

Donated Chemical Probe

Complex 1 Inhibitor Probe BAY-179

November, 2019

Sven Christian, Jeffrey Mowat, Roman Hillig

Complex 1 probe BAY-179

Target rationale and cancer

- The electron transport chain is located in the inner mitochondrial membrane
- It transfers electrons from electron donors to electron acceptors via redox reactions (Complex I-IV), which is coupled to the transfer of protons (H⁺ ions) across the membrane. This creates an electrochemical proton gradient that drives ATP synthesis (Complex V). The final acceptor of electrons in the electron transport chain is molecular oxygen.
- Mitochondria are key regulators of energy supply & cell death

Target Rationale

 Oncogenic mutations have been described to sensitize tumor cells to Complex I inhibition (e.g. LKB1 -/-)
 Phen AMPK AMPK Phen ULK1 ULK1 Defective mitochondria accumulate

Shackelford et al. 2014

- Inhibition of BRAF^{V600E} by Vemurafenib increases PGC1a, MITF and OXPHOS [Haq et al., 2013, Cancer Cell] and therefore sensitizes to Complex I inhibition
- A subset of diffuse large B-cell lymphoma (Oxphos-DLBCL) has been characterized by enhanced Oxphos [Caro et al., 2012, Cancer Cell]
- Former HIF-FR project showed that Complex 1 inhibitors have enhanced efficacy when used in combination with Radiation

Genetic mutations and consequent metabolic changes have been shown to sensitive cancer cells to Complex 1 inhibition

Metformin

- Oral antidiabetic drug in the biguanide class. The first-line drug of choice for the treatment of type 2 diabetes
- approved in Canada in 1972, approval by FDA for type 2 diabetes in 1994
 NH NH
- IC₅₀ >10 μM
- slow membrane-potential-driven accumulation of the drug within the mitochondria

Phenformin

- Biguanide class
- marketed as DBI by Ciba-Geigy, but was withdrawn from most markets in the late 1970s due to a high risk of lactic acidosis, which was fatal in 50% of cases
- IC₅₀ >1 μM

Rotenone

- broad-spectrum insecticide, piscicide, and pesticide
- IC₅₀ = 20 nM

- Rotenone is neurotoxic and induces a Parkinson-like phenotype in mice
- In house data show that toxicity can not be rescued by expression of NDI1 => Complex 1 independent effect

No potent and selective Complex 1 inhibitor commercially available

cu	lar Properties			Phys	sCh	em					
r [g/mol]	41	6	Sw solid @pH 6.5 [mg/L]					1.0		
S	(0-10)	3	· · · · ·	Log D (pH 7.5)					2.8		
Å	2]	7	1	Stabil	ity	(plasm	ha h	,r,m)		stable	
C	LogD@pH7.5	4.0/	3.6	Stability (pH 1.7.10)							
ble	e bonds	4		[% remaining after (1h)]					0/100/100		
0	PK										
			CL _B [L	. _B [L/h/kg]					Fmax [%]		
	Human		0.55					58			
	Mouse (f)		1.	1.9				65			
	Rat		0.7	0.77			82				
	Dog		0.5	0.53				75			
	Rat	0.81					81				
	Dog		1.1					47			
	Mouse (f)		1.5				72				
	Human		0.64					52			
		A-	B [nm/s]		B-A [nm/s]			Ratio			
			92			4	1			0.44	
h r	orofile [uM]	1A2	2C8	2C9	9	2D6	3A4		3A4 pi		inc
1		> 20	7.8	15		> 20	0 > 20		> 20		
		PXR	EC ₅₀	D PXR Rating			CYP Ind NOEL				

green

3A4: NOEL 123µg/l

loss of cell viability @ higher doses

Donated Chemical Probe BAY-179 /// June 2018

>2µM

(7.8% Emax)

Unbiased approach to identify more sensitive tumor models (oncotest):

- Several cancer cell lines were identified to be highly sensitive towards Complex 1 inhibition
- Selected cell lines were tested in house in vivo
- Bioinformatic analysis identifies KRASmut to be enriched in resistant tumor cell lines

