

Donated Chemical Probe

Chemical Probe BAY-386 PAR-1 Antagonist

March, 2018

Christoph Gerdes, Mark Jean Gnoth, Kersten Matthias Gericke, Mario Jeske

- // Thrombin = most potent physiologic activator of thrombocytes during aggregation
- // Effects of thrombin on human platelets mediated predominantly by PAR-1
- // Antagonists reduce ischemic events in atherosclerotic patients with previous MI or PAOD

PAR-1 Antagonists: new class potential for arterial thrombosis management

		Probe BAY-386	Neg. Control BAY-448	
	[µM]	F ₃ CO F ₃ CO	F ₃ C, , , , , , , , , ,	
Human	PAR-1 (HEK cell) IC ₅₀	0.01	> 10	IPA = Inhibition of
	PAR-1 binding IC ₅₀	0.056		aggregation
	IPA _{plasma, hum, TRAP-6} IC _{50/90}	0.43/0.68	> 10	TRAP6 = thrombin receptor
	IPA _{plasma, hum,Thrombin} IC ₅₀	0.14		activating peptide
	PAR-4 (HEK cell) IC ₅₀	> 10	> 5	PARt
	$IPA_{plasma, hum, ADP, Collagen} IC_{50}$	> 100		
Cyno	IPA _{plasma, cyno, TRAP-6} IC _{50/90} in vitro	0.15/0.61		
	IPA _{plasma, cyno, TRAP-6} IC ₉₀ ex vivo	0.025		

PAR-1 antagonist effect dissociates from platelets upon washing

Donated Chemical Probe BAY-386 /// March 2018

BAY-386

0.143

0.420

Ex vivo anti-platelet effect - Cynomolgus monkey PD/PK (single dose p.o.)

PAR-1 Antagonist BAY-386 & neg. control BAY-448:

Molecular properties and PhysChem data

BAYER E R

 Molecular Properties 	5	PhysChem				
MW [g/mol]	515	Sw ^{pH 6.5} [mg/L]	30			
MWcorr [g/mol]		log D (pH 7.5)	3.6			
TPSA [Å2]						
Rotatable bonds						

• [Mol	ecul	lar	Pro	pe	rties
-----	-----	------	-----	-----	----	-------

MW [g/mol]	458	Sw
MWcorr [g/mol]		log
TPSA [Å2]		
Rotatable bonds		

• F	hysChem
-----	---------

log D (pH 7.5)	3.3

PAR-1 Antagonist BAY-386 & neg. control BAY-448:

Broader selectivity assessment (GPCR Panel, Cereps)

// Neg. control is inactive against any GPCR tested

Summary of in vitro ADME Data

BAY-3	386	Rat	Dog	Cynomo	lgus	Human		
CL Mic	[L/h/kg]	0.16	0.27	0.36	i	0.018		
CL Hep	[L/h/kg]	0.46	0.20	n.d.	n.d.		n.d. (
CL in vivo	[L/h/kg]	0.46	0.47	0.47 0.20 (pl)		n.d.		
BAY-	Rat	Dog	Cynomolgus	Baboon	Human			
fu	[%]	5.9	5.3	6.9	3.4	3.6		
Caco-2								
P _{app} A-B	[nm/sec]					266		
ER						0.9		
P-gp								
ER						1.4		

// BAY-386 shows in vitro a low CL in all species tested

// BAY-386 is highly permeable

// Free fraction shows slight species difference for BAY-386

// BAY-386 is no P-gp substrate

CYP-Inhibition	BAY-386
(Microsomes)	
CYP 1A2, IC ₅₀ [µM],	> 20
CYP 2C8, IC ₅₀ [µM],	> 20
CYP 2C9, IC ₅₀ [µM],	> 20
CYP 2D6, IC ₅₀ [µM],	> 20
CYP 3A4, IC ₅₀ [µM],	> 20
CYP 3A4, IC ₅₀ [µM], preinc.	> 20
CYP-Induction	
induction of 1A2; NOEL [ng/ml]	>10000
CYP3A4: safety margin	≥ 600

