\text{rat} \ @ \ 2 \ \text{mg/kg}) & 65 \ \% \\ \text{C}_{\text{max} \ \text{norm,po}} \ (\text{t}_{\text{max}}) \ @ \ 2 \ \text{mg/kg} & 0.035 \ \text{kg/L} \ (4\text{h}) \\ \text{AUC}_{\text{norm po}} \ @ \ 2 \ \text{mg/kg} & 0.25 \ \text{kg*h/L} \\ \end{array}$

 $\begin{array}{lll} \bullet & \text{brain/plasma ratio (AUC, AUC}_u) & 0.41, 0.15 \\ \bullet & \text{CYP Inhibition (microsomes)} & >20 \ \mu\text{M, hint for TDI} \\ \bullet & 3A4 \ \text{Cyp Induction, NOEL} & \text{No induction up to 62 } \ \mu\text{g/L} \\ \bullet & F_{\text{rel}} \ (\text{rat}) \ [\%] & 128 \\ \end{array}$

Physchem

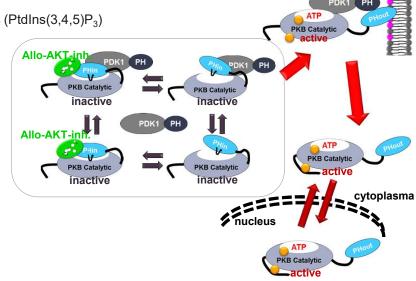
Sw flask @ pH 6.5 / 4
cLogP / logMA
pKa (photometric)
Oral PC Score
PSA
MW
619.4 / 484.6 mg/L (25 °C)
4 (basic)
0
99.3
MW
383.45

Biology of an allosteric inhibitor in blocking activation of AKT/PKB

Activation of AKT:

Switch between **inactive** and **active** state involves molecular rearrangement of PH-and catalytic domain (PH-in \Leftrightarrow PH-out)

Depends on:


- 1. interaction between PDK1 and AKT
- 2. Integration into membrane by association with phosphoinositides (PtdIns(3,4,5)P₃)
- Stepwise process with two phosphorylations at T308 (by PDK1)
 S473 (by mTORC2 / DNA-PK)
- Allosteric AKT inhibitor stabilize inactive conformation in cytoplasma preventing phosphorylation

Allosteric AKT-inhibitor binding depends on:

- 1. Interaction of PH and catalytic domain
- 2. Interaction of PDK1 and AKT

Allosteric AKT-inhibitor binding impaired by:

- 1. Membrane integration and PI3K activity
- 2. AKT-phosphorylation at T308 / S473

Modified from: Calleja, V., D. Alcor, et al. (2007). PLoS Biol 5(4): e95.

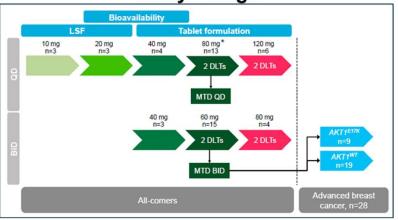
PI3K-inh

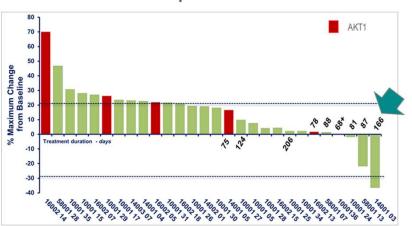
Competitors

- Ipatasertib (GDC-0068; Genentech, Inc.) is a potent, selective, ATP-competitive small-molecule inhibitor of all three isoforms of AKT (IC 50 of 5–18 nmol/L
- Capivasertib (AZD5363) is a highly selective ATP-competitive pan-AKT inhibitor
- MK2206: allosteric AKT 1/2/3 inhibitor; well established in the scientific community

Nitulescu, G. M., D. Margina, P. Juzenas, Q. Peng, O. T. Olaru, E. Saloustros, C. Fenga, D. A. Spandidos, M. Libra and A. M. Tsatsakis (2016). "Akt inhibitors in cancer treatment: The long journey from drug discovery to clinical use (Review)." Int J Oncol 48(3): 869-885.

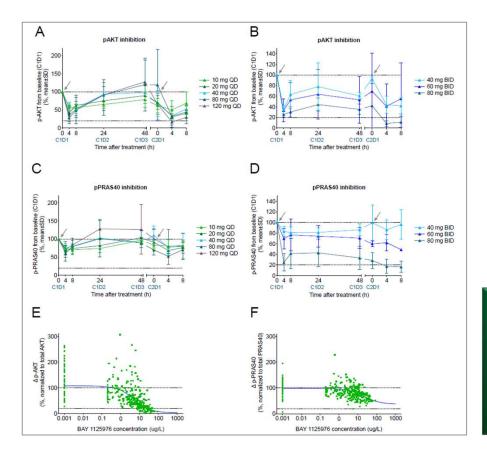
Nitulescu, G. M., M. Van De Venter, G. Nitulescu, A. Ungurianu, P. Juzenas, Q. Peng, O. T. Olaru, D. Grădinaru, A. Tsatsakis, D. Tsoukalas, D. A. Spandidos and D. Margina (2018). "The Akt pathway in oncology therapy and beyond (Review)." International journal of oncology 53(6): 2319-2331.




Phase 1 Dose Escalation Study of the Allosteric AKT Inhibitor BAY 1125976 in Advanced Solid Cancer (NCT01915576)

Lack of Association between Activating AKT Mutation and AKT Inhibition-Derived Ecacy

BC Expansion Cohort



BC expansion cohort:

- Best response is 1 confirmed PR in AKT1wt BC pt
- CBR (PR+SD)=29.2%;
 ORR (PR+SD)=3.5%
- Median SD duration of 129d and ongoing
- evaluate safety, pharmacokinetics, and maximum tolerated dose of BAY 1125976 in patients with advanced solid tumors
- > Application of continuous once daily (QD) treatment (21 days/cycle) and a twice daily (BID) schedule
- ➤ Dose expansion in 28 patients with hormone receptor-positive metastatic breast cancer, including nine patients harboring the AKT1^{E17K} mutation at the recommended phase 2 dose (R2D) of 60 mg BID.
- ➤ Dose-limiting toxicities (Grades 3–4): increased in transaminases, glutamyltransferase (-GT), alkaline phosphatase in four patients in both schedules and stomach pain in one patient

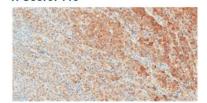
Biomarker Results from phase 1 study

Schneeweiss A, et al. "Phase 1 Dose Escalation Study of the Allosteric AKT Inhibitor BAY 1125976 in Advanced Solid Cancer-Lack of Association between Activating AKT Mutation and AKT Inhibition-Derived Efficacy." Cancers (Basel). 2019;11(12).

Figure 3. Inhibition of phosphorylation of AKT (A,B) and PRAS40 (C,D) as pharmacodynamic biomarkers in platelet-rich plasma (PRP) from patients in the QD (left column) and BID (right column) dose escalation parts in the BAY 1125976 Phase 1 study. PK/PD analysis on the suppression of p-AKT (E) and p-PRAS40 (F) from thrombin receptor-activating peptide (TRAP)-stimulated platelets across dose intervals relative to baseline (screening, C1D1 pre-dose or C1D-3 pre-dose).

Values are normalized to total AKT and total PRAS40, respectively. Vertical dotted line represents IC90 for p-AKT based on clinical pharmacokinetic/pharmacodynamic (PK/PD) modeling. Arrows indicate when treatments were started. C, cycle; D, day. PD: progressive disease.

- dose-dependent inhibition of both pharmacodynamic biomarkers with maximum inhibition detectable at 4 h post-dosing
- rapid return to baseline suggesting a rapid direct effect link between AKT inhibition and biomarker modulation
- QD administration, even at the MTD, was not able to achieve sustained coverage above the in vitro IC50 of p-AKT or p-PRAS40.



Preclinical data: pAKT staining (BYR040; Mosaic)

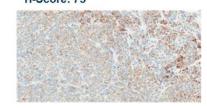
KPL-4 model; TRG-exp. 00577; IHC, Mosaic, BYR040, clone: 14-5

Vehicle

ML1312373; KPL-4,G2/3h,T4 H-Score: 115

ML1312379; KPL4,G2/30h,T18

BAY 1125976 50mg/kg/OD

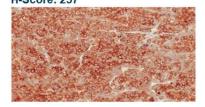

ML1312381; KPL4,G4/3h,T4 H-Score: 60

ML1312382; KPL-4,G4/7h,T6 H-Score: 157

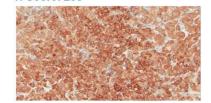
ML1312384; KPL4,G4/16h,T11 H-Score: 75

ML1312386; KPL-4,G4/38T18 H-Score: 33

pAKT-S437 IHC staining shows no clear treatment effects (potential antibody issue)



Preclinical data: pPRAS40 staining (BYR040; Mosaic)


KPL-4 model; TRG-exp. 00577; IHC, Mosaic, BYR040, clone: C77D7

Vehicle

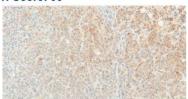
ML1312373; KPL-4,G2/3h,T4 H-Score: 257

ML1312379; KPL4,G2/30h,T18 H-Score: 235

BAY 1125976 50mg/kg/OD

ML1312381; KPL4,G4/3h,T4 H-Score: 37

ML1312382; KPL-4,G4/7h,T6 H-Score: 27



ML1312384; KPL4,G4/16h,T11

ML1312386; KPL-4,G4/38T18

H-Score: 60

pPRAS40 IHC staining shows clear treatment effects