In vitro PK

	LM CL _{blood} [L/h/kg]					HEP CL _{blood} [L/h/kg]					
	Mouse		1.9					1.5			
Metabolic	Rat		().77			0.81				
Stability	Dog		().53	3				1.1		
	Human	0.55					0.64				
Fraction unbound [%]		Williams_E		Mo	Nouse		Rat		Dog	Human	
		24		0.4	0.43		0.26		0.37	0.48	
C200-2	A-B [nm/s] B-A [r				-A [nr	n/s]		R	atio		
Caco-z		92			41				0.44		
CVP Inh [u	1A2	2C8	3 20	;9 ž	2D6	3A4		3A4 preinc			
		>20	7.8	1	5 :	>20	>20		>20		
PXR Assay	Rating:			green							
CYP Induc	1A2: NOEL 41µg/I 3A4: NOEL 123µg/I loss of cell viability @ higher doses										

In vivo PK

Species		Rat				
Route		iv inf.	ро			
Dose	[mg/kg]	0.2	0.6			
AUCnorm	[kg·h/L]	4.1	3.1			
Cmax norm	[kg/L]		0.23			
t _{max}	[h]		4 to 7			
CL _{matrix}	[L/h/kg]	0.25				
CL _{blood}	[L/h/kg]	0.40				
V _{ss}	[L/kg]	2.2				
t _{1/2}	[h]	6.2	6.2			
F	[%]		76			

- In vitro CL: low to moderate in hepatocytes and liver microsomes
- High protein binding in all species
- In vivo rat PK: Low CL_{blood} , high V_{ss} , long $t_{1/2}$, high oral bioavailability

BAY-179 is suitable for in vivo studies

Donated Chemical Probe BAY-179 /// June 2018

The results of the current Eurofins-Cerep GPCR-Panel:

<u>BAY-179</u>

A2B (h) (antagonist effect) 57.8% H2(h) (antagonist effect) 64.4% MC4(h) (antagonist effect) 67.7% M1(h) (antagonist effect) 53.6% μ (MOP) (h) (antagonist effect) 51.3% 5-HT2B(h) (antagonist effect) 73.5%

BAY-070

5-HT2B(h) (antagonist effect) 59.9%

Complex 1 probe BAY-179

BAYER

Bacterial Complex 1 as crystallization surrogate (Prof. Leonid Sazanov, IST Austria)

- In collaboration with Prof. Leonid Sazanov, BAY-179 and related compounds were tested for activity on Complex 1 from *Th. Thermophilus* in a biochemical activity assay*.
- Some compounds showed very similar IC50 values in human vs. bact. assay, others showed differences (more often weaker on bact. than human enzyme).

Log10 [cpd 1]/µM

Probe BAY-179 itself showed poor potency, but chemically related compound-1 showed acceptable potency in bacterial surrogate system and was
successfully soaked into crystals of bacterial Complex 1.

Crystal structure shows density for ligand in quinone-binding site (structure cannot yet be disclosed, manuscript in preparation).

* Bacterial activity assay: NADH:decylubiquinone assay; rate of NADH oxidation by complex I was followed at different compound concentrations which was subsequently used to plot a dose response curve

Complex 1 negative control BAY-070 Overall profile

All > 20 μM

Kinase Panel

Bayer Kinase Panel 34 Kinases Tested

Molecular Properties	
MWcorr [g/mol]	429.5
i.s.o. PS (0-10)	2
TPSA [Å2]	76
clogP / cLogD@pH7.5	2.6 / 2.3
Rotatable bonds	4

In vitro PK

	-	_									
		CL _B [L/h/kg]				Fmax [%]					
	Human										
LM	Mouse (f)										
	Rat										
Нер	Rat										
	Dog										
	Human										
		A-	B-A [r			nm/	nm/s]		Ratio		
CaCOZ			24			45			1.9		
Cure lab arefile [uM]		1A2	1A2 2C8		9 2D6		5	3A4		3A4 preinc	
сур шп р											
		PXR	EC ₅₀	PXR Rating				CYP Ind NOEL			
Cyp Ind [μ Μ]										

PhysChem

	Sw solid @pH 6.5 [mg/L]	
	Log D (pH 7.5)	2.1
	Stability (plasma h,r,m)	
	Stability (pH 1,7,10) [%	
	remaining after (1h)	

