

Donated Chemical Probe

ERK5 Inhibitor Probe BAY-885

June, 2018

Clara Lemos, Duy Nguyen & Lars Wortmann

Target rationale: ERK5 amplification

Rationale

- MAPK7/ERK5 is a key integrator of cellular signal transduction
- Several cancer types display genomic ERK5 amplifications, e.g. HCC
- MAPK7/ERK5 inhibition reduces proliferation and survival and induces apoptosis selectively in ERK5 amplified cells

Validation (literature & in house data)

- ERK5 silencing in ERK5 amplified cells induces apoptosis (but not in nonamplified cells)
- ERK5 silencing induces anti-proliferative effects in cell lines with genomic ERK5 amplification versus non-amplified controls Zen et al., 2009 – see backup

Inhibition of ERK5 blocks proliferation and survival of ERK5 amplified tumors

Cell lines with constitutively active ERK5 depend on it for proliferation and survival

Cellular mechanistic assay: SN12C-MEF2-luc

Good correlation between ERK5 biochemical and cellular mechanistic assays

XMD8-92

- Originally described as a potent and selective ERK5 inhibitor with *in vivo* antitumor efficacy (*Yang et al, 2010. Cancer Cell*).
- However, a recent study demonstrated that the biological activity of XMD8-92 derived from an off-target activity on bromodomains (BRD4) (*Lin et al, 2016. PNAS*).
- Literature data:
 - ERK5 IC₅₀ (lysate, KiNativ): 190 nM
 - BRD4 K_d (DiscoveRx): 170 nM
- In-house data:
 - ERK5 biochemical IC₅₀: 199 nM
 - ERK5 cellular IC₅₀/IC₉₀: 886 / 6900 nM

AX15836

- ERK5 inhibitor with improved potency and selectivity (vs. BRD4), but with described pharmacokinetic liabilities (*Lin et al, 2016. PNAS*).
- In-house data suggests that this compound might precipitate easily in culture medium (IC₅₀ curves in V shape).
- Literature data:
 - ERK5 IC₅₀ (lysate, KiNativ): 8 nM
 - BRD4 K_d (DiscoveRx): 3600 nM
- In-house data:
 - ERK5 biochemical IC₅₀: 15 nM
 - ERK5 cellular IC₅₀/IC₉₀: 86 / >30000 nM

Available preclinical ERK5 inhibitors have different liabilities

H₂N ↔ Q√-			POTENC	Y (IC ₅₀ [n	M])			Properties & Physchem	
O F		ERK5 (@	ERK5 (@ 250µM ATP) IC ₅₀				LogD @pH 7.5	2.4	
	Ň,	Mechan. S	Mechan. SN12C-MEF2-luc IC ₅₀				BEI / LLE (ERK5 @250µM ATP)	15.7 / 5.1	
	\bigvee			2D proli SN12C IC ₅₀				Sw pH 6.5 [mg/L]	218
N N			2D proli S	2D proli SNU-449 IC ₅₀				MW corr / TPSA [g*mol / Å ²]	477 / 101
BAY-885		2D proli B	2D proli BT-474 IC ₅₀				Stability (r /h plasma) [%]	nd	
		2D proli SK-BR-3 IC ₅₀				> 30 000	Stability pH 1,7,10 (24h) [%]	stable	
in vitro DMPK Pro						Selectivity			
Caco2	P _{app} (A-B) [nm/s]		P _{app} (B-A) [nm/s]		efflux ratio		ratio		
permeability	184		107		0.6		6	In-house kinase panel	highly selective., 1 kinase hit with
			CL [L/h/kg]		F _{max} [%]		[%]		
metabolic	liver mics (h)		0.8		38		В		ιο ₅₀ . 5 μινι
stability	rat hepatocytes		3.7		13		3	Eurofins @ 1 µM	highly
	human hepatocytes							(kinase panel)	selective
CYP inhibition	1A2	2C8	2C9	2D6	3A4	3A	4 preinc.	SAFETY	
IC ₅₀ [μΜ]	> 20	> 20	> 20	> 20	> 20	> 20	, no hint on	Cytotox	
PXR	green					I DI	Cylotox	> 10	
CYP induction	hERG IC ₅₀ [μM]						210		

- Highly potent and selective ERK5 inhibitor Good solubility and excellent permeability, low to moderate metabolic stability •