// No Inhibition of CYP enzymes tested

// No relevant induction of CYP 3A4 and 1A2 observed for BAY-386

PK Parameters of BAY-386 in Animals

				BAY-386	
Species		Rat	Dog	Cynomolgus	Baboon
CL	[L/h/kg]	0.41	0.35	0.20	0.30
CL _{blood}	[L/h/kg]	0.46	0.47	n.d.	n.d.
V _{ss}	[L/kg]	3.3	4.9	2.8	2.1
t _{1/2}	[h]	5.6	11	10	5.0
p.o.					
AUC _{norm}	[kg·h/L]	2.1	1.8	3.8	n.d.
C _{max,norm}	[kg/L]	0.15	0.21	0.26	n.d.
t _{max} (Median)	[h]	5.0	1.0	1.0	n.d.
t _{1/2}	[h]	7.7	7.2	12	n.d.
F	[%]	88	62	78	n.d.

// BAY-386 shows a low CL and high Vss in all species tested and high bioavailability

// In rats BAY-386 shows no relevant renal CL (data not shown)

// Relative bioavailability from suspension (crystallin material) vs solution amounts to 81 % and 95% at doses of 0.24 and 2 mg/kg

Lead Profiling Screen (MDS/Ricerca) at 10 µM significant inhibition of binding to CB1 receptor (88%) and Na⁺ channel (55%) >100-fold above PAR-1 activity (IC₅₀ ~10 nmol/L) in mechanistic assay \Rightarrow hERG potassium channel (manual voltage clamp): moderately potent inhibition with threshold (IC₂₀) ~1.1 μ mol/L (IC₅₀ ~3.8 μ mol/L) IC_{20} >100-fold above PAR-1 activity (IC_{50} ~10 nmol/L) in mechanistic assay \Rightarrow Ion channel cardiac profiler (Millipore, automated voltage clamp, IonWorks): 8 major cardiac channels at 0.4-33 µmol/L hNav1.5, hKv1.5, hERG, hKv4.3/hKChIP2, hCav1.2, hKCNQ1/hminK, hKir2.1, HCN4 significant hERG inhibition (IC₅₀ ~2.1 µmol/L) \Rightarrow all other channels: no effect at ≤11 µmol/L no relevant off-target activity \Rightarrow moderately potent hERG K⁺ channel inhibition (>200-fold above predicted human C_{max.u} ~2.6 µg/L)

Receptor specificity tested towards 70 targets by radioligand binding assay

 \Rightarrow Significant interactions observed @ 10 μ M:

Sarcolemmal Na⁺ channel site 2: 55 % inhibition

Cannabinoid CB1 receptor: 88 % inhibition

CB1 receptor functional test:

GTPγS binding: IC₅₀ 10.6 μM

\Rightarrow BAY-386: selective PAR-1 antagonist

Summary / conclusion

Probe criteria	
Inhibitor/agonist potency: goal is < 100 nM (IC50, Kd)	Surpasses criteria; functional cellular assay (PAR-1, HEK cells) with IC ₅₀ 10 nM; binding assay (platelet membranes) IC ₅₀ 56 nM
Selectivity within target family: goal is >30-fold	Surpasses criteria; > 1,000fold selectivity vs PAR-4 (functional cellular assay: PAR-4 HEK cells, $IC_{50} > 10 \ \mu$ M)
Selectivity outside target family: describe the off-targets (which may include both binding and functional data)	Surpasses criteria; No relevant activity in panel of > 70 off-targets; closest hits: hERG IC ₅₀ = 2-4 μ M
On target cell activity for cell-based targets: goal is < 1 micromolar IC50/EC50	Surpasses criteria; functional cellular assay (HEK-cells, IC ₅₀ 10 nM);
On target cell activity for secreted targets: appropriate alternative such as mouse model or other mechanistic biological assay, e.g., explant culture	Surpasses criteria; mechanistic biological assay: Inhibition of thrombocyte aggregation in plasma ($IC_{50, Thromin-ind.}$ 140 nM, $IC_{50, TRAP6-ind.}$ 430 nM);
Neg ctrl: <i>in vitro</i> potency - > 100 times less; Cell activity - >100 times less potent than the probe	Surpasses criteria; functional cellular assays: > 1,000 times less active on target (PAR-1, HEK cells) with IC ₅₀ >10 μ M; PAR-4 (>> 5 μ M*) and panel of 25 other GPCRs (> 10 μ M); ex vivo assay: > 100 times less active in inhibition of platelet aggregation (> 10 μ M)