Probe criteria	
Inhibitor/agonist potency: goal is < 100 nM (IC ₅₀ , Kd)	not applicable – see on target cell activity
Selectivity within target family: goal is >30-fold	Surpasses criteria; compound class shows selectivity against other complexes of the respiratory chain
Selectivity outside target family: describe the off-targets (which may include both binding and functional data)	Surpasses criteria; clean LeadProfilingScreen; selectivity > 500 fold against numerous kinases tested
On target cell activity for cell-based targets: goal is < 1 micromolar IC50/EC50	Surpasses criteria; Active in cellular mechanistic assay demonstrating cellular target engagement cellular proliferation assays; (IC_{50} = 79nM)
On target cell activity for secreted targets: appropriate alternative such as mouse model or other mechanistic biological assay, e.g., explant culture	Surpasses criteria; suitable pharmacokinetic profile for in vivo studies
Neg ctrl: in vitro potency $- > 100$ times less; Cell activity $- >100$ times less potent than the probe	Surpasses criteria; BAY-070 inactive ($IC_{50} > 20\mu M$) in cellular assay

We ask for acceptance of Complex 1 inhibitor BAY-179 as chemical probe, accompanied by BAY-070 as negative control

MedChem Berlin	Hue-Quan Lao Andrea Koehlke-Nork Michael Tietz Anni Knitter Lisa Schälicke	DMPK	Michaela Bairlein Karsten Denner Roland Neuhaus Michael Niehues
	Martin Schötz Karl Sauvageot-Witzku	BIP	Wolfgang Halfbrodt Stephan Völkening Jochen Kossmann
MedChem Wuppertal	Carl Nising Nils Griebenow	FTO Analysis	Peter Spreyer
MedChem external	Peakdale Support	Toxicology	Anna-Lena Frisk Ute Bach
TRG Oncology	Laura Schöckel Melanie Appel Maria Spelling	Exp. Med.	Eleni Lagkadinou
	Seren Nesan Michael Reinhardt Elisabeth Krahl Ulrike Lenhard	ER moderators	Andrea Haegebarth Marcus Bauser [Holger Hess-Stumpp]
LD	Nina Scheweling Patrick Steigemann Roman Hillig	Structural Biology	Leonid Sazanov, IST Vienna, Austria

Thank You

Complex 1 probe BAY-179

BAYER E R

Co	ompound	Related Analog to BAY-179	Rotenone
Cellular ATP assay*	Complex I	25 nM	10 nM
	Complex I	47 nM	9,2 nM
	Complex II	> 30 µM	> 30 µM
Bio-chemical bovine OxPhos activity assay**	Complex III	> 30 µM	> 30 µM
	Complex IV	> 30 µM	> 30 µM
	Complex V	> 30 µM	> 30 µM

Analog of BAY-179 displays target specificity in biochemical assays

* Measured by cell based primary HTS assay (human cell line H1299 with ter luc ATP sensor +/- succinate)

** Measured by Abcam MitoTox complete oxphos activity assay kit using bovine isolated mitochondria

Donated Chemical Probe BAY-179 /// June 2018

Cellular Complex I activity

For the measurement of cellular Complex I activity, cellular ATP levels in absence or presence of the Complex II substrate succinate are measured. Therefore, H1299 cells (ATCC CRL-5803) were stably co-transfected with a pcDNA3 vector (purchased from Invitrogen[™]) encoding for ATP dependent Pyrearinus termitilluminans larval click 20 beetle luciferase under control of a CMV promoter (H1299 tluc cell). In brief, H1299tluc cells (4000/well) are seeded into white 384 well plates. After one day in culturing in DMEM (2% FCS) without glucose, but supplemented with 11 mM galactose, 10 µL of a luciferin/test compound mixture (150 µM D-luciferin, 0.4% DMSO final concentration in 2 mM Ca2+ Tyrode +0.01% BSA) is added to each well and incubated for 1 h at 37° C, 25 5% CO2 and luminescence measurement is performed. After this measurement 20 µL succinate (0.67 M, pH 5.3 in Tyrode, final concentration 25 mM) is added. The plate is then incubated for another 1 h at room temperature before the second measurement is performed.

The succinate dependency of cellular ATP level obtained in the second measurement gives information on Complex I specificity of compound action (i. e. Complex I inhibitors will lose their effect).

Measurements were always performed in quadruple. For determination of inhibition constants IC_{50} and the Hill slope, the normalized luminescence intensities (DMSO control = 100%) were plotted as a function of the concentration of test compound, and data points were fitted by nonlinear regression with the equation

Y=Bottom + (Top-Bottom)/(1+10^{((logIC50-X)*HillSlope)})

where Y is the measured luminescence normalized to DMSO control (=100%), X is the log of compound concentration and Top/Bottom are the plateaus of the curve (normalized luminescence units).