	•					
	>F					
O _V IV F						
Ń						
<u> </u>						
$ \qquad \qquad$						
	VOOF					
N. J. BA	AY-885					
POTENCY (IC ₅₀ [nM])						
ERK5 (@ 250µM ATP) IC ₅₀	35					
Mechan. SN12C-MEF2-luc IC ₅₀	115					
2D proli SN12C IC ₅₀	> 30 000					
2D proli SNU-449 IC ₅₀	> 30 000					
	> 30 000					

2D proli SK-BR-3 IC₅₀

- BAY-885 was profiled in Eurofins kinase panel
- 350 kinases were tested @ 1µM BAY-885
- Residual kinase activity below 50% reported for
 - > Fer (h):
 - EphB3 (h):
 - EphA5 (h):

- Microsoft Excel Worksheet
- For other kinases, residual activity reported $\ge 80\%$

38%

42%

57%

• BAY-885 is a highly selective ERK5 inhibitor

> 30 000

• Fer (tyrosine-protein kinase Fer) acts downstream of EGFR to promote activation of NF-kB and cell proliferation

X-ray Structure in Complex with an analog of BAY-885

X-ray of a quinazoline derivative in complex with ERK5

In vitro profile of negative control BAY-693

-	POTENC	Y (IC ₅₀ [nl	M])			Properties & Physchem			
N N BAY-693			ERK5 (@	ERK5 (@ 250µM ATP) IC ₅₀ 64				LogD @pH 7.5	2.6
			Mechan. S	SN12C-ME	F2-luc I	C ₅₀	11 000	BEI / LLE (ERK5 @250µM ATP)	10.6 / 2.6
			2D proli S	N12C IC ₅₀			29 300	Sw pH 6.5 [mg/L]	-
			2D proli SNU-449 IC ₅₀ 19 500					MW corr / TPSA [g*mol / Ų]	488 / 101
			2D proli BT-474 IC ₅₀ 27 60					Stability (r /h plasma) [%]	nd
			2D proli SK-BR-3 IC ₅₀				22 400	Stability pH 1,7,10 (24h) [%]	stable
in vitro DMPK Properties								Selectivity	
Caco2	P _{app} (A-B) [nm/s]	P _{app} (B-A) [nm/s]		efflux ratio		ratio		
permeability	234		107		0.5		5		33 kinases
			CL [L/h/kg]		F _{max} [%]		[%]	In-house kinase panel	kinase with
metabolic	liver mics	s (h)	0.6		55				IC ₅₀ : 3 μΜ
stability	rat hepatocytes		3.3		22		2	Eurofins @ 1 µM (kinase panel)	nd
	human hepatocytes								
CYP inhibition IC ₅₀ [µM]	1A2	2C8	2C9	2D6	3A4	34	A4 preinc.	SAFETY	
	> 20	> 20	> 20	> 20	> 20	>20, hint on TD			
PXR									
CYP induction									

BAY-693 recommended as negative control for the chemical probe

Probe criteria				
Inhibitor/agonist potency: goal is < 50 nM (IC ₅₀ , Kd)	Surpasses criteria; high potency in biochemical ERK5 assay with IC_{50} = 35nM			
Selectivity within target family: goal is >30-fold	Surpasses criteria; highly selective vs all kinases in Eurofins panel			
Selectivity outside target family: describe the off-targets (which may include both binding and functional data)	not done			
On target cell activity for cell-based targets: goal is < 1 micromolar $\rm IC_{50}/EC_{50}$	Surpasses criteria; active in cellular mechanistic assay (IC50 =115 nM) demonstrating on-target cell activity			
On target cell activity for secreted targets: appropriate alternative such as mouse model or other mechanistic biological assay, e.g., explant culture	not applicable			
Neg control: in vitro potency $- > 100$ times less; Cell activity $- > 100$ times less potent than the probe	Surpasses criteria; BAY-693 with biochemical activity $IC_{50} = 6.4 \ \mu M$ and on target activity $IC_{50} = 11 \ \mu M$)			

We recommend ERK5 inhibitor BAY-885 to be accepted as donated chemical probe, with BAY-693 as negative control

Ulf Bömer Simon Holton Clara Lemos Duy Nguyen Christian Lechner Stefan Prechtl Detlev Sülzle Franziska Siegel

Andrea Hägebarth Marcus Bauser

- Lars Wortmann Sarah Wagner Knut Eis Patrick Steigemann Atanas Kamburov Andreas Steffen Philip Lienau Sabine Zitzmann-Kolbe Florian Prinz **Ralf Lesche** Ursula Egner Uwe Eberspächer **Gregor Fachinger** Peter Spreyer Cora Scholten Léa Bouché
- Dominik Mumberg Carl Friedrich Nising Franz von Nussbaum

Enrico Stasik Maria Buhl Steve Baethge *Franziska Scholze*

Thank You

MAPK7/ERK5 is a key integrator of cellular signal transduction and it plays a role in various cellular processes such as proliferation, differentiation and cell survival.