We ask for acceptance of PAR-1 antagonist BAY-386 as chemical probe, accompanied by BAY-448 as negative control

Acknowledgement

Chemistry

Yolanda Cancho-Grande Kersten M. Gericke Dirk Heimbach Mario Jeske Susanne Röhrig Bern Riedl Hartwig Müller Holger Paulsen Walter Kroh Andreas Göller Ulrich Rester Rolf Grosser Dirk Schneider

Chemical Development & Pharmaceutical Technology

Julia Freundlieb Uwe Münster Hans-Christian Militzer Jan-Bernd Lenfers

Pharmacology Eckhard Bender Anja Buchmüller Martina Delbeck

Martina Delbeck Christoph Gerdes Volker Laux Andreas Knorr Klaus Münter Hanna Tinel Georges von Degenfeld Katja Zimmermann Dimitry Zubov

Safety Pharmacology

Christa Hegele-Hartung Herbert Himmel Michael Hoffmann

Patent Department

Gabriele Handke-Ergüden

DMPK

Michael Gerisch Mark Gnoth Armin Kern Dieter Lang Klemens Lustig

Toxikology

Volker Geiss Bernd Herbold Rainer Lewin Ludwig Schladt

GDD Project Management, Clinical Pharm., Medical, Strategic Marketing Elke Dittrich-Wengenroth Christiane Hesse Monica Fierus Thomas Lampe Rene-Kay Munser Michael Seewald Nancy Cook-Bruns

Thank You

LeadprofilingScreen (Eurofins, Panlabs) data

Cat. #	TARGET	BATCH*	SPP.	n=	CONC.		Cat. #	TARGET	BATCH*	SPP.	n=	CONC.		Cat. #	TARGET	BATCH*	SPP.	n=	CONC.	
						%							%							%
440050		000400		0	10.11		000010		000470		0		10			000054				
118050	CYP450, 1A2	260499	hum	2	10 μM	43	228610	GABA _{BIA}	260347	num	2	10 μM	10	2/1110	Serotonin (5- Hydroxytryptamine) 5-HT _{1A}	260251	hum	2	10 µM	-9
118060	CYP450, 2C9	260500	hum	2	10 µM	30	232020	Glutamate Kainate	260478	rat	2	10 µM	15	271700	Serotonin (5-	260186	hum	2	10 µM	-18
• 118080	CYP450, 2D6	260502	hum	2	10 µM	-60	232810	Glutamate, NMDA, Agonism	260479	rat	2	10 μM	-2	074040	Hydroxytryptamine) 5-HT ₂₈	000404		•	1014	
118090	CYP450, 3A4	260503	hum	2	10 µM	-27	232910	Glutamate, NMDA, Glycine	260342	rat	2	10 µM	12	2/1910	Hydroxytryptamine) 5-HT3	200491	num	2	торм	10
200510	Adenosine A ₁	260145	hum	2	10 µM	-6	233000	Glutamate, NMDA,	260159	rat	2	10 µM	0	278110	Sigma σ1	260161	hum	2	10 µM	12
200610	Adenosine A _{2A}	260146	hum	2	10 µM	0		Phencyclidine						279510	Sodium Channel, Site 2	260162	rat	2	10 µM	55
200720	Adenosine A ₃	260148	hum	2	10 µM	12	239610	Histamine H ₁	260175	hum	2	10 µM	0	255510	Tachykinin NK1	260482	hum	2	10 µM	-2
203100	Adrenergic α_{1A}	260166	rat	2	10 µM	1	239710	Histamine H ₂	260369	hum	2	10 µM	-3	285900	Thyroid Hormone	260493	rat	2	10 µM	11
203200	Adrenergic 🛛 18	260167	rat	2	10 µM	9	239810	Histamine H ₃	260336	hum	2	10 µM	-3	220320	Transporter, Dopamine (DAT)	260362	hum	2	10 µM	10
203400	Adrenergic α_{1D}	260168	hum	2	10 µM	-4	241000	Imidazoline I ₂ , Central	2601/6	rat	2	10 µM	0	226400	Transporter, GABA	260475	rat	2	10 µM	14
203620	Adrenergic α _{2A}	260169	hum	2	10 µM	8	243520	Interleukin IL-1	260273	mouse	2	10 µM	16	204410	Transporter, Norepinephrine	260173	hum	2	10 µM	17
204010	Adrenergic β1	260170	hum	2	10 µM	-13	250460	Leukotriene, Cysteinyl CysLT ₁	260340	hum	2	10 µM	1		(NET)				1	
204110	Adrenergic β ₂	260171	hum	2	10 µM	0	251600	Melatonin MT1	260337	hum	2	10 µM	14	274030	Transporter, Serotonin (5- Hydroxytryptamine) (SERT)	260344	hum	2	10 µM	3
285010	Androgen (Testosterone) AR	260285	rat	2	10 µM	11	252610	Muscarinic M ₁	260177	hum	2	10 µM	-3							. 1
212510	Bradykinin B1	260150	hum	2	10 µM	6	252710	Muscarinic M ₂	2601/8	hum	2	10 µM	-3							
212610	Bradykinin B ₂	260284	hum	2	10 µM	11	252810	Muscarinic M ₃	260179	hum	2	10 µM	-2							
214510	Calcium Channel L-Type,	260343	rat	2	10 µM	16	257010	Neuropeptide Y Y ₁	260483	hum	2	10 µM	1							
	Benzothiazepine						257110	Neuropeptide Y Y ₂	260484	hum	2	10 µM	2							
214600	Calcium Channel L-Type, Dihydropyridine	260174	rat	2	10 µM	14	258590	Nicotinic Acetylcholine	260163	hum	2	10 µM	-4							
216000	Calcium Channel N-Type	260470	rat	2	10 µM	3	258700	Nicotinic Acetylcholine α1, Bungarotoxin	260165	hum	2	10 µM	-2							
217030	Cannabinoid CB1	260144	hum	2	10 µM	88	260110	Opiate δ (OP1, DOP)	260272	hum	2	10 µM	-17							
219500	Dopamine D ₁	260152	hum	2	10 µM	4	260210	Opiate κ (OP2, KOP)	260486	hum	2	10 µM	-3							
219700	Dopamine D ₂₅	260153	hum	2	10 µM	1	260410	Opiate µ (OP3, MOP)	260151	hum	2	10 µM	6							
219800	Dopamine D ₃	260154	hum	2	10 µM	-1	264500	Phorbol Ester	260182	mouse	2	10 µM	5							
219900	Dopamine D ₄₂	260155	hum	2	10 µM	-9	265010	Platelet Activating Factor (PAF)	260615	hum	2	10 µM	0							
224010	Endothelin ET _A	260471	hum	2	10 µM	2	265600	Potassium Channel [KATP]	260183	ham	2	10 µM	4							
224110	Endothelin ET ₈	260472	hum	2	10 µM	-4	265900	Potassium Channel hERG	260160	hum	2	10 µM	22							
225510	Epidermal Growth Factor (EGF)	260473	hum	2	10 µM	-7	268420	Prostanoid EP ₄	260184	hum	2	10 µM	1							
226010	Estrogen ERα	260474	hum	2	10 µM	-1	268700	Purinergic P _{2x}	260487	rabbit	2	10 µM	9							
226600	GABA _A , Flunitrazepam, Central	260158	rat	2	10 µM	-3	268810	Purinergic P _{2Y}	260488	rat	2	10 µM	12							
226500	GABA _A , Muscimol, Central	260157	rat	2	10 µM	10	270000	Rolipram	260185	rat	2	10 µM	3							

PAR-1 Antagonist BAY-386 & negative control BAY-448:

GPCR Screen (Eurofins, Cereps) antagonistic effect data

Compound I.D.	Client Compound I.D.	Test	% Inhibition of Control Agonist Response					
		Concentration	1 st	2 nd	Mean			
A _{2B} (h) (antagonist eff	fect)							
100041490-1	ESD0007805	1.0E-05 M	12.9	-13.6	-0.3			
100041490-2	ESD0007806	1.0E-05 M	-0.6	-16.4	-8.5			
A ₃ (h) (antagonist effe	ect)							
100041490-1	ESD0007805	1.0E-05 M	-9.9	-16.4	-13.1			
100041490-2	ESD0007806	1.0E-05 M	8.9	15.4	12.2			
α _{1A} (h) (antagonist eff	iect)							
100041490-1	ESD0007805	1.0E-05 M	12.1	25.5	18.8			
100041490-2	ESD0007806	1.0E-05 M	1.6	7.1	4.3			
α _{2A} (h) (antagonist eff	ect)							
100041490-1	ESD0007805	1.0E-05 M	-13.5	10.0	-1.7			
100041490-2	ESD0007806	1.0E-05 M	-13.5	-13.5	-13.5			
β ₁ (h) (antagonist effe	ct)							
100041490-1	ESD0007805	1.0E-05 M	8.7	-9.2	-0.2			
100041490-2	ESD0007806	1.0E-05 M	6.8	6.7	6.8			
β ₂ (h) (antagonist effe	ect)							
100041490-1	ESD0007805	1.0E-05 M	-20.3	6.5	-6.9			
100041490-2	ESD0007806	1.0E-05 M	13.0	7.3	10.2			
CB1 (h) (antagonist ef	fect)							
100041490-1	ESD0007805	1.0E-05 M	87.9	73.6	80.7			
100041490-2	ESD0007806	1.0E-05 M	2.4	-3.7	-0.6			
D1 (h) (antagonist effe	ect)							
100041490-1	ESD0007805	1.0E-05 M	-32.6	-30.6	-31.6			
100041490-2	ESD0007806	1.0E-05 M	11.0	16.8	13.9			
D ₂₅ (h) (antagonist eff	fect)							
100041490-1	ESD0007805	1.0E-05 M	5.6	7.6	6.6			
100041490-2	ESD0007806	1.0E-05 M	7.6	9.6	8.6			
H ₁ (h) (antagonist effe	ect)							
100041490-1	ESD0007805	1.0E-05 M	7.2	6.6	6.9			
100041490-2	ESD0007806	1.0E-05 M	-18.6	-10.5	-14.6			
H ₂ (h) (antagonist effe	ect)							
100041490-1	ESD0007805	1.0E-05 M	12.1	7.1	9.6			
100041490-2	ESD0007806	1.0E-05 M	9.1	-14.7	-2.8			
H ₃ (h) (antagonist effe	ect)							
100041490-1	ESD0007805	1.0E-05 M	-5.1	-2.2	-3.7			
100041490-2	ESD0007806	1.0E-05 M	-6.1	-2.2	-4.2			

Compound I.D.	Client Compound I.D.	Test	% Inhibition of Control Agonist Response		
		Concentration	1 st	2nd	Mean
MC ₄ (h) (antagonist ef	fect)				
100041490-1	ESD0007805	1.0E-05 M	0.2	-16.5	-8.1
100041490-2	ESD0007806	1.0E-05 M	16.0	12.6	14.3
motilin (h) (antagonist	effect)				
100041490-1	ESD0007805	1.0E-05 M	30.2	28.1	29.2
100041490-2	ESD0007806	1.0E-05 M	-0.3	2.1	0.9
M ₁ (h) (antagonist effe	ct)				
100041490-1	ESD0007805	1.0E-05 M	56.4	57.6	57.0
100041490-2	ESD0007806	1.0E-05 M	2.4	18.0	10.2
M4 (h) (antagonist effe	ct)				
100041490-1	ESD0007805	1.0E-05 M	4.9	6.7	5.8
100041490-2	ESD0007806	1.0E-05 M	2.7	1.1	1.9
NK1 (h) (antagonist eff	fect)				
100041490-1	ESD0007805	1.0E-05 M	22.7	24.0	23.3
100041490-2	ESD0007806	1.0E-05 M	1.3	2.8	2.1
κ (KOP) (antagonist ef	fect)				
100041490-1	ESD0007805	1.0E-05 M	3.4	5.5	4.5
100041490-2	ESD0007806	1.0E-05 M	4.2	-1.6	1.3
µ (MOP) (h) (antagonis	st effect)				
100041490-1	ESD0007805	1.0E-05 M	6.6	0.7	3.7
100041490-2	ESD0007806	1.0E-05 M	-5.1	-4.6	-4.8
EP3 (h) (antagonist eff	iect)				
100041490-1	ESD0007805	1.0E-05 M	-11.2	-4.9	-8.0
100041490-2	ESD0007806	1.0E-05 M	-0.2	1.4	0.6
P2Y2 (h) (antagonist e	ffect)				
100041490-1	ESD0007805	1.0E-05 M	51.2	32.5	41.9
100041490-2	ESD0007806	1.0E-05 M	24.0	34.1	29.1
5-HT1A (h) (antagonis	t effect)				
100041490-1	ESD0007805	1.0E-05 M	32.5	18.7	25.6
100041490-2	ESD0007806	1.0E-05 M	-25.4	-20.7	-23.
5-HT _{2B} (h) (antagonist	effect)				
100041490-1	ESD0007805	1.0E-05 M	10.2	3.9	7.0
100041490-2	ESD0007806	1.0E-05 M	-0.6	-5.4	-3.0
5-HT ₆ (h) (antagonist e	effect)				
100041490-1	ESD0007805	1.0E-05 M	16.2	26.0	21.
100041490-2	ESD0007806	1.0E-05 M	3.4	0.7	2.1
sst ₄ (h) (antagonist eff	fect)				
100041490-1	ESD0007805	1.0E-05 M	-4.9	-1.7	-3.3
100041490-2	ESD0007806	1.0E.05 M	4.1	16	12

ESD0007805 = BAY-386 ESD0007806 = BAY-448

PAR-1 Antagonist BAY-386 & negative control BAY-448:

GPCR Screen (Eurofins, Cereps) agonistic effect data

Compound I.D.	Client Compound I.D.	Test	% of Control Agonist Response		
		Concentration	1 st	2 nd	Mean
A2B (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	3.6	3.3	3.5
100041490-2	ESD0007806	1.0E-05 M	2.0	1.0	1.5
A ₃ (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	1.8	3.2	2.5
100041490-2	ESD0007806	1.0E-05 M	21.7	16.7	19.2
α _{1A} (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	13.0	10.0	11.5
100041490-2	ESD0007806	1.0E-05 M	-0.2	-0.6	-0.4
α _{2A} (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	2.5	10.0	6.3
100041490-2	ESD0007806	1.0E-05 M	0.7	4.4	2.5
β ₁ (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	3.6	3.2	3.4
100041490-2	ESD0007806	1.0E-05 M	-2.1	2.7	0.3
β ₂ (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	-3.5	0.0	-1.7
100041490-2	ESD0007806	1.0E-05 M	2.2	2.3	2.3
CB1 (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	-315.0	-218.4	-266.7
100041490-2	ESD0007806	1.0E-05 M	-26.4	-8.9	-17.6
D1 (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	0.4	-3.2	-1.4
100041490-2	ESD0007806	1.0E-05 M	-3.5	1.1	-1.2
D ₂₈ (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	3.1	4.9	4.0
100041490-2	ESD0007806	1.0E-05 M	3.1	3.1	3.1
H ₁ (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	2.6	5.7	4.1
100041490-2	ESD0007806	1.0E-05 M	-1.3	1.8	0.3
H ₂ (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	-2.5	1.1	-0.7
100041490-2	ESD0007806	1.0E-05 M	0.9	4.4	2.6
H ₃ (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	8.1	4.2	6.2
100041490-2	ESD0007806	1.0E-05 M	32.4	-4.5	13.9

Compound I.D.	Client Compound I.D.	Test	% of	Control Agonist Re	sponse
		Concentration	1 st	2 nd	Mear
MC ₄ (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	0.1	-2.5	-1.2
100041490-2	ESD0007806	1.0E-05 M	-1.5	-2.1	-1.8
motilin (h) (agonist effe	ct)				
100041490-1	ESD0007805	1.0E-05 M	16.6	16.8	16.7
100041490-2	ESD0007806	1.0E-05 M	7.9	6.0	6.9
M ₁ (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	12.7	12.9	12.8
100041490-2	ESD0007806	1.0E-05 M	1.5	1.0	1.2
M4 (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	-4.7	-25.4	-15.
100041490-2	ESD0007806	1.0E-05 M	24.9	25.2	25.1
NK1 (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	1.7	1.8	1.8
100041490-2	ESD0007806	1.0E-05 M	0.9	-0.3	0.3
к (KOP) (agonist effect)	l.				
100041490-1	ESD0007805	1.0E-05 M	16.5	24.7	20.6
100041490-2	ESD0007806	1.0E-05 M	10.9	7.0	9.0
µ (MOP) (h) (agonist eff	ect)				
100041490-1	ESD0007805	1.0E-05 M	20.2	-18.2	1.0
100041490-2	ESD0007806	1.0E-05 M	34.4	37.5	36.0
EP ₃ (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	6.2	2.8	4.5
100041490-2	ESD0007806	1.0E-05 M	-1.2	-0.1	-0.6
P2Y ₂ (h) (agonist effect)				
100041490-1	ESD0007805	1.0E-05 M	-0.8	2.3	0.7
100041490-2	ESD0007806	1.0E-05 M	-3.7	-4.7	-4.2
5-HT1A (h) (agonist effe	ect)				
100041490-1	ESD0007805	1.0E-05 M	0.9	-1.4	-0.2
100041490-2	ESD0007806	1.0E-05 M	2.5	-0.4	1.1
5-HT _{2B} (h) (agonist effe	ct)				
100041490-1	ESD0007805	1.0E-05 M	0.3	2.9	1.6
100041490-2	ESD0007806	1.0E-05 M	0.2	0.6	0.4
5-HT ₆ (h) (agonist effec	t)				
100041490-1	ESD0007805	1.0E-05 M	8.2	-2.6	2.8
100041490-2	ESD0007806	1.0E-05 M	0.5	2.3	1.4
sst4 (h) (agonist effect)					
100041490-1	ESD0007805	1.0E-05 M	-20.8	-5.1	-13.
100041400.2	ESD0007906	1.0E.05 M	27	0.2	24

ESD0007805 = BAY-386 ESD0007806 = BAY-448