ERK5 silencing induces anti-proliferative effects in cell lines with genomic ERK5 amplification vs. non-amplified controls

ERK5 depletion blocks proliferation and induces apoptosis in ERK5 amplified tumors

GENES, CHROMOSOMES & CANCER 48:109-120 (2009)

RESEARCH ARTICLES

ERK5 is a Target for Gene Amplification at 17p11 and Promotes Cell Growth in Hepatocellular Carcinoma by Regulating Mitotic Entry

Keika Zen,¹ Kohichiroh Yasui,^{1®} Tomoaki Nakajima,¹ Yoh Zen,² Kan Zen,³ Yasuyuki Gen,¹ Hironori Mitsuyoshi,¹ Masahito Minami,¹ Shoji Mitsufuji,¹ Shinji Tanaka,³ Yoshito Icoh,¹ Yasuni Nakanuma,² Masafumi Taniwaki,³ Shigeki Arii, Takshi Okanoue, ¹ and Toshikazu Yoshikawa¹

¹Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan

²Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan

³Division of Cardiovascular Medicine, Omihachiman Community Medical Center, Omihachiman, Japan ⁴Department of Hepato-Billary-Pancreatic Surgery, Tokyo Medical and Dental University, Tokyo, Japan

⁵Molecular Hematology and Oncology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan

An increase in ERK5 copy number was detected in 35 of 66 primary HCC tumors

ERK5 promotes the growth of ERK5-amplified HCC cells

Target Rationale - relevance of kinase activity

- The ERK5 kinase domain is required for the ERK5-induced transcriptional activation (phosphorylation/activation of downstream TF + autophosphorylation that results in activation of the TAD leading to enhancement of transcription) and proliferation
- Supported by in-house data showing that ERK5i are able to abrogate ERK5-induced MEF2 transcriptional activity (SN12C-MEF2-luc reporter cell line)

- High-throughput TR-FRET (time-resolved fluorescence energy transfer) -based kinase inhibition assay was used to identify potential ERK5 inhibitors (Figure 1). MAP2K5 (mitogen-activated protein kinase kinase 5) and ATP-activated full-length ERK5 was incubated with the test compounds, biotinylated substrate peptide, and 250 µM ATP for 120 min. The amount of phosphorylated peptide was quantified with a phosphospecific detection antibody and generic TR-FRET detection reagents.
- A quinazoline cluster was identified as the initial hit by high-throughput screening and was selected as a starting point for optimization guided by X-ray. On-target activity of ERK5 inhibitors was shown by inhibition of transcriptional activity of *MEF2* (myocyte enhancer factor 2, directly activated by ERK5) (Figure 2). SN12C-MEF2-luciferase reporter cells were treated with different concentrations of ERK5 inhibitors for 16 h and stimulated with EGF (epidermal growth factor) to increase the assay window. The luciferase (luminescence) signal was determined with ONE-Glo[™].
- The *in vitro* efficacy of the compounds was tested by proliferation assay on cell lines with either genomic *ERK5* amplification (breast cancer: MFM-223, renal cell carcinoma: SN12C, hepatocellular carcinoma: SNU-449) or constitutive activation of *ERK5* (breast cancer: BT-474, SK-BR-3). The NCI-H460 large cell lung cancer cell line was used as a control. Assays were performed in 384-well format with 96 h compound incubation. Cell viability was determined with a CellTiter-Glo® luminescent assay.

Competitor analysis on MAPK7/ERK5 inhibitors Gregor Fachinger, January 2017 Sources: Thomson Cortellis (former IDdb3), MedTrack database, Prous-Integrity database, Company homepages.

- The multi-kinase inhibitor TG-02 identified by S-Bio and developed by Lee Pharma and Tragara is still in Phase 1 clinical trials, no update
- Kesios entertains **two programs on ERK5 at the preclinical level**, which have not progressed into the clinic. Same is true for Northern Institute for Cancer Research.
- The actual status of XMD-8-92 developed by Scripps and ActivX is inconsistently reported in the databases and currently unclear.
- The patent literature provides indication of development activities on ERK5 inhibitors or modulators by Kyorin Pharmaceuticals, Merck KG and Astex (new since last year) as well as academic institutions.
- Given the unselective profile of TG-02, no advanced relevant competitor activities for a selective ERK5/MAPK7 inhibitor have been reported.
- Recommendation to observe the field going